General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

CALIBRATION OF A FAR ULTRAVIOLET SPECTROGRAPH AND A STUDY OF VACUUM SPARK BREAKDOWN

By

THOMAS MILTON CARPENTER

Bachelor of Arts
Friends University
Wichita, Kansas
-1965

Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the degree of MASTER OF SCIENCE May, 1970

N70-26046

CALIBRATION OF A FAR ULTRAVIOLET
 SPECTROGRAPH AND A STUDY OF
 VACUUM SPARK BREAKDOWN

By
THOMAS MILTON CARPENTER
Bachelor of Arts
Friends University
Wichita, Kansas
1965

Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the degree of
MASTER OF SCIENCE
May, 1970

Name: Thomas Milton Carpenter
Date of Degree: May, 1970
Institution: Oklahoma State University Location: Stillwater, Oklahoma
Title of Study: CALIBRATION OF A FAR ULTRAVIOLET SPECTROGRAPH AND STUDY OF VACUUM SPARK BREAKDOWN

Pages in Study: 113 Candidate for Degree of Master of Science

Major Field: Physics
Scope and Method of Study: A far ultraviolet spectrum from the plasma which is produced by the breakdown of a vacuum spark gap, is analyzed. The spark gap consisted of two, pointed, spectroscopically pure, aluminum electrodes. Data necessary for the analysis is collected and presented. A theory of the use of a spectrum to determine the kinetic electron temperature of a plasma is presented and shown to be impossible with the wavelength range of this spectrograph. The mean kinetic energy of the ions is about 1.1 eV which is at a wavelength of a little over $10,000 \AA$.

Findings: Several ionic species are definately identified as present in the plasma. A qualitative estimate of the abundance of the ions with from 3 to 7 electrons missing is made.
\qquad

CALIBRATION OF A FAR ULTRAVIOLET

 SPECTROGRAPH AND A STUDY OF VACUUM SPARK BREAKDOWN
Report Approved:

Report Adviser

Dean of the Graduate College

PREFACE

The work presented here was carried out at the suggestion of this student's major advisor, Dr. F. C. Todd. Without his continued and patient direction its completion would not have been possible.

In this report, a spectrum of the far-ultraviolet radiation from the plasma which was formed by the breakdown of an aluminum spark-gap is analyzed. The higher ionization levels are identified and a qualitative determination of the relative abundances is made. A literature survey of spectroscopic methods for determining the plasma temperatures is reparted. In addition, the collected data from the spectrum analysis is presented in the appendices.

This student would like to thank Mr. R. D. Payne for the assembly and construction of the spectrograph, which he did as a Masters Degree project. A big vote of thanks also goes to Mr. H. G. Gurney who provided much valuable assistance in the design of the film changer and in obtaining the spec.:rograms.

A deep appreciation is also expressed for this student's wife, Glenda, whose patience, encouragement and help while carrying out the work was immeasurable. She had the hardest job of all, she prepared the rough draft from hand written copy and she typed the final draft.

Financial support for this work was provided under NASA contract NASr $=7$ 。

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. TEMPERATURE MEASUREMENTS 3
Introduction 3
Comments on the Following Methods for Temperature Evaluation in this Project 3
Relative Line to Continuum Intensities 5
Relative Line Intensities 7
Relative Continuum Intensities 11
III. DATA OBTAINED FROM A SPECTROGRAM 16
Identification of Observed Lines 16
Identification of Ions Present in Spark 23
IV. ANALYSIS OF RESULTS 32
Source of Spectral Lines 32
Spectrograph for the iltraviolet 33
Comparison of Detected Ions 36
v. CONCLUSIONS 40
SELECIED BIBLIOGRAPHY 42
APPENDIX A - THE SPECTROGRAPH AND CALCULATION OF WAVELENGTHS 45
APPENDIX B - STRONG EMISSION LINES OF ALUMINUM 49
APPENDIX C - TABLES OF EXCITED ENERGY LEVELS OF ALUMINUM 75
APPENDIX D - ENERGY LEVEL DIAGRAMS 105

LIST OF TABLES

Table Page
I. Lines Observed in an Aluminum Sparks Spectra. 19
II. Identified Lines Listed By Ion Species 24
III. Short Wavelength Limit By Spectral Designation and by the Degree of Ionization 35
IV. Strong Emission Lines of A1 I 55
V. Strong Emission Lines of Al II 59
VI. Strong Emisaion Lines of AI III 63
VII. Strong Emission Lines of A1 IV 66
VIII. Strong Emission Lines of Al V 68
IX. Strong Emission Lines of Al VI 70
X. Strong Emission Lines of Al VII 72
XI. Strong Emission Lines of Al VIII 74
XII. Excited Energy Levels of A1 I 76
XIII. Excited Energy Levels of A1 II 79
XIV. Excited Energy Levels of Al III 86
XV. Excited Energy Levels of A1 IV 89
XVI. Excited Energy Levels of Al V 91
XVII. Excited Energy Levels of AI VI 94
XVIII. Excited Energy Levels of Al VII 97
XIX. Excited Energy Levels of AI VIII 101
Figure Page

1. Part I of the Spectrum Analyzed 17
2. Part II of the Spectrum Analyzed 18
3. Observed Al IV Energy Level Transitions 29
4. Observed A1 V Energy Level Transitions 30
5. Observed Al VI Energy Level Transitions 31
6. Diagram of a Concave Grating in a Rowland Mounting 45
7. Energy Levels of Al I 106
8. Energy Levels of A1 II 107
9. Energy Levels of Al III 108
10. Energy Levels of A1 IV 109
11. Energy Levels of Al V 110
12. Energy Levels of AI VI 111
13. Energy Levels of A1 VII 112
14. Energy Levels of Al VIII 113

CHAPTER I

INTRODUCTION

A study of the impact of a hypervelocity micrometcorite on aluminum was started as an analytical project in 1958 under the direction of Dr. F. C. Todd. Experimentally, it was known that such an impact produced a dense, short lived plasma and that a crater was formed in the aluminum target.

The analytical study at Oklahoma State University resulted in a hydrodynamic model for the plasma. To cest the theory and suggest improvements, several experiments were proposed. Three means of producing a spherical aluminum plasma to simulate such an impact were designed. They include a vacuum spark-gap, an exploding wire and the impact of the giant pulse from a laser on an aluminum target.

To obtain data from these plasmas, a spectrograph was designed and constructed by R. D. Payne. The spectrograph has no lens. It employs a grating that is ruled on a concave mirror. The entrance sift, the center of the ruling and the film lie on the Rowland circle in the "so-called" Rowland mounting. The mounting employs grazing incidence (86°) and is entirely enclosed in a chamber which may be evacuated. In its current mode of operation, the range of the spectrograph is from 1, 0 to 1400 angstroms. At 320 angstrom 3 two 1ines which are separated by 2.4 angstroms are approximately 0.8 certimeters apart. The resolv-
ing power is increasingly larger at shorter wavelengths and is decreasingiy smaller at longer wavelengths.

The indentification $u f$ the ions present, determination of the relative abundances of the ions and the deteraination of plasma temperatures are among the measurements that may be made with the spectrograpic. Temperature determinations and the calculation of relative abundances require intensity measurements as well as the separation of the spectral components.

This report describes the work that is necessary to obtain these measurements. Data on the emission lines in the apectra of Al I through AI VIII was compiled from previously published work. This information may to employed to identify the lines and to predict the relative zbundances of the ions. A study of several methode of car:ying out the temperature determination was completed and necessary auxiliary data was compiled. To 1llustrate the use of the compiled data, the spectrum from the breakdown of a vacuum spark-gap was considered and the ions $f:=0 \mathrm{Al}^{+2}$ to Al^{+6} are identified. As no means of measuring intensity was available, only a qualitative attempt was made to determine the relative abundances. For this particular case, the evidence of the relative intensities show that the ions arc not in temperarure equilibrium and the intensities indicate the nature and probable reason for the failure to have a temperature equilibrium.

The exploding wire and twin-ruby laser were not operational in time to include the results from these devices in this study. A similar analysis of spectra from each of these will be carried out at a later date

CHAPTER II

TEMPERATURE MEASUREMENTS

Introduction

The overall objective of the program for which the work in this thesis is one phase, is to determine the characteristics of plasmas by experiment and to correlate these measurements by obtaining analytical expressions for the experimental results. Since the plasmas are probably not in equilibrium at the time that they are formed, it ic particularly desirable to simultaneously determine the relative abundance of the ions of different species (singly, doubly, etc. ionized). When these relative abundances are determined, it may be feasible, as was suggested many years ago, to define a temperature for the kinetic energy of the plasma and another temperature for the ions. In contrast, there may be a single temperature for the kinetic energy and the densities of the ionic species may have no temperature based relation to each other. A preliminary analysis of the results on the overall program up to this time, and of the results from this thesis appear to indicate that the latter is the case for the vacuum spark between aluminum electrodes.

[^0]The following survey from the literature presents three methods of determining the temperature by means of spectral studies. These
surveys are given to demonstrate that it is impossible to determine the temperature from the information on the spectra that is obtained with this application. Each of the following three methods are applicable under the proper conditions which are discussed in the survey and in the original articles.

The line to continuum method does not require serious consideration for this project. From the preliminary measurements by Willis with the quadrupole mass filter, it is known that the ions and the excited atoms have roughly the same effective temperature with respect to their kinetic energy. This energy corresponds to about 1.1 electron volts. The peak of the continuum radiation from the spark should, according to this measurement, be centered at about 10,000 angstroms. It is certainly not in a range that is recorded by available spectrograph.

The second method from the literature is concerned with relative line intensities. The rough estimati of population intensities from this work and the effective kinetic energy from the quadrupole mass filter show that the relative intensities of the lines in the region that is covered by this equipment cannot be employed. The appiication requires that the excited ions have a density that is determined by the Boltzman relation. Since the effective, kinetic energy temperature is about 1.1 electron-volts, local thermodynamic equilibrium requires that the ratio of the density of ions and atoms at 1.1 eV to the density of ions that require about 160 eV to ionize is roughly the ratio of 1 to e^{-150}. This would be almost infinitely large; i.e. there would be no $A 1^{+6}$ ions. In addition, the "eye ball" estimate of the relative number of ions of each specie cannot satisfy the Boltzman relation. This means that local thermodynamic equilibrium cannot exist.

There is no reason to make any comments on the relative continuum intensities. The continuum intensities are not recorded by the film and data exists for the purpose of comparison.

Relative Line To Continuum Intensities

Looking first to relative line to continuum intensities. Cooper (1960) and Griem (1964) state that this method is restricted to pure gases or when oscillator strengths and continuum emission coefficients are accurately known. Assuming they are known, the development by Cooper is followed.

The total intensity of a given line for path length D in the optically thin case is
(1) $I_{t}=\frac{h \nu}{4 \pi} A(p, q) n_{z-1}$ (p) D
where $v=$ frequency of line

$$
A=\text { coefficient of emission }
$$

and $n_{z-1}(p)=$ number density in the upper state, p.
If the upper state is in equilibrium with electrons and the next higher ionization ground state, $n_{z-1}(p)$ may be stated in terms of Saha's equation.
(2) $n_{z-1}(p)=\frac{g_{z-1}(p)}{2 g_{z}(1)} n_{e} n_{z}(1)\left\{\frac{2 \hbar^{2}}{m k T}\right\}^{3 / 2} \exp \left\{\frac{\left.E_{z-1}(\infty)-E_{z-1}(p)-\Delta E z-1\right)}{k T}\right\}$
where $g_{z-i}(p)=$ statistical weight of level p
$n_{e}=$ number density of electrons
$n_{z}(1)=$ number density of ground state of z ion,
$E_{z-1}(\infty)=$ ionization energy of single $z-1$ ion
$E_{z-1}(p)=$ energy of level p.
$\Delta \mathrm{E}_{z_{-1}}(\infty)=\begin{aligned} & \text { lowering of } \\ & \text { ions. }\end{aligned} \mathrm{E}_{z-1}(\infty)$ due effect of collection of

Expressing $A(p, q)$ in terms of oscillator strengths, $f_{q p}$, and statistical weights,

$$
\begin{equation*}
A(p, q)=\frac{g(q)}{g(p)} f_{q, p} \frac{8 \pi^{2} e^{2} v^{2}}{m c^{3}} \tag{3}
\end{equation*}
$$

Then, making the proper substitutions,
(4) $\quad I_{t}=D \frac{h v}{8 \pi} \frac{n_{e} n^{n}}{g_{z}(1)}\left(\frac{2 \pi \hbar^{2}}{m k T}\right)^{3 / 2} g_{z-1}(q) \frac{8 \pi^{2} e^{2} v^{2}}{m c^{3}} f q p \exp \frac{E_{z-1}^{(\infty)}-E_{z-1}(p)-\Delta E_{z-1}(\infty)}{k T}$

Continuum radiation which needs to be considered here is two type types: Bremsstrahlung and recombination. Bremsstrahlung is radiation arising from transition of an electron from one free state to another. Physically this is due to collisions between electrons, between ions, or between ions and electrons. In a plasma electron-ion collisions dominate. (Griem, 1964). Recombination radiation is that emitted when an electron goes from a free state to a bound state, ie., recombines with an ion.

The intensity of Bremsstrahlung and recombination radiation, $B+R$, for a wavelength interval, $\Delta \lambda=\frac{\lambda^{2} \Delta v}{c}$, centered at the line being used is (5) $I^{B+R}(\Delta \lambda)=\frac{8 e^{4} h z}{3^{3 / 2} \pi^{1 / 2} m^{2} C^{3}}\left[q_{f f} \exp \left\{\frac{z^{2} E_{H}}{k T\left(q^{*}+1\right)^{2}}\right\}+\right.$ $\left.\sum_{q \geqslant\left(\frac{e^{2} E_{H} \lambda}{n c}\right)^{1 / 2}}^{q^{*}} \frac{q_{f b}}{q^{3}} \exp \left\{\frac{z^{2} E_{4}}{q^{2}+T}\right\}\right]$,

$$
\left[n_{e} n_{z}\left(\frac{z^{2} E_{H}}{k T}\right)^{1 / 2} \exp \left\{-\frac{h c}{\lambda k T}-\frac{E_{z-1}(\infty)}{k T}\right\} \frac{\Delta \lambda c D}{\lambda^{2}}\right]
$$

where $E_{H}=$ ionization energy of hydrogen

$$
\begin{aligned}
& q^{*}= \text { is a level above which states are close enough together } \\
& \text { to be treated as a continuum. }
\end{aligned}
$$

and $g_{f f}$ and $g_{f b}=$ free-free and free-bound Gaunt factors.
Using the relations,

$$
\begin{aligned}
& \text { relations, } \\
& E_{H}=\frac{m e^{4}}{2 \hbar^{2}} ; h \frac{c}{\lambda}=E_{z-1}(P)-E_{z-1}(g) .
\end{aligned}
$$

Several advantages are noted for this formula. It is independent of electron and ion densities and the lowering of the ionization potential cancels, The only remaining factors which are not accurately determined are the oscillator strengths and Gaunt factors. The line intensity, I_{t}, is that of the entire line profile. Correction is also necessary for the continuum umder the line, which can be made by extrapolation from the line wings.

The main problem in applying this to aluminum would be separation of the continuum intensity due to the different ions present.

Relative Line Intensities

When local thermodynami: equilibrium (LTE) holds, a very reliable method is the comparison of relative intensities for line emission. The method is accurate over the range $75,000{ }^{\circ} \mathrm{K}$ to $5 \times 10^{5} o^{\circ} \mathrm{K}$. Actually, two methods are used in the comparison of line intensities. One can select lines from the same ionization stages; or lines from successive ionization stages. The greater separation of the energy levels involved in lines from successive ionizations generally make it the more accurate.

The relations for lines from the same ionization will be looked at first. It should be noted that hydrogenic systems were assumed in the derivation of the equations used. The developments here follow
those in Griem (19h4).

The assumption of LTE leads to the relation for the total intensity, I, for the transition from the level m to n,

$$
\begin{align*}
I_{m_{n}} & =\frac{h \omega^{3} \Omega_{0}}{2 \pi c} \frac{g_{n}}{g_{m}} f_{m_{n}} N_{m} \tag{7}\\
\text { where } r_{0} & - \text { classical radius of the electron } \\
f_{m n} & =\text { absorbtion oscillator strength } \\
g_{n} \text { and } g_{n} & =\text { statistal weights of ine levels } m \text { and } n \\
N_{m} & =\text { density of atoms (} n \text { ions) in state } m \\
\omega & =\text { frequency of line }
\end{align*}
$$

and the remaining symbols are constant having their usual meaning. The assumption LTE also implies the relation for densities of atoms in the states m and n of the same ionization:
(8) $\frac{N_{n}}{N_{m}}=\frac{g_{n}}{g_{m}} \frac{\operatorname{mp}\left(-E_{n} / n T\right)}{\exp \left(-E_{m} / n T\right)}$
where in addition to the above definations,
$E_{n}=$ energy of the level, n
and
$T=$ kinetic electron temperature.
Then, taking the ratio of the intensity of two lines,

$$
\begin{equation*}
\frac{I^{\prime}}{I}=\left(\frac{\omega^{\prime}}{\omega}\right)^{3} \frac{g_{n}^{\prime}}{g_{m}^{\prime}} \frac{g_{m}}{g_{n}} \frac{f^{\prime}}{f_{m n}} \frac{N_{m}^{\prime}}{N_{m}} \tag{9}
\end{equation*}
$$

From Eqn. (8) we can substitute for $\frac{\mathrm{N}^{\prime} \mathrm{m}}{\mathrm{N}_{\mathrm{m}}}$. Then,
$\frac{I^{\prime}}{I}=\left(\frac{\omega^{\prime}}{\omega}\right)^{3} \frac{g^{\prime} n}{g_{m}^{\prime}} \frac{g_{m}}{g_{n}} \frac{f^{\prime} m n}{f_{m n}} \frac{g_{m}^{\prime}}{G_{m}} \exp \left(\frac{E-E_{m}^{\prime}}{k T}\right)$
or
(10) $\frac{I^{\prime}}{I}\left(\frac{\lambda}{\lambda^{\prime}}\right)^{3} \frac{g_{n}^{\prime}}{g_{n}} \frac{E_{m n}^{\prime}}{E_{m n}} \exp \frac{E_{m^{\prime}} E^{\prime}}{k T}$
or

$$
\begin{equation*}
k T=\frac{E_{m}-E^{\prime} m}{\operatorname{lil}^{\prime} \frac{I^{\prime} \lambda^{\prime} g_{n} f_{m n}}{I \lambda^{3} g^{\prime}{ }_{n} f^{\prime} m n}} \tag{11}
\end{equation*}
$$

The largest uncertainties in this relation are from the determination of oscillator strength, f; the intensities, I; and the relative sma11 separation of the energy levels. The intensity error is purely experimental, depending on choice of lines, and calibration proceedures. Determination of oscillator strengths will be discussed later.

As was mentioned earlier using lines from successive ionizations, which increases the separation of the energy levels involved, will improve the accuracy.

In addition to equations (7) and (8). The following relation for ion densities from successive ionizations is needed.

```
    \(\frac{N_{e} N_{1}^{z}}{N_{n}^{z-1}}=\frac{2 g_{1}^{z}}{g_{n}^{z-1}}\left(\frac{m k T}{2 \pi \hbar^{2}}\right)^{3 / 2} \exp \left(-\frac{E_{\infty}^{z}-E_{n}^{z-1}}{n T}\right)\)
    where \(\mathrm{N}_{\mathrm{e}}=\) electron density
        \(N_{1}=\) ground state density
        \(\mathrm{E}^{\infty}=\) ionization energy
```

and the other symbols have the same meaning as before. The superscripts Z and $\mathrm{Z}-1$ refer to ionization, $\mathrm{Z}-1$ being the lower.

Taking the intensity of two lines, the one from the higher ionization has that ground state for its lower level because of the occurrence of $\mathrm{N}_{1}{ }^{\mathbf{2}}$ in equation (12).
(13) $\frac{I^{z}}{I^{z-1}}=\left(\frac{\omega^{z}}{\omega^{z-1}}\right)^{3}\left(\frac{g_{1}^{z}}{g_{m}^{z}}\right)\left(\frac{\partial_{m}^{z-1}}{g_{n}^{z-1}}\right)\left(\frac{f_{m l}^{z}}{f_{m n}^{z-1}}\right) \frac{N_{m}^{z}}{N_{m}^{z-1}}$

From (8)

$$
\begin{equation*}
N_{m}^{z}=N_{1}^{z}\left(\frac{g_{m}^{z}}{g_{1}^{z}}\right) \operatorname{lxp}\left(\frac{E_{1}^{z}-E_{m}^{z}}{k T}\right) \tag{14}
\end{equation*}
$$

Then,
(15) $\frac{I^{z}}{I^{z-1}}=\left(\frac{\lambda^{z-1}}{\lambda^{z}}\right)\left(\frac{\mathcal{Z}_{m}^{z-1}}{Q_{n}^{z-1}}\right)\left(\frac{f_{m l}^{z}}{f_{m n}^{z-1}}\right)\left(\frac{N_{1}^{z}}{N_{m}^{z-1}}\right) \exp \left(\frac{E_{1}^{z}-E_{m}^{z}}{h T}\right)$

Substituting from (12) for the ratio $\frac{N_{1}{ }^{2}}{N_{m}^{2-1}}$
(15) $\frac{I^{z}}{I_{\text {but }}^{z-1}}=\left(\frac{\lambda^{z-1}}{\lambda^{z}}\right)^{3}\left(\frac{\partial_{1}^{z}}{g_{n}^{z-1}}\right)\left(\frac{f_{m 1}^{z}}{f_{m n}^{z-1}}\right)\left(\frac{2}{f_{l}}\right)\left(\frac{m k T}{2 \pi \hbar^{2}}\right)^{3 / 2} \operatorname{xp}\left(-\frac{\left.E_{\phi_{m}^{z-1}-E_{m}^{z-1}}^{k T}+\frac{E_{1}^{z}-E_{m}^{z}}{k T}\right) \text { all energies to the } z-1 \text { ground state, }}{k T}\right.$

$$
E_{1}^{z}=E_{\infty}^{z-1}
$$

and

$$
E_{m}^{z}=E_{\infty}^{z-1}+E_{m}^{z}
$$

Also, correcting for the lower of the ionization potential in a plasma, $-\Delta \mathrm{E}_{\infty}^{\mathrm{z}-1}$, we have,
(16) $\frac{I^{z}}{I^{z-1}}=\left(\frac{\lambda^{z-1}}{\lambda^{z}}\right)^{3}\left(\frac{\partial_{1}^{z}}{\sum_{n}^{z-1}}\right)\left(\frac{f_{m 1}^{z}}{f_{m n}^{z-1}}\right)\left(\frac{2}{N_{e}}\right)\left(\frac{m k T}{2 \pi \hbar^{z^{2}}}\right)^{3 / 2} \exp \left(-\frac{E_{m}^{z}-E_{m}^{z-1}+E_{\infty}^{z-1}-\Delta E_{\infty}^{z-1}}{k T}\right)$

The major difficulty in the use of the equation that is derived above is the introduction of the electron density, N_{e}. This method is valid for large electron densities, 1.e., $N_{e}=10^{18}$; provided LTE exists. For electron densities even greater than this, the method is very precise. The use of multiplie ionized ions often lead to further inaccuracies. Often the LTE assumption is not as valid, and more difficulty is found in calculating oscillator strengths.

0 IV and 0 V ; however, have been used with reasonable accuracy. (Griem, 1964). The configuration of these fons are similar in nature to those of A1 III and Al IV, which have been detected in the spark-gap produced plasma.

