General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

Report No. R-826
January 1970

STUDY OF INCOMPLETE MODELS

OF DYNAMIC STRUCTURES

Contract No.: NAS5-21007

Prepared by

Kaman Aerospace Corporation Bloomfield, Connecticut
for

Goddard Space Flight Center Greenbelt, Maryland

STUDY OF INCOMPLETE MODELS

OF DYNAMIC STRUCTURES

Contract No.: NAS5-21007

Goddard Space Flight Center Contracting Officer: P. Videnieks Technical Officer: J. P. Young

Prepared by

Kaman Aerospace Corporation Bloomfield, Connecticut

Principal Investigators: Alex Berman W. G. Flannelly
for.

Goddard Space Flight Center Greenbelt, Maryland

SUMMARY

This report presents the theoretical development and a qualitative evaluation of a new concept in the mathematical modeling of dynamic structures. The method has several unique features. It uses both test data and analytical approximations to identify the parameters of what is termed an "incomplete model". The technique makes one of the first substantial applications of the matrix pseudo inverse to structural dynamics. The "incomplete model" itself is unusual in that, while the mass matrix and damping coefficient are physically meaningful, the stiffness matrix is, in a sense, not physically related to the true (but unknown) values. The model does, however, have the capability of predicting the response of the points of interest on the structure over the frequency range of interest and can be used to predict the changes in natural frequencies and normal modes due to structural changes. It is the ability to correctly predict the effects of structural changes which have been tested in the work presented in this report.

The theory was tested by running simulated tests on a relatively simple structure, identifying the parameters of the incomplete model, and using this model to predict
the effects on frequency and mode shapes of several mass and stiffness changes. The conditions of the tests were varied by selecting different numbers of points of measurement, varying the frequency range, and by including assumed measurement error. Several analytical approximations were used to formulate the incomplete model.

Based on the qualitative evaluation made, the following conclusions are indicated.

1. The method presented appears to be an excellent tool for the prediction of changes in normal modes and natural frequencies due to structural changes.
2. The predicted effects are quite insensitive to reasonable variations in the analytical mass distribution.
3. The procedure is relatively insensitive to measurement error.
4. Attempts to make the model more complete by using a greater frequency range for testing will not always be successful unless the number of points of measurement are also increased or off-diagonal masses are added. There is a point in frequency beyond which the model will tend to deteriorate.

Because of the success of this preliminary evaluation, it is recommended that the theoretical development be continued and that applications to more complex structures be carried out in order to develop a better understanding of the limitations and capabilities of the method. A successful, more definitive evaluation, could lead to immediate practical applications.

TABLE OF CONTENTS

PAGE
SUMMARY ii
TABLE OF CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES viii
INTRODUCTION 1
I. DESCRIPTION OF THE PROBLEM 5
II. BASIC RELATIONSHIPS. 7
III. THE INCOMPLETE MODEI 14
IV. IDENTIFICATION OF THE MASS MATRIX 18
V. MASS CHANGES 25
VI. STIFFNESS CHANGES 27
VII. IDENTIFICATION OF DAMPING COEFFICIENT. 30
VIII. DESCRIPTION OF COMPUTER PROGRAM. 32
IX. THE SIMULATED TESTS 37
X. THE IDENTIFIED MASSES 43
XI. THE EFFECTS OF MASS CHANGES 48
XII. THE EFFECTS OF STIFFNESS CHANGES 57
XIII. THE IDENTIFIED DAMPING COEFFICIENTS 65
XIV. CONCLUSIONS 67
NEW TECHNOLOGY 69

TABLE OF CONTENTS (Continued)

PAGE
BIBLIOGRAPHY 70
GLOSSARY OF SYMBOLS 72APPENDIX I - PRINCIPAL IDEMPOTENTSAPPENDIX II - PSEUDO INVERSESAPPENDIX III - PROGRAM LISTING AND SAMPLECOMPUTATION

LIS'T OF FIGURES

FIGURE PAGE
1 Logic Diagram of Computer Program. 33
2 Schematic Representation of the Simulated Test Specimens 39
3 Exact Normal Modes of Test Specimens 40
4 a Computed Mode Changes Due to Mass Change First. Mode, Specimen I, Change B 53
4b Computed Mode Changes Due to Mass Change Second Mode, Specimen I, Change 54
4c Computed Mode Changes Due to Mass Change Third Mode, Specimen I, Change B 55
4d Computed Mode Changes Due to Mass Change Third Mode, Specimen II, Change B. 56
$5 a$ Computed Mode Changes Due to Stiffness
Change First Mode, Specimen I, Change L 61
5b Computed Mode Changes Due to Stiffness
Change Second Mode, Specimen I, Change I 62
5c Computed Mode Changes Due to Stiffness Change Third Mode, Specimen I, Change L 63
6 Stiffness Changes 64

LIS": OF TABLES

TABLE PAGE
I APPROXIMATE MASS DISTRIBUTIONS 41
II DESCRIPTION OF SIMULATED TESTS. 42
III IDENTIFIED MASSES 44
IV COMPLTED FREQUENCIES DUE TO MASS CHANGE 49
V(a) COMPUTED FREQUENCIES DUE TO STIFFNESS CHANGE. 59
V(b) COMPUTED FREQUENCIES DUE TO STIFFNESS CHANGE 'M' 60
VI IDENTIFIED GENERALIZED MASSES AND DAMPING COEFFICIENTS. 66

The need for mathematical models of aerospace structures is obvious. No attempt to determine a structure's suitability for its intended mission could be made without a means of predicting its response to the expected loads. No ra:ional means of improvement or optimization would be available without some ability to predict the effects of structural changes on the response of the structure.

Puroly analytical modeling is necessary in the preliminazy design stage of any structure. The evaluation of alternative basic designs, the selection of materials, the arrangement of components are some of the probiems which must be solved prior to construction of a test specimen. The science of structural analysis has progressed to the point where sיch problems may be treated with reasonable confidence.

Prior to usage, any critical structure must be submitted to actual testing, since the analysis, after all, is only based on a hypothetical model of the system. An analytical model is as important at this stage as it was in the preliminary design. The actual mission force environment cannot economically be duplicated in test and the effects of possible changes cannot all be tested.

It would be reassuring if the results of dynamic testing could be used to give an analytical model of the actual structure. To date, however, there is no generally accepted method applicable to the dynamics of structures. In addition, it appears that the unique identification of an analytical model from test data alone must be limited to rather special conditions.

The number of degrees of freedom of a linear model of a dynamic system is equal to the number of independent spatial coordinates and also to the number of normal modes of the system. The response of any point on the structure is the superposition of the responses of each of the normal modes at that point. It is recognized that in linear systems, measurable excitation of each normal mode is only achieved by forces having frequencies near or above the naturai frequency of the normal mode in question. Thus, in order that test data contain the information necessary for the unique identification of a linear model having a specified number of degrees of freedom, it is necessary that the applied forces must have had significant components at frequencies up through the same number of natural frequencies. Data obtained from smaller ranges of frequencies of excitation would not contain sufficient significant information for such a unique identification.

There are conditions where it is possible to perform a unique identification. One is where the number of points of interest on the structure is small and it is feasible to excite the structure over the appropriate frequency range. Such a situation is treated in Reference 1. Another condition is where the major portion of the motions are due to rigid body responses and there is in effect only six physical degrees of freedom. This is the primary area of past applications of identification techniques to such problems as determining aerodynamic stability derivatives.

The problem considered in this report is concerned with what is probably the more common situation when the application is made to elastic structures. It is taken to be impossible, uneconomical, or generally undesirable to excite the structure and measure responses over a sufficiently wide frequency range so as to provide the information necessary for the identification of a unique linear analytical model.

In this report, the concept of an "incomplete model" is developed. This is an analytical model which has fewer normal modes than coordinates and is valid only over a limited frequency range. It is shown how the parameters may be determined using test data together with analytical approximations. The attributes of the model are discussed
and certain of these are tested using computer simulated test data. It is shown that it is possible to determine a rational mass matrix and structural damping coefficient and that it is possible to use the incomplete model to predict the changes in frequencies and normal modes due to mass and stiffness changes. It is further shown that the procedures are relatively insensitive to measurement error.

This research project has demonstrated a new and useful analytical tool. It is suggested that further development of the theory and methods of application would result in procedures which will lead to better understanding of structures and increased capability to improve and optimize the design of aerospace vehicles.

I. DESCRIPTION OF THE PROBLEM

An aspect of the following problem is considered in this report. Consider a structure which is to be subjected to dynamic testing. There are certain deflections and rotations of points on the structure which are of interest. It is desired to be able to predict each of these motions under various loading conditions for the structure actually tested and for modified versions of the structure.

It is assumed that an analytical model consisting of P lumped masses interconnected by linear springs with scalar structural damping will be adequate to represent the deformation of the structure under consideration (the more general mass matrix with off-diagonal terms is not excluded). The motion of each of the P masses is considered to represent the motion of P points on the structure including the points of interest. It is also assumed that the loading conditions of interest will contain primarily force components at frequencies below some finite value including less than P natural frequencies of the model. It is required that the analytical model faithfully represent the dynamics of the "points of interest" over the "frequency range of interest". It is further required that the model have the capability of predicting the
changes in response due to structural changes including mass, stiffness and support changes.

The work reported here is limited in scope as follows. The analysis assumes knowledge of the normal mode shapes at each of P points and natural frequencies of the structure through the frequency range of interest (Knowledge of the modal masses is not required). It is considered that this data has been obtained from testing. The P points are distributed over the structure so as to represent the characteristics of the measured modes and include all the points of interest. In the rest of this report, all these points will be considered to be the "points of interest".

In the computer experiments described below, the dissipative component of the resonant response was taken as a good appinximation to the normal mode. However, other more sophisticated procedures such as those given in Reierences 1 or 2 might be justified, for example, if the resonances were not well separated. In addition, it is assumed that a "reasonable" analytical model of the mass matrix of the structure has been derived through analytical or intuitive means. Using these assumed data, a procedure is developed for identifying the parameters in the equations of motion such that the model has the capability of predicting the effects of changes in mass and stiffness on natural frequencies and modes.

II. BASIC RELATIONSHIPS

The material presented in this section is not new but is derived here in the form in which it will be referenced in following sections of this report. Definitions of all the symbols used are summarized in the Glossary of Symbols.

The matrix equation of the spring-mass-structural damping model discussed in the previous section may be written (see, for example, Reference 3)

$$
\begin{equation*}
M \ddot{y}(t)+(1+i g) K y(t)=f(t) \tag{1}
\end{equation*}
$$

Ÿ, y, f are column matrices (vectors) representing the acceleration, displacement (or slope), applied force (or moment) as a function of time at each of the P points of interest. M and K are PxP symmetric matrices representing the mass and stiffness coefficients of the model. i is $\sqrt{-1}$ and g is the structural damping coefficient. The imaginary term is used here to indicate that the damping is in phase with the velocity but proportional to the displacement. Under steady state sinusoidal oscillation at a frequency, ω, the equation becomes

$$
\begin{equation*}
\left\{-\omega^{2} M+(1+i g) K\right\} y=f \tag{2}
\end{equation*}
$$

where f may be thought of as the amplitude of the applied forces and y as the amplitude of the displacements. y will, in general, be complex because of the phase between the force and displacement.

Writing this equation in terms of velocity $(\dot{y}=i \omega y)$

$$
\begin{equation*}
\left\{\frac{g_{\omega}}{\omega}+i\left(\omega M-\frac{1}{\omega} K\right)\right\} \dot{Y}=f \tag{3}
\end{equation*}
$$

the (velocity) impedance matrix is given by

$$
\begin{equation*}
Z=\frac{g^{\omega}}{\omega}+i\left(\omega M-\frac{1}{\omega} K\right) \tag{4}
\end{equation*}
$$

and the mobility matrix by

$$
\begin{equation*}
\mathbf{Y}=z^{-1}=\left\{\frac{g_{2}}{\omega} K+i\left(\omega M-\frac{1}{\omega} K\right)\right\}^{-1} \tag{5}
\end{equation*}
$$

It is interesting to note that the quantity directly obtained through analysis is the impedance, Z, while the quantity measured in testing is the mobility, Y.

Consider now, the eigenvalue problem corresponding to Equation (2).

$$
\begin{equation*}
\left\{K-\Omega_{i}^{2} M\right\} \phi_{i}=0 \quad i=1,2, \ldots P \tag{6}
\end{equation*}
$$

where Ω_{i} are the natural frequencies and ϕ_{i} are the normal modes of the system. This equation may be written in two ways:

$$
\begin{equation*}
M^{-1} K \phi_{i}=\Omega_{i}^{2} \phi_{i} \quad i=1,2, \ldots p \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{CM} \phi_{i}=\frac{1}{\Omega_{i}^{2} \phi_{i}} \quad 1=1,2, \ldots P \tag{8}
\end{equation*}
$$

where C, the influence coefficient matrix, equals K^{-1}. The orthogonality relationship is given by

$$
\begin{align*}
\phi_{i}^{T} M_{j} & =0 & & j \neq i \tag{9}\\
& =m_{i} & & j=i
\end{align*}
$$

It is important to note that the normal modes (eigenvectors) of $M^{-1} K$ and its inverse, $C M$, are the same and that the respective eigenvalues are reciprocals. The dominant mode of $M^{-1} K$ is the one having the highest frequency and the dominant mode of CM is the one having the lowest frequency.

It is convenient to write (7), (8), (9) using the Φ matrix where

$$
\Phi=\left[\begin{array}{llll}
\phi_{1} & \phi_{2} & \cdots \phi_{\mathrm{p}} \tag{10}
\end{array}\right]
$$

is a square PxP matrix. Then

$$
\begin{align*}
& M^{-1} K \Phi=\Phi\left[\Omega_{i}^{2}\right] \tag{11}\\
& C M \Phi=\Phi\left[\frac{1}{\Omega_{i}^{2}}\right] \tag{12}
\end{align*}
$$

and

$$
\begin{equation*}
\Phi^{T} M \Phi=m_{i} J \tag{1.3}
\end{equation*}
$$

From each of the above three equations, one can write

$$
\begin{aligned}
& K=M \Phi\left[\Omega_{i}^{2} j \Phi^{-1}\right. \\
& C=\Phi\left[\frac{1}{\Omega_{i}^{2}}\right] \Phi^{-1} M^{-1}
\end{aligned}
$$

and

$$
\Phi^{-1}=\left[\frac{1}{m_{i}}\right] \Phi^{T} M
$$

Substituting the third equation into the first two

$$
\begin{align*}
K & =M \Phi\left[\frac{\Omega_{i}^{2}}{m_{i}}\right] \Phi^{T} M \tag{14}\\
C & =\Phi\left[\frac{1}{\Omega_{i}^{2} m_{i}}\right] \Phi^{T} \tag{15}
\end{align*}
$$

These two equations may be written in the equivalent form

$$
\begin{align*}
& K=\sum_{i=1}^{p} \frac{\Omega_{i}^{2}}{m_{i}} M_{i} \phi_{i}^{T M} \tag{16}\\
& C=\sum_{i=1}^{p} \frac{1}{\Omega_{i}^{2} m_{i}} \phi_{i} \phi_{i}^{T} \tag{17}
\end{align*}
$$

In connection with the discussion in Section VI, these may be written in terms of principal idempotents (See Appendix
I) as follows

$$
\begin{equation*}
M^{-1} K=\sum_{i=1}^{p} \Omega_{i}^{2}\left(\frac{1}{m_{i}} \phi_{i} \phi_{i}^{T} M\right) \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
C M=\sum_{i=1}^{p} \frac{1}{\Omega_{i}^{2}}\left(\frac{1}{m_{i}} \phi_{i} \phi_{i}^{T} M\right) \tag{19}
\end{equation*}
$$

Note that the product $\phi_{i} \phi_{i}^{T}$ appearing in Equations (16) - (19) are square matrices of order P but rank 1 . When P of the matrices of this type are summed as indicated, there result PxP matrices of rank P which are thus nonsingular.

The impedances and the mobility may also be expressed in terms of the normal modes. Write Equation (4) as

$$
z=\frac{1}{\omega}(g-i) K+i \omega M
$$

Use Equation (14) for K and factor M out on both sides and the equation becomes

$$
z=M\left\{\frac{1}{\omega}(g-i) \Phi\left[\frac{\Omega_{i}^{2}}{m_{i}}\right] \Phi^{T}+i \omega M^{-1}\right\} M
$$

From (13), one can write

$$
M=\Phi^{-T}\left[m_{i}\right] \Phi^{-1}
$$

or

$$
M^{-1}=\Phi\left[\frac{1}{m_{i}}\right] \phi^{T}
$$

Substituting into the above equation for z and factoring the ϕ and ϕ^{T} matrices, there results

$$
z=M \phi\left[\frac{1}{\omega}(g-i)\left[\frac{\Omega_{i}^{2}}{m_{i}}\right]+i\left[\frac{1}{m_{i}}\right]\right) \phi^{T} M
$$

or

$$
\begin{equation*}
Z=\frac{1}{\omega} M \Phi\left[\frac{g_{1}^{2}+i\left(\omega^{2}-\Omega_{i)}^{2}\right.}{m_{i}}\right] \Phi^{T} M \tag{20}
\end{equation*}
$$

and in summation form

$$
\begin{equation*}
z=\frac{1}{\omega} \sum_{i=1}^{p} \frac{\Omega_{i}^{2}\left\{g+i\left\{\left(\frac{\omega}{\Omega_{i}}\right)^{2}-1\right\}\right\}}{m_{i}} M \phi_{i} \phi_{i}^{T} \tag{21}
\end{equation*}
$$