Relative Continuum Intensities

The comparison of relative line intensities offers a very accurate method of determining temperature using ultraviolet data, providing certain conditions, which have been listed, exist. Relative continuum intensities, however, are independent of most of these restrictions, particularly LTE. Relative continuum intensities then offer what is perhaps the best method of determining plasma temperatures.

Continuum radiation can arise from a multitude of sources. For temperature measurement, in the spectral region under consideration, only three types of radiation need be considered. They are black body, Bremsstrahlung, and recombination.

The problem is usually to determine what type of radiation predominates in a given spectral region. At frequencies for which the absorbtion length is less than the plasma radius, the radiation is black body. When the ebsorbtion length is large compared to the plasma
radius, the radiation is Bremsstrahlung. (Dawson, 1964). The inverse of the absorbtion length is

$$
\begin{aligned}
& K=\frac{\left(1.17 \times 10^{-8}\right) Z N_{e}^{z} \ln \Delta}{3 \nu^{2}(h T)^{3 / 2}} \frac{1}{\left(1-\frac{\nu_{F}^{\beta}}{\nu^{2}}\right)^{1 / 2}} \\
& \text { where, } \mathrm{kT} \text { is in electron volts, }
\end{aligned}
$$

$\Lambda=\frac{N_{T}}{\omega_{P} P_{\text {mm }}}$
$N_{T}=$ thermal velocity of the electrons

$$
\begin{aligned}
\omega_{p}=2 \pi Z_{p} & =\text { plasma frequency } \\
P_{\text {min }} & =\text { minimum impact parameter } \\
& =\text { maximum of } \frac{Z_{e}^{2}}{k T} \text { or } \hbar(m e k T)^{1 / 2}
\end{aligned}
$$

Assuming that the plasma consists primarily of A1 V (Z-4), that $N_{e} \not \approx 10^{18}$ and that $k T \approx 30 \mathrm{eV}$ (values seem reasonable from Braces work). $\ln \Lambda$ is always of the order 10 . Then, at 300 angstroms, the absorption length is 8.5 cm , at 1000 angstroms, 0.77 cm , and at 3000 angstroms, 0.085 cm . A 2.5 cm , radius is not unreasonable for a laser induced plasma. Assuming this, the cut-off wavelength for black body radiation is 350 angstroms. Comparing this with absorbtion length at 300 angstroms, it is seen that the cut-off is fairly distinct. Above 350 angstroms the radiation can be considered black body and below that wavelength Bremsstrahlung. If N_{e} were larger, say $N_{e} \approx 10^{21}$, then at 300 angstroms, the absorbtion length becomes $8.5 \times 10^{-6} \mathrm{~cm}$., and the cutoff wavelength for a plasm radius of 2.5 cm . becomes 0.35 angstroms. If the plasma radius was only 1 cm ., the cut-off wavelength increases only to 0.87 angstroms.

The intensity, of the radiation at a given frequently from a black body at a specific temperature, is found from the plank radiation law,

$$
I_{\nu}=\frac{2 h \nu^{3}}{c^{2}}\left[\exp \left(\frac{h \nu}{h T}\right)-1\right]^{-1}
$$

Temperature determination can then be made by measuring the intensity at two frequencies and taking the ratio, to get

$$
\frac{I_{\nu_{1}}}{I_{z_{2}}}=\left(\frac{z_{1}}{z_{2}}\right)^{3} \frac{\operatorname{axp}\binom{h \nu_{2}}{h T}-1}{\exp \left(\frac{h \nu_{1}}{h T}\right)-1}
$$

This must then be solved for T, the temperature.
Consider one other factor, $k T$. For $\mathrm{N}_{\mathrm{e}} \boldsymbol{x}^{1} 10^{21}$, and the other factors as before, the cut-off wavelengths for black body radiation at kT $=50 \mathrm{eV}$ and $\mathrm{kT}=100 \mathrm{ev}$ are respectively $0.81 \AA$ and 1.35%. At $\mathrm{N}_{\mathrm{e}} \approx 10^{18}$, these cut-off wavelengths become $81 \AA$ and $1350 \AA$.

Thus, on the basis of these rough calculations, only when temperatures az of the order of 100 ev would it no longer be possible to use black body radiation to determine the temperature using the available vacuum ultraviolet spectrograph. Even then, only when the electron densities are low. Such a condition might be expected however, at these high temperatures. In most cases, however, the electron densities would not be this low, and a black body can be assumed, even up to about the 50 eve level.

Should measurements be made that require consideration of Bremsstrahlung and recombination radiation, calculations can be made from the equation presented earlier,

$$
\begin{aligned}
& {\left[N_{e} N_{z}\left(\frac{Z^{2} E_{t+1}}{h T}\right)^{1 / 2} \exp \left\{\frac{-h C}{\lambda h T}-\frac{\Delta E_{z-1}(\infty)}{k T}\right\} \frac{\Delta \lambda_{<} D}{\lambda^{2}}\right]}
\end{aligned}
$$

In taking the ratio of two intensities the ion and electron densities would cancel as would the correction for the lowering of ionization energy and several constants. The Gaunt factors, $g_{f f}$ and $g_{f b}$, are slowly varying functions of $\frac{h \mathcal{Z}_{n}}{\bar{Z}^{2} E_{H}}$. Then, if the wavelengths are close enough together, the quantities in the brackets also effectively cancel. This would leave only

$$
\frac{I^{B+e}\left(\Delta \lambda_{1}\right)}{I^{B+R}\left(\Delta \lambda_{2}\right)}=\left(\frac{\Delta \lambda_{1}}{\Delta \lambda_{2}}\right)\left(\frac{\lambda_{1}}{\lambda_{2}}\right)^{2} \exp \left[-\frac{h c}{k T}\left(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}\right)\right]
$$

There are several advantages in using the method of relative continuum intensities. The independence of LTE has already been pointed out. This would allow checking for LTE, by comparison with results ohtained by measuring relative line intensities. Results are also less affected by absorbtion in that as long as the ratios are constant the temperature calculated remains the same.

The method of relative continuum intensities was used by D. W. Gregg and S. J. Thomas to obtain the results published in the diarch, 1967 1ssue of Journal of Applied Physics. They studied the temperature a plasma induced by the impact of a laser giant pulse as a function of laser beam intensity. Target materiels were beryllium, aluminum and lead.

A prism and grating monochromator wert used in series to select the wavelengths used in calculation. The light was then datected by an Amperex 56CVP photomultiplier with the signal being displayed on a Textronix 5,5 oscilloscope. The system was calibrated by replacing the target with a hot tungeston filament. Its black body intensity in the
wavelength region being studied was measured and the temperature determined using an optical pyrometer.

The temperature c the plasma was then calculated using the ratio of measured intensities with the Plank law.

Measurements were made at five wavelengths using 50 angstrom wide bands. The centers of the bands were at $10,500 \AA, 10,100 \AA, 6100 \AA, 4000 \AA$. The data is reported in graphic form. For a focused grant pulse intensity of approximately 9×10^{10} watts $/ \mathrm{cm}^{2}$, at the three longer wavelengths the temperature of the aluminum plasma was measured at approximately $6 \times 10^{5} \mathrm{~K}$, or 52 ev .

Comparing the result with that predicted by Bruce (thesis, 1966), there is a good correspondance. Bruce found a maximum temperature of about 43 eV for a spherical plasma of mass $2.17 \times 10^{-3} \mathrm{gm}$. and initial total energy of 2.3×10^{7} erg. The mass of aluminum displaced by the pulse ir Gregg's and Thomas' experiment was at least $1.6 \times 10^{-4} \mathrm{gm}$. Using their formula and figures, the total energy input to the plasma by the pulse was abıut $2.3 \times 10^{7} \mathrm{erg}$.

These results are, then, an indication of order of magnitude of the temperatures to be measured. A smaller wavelength band than Gregg and Thomas used could be obtained using the vacuum ultraviolet spectrograph. The wavelength would be much shorter than they employed; and hence, the hot center could be observed more directly. More exact calculations than presented sarlier would be necessary to determine if black body or Bremsstrahlung radiation is being observed at a given wavelength.

CHAPTER III

DATA OBTAINED FROM A SPECTROGRAM

Identification of Observed Lines

The ultraviolet spectrograph was employed to obtain the emitted spectrum from the breakdown of a spark gap between spectroscopically pure aluminum electrodes in a vacuum. A print of the spectrum which was obtained on March 7, 1967 is shown as Figures 1 and 2. The calculated wavelength for each numbered line on the print is tabulated in Table I . The table includes the corresponding wavelength from the published information that is listed in Appendix B, the difference in the calculated and published values, the order of the line and the potential difference for those lines for which the transition has been identified.

Most of the lines for which the wavelength have been calculated are quite distinct, though sometimes faint. The major source of error is focusing which is affected by the large angle of incidence (86°) and other constant angles that are required in calculation. The spectrograph and method of calculation are described in Appendix A.

There are many very faint lines in several regions on the spectrum for which the wavelengths were not calculated. The region from 100 to 200 angstroms, i.e., lines one to eighteen, probably contain

Fioure 1. Dari I of tie Cnectrum fnalized

Tioure 2. nart II of tie cnectrur inalized

TABLE I

LINES OBSERVED IN AN ALUMINUM SPARK SPECTRA

$\begin{aligned} & \text { Line } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Wave } \\ & \text { Calculated } \end{aligned}$	Length Published	Diff.	Order	Ionization
1	110.882	$\begin{aligned} & 109.514 \\ & 109.843 \end{aligned}$	1.039	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { AI VI } \\ & \text { VI } \end{aligned}$
2	114.014	113.437	0.577	1	VI
3	118,586	$\begin{aligned} & 116.461 \\ & 116.921 \end{aligned}$	1.665	1	$\begin{aligned} & \text { IV } \\ & \text { TV } \end{aligned}$
4	120.534	$\begin{aligned} & 118.500 \\ & 118.984 \end{aligned}$	2.050	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
5	125.614	$\begin{aligned} & 124.034 \\ & 124.543 \end{aligned}$	1.071	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { IV } \\ & \text { TV } \end{aligned}$
6	127.053	$\begin{aligned} & 125.525 \\ & 126.065 \end{aligned}$	0.988	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { v } \end{aligned}$
7	131.032	$\begin{aligned} & 129.729 \\ & 130.413 \end{aligned}$	0.619	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { IV } \\ \text { V } \end{gathered}$
8	132.218	$\begin{aligned} & 130.848 \\ & 131.003 \\ & 131.411 \end{aligned}$	0.607	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
9	133.742	132.630	1.112	1	v
10	138.822				
11	150,506				
12	160.073		ref.	1	IV
13	161.681	161.686	0.005	1	IV
14	173.027	86.513	0.001	2	VII

TABLE I (Continued)

| Line
 No. | Wave Length
 Calculated | Published |
| :---: | :---: | :---: | :---: | :---: | :---: |\quad Diff. \quad Order | Ionization |
| :---: |
| 15 |
| 181.663 |

TABLE I (Continued)

Line No.	Wave Calculated	Length Published	Diff.	Order	Ionization
35	252.106	126.065	0.024	2	v
36	259.641	129.729	0.183	2	IV
37	260.996	130.413	0.170	2	v
38	262.012	131.006	0.000	2	v
39	272.934				
40	276.067	275.350	0.717	1	vi
41	279.453	278.699	0.754	1	v
42	282.247	281.397	0.850	1	v
43	309.087	307.248	1.839	1	VI
44	310.611	308.560	2.051	1	vi
45	311.542	$\begin{aligned} & 309.596 \\ & 309.852 \end{aligned}$	1.690	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { VI } \\ & \text { VI } \end{aligned}$
46	312.981	310.908	2.073	1	VI
47	314.336	312.241	2.095	1	vi
48	322.549	160.073	2.403	2	IV
49	326.020	161.686	2.648	2	IV
49A	361.157	356.885	4.272	1	VII
50	390.451				
51	395.870				
52	397.817				
53	399.257				
54	489.935	243.760	2.415	2	VI

TABLE I (Continued)

| Line
 No. | Wave Length
 Calculated | Published |
| :---: | :---: | :---: | :---: | :---: |\quad Diff. | Order |
| :---: | Ionization

many second order lines from the first order spectral range of 50 to 100 angstroms. A1 VI, AI VII, and AI VIII have many strong lines in this region. In the same ragion on the spectrogram the focus is not as good as it is on other parts of the spectrogram; hence, the ines are not as well resolved and greater error is possible in determining the wavelength. The 50 to 100 angstrom region also contains several first order lines but these lines should also be present in second order determinations among lines 19 through 53. In the region of lines 19 through 25 some fogging of the film has occurred; hence, measurements on these lines were difficult and are aubject to considerable error.

Identification of Ions Present in the Spark

Al III, AI IV, AI V, AI VI and AI VII foas have been identified In the plasma produced by the spark gap breakdown. The identified spectral lines emitted by the plasma are listed by ionic species in Table II. The large number of spectral lines present for Al IV, AI V and $A 1$ VI indicate these ions are present in large quantities. Two A1 III IInes are listed, 560.390 and 695.817 angstroms, but are quite faint. Four AI VII lines have been identified. One of thege lines is a second order line and the others are first order. These Al VII lines are stronger than the A1 III lines. This evidence and the number of faint lines present in the area where second order AI VII lines should appear indicates that a considerable number of $A 1$ VII ions are present.

It should be noted that no attempt has been made to identify possible contaminating elements. The highly posaible contaminatea,

TABLE II

IDENTIFIED LINES LISTED BY ION SPECIES

Al IV

TABLE II (Continued)

Al VI

Wave Length	Wave Number	Term Combination	Order	Rep. Int.	Number
312.241	320365	$2 p^{4}{ }^{3} P_{1}-2 p^{5}{ }^{3} P_{2}^{0}$	1,2	3	47,66
310.908	321639	$2 p^{4}{ }^{3} P_{0}-2 p^{5} 3_{P}^{0}$	1	3	46

TABLE II (Continued)

Wave Length	Wave Number	Term Combination	Order	Rep. Int.	Namber
309.852	322735	$2 p^{4}{ }^{3} P_{1}-2 p^{5}{ }^{3} P_{1}^{0}$	1	2	45
309.596	323002	$2 p^{4}{ }^{3} p_{2}-2 p^{5}{ }^{3} p_{2}{ }^{0}$	1	4	45
308.560	324086	$2 p^{4}{ }^{3} P_{1}-2 p^{5}{ }^{3} P_{0}^{0}$	1	3	44
307.248	325470	$2 p^{4}{ }^{3} P_{2}-2 p^{5}{ }^{3} P_{1}^{0}$	1,2	3	43,65
275.350	363174	$2 p^{4}{ }^{1} S_{0}-2 p^{5}{ }^{1} P_{1}^{0}$	1,2	3	40,61
243.760	410240	$2 p^{4}{ }^{1} D_{2}-2 p^{5}{ }^{1} p_{1}^{0}$	1,2	6	31,54
113.437	881547	$2 p^{5}{ }^{3} P_{2}^{0}-3 z^{\prime \prime}{ }^{3} P_{2}$	1	3	2
109.843	910391	$2 p^{4}{ }^{3} p_{1}-3 s{ }^{3} s_{1}^{0}$	1	12	1
109.514	913125	$2 p^{4}{ }^{3} p_{2}-3 s{ }^{3} s_{1}^{0}$	1	20	1
107.620	929195	$2 p^{4}{ }^{D_{2}}-3 s^{\prime}{ }^{1} D_{2}^{0}$	2	14	21
101.027	989834	$2 p^{4}{ }^{3} p_{0}-3 \varepsilon^{\prime \prime}{ }^{3} P_{1}^{0}$	2	3	20
100.919	990894	$2 p^{4}{ }^{3} p_{1}-3 z^{\prime \prime}{ }^{2} P_{0,1}^{0}$	2	4	19
92.875	1076720	$2 p^{4}{ }^{3} p_{0}-3 \mathrm{~d} ~{ }^{3} \mathrm{D}_{1}^{0}$	2	10	16
91.332	1094910	$2 p^{4}{ }^{1} D_{2}-3 d^{\prime}{ }^{1} P_{1}^{0}$	2	10	15

Al VII

Wave Length	Wave Number	Term Combination	Order	Rep. Int.	Number
356.885	280202.3	$2 p^{34} S_{1 / 2}-2 p^{4}{ }^{4} P_{2 \frac{12}{2}}$	1	5	49A
240.770	415334.1	$2 p^{3}{ }^{2} D_{21 / 2}^{0}-2 p^{4}{ }^{2} P_{1 *}$	1	4	29
239.030	4'8357.5	$2 p^{3} L_{L}^{2}{ }_{1 \frac{1}{2}}-2 p^{4}{ }^{2} P_{1 / 2}$	1	2	30

TABLE II (Continued)

Wave Length	Wave Number	Term Combination	Order	Rep. Int.	Number
86.887	115092.0	$2 p^{3}{ }^{2} D_{1 \frac{1}{2}}^{0}-38{ }^{4} P_{2 \frac{1}{2}}$	2	18	14
	A1 III				
Wave Length	Wave Number	Term Combination	Order	Rep Int.	Number
695.817	143716.0	$3 \mathrm{~s}{ }^{2} \mathrm{~S}_{\frac{1}{2}}-4 \mathrm{p} \quad{ }^{2} \mathrm{P}_{1 \frac{1}{2}}^{0}$	1	5	69
560.390	178447.2	$3 \mathrm{~s}{ }^{2} \mathrm{~S}_{1 / 2}-5 p{ }^{2} \mathrm{P}_{1 / 2}^{0}$ O $1 / \frac{1}{2}$	1	7	63

oxygen and nitrogen, do have several strong lines in the range of the spectrogram.

The transition involved for each line listed in Table II for
A1 IV, V and VI is shown on the corresponding energy level diagrams in Figures 3, 4 and 5. For each energy level is listed the term designation, the outer electron configuration, the excitation energy (relative to the ground state for that ion) in wave number, and the total angular momentum quantum number J. Also listed on the figure is the ionization potential of that ion in wave number. As can be readily observed on the figure most of the lines involve transitions to the ground state.

Figure 3. Observed Al IV Energy Level Transitions

Figure 4. Observed Al V Energy Level Transitions

Figure 5. Observed AI VI Energy Level Transitions

ANALYSIS OF RESULTS

The data that were obtained during the experimental program for this thesis are presented in an earlier section of this report. This data consists of a list that gives the lines that are observed in one of the many spectra that were photographed. The table also identifies the transition that is responsible for each line and reports the relative intensity of the lines. Prior to a presentation of an analysis of the preceeding data, it is desirable to give a short review of the characteristics of the source that is employed to produce a spectrum. This is followed by a review of the characteristics and spectral range of the ultraviolet spectrograph that was employed. This description also identifies the short wavelength limit of each spectral class; that 1s, Al I, Al II, Al III, etc. This is followed by an "eye-ball" analysis of the data in order to obtain a little information on the relative abundance of the different ions.

Source of the Spectral Lines

The source for the spectral lines is a vacuum spark gap witt spectroscopically pure aluminum electrodes. The energy for the spark is supplied by a 1.0 microfarad condenser that is charged to 12,500 volts. The conducting channel between the electrodes starts as a very
thin thread oi: a dense aluminum plasma and expands very rapidiy in the radial directions. This statement is in rough accordance with the existing concepts of breakdown (Meek and Craggs, 1953). More important for the interpretation of the results, the studies by Brown for his EdD thesis (Brown, 1968) give very strong confirmation of the initial, thin thread and of the subsequent, rapid, radial expansion.

Spectrograph for the Ultraviolet

The spectrograph for the far ultraviolet covers the spectral range from $100 \AA$ to $1400 \AA$. The grating has 30,000 ines per inch and is used at almost grazing incidence. The angle of incidence is 86° which is measured between the normal to the grating and the angle of incidence of the light. At this angle of incidence, the aberrations from the grating are extremely bad and a great deal of very delicate adjustments are required to minimize them and to obtain a good spectrogram. Each adjustment, which is made one at a time and checked with a photograph of the spectrum, is followed by another adjustment with another check with a photograph. The final adjustments are attained after months of work and this alignment of the spectrograph is the real contribution of this thesis.

Since the spectrograph employs the grating at grazing incidence, che resolution varies with the wavelength. The resolution is largest at short wavelengths and decreases as the wavelength increases. There is another very important consequence of grazing incidence which is coupled with the fact that the grating is ruled with no blaze. The term, ro blaze or zero blaze, is the optical designation when the light
is reflected from the undisturbed original surface that is between the rulings; i.e., the reflecting strips are the unchanged, original surface of the concave mirror. The reflecting surfaces are between the very light scratches that are made by the ruling engine.

The intensity of the lines in the spectrum is always the greatest when the line is deviated by the least amount from the angle of reflection. The angle of incidence is 86° and the angle of reflection will be 86°. The spectral lines must make smaller angles, less than 86°, with the normal to the grating. This means that the reflected lines are much more intense in the short wavelength range than in the long wavelength range. In fact, only the very strongest lines-from the amount of emitted light from the spark--are even observed at wavalengths that are longer than 1000 A. If intensities are to be compared, the line for comparison should be bracketed by known reference ines for the most accurate comparison. Although it may be very troublesome to interpret, lines in different positions on the film may be compared directly by calculating the correction factor for the intensity.

In the preceeding tables, the spectral lines are tabulated under the designations of the spectra for Al $I, A 1$ II, etc. The short wavelength limit of Al I is given as the ionization potential of the aluminum atom, The designation, spectrum of $A 1 I$, is the apectrum of the excited aluminum atom, $A 1 *$. In a similar manner, the spectrum of $A 1$ II extends from the ionization potential of $A 1^{+}$down into and overlapping the spectrum of Al I. The ionization potentials for aluminum atoms and for the first seven ions are given in Table III with the corresponding ionization potentials and with the short wavelength limits.

TABLE III

SHORT WAVELENGTH LIMIT BY SPECTRAL DESIGNATION AND BY THE DEGREE OF IONIZATION

Spectral Designation	Ionization Potential eV	Short Wavelength Limit \AA	Ion
A1 I	5.984	2071.9	A1 *
A1 II	18.823	658.65	Al^{+}
A1 III	28.44	435.93	Al^{+2}
A1 IV	119.96	103.35	Al^{+3}
A1 V	153.77	80.63	Al^{+4}
A1 VI	190.42	65.11	Al^{+5}
A1 VII	241.93	51.25	Al^{+6}
AI VIII	285.13	43.48	$A 1^{+7}$

Comparison of Detected Ions

The results in Chapter III indicate the presence of Al III, Al IV, A1 V, AI VI, and Al VII ions in the spark gap plasma. Any evaluation of the relative abundances of these ions, even qualitative, is very difficult. The comparison of line intensities for this purpose is complicated by the effect of the blaze of the diffracting gratiag. This grating ras a zero blaze so that most of the intensity falls near the central image; i.e., in the short wavelength region. Innes of equal intensity would appear to diminish in intensity as the wavelength increases.

The effect of the blaze accounts for the weak intensity of the Al III lines, although the current theoretical work by Perry and experimental evidence by Willis from a mass filter indicate that these ions are present in large quantities. All six Al III lines which may be detected on the spectrograph are in the upper end of its wavelength range. Only the two shortest wavelengths of these six are observed and they are faint lines on the spectrogram.

Most Al IV, Al V, Al VI and Al VII lines are of shorter wavelengths and are nearer to the central image. They may be expected to be and they are more intense on the film. The effect of the blaze may be minimized and a very rough, qualitative estimate of relative abundances may be obtained by comparing lines that are close together on the film.

The comparison is made using the relative density of lines which is visually estimated on a $0-10$ scale. Film density, however, is proportional to the natural logarithm of the exposure. This means that
the exposure may be related to the relative abundances.
The ratio of two densities is

$$
\frac{D_{1}}{D_{2}}=\frac{\ln E_{1}}{\ln E_{2}}
$$

Since the relative abundances are desirad, $\ln E_{2}$ may be arbitarily set equal to 1 in order to obtain this relation

$$
\ln E_{1}=\frac{D_{1}}{D_{2}}
$$

or

$$
E_{1}=\exp \left(\frac{D_{1}}{D_{2}}\right)
$$

Dividing by $E_{2}=e$

$$
\frac{E_{1}}{E_{2}}=\exp \left(\frac{D_{1}}{D_{2}}-1\right)
$$

This relation gives the ratio of abundance when lines from different spectra, $A 1 I$, etc, are compared. The lines have equal strengths when the abundances are equal. Lines of unequal intensity may be compared by setting the exposure, E, equal to the product of the reported intensity, w, and a value, A, which is proportional to the abundance as indicated in the following relation.

$$
\frac{E_{1}}{E_{2}}=\frac{W_{1}}{W_{2}} \frac{A_{1}}{A_{2}}=\exp \left(\frac{D_{1}}{D_{2}}-1\right)
$$

AI IV and Al V are compared by employing lines 3 and 4 of Figure 1. Line 3 cons ${ }^{4}$, of two, unresolved, first order Al IV lines. Line 4 consists $0^{\prime} 0$, unresolved, first order Al V lines. The two Al IV
lines have published intensities of 7 and 5 while the two Al V ines both have published intensities of 6 . All the intensities are from a 1934 article by Jonas Soderqvist. The densities of lines 3 and 4 are visually estimated as 3 and 2 reapectively. The resuiting ratio of abundances, $\frac{\mathrm{Al} \text { IV }}{\mathrm{Al} \mathrm{V}}$, is 1.64 .

Al V and $A 1$ VI are compared by employing lines 40 and 41 . Line 41 is a first order, Al V ine of published intensity 14 . Line 40 is a first order, $A l V I$ line of published intensity 6. Both intensities are from the 1934 article by Soderquist. Visual estimates of the densities are 1.5 and 7 for lines 40 and 41 respectively. The resulting ratio of abundances, $\frac{A 1 V}{A i V I}$, is 16.5 .

AI VI and AI VII are compared by employing lines 29 , or 30 , and 31. Line 31 is a first order Al VI Iine and lines : 4 and 30 are first order Al VII lines. The published intensities for 29,30 , and 31 are 4, 2, and 12 , respectively from the 1934 article by Soderquist. The estimated densities are 3, 2, and 6 for 1 ines 29,30 , and 31 . Using lines 30 and 31 the ratio of abundances, $\frac{\mathrm{Al} \mathrm{VI}}{\mathrm{AI} \mathrm{VII}}$, is 1.21,

The atundances can be stated in terms of fractions of the abundance of Al IV as follows:

$$
\begin{aligned}
& \mathrm{Al}^{+3}=\mathrm{Al} \mathrm{IV}=1.00 \mathrm{Al} \mathrm{IV} \\
& \mathrm{Al}^{+4}=\mathrm{Al} \mathrm{~V}=0.61 \mathrm{Al} \mathrm{LV} \\
& \mathrm{Al}^{+5}=\mathrm{Al} \mathrm{VI}=0.037 \mathrm{Al} \mathrm{IV} \\
& \mathrm{Al}^{+6}=\mathrm{Al} \mathrm{VII}=0.030 \mathrm{Al} \mathrm{IV}
\end{aligned}
$$

While the qualitative nature of the above results must be emphasized and the particular values cannot be considered reliable a valuable rough estimate of the integrated, average abundances of the higher
order ions is obtained. It is immediately apparent that these high energy ions are not in equilibrium. This is immediately evident from the energy that is required to obtain $A 1^{+3}, ~ A l^{+4}$, etc. The significance of these results is discussed in the following section.

CHAPTER V

CONCLUSIONS

The results from the rough, "eye-ball" evaluation of the spectra Indicates the possibilities that may be inherent in an accurate interpretation of the data. The significance of the results are best iilustrated by a short description of our knowledge of the vacuum breakdown between the spectroscopically pure aluminum electrodes. This information is acquired as an additional dividend that reslts from employing the vacuum spark to calibrate (1) the pulsed photomultiplier, (2) the quadrupole mass filter and (3) the far ultraviolet spectrograph. These are the three plasma measuring techniques that have been developad on this project for the study of dense plasmas. The calibration and use of item 3 is the subject of this thesis.

It is postulated in the literature (Meeks and Cragg, 1953) that the spark current is initially carried by a thin column of aluminum plasma. The results that were obtained by Brown with the pulsed photomultiplier appear to confirm the analytical study by (Bruce, 1966) on an expanding plasma. Provided this confirmation exists, the plasma thread expands very rapidly and is relative opaque to the radiation from the ions $\mathrm{Al}^{+3}, \mathrm{Al}^{+4}, \mathrm{Al}^{+5}$ and Al^{+6}.

Measurements with the quadrupole mass filter appear to show that the kinetic energy of the exicted aluminum atom, $A 1 *$, and of the fons $A l^{+1}, \mathrm{Al}^{+2}$ and Al^{+3} is the same. From this result, it appears that the
atoms, excited atoms and ions are in kinetic energy equilibrium. The equilibrium temperature is estimated to be $12,200^{\circ} \mathrm{K}$, or roughly 1.1 eV in different units.

From the results on the relative abundance of fons that are estimated in this thesis, it is believed that the spectra from Al IV, Al V, A1 VI and A1 VII indicate a relative abundance of $1.0,0.6,0.037$ and 0.030. Since the ionization potentials for thece four ions are 119.96, 153.77, 190.42. 241.93, there is no single temperature for insertion in a Boltzmann relation that will give these relative abundances. This should probably be anticipated, but is is aftersight rather than foresight. During the entire time that voltage is applied to the gap, one could speak of a mean free path for the electrons. The preceeding data appears to indicate that the mean free path in the field is sufficiently long so the electrons acquire an average energy of between 160 and 130 eV , in the field between the fonization-collisions. This interpretation presents a new, reasonably sound approach to the study of the attainment of equilibrium. An extension and more accurate evaluation of the spectra with densitometers should prove extremely valuable.

SELECTED BIBLIOGRAPHY

(1) Allen, C. W. Astrophysical Quantities. London: the Athlone Press, 1955.
(2) Bowen, I. S., and S. B. Ingram. "Wave-length Standards in the Extreme Ultraviolet Spectra of Carbon, Nitrogen, Oxygen, and Aluminum." Physical Review, Vol. 28. (September, 1926), p. 444.
(3) Boyce, J. C., and H. A. Robinson. "Wave-length Identification Lists For the Extreme Ultraviolet." Journal of the Optical Society of America, Vol. 26, No. 4. (April. 1936). p. 133.
(4) Brown, V. D. and F. C. Todd. "Use of a Pulsed Photomultiplier to Measure the Light Intensity versus Time for a Spark Discharge Between Aluminum Electrodes." (unpublished Ed.D. dissertation, Oklahoma State University, 1968).
(5) Bruce, R.E. "A Model and ". zulations For the Properties of an Exploding Plasma Sphere." (Ph,D. Thesis, Oklahoma State University, 1966).
(6) Chandrasekhar, S. An Introduction to the Study of Stellar Structure. New York: Dover, (1957).
(7) Cooper, J. "Plasma Spectroscopy." Reports on Progress in Physics, London. Vol. XXIX (1966), pt. T, pp. 35.
(8) Dawson, J. Mo "On the Production of Plasma by Giant Pulse Lasers." The Physics of Fluids, Vol. 7, No. 7, (July, 1964) p. 981 .
(9) Ekefors, E_{0} "Das Spektrum Von A1 in Extremen Ultraviolet." Zeitschrift fur Physik, Band 51, (1928), p. 471.
(10) Erikson, K。B. S., and H.B, S. Isberg. "The Spectrum of Atomic Aluminum, Al I." Arkiv For Fysik, Band 23, nr 47, (1963), p. 527.
(11) Ferner, E. "Die Spektren von Hochionisiertem Aluminum, Silicium, und Schwefel." Arkiv for Matematik, Astronomi, und Fysik. Band 36A, No. 1, (1949), p. 1.
（12）Gregg，D．W．，and S．J．Thomas．＂Plasma Temperatures Generated by Focused Laser Giant Pulses．＂Journal of Applied Physics， Vol．38，No．4，（March 15，1967），pp．1729－1731．
（13）Griem，H．R．Plasma Spectroscopy，New York：McGraw－Hill， （1964）．
（14）Grien，II．R．Tepmerature；Its Measurement and Control in Science and Ind stry，ToT．3，$\overline{\mathrm{pt}}$ ．T，Ed，C．M．Herzfeld．New York： Pathobll，（1962），p． 615.
（15）Hardage，Ash Alrian．＂tlypervelocity Impact with Flow and Shock Penetration Through Fluid，Plastic and Elastic Zones．＂（Un－ published Ph．D．dissertation，Oklahoma State University， 1967）．
（16）Hill，W．E．Temperature：Its Measurement and Control in Science and Industry，Vol．3，pt．T，Ed．C．M．Herzfeld．New York： Reinhold， p .581.
（17）Kelly，Raymond L。 Vacuum Ultraviolet Emission Lines（Below 2000 Angstroms）．Stanford Research Institute：MenTo Park， California．UCRL 5612 （1959）．
（18）Meek，J．M．and J．D．Craggs．Elpr．trical Breakdown of Gases． 0xford：Clarendon Press，－．
（19）Moore，i．E．＂Atomic Energy Levels．＂Nat＇l．Bur．Std．（U．S．）， Circular 467，Vo1．1，（1949）．
（20）Nagler，R．G．Temperature：Its Measurement and Control in Science and Industry，vol． 3 ，pt．T，Ed．C．M．Herzfeld． New York：Reinhold，（1962），p． 643.
（21）Paschen， F_{o}＂Die Funkenspektren des Aluminium．I。Teil．＂Annalen der Physik， 4 Folge，Band 71，（1923），P．142．
（22）Paschen，F。＂Erweiterung der Spektren Al II，Mg．I，Be I，und Al 1．＂Annalen der Physik， 5 Folge，Band 12，（1932），p． 509.
（23）Penkin，N．Po，and L。N．Shaba va．＂Oscillator Strengths of the A1 I and Ga I Spectral Lines．＂Optics and Spectroscopy （USA），Vol．18，No．5，（1964），p．504．
（24）Perry，Larry J．＂A Model and Calculations for the Properties of Laser Induced Plasmase＂（Unpublished Ph．D．Thesis，Oklahoma State University，1970）．
（25）Perry，Larry J．＂Design and Construction of a Twin－Ruby Laser．＂ （Unpublished MoS．thesis，Oklahoma State University，1967）．
（26）Sawyer，R．A．，und F。Paschen．＂Das Erste Funkenspektrum des Aluminiums Al II．＂Annalen der Physik， 4 Folge，Band 84， （1927），p． 1.
（27）Selwyn，E_{0} W．H．＂Arc Spectra in the Region 1600－2100．＂Pro－ ceedings of the Physical Society，Vol．41，pt．2，No．229， June 15，T929T，p．392．
（28）Soderqvist，J，＂Die Spektren Ma．IV and Al V im Extremen Ultra violett．＂Zeitschrift fur Physik，Band 76，（1932），p． 756.
（29）Soderqvist，J．＂Die Spektren Na IV，Mg．V，Al VI，und Mg．III， AI IV im Extremen Ultraviolett．＂Zeitschrift fur Physik． Band 79，（1932），p．634．
（30）Soderqvist，J．＂Vankuumfunkenspektren Der Elemente Natrium，Mag－ nesium，Aluminium，und Silicium．＂Nova Acta Regiae Socie－ tatis Scientiarum Upsaliensis，Ser．IV，Vot．9，No．7， （UppsaTa，1934）．
（31）Stratton，T．F．Temperature：Its Measurement and Control in Science and Industry，Vol． $3, \overline{\mathrm{pt}} \mathrm{I}_{1, \mathrm{Ed}} \mathrm{C}$. M．Herzfeld． New York：Reinhold，（1962），p．663．
（32）Vainshtein，L．A．＂Calculation of Wave Functions and Oscillator Strengths of Complex Atoms．＂Transactions of the P．N． Lebgdev Physics Institute，Vol．XV，（1962），pt．T．（Author－ ized translation from the Russian．）
（33）Varsavsky，C．M．＂Some Atomic Parameters For Ultraviolet Lines．＂ Astrophysical Journal，Supplement，Ser．6，No．53，（1961） p． 75 。
（34）Willis，Ho W．＂Quadrupole Mass Filter Design and Construction for Plasma Ion Analysis．＂（M．S．Thesis，Oklahoma State Uni－ versity，1969）。
（35）Zumstein，R．V．＂Waveølength Standards in the Spectra of Alumi－ num，Siiicon and Bismuth in the Schumann Region．＂Physical Review，Vol．38．（December 15，1931），p．2214．

APPENDIX A

THE SPECTROGRAPH AND CALCULATION OF WAVELENGTHS

The basic spectrograph was designed by my advisor, F. C. Todd. The film changer and the entrance slit was designed by H. G. Gurney. The devise was assembled and the first, fuzzy spectra was obtained by R. D. Payne. The design employs a concave grating in a Rowland mounting. To obtain a maximum of intensity and separation in the far ultra-violet, the light is incident on the grating at near grazing incidence. The entire optical path is enclosed in a high vacuum chamber.

The Grating Equation

Light of wavelength, λ, incidence on the grating at an angle D with respect to the normal to the grating, is diffracted so it makes an angle E with respect to the normal, as shown in Figure 6. The angle E can be found by Equation 1 .
(1) $\lambda=1 / e(\sin D=\sin E)$,
where e is the grating constant.

Figure 6. Diagram of a Concave Grating in a Rowland Mounting.

Determining the Angle of Incidence

The angle of incidence, D, may be determined if any two spectral lines are identified. For two known wavelengths, λ_{1} and λ_{2},

$$
\text { (2) } \lambda_{1}=1 / e\left(\sin D-\sin E_{1}\right)
$$

and

$$
\lambda_{2}=1 / e\left(\sin D-\sin E_{2}\right)
$$

From Figure 1, a relation for the angles E_{1} and E_{2} is
(3) $E_{1}=E_{2}+M$.
where, by a theorem in plane geometry, M is half of the angle that is subtended by the arc which joins the focus point of λ_{1} and λ_{2}.

Subtract equation (2) from equation (1)
(4) e $\lambda_{1}-e \lambda_{2}=\sin E_{2}-\sin E_{1}$
and by substituting from equation (3)

$$
e \lambda_{1}-e \lambda_{2}=\sin E_{2}-\sin \left(E_{2}+M\right)
$$

Use the well known, trigonometry relations to obtain
(5) $e \lambda_{1}-e \lambda_{2}=\sin E_{2}(1-\cos M)-\cos E_{2} \sin M$ $=(1-\cos M) \sin E_{2}-\sin M\left(\sqrt{1-\sin ^{2} E_{2}}\right)$

For simplification, the following definations are introduced:

$$
\begin{aligned}
& F=e \lambda \\
& Z=\cos M \\
& Y=\sin M
\end{aligned}
$$

and

$$
x=\sin E_{2}
$$

With these substitutions,
(6) $F_{1}-F_{2}=(1-Z) X-Y\left(\sqrt{1-X^{2}}\right)$
which may be written as
(7) $\left(F_{2}-F_{1}\right)+(1-Z) x=y\left(\sqrt{1-x^{2}}\right)$

Square both sides of this equation and obtain

$$
\left(F_{2}-F_{1}\right)^{2}+(1-Z)^{2} x^{2}+2\left(F_{2}-F_{1}\right)(1-Z) \quad x=y^{2}\left(1-x^{2}\right)
$$

which may be rearranged into the following form.
(8) $\left((1-Z)^{2}+y^{2}\right) x^{2}+2\left(F_{2}-F_{1}\right)(1-Z) x+\left(F_{2}-F_{1}\right)^{2}-y^{2}=0$

Identifying the quantities
(9) $A=(1-z)^{2}+Y^{2}$

$$
B=2\left(F_{2}-F_{1}\right)(1-Z)
$$

$C=\left(F_{2}-F_{1}\right)^{2}-Y^{2}$
Equation (8) is the familiar quadratic equation.
(10) $A X^{2}+B X+C=0$

As λ_{1} and λ_{2} are known, and M is easily determined by measuring the arc length on the film, equation (10) may be solved for X.

Return to equations (2) and recall that $X=\sin E_{2}$,
(11) $\sin D=e \lambda_{2}+x$
or
(12) $D=\arcsin \left(e \lambda_{2}+x\right)$.

Identifying Spectral Lines

Wher the angle of incidence, D, is known, the wavelength of any of the spectral lines may be found. There are two ways to accomplish this, First, obtain the arc length on the Rowland circle from the center of the grating to the line, and from this length, compute the angle, equation (1). The second method assumes that at least one :ravelength is already known. From the known (or reference) wavelength and from the unknown wavelength, equation (1) gives
(13) $e \lambda_{r}=\sin D-\sin E E_{r}$
and
$e \lambda=\sin \dot{-}-\sin E$
The first of these equations is solved for F_{r}. Subtract equation (13) from the unnumbered equation that follows it $\left(\lambda-\lambda_{r}\right) e=\sin E_{r} \cdot \sin E$
or
(14) $\lambda=\lambda_{r}+1 / e\left[\sin E_{r}-\sin E\right]$

Proceed as in calculating the angle, D,
(15) $E=E_{r}-11$

Substitute equation (15) in equation (14) to obtain ${ }^{\text {a }}$
$(16) \lambda=\lambda_{r}+i / e\left[\sin E_{r}-\sin \left(E_{r}-M\right)\right]$.
Since R is the radius of curvature of the grating and \underline{s} is the arc length that separates the two lines, the angle M is
(17) $M=s / R$

The unknown wavelength is calculated from equation (16).
This latter method is employed rather than the one which is mentioned earlier. It is believed that the arc length may be found more accurately than the distance to the center of the grating. There is too large an uncertainty in determining the arc length from the center of the grating to the end of the sector where the film was placed and in determining the point on the film which corresponds to the end of the sector.

Using the lines 160.073 and 161.686 angstroms and their second order lines as the known wavelengths, the angle of incidence, D, was calculated as 85.63 degrees. The line 160.073 angstroms was used as the reference wavelength, for which $E_{r}=78.01$ degrees. The grating constant, ϵ, is $1.1811 \times 10^{5} \mathrm{~mm}^{-1}$.

APPENDIX B

STRONG EMISSION LINES OF ALUMINUM

In the following tables are listed the stronger lines of the aluminum ions Al I through Al VIII. In each table, in this order, are 1isted the wavelength, the wave number, the term combination, and relative intensity for each strong line. When more thar one reference is available the relative intensity from each is lisred. It should be noted that differences in the numerical intensity reported may arise from the use of different intensity scales. In many instances the method of determining the intensity is not defined. In any case conversion from one scale to another is very difficult without the original data. In some cases the differences are eal with one author repcring line A stronger than line B and another author reporting the opposite. Ar example of this is the 2513 and 2373 angstrom lines of the al I table, Except for specific cases, which will be noted, the remainder of the information is taken from the most recent article.

Not all lines identified for a specific ton by the references are 11sted. Only li.e lines detectable in the first or second order on the avaiiable equipment are included. In addition, lines too faint to be easily detected are not listed.

ALUMINUM I

Most of t^{\prime}. Al I lines are detectable in the fi:st order on available equipment. The minimum relative intensity is taken as 6 , as the 1isting is quite large. The lines of wavelength greater than 10,500 angstroms are beyond the range of available spectrographs, and are the only lines not detectable in the first order on available equipment.

The information is taken from a 1962 article by K. B. S. Erikson and H. B. S. Isberg except for four lines listed in a 1932 articte by F. Paschen. Intensities have also been taken from the article by Paschen. Erikson and Isberg have revised some of the term designarions used by Paschen. 3d' ${ }^{2} F, 4 d^{\prime}{ }^{2} \mathrm{D}$, id $\mathrm{d}^{2} \mathrm{~F}$ and $5 \mathrm{~d}^{\prime}{ }^{2} \mathrm{D}$, replace $5 \mathrm{~s}^{\prime}{ }^{2} \mathrm{P}$, 4d' ${ }^{2} P, 5 s^{\prime}{ }^{2} P$, and $5 d^{\prime}{ }^{2} F$ respactively. The term 3d' ${ }^{2} P$ was discarded upon identification of the level $5 s^{\prime}{ }^{4} P_{2_{i}^{1}}$.

The notation and information is from the 1962 article, with the exceptions as noted above. For other ions the notation used is that given in the 1949 work by C. E. Moore.

A1 I has all 13 electrons, which in the ground state have the configuration $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}-{ }^{3} \mathrm{P}_{3_{2}}^{0}$. The ionization potential t.s 5.984 electron volts or $(48278.37 \pm 0.02) \mathrm{cm}^{-1}$.

ALUMINIM II

All Al Il lines listed are detectable in the first order on available equipment. The lower limit for relative intensity is taken as 5.

The listings for Al II are quite long. The most complete listing is from a 1927 article by R. A. Sawyer and F. Paschen. A 1932 article by Paschen lists some improved values. Shenstone and Russell suggesred
some revised term designations in a 1932 article. The newer designations are used in the work by C. E. Moore and are used here.

Al II has 12 remaining electrons which in the ground state have the configuration $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}-{ }^{1} S_{0}$. The ionization potential is 18.823 electron volts or $151860.4 \pm 0.5 \mathrm{~cm}^{-1}$.

ALUMINUM III

The lines listed for Al III are all detectable in the first order available equipment. Only the stronger lines of relative intensity 5 or greater are listed.

The information is mainly from a 1923 article by F. Paschen. Some lines and terms not reported in that article are from a 1928 article by Eric Ekefors.

Al III has 11 electrons remaining which in the ground state have the configuration $1 s^{2} 2 s^{2} 2 F^{6} 3 s^{2} S_{\frac{1}{2}^{\prime}}$. The ionization potential is 28.44 electron volts or $229453.99 \mathrm{~cm}^{-1}$.

ALUMINUM IV

The listings for Al IV are not as extensive as that for the other species. The list being short, the minimum relative intensity for the stronger lines has been set at 2 .

The information is taken from a 1934 article by Jonas Soderqvist, with a few exceptions. The LS-coupling term designations used by Soderqvist have been replaced with the fl-coupling notations used in the work by C. E. Moore, as suggested by G. Racah. Moore paints out; however, that three configurations have been found to be closer to

LS-coupling than to jl -coupling. They are $2 p^{5} 3 s, 2 p^{5} 3 p$, and $2 p^{5} 3 \mathrm{~d}$. Al IV has 10 electrons left in the ground state configurations $1 s^{2} 2 s^{2} 2 p^{6}-{ }^{1} S_{0}$. The ionization potential is 119.96 electron volts or $967783 \mathrm{~cm}^{-1}$.

ALUMINUM V

A large number of $A l V$ ines are detectable in the first order on the available equipment. The lines of relative intensity 5 or greater are listed. Lines detectable in the second order only are listed if relative intensity is 10 or greater. Additional lines which have been detected on the spectra discussed in this report are listed.

The information is taken principally from a 1948 article by Eric Ferner. Some lines of wavelength greater than 137 angstroms are not reported in this article but are reported in the 1934 article by Jonas Soderquist. The ionization potential is from some unpublished material by H. A. Robinson, quoted in the work by C. E. Moore.