The mobility can be written as the inverse of the impedance, from Equation (20):

$$
\begin{aligned}
Y=z^{-1} & =\omega\left\{M \Phi\left[\frac{g \Omega_{i}^{2}+i\left(\omega^{2}-\Omega_{i}^{2}\right.}{m_{i}}\right] \Phi^{T} M\right\}^{-1} \\
& =\omega\left(\Phi^{T} M\right)^{-1}\left[\frac{m_{i}}{g \Omega_{i}^{2}+i\left(\omega^{2}-\Omega_{i}^{2}\right)}\right](M \Phi)^{-1}
\end{aligned}
$$

but from (13)

$$
\left(\Phi^{T} M\right)^{-1}=\left\{\left[m_{i} J \Phi^{-1}\right\}^{-1}=\Phi\left\lceil\frac{1}{m_{i}}\right\rfloor\right.
$$

and

$$
(M \Phi)^{-1}=\left\{\Phi^{-T}\left[m_{i} J\right\}^{-1}=P \frac{1}{m_{i}} ل^{T}\right.
$$

then

$$
\begin{equation*}
Y=\omega \Phi\left[\frac{1}{m_{i}\left[g \Omega_{1}^{2}+i\left(\omega^{2}-\Omega_{i}^{2}\right)\right]}\right] \Phi^{T} \tag{22}
\end{equation*}
$$

or in sumation form
or

$$
\begin{equation*}
Y=\omega \sum_{i=1}^{p} \frac{q-i\left[\left(\frac{\omega}{\Omega_{i}}\right)^{2}-1\right]}{\left(\left(\frac{\omega}{R_{i}}\right)^{2}-1\right]^{2}+g^{2}} \frac{1}{\Omega_{i}^{2} m_{i}} \phi_{i} \phi_{i}^{T} \tag{23}
\end{equation*}
$$

The structure under considerat :on is represented analytically by g, M, K (see Equation (1)). Consider, for the time being, that g, M are known. It was seen that K and its inverse, C, could each be written as a sum of matrices containing the eigenvectors (Equations (16), (17)).

$$
\begin{align*}
& K=\sum_{i=1}^{p} \frac{\Omega_{i}^{2}}{m_{i}} M \phi_{i} \phi_{i}^{T_{M}} \tag{24}\\
& C=K^{-1}=\sum_{i=1}^{p} \frac{1}{\Omega_{i}^{2} m_{i}} \phi_{i} \phi_{i}^{T} \tag{25}
\end{align*}
$$

and the impedance and mobility could be written in similar forms (Equations (21), (23))

$$
\begin{align*}
& z=\frac{1}{\omega} \sum_{i=1}^{p} \frac{\Omega_{i}^{2}}{m_{i}}\left\{G \cdot i\left[\left(\frac{\omega}{\Omega_{i}}\right)^{2}-1\right]\right\} M_{i} \phi_{i}^{T} \tag{26}\\
& Y=z^{-1}=\omega \sum_{i=1}^{p} \frac{1}{\Omega_{i}^{2} m_{i}} \frac{g-i\left[{ }^{\left(\frac{\omega}{\Omega_{i}}\right)^{2}}-\frac{1}{\left(\frac{\omega}{\Omega_{i}}\right)^{2}-1}\right]^{2}+g^{2} \phi_{i} \phi_{i}^{T}}{l} \tag{27}
\end{align*}
$$

All the square matrices (K, C, Z, Y, M) are of order P, the number of degrees of freedom, and the ϕ vectors have P elements. The square matrices $\phi_{i} \phi_{i}^{T}$ are each PxP but
are of rank 1 and are thus individually singular. Since the ϕ_{i} 's are linearly independent, a linear combination of P of these simple products will be of rank P and thus the summations will be nonsingular (See Reference 4, p.6).

If g, M and all the normal modes of the system were known, the behavior of the system could be predicted by forming the complete equations of motion. The question posed is this: If incomplete information is available, i.e. only the first N normal modes, is it possible to qenerate a mathematical model that will give useful information about the behavior of the system and modifications of it?

The following postulate is advanced: The $\mathrm{K}, \mathrm{C}, \mathrm{Z}, \mathrm{Y}$ matrices obtained by using less than P terms can be used to predict the behavior of the structure and certain modifications of it. Part of the purpose of this report is to test aspects of the above postulate. The analytical model described by the incomplete sumations will be called an incomplete model. These matrices will be written

$$
\begin{align*}
& K_{i n c}=\sum_{i=1}^{N} \frac{\Omega_{i}^{2}}{m_{i}} M \phi_{i} \phi_{i}^{T M} \tag{28}\\
& C_{i n c}=\sum_{i=1}^{N} \frac{1}{\Omega_{i}^{2} m_{i}} \phi_{i} \phi_{i}^{T} \tag{29}
\end{align*}
$$

$$
\begin{align*}
& z_{i n c}=\frac{1}{\omega} \sum_{i=1}^{N} \frac{\Omega_{i}^{2}}{m_{i}}\left\{g+i\left[\left(\frac{\omega}{\Omega_{i}}\right)^{2}-1\right]\right\} M \phi_{i} \phi_{i}^{T M} \tag{30}\\
& Y_{i n c}=\omega \sum_{i=1}^{N} \frac{1}{\Omega_{i}^{2} m_{i}} \frac{\left.g-i\left(\frac{\omega}{\left(\frac{\omega}{\Omega_{i}}\right)^{2}}\right)^{2}-1\right]}{2}+g^{2} \phi_{i} \phi_{i}^{T} \tag{31}
\end{align*}
$$

Certain characteristics of the incomplete model are apparent:
(1) Since the terms containing the higher values of Ω_{i} are not included, the dominant terms of K and Z will be missing and thus $K_{\text {inc }}$ and $Z_{\text {inc }}$ will not resemble the true K and z matrices.
(2) Conversely, the dominant terms of C and Y are included in $C_{i n c}$ and $Y_{i n c}$. These are the matrices which represent the responses due to applied forces and for the model to have validity, it is necessary that they approach the true values for $\omega<\Omega_{N}$.
(3) The four matrices are of order P (and represent the P points of interest) but are of rank N. Thus, they are all singular and they must be all formed separately and not by inversion.
(4) The eigenvalue equation from (28) or (29) can be seen to be

$$
\begin{array}{rlrl}
M^{-1} K_{i n c} \phi_{j}= & \sum_{i=1^{N}}^{N} \frac{\Omega_{i}^{2}}{m_{i}} \phi_{i} \phi_{i}^{T} M \phi_{j} & =\Omega_{j}^{2} \phi_{j} & \\
& =0 & =1,2, \ldots N \\
& =0 & j>N
\end{array}
$$

and similarly for $C M$. Thus it may be said that the incomplete model contains only the first N modes of the corresponding complete model.

IV. IDENTIFICATION OF THE MASS MATRIX

The previous discussion has assumed knowledge of the normal modes. It is apparent that knowledge of the mass matrix is also required. Before proceeding further with the discussion of the incomplete model, a method will be described for identifying the mass matrix. As above, it is assumed that the first N natural frequencies and normal modes have been determined through testing. Each of these modes contains P elements representing the relative motion of all the points of interest.

The normal modes are orthogonal with respect to the mass as given in Equation (9).

$$
\begin{equation*}
\phi_{i}^{T} M_{j}=0 \quad j \neq i \tag{32}
\end{equation*}
$$

Writing out the indicated multiplications in terms of the individual elements, this equation becomes
$\sum_{k=1}^{p} \phi_{k i} \phi_{k j} m_{k k}+\sum_{k=1}^{p-1} \sum_{n=k+1}^{p}\left(\phi_{k i} \phi_{n j}+\phi_{n i} \phi_{k j}\right) m_{k n}=0$

$$
\begin{align*}
& \mathbf{i}=1,2 \ldots \mathrm{~N}-1 \tag{33}\\
& \mathbf{j}=\mathbf{i}+1 \ldots \mathrm{~N}
\end{align*}
$$

where $\phi_{k i}$ indicates the $k t h$ element of ϕ_{i} and $m_{k n}$ is an element of the M matrix. The mass matrix has been assumed symmetrical but not necessarily diagonal. Equation (33) is,
in reality, $N(N-1) / 2$ linear equations having the mass elements as unknowns with products of the elements of the known normal modes as coefficients.

It is possible that certain mass elements may be known to be zero or to have some definite value. If they are to be zero, the corresponding terms are dropped.from the equation. If they are to be restricted to a particular value, the corresponding terms are placed on the right-hand side of the equation.