Al V has 9 remaining electrons which in the ground state have the configuration $1 s^{2} 2 s^{2} s p^{5}-{ }^{2} P_{i \frac{1}{2}}^{0}$. The ionization potential is 153.77 voits $0: 1240600 \mathrm{~cm}^{-1}$.

ALUMINUM VI

Several Al VI lines are detectable in the first order on available instruments. Above the lower limit of the instruments, 100 angstroms, we list lines of minimum relat':ve intensity 5. Other ines which have been detected in spectra taken by this instrument are also listed. Lines of mirimum relative intensity 10 which are detectable
in the second order are also listed.
Most of the information is taken from a 1948 article by Eric Ferner. Lines above 113 angstroms are taken from listings in a 1934 article by Jonas Soderquist. Several lines are listed in both articles.

Al VI has 8 electrons remaining in the ground state configuration $1 s^{2} 2 s^{2} 2 p^{4}-{ }^{3} P_{2}$. The ionization potential is 190.42 electron volts or $1536300 \mathrm{~cm}^{-1}$.

ALUMINUM VII

Few Al VII lines are detectable in the first order on the presently available equipment. Lines of minimum relative intensity 2 which are detectable in the first order are listed. Lines detectable in the second order of minimum relative intensity 10 are also listed.

The information has been taken from a 1948 article by Eric Ferner except for the lines detectable in the first order. The information for the first order lines are from a 1934 article by Jonas Soderquist.

Al VII has 7 electrons remaining in the ground state configuration $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{3}-{ }^{4} \mathrm{~s}_{1 \frac{1}{2}}^{0}$. The ionization potential is 241.93 electron volts or $1951830 \mathrm{~cm}^{-1}$.

ALUMINUM VIII

No first order Al VIII line would be detectable using the presently available equipment. The very strong lines which could be detected in the second order on this equipment, however, are listed. The minimum relative intensity has been placed at 10 . If equipment becomes available for first order detection a lower intensity should be
selectea and the listings expanded.
The information is taken from a 1948 article by Eric Ferner.
Al VIII has 6 electrons and in the ground state has the configuraitions $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}-{ }^{3} \mathrm{P}_{0}$. The ionization potential is 285.13 elactron volts or, $2300390 \mathrm{~cm}^{-1}$.

TABLE IV

STRONG EMISSION LINES OF Al I

TABLE IV (Continued)

TABLE IV (Continued)

TABLE IV (Continued)

Wave Length	Wave Number	Term Combination	$\begin{gathered} \text { Inten } \\ E \alpha I \end{gathered}$	$\begin{gathered} 1 t y \\ f \end{gathered}$
2313.526	43210.78	$3 p^{2}{ }^{4} P_{l \frac{1}{2}}-3 d^{4}{ }^{4} P_{l_{2}}$	6	4
2266.014	44116.71	3d ${ }^{2} \mathrm{D}_{2 \frac{1}{2}}-4 \mathrm{~d}^{\prime}{ }^{2} \mathrm{D}_{2 \frac{1}{2}}$	3	7
2180.996	45836.26	$3 \mathrm{p}^{2}{ }^{4} \mathrm{P}_{2 \frac{1}{2}}-5 s^{\prime}{ }^{4} \mathrm{P}_{2 \frac{1}{2}}$	5	8
2177.396	45912.0	$3 p^{2}{ }^{4} P_{1 \frac{1}{2}}-5 s^{\prime}{ }^{4} \mathrm{P}_{2 \frac{1}{2}}$	4	6
2160.383	46273.55	3d ${ }^{2} \mathrm{D}_{2 \sqrt{\frac{1}{2}}}-4 \mathrm{~d}^{\prime}{ }^{2} \mathrm{~F}_{3 \sqrt{2}}$	3	6
1769.19		$3 \mathrm{p}{ }^{2} \mathrm{P}_{2}-3 p^{2}{ }^{2} p_{1}$		1
1766.41		3p ${ }^{2} p_{2}-3 p^{2}{ }^{2} p_{2}$		2
1762.97		$3 \mathrm{p}{ }^{2} \mathrm{P}_{1}-3 p^{2}{ }^{2} \mathrm{P}_{1}$		1

TABLE V

STRONG EMISSION LINES OF AI II

Wave Length	Wave Number	Term Combination		$\begin{aligned} & \text { Intensity } \\ & \text { S\&P } \end{aligned}$
7042.06	14196.5	$48{ }^{3} S_{1}$	- $4 \mathrm{p}{ }^{3} \mathrm{P}_{2}^{0}$	5
6335.70	15779.2	3d ${ }^{1} D_{2}$	- $5 \mathrm{p}{ }^{1} \mathrm{p}_{1}^{0}$	5
6243.35	16012.6	$4 \mathrm{p} \quad{ }^{3} \mathrm{P}_{2}$	- $4 \mathrm{~d}^{3}{ }^{3} \mathrm{D}_{3}$	10
6231.76	16042.4	$4 \mathrm{p}{ }^{3} \mathrm{P}_{1}^{0}$	- $4 \mathrm{~d}^{3}{ }^{3} \mathrm{D}_{2}$	7
6226.19	16042.4	$4 \mathrm{P}{ }^{3} \mathrm{P}_{1}^{0}$	$-4 \mathrm{~d}^{3}{ }^{\text {d }}$	5
6006.38	16644.4	$5 \mathrm{p} \quad{ }^{3} \mathrm{p}^{0}$	- 7d ${ }^{3}{ }_{\text {d }}$	6
5972.05	16740.0	$5 \mathrm{p} \quad{ }^{1} \mathrm{P}_{1}^{0}$	-7d ${ }^{1} D_{2}$	5
5853.62	17078.7	$4 \mathrm{~d} \quad{ }^{3} \mathrm{D}_{3}$	- $6 \mathrm{f}{ }^{3} \mathrm{~F}_{4}^{\text {O}}$	5
5593.23	17873.8	$4 \mathrm{p} \quad{ }^{1} \mathrm{P}_{1}$	- $4 \mathrm{~d}{ }^{1} \mathrm{D}_{2}$	10
5371.84	18610.4	$4 \mathrm{~d}^{3}{ }^{5}{ }_{3,2}$	- 7p ${ }^{3} \mathrm{P}^{0}$	6
5316.07	18805.7	$5 \mathrm{p} \quad{ }^{3} \mathrm{P}_{2}$	$-9 \mathrm{~s}{ }^{3} \mathrm{~S}_{1}$	7
5312.32	18818.9	$5 \mathrm{p} \quad{ }^{3} \mathrm{p}{ }_{1}^{0}$	-9s ${ }^{3} S_{1}$	5
5283.77	18920.6	$5 \mathrm{p} \quad{ }^{3} \mathrm{P}_{2}$	- 8d ${ }^{3} \mathrm{D}$	8
5285.85	28913.2	$5 \mathrm{p}{ }^{1} \mathrm{P}_{1}^{0}$	-8d ${ }^{1} D_{2}$	6
5280.21	18933.4	$5 \mathrm{p} \quad{ }^{3} \mathrm{P}_{1}^{0}$	- 8d ${ }^{3} \mathrm{D}$	6
4902.77	20391.0	$5 \mathrm{p} \quad{ }^{3} \mathrm{P}_{2}$	-10s ${ }^{3} \mathrm{~S}_{1}$	5
4898.76	20407.7	$5 \mathrm{p}{ }^{1} \mathrm{P}_{1}^{0}$	-9d ${ }^{1}{ }_{D_{2}}$	5
4666.8	21422	${ }_{5 p}{ }^{1} \mathrm{P}_{1}^{0}$	-11: ${ }^{1} S_{0}$	11

TABLE V (Continued)

Wave Langth	Wave Number	Terin Combination		Inten S\&P	$\underset{p}{s i t y}$
4588.194	21788.97	$4 \mathrm{~d}{ }^{3} \mathrm{D}_{2}$	$-7 £{ }^{3} \mathrm{~F}_{3}^{\circ}$	5	
4585.820	21800.25	$4 \mathrm{~d}^{5} \mathrm{D}_{3}$	- $7 \mathrm{f}{ }^{3} \mathrm{~F}_{4}^{0}$	6	
4227.493	23648.02	$4 d^{3}{ }^{\text {D }}$	- $8 \mathrm{f}{ }^{3} \mathrm{~F}_{3}^{0}$	5	
4226.812	23651.83	$4 \mathrm{~d}^{3}{ }^{3} \mathrm{D}_{3}$	- 8: ${ }^{3} \mathrm{~F}_{4}^{0}$	6	
4026.5	24828.5	3d ${ }^{1} \mathrm{D}_{2}$	- $6 p{ }^{1} p_{1}^{0}$	5	
3995.860	25018.83	$4 \mathrm{~d}{ }^{3} \mathrm{D}_{3}$	- $9 \mathrm{f}{ }^{3} \mathrm{~F}_{4}^{0}$	5	
3900.680	25629.32	$3 \mathrm{p} \quad{ }^{1} \mathrm{P}_{1}^{0}$	$-3 p^{2}{ }^{1} D_{2}$	10	
955.000	27.352 .00	$4 \mathrm{p} \quad{ }^{3} \mathrm{P}_{2}$	$-5 \mathrm{~d}{ }^{3} \mathrm{D}_{3}$	8	
3651.064	27381.49	$4 \mathrm{p}{ }^{3} \mathrm{P}{ }_{1}$	- 5d ${ }^{3} \mathrm{D}_{2}$	6	
3428.916	29155.39	3d ${ }^{1} \mathrm{D}_{2}$	$-6 f^{l_{F}}{ }_{3}^{\circ}$		
3074.665	32514.08	$3 \mathrm{~d}{ }^{l^{D_{2}}}$	- 7f ${ }^{1} \mathrm{~F}_{3}^{\text {o }}$	6	
3057.155	32:00.66			10	
3050.073	32776.58			8	
3041.278	32871.37	3d ${ }^{1} \mathrm{D}_{2}$	- 8p ${ }^{1} \mathrm{P}_{1}^{0}$	6	
2868.52	34851.0	3d ${ }^{1} D_{2}$	- $9 \mathrm{p}{ }^{1} \mathrm{P}_{1}{ }_{1}$	9	
2816.179	35498.67	$3 \mathrm{p} \quad{ }^{1} \mathrm{P}_{1}{ }_{1}$	$-4 \mathrm{~s}{ }^{1} \mathrm{~s}_{0}$	20	
2669.166	37453.76	$3 s^{2}{ }^{1} S_{0}$	- 3p ${ }^{3} \mathrm{P}_{1}^{0}$	10	
2637.696	37900.57	3d ${ }^{3} \mathrm{D}_{3}$	- $5 \mathrm{ff}^{3} \mathrm{~F}_{4}^{0}$	5	
2631.553	37989.07	$3 \mathrm{p}{ }^{2}{ }^{1} \mathrm{D}_{2}$	- $4 \mathrm{f}^{1} \mathrm{~F}_{3}^{\text {o }}$	7	
2627.68	38045.1	$3 \mathrm{a} \quad{ }^{1} \mathrm{D}_{2}$	-11f ${ }^{1} \mathrm{~F}_{3}^{0}$	7	
2597.18	38491.9	3d ${ }^{1} D_{2}$	-12p ${ }^{1} \mathrm{P}_{1}^{0}$	6	
2586.95	38644.1	3d ${ }^{1} D_{2}$	$-12 f^{1} \mathrm{~F}_{3}^{0}$	6	

TABLE V (Continued)

Wave Length	Wave Number	Tarm	Combination	Intens SGP	
2557.71	39085.7	$4 \mathrm{p} \quad{ }^{3} \mathrm{P}_{1}^{0}$	$-98{ }^{3} S_{1}$	5	
2552.12	39171.2	$4 \mathrm{p} \quad{ }^{3} \mathrm{P}_{2}$	- 8d ${ }^{3} \mathrm{D}$	5	
2321.56	43061.32			6	
2099.68	47611.3	$4 \mathrm{~s}{ }^{1} \mathrm{~S}_{0}$	-8p ${ }^{1}{ }^{1}{ }_{1}^{0}$	5	
2095.2	47713	3d ${ }^{3}{ }^{\text {d }}$	$-7 f^{3}{ }^{3}$	5	
2094.8	47722	3d ${ }^{3}{ }^{D_{2}}$	$-7 \mathrm{f}{ }^{3} \mathrm{~F}_{3}^{0}$	5.5	
2094.3	47734	$3 \mathrm{~d} \quad{ }^{3} \mathrm{D}_{3}$	- $7 \mathrm{f}{ }^{3} \mathrm{~F}_{4}^{0}$	6	
2087.0	47901	$3 \mathrm{p} \quad{ }^{3} \mathrm{P}_{2}$	$-3 p^{2}{ }^{1} D_{2}$	5	
2016.91	49581	$4 \mathrm{~s}{ }^{1} \mathrm{~S}_{0}$	- $9 \mathrm{p}{ }^{1} \mathrm{P}_{1}^{0}$	10	
1990.53	50238	$3 \mathrm{r}{ }^{1} \mathrm{P}_{1}{ }_{1}$	$-3 d^{1}{ }^{1}$	7	
1962.67	50951	$4 \mathrm{~s}{ }^{1} \mathrm{~S}_{0}$	$-10 \mathrm{p}{ }^{1}{ }^{1} \mathrm{P}$	7	
1945.35	51404			5	
1939.30	51565.0	$3 \mathrm{p}^{2}{ }^{3} \mathrm{P}_{2}$	- $4 \mathrm{~s} \quad{ }^{3} \mathrm{P}_{1}{ }^{0}$	5	5
1934.75	51686.3	$3 \mathrm{p}^{2}{ }^{3} \mathrm{P}_{1}$	- $4 \mathrm{~s}{ }^{3}{ }^{\text {P }}{ }_{1}^{0}$	10	10
1934.54	51692.0	$3 p^{2}{ }^{3} \mathrm{P}_{2}$	- $48{ }^{3} \mathrm{P}_{2}{ }^{\circ}$	10	10
1932.43	52748.2	$2 p^{2}{ }^{3} \mathrm{P}_{0}$	- $4 \mathrm{~s}{ }^{3} \mathrm{P}_{1}^{0}$		
1930.03	51812.5	$3 \mathrm{p}{ }^{2}{ }^{3} \mathrm{P}_{1}$	- $4 \mathrm{~s}{ }^{3} \mathrm{P}_{2}{ }^{\circ}$	5	5
1910.91	52331.1	$3 \mathrm{p}^{2}{ }^{3} \mathrm{P}_{2}$	- 3d ${ }^{3} \mathrm{P}_{2}$	5	5
1862,38	53694.6	$3 \mathrm{p} \quad{ }^{3} \mathrm{P}_{2}$	$-4 s^{3} \mathrm{~s}_{1}$	15	
1858.08	53819.1	$3 \mathrm{p} \quad{ }^{3} \mathrm{P}{ }_{1}$	- $48{ }^{3} \mathrm{~S}_{1}$	10	
1855.97	53880.1	$3 \mathrm{p}{ }^{3} \mathrm{P}_{0}^{0}$	-48 ${ }^{3} S_{1}$	8	8
1834.82	54501.2	$4 \mathrm{~s}{ }^{3} \mathrm{~S}_{1}$	-4s ${ }^{3}{ }^{\text {P }} 0$	6	6

TABLE V (Continued)

Wave Length	Wave Number	Term	Combination	Inten S\&P	
1832.85	54559.9	4s ${ }^{3} \mathrm{~S}_{1}$	- $48{ }^{3} \mathrm{P}_{1}^{0}$	8	8
1828.59	54687.0	$48 \quad 3 S_{1}$	-4s ${ }^{3} \mathrm{P}_{2}$	10	10
1767.76	56568.8	$3 \mathrm{p} \quad 3 \mathrm{P}_{2}$	$-3 p^{2}{ }^{3} p_{1}$	7	
1764.01	56689.0	$3 \mathrm{p} \quad{ }^{3} \mathrm{P}_{2}$	$-3 p^{2}{ }^{3} \mathrm{P}_{2}$	10	
1763.85	56694.0	$3 \mathrm{p} \quad{ }^{3} \mathrm{P}_{1}^{0}$	$-3 p^{2}{ }^{3} P_{1}$	8	
1762.00	56753.5	$3 \mathrm{p} \quad{ }^{3} \mathrm{P}_{0}^{0}$	$-3 p^{2} 3{ }^{0}$	5	
1760.15	56813.3	$3 \mathrm{p} \quad{ }^{3} \mathrm{P}_{1}^{0}$	$-3 p^{2}{ }^{3} \mathrm{P}_{2}$	7	
1750.56	57125	$3 p^{2}{ }^{1} D_{2}$	$-7 \mathrm{f}{ }^{1} \mathrm{~F}_{3}$	6	
1739.64	57483	$3 p^{2} 1^{1}{ }_{2}$	$-8 p{ }^{1} \mathrm{P}_{1}$	5	
1725.01	57971	$3 \mathrm{p} \quad{ }^{3} \mathrm{P}_{2}$	$-3 \mathrm{~d} \quad{ }^{3} \mathrm{D}_{3,2,1}$	15	
1721.31	58095	$3 \mathrm{p} \quad{ }^{3} \mathrm{P}$	$-3 \mathrm{~d}^{2} \mathrm{D}_{3,2,1}$	10	
1719.43	58159	$3 \mathrm{p} \quad 3 \mathrm{P}_{0}^{0}$	$-3 \mathrm{~d} \quad{ }^{3} D_{3,2,1}$	ε	
1686.19	59305	$3 \mathrm{p}^{2} \mathrm{l}^{\mathrm{D}_{2}}$	$-8 \mathrm{f}^{\mathrm{l}} \mathrm{F}_{3}$	5	
1681.78	59461	$3 p^{2}{ }^{1} D_{2}$	$-9 p \quad{ }_{1}{ }_{1}^{0}$	5	
1670.81	59851	$3 s^{2}{ }^{1} S_{0}$	$-3 p{ }^{1} \mathrm{P}_{1}$	15	
1644.78	60798	$3 p^{2} l^{1} D_{2}$	- $9 \mathrm{f} \mathrm{l}_{\mathrm{F}} \mathrm{O}^{0}$	5	
1644.15	60821	$3 p^{2} \quad \mathrm{l}_{2}$	$-10 \mathrm{p} \quad \mathrm{l}_{\mathrm{P}}{ }_{1}$	5	
1539:74	64946	$3 \mathrm{p} \quad{ }^{1} \mathrm{P}_{1}$	$-4 \mathrm{~d} \mathrm{l}^{\mathrm{D}_{2}}$	10	
1350.15	74066	3p ${ }^{2} p_{1}^{0}$	- $5 \mathrm{~d} \mathrm{l}_{\mathrm{D}_{2}}$	6	
1191.86	83902	$3 \mathrm{p} \quad{ }^{3} \mathrm{P}_{2}$	$-4 d^{3}{ }^{\text {d }}$	5	

TAELE VI
STRONG EMISSION LINES OF AI III

MISSANG
PRECEDING"PAGE"BRIN NOT FILMED.
TABLE VI (ContInued)

Wave Length	Wave Number	Term Combination	Intensity P E
695.817	143716.0	$3 s^{2} \mathrm{~S}_{\frac{1}{2}}$	$-4 \overline{\mathrm{~L}}$

TABLE VII

STRONG EMISSION LINES OF AI IV

Wave Length	Wave Number	Term Combination	Intensity
1639.00	61012.8	3s' $\left.{ }^{\frac{1}{2}}\right]_{1}^{0}-3 p\left[r_{3}\right]_{2}$	2
1584.45	63113.4		2
1582.04	63209.5		3
1557.24	64216.2	3s $\left[1 \frac{1}{2}\right]_{2}^{0}-3 \mathrm{p}\left[23{ }^{2}\right]_{3}$	5
1447.47	69086.1	$3 \mathrm{~s} \quad\left[1 \frac{1}{2}\right]_{2}^{0}-3 \mathrm{p} \quad\left[1 \frac{1}{3}\right]_{2}$	2
1431.93	69835.8	$38 \quad\left[1 \frac{1}{2}\right]_{1}^{0}-3 \mathrm{p}\left[\frac{1}{2}\right]_{0}$	2
1404.72	71188.6		2
1388.77	72006.2	3s [1去] ${ }_{2}^{0}-3 p^{\prime}\left[\frac{1}{2}\right]_{1}$	2
1302.13	76797.2	3p' [$\left.3_{2}\right]_{0}-3 \mathrm{~d}$ [$\left.13 z_{1}\right]_{1}^{0}$	2
1272.70	78573.1		3
1264.14	79105.2		3
1257.58	79517.8	$3 p^{\prime}\left[1 \frac{1}{2}\right]_{2}-3 d^{\prime}\left[2 z_{2}\right]_{3}^{0}$	3
1248.76	80079.4	3p $\left[1 z_{2}\right]_{1}-3 d^{\prime}\left[2 z_{1}\right]_{2}^{0}$	2
1240.83	80591.2	3p [2tra $]_{2}-3 \mathrm{~d}$ [3F2] ${ }_{3}^{0}$	3
1240.18	80633.5	3p $\left[1 \lambda_{2}\right]_{1}-3 \mathrm{~d}\left[23_{2}\right]_{2}^{0}$	2
1237.14	80831.6	3p [23 $\left.]_{3}\right]_{3}-3 \mathrm{~d}\left[33_{2}\right]_{4}^{0}$	4
1136.80	87966.2	3p $\left[\frac{1}{2}\right]_{1}-3 \mathrm{~d}\left[\frac{y_{2}}{2}\right]_{1}^{0}$	3
1118.80	89381.5	3p $\left[\frac{1}{2}\right]_{1}-3 \mathrm{~d}\left[13_{3}\right]_{2}^{0}$	4

TABLE VII (ContAnued)

Wave Length	Wave Number	Term Combination	Intensity
161.686	618483	$2 p^{6}{ }^{1} s_{0}-3 s \quad\left[1 \frac{3}{2}\right]_{1}^{0}$	14
160.073	624715	$2 p^{6}{ }^{1} s_{0}-3 s^{\prime}\left[{ }^{\frac{1}{2}}\right]_{1}^{0}$	16
131.652	759578	$\left.2 p^{6}{ }^{1} s_{0}-3 d-{ }^{\frac{1}{2}}\right]_{1}^{0}$	3
130.403	766854	$2 p^{6}{ }^{1} s_{0}-3 d\left[1 i_{2}\right]_{1}^{0}$	11
129.729	880838	$2 p^{6}{ }^{1} s_{0}-3 d^{\prime}\left[1 z_{2}\right]_{1}^{0}$	12
124.543	802936	$\left.2 p^{6}{ }^{1} s_{0}-4 s{ }^{[12}\right]_{1}^{0}$	6
124.034	806231	$2 p^{6}{ }^{1} S_{0}-4 s^{\prime}\left[z_{2}\right]_{1}^{0}$	8
116.920	855286	$2 p^{6}{ }^{1} s_{0}-4 d\left[1 \lambda_{2}\right]_{1}^{0}$	5
116.459	858671	$2 p^{6}{ }^{1} S_{0}-4 d^{\prime}\left[1 r_{2}\right]_{1}^{0}$	7