In addition, if any of the generalized modal masses, m_{i}, are known, Equation (9) for $j=i$ can be used.

$$
\begin{equation*}
\phi_{i}^{T} M \phi_{i}=m_{i} \tag{34}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{k=1}^{p} \phi_{k i}{ }^{2}{ }^{\mathrm{m} k k}+\underset{k=1}{2 \sum_{n=k+1}-1} \sum_{k i}^{p} \phi_{n i} m_{k n}=m_{i} \tag{35}
\end{equation*}
$$

There is another possible known condition. The total of the diagonal elements may be considered to be known (the total mass of the structure, for example). This leads to the equation

$$
\begin{equation*}
\sum_{k=1}^{p} m_{k k}=m_{T} \tag{36}
\end{equation*}
$$

Equations (33), (35) and (36) may be written as

$$
\begin{equation*}
A \bar{m}=R \tag{37}
\end{equation*}
$$

where \bar{m} is a column matrix made up of the unknown elements of M, A is a matrix formed by the coefficients of these unknowns from Equation (33), and, if used, from (35) and (36). R is a column matrix made up of the right-hand side termss corresponding to known masses, if any, known generaljzed masses, if any, and possibly the known total mass.

There are, then, at least, $N(N-1) / 2$ equations and possibly as many as $N(N+1) / 2+1$ if all the possible equations are used. A typical situation would use Equations (33) and (36) resulting in $N(N-1) / 2+1$ equations. If none of the mass elements are considered to be known (other than zero), there are at least P unknown diagonal masses and as many as $P(P+1) / 2$ if the matrix is taken to be completely filled. In many situations, it will be desired to obtain a purely diagonal mass matrix. In a typical situation, there will be, say, $N(N-1) / 2+1$ equations in P unknowns.

When the number of equations is less than the number of unknowns, there are an infinite number of solutions. When the reverse is true, there will ordinarily be no solution.

This treatment will be limited to the first situation where there are an infinite number of solutions to the equations. This is not a severe restriction since the class of problems considered includes a relatively large number of points of interest and a relatively small number of known normal modes. If these were nearly equal, it may have been possible with a small amount of additional testing to have completed the information requirements for other techniques (Reference 1). A typical situation might include 4 normal modes plus the total mass giving 7 equations and thus requiring more than seven unknown masses. Similarly 6 normal modes would give 16 equations and 10 normal modes would give 46 equations. As more normal modes become known for the same number of points of interest, it may be necessary to introduce offdiagonal masses as unknowns.

Return to the consideration of Equation (37) where A is an $n_{e} x n_{v}$ matrix (n_{e} being the number of equations and n_{v} the number of variables) and $n_{e}<n_{v}, \bar{m}$ is $n_{v} \times l$ and R is $n_{e} \times 1$. The equations have an infinite number of solutions, that is, there are an infinite number of mass distributions which will cause the modes to be orthogonal. In fact, it is quite possible for there to be an infinite number of
mass distributions which will also give the same generalized masses, m_{i}, and thus result in the same $C_{i n c}$ and $Y_{\text {inc }}$ (see Equations (29),(31)). In other words, it is quite possihle that different valid mass distributions used with the measured normal modes will predict identical responses of the system to sinusoidal forcing.

If, however, it is desired to use the model for making predictions under other conditions, especially to predict the effects of changes in parameters, then it is apparent that the masses used in the model should be as near to the "true" values as possible. The best information available as to what the "true" values are, is the approximation arrived at by the analyst. These analytical values will not, in general, satisfy the orthogonality condition of the normal modes, i.e. Equation (37).

The pseudo-inverse (see Appendix II) is an elegant mathematical tool which can be used to obtain the solution to Equation (37) which is the closest (in a least squares sense) to any specified analytical approximation. Another way of saying this is that the smallest possible changes in the approximation can be found so as to satisfy the conditions of orthogonality.

Define a column matrix, m_{A}, which is the approximation to \bar{m} and subtract $A m_{A}$ from both sides of (37) giving

$$
\begin{equation*}
A\left(\bar{m}-m_{A}\right)=R-A m_{A} \tag{38}
\end{equation*}
$$

At this point, a weighting function is introduced in the form of a diagonal matrix, W. Each element is a measure of the analysists confidence in the corresponding approximation. The result will be that masses having higher values of weighting functions will tend to vary least. Inserting the identity $\mathrm{W}^{-1} \mathrm{~W}$ into the above equation results in

$$
\begin{equation*}
\left(A W^{-1}\right)\left\{W\left(\bar{m}-m_{A}\right)\right\}=R-A m_{A} \tag{39}
\end{equation*}
$$

Defining $\left(A W^{-1}\right)^{+}$as the pseudo-inverse of $A W^{-1}$, the solution given by

$$
\begin{equation*}
W\left(\bar{m}-m_{A}\right)=\left(A W^{-1}\right)^{+}\left\{R-A m_{A}\right\} \tag{40}
\end{equation*}
$$

is the one of the infinite number possible having the smallest weighted sum of squares of the differences of \bar{m} and m_{A}. Using ordinary matrix algebra Irom this point, there results

$$
\begin{aligned}
& \bar{m}-m_{A}=W^{-1}\left(A W^{-1}\right)^{+}\left\{R-A m_{A}\right\} \\
& \bar{m}=W^{-1}\left(A W^{-1}\right)^{+} R+\left\{I-W^{-1}\left(A W^{-1}\right)^{+} A\right\}_{A}
\end{aligned}
$$

It is shown in Appendix II that

$$
\left(A W^{-1}\right)^{+}=W^{-1} A^{T}\left\{A\left(W^{-1}\right)^{2} A^{T}\right\}^{-1}
$$

Then defining

$$
\begin{aligned}
& B_{R}=W^{-1}\left(A W^{-1}\right)^{+}=\left(W^{-1}\right)^{2} A^{T}\left\{A\left(W^{-1}\right)^{2} A^{T}\right\}^{-1} \\
& B_{m}=I-B_{R} A
\end{aligned}
$$

the equation for the mass elements is

$$
\begin{equation*}
\bar{m}=B_{R} R+B_{m} m_{A} \tag{41}
\end{equation*}
$$

V. MASS CHANGES

One of the criteria for evaluating the usefulness of an analytical model is its ability to predict the effects of changes. In this section, the use of an incomplet, model to predict the effects of mass changes on the natural frequencies and normal modes is discussed.

The stiffness matrix and the influence coefficient matrix are independent of the mass of the system. The expression derived in terms of the normal modes do contain the mass, however. (See Equations (16), (17)). Thus, it must be concluded that when the mass is changed, the normal modes and frequencies must change in such a way that the sumations remain invariani. In other words
$\left.K=\sum_{i=1}^{p}{\frac{\Omega}{m_{i}}}_{m_{i}}^{M} \phi_{i} \phi_{i}^{T} M=\sum_{i=1}^{p} \frac{\left(\Omega_{i}+\Delta \Omega_{i}\right)^{2}}{\left(m_{i}+\Delta m_{i}\right.}\right)(M+\Delta M)\left(\phi_{i}+\Delta \phi_{i}\right)\left(\phi_{i}^{T}+\Delta \phi_{i}^{T}\right)(M+\Delta M)$
$c=\sum_{i=1}^{p} \frac{1}{\Omega_{i}^{2} m_{i}} \phi_{i} \phi_{i}^{T}=\sum_{i=1}^{p} \frac{1}{\left(\Omega_{i}+\Delta \Omega_{i}\right)^{2}\left(m_{i}+\Delta m_{i}\right)}\left(\phi_{i}+\Delta \phi_{i}\right)\left(\phi_{i}^{T}+\Delta \phi_{i}^{T}\right)$
where the Δ 's indicate the changes due to tia change in mass, ΔM.

While the above expressions must be true when summed over all the modes, they will not be exact for incomplete summations, i.e. for the incomplete model. Of the two (K and C), it is to be expecied that $C_{\text {inc }}$ will be less sensitive to mass changes. The reason is that the dominant terms are included in $C_{i n c}$ and omitted in $K_{\text {inc }}$, thus, $C_{i n c}$ is much closer to the invariant matrix C than $K_{i n c}$ is to the invariant K.

This hypothesis has been tested by calculating the frequencies and modes of a modified system using matrix iteration on $C_{i n c}(M+\Delta M)$. The changes predicted were' in excellent agreement with the true values. These results are given in Section XI.

VI. STIFFNESS CHANGES

The effect of a change in the stiffness matrix cannot be handled as directly as the mass change discussed in the previous section. Both the K and C matrices must change When the stiffness is changed. Since the dominant terms of K are missing in $K_{\text {inc }}$ it does not appear to be reasonable to hypothesize that $(K+\Delta K)_{i n c}=K_{i n c}+\Delta K$ since even small ΔK^{\prime} s can easily be greater by orders of magnitude than the elements of $\mathrm{K}_{\text {inc }}$.

As discussud in Appendix I (and also derived previously, Equation (16)), it is possible to write K in the following form

$$
\begin{equation*}
K=\sum_{i=1}^{p} \frac{\Omega_{i}^{2}}{m_{i}} M \phi_{i} \phi_{i}^{T} M \tag{44}
\end{equation*}
$$

if and only if the ϕ_{i} 's are eigenvectors of $M^{-1} K$. Otherwise there must be coupling terlus of the form $a_{i j} M_{i} \phi_{j}^{T} M^{M}$. Thus, if $K+\Delta K$ is expressed in terms of the eigenvectors of $M^{-1} K$, the equation must be of the form

$$
\begin{equation*}
K+\Delta K=\sum_{i=1}^{p} \sum_{j=1}^{p} a_{i j}{ }^{M} \phi_{i} \phi_{j}^{T} M \tag{45}
\end{equation*}
$$

Now, pre- and post-multiply this equation by ϕ_{k}^{T}, ϕ_{n}

$$
\begin{equation*}
\phi_{k}^{T}(K+\Delta K) \phi_{n}=\sum_{i=1}^{p} \sum_{j=1}^{p} a_{i j}\left(\phi_{k}^{T} M \phi_{i}\right)\left(\phi_{j}^{T} M \phi_{n}\right)=a_{k n} m_{k} m_{n}(\tag{46}
\end{equation*}
$$

because of the orthogonality of the $\phi^{\prime} s$. And since $K \phi_{n}$ $=\Omega_{n}^{2} M_{n}$

$$
\phi_{k}^{T}(K+\Delta K) \phi_{n} \equiv \phi_{k}^{T} K \phi_{n}+\phi_{k}^{T} \Delta K \phi_{n} \equiv \Omega_{n}^{2} \phi_{k}^{T} M \phi_{n}+\phi_{k}^{T} \Delta K \phi_{n}=a_{k n} m_{k} m_{n}
$$

or
$a_{i j}=\frac{\Omega_{j}^{2} \phi_{i}^{T} \phi_{j}+\phi_{i}^{T} \Delta K \phi_{j}}{m_{i} m_{j}}=\frac{\Omega_{i}^{2}}{m_{i}}+\frac{\phi_{i}^{T} \Delta K \phi_{i}}{m_{i}^{2}} \quad j=i$

$$
\begin{equation*}
=\quad \frac{\phi_{i \Delta K^{\prime}}^{T}}{m_{i} m_{j}} \quad j \neq i \tag{47}
\end{equation*}
$$

Thus, substituting into (45), the expression for $K+\Delta K$ can be written

$$
\begin{equation*}
K+\Delta K=\sum_{i=1}^{p} \frac{\Omega_{i}^{2}}{m_{i}} M \phi_{i} \phi_{i}^{T} M+\sum_{i=1}^{p} \sum_{j=1}^{p}\left(\frac{\phi_{i}^{T} \Delta K \phi_{j}}{m_{i} m_{j}}\right) M \phi_{i} \phi_{j}^{T} M \tag{48}
\end{equation*}
$$

This expression when summed over all P modes is exact. Note that the first summation is equal to K.

Now, truncating the series at the last known mode, the expression can be written

$$
\begin{equation*}
(K+\Delta K)_{i n c}=K_{i n c}+\sum_{i=1}^{N} \sum_{j=1}^{N} \frac{\phi_{i}^{T} \Delta K \phi_{j}}{m_{i} m_{j}} M \phi_{i} \phi_{j}^{T} M \tag{49}
\end{equation*}
$$

This expression can now be evaluated and it is hypothesized that $M^{-1}(K+\Delta K)_{i n c}$ can be used to obtain good approximations to the new natural frequencies and normal modes. This hypothesis has been tested and the results given later appear quite satisfactory.

VII. IDENTIFICATION OF DAMPING COEFFICIENT

If the identified model is required to predict responses, in addition to predicting the effects of changes on the natural frequencies, it is necessary to identify the damping coefficient. The responses to sinusoidal loading is, in effect, the mobility (See Equation (23)). The real component of the velocity response at the driving point is given by:

$$
\begin{equation*}
\dot{y}_{R}=\omega \sum_{i=1}^{p} \frac{g}{\left.\left[\frac{\omega}{\Omega_{i}}\right)^{2}-1\right]^{2}+g^{2}} \frac{1}{\Omega_{i}^{2} m_{i}} \tag{50}
\end{equation*}
$$

where the modes are normalized at this point. When the modes are reasonably well separated, \dot{y}_{R} at a resonance is nearly completely dependent on the term due to the one mode. Thus

$$
\begin{equation*}
\dot{y}_{R}\left(\Omega_{i}\right)=\frac{1}{g \Omega_{i} m_{i}} \tag{51}
\end{equation*}
$$

can be used to compute g when $\dot{y}_{R}\left(\Omega_{k}\right)$ has been measured.

If the modes are not separated, it is possible to use the incomplete version of (50) which also contains only the one unknown, g.

$$
\begin{equation*}
\dot{Y}_{R}\left(\Omega_{j}\right)=\Omega_{j} \sum_{i=1}^{N} \frac{g}{\left[\left(\frac{\Omega_{j}}{\Omega_{i}}\right)^{2}-1\right]^{2}+g^{2}} \frac{1}{\Omega_{i}^{2} m_{i}} \tag{52}
\end{equation*}
$$

Using this procedure, g's may be obtained at each resonance. Experiments discussed in following sections have shown fine consistency among these values and good agreement with the exact value.

Having obtained g and knowing the mass matrix, the natural frequencies, Ω_{i}, and the normal modes, ϕ_{i}, for $i=1, N$ the dominant portion of the mobility matrix may be constructed at any frequency up to the vicinity of the $N^{\text {th }}$ natural frequency. It is expected that this information allows the prediction of steady-state responses although this has not specifically been tested in the work reported in this report.

VIII. DESCRIPTION OF COMPUTER PROGRAM

In order to subject some of the hypotheses presented to a qualitative evaluation, a computer program has been developed. The program performs three functions: (1) it simulates a test; (2) it identifies the mass; (3) it finds the modes and frequencies after mass and stiffness changes. The program logic is outlined in Figure 1 and the program listing is given in Appendix III. Below is a general description of the program.

Part I - Simulated Test

In order to simulate a test, the program first accepts a complete description of the "actual system" corsisting of a mass matrix, M, a stiffness matrix, K, (or optionally, an influence coefficient matrix, C) and a scalar damping coefficient, g. The "actual" number of degrees of freedom (the order of the matrices) is limited to 20.

The test to be simulated consists of measurements of the resonant response at P points on the structure due to sinusoidal excitation at one point. Thus, the data required for the simulation of the tests consists of the driving point, the points at which measurements are taken, the frequencies of excitation, and the measurement error.

figure 1. Logic diagram of computer pragram.

The frequencies of excitation, which should be the N resonant frequencies, are assumed to have been computed outside this program. The measurement orror is taken to be a fixed bias error plus a uniform random distribution, each expressed as a percentage of the exact measurement. The procedure, then, is as follows: (1) calculot= che impedance, $\frac{g}{\omega} K+i\left(\omega M-\frac{1}{\omega} K\right)$, of the "actual" system at each of the N resonant frequencies; (2) invert these complex matrices to obtain the exact mobilities; (3) store the elements corresponding to the P measurement points of the column corresponding to the driving point; (4) apply the specified measurement errors to these values.

This data will be a good simulation of data which would be taken in an actual test. The test data requi.red in the following parts of the program are the normal modes of the system. It is known that a column of the real component of the mobility near resonance will be a good approximation to the normal mode when the natural frequencies are separated. This can be seen from Equation (23). It is this information, then, which is passed on to Part II of the program as the N measured normal modes, each consisting of P points.

As an option to the above procedure, the program will accept as input the normal modes themselves. This procedure would simulate the use of a more sophisticated method of computing them. These modes are then polluted with errors as before, prior to being transferred to Part II of the program.

Part II - Mass Identification

The procedures given in Section IV of this report are carried out numerically. The input consists of any known generalized masses or mass elements and the masses which are to be treated as unknowns. For each unknown mass, an approximation and a weighting function is supplied. In addition, one may specify that the total of the diagonal masses must remain constant. Based on the input, the A matrix is formed as are $A m_{A}$ and W. The solution for the "best:" mass distribution is obtained as given in Equation (41).

At this point, the identified mass matrix is formed, the generalized mass matrix $\left(\Phi^{T} M \Phi\right)$ is computed as are the incomplete stiffness and influence coefficient matrices (Equations (28), (29)). As a check, the resonant response and the natural frequencies and normal modes of the identified incomplete model are computed.

Part III - Mass or Stiffness Changes
There now is sufficient data to compute the changes in frequencies and modes due to mass or stiffness changes. The program will accept changes to either the mass matrix or the stiffness matrix. For mass changes the matrix $M+\Delta M$ is formed, where M is the identified mass matrix. The first N frequencies and modes are obtained by iteration on $C_{i n c}(M+\Delta M)$ as discussed in Section V.

For stiffness changes, $(K+\Delta K)$ inc is formed as given in Equation (37). The N frequencies and modes are computed by iteration from $M^{-1}(K+\Delta K)$ inc.