TABLE VIII

STRONG EMISSION LINES OF AI V

Wave Length	Wave Number	Term Combination	Int F	sity
281.397	355370	$2 p^{5}{ }^{2} p_{i_{2}}^{0}-2 p^{6}{ }^{2} s_{w_{2}}$		14
278.699	358810	$2 p^{5}{ }^{2} p^{0} 0{ }_{1 / 2}-2 p^{6}{ }^{2} S_{\frac{1}{2}}$		16
132.630	753977	$2 p^{5}{ }^{2} \mathrm{P}_{1 / \frac{1}{2}}^{0}-3 s{ }^{4} \mathrm{P}_{1 \frac{1}{2}}$	10	6
131.441	760798	$2 p^{5}{ }^{2} P_{\frac{1}{2}}^{0}{ }^{0}-3 s{ }^{2} P^{1-\frac{1}{2}}$	20	9
131.003	763341	$2 p^{5}{ }^{2} P_{1_{2}}^{c}$ - $-38{ }^{2}{ }^{2}{ }_{1 / 2}$	20	10
130.848	764246	$2 p^{5}{ }^{2} P_{1-\frac{1}{2}}^{0}-3 s{ }^{2}{ }^{2}{ }_{1 / \frac{1}{2}}$	20	12
130.413	766/95	$2 p^{5}{ }^{2} P_{1 \frac{1}{2}}^{0}-3 s{ }^{2}{ }^{2}{ }^{\frac{1}{2}}$	20	11
126.065	793242		15	10
125.525	796654	$2 p^{5}{ }^{2} p_{1 / \frac{1}{2}}^{0}-3 s^{\prime}{ }^{2} D_{1 \frac{1}{2}}$	15	12
118.500	843882	$2 p^{5}{ }^{2} P^{0} 0{ }_{1 \frac{1}{2}}-3 s^{\prime \prime}{ }^{2} S_{3_{2}}$	10	6
108.707	919904	$2 p^{5}{ }^{2} p_{1 / \frac{1}{2}}^{0}-3 d^{4}{ }^{4}{ }_{2}{ }^{\frac{1}{2}}$	6	4
108.462	921982	$2 p^{5}{ }^{2} P_{\frac{1}{2}}^{0}-3 d^{2}{ }^{2} D_{1 / \frac{1}{2}}$	10	6
108.404	922475	$2 p^{5}{ }^{2} P_{p_{1 / 2}}^{0}-3 d^{2}{ }^{2} P_{P_{1 / 2}}$	5	
108.385	922637	$2 p^{5}{ }^{2} P_{1 \frac{1}{2}}^{0}-30{ }^{4}{ }^{4}{ }_{2}{ }^{\frac{1}{2}}$	10	6
108.112	924967	$2 p^{5}{ }^{2} P_{\frac{1}{2}}^{0}-3 d^{0}{ }^{2} P_{1 \frac{1}{2}}$	12	5
108.05\%	925438	$2 p^{5}{ }^{2} p_{1 \frac{1}{2}}^{0}-3 d^{2}{ }^{2}{ }_{1 / \frac{1}{2}}$	12	5
108.004	925892	$1 p^{5}{ }^{2} p_{k_{2}}^{0}-3 d^{2}{ }_{P_{1 / 2}}$	5	
107.945	926398 •	$2 p^{5}{ }^{2} P_{1 / \frac{1}{2}}^{0}-3 d{ }^{2} D_{2 / \frac{1}{2}}$	20	6

IABLE VIII (Continued)

Wave length	Wave Number	Term Combination	Inte F	ity
107.711	928410	$2 p^{5}{ }^{2} \mathrm{P}_{1 \frac{1}{2}}^{0}-3 \mathrm{~d}{ }^{2} \mathrm{P}_{1 / \frac{1}{2}}$	6	4
104.495	956983	$2 p^{5}{ }^{2} P_{p_{1}}^{0}-3 d^{\prime}{ }^{2}{ }^{P_{3, ~}^{1}}$	8	3
104.447	957423	$2 p^{5}{ }^{2} P_{p_{1 / 2}}^{0}-3 d^{\prime}{ }^{2} S^{3 / 2}$	10	3
104.363	958194	$2 p^{5}{ }^{2} P_{p_{1}}^{0}{ }^{0}-3 d^{\prime}{ }^{2}{ }^{p_{1 / 2}}$	10	
104.180	959877	$2 p^{5}{ }^{2} p_{i_{2}}^{0}-3 d^{\prime}{ }^{2} D_{1 / \frac{1}{2}}$	14	4
104.121	960421	$2 p^{5}{ }^{2} P_{1 / \frac{1}{2}}^{0}-3 d^{\prime}{ }^{2} P_{1 / 2}$	12	3
104.073	960864	$2 p^{5}{ }^{2} P_{1 / \frac{1}{2}}^{0}-3 d^{\prime}{ }^{2} S_{\frac{1}{2}}$	10	6
103.881	962640	$2 p^{5}{ }^{2} \mathrm{P}_{1 \frac{1}{2}}^{0}-3 d^{\prime}{ }^{2} D_{2 / \frac{1}{2}}$	14	6
103.805	963345	$2 p^{5}{ }^{2} P_{1 \frac{1}{2}}^{0}-3 d^{\prime}{ }^{2} D_{1 \frac{1}{2}}$	10	5
99.290	1007150	$2 p^{5}{ }^{2} P_{1 \frac{1}{2}}^{0}-3 d^{\prime \prime}{ }^{2} D_{2 \sqrt{2}}$	10	3
96.150	1040040	$2 p^{5}{ }^{2} \mathrm{P}_{\frac{1}{2}}^{0}-4 \mathrm{~s}^{\circ}{ }^{2} \mathrm{D}_{1 / \frac{1}{2}}$	1	4
93.955	1064340	$2 p^{5}{ }^{2} \mathrm{P}_{\frac{1}{2}}^{0}-4 \mathrm{~d}{ }^{2} \mathrm{P}_{1 / \frac{1}{2}}$	6	3

TABLE IX

STRONG EMISSION LINES OF AL VI

Wave Length	Wave Number	Term Combination	Inte F	S
312.241	320265	$2 p^{4}{ }^{3} p_{1}-2 p^{5}{ }^{3} p_{2}^{0}$		6
310.908	321639	$2 p^{4}{ }^{3} P_{0}-2 p^{5}{ }^{3} p_{1}^{0}$		6
309.852	322735	$2 p^{4}{ }^{3} p_{1}-2 p^{5}{ }^{3} p_{1}^{0}$		6
309.596	323002	$2 p^{4}{ }^{3} \mathrm{P}_{2}-2 p^{5}{ }^{3} p_{2}^{0}$		8
308.560	324086	$2 p^{4}{ }^{3} \mathrm{P}_{1}-2 p^{5}{ }^{3} p_{0}^{0}$		6
307.248	325470	$2 p^{4}{ }^{3} p_{2}-2 p^{5}{ }^{3} p_{1}^{0}$		7
275.350	363174	$2 p^{4}{ }^{1} s_{0}-2 p^{5}{ }^{1} p_{1}^{0}$		6
243.760	410240	$2 p^{4}{ }^{1} D_{2}-2 p^{5}{ }^{1} p_{1}^{0}$		12
113.437	881547	$2 p^{5}{ }^{3} P_{2} 0-3 s^{\prime \prime}{ }^{3} \mathrm{P}_{2}$	3	
109.843	910390	$2 p^{4}{ }^{3} \mathrm{P}_{1}-3 \mathrm{~s}{ }^{3} \mathrm{~s}_{1}^{0}$	12	2
109.514	913125	$2 p^{4}{ }^{3} \mathrm{P}_{2}-3 \mathrm{~s}{ }^{3} s_{1}^{0}$	20	3
107.620	929195	$2 p^{4}{ }^{1} D_{2}-3 s^{\prime}{ }^{1} D_{2}^{0}$	14	5
104.466	957249	$2 p^{4}{ }^{3} \mathrm{P}_{0}-3 \mathrm{~s}{ }^{\prime}{ }^{3} \mathrm{D}_{1}^{0}$	8	
104.344	958368	$2 p^{4}{ }^{3} P_{1}-3 s^{1}{ }^{3} D_{12}^{0}$	16	6
104.047	961104	$2 p^{4}{ }^{3} \mathrm{P}_{2}-3 s^{\prime}{ }^{3}{ }^{0}{ }_{23}^{0}$	20	6
101.027	989834	$2 p^{4}{ }^{3} P_{0}-3 e^{\prime \prime}{ }^{3} p_{1}^{0}$	3	0
100.919	990894	$2 p^{4}{ }^{3} P_{1}-3 s^{\prime \prime}{ }^{3} P_{01}^{0}$	4	1
100.894	991139	$2 p^{4}{ }^{3} P_{1}-3{ }^{\prime \prime}{ }^{3} P_{2}$	4	1

TABLE IX (Continued)

TABLE X

STRONG EMISSION LINES OF AI VII

Wave Length	Wave Number	Term Combination	Intensity
356.885	280202	$2 p^{3}{ }^{4} s^{1 \frac{1}{2}} 0-2 p^{4}{ }^{4} p_{2 \frac{1}{2}}$	5
353.776	282665	$2 p^{3}{ }^{4} s^{1} \frac{1}{2}-2 p^{4}{ }^{4} p_{1 \frac{1}{2}}$	9
352.160	283962	$2 p^{3}{ }^{4} s_{1 \frac{1}{2}}^{0}-2 p^{4}{ }^{4} p_{1 / 2}$	2
309.122	323497	$2 p^{3}{ }^{2} D_{2 \frac{1}{2}}^{0}-2 p^{4}{ }^{2} D_{2 \frac{1}{2}}$	2
309.012	323612	$2 p^{3}{ }^{2} D_{1 / \frac{1}{2}}^{0}-2 p^{4}{ }^{2} D_{1 \frac{1}{2}}$	2
240.770	415334	$2 p^{3}{ }^{2} D_{2 \frac{1}{2}}^{0}-2 p^{4}{ }^{2} P_{1 \frac{1}{2}}$	4
239.030	418358	$2 p^{3}{ }^{2} D_{D_{1 / 2}}^{0}-2 p^{4}{ }^{2} p_{p_{1}}$	2
88.033	1135940	$2 p^{3}{ }^{2} D_{2 \frac{1}{2}, 1 \frac{1}{2}}^{0}-3 \varepsilon^{\prime}{ }^{2} D^{2} \frac{1}{2}, 1 \frac{1}{2}$	18
87.060	1148630	$2 p^{3}{ }^{4} s_{1 / \frac{1}{2}}^{0}-3 \mathrm{~s}{ }^{4} \mathrm{P}_{1 \frac{1}{2}}$	12
86.887	1150920	$2 p^{3}{ }^{4} s_{1 \frac{1}{2}}^{0}-3 s{ }^{4} \mathrm{P}_{2 \frac{1}{2}}$	15
79.197	1262670		10
79.012	1265630	$2 p^{3}{ }^{2} \mathrm{D}_{2 \frac{1}{2}}^{0}-3 d^{2}{ }^{2} \mathrm{~F}_{3 \frac{1}{2}}$	15
78.351	1276310	$2 p^{3}{ }^{2} P_{b_{1}}^{0}-3 d^{\prime}{ }^{2} D^{1} \frac{1 / 2}{}$	20
78.327	1276700		20
77.945	1282960	$2 p^{3}{ }^{2} D_{1 \frac{1}{2}}^{0}-3 d^{2}{ }^{2}{ }_{1 / \frac{1}{2}}$	10
17.896	1283760	$2 p^{3}{ }^{2} D_{2 k}^{0}-3 d^{2}{ }^{2} D_{2 \frac{1}{2}}$	10
76.572	1305960	$2 p^{3}{ }^{2} \mathrm{D}_{2 \sqrt{2}}^{0}-3 d^{\prime}{ }^{2} \mathrm{~F}_{3 \sqrt{2}}$	20

TABLE X (Continued)

Wave Number	Wave Number	Term Combination	Intensity
76.543	1300460	$2 p^{3}{ }^{2} D_{1 \frac{1}{2}}^{0}-3 d^{\prime}{ }^{2} F_{21 / 2}$	20
76.422	1308520	$2 p^{3}{ }^{2} D_{1 \frac{1}{2}}^{0}-3 d^{\prime}{ }^{2} D_{1 / 2}$	10
־j. 383	1309190	$2 p^{3}{ }^{2} D_{2 \frac{1}{2}}^{0}-3 d^{\prime}{ }^{2} D_{2 \frac{1}{2}}$	10
75.360	1326960	$2 p^{3}{ }^{4} S_{l \frac{1}{2}}^{0}-3 d{ }^{4} P_{2 \frac{1}{2}}$	12
72.270	1383700	$2 p^{3} 4 S_{1 \frac{1}{2}}^{0}-3 p^{\prime \prime}{ }^{4} P_{2 \frac{1}{2}}$	10
63.025	1586670	$2 p^{3} 2 D_{2 \frac{1}{2}}^{0}-4 d^{\prime}{ }^{2}$	10

TABLE XI
STRONG EMISSION LINES OF AI VIII

Wave Length	Wave Number	Term Combination	Intensity
78.351	1276310	$2 p^{3}{ }^{3} \mathrm{P}-3 s^{1}{ }^{3} \mathrm{D}$	20
68.375	1462520	$2 \mathrm{p}^{2}{ }^{1} \mathrm{D}_{2}-3 \mathrm{~d}{ }^{1} \mathrm{~F}_{3}$	15
67.946	1471760	$2 p^{3}{ }^{3} D_{3}^{0}-3 d^{1}{ }^{3} F_{4,3,2}$	10
67.464	1482270	$2 p^{2}{ }^{3} P_{2}-3 \mathrm{~d}{ }^{3} \mathrm{D}_{3}^{0}$	12
67.408	1483500	$2 \mathrm{p}{ }^{2}{ }^{3} \mathrm{P}_{1}$ - $3 \mathrm{~d}{ }^{2} \mathrm{D}_{2}{ }^{0}$	10
67.288	1486150	$2 p^{2}{ }^{3} \mathrm{P}_{2}-3 \mathrm{~d}{ }^{3} \mathrm{P}_{\underline{2}}^{0}$	10

APPENDIX C

TABLES OF EXCITED ENERGY LEVELS

 OF ALUMINUMThe following tables list the excited energy levels of the Aluminum ions I through VIII. The information, except for $A I I$, is taken from the work by C. E. Moore (1949). The information for Al I is taken from a 1963 article by Erikson and Isberg.

Erikson and Isberg have made several improvements in the term designations for $A l$. They are $3 d^{\prime}{ }^{2} F, 4 d^{2} F$, and $5 d^{\prime}{ }^{2} D$, replacing $5 s^{\prime}{ }^{2} P, 4 d^{\prime}{ }^{2} P m 6 s^{\prime}{ }^{2} P$, and $5 d^{\prime}{ }^{2} F$, respectively. Also, the term $3 d^{\prime}{ }^{2} P$ was discarded with the identification of the level $5 s^{\prime}{ }^{4} P_{2 \frac{1}{2}}$.

The values of the energy levels for Al I are also those of Erikson and Isberg.

TABLE XII
EXCITED ENERGY LEVELS OF AI I

Configuration	Designation	J	Level
$3 s^{2}\left({ }^{1} S_{0}\right) 3 p$	$3 \mathrm{p} \quad{ }^{2} \mathrm{P}$	${ }^{\frac{1}{2} \frac{1}{2}}$	$\begin{gathered} 0 \\ 112.061 \end{gathered}$
$3 s^{2}\left({ }^{1} S_{0}\right) 4 \mathrm{~s}$	$4 \mathrm{~s}{ }^{2} \mathrm{~S}$	$\frac{1}{2}$	25347.756
$3 \mathrm{~s} 3 \mathrm{p}^{2}$	$3 p^{2}{ }^{4} p$	$\begin{aligned} & \frac{1}{2} \\ & 1 \frac{1}{2} / 2 \\ & 2 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 29020.41 \\ & 29066.96 \\ & 29142.78 \end{aligned}$
$3 s^{2}\left({ }^{1} S_{0}\right) 3 d$	3d ${ }^{2}$ D	1 ${ }^{1 \frac{1}{2}}$	$\begin{aligned} & 32435.435 \\ & 32436.778 \end{aligned}$
$3 s^{2}\left(S_{0}\right) 4 p$	$4 \mathrm{p} \quad 2 \mathrm{P}$	${ }^{\frac{1}{2}}$	$\begin{aligned} & 32949.804 \\ & 32965.643 \end{aligned}$
$3 s^{2}\left({ }^{1} S_{0}\right) 5 s$	$5 \mathrm{~s}{ }^{2} \mathrm{~S}$	$\frac{1}{2}$	37689.413
$3 \mathrm{~s}^{2}\left({ }^{1} \mathrm{~S}_{0}\right) 4 \mathrm{~d}$	$4 \mathrm{~d}{ }^{2} \mathrm{D}$	$\begin{aligned} & 1 \frac{1}{2} \\ & 2 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 38929.405 \\ & 38933.961 \end{aligned}$
$3 s^{2}\left({ }^{1} S_{0}\right) 5 p$	$5 \mathrm{p} \quad{ }^{2} \mathrm{P}$	$\begin{aligned} & \frac{1}{1} / 2 \\ & 1 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 40277.965 \\ & 40277.872 \end{aligned}$
$3 s^{2}\left({ }^{1} S_{0}\right) 4 f$	$4 \mathrm{f}^{2}$	$\begin{aligned} & 2 \frac{1}{2} \frac{1}{2} \\ & 3 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 41319.372 \\ & 41319.380 \end{aligned}$
$3 s^{2}\left({ }^{1} S_{0}\right) 6 s$	$6 \mathrm{~s}{ }^{2} \mathrm{~S}$	$\frac{1}{2}$	42144.402
$3 s^{2}\left({ }^{1} S_{0}\right) 5 d$	$5 \mathrm{~d}{ }^{2} \mathrm{D}$	$\begin{aligned} & 1 \frac{1}{2} \\ & 2 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 42233.722 \\ & 42237.781 \end{aligned}$
$3 s^{2}\left({ }^{1} S_{0}\right) 6 p$	$6 p \quad{ }^{2} p$	$\begin{aligned} & \frac{1}{2} \\ & 1 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 43335.013 \\ & 43337.877 \end{aligned}$
$3 s^{2}\left({ }^{1} S_{0}\right) 5 f$	5 F 2F	$2 \frac{1}{2}$ $3 \frac{1}{2}$	$\begin{aligned} & 43831.090 \\ & 43831.094 \end{aligned}$

TABLE XII (Continued)

Configuration	Designation		J	Level
$3 s^{2}\left({ }^{1} S_{0}\right) 6 r$.	6d	${ }^{2}$ D	${ }^{1 / \frac{1}{2}}$	$\begin{aligned} & 44166.417 \\ & 44168.863 \end{aligned}$
$3 s^{2}\left({ }^{1} S_{0}\right) 7 \mathrm{~s}$	7s	${ }^{2}$ S	$\frac{1}{2}$	44273.122
$3 s^{2}\left(s_{0}\right) 7 p$	7 p	${ }^{2} \mathrm{P}$	${ }^{\frac{1}{2}}$	$\begin{aligned} & 44919.654 \\ & 44921.275 \end{aligned}$
$3 s^{2}\left({ }^{1} S_{0}\right) 6 \mathrm{f}$	6 f	${ }^{2} \mathrm{~F}$	23/2, 31/2	45194.663
$3 s^{2}\left({ }^{1} S_{0}\right) 7 \mathrm{~d}$	7d	${ }^{2}$ D	21/21	$\begin{aligned} & 45344.164 \\ & 45345.598 \end{aligned}$
$3 s^{2}\left({ }^{1} S_{0}\right) 8 \mathrm{~s}$	8s	${ }^{2} \mathrm{~S}$	$\frac{1}{2}$	45457.233
$3 s^{2}\left({ }^{1} S_{0}\right) 7 \mathrm{f}$	7f		2 $\frac{1}{2}$, 31/2	46015.756
$3 s^{2}\left({ }^{1} s_{0}\right) 8 \mathrm{~d}$	8d	${ }^{2}$ D	${ }_{2 \frac{1}{2} \sqrt{2}}$	$\begin{aligned} & 46093.424 \\ & 46094.316 \end{aligned}$
$3 s^{2}\left(s_{0}\right) 9 s$	9s	${ }^{2}$ S	$\frac{1}{2}$	46183.896
$3 s^{2}\left({ }^{1} \mathrm{~S}_{0}\right) 8 \mathrm{f}$	8 f	$2^{\text {F }}$	2b, 32,	46547.924
$3 s^{2}\left({ }^{1} S_{0}\right) 9 \mathrm{~d}$	9d	${ }^{2}$ D	12/2/2	$\begin{aligned} & 46593.32 \\ & 46593.95 \end{aligned}$
$3 s^{2}\left(S_{0}\right) 10 \mathrm{~d}$	10d	${ }^{2}$ D	$\frac{11 / 2}{2}$	$\begin{array}{r} 46940.97 \\ 46941.55 \end{array}$
$3 s^{2}\left(s_{0}\right) 11 \mathrm{~d}$	11 d	${ }^{2}$ D	21/2	47192.30
Al II ('s)	Lim		--	48278.37
3s $3 p^{2}$	$3 p^{2}$	${ }^{2} \mathrm{~S}$	$\frac{1}{2}$	51753.0
3s sp ${ }^{2}$	$3 p^{2}$	${ }^{2} \mathrm{P}$	${ }_{2}^{1 / 2}$	$\begin{aligned} & 56636.93 \\ & 56724.98 \end{aligned}$
$3 \mathrm{~s} 3 \mathrm{p}\left({ }^{3} \mathrm{P}\right) 4 \mathrm{~s}$		${ }^{4} \mathrm{P}$		$\begin{aligned} & 61691.46 \\ & 61747.56 \\ & 61843.54 \end{aligned}$

TABLE XII (Continued)

Configuration	Designation	J	Level
$383 p\left({ }^{3} p\right) 3 d$	$3 \mathrm{C}^{\prime}{ }^{2} \mathrm{D}$	$\begin{aligned} & 1 \frac{1}{2} / 2 \\ & 2 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 67635.13 \\ & 67662.96 \end{aligned}$
$3 \mathrm{~s} 3 \mathrm{p}\left({ }^{3} \mathrm{P}\right) 3 \mathrm{~d}$	$3 d^{\prime}{ }^{4} \mathrm{D}$	$\begin{array}{r} \frac{1}{2} \\ 1 \frac{1}{2} \\ 2 \frac{1}{2} \frac{1}{2} \\ 3 \frac{1}{2} \end{array}$	$\begin{aligned} & 71235.25 \\ & 71244.17 \\ & 71260.55 \\ & 71286.4 \end{aligned}$
$3 \mathrm{~s} 3 \mathrm{p}\left({ }^{3} \mathrm{P}\right) 3 \mathrm{~d}$	$3 d^{\prime}{ }^{2} \mathrm{~F}$	$\begin{aligned} & 2 \frac{1}{2} / 2 \\ & 3 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 72978.9 \\ & 73077.8 \end{aligned}$
$3 \mathrm{~s} 3 \mathrm{p}\left({ }^{3} \mathrm{P}\right) 5 \mathrm{~s}$	5s, ${ }^{4} \mathrm{P}$	$2 \frac{1}{2}$	74979.02
$3 \mathrm{~s} 3 \mathrm{p}\left({ }^{3} \mathrm{P}\right) 4 \mathrm{~d}$	4d' ${ }^{2}$ D	$\begin{aligned} & 1 \frac{1 / 2}{2} \\ & 2 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 76521.6 \\ & 76553.46 \end{aligned}$
$3 \mathrm{~s} 3 \mathrm{p}\left({ }^{3} \mathrm{P}\right) 4 \mathrm{~d}$	4d' ${ }^{\prime}$ F	$\begin{aligned} & 2 \frac{1}{2} \frac{1}{2} \\ & 3 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 78612.23 \\ & 78710.26 \end{aligned}$
$3 \mathrm{~s} 3 \mathrm{p}\left({ }^{3} \mathrm{p}\right) 5 \mathrm{~d}$	5d, ${ }^{2}$ D	$\frac{1 \frac{1}{2}}{2 \frac{1}{2}}$	$\begin{aligned} & 80158.0 \\ & 80191.9 \end{aligned}$
Al II (${ }^{3} \mathrm{P}$)	Limit	---	85671.32