The program is written so that changes can be made on the identified model in sequence without rerunning the first two parts of the program.

IX. THE SIMULATED TESTS

In order to test the hypotheses presented regarding the characteristics of the incomplete model, it was necessary to select a structure on which to perform the simulated testing. It was decided not to select so simple a system that success would give nc confidence that the methods would work in practice. On the other hand, it was not desirable to make the first tests using such a complex system that one would not have a good intuitive understanding of the system and modifications of it.

As a compromise, a structure was selected whose behavior is quite well understood yet is not so simple as to yield trivial results. The structure selected is a simple, thin, beam of constant EI having 18 lumped masses arranged so as to approximate a uniform mass distribution. The beam is allowed to deflect transversely only. The deflection is constrained at one end and at a point approximately 70 percent of the length of the beam, leaving an overhang of approximately 30 percent. A structural damping ccefficient of . 02 was used.

Most of the simulated testing was performed using this system. This system is designated Specimen I. Some tests were also carried out on a structure identical with the above except that two rotary inertias were added, one at the second support and one at the free tip of the beam. This system is called Specimen II. These beams are illustrated schematically in Figure 2. The natural frequencies and mode shapes of the two beams were computed using a standard computer program. These results are illustrated in Figure 3.

For each of the two specimens, two arrangements of test measurements were selected, referred to as tests A and B. These are also illustrated in Figure 2. In each test, the system was considered to be driven at station 60.

Associated with each specimen and each test is an approximate mass distrikution. For Specimen I, test A, there are three approximate mass distributions (I, II, III). Each of these is somewhat reasonable. Table I lists the various mass approximations used. These are discussed further in Section X.

The simulated tests which were run are summarized aic described in Table II.

SPECIMEN II

Figure 2. Schematic Representation of the Simulated Test Specimens.

Figure 3. Exact Normal Modes of Test Specimens.

TABLE I. APPROXIMATE MASS DISTRIBUTIONS

Sta. In.	True Mass	Specimen I				$\begin{gathered} \text { Test } \\ \mathrm{B} \\ \hline \end{gathered}$	Specimen II		
		I	$\begin{gathered} \text { Test } \\ \text { II } \\ \hline \end{gathered}$	III			$\begin{aligned} & \text { True } \\ & \text { Mass } \end{aligned}$	$\begin{gathered} \text { Test } \\ \mathrm{A} \\ \hline \end{gathered}$	Test B
$0 . \Delta$. 05						. 05		
10.	. 10						. 10		
20.	. 10	. 30	. 25	. 25	0.1	. 25	. 10	. 30	.30
30.	. 10						. 10		
40.	.30	. 15	. 15	. 13	1.0	. 20	. 10	. 15	. 15
50.	. 10	. 10	. 10	. 12	0.5		. 10	. 10	. 10
60.	. 10	. 10	. 10	. 10	1.0	. 20	. 10	. 10	. 10
70.	.10	. 10	. 10	. 12	0.5		. 10	. 10	. 10
80.	. 10	. 15	. 15	. 13	1.0	. 20	. 10	. 15	. 15
90.	. 10						. 10		
100.	. 10	. 30	. 25	. 25	0.2	. 25	. 10	. 30	. 30
110.	. 10						. 10		
$220 . \Delta$. 10						. 10		
130.	. 10						. 10		
140.	. 10	. 25	. 20	. 15	0.5	. 25	. 10	. 25	. 25
150.	. 10	. 10	. 10	. 13	1.0		. 10	. 10	. 10
160.	. 10	. 10	. 10	. 12	1.0	. is	. 10	. 10	. 10
170.	. 05	. 05	. 05	. 05	1.0	. 05	. 05	. 05	. 05
Fel20.	0						100	$\begin{aligned} & 100 . \\ & (W= \end{aligned}$	0
I@170.	0						10.	$\begin{aligned} & 10 . \\ & \text { (W)=0 } \end{aligned}$	0
Δ Support points									
$\mathrm{W}=1.0$ except for test 6 when it was used as shown and for tests 18-20 when it was used to minimize the dominance of the large magnitude of the inertias.									

TABLE II. DESCRIPTION OF SIMULATED TESTS

Test No.	Specimen Test (See Fig. 2)	No. of Resonances or Modes	Mass Approx. (Table I)	Remarks*
1	I A	4R**	I	
2	I A	4M	I	
3	I A	3R	I	
4	A	3M	I	
5	$I \quad A$	3R	I	Variable mass
6	I A	3R	I	Weighting fun (See Table I)
7	I A	3R	II	
8	I A	4R	III	
9	I A	3R	III	Variable mass
10	I A	3R	III	
11	I A	3R	III	5\% Bias and
12	I A	3R	III	+5\% Random
13	I A	3R	III	Measurement
14	A	3R	III	Error
15	I A	3R	III	
16	I B	3R		
17	$I \quad B$	3R		Variable mass
18	II \quad A	4R		Inertias
19	II A	3R		weighted
20	II A	2R		(See Table I)
21	II B	4R		
22	II B	3R		
Unless so indicated, total mass held constant, no weighting, and no errors assumed. ** R indicates resonant data used, M indicates actual mode shapes used.				

X. THE IDENTIFIED MASSES

The masses identified by the program based on the simulated tests are given in Table III. The data is listed by test number. Refer to Table II for a description of the tests. The masses are given in the table to two significant figures for ease of reading except for tests $10-15$ in order that the scatter may be observed. These are all identical except that tests 11-15 contain test measurement errors of 5 percent bias and ± 5 percent random on amplitude. In addition to the masses themselves, the table indicates the changes from the approximation in terms of the rms of the variance.

Certain characteristics of this data can be observed. It appears that "better" app-oximations have smaller variances associated with them. This is what would be expected since the better the approximation, the smaller the change required to make it satisfy the equations. In the cases of Specimen I, test A, approximations II and III are intuitively better than I since I includes the masses at the supports. It is apparent, by comparing similar conditions from tests 1-6 with 7-15 that the variances are significantly lower for appr simations II and III. Comparison of 16,17 with 9,10 which use effectively the

TABLE III. IDENTIFIED MASSES

Test ${ }^{+}$ No.	1	2 Po	$\begin{gathered} \text { oint } \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \text { of } \mathrm{Me} \\ \hline \end{gathered}$	$\begin{gathered} \text { asuren } \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \text { ment } \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} \text { (See } \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} \text { Figure } \\ 8 \\ \hline \end{gathered}$	$\begin{aligned} & \text { e 1) } \\ & 9 \\ & \hline \end{aligned}$		11	Var. RMS
	Specimen I (See Figure 1)											
AI*	. 30	. 15	. 10	. 10	. 10	. 15	. 30	. 25	. 10	.10	. 05	
1	. 28	. 16	. 12	. 11	. 12	. 17	. 26	. 23	. 088	. 093	. 074	. 019
2	. 25	. 20	. 12	. 08	. 11	. 22	. 21	. 25	. 11	. 078	. 092	. 043
3	. 29	. 15	. 11	. 12	. 12	. 15	. 29	. 23	. 077	. 092	. 076	. 016
4	. 29	. 15	. 11	. 12	. 12	. 15	. 29	. 23	. 077	. 092	. 075	. 016
5	. 29	. 15	. 12	. 12	. 12	. 16	. 29	. 24	. 081	. 095	. 077	. 016
6	. 27	. 15	. 13	. 11	. 13	. 15	. 25	. 24	. 097	. 10	. 066	. 023
AII*	. 25	. 15	. 10	. 10	. 10	. 15	. 25	. 20	. 10	. 10	. 05	
7	. 25	. 15	. 11	. 11	. 11	. 15	. 24	. 19	. 091	. 097	. 061	. 0065
AIII*	. 25	. 13	. 12	. 10	. 12	. 13	. 25	. 15	. 13	. 12	. 05	
8	. 25	. 15	. 12	. 085	. 12	. 15	. 26	. 15	. 11	. 099	. 059	. 014
9	. 25	. 13	. 13	. 11	. 12	. 13	. 25	. 15	. 12	. 12	. 047	. 0040
10	. 250	. 134	. 125	. 106	. 124	. 131	. 248	. 146	. 124	. 115	. 047	. 0040
11	. 256	. 142	. 130	. 104	. 117	. 123	. 245	. 147	. 125	. 115	. 044	. 0066
12	. 255	. 138	. 125	. 101	. 118	. 126	. 249	. 150	. 129	. 116	. 043	. 0044
13	. 251	. 138	. 130	. 109	. 1.25	. 130	. 244	. 144	. 120	. 111	. 048	. 0069
14	. 252	. 138	. 130	. 109	. 124	. 126	. 243	. 143	. 120	. 113	. 052	. 0070
15	. 257	. 142	. 127	. 100	. 114	. 122	. 247	. 150	. 129	. 117	. 044	. 0059
B*	. 25	. 20	. 20	. 20	. 25	. 25	. 15	. 05				
1.6 17	. 24	. 20	. 22	. 21	. 24	. 24	.14	. 055				$.010$
	. 24	. 20	. 22	. 21	. 24	. 24	. 14	. 055				$.010$
	Specimen II (See Figure 1)											
A**	. 30	. 15	. 10	. 10	. 10	. 15	. 30	. 25	. 10	. 10	. 05	
18	. 24	. 16	. 14	. 12	. 089	. 14	. 35	. 26	. 10	. 071	. 080	. 034
19	. 30	. 15	. 11	. 11	. 11	. 16	. 30	. 24	. 090	. 098	. 067	. 015
20	. 30	. 15	. 10	. 10	. 10	. 15	. 30	. 25	. 10	. 10	. 051	. 0005
B*	. 30	. 15	. 10	. 10	. 10	. 15	. 30	. 25	. 10	. 10	. 05	
21	. 73	. 36	-. 08	.41	.27	-. 33	. 27	1.11	. 31	-. 19	. 18	409
22	. 29	. 12	. 068	. 082	. 10	. 17	. 33	. 28	. 13	11	. 027	023
* Mass approximation used for tests following (See Table l) ** Inertias not tabulated. Identified inertias were virtually exact + See Table II for description of test.												