TABLE XIII
EXCITED ENERGY LEVELS OF A1 II

TABLE XIII (Continued)

Configuration	Designation		J	Level
$3 s(2 s) 4 \mathrm{f}$	4 f	$\mathrm{l}_{\mathrm{F}}{ }^{\text {o }}$	3	123468.1
$3 s(2 s) 4 \mathrm{~d}$	4d	${ }^{1}$	2	124792.0
$3 s\left({ }^{2} s\right) 5 p$	5p	${ }^{3} \mathrm{p}$ 0	0 1 2	$\begin{aligned} & 125700.5 \\ & 125706.2 \\ & 125719.0 \end{aligned}$
$3 \mathrm{~s}\left({ }^{2} \mathrm{~s}\right) 5 \mathrm{p}$	5p	${ }_{1}{ }^{0}$	1	125866.7
$3 s\left({ }^{2} s\right) 6 s$	68	${ }^{3} \mathrm{~S}$	1	132213.2
$3 s\left({ }^{2} s\right) 6 s$	6s	${ }^{1} s$	0	132776.4
$3 \mathrm{~s}\left({ }^{2} \mathrm{~s}\right) 5 \mathrm{~d}$	5d	$3^{\text {D }}$	2, ${ }^{3}$	$\begin{aligned} & 132819.7 \\ & 132819.9 \end{aligned}$
$3 \mathrm{~s}\left({ }^{2} \mathrm{~s}\right) 5 \mathrm{f}$	5 f	$3_{\mathrm{F}}{ }^{\text {o }}$	2 3 4	$\begin{aligned} & 133435.0 \\ & 133440.4 \\ & 133447.3 \end{aligned}$
$3 s(2 s) 5 ¢$	5 f	$1_{F} 0$	3	133679.3
$3 \mathrm{~s}\left({ }^{2} \mathrm{~s}\right) 5 \mathrm{~d}$	5d	${ }^{1}$	2	133914.1
$3 \mathrm{~s}\left({ }^{2} \mathrm{~S}\right) 5 \mathrm{~g}$	5 g	3_{G}	3,2,5	134181.2
$3 s\left({ }^{2} s\right) 5 g$	5g	1_{G}	4	134181.2
$3 \mathrm{~s}\left(^{2} \mathrm{~s}\right) 6 \mathrm{p}$	6p	$1_{P}{ }^{\circ}$	1	134917.3
$3 s\left({ }^{2} s\right) 6 p$	$6 p$	$3_{\mathrm{p}} \mathrm{O}$	0 1 2	$\begin{aligned} & 135009.0 \\ & 135012.1 \\ & 135018.9 \end{aligned}$
$3 \mathrm{~s}\left({ }^{2} \mathrm{~s}\right) 7 \mathrm{~s}$	7s	3_{s}	1	138496.7
$3 s\left({ }^{2} s\right) 6 \mathrm{f}$	6 f	$3_{5} 0$	2 3 4	$\begin{aligned} & 138518.7 \\ & 138536.4 \\ & 138559.2 \end{aligned}$
$3 \mathrm{~s}\left(2^{2} \mathrm{~S}\right) 78$	7 s	${ }_{1}$	0	138799.3
$3 \mathrm{~s}\left(^{2} \mathrm{~S}\right) 6 \mathrm{~d}$	6d	$3_{\text {D }}$	3,2,1	138811.9

TABLE XIII (Continued)

Configuration	Designation		J	Level
$3 \mathrm{~s}\left({ }^{2} \mathrm{~S}\right) 6 \mathrm{f}$	$6 \pm$	${ }_{1}{ }^{\circ}$	3	139242.9
$3 s\left({ }^{2} s\right) 6 d$	6 d	${ }^{1}$	2	139286.8
$3 \mathrm{~s}\left({ }^{2} \mathrm{~s}\right) 6 \mathrm{~g}$	6 g	3_{G}	3,4,5	139588.7
$3 s\left({ }^{2} s\right) 6 g$	6 g	1_{G}	4	139558.7
$3 \mathrm{~s}\left({ }^{2} \mathrm{~s}\right) 7 \mathrm{p}$	7 p	$1_{P} 0$	1	139916.7
$3 s\left({ }^{2} \mathrm{~S}\right) 7 \mathrm{p}$	7p	$3^{P}{ }^{0}$	0,1,2	140091.2
$3 \mathrm{p}\left({ }^{2} \mathrm{P}^{0}\right) 3 \mathrm{~d}$	3d	$3_{\mathrm{F}}{ }^{\circ}$	$\begin{aligned} & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 141082.4 \\ & 141107.5 \\ & 141140.5 \end{aligned}$
$3 \mathrm{~s}\left(^{2} \mathrm{~s}\right) 8 \mathrm{~s}$	8s	${ }^{3} \mathrm{~S}$	1	142179.8
$3 \mathrm{~s}\left(^{2} \mathrm{~S}\right) 8 \mathrm{~s}$	8 s	${ }^{1} s$	0	142360.8
$3 s\left({ }^{2} s\right) 7 \mathrm{~d}$	7d	$3^{\text {D }}$	3,2,1	142362.8
$3 \mathrm{~s}\left({ }^{2} \mathrm{~s}\right) 7 \mathrm{f}$	7 f	${ }^{1}{ }^{\text {a }}$	3	142601.6
$3 s\left({ }^{2} s\right) 7 \mathrm{~d}$	7d	${ }^{1}$	2	142607.0
$3 \mathrm{~s}\left(^{2} \mathrm{~S}\right) 7 \mathrm{~g}$	78	3_{G}	3,4,5	142849.2
$\left.3 \mathrm{~s}{ }^{2} \mathrm{~s}\right) 7 \mathrm{~g}$	78	${ }^{1}$ G	4	142849.2
$3 \mathrm{~s}\left({ }^{2} \mathrm{~S}\right) 8 \mathrm{p}$	8 p	${ }^{1} \mathrm{P}^{0}$	1	142958.9
$3 \mathrm{~s}\left(^{2} \mathrm{~s}\right) 8 \mathrm{p}$	8 p	$3_{P}{ }^{0}$	0,1,2	143180.0
$3 \mathrm{~s}\left({ }^{2} \mathrm{~s}\right) 7 \mathrm{f}$	7 f	${ }^{3}{ }^{\circ}$	2 3 4	$\begin{aligned} & 143262.7 \\ & 143269.8 \\ & 143280.6 \end{aligned}$
$3 \mathrm{~s}\left(^{2} \mathrm{~s}\right) 9 \mathrm{~s}$	9s	${ }^{2} \mathrm{~S}$	1	144524.3
$3 \mathrm{~s}\left(^{2} \mathrm{~S}\right) 8 \mathrm{~d}$	8d	$3^{\text {D }}$	3,2,1	144638.9
$3 \mathrm{~s}\left({ }^{2} \mathrm{~s}\right) 9 \mathrm{~s}$	98	${ }^{1} S$	0	144641.9

TABLE XIII (Continued)

Configuration	Designation		J	Level
$3 \mathrm{~s}\left({ }^{2} \mathrm{~s}\right) 8 \mathrm{~d}$	8d	${ }^{1}$ D	2	144780.2
$3 \mathrm{~s}\left({ }^{2} \mathrm{~S}\right) 8 \mathrm{f}$	8 f	$1_{F}{ }^{\circ}$	3	144781.9
$3 s(2 s) 9 p$	9 p	$1_{P}{ }^{\circ}$	1	144939.1
$3 \mathrm{~s}\left({ }^{2} \mathrm{~S}\right) 8 \mathrm{~g}$	8 g	3_{G}	3,4,5	144964.7
$3 s\left({ }^{2} s\right) 8 \mathrm{~g}$	88	${ }^{1}{ }_{G}$	4	144964.7
$38\left({ }^{2} s\right) 88$	8h	$3_{\mathrm{H}}{ }^{\text {O}}$	4,5,6	144990.0
$3 \mathrm{~s}\left({ }^{2} \mathrm{~s}\right) 8 \mathrm{~h}$	8h	$1_{H} \mathrm{O}$	5	144990.0
$3 s\left({ }^{2} \mathrm{~s}\right) 8 \mathrm{f}$	8 f	$3_{F}{ }^{\circ}$	2 3 4	$\begin{aligned} & 145126.5 \\ & 145128.9 \\ & 145132.1 \end{aligned}$
$3 p\left({ }^{2} P^{0}\right) 3 d$	3d	$3_{D} 0$	1,2 3	$\begin{aligned} & 145148 \\ & 145152 \end{aligned}$
$3 s(2 s) 9 p$	9p	$3^{\text {P }}$ O	0.1 .2	145185
$3 \mathrm{p}\left({ }^{2} \mathrm{P}^{0}\right) 4 \mathrm{~s}$	45	$3^{\text {P }}$ O	0 1 2	$\begin{aligned} & 145773.9 \\ & 145832.6 \\ & 145959.4 \end{aligned}$
$3 \mathrm{~s}\left({ }^{2} \mathrm{~s}\right) 10 \mathrm{~s}$	10s	${ }^{3} \mathrm{~S}$	1	146108.8
$3 s\left({ }^{2} s\right) 9 \mathrm{~d}$	9d	$3^{\text {D }}$	3,2,1	146185.0
$3 \mathrm{~s}\left({ }^{2} \mathrm{~s}\right) \mathrm{iOs}$	10s	${ }^{1}$ S	0	146190.1
$3 s(2 s) 9 \mathrm{~d}$	9d	${ }^{1}$	2	146274.4
$3 s\left({ }^{2} s\right) 9 \mathrm{f}$	9 f	$1_{F}{ }^{\circ}$	3	146276.5
$3 s(2 s) 10 p$	10p	${ }^{1} \mathrm{~F}^{0}$	1	146297.5
$3 \mathrm{~s}\left({ }^{2} \mathrm{~s}\right) 9 \mathrm{~g}$	9 g	3_{G}	3,4,5	145414.5
$3 \mathrm{~s}\left({ }^{2} \mathrm{~s}\right) 9 \mathrm{~g}$	9g	I_{G}	4	146414.5

TABLE XIII (Continued)

Configuration	Designation		J	Level
$3 \mathrm{~s}\left({ }^{2} \mathrm{~s}\right) 9 \mathrm{~h}$	9h	${ }^{3}{ }^{\circ}$	4,5,6	146
$3 \mathrm{~s}\left({ }^{2} \mathrm{~s}\right) 9 \mathrm{~h}$	9h	${ }^{1} \mathrm{H}^{\circ}$	5	146432.8
$3 s\left({ }^{2} s\right) 9 \mathrm{f}$	9 f	$3_{F}{ }^{\circ}$	$\begin{aligned} & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 146496.7 \\ & 16497.8 \end{aligned}$
$3 s\left({ }^{2} \mathrm{~S}\right) 10 \mathrm{p}$	10p	$3_{P}{ }^{0}$	0,1,2	146577
$3 \mathrm{p}\left({ }^{2} \mathrm{P}^{0}\right) 3 \mathrm{~d}$	3d	$3_{P} 0$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 146595.0 \\ & 146596.9 \\ & 146599.3 \end{aligned}$
$3 s(2 s) 11 s$	118	3_{S}	1	147229.0
$3 s\left({ }^{2} s\right) 11 p$	11_{P}	${ }_{1}{ }^{\text {P }}$	1	147268.8
$3 \mathrm{~s}\left({ }^{2} \mathrm{~s}\right) 10 \mathrm{~d}$	10d	${ }^{3} \mathrm{D}$	3,2,1	147282.8
$3 \mathrm{~s}\left({ }^{2} \mathrm{~s}\right) 11 \mathrm{~s}$	118	${ }^{1}$	0	147288.8
$3 \mathrm{~s}\left({ }^{2} \mathrm{~s}\right) 10 \mathrm{~d}$	10d	1_{D}	2	147343.2
$2 s\left({ }^{2} s\right) 10 £$	$10 \pm$	${ }_{1}{ }^{\circ}$	3	147344.2
$3 \mathrm{~s}\left({ }^{2} \mathrm{~s}\right) 10 \mathrm{~g}$	10 g	3_{G}	3,4,5	147451.0
$3 \mathrm{~s}\left({ }^{2} \mathrm{~S}\right) 10 \mathrm{~g}$	10 g	3_{G}	3,4,5	147451.0
$3 \mathrm{~s}\left({ }^{2} \mathrm{~S}\right) 10 \mathrm{~h}$	10h	$3_{\mathrm{H}} \mathrm{O}$	3,4,5	147464.7
$3 \mathrm{~s}\left({ }^{2} \mathrm{~s}\right) 10 \mathrm{~h}$	10 h	${ }^{1}{ }^{\circ}$	5	147464.7
$3 s(2 s) 10 f$		$3_{F}{ }^{\circ}$	2 3 4	$\begin{aligned} & 147499.8 \\ & 147500.2 \\ & 147500.8 \end{aligned}$
$3 s(2 s) 11 p$	11 p	${ }_{2} \mathrm{P}$	0,1,2	147572
$3 \mathrm{p}\left({ }^{2} \mathrm{P}^{0}\right) 48$	48	${ }_{1} \mathrm{P}$	1	148002.0
$3 \mathrm{~s}\left({ }^{2} \mathrm{~S}\right) 12 \mathrm{~s}$	12s	${ }^{3} \mathrm{~S}$	1	148052.5

TABLE XIII (Continued)

Configuration	Designation		J	Level
$3 \mathrm{~s}(2 \mathrm{~s}) 11 \mathrm{~d}$	11d	${ }^{3}$ D	3,2,1	148090.0
$3 \mathrm{~s}\left({ }^{2} \mathrm{~s}\right) 12 \mathrm{~s}$	128	${ }^{1}$	0	148097.1
$3 s(2 s) 11 \mathrm{f}$	11 f	${ }_{1}{ }^{\circ}$	3	1481.32 .6
$3 s(2 s) 11 \mathrm{~d}$	11d	${ }^{1}$	2	148132.7
$3 \mathrm{~s}\left({ }^{2} \mathrm{~s}\right) 11 \mathrm{~g}$	118	${ }^{3}$	3,4,5	148217.6
$3 \mathrm{~s}\left({ }^{2} \mathrm{~s}\right) 11 \mathrm{~g}$	118	l_{G}	4	148217.6
$3 s(2 s) 11 \mathrm{f}$	11 f	$3_{\mathrm{F}}{ }^{\circ}$	$\begin{aligned} & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 148248.7 \\ & 148249.1 \\ & 148249.6 \end{aligned}$
$3 s\left({ }^{2} s\right) 12 \mathrm{p}$	12p	$1_{P}{ }^{0}$	1	148579.4
$3 \mathrm{~s}\left({ }^{2} \mathrm{~s}\right) 13 \mathrm{~s}$	138	${ }^{3} \mathrm{~S}$	1	148673.7
$3 s\left({ }^{2} s\right) 13 s$	13s	${ }^{1}$	0	148706.9
$3 \mathrm{~s}\left({ }^{2} \mathrm{~S}\right) 12 \mathrm{f}$	12 f	$1_{F}{ }^{\circ}$	3	148731.6
$3 \mathrm{~s}\left({ }^{2} \mathrm{~S}\right) 12 \mathrm{~g}$	12 g	${ }^{3}{ }_{G}$	3,4,5	148800.4
js (${ }^{2} \mathrm{~s}$) 12 g	12 g	I_{G}	4	148800.4
$3 \mathrm{~s}\left({ }^{2} \mathrm{~S}\right) 12 \mathrm{f}$	12i	${ }^{3}{ }^{\circ}$	2,3,4	148822.5
$35\left({ }^{2} \mathrm{~s}\right) 13 \mathrm{p}$	13p	1_{p} o	1	149051.9
$3 \mathrm{~s}\left({ }^{2} \mathrm{~S}\right) 14 \mathrm{~s}$	148	${ }^{1}$	0	149179.8
3 s (${ }^{2}$ S) 13 f	13 f	$1_{F} 0$	3	149199.2
$3 \mathrm{~s}\left({ }^{2} \mathrm{~s}\right) 13 \mathrm{~g}$	138	3_{G}	3,4,5	149252.9
3 s (${ }^{\text {S }}$) 13 g	138	${ }^{1}$ G	4	149252.9
$3 s(2 S) 13 \mathrm{f}$	13 f	$3_{F}{ }^{\circ}$	2,3,4	149269.5
$38\left({ }^{2} s\right) 14 \mathrm{p}$.	14p	${ }_{1}{ }^{0}$	1	149434.8

TABLE XIII (Continued)

Configuration	Designation	J	Level
$38(2 s): 58$	15s ${ }^{1} \mathrm{~S}$	0	149554.7
$3 s(2 s) 14.6$	$14 \mathrm{f}{ }^{1} \mathrm{~F}^{\circ}$	3	149568.6
$3 s(2 s) 14 \mathrm{f}$	$14 \mathrm{f}{ }^{3} \mathrm{~F}{ }^{\circ}$	2,3,4	149625.5
$3 s(2 s) 15 p$	15p ${ }^{1} \mathrm{p}^{0}$	1	149748.0
$3 s(2 s)] E_{s}$	$168{ }^{1} \mathrm{~S}$	0	149856.6
$3 s(2 s) 15 f$	$15 f^{1} \mathrm{~F}^{\text {o }}$	3	149866.2
$3 s(2 s) 15 f$	$15 ¢{ }^{\text {f }}{ }^{\text {\% }}$	2,3,4	149913.2
$3 s(2 s) 16 p$	$16 p{ }^{1} p^{0}$	1	150097.6
$3 s(2 s) 16 \mathrm{f}$	$16 \mathrm{f} \quad{ }^{1} \mathrm{~F}$ o	3	150109.7
$3 s(2 s) 16 \mathrm{f}$	$16 \mathrm{f}^{3} \mathrm{~F}^{\circ}$	2,3,4	'50109.7
$3 s(2 s) 17 f$	$17 \mathrm{f}{ }^{\text {F }} \mathrm{F}$ O	3	150311.1
$3 s(2 s) 17 f$	$17 \mathrm{f}{ }^{3} \mathrm{~F}$ o	2,3,4	150343.5
$3 s(2 s) 18 \mathrm{f}$	$18 \mathrm{f}{ }^{1} \mathrm{~F}^{\circ}$	3	150479.7
$3 s(2 s) 19 f$	$19 \mathrm{f}{ }^{1} \mathrm{~F}^{\circ}$	3	150522.2
$3 s(2 s) 20 f$	$20 f{ }^{1} \mathrm{~F}$ O	3	150744.1
A1 III (${ }^{2} \mathrm{~S}_{3}$)	Limit	-----	151860.4

TABLE XI ${ }^{\dagger}$

EXCITED ENERGY LEVELS OF A1 III

Configuration	Des	ignation	J	Level
3s	3s	${ }^{2} \mathrm{~S}$	$\frac{1}{2}$	0.00
3 p	3p	${ }^{2}{ }^{\circ}$	$\begin{aligned} & \frac{1}{2} \\ & 1 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 53684.1 \\ & 53916.6 \end{aligned}$
3d	3d	${ }^{2}$	$\begin{aligned} & 2 \frac{1}{2} \\ & 1 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 115955.03 \\ & 115957.31 \end{aligned}$
45	$4 s$	${ }^{2}$	$\frac{1}{2}$	126162.58
4p	4p	${ }^{2} \mathrm{P}$	$\frac{1 / 2}{1 / 2 / 2}$	$\begin{aligned} & 143632.25 \\ & 143712.38 \end{aligned}$
4d	4d	${ }^{2}$ D	$\begin{aligned} & 2 \frac{1}{2} / 2 \\ & l^{1 / 2} \end{aligned}$	$\begin{aligned} & 165785.26 \\ & 165786.54 \end{aligned}$
4 f	f	${ }^{2} \mathrm{~F}$	$\begin{aligned} & 2 \frac{1}{2} / 2 \\ & 3 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 167612.05 \\ & 167612.43 \end{aligned}$
$5 s$	$5 s$	${ }^{2}$	$\frac{1}{2}$	170636.38
$5 p$	5p	2 P	$\frac{1}{2}$	$\begin{aligned} & 178430.49 \\ & 178469.64 \end{aligned}$
5d	5d	${ }^{2}$ D	$\left\{\begin{array}{l}2 \frac{1}{2} \\ 1 \frac{1}{2}\end{array}\right\}$	188875.52
5f	5f	${ }^{2} \mathrm{~F}$	$\begin{aligned} & 2 \frac{1}{2} \\ & 3 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 189875.34 \\ & 189875.46 \end{aligned}$
58	$5 g$	2_{G}	$\left\{\begin{array}{l} 3 \frac{1}{2} \\ 4 \frac{1}{2} \end{array}\right\}$	189927.76
6 s	$6 s$	${ }^{2} \mathrm{~S}$	$\frac{1}{2}$	191478.5

TABLE XIV (Continued)

Configuration	Designation	J	Level
6 p	$6 \mathrm{p}{ }^{2} \mathrm{P}^{\circ}$	$\frac{1}{1 / 2}$	$\begin{aligned} & 195620.94 \\ & 195641.53 \end{aligned}$
6d	$6 \mathrm{~d}^{2} \mathrm{D}$	$\left\{\begin{array}{l} 2 \frac{1}{2} \\ 1 \frac{1}{2} \end{array}\right\}$	201374.37
6 f	$6 \mathrm{f}^{2}{ }_{\mathrm{F}}$ 。	$\left\{\begin{array}{l} 2 \frac{1}{2} \\ 3 \frac{1}{2} \end{array}\right\}$	201969.52
6^{8}	$6 \mathrm{~g}{ }^{2} \mathrm{G}$	$\left\{\begin{array}{l} 3 \sqrt[1]{2} \\ 4 \frac{1}{2} \end{array}\right\}$	202001.32
6h	$6 h^{2} \mathrm{H}^{\circ}$	$\left\{\begin{array}{l} 4 \frac{1}{2} \\ 5 \frac{2}{2} \end{array}\right\}$	202007.32
7s	$7 \mathrm{~s}{ }^{2} \mathrm{~S}$	$\frac{1}{2}$	202904.8
7 p	$7 \mathrm{p}{ }^{2} \mathrm{P}$	$\left\{\begin{array}{l} \frac{1}{2} \\ 1 \frac{1}{2} \end{array}\right\}$	205360
7d	$7 \mathrm{~d}{ }^{2} \mathrm{D}$	$\left\{\begin{array}{l} 2 b_{2} \\ 1 \frac{1}{2} \\ 1 \end{array}\right\}$	208880.37
$7 \pm$	$7 \pm{ }^{2}{ }^{\circ} \mathrm{O}$	$\left\{\begin{array}{l} 2 b_{2} \\ 33: \end{array}\right\}$	209260.98
7 g	$7 \mathrm{~g}{ }^{2}{ }_{\text {G }}$	$\left\{\begin{array}{l} 3 \frac{13}{2} \\ 4 \frac{2}{2} \end{array}\right\}$	209282.17
7h	$7 \mathrm{~h}{ }^{2} \mathrm{H}^{\circ}$	$\left\{\begin{array}{l} 4 \frac{3}{2} \\ 5 \frac{1}{2} \frac{1}{2} \end{array}\right\}$	209287.52
8d	$8 d^{2} \mathrm{D}$	$\left\{\begin{array}{l} 2 \frac{1}{2} / 2 \\ 1 \frac{1}{2}, \end{array}\right.$	213741.42
8 f	$8 \mathrm{f}{ }^{2} \mathrm{~F}$ O	$\left\{\begin{array}{l} 2 \frac{1}{2} \\ \left\{3 \frac{2}{2}\right. \end{array}\right\}$	213992.12
8g	$8 g^{2}{ }_{G}$	$\left\{\begin{array}{l} 3 \frac{13}{2} \\ 4 \frac{1}{2} \end{array}\right\}$	214010.67
8h	$8 \mathrm{~h}{ }^{2} \mathrm{H}^{\circ}$	$\left\{\begin{array}{l} 4 \frac{1}{2} \\ 5 \frac{1}{2} \end{array}\right\}$	214015.8

TABLE XIV (Continued)

Configuration	Designation	J	Level
$9 h$	$9 \mathrm{~h}{ }^{2}{ }_{H}{ }^{0}$	$\left\{\begin{array}{l}4 \frac{1}{2} \\ 5 \frac{1}{2}\end{array}\right\}$	217255.2

TABLE XV
EXCITED ENERGY LEVELS OF AI IV

Configuration	Designation	J	Leve1
$2 p^{6}$	$2 p^{6}{ }^{1} s$	0	0
$2 p^{5}\left({ }^{2} P_{1 \frac{1}{2}}^{0}\right) 3 s$	3 s [1 Ta $]^{0}$	2 1	$\begin{aligned} & 616646.7 \\ & 628477.5 \end{aligned}$
$2 p^{5}\left({ }^{2} \mathrm{P}_{\frac{1}{2}}^{0}\right) 3 \mathrm{~s}$		0 1	$\begin{aligned} & 619947.7 \\ & 624720.5 \end{aligned}$
$2 p^{5}\left({ }^{2} \mathrm{P}_{1^{\frac{1}{2}}}^{0}\right) 3 p$	3p [$\frac{1}{2}$]	1	671635.5
"	3p [20 ${ }_{2}$]	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 680862.9 \\ & 681686.7 \end{aligned}$
"	3p [$1 \frac{18}{2}$]	1 2	$\begin{array}{r} 682869.3 \\ 685732.8 \end{array}$
"	3p [${ }_{\frac{1}{2} \text {] }}$	0	688313.3
$2 p^{5}\left({ }^{2} \mathrm{P}_{\frac{3}{2}}^{0}\right) 3 \mathrm{p}$	$3 p^{\prime}\left[1 \frac{1}{2}\right]$	1 2	$\begin{aligned} & 687456.8 \\ & 687834.7 \end{aligned}$
"	$3 p^{\prime}\left[\frac{1}{2}\right]$	1	$\begin{array}{r} 688653.0 \\ 690244.9 \end{array}$
$2 p^{5}\left({ }^{2} P_{1_{2}^{3}}^{0}\right) 3 d$	3d [130	0 1	$\begin{array}{r} 759197.4 \\ 759600.9 \end{array}$
"	3d [11/2]	2	761015.4
"	3d $\left[33 z^{0}\right.$	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	$\begin{array}{r} 761694.5 \\ 762277.1 \end{array}$
"	3d $\left[2 \frac{1}{2}\right]^{0}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 763502.8 \\ & 764304.3 \end{aligned}$
$"$	3d [172] ${ }^{0}$	1	767040.6

TABLE XV (Continued)

Configuration	Designation	J	Level
$2 p^{5}\left({ }^{2} P_{\frac{1}{2}}^{0}\right) 3 \mathrm{~d}$	$3 d^{\prime}\left[2 \frac{7}{2}\right]^{\circ}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 767351.9 \\ & 767536.2 \end{aligned}$
"	$3 d^{\prime}$ [1720	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 767756.1 \\ & 770836.1 \end{aligned}$
$2_{2}^{5}\left({ }^{5} P_{1 \frac{1}{2}}^{0}\right) 48$	$48\left[13 z^{\circ}\right.$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	802936
$2 p^{5}\left({ }^{2} \mathrm{P}_{\frac{1}{2}}^{0}\right) 4 \mathrm{~s}$		$\begin{aligned} & 0 \\ & 1 \end{aligned}$	806231
$2 p^{5}\left({ }^{2} \mathrm{P}_{1 \frac{1}{2}}^{0}\right) 4 \mathrm{~d}$	4d [$\left.\mathrm{H}_{2}\right]^{-1}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	851956
"	44 [1*30	1	255286
$2 p^{5}\left({ }^{2} P_{\frac{1}{2}}^{0}\right) 4 d$	4d' [1330	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	8586;1
$2 p^{5}\left({ }^{2} P_{1 \frac{1}{2}}^{0}\right) 5 s$	5s [173]	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	871391
$2 p^{5}\left({ }^{2} \mathrm{p}_{\frac{1}{2}}^{0}\right) 5 \mathrm{~s}$	5s ${ }^{\text {c }}$ [${ }^{\circ}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	874669
$\left.2 p^{5} \cdot{ }^{2} P_{1 \frac{1}{2}}^{0}\right) 5 d$	5d [3x ${ }^{0}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	894614
"	5d [17 $]^{0}$	1	896138
$2 p^{5}\left({ }^{2} P_{\frac{l_{2}}{0}}^{0}\right) 5 d$	5d' [12] ${ }^{\circ}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	899281
$2 p^{5}\left({ }^{2} P_{l_{12}}^{0}\right) 6 d$	6d [13 3^{0}	1	918215
$2 p^{5}\left({ }^{2} P_{1_{2}}^{0}\right) 6 d$	6d' [$1172{ }^{7}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	921362
A1 V (${ }^{2} P_{1^{\frac{1}{2}}}^{0}$)	Limit	-	967783
Al $V\left({ }^{2} \mathrm{P}_{\frac{1}{2}}^{0}\right)$	Limit	-----	971223

TABLE XVI

EXCITED ENERGY LEVELS OF AI V

Configuration	Designation	J	Level
$2 s^{2} 2 p^{5}$	$2 p^{5} 2 p^{0}$	11/2	$\begin{array}{r} 0 \\ 3440 \end{array}$
$2 \mathrm{~s} 2 p^{6}$	$2 p^{6} 2$	$\frac{1}{2}$	358810
$2 s^{2} 2 p^{4}\left({ }^{3} p\right) 3 s$	$3 s^{4} \mathrm{P}$	$2 \frac{1}{2}$ $1 \frac{1}{2}$ $1 / 2$	$\begin{aligned} & 751810 \\ & 753960 \\ & 755250 \end{aligned}$
$2 s^{2} 2 p^{4}\left({ }^{3} \mathrm{P}\right) 3 \mathrm{~s}$	$3 s^{2} P$	$\begin{gathered} 1 \frac{1}{2} \\ \frac{1}{2} \end{gathered}$	$\begin{aligned} & 764240 \\ & 766790 \end{aligned}$
$2 s^{2} 2 p^{4}\left({ }^{1} D\right) 3 s$	$3 s^{\prime}{ }^{2} \mathrm{D}$	$\begin{aligned} & 2 \frac{1}{2} / 2 \\ & 1 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 796650 \\ & 796680 \end{aligned}$
$2 s^{2} 2 p^{4}(1) 3 s$	$3 s^{\prime \prime}{ }^{2} \mathrm{~S}$	$\frac{1}{2}$	843880
$2 \mathrm{~s}^{2} 2 \mathrm{p}^{4}\left({ }^{3} \mathrm{P}\right) 3 \mathrm{~d}$	3d ${ }^{4} \mathrm{D}$	$\begin{aligned} & 3 \frac{1}{2} \\ & 2 \frac{1}{2} \\ & 1 \frac{1}{2} \\ & 1 / 2 \end{aligned}$	$\begin{aligned} & 919900 \\ & 920680 \end{aligned}$
$2 s^{2} 2 p^{4}\left({ }^{3} p\right) 3 d$	$3 \mathrm{~d}{ }^{4} P$	$\begin{aligned} & \frac{1}{2} \\ & l^{1 \frac{1}{2}} \\ & 2 \frac{1 / 2}{2} \end{aligned}$	$\begin{aligned} & 921440 \\ & 922120 \\ & 922640 \end{aligned}$
$2 s^{2} 2 p^{4}\left({ }^{3} p\right) 3 d$	3d 2 F	$\begin{aligned} & 3 \frac{1}{2} / 2 \\ & 2 \frac{1}{2} \end{aligned}$	923230
$2 s^{2} 2 p^{4}\left({ }^{3} p\right) 3 d$	$3 \mathrm{~d}{ }^{2} \mathrm{D}$	1312	$\begin{aligned} & 925430 \\ & 926400 \end{aligned}$
$2 s^{2} 2 p^{4}\left({ }^{3} P\right) 3 d$	$3 d^{2} P$	${ }_{1 \frac{1}{2}}^{1 \frac{1}{2}}$	$\begin{aligned} & 925900 \\ & 928410 \end{aligned}$

TABLE XVI (Continued)

Configuration	Designation	J	Level
$2 s^{2} 2 p^{4}\left({ }^{1} D\right) 3 d$	$3 d^{\prime}{ }^{2} \mathrm{P}$	1/1/2	$\begin{aligned} & 960420 \\ & 961630 \end{aligned}$
$2 s^{2} 2 p^{4}\left({ }^{1} D\right) 3 \mathrm{~d}$	$3 d^{\prime}{ }^{2} \mathrm{~S}$	$\frac{1}{2}$	9608 0
$2 s^{2} 2 p^{4}\left({ }^{1} D\right) 3 d$	$3 \mathrm{~d}{ }^{2} \mathrm{D}$	$\begin{aligned} & 2 \frac{1}{2} \\ & 1 \sqrt{2} \end{aligned}$	$\begin{aligned} & 962640 \\ & 963330 \end{aligned}$
$2 s^{2} 2 p^{4}\left({ }^{3} p\right) 4 s$	$4 \mathrm{~s}^{2} \mathrm{P}$	${ }^{1 / 2 / 2}$	$\begin{aligned} & 1005760 \\ & 1008040 \end{aligned}$
$2 s^{2} 2 p^{4}(1 s) 3 d$	$3 d^{\prime 2}$ D	${ }^{2} 12 \sqrt{1}$	$\begin{aligned} & 1007150 \\ & 1007290 \end{aligned}$
$2 s^{2} 2 p^{4}\left({ }^{1} \mathrm{D}\right) 4 \mathrm{~s}$	$4 s^{\prime}{ }^{2} \mathrm{D}$	$\begin{aligned} & 2 \sqrt[1]{2} \\ & 1 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 1043430 \\ & 1043480 \end{aligned}$
$2 s^{2} 2 p^{4}\left({ }^{3} \mathrm{P}\right) 4 \mathrm{~d}$	$4{ }^{4}{ }^{4}$	$\begin{aligned} & 31 / \frac{1}{2} \\ & 2 \sqrt{2} \\ & 1 \frac{1}{2} \\ & 1 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 1062510 \\ & 1062820 \end{aligned}$
$2 s^{2} 2 p^{4}\left({ }^{3} \mathrm{P}\right) 4 \mathrm{~d}$	$4 \mathrm{~d}^{4} \mathrm{p}$	$\begin{gathered} \frac{1}{2 / 2} \\ \substack{1 / 2 \\ 2 \frac{1}{2}} \end{gathered}$	$\begin{aligned} & 1063650 \\ & 1064050 \end{aligned}$
$2 s^{2} 2 p^{4}\left({ }^{3} P\right) 4 d$	$4 \mathrm{~d}^{2} \mathrm{P}$	$1 \frac{1 / 2}{1 / 2}$	$\begin{aligned} & 1065170 \\ & 1067770 \end{aligned}$
$2 s^{2} 2 p^{4}\left({ }^{3} \mathrm{P}\right) 4 \mathrm{~d}$	$4 \mathrm{~d}^{2}{ }^{\text {d }}$	$\underset{2 \frac{1}{2}}{\substack{1 / 2}}$	$\begin{aligned} & 1065460 \\ & 1066610 \end{aligned}$
$2 s^{2} 2 p^{4}\left({ }^{1} S\right) 4 \mathrm{~s}$	$4 \mathrm{~s}^{\prime 2} \mathrm{~S}$	$\frac{1}{2}$	1089930
2s $\quad 2 p^{5}\left({ }^{3} P^{0}\right) 33$	$3 s^{\prime \prime}{ }^{2}{ }^{2} \mathrm{O}$	$\underset{1 / 2}{1 \frac{1}{2}}$	$\begin{aligned} & 1096180 \\ & 1098350 \end{aligned}$
$2 s^{2} 2 p^{4}\left({ }^{1}\right.$ D $) 4 \mathrm{~d}$	$4 d^{\prime}{ }^{2} \mathrm{P}$	$\frac{1}{1 \frac{1}{2}}$	$\begin{aligned} & 1101400 \\ & 1103380 \end{aligned}$
$2 s^{2} 2 p^{4}\left({ }^{1} \mathrm{D}\right) 4 \mathrm{~d}$	4d' ${ }^{2} \mathrm{~S}$	$\frac{1}{2}$	1102540
$2 s^{2} 2 p^{4}$ (${ }^{1}$ D) 4 d	$4 \mathrm{~d}^{\prime}{ }^{2} \mathrm{D}$	$\begin{aligned} & 2 \frac{1}{2} \\ & 1 \frac{1}{2} \end{aligned}$	1103190

TABLE XVI (Continued)

Configuration	Designation	J	Level
$2 s^{2} 2 p^{4}\left({ }^{3} p\right) 5 d$	$5 \mathrm{~d}{ }^{4} \mathrm{D}$	$\begin{aligned} & 3 \frac{1}{2} \sqrt{2} \\ & 2 \frac{1}{2} \\ & 1 \frac{1}{2} \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & 1127550 \\ & 1127730 \end{aligned}$
$2 s^{2} 2 r^{4}\left({ }^{3} P\right) 5 d$	$5 \mathrm{~d}{ }^{2} \mathrm{D}$	21/21/2	$\begin{aligned} & 1129350 \\ & 1130900 \end{aligned}$
$2 s^{2} 2 p^{4}\left({ }^{3} p\right) 5 d$	$5 \mathrm{~d}{ }^{2} \mathrm{P}$	$1 \frac{1}{1} \frac{1}{2}$	$\begin{aligned} & 1129350 \\ & 1131650 \end{aligned}$
$2 s^{2} 2 p^{4}\left({ }^{1} \mathrm{~S}\right) 4 \mathrm{~d}$	$4 d^{\prime 2}{ }^{2}$	${ }^{21 / \frac{1}{2}}$	$\begin{aligned} & 1149160 \\ & 1149260 \end{aligned}$
$2 s^{2} 2 p^{4}\left({ }^{3} p\right) 6 d$	$6 \mathrm{~d}^{2} \mathrm{D}$	21/21	$\begin{aligned} & 1163850 \\ & 1165450 \end{aligned}$
$2 s^{2} 2 p^{4}\left({ }^{1} \mathrm{D}\right) 5 \mathrm{~d}$	$5 \mathrm{C}^{\prime}{ }^{2} \mathrm{~S}$	$\frac{1}{2}$	1167380
$2 s^{2} 2 p^{4}\left({ }^{1} D\right) 5 d$	$5 \mathrm{~d},{ }^{2} \mathrm{P}$	$\frac{1}{1 \frac{1}{2}}$	1168060
A1 VI $\left({ }^{3} \mathrm{P}_{2}\right)$	Limit	--	1240600

TABLE XVII

EXCITED ENERGY LEVELS OF AI VI

Configuration	Designation	\pm	Level
$2 s^{2} 2 p^{4}$	$2 p^{4} 3 p$	2	0
		1	2736
		0	3831
$28^{2} 2 p^{4}$	$21.41{ }^{4}$	2	41600
$2 s^{2} 2 p^{4}$	$2 p^{4} 1{ }^{1}$	0	88670
$2 \mathrm{~s} 2 \mathrm{p}^{5}$	$2 p^{5} 3{ }^{0}$	2	323002
		1	325470
		0	326822
$2 \mathrm{~s} 2 \mathrm{p}^{5}$	$2 p^{5}{ }^{1} P^{0}$	1	451840
$2 s^{2} 2 p^{3}\left(4 s^{0}\right) 3 s$	$3 \mathrm{~s}{ }^{3} \mathrm{~S}$	1	913130
$2 s^{2} 2 p^{3}\left({ }^{2} D^{0}\right) 3 s$	$3 \mathrm{~s} \cdot 3_{\mathrm{D}} 0$	3,2,1	961100
$2 s^{2} 2 p^{3}\left({ }^{2} D^{0}\right) 3 s$	$38^{\prime} 1_{D}{ }^{0}$	2	970790
$2 s^{2} 2 p^{3}\left({ }^{2} p^{0}\right) 3 s$	$38^{\prime \prime} 3{ }^{\circ}$	0	
		1	993660
		2	993880
$2 s^{2} 2 p^{3}\left({ }^{2} P^{0}\right) 3 s$	$3 s^{\prime \prime}{ }^{1} \mathrm{p} 0$	1	1003700
$2 s^{2} 2 p^{3}\left(s^{4} S^{0}\right) 3 \mathrm{~d}$	3d ${ }^{3} \mathrm{D}^{\circ}$	1	1079460
		2	1079490
		3	1079610
$2 s^{2} 2 p^{3}\left({ }^{2} D^{0}\right) 3 d$	$3 d^{\prime}{ }^{3}{ }^{\circ}$	4	
		3	
		2	1132180
$2 s^{2} 2 p^{3}\left(2 D^{0}\right) 3 d$	3d, ${ }^{3} \mathrm{D}^{0}$	3,2,1	1134170

TABLE XVII (Continued)

Configuration	Designation	J	Level
$2 a^{2} 2 p^{3}\left({ }^{2} D^{0}\right) 3 d$	3d' ${ }^{1} \mathrm{P}^{0}$	1	1136500
$2 s^{2} 2 p^{3}\left({ }^{2} D^{0}\right) 3 d$	3d' ${ }^{3} \mathrm{P} 0$	2	1140840
		1	1141670
		0	1141910
$2 s^{2} 2 p^{3}\left({ }^{2} D^{0}\right) 3 \mathrm{~d}$	$3 d^{\prime}{ }^{1} D^{\circ}$	2	1142220
$2 s^{2} 2 p^{3}\left({ }^{2} D^{0}\right) 3 \mathrm{~d}$	$3 d^{\prime}{ }^{3} s^{0}$	1	1145020
$2 s^{2} 2 p^{3}\left({ }^{2} D^{0}\right) 3 \mathrm{~d}$	3d' ${ }^{1}{ }_{F} 0$	3	1150250
$2 s^{2} 2 p^{3}\left({ }^{2} P^{0}\right) 3 d$	$3 \mathrm{~d}^{\prime \prime}{ }^{3} \mathrm{P}$	0	1164220
		1	1164620
		2	1165260
$2 s^{2} 2 p^{3}\left({ }^{2} P^{0}\right) 3 d$	$3 d^{\prime \prime}{ }^{3}{ }^{\circ}$	4	
		3	1166530
		2	1168690
$2 s^{2} 2 p^{3}\left({ }^{2} \mathrm{P}^{0}\right) 3 \mathrm{~d}$	$3 \mathrm{~d}^{\prime \prime}{ }^{1}{ }^{\circ}$	2	1169150
$2 s^{2} 2 p^{3}\left({ }^{2} \mathrm{P}^{0}\right) 3 \mathrm{~d}$	$3 d^{\prime \prime}{ }^{3}{ }^{0}$	3	$\begin{aligned} & 1169390 \\ & 1170650 \end{aligned}$
		2	1170650
$2 s^{2} 2 p^{3}\left({ }^{2} \mathrm{P}^{0}\right) 3 \mathrm{~d}$	$3 \mathrm{~d}^{\prime \prime}{ }^{1} \mathrm{P}^{0}$	1	1171050
$2 s^{2} 2 p^{3}\left({ }^{2} P^{0}\right) 3 d$	3d' ${ }^{1}{ }^{\text {F }}$	3	1174450
2s $2 p$	$3 \mathrm{~s}{ }^{\prime \prime}{ }^{3} \mathrm{P}$	2	1204550
		1	1205500
$2 s^{2} 2 p^{3}\left(4 s^{0}\right) 4 s$	$4 \mathrm{~s}{ }^{3} \mathrm{~s}^{\circ}$	1	1218290
$2 s^{2} 2 p^{3}\left({ }^{2} D^{0}\right) 4 s$	$4 s^{\prime}{ }^{3}{ }^{\circ}$	3,2,1	1274550
$2 s^{2} 2 p^{3}\left({ }^{2} D^{0}\right) 4 s$	$48^{\prime} l^{1} 0^{\circ}$	2	1279680
$2 s^{2} 2 p^{3}\left(4 s^{0}\right) 4 \mathrm{~d}$	$4 \mathrm{~d} 3^{3}{ }^{\circ}$	1,2,3	1282960
$2 s \quad 2 p^{4}\left({ }^{2} D\right) 3 s$	$3 s^{\text {IV }} 3_{\text {D }}$	3,2,1	1293290

TABLE XVII (Continued)

Configuration	Designation	J	Level
$2 s^{2} 2 p^{3}\left({ }^{2} p^{0}\right) 48$	48, ${ }^{1} \mathrm{P}$	1	1312070
$2 s^{2} 2 p^{3}\left({ }^{2} D^{0}\right) 4 \mathrm{~d}$	4d, ${ }^{3}{ }^{\circ} \mathrm{O}$	3,2,1	1339480
$2 s^{2} 2 p^{3}\left({ }^{2} D^{0}\right) 4 d$	4d' ${ }^{1} \mathrm{P}^{0}$	1	1341090
$2 s^{2} 2 p^{3}\left({ }^{2} L^{0}\right) 4 d$	4d, ${ }^{3} \mathrm{P}$ O	$\begin{aligned} & 2 \\ & 1 \\ & 0 \end{aligned}$	1343320
$2 \varepsilon^{2} 2 p^{3}\left(D^{2}\right) 4 \mathrm{~d}$	4d, ${ }^{3} s^{\circ}$	1	1345030
$2 s^{2} 2 p^{3}\left({ }^{2} D^{0}\right) 4 \mathrm{~d}$	4d' ${ }^{1}{ }^{\text {d }}$ o	2	1345430
$2 s^{2} 2 p^{3}\left({ }^{2} D^{0}\right) 4 \mathrm{~d}$	4d, ${ }^{\text {F }}$ o	3	1346780
2s $2 p^{4}\left({ }^{2} s\right) 3 s$	$3 \mathrm{~s}^{\mathrm{V}}{ }^{3} \mathrm{~S}$	1	1359890
$2 s^{2} 2 p^{3}\left({ }^{2} p^{0}\right) 4 d$	$4 \mathrm{~d}^{\prime 3} 3^{\text {P }}$	0 1	
			1371220
$2 \mathrm{~s}^{2} 2 \mathrm{p}^{3}\left({ }^{2} \mathrm{P}^{0}\right)^{4 d}$	$4 \mathrm{~d}^{\prime \prime}{ }^{3} \mathrm{D}$ 0	$\begin{aligned} & 3 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 1373440 \\ & 1375140 \end{aligned}$
$2 s^{2} 2 p^{3}\left(s^{4} s^{0}\right) 5 d$	$5 \mathrm{~d} \quad 3_{\mathrm{D}}{ }^{\circ}$	1,2,3	1375250
$2 s^{2} 2 p^{3}\left({ }^{2} \mathrm{P}^{0}\right) 4 \mathrm{~d}$	$4 \mathrm{~d}^{1} \mathrm{l}_{\mathfrak{F}}^{0}$	3	1376860
$2 s^{2} 2 p^{3}\left({ }^{2} D^{0}\right) 5 s$	$58,{ }^{1}{ }^{\circ}$	2	1405220
$2 s^{2} 2 p^{3}\left({ }^{2} \mathrm{P}^{0}\right) 5 \mathrm{~d}$	$5 \mathrm{~d}{ }^{3}{ }^{\text {P }}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	1465780
$2 \mathrm{~s}^{2} 2 \mathrm{p}^{3}\left({ }^{2} \mathrm{P}^{0}\right) 5 \mathrm{~d}$	$5 d^{\prime \prime}{ }^{3}{ }^{\circ}$	$\begin{aligned} & 3 \\ & 2 \\ & 1 \end{aligned}$	1466990
AI VII (${ }^{4} \mathrm{~s}_{1 \frac{1}{2}}^{0}$)	Limit	-----	1536300