same distribution suggests that the smaller the number of points, the greater the variance will be. One reason for this is that the approximation having the greater number of masses is an intuitively better representation of the system, everything else being equal.

There is another, more mathematical reason for this effect. There are fewer equations than there are unknown masses (See Section IV). If these numbers were the same, the mass would be unique and have no necessary relation to the approximation. As the number of unknowns is increased, the set of solutions expands and the probability of finding one of these solutions closer to a given approximation increases. The same effect is true when the number of unknowns stays the same but the number of equations is decreased, as when the number of modes used is reduced. Notice tests 18, 19, 20, for example, where the variances associated with 4, 3, 2 modes are .034, . 015, . 0005 respectively.

Thus, it could be reasoned that, the more nearly complete the model (for a constant number of masses), the greater will be the variances in the identified masses from the approximation. The data presented here tends to bear out this argument.

The effect of the constraint on the sum of the masses has little effect as can be seen by comparing tests 3 and 5 , 9 and 10,16 and 17.

The use of exact modes instead of the resonant responses, in these examples, shows no significant improvement in terms of the variances. It is interesting to note that test l using four resonant responses has a variance of . 019 while test 2 which was identical except that true normal modes were used has a variance of .043 . In tests 3, 4, which are identical to 1,2 except that 3 modes were used, the results are virtually identical to each other.

For Specimen II, test B, an intentionally poor test and approximation was made by ignoring the large inertias and omitting the measurements of slope at these points. Test 21 using 4 resonances results in very poor masses including several negative values. However, when only three resonances were used, the identified masses show general agreement with the approximation. In actual testing, results such as from test 21 could point up the omission of a significant parameter in the analysis.

The effects of the measurement errors is rather small. In five simulated ide::ical tests (11-15), errors of 5 percent bias and 5 percent random were applied to the response amplitudes. This is identical to a uniform random distribution between 0 and +10 percent. In each case, the variances are small. None of the individual mass elements vary $u y$ more than 8 percent over the five tests.

In general, the masses identified appear to be acceptable approximations (except in test 21). The test as to whether they are satisfactory or not will come when they are used to predict the effects of structural changes.

XI. THE EFFECTS OF MASS CHANGES

Two different lumped masses were considered to be added to the structure and the new frequencies and modes were calculated for the tests described in Table II. The method used has been described in Section V and its implementation in Section VIII.

The lumped masses were added at a point midway between the supports (change "A") and at the free end of the beam (change "B"). These masses were $1.0 \mathrm{lb}-\mathrm{sec}^{2} / \mathrm{in}$. This represents an increase in total mass of the beam of almost 60 percent.

Table IV summarizes the results of the frequency calculations. The table shows the frequencies at which the simulated testing was conducted (the frequencies of the original hsam). the exact frequencies of the modified beams, and the predicted results for each of the simulated tests.

In general, the results are surprisingly good and relatively insensitive to the z"̈antities that were varied. For Specimen I, change B (the more extreme of the effects), the first mode changes frequency by 54 percent and the poorest prediction is within 8 perceır of the correct value.

TABLE IV. COMPUTED FREQUENCIES DUE TO MASS CHANGE

Mode	1		2		3		4	
f*	8.32		18.65		49.06		96.12	
$+$	A	B	A	B	A	B	A	B
¢**	6.05	3.82	15.46	14.77	48.37	47.06	79.53	78.81
$\frac{1}{2}$	6.30	4.09	15.67	14.85	48.46	47.31	84.65	85.17
	6.33	4.12	15.69	14.85	48.49	47.31	83.81	84.43
34	6.29	4.08	15.69	14.87	48.52	47.48		
	6.29	4.08	15.68	14.87	48.55	47.48		
5	6.33	4.12	15.71	14.88	48.53	47.48		
6	6.32	4.11	15.70	14.88	48.50	47.41		
7	E. 19	3.97	15.60	14.84	48.50	47.43		
8	6.20	3.98	15.59	14.82	48.44	47.28	83.48	84.22
9	6.21	3.99	15.62	14.84	48.48	47.37		
10	6.21	3.99	15.62	14.84	48.48	47.37		
11	6.23	3.83	15.51	14.96	48.47	47.46		
12	6.10	3.89	15.81	14.69	48.48	47.34		
13	6.26	4.03	15.54	14.73	48.46	47.42		
14	6.25	4.05	15.76	14.99	48.49	47.35		
15	6.12	3.91	15.71	15.00	48.45	47.29		
16	6.17	3.95	15.59	14.84	48.53	47.50		
17	5.18	3.95	15.60	14.84	48.53	47.50		
E*	7.91		18.40		44.01		65.94	
f**	5.91	3.78	14.92	14.58	44.00	40.23	60.33	52.72
$\begin{aligned} & 18 \\ & 19 \\ & 20 \\ & 21 \\ & 22 \\ & \hline \end{aligned}$	6.14	4.02	15.15	14.68	44.00	40.40	61.42	62.82
	6.19	4.01	15.15	14.69	44.00	40.69		
	6.06	3.94	15.07	14.72				
	5.01	2.92	14.30	14.37	43.99	40.36	63.46	64.48
	5.88	3.73	14.91	14.56	43.99	40.01		
* Frequency before changes, i.e. frequency tested. ** Exact frequency after changes. + Addition of $1.0 \mathrm{lb}-\mathrm{sec}^{2} / \mathrm{in}$. at Sta 60 ("A") or Sta 170 ("B").								

For a more typical situation, Specimen I, change A, where the second mode changes frequency by about 17 percent, the poorest prediction is within about 2.5 percent.

The data bears out the expectation that the better mass approximations will result in better frequency predictions. The results of tests $7-10$ (the better mass distributions) are seen to be slightly better than tests 1-6.

A better illustration of this effect is seen in test 21 which, as discussed in Section X, was given an intentionally bad mass distribution. Even though this model would predict the resonant responses and also the sinusoidal responses over the frequency range of interest (this has not been shown but is assumed to be true from theoretical considerations), its ability to predict the changes in frequency due to mass changes has been adversely affected by the poor approximation.

Test 22 which is the same as 21 except that only 3 resonances are used seems to contradict the above conclusions since the predicted frequencies are excellent. The fact that these predictions are better than those corresponding to better mass approximations is probably a coincidence. It is not surprising, however, that the 3 resonance data
gives better results than the 4 resonance data. Tl. - effect is discussed in Section X in connection with the mass identification. It may be surmised from this limited data that as the number of equations approaches the number of unknowns the solutions corresponding to poorer mass approximations will tend to deteriorate more rapidly.

The effect of measurement errors is seen to be slight frol، tests 11-15. The maximum scatter in predicted frequencies is about 2.5 percent even though the measurement error was randomly distributed between 0 to 10 percent.

The predicted normal modes behave in a manner similar to the predicted natural frequencies in that they are generally quite acceptable. Figure 4 illustrates the effect of change B on Specimen I for the first three modes. The figures show the original modes and the exact new modes. They are both normalized to be equal at station 60 wich was the driving point in the simulated test. For modes 1 and 2 , the results of tests 1-9 are all very close to the exact curve. The scatter obtained in tests 11-15 containing error compared to the exact curve and to test 10 (same conditions but without error) are quite satisfactory.

The results for the third mode show an interesting effect. The results based on data containing only 3 modes does not predict the proper shape as well as the tests containing 4 mode data. There is a slight tendency in this direction in the frequency data also (see tests $1,2,8,18$). The reason for this effect may be surmised. Assuming that the new modes contain components of the same and adjacment old mocies, then one may expect that the predictions of the highest mode measured will be missing the significant effects of the next higher old mode.