TABLE XVIII
EXCITED ENERGY LEVELS OF AI VII

Configuration	Designation	J	Leve1
$28^{2} 2 p^{3}$	$2 p^{34} s^{0}$	$12 \sqrt{2}$	0
$28^{2} 2 p^{3}$	$2 p^{3}{ }^{2} D^{0}$	$\begin{aligned} & 1 \frac{1}{2} \\ & 2 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 60700 \\ & 60760 \end{aligned}$
$2 s^{2} 2 p^{3}$	$2 p^{32} p^{0}$	$\begin{aligned} & \frac{1}{2} \\ & 1 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 93000 \\ & 93270 \end{aligned}$
$28 \quad 2 p^{4}$	$2 p^{44} p$	$\begin{aligned} & 2 \frac{1}{2} \\ & 1 \frac{1}{2} \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & 280200 \\ & 232660 \\ & 283960 \end{aligned}$
$28 \quad 2 p^{4}$	$2 p^{4}{ }^{2} \mathrm{D}$	$\begin{aligned} & 2 \sqrt[1]{2} \\ & 1 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 384260 \\ & 384410 \end{aligned}$
$282 p^{4}$	$2 p^{4} 2 \mathrm{~s}$	$\frac{1}{2}$	451360
$282 p^{4}$	$2 p^{4} 2 p$	$\begin{aligned} & 1 \frac{1}{2} \\ & 1 / 2 \end{aligned}$	$\begin{aligned} & 476090 \\ & 479050 \end{aligned}$
$2 s^{2} 2 p^{2}(1) 3 d$	$3 d^{\prime \prime}{ }^{2}$	$\left\{\begin{array}{l} 1 k_{2} \\ 2 k_{2} \end{array}\right\}$	1410380
$28 \quad 2 p^{3}\left(5 s^{0}\right) 3 d$	$3 d^{\prime \prime}{ }^{4} D^{0}$	$\left\{\begin{array}{l}\text { ct } \\ \text { d } \\ 3 \frac{1}{2}\end{array}\right\}$	1473060
$2 s^{2} 2 p^{2}\left({ }^{3} \mathrm{P}\right) 4 \mathrm{~s}$	$48 \quad{ }^{4} \mathrm{P}$	$\begin{aligned} & \frac{1}{1} \\ & 1 \frac{1}{2} \\ & 2 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 1540740 \\ & 1542850 \end{aligned}$
$2 s^{2} 2 p^{2}\left({ }^{3} P\right) 48$	$48 \quad{ }^{2} \mathrm{P}$	$\frac{1 / 2}{1 / 2}$	1540820
$282 p^{3}\left({ }^{3} D^{0}\right) 3 d$	$3 d^{\text {IV }} 4 P^{0}$	$21 / 5$ $1 / 2$ $1 / 2$	$\begin{aligned} & 1591560 \\ & 1592170 \\ & 1592550 \end{aligned}$

TABLE XVIII (Continued)

Configuration	Designation	J	Level
2s $2 p^{3}\left({ }^{3}{ }^{0}\right) 3 \mathrm{~d}$	$3 d^{\text {IV }} 4 \mathrm{D}^{\circ}$	$\left\{\begin{array}{l} \frac{1}{2} \\ t 0 \\ 3 \frac{12}{2} \end{array}\right\}$	1598270
$2 s^{2} 2 p^{2}\left({ }^{3} \mathrm{P}\right) 4 \mathrm{~d}$	$4 \mathrm{~d}^{2} \mathrm{P}$	$\underset{\substack{1 / 2 \\ \frac{1}{2}}}{ }$	1598890
2s $2 p^{3}\left({ }^{3} D^{\circ}\right) 3 \mathrm{~d}$	$3 d^{\text {IV }} 4 s^{\circ}$	11/2	1599300
$2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}\left({ }^{3} \mathrm{P}\right) 4 \mathrm{~d}$	$4 d^{4} \mathrm{D}$	$\left\{\begin{array}{c} 3 \sqrt{3 \sqrt{2}} \\ 2 \frac{2 \sqrt{2}}{1 / 2} \\ 1 \end{array}\right\}$	1600670
		$\frac{1}{2}$	1601740
$2 s^{2} 2 p^{2}\left({ }^{3} \mathrm{P}\right) 4 \mathrm{~d}$	$4 \mathrm{~d} \quad 2 \mathrm{~F}$	$\begin{aligned} & 2 \frac{1}{2} \\ & 3 \sqrt{2} \end{aligned}$	$\begin{aligned} & 1603550 \\ & 1606260 \end{aligned}$
$2 s^{2} 2 \mathrm{p} 2\left({ }^{3} \mathrm{P}\right) 4 \mathrm{~d}$	$4 \mathrm{~d} \quad 4 \mathrm{p}$	$\begin{aligned} & 2 \sqrt{2} / 2 \\ & 1 / 2 / 2 \\ & 1 / 2 \end{aligned}$	1605240
$2 s^{2} 2 p^{2}\left({ }^{3} \mathrm{P}\right) 4 \mathrm{~d}$	$4 \mathrm{~d}^{2} \mathrm{D}$	$\begin{aligned} & \frac{1}{1 / 2} \\ & 2 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 1610820 \\ & 1611560 \end{aligned}$
$2 s^{2} 2 p^{2}\left(^{1} \mathrm{D}\right) 4 \mathrm{~d}$	$4 d^{\prime 2}{ }^{2}$	$\begin{aligned} & 1 \frac{1}{2} \\ & 2 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 1646820 \\ & 1647880 \end{aligned}$
$2 s^{2} 2 p^{2}\left({ }^{1} \mathrm{D}\right) 4 \mathrm{~d}$	$4 \mathrm{~d}^{*}{ }^{2} \mathrm{~F}$	$\left\{\begin{array}{l} 2 \frac{1}{2} \\ 3 \frac{1}{2} \end{array}\right\}$	1647430
$2 s^{2} 2 p^{2}(3 P) 3 s$	$3 \mathrm{~s}{ }^{4} \mathrm{P}$	$\begin{aligned} & \frac{1}{2} \frac{1}{2} \\ & \frac{1}{2} \sqrt{2} \\ & 2 \frac{1}{2} \end{aligned}$	1147100 1148630 1150920
$2 s^{2} 2 p^{2}\left({ }^{3} \mathrm{P}\right) 3 \mathrm{~s}$	$3 s^{2} \mathrm{P}$	$\frac{1 / 2}{1 \frac{1}{2}}$	$\begin{aligned} & 1162360 \\ & 1165130 \end{aligned}$
$\left.2 s^{2} 2 p^{2}{ }^{1} \mathrm{D}\right) 3 \mathrm{~s}$	$3 s^{\prime}{ }^{2} \mathrm{D}$	$\left\{\begin{array}{l} \frac{1}{2} \\ 2 \frac{1}{2} \\ 2 \end{array}\right\}$	1196680
$2 s^{2} 2 p^{2}\left({ }^{1} s\right) 3 s$	$38^{\prime \prime}{ }^{2} \mathrm{~S}$	\%	1246840
$2 s^{2} 2 p^{2}\left({ }^{3} \mathrm{p}\right) 3 \mathrm{~d}$	3d ${ }^{2} \mathrm{P}$	$\frac{1 k}{\sqrt{2}}$	$\begin{aligned} & 1315640 \\ & 1316420 \end{aligned}$

TABLE XVIII (Continued)

Configuration	Designation	J	Level
2s $2 p^{3}\left({ }^{5} s^{0}\right) 3 s$	$3 s^{\prime \prime} /^{4} s^{0}$	1/2	1322180
$2 s^{2} 2 p^{2}\left({ }^{3} \mathrm{P}\right) 3 \mathrm{~d}$	3d ${ }^{2} \mathrm{~F}$	$\begin{aligned} & 2 \frac{1}{2} \\ & 3 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 1323370 \\ & 1326390 \end{aligned}$
$2 s^{2} 2 p^{2}\left({ }^{3} \mathrm{P}\right) 3 \mathrm{~d}$	$3 \mathrm{~d}{ }^{4} \mathrm{D}$		$\begin{aligned} & 1323940 \\ & 1324710 \end{aligned}$
$2 s^{2} 2 p^{2}\left({ }^{3} \mathrm{P}\right) 3 \mathrm{~d}$	$3 \mathrm{~s}{ }^{4} \mathrm{P}$	$\begin{aligned} & 2 \frac{1}{2} \\ & 1 \frac{1}{2} \\ & 1 / 2 \end{aligned}$	$\begin{aligned} & 1326960 \\ & 1327990 \\ & 1328550 \end{aligned}$
$2 s^{2} 2 p^{2}\left({ }^{3} \mathrm{p}\right) 3 \mathrm{~d}$	$3 \mathrm{~d}{ }^{2} \mathrm{D}$	$\begin{aligned} & 1 \frac{1}{2} \sqrt{2} \\ & 2 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 1343710 \\ & 1344530 \end{aligned}$
$2 s^{2} 2 p^{2}\left({ }^{1} \mathrm{D}\right) 3 \mathrm{~d}$	$3 d^{\prime}{ }^{2} \mathrm{~F}$	$\begin{aligned} & 3 \sqrt{2} / 2 \\ & 2 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 1366720 \\ & 1367160 \end{aligned}$
$2 s^{2} 2 p^{2}\left({ }^{1} \mathrm{D}\right) 3 \mathrm{~d}$	$3 d^{\prime}{ }^{2} \mathrm{D}$	$\begin{aligned} & 1 \frac{1}{2} \\ & 2 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 1369270 \\ & 1369960 \end{aligned}$
$2 s^{2} 2 p^{2}\left({ }^{1} D\right) 3 \mathrm{~d}$	$3 d^{\prime}{ }^{2} \mathrm{P}$	$\underset{1 \frac{1}{2 / 2}}{1 \frac{1}{2}}$	$\begin{aligned} & 1378290 \\ & 1379130 \end{aligned}$
$2 s \quad 2 p^{3}\left(s^{5} s^{0} 3 p\right.$	$3 \mathrm{p} /{ }^{4} \mathrm{p}$	$\left\{\begin{array}{l} \frac{1}{2} \\ t 0 \\ 2 \frac{1}{2} \end{array}\right\}$	1383700
$2 s^{2} 2 p^{2}\left({ }^{1}\right.$ D 3 d	3d' ${ }^{2} \mathrm{~S}$	$\frac{1}{2}$	1384370
$\left.2 s^{2} 2 p^{2}{ }^{1} \mathrm{D}\right) 4 \mathrm{~d}$	$4 \mathrm{~d}^{2} \mathrm{~S}$	$\frac{1}{2}$	1654160
$2 s^{2} 2 p^{2}\left({ }^{3} \mathrm{P}\right) 5 \mathrm{~s}$	5s ${ }^{4} \mathrm{P}$	$\begin{aligned} & \frac{1}{2} \\ & \frac{12}{2} \\ & 2 \frac{1}{2} \end{aligned}$	1702070
$2 s^{2} 2 p^{2}\left({ }^{3} \mathrm{P}\right) 5 \mathrm{~d}$	5d ${ }^{2} \mathrm{~F}$	$\begin{aligned} & 2 \frac{1}{2} \\ & 3 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 1729840 \\ & 1732410 \end{aligned}$
$2 \mathrm{~s} \quad 2 \frac{z_{2}}{}{ }^{3}\left(S^{5}\right) 4 \mathrm{~d}$	$4 \mathrm{~d} \cdot{ }^{4} \mathrm{D}^{\circ}$	$\begin{gathered} 3 \sqrt{3 / 2} \\ 2 \sqrt{2 / 2} \\ \left\{\begin{array}{c} 1 / 2 \\ \frac{1}{2} \end{array}\right\} \end{gathered}$	$\begin{aligned} & 1739390 \\ & 1739600 \\ & 1739970 \end{aligned}$

TABLE XVIII (Continued)

Configuration	Designation	J	Level
$2 s^{2} 2 p^{2}\left({ }^{1} D\right) 5 d$	$5 d^{\prime}{ }^{2} F$	$\left\{\begin{array}{l}3 \frac{1}{2} \\ 2 \frac{1}{2}\end{array}\right\}$	1773560
Al VIII ($\left.{ }^{3} P_{0}\right)$	Limit		

TABLE XIX

EXCITED ENERGY LEVELS OF AI VIII

Configuration	Designation	J	Level
$2 s^{2} 2 p^{2}$	$2 p^{2}{ }^{3} p$	0	0
		1	1740
		2	4440
$28^{2} 2 p^{2}$	$2 p^{2} 1_{D}$	2	46690
$2 s^{2} 2 p^{2}$	$2 p^{2}{ }^{1} s$	0	96170
$282 p^{3}$	$2 p^{35} s^{0}$	2	133510
$2 \mathrm{~s} 2 \mathrm{p}^{3}$	$2 p^{3}{ }^{3} D^{0}$	3	262190
		2	262320
		1	262390
$282 p^{3}$	$2 p^{3}{ }^{3} \mathrm{P}^{0}$	0,1,2	309130
$2 \mathrm{~s} 2 \mathrm{p}^{3}$	$2 p^{31} D^{0}$	2	396990
$2 \mathrm{~s} 2 \mathrm{p}^{3}$	$2 p^{3}{ }^{3} s^{0}$	1	$4042<0$
$2 \mathrm{~s} 2 \mathrm{p}^{3}$	$2 p^{3} 1_{p} 0$	1	444550
$2 s^{2} 2 p\left(P^{0}\right) 3 s$	$3 \mathrm{~s}{ }^{3} \mathrm{P}$ 0	0	1319280
		1	1320450
		2	1324080
$2 s^{2} 2 p\left({ }^{2} P^{0}\right) 3 s$	$38 \quad{ }^{1} \mathrm{P} 0$	1	1335270
$2 s^{2} 2 p\left({ }^{2} P^{0}\right) 3 p$	3p ${ }^{3} \mathrm{~S}$	1	1402180
$2 \mathrm{~s} 2 \mathrm{P}^{2}\left({ }^{4} \mathrm{P}\right) 3 \mathrm{~s}$	$38 \quad 5$	1	1465810
		2	1467470
		3	1469680

TABLE XIX (Continued)

Configuration	Designation	J	Level
$2 s^{2} 2 p\left({ }^{2} P^{0}\right) 3 \mathrm{~d}$	3d ${ }^{3} \mathrm{~F} 0$	2	1468700
		3 4	
$2 s^{2} 2 p\left({ }^{2} \mathrm{P}^{0}\right) 3 \mathrm{~d}$	3d ${ }^{1} 0$	2	1471980
$2 s^{2} 2 p\left({ }^{2} P^{0}\right) 3 d$	3d ${ }^{3}{ }^{\circ} \mathrm{O}$	1	1484560
		2	1485240
		3	1486710
$2 s^{2} 2 p\left({ }^{2} \mathrm{P}^{0}\right) 3 \mathrm{~d}$	3d	2	1490590
		1	1491570
		0	1492140
$2 \mathrm{~s} \quad 2 p^{2}\left({ }^{4} \mathrm{P}\right) 3 \mathrm{~s}$	$38 \quad 3{ }^{3}$	0	
		1	1504810
		2	1507220
$2 s^{2} 2 p\left({ }^{2} \mathrm{p}^{0}\right) 3 \mathrm{~d}$	3d $1_{F} 0$	3	1509210
$2 s^{2} 2 p\left({ }^{2} p^{0}\right) 3 \mathrm{~d}$	3d $1_{P} 0$	1	1510060
2s $2 p^{2}\left({ }^{4} p\right) 3 p$	3p ${ }^{3} \mathrm{~s}$ o	1	1531270
2s 2p ${ }^{2}(4 \mathrm{P}) 3 \mathrm{p}$	$3 \mathrm{p}{ }^{3} \mathrm{D}^{0}$	1	1564140
		2	1564840
		3	1566840
2s $2 p^{2}\left({ }^{4} P\right) 3 p$	3p	0	
		1	
		2	1577760
2s $2 p^{2}\left(^{2} D\right) 38$	$38^{\prime} 3^{\text {d }}$	1,2,3	1585400
2s $2 p^{2}\left({ }^{2} D\right) 3 s$	$3 s^{\prime}{ }^{1} \mathrm{D}$	2	1608440
$28 \quad 2 p^{2}\left({ }^{4} \mathrm{P}\right) 3 \mathrm{~d}$	$3 \mathrm{~d}{ }^{5} \mathrm{P}$	3	1631170
		2	1632060
		1	1632670
$2 \mathrm{~s} \quad 2 \mathrm{p}^{2}\left({ }^{4} \mathrm{P}\right) 3 \mathrm{~d}$	$3 \mathrm{~d}{ }^{3} \mathrm{p}$	2	1633840
		1	1635440

TABLE XIX (Continued)

Configuration	Designation	J	Level
2s $2 p^{2}\left({ }^{4} P\right) 3 d$	3d ${ }^{3} \mathrm{~F}$	2 3 4	1643590 1644990 1646790
2s 2p ${ }^{2}\left({ }^{2} \mathrm{D}\right) 3 \mathrm{p}$	$3 \mathrm{p}{ }^{\prime} \mathrm{F}^{\circ}$	3	1659180
2s $\left.2 p^{2}{ }^{2} s\right) 3 s$	$38^{\prime \prime}{ }^{3} \mathrm{~S}$	1	1662740
$2 \mathrm{~s} \quad 2 \frac{12}{2}{ }^{(4} \mathrm{P}$) 3 d	$3 \mathrm{~d}{ }^{3} \mathrm{D}$	2 3	1664880 1665380 1665930
2s $2 p^{2}\left({ }^{2} \mathrm{D}\right) 3 \mathrm{p}$	3p ${ }^{\prime} 1_{D}$	2	1667490
2s $2 p^{2}\left({ }^{2} P\right) 3 \mathrm{~s}$	$3 \mathrm{a}^{\prime \prime}{ }^{3}$	0 1 2	1682590
2s $2 p^{2}\left({ }^{2} \mathrm{D}\right) 3 \mathrm{~d}$	3d, ${ }^{\text {F }}$	2,3,4	1733950
2s $2 p^{2}\left(^{2} D\right) 3 \mathrm{~d}$	3d ${ }^{\prime}{ }^{3} \mathrm{D}$	1,2,3	1742250
2s $2 p^{2}\left({ }^{2} D\right) 3 \mathrm{~d}$	3d ${ }^{3}{ }^{\text {P }}$	2 1 0	$\begin{aligned} & 1745690 \\ & 1747940 \\ & 1749640 \end{aligned}$
2s $2 p^{2}\left(^{2} \mathrm{D}\right) 3 \mathrm{~d}$	3d, ${ }^{3} \mathrm{~S}$	1	1762090
$2 s^{2} 2 \mathrm{p}\left({ }^{2} \mathrm{P}^{0}\right) 4 \mathrm{~s}$	$48{ }^{3} \mathrm{P}$ -	0 1 2	1785380
$2 \mathrm{~s} \quad 20^{2}\left({ }^{2} \mathrm{~S}\right) 3 \mathrm{~d}$	$3 \mathrm{Cl}^{3} \mathrm{D}$	1 2 3	$\begin{aligned} & 1815990 \\ & 1816950 \end{aligned}$
$\left.2 \mathrm{~s} \quad 2 \mathrm{p}^{2}{ }^{2} \mathrm{P}\right) 3 \mathrm{~d}$	$3 \mathrm{Cl}^{\prime \prime}{ }^{3} \mathrm{~F}$	2,3,4	1831700
2s $2 p^{2}\left({ }^{2} P\right) 3 \mathrm{~d}$	$38=1{ }^{\text {d }}$	1,2,3	1840570
2s $2 p^{2}\left({ }^{2} \mathrm{P}\right) 3 \mathrm{~d}$	$3 \mathrm{~d}{ }^{\prime}{ }^{3} \mathrm{P}$	0 1 2	1844390

TABLE XIX (Continued)

Configuration	Designation	J	Level
$2 s^{2} 2 p\left({ }^{2} P^{0}\right) 4 \mathrm{~d}$	$4 \mathrm{~d}{ }^{3}{ }^{\circ}$	1	
		2	1846180
		3	1847490
$2 s^{2} 2 p\left({ }^{2} \mathrm{P}^{0}\right) 4 \mathrm{~d}$	4d ${ }^{1} \mathrm{P} 0$	1	1853670
2s $2 \mathrm{p}{ }^{2}\left({ }^{4} \mathrm{P}\right) 4 \mathrm{~d}$	$4 \mathrm{H}^{5} \mathrm{P}$	3	1991450
		2	1992250
		1	1992760
$2 \mathrm{~s} \quad 2 \mathrm{p}^{2}\left({ }^{4} \mathrm{P}\right) 4 \mathrm{~d}$	$4 \mathrm{~d} \quad{ }^{\text {a }}$	2	
		3	1997710
		4	1999710
A1 IX (${ }^{2} \mathrm{P}_{\mathrm{l}_{2}}$)	Limit	-	2300390

APPENDIX D

ENERGY LEVEL DIAGRAMS

The following diegrams for the Aluminum ions Al I through Al VIII show the relative positions of the excitation levels. The diagrame are approximately to ecale, as indicated on each.

The information is taken from a 1949 work by C. E. Moore, except for Al I. The information for the Al I ion was taken from a 1963 artisle by Erikson and Isberg. Except for Al II all levels listed in Appendix C are shown. Only levels up to N 9 are shown for Al II. The remaining levels are too close together and too numerous to include without the diagram becoming excessively messy.

No attempt has been made to show the splitting of the levels over the quantum number J .

Figure 7. Energy Levels of Al I

Pigure 8. Energy Levele of Al II

Figure 9. Energy Levels of Al III

Figure 10. Energy Levels of Al IV

Figure 11. Energy Levels of A1 V

Figure 12. Energy Levels of A1 VI

Figure 13. Energy Levels of Al VII

Figure 14. Energy Levels of Al VIII

VITA

Thomas Milton Carpenter

Candifate for the Degree of

Master of Science

Report: CALIBRATION OF A FAR ULTRAVIOLET SPECTROGRAPH AND A STUDY OF VACUUM SPARK BREAKDOWN

Major Field: Physics

Biographical:
Personal Data: Born in Grand Junction, Colorado, February 1, 1943, eldest child of Clyde Elbert and Helen Ethel Carpenter. Married Glenda Jean Wilson on November 26, 1964.

Education: fttended grade s.hool and high school in Grand Junction, Colorado; graduated Valedictorian from Central High School, Grand Junction, Colorado in May, 1961; received Batchelor of Arts degree from Friend- University in Wichita, Kansas in May, 1965; completed requirements for Master of Science degree in May, 1970.

Professional Experiance: Laboratory Assistant in Department of Chemistry, Friends University, 1963; Honor Assistant in Department of Physics, Friends University, 1964 ; teaching assistant in Physics Department, Oklahoma State University, 1965; Research Assistar.t for Research Foundation of Oklahoma State University, 1966-1967; Instructor in Department of Physics, Olivet Nazarene College, 1967-1969; Director of the Computer Laboratory, 01*•et Nazarene College, 1968-1969, Member of Sigma Pi Sigma, Oklahoma State University; Member of American Association of Physics Teachers.

[^0]: Comments on the Following Methods for Temperature
 Evaluation in This Project