Figure 4d illustrates the third mode of Specimen II, change B for the three tests: $18,21,22$. Test 18 is the "good" approximation to Specimen II using 4 modes and shows good agreement with the exact mode. Tests 21,22 represent the "bad" approximation for 4 and 3 modes, respectively. While both of these predict the frequency of this mode nearly equally well, the four mode data produces a considerably better third mode than the three mode data. This is in agreement with the effect previously noted.

While only sample modes are illustrated, these are quite typical of those obtained in all the computations made. The fourth modes are not shown because of the small amount of data available.

Figure 4a. Computed Mode Changes Due to Mass Change First Mode, Specimen I, Change B.

Figure 4 b . Computed Mode Changes Due to Mass Change
Second Mode, Specimen I, Change B.

Figure 4c. Computed Mode Changes Due to Mass Change Third Mode, Specimen I, Change B.

Figure 4त. Computed Mode Changes Due tn Mass Change Third Mode, Specimen II, Change R.

XII. THE EFFECTS OF STIFFNESS CHANGES

Abstract

In general, the same conclusions may be drawn regaraing stiffness changes as mass changes. The only possible 氏ception being the conclusions regarding the prediction of the change in the highest mode shape measured. This is in doubt only because the stiffness changes made had very little effect on the third mode and no conclusions can be drawn.

Two kinds of stiffness changes wGre considered. The first type consisted of adding a spring to ground at each of the same points where the masses were added. These stations were the mid-point between the supports (change "K") and the tip of the beam (change "L"). The spring constants were $1000 \mathrm{lb} / \mathrm{in}$. $\Delta \mathrm{K}$ consisted of a change of the corresponding diagonal element of the K matrix (See Figure 6). As discussed in Section VI, the full $(K+\Delta K)$ inc matrix was computed and the frequencies and modes were obtained by iteration on $M^{-1}(K+\Delta K)$ inc. The results of the frequency computations are given in Table IV and sample modes are illustrated in Figure 5.

The other stiffness change consisted of the addition of a uniform beam as illustrated in Figure 6, resulting in
a ΔK matrix consisting of nine terms. The results are given in Table $V(b)$.

All the stiffness changes resulted in quite adequate predictions of the changes in frequency and normal mode with the exception of test 21 (as anticipated).

TABLE $V(a)$. COMPUTED FREQUENCIES DUE TO STIFFNESS CHANGE

TABLE V(b). COMPUTED FREQUENCIES DUE TO STIFFNESS CHANGE 'M

Mode	1	2	3	4
f*	8.32	18.65	49.06	96.12
f**	8.92	19.32	49.13	99.86
Test				
No.				
1	8.83	19.26	49.18	99.86
3	8.87	19.33	49.19	
ϵ	8.86	19.32	49.20	

Frequency before changes.
** Exact frequency after change M. See Figure 6.

Figure 5a. Computed Mode Changes Due to Stiffness Change First Mode, Specimen I, Change L.

Figure 5b. Computed Mode Changes Due to Stiffness Change Second Mode, Specimen I, Change L.

Figure 5c. Computed Mode Changes Due to Stiffness Change Third Mode, Specimen I, Change L.

Figure 6. Stiffness Changes.

XIII. THE IDENTIFIED DAMPING COEFFICIENTS

The damping coefficient was obtained using Equation (51). This depends on the natural frequency, the real resonant velocity response, and the generalized mass. Thus, the damping coefficient may vary with the mode and with the identified mass. Table VI gives all the identified coefficients and it is seen that almost all the identifications fall within 15 percent. Tests 21,22 which started with bad mass distributions behave as they did before. Test 21 gives very poor results while 22 gives quite good results for the firs wo modes. The poor results for the third mode of tests 2.8 , 19 are not explained. It is noted, however, that the response is very small.

In the tests with error (ll-15), the simulated erroneous response was used. The total scatter is of the order of 15 percent.

TABLE VI. IDENTIFIED GENERALIZED MASSES AND DAMPING COEFFICIENTS

Mode	1		2		3		4	
Ω_{i}	8.36		18.65		49.06		96.12	
\dot{Y}_{R}	. 7487		. 3985		. 01097		. 08263	
	m_{1}	g	m_{2}	g	m_{3}	g	m_{4}	g
1	1.512	. 0175	1.268	. 0169	17.32	. 0170	1.338	. 0150
3	1.496	. 0176	1.254	. 0170	17.44	. 0166		
4								
5	1.533	. 0172	1.285	. 0167	17.78	. 2176		
6	1.521	. 0174	1.247	. 0172	16.83	. 0188		
7	1.391	. 0189	1.166	. 0184	15.77	. 0183		
8	1.404	. 0188	1.178	. 0182	16.18	. 0192	1.134	. 0176
9	1.411	. 0187	1.182	. 0181	15.40	. 0192		
10	1.410	. 0187	1.181	. 0181	15.39	. 0192		
11	1.436	. 0178	1.139	. 0188	15.04	. 0196		
12	1.291	. 0183	1.235	. 0171	15.36	. 0185		
13	1.473	. 0170	1.168	. 0173	14.95	. 0187		
14	1.443	. 0173	1.278	. 0166	16.32	. 0181		
15	1.317	. 0181	1.189	. 0175	14.35	. 0189		
16	1.376	. 0186	1.155	. 0185	16.48	. 0180		
17	1.379	. 0186	1.157	. 0185	16.51	. 0179		
Ω_{i}	7.909		18.40		44.01		65.94	
\dot{Y}_{Y}	. 6938		. 4301		. 000178		. 0510	
	m_{1}	g	m_{2}	g	m_{3}	g	m_{4}	g
	1.705	. 0170	1.108	. 0170	587.4	. 0345	2.585	. 0183
19	1.674	. 01.0173	1.159	. 0173	587.5	. 0346		
20	1.594	. 0182	1.093	. 0184				
21	. 784	. 0370	. 542	. 0371	277.8	. 0732	2.894	. 0164
22	1.401	. 0207	. 959	. 0210	418.4	. 0486		

XIV. CONCLUSIONS

It should be recognized that the following general conclusions are based on a small amount of simulated data on a relatively simple structure. While these conclusions are not proven, they are strongly suggested by the data obtained.

1. The concept of an incomplete model of a dynamic structure is valid and useful, at least, for predicting the effects of structural changes on the normal modes and frequencies.
2. The parameters of an incomplete model may be determined f́rom measured modal data and a "reasonable" approximation to the mass matrix.
3. The identified mass matrix will be approximately equal to the assumed values when the assumption is reasonably valid. The identified structural damping coefficient will also be a reasonable approximation under this condition.
4. The identified stiffness matrix, while not approximating the true values, may be used to predict the effects of stiffness changes.
5. The identified influence cuefficient matrix will be an approximation to the true values.
6. The effects of mass and stiffness changes on the normal modes and natural frequencies can be estimated using the teshniques that have grown out of the incomplete model concept. These predictions are not overly-sensitive to the mass approximation and to errors of measurement.
7. The procedures may tend to deteriorate when fewer points or more modes are used, reducing the degeneracy of the equations. It is expected that this condition can be simply corrected by including off-diagonal masses as unknowns.

In general, the results of the qualitative study are quite encouraging. It is recommended that a more definitive evaluation of the concepts be carried out both from a theoretical viewpoint and by more detailed computer experimentation with more complex structures.

NEW TECHNOLOGY

This entire report is considered to be a "reportable item" in accordance with the New Technology Clause (NASA Form 1162).

BIBLIOGRAPHY

1. Flannelly, W. G., McGarvey, J. H. and Berman, A., "A Theory of Identification of the Parameters in the Equations of Motion of a Structure Through Dynainic Tessing", To be presented at the Symposium on Structural Dynamics, University of Technology, Loughborough, England, March 23-25, 1970.
2. Kennedy, C. C. and Pancu, C.D.P., "Use of Vectors in Vibration Measurement and Analysis", Journal of the Aeronautical Sciences, Volume 14, No. 11, November 1947.
3. Scanlan, R. H., and Rosenbaum, R., "Introduction to the Study of Aircraft Vibration and Flutter", The Macmillan Company, New York, 1951.
4. Bodewig, E., Matrix Calculus, Interscience Publishers, Inc., New York, 1956.
5. Rosanoff, R. A. and Ginsburg, T. A., "Matrix Error Analysis for Engineers" Proceedings of the Conference on Matrix Methods in Structural Mechanics, AFFDL-TR-66-80, Wright-Patterson Air Force Base, Dayton, Ohio, 1965.

BIBLIOGRAPHY (Continued)

6. Greville, T.N.E., "The Pseudoinverse of a Rectangular or Singular Matrix and its Application to the Solution of Systems of Linear Equations", SIAM Review, Volume 1, No. 1, January 1959.

GLOSSARY OF SYMBOLS

A Coefficient matrix in mass equation (See Section IV)
$B_{R} \quad$ Matrix multiplying R in mass identification (See Section IV)
$B_{m} \quad$ Matrix multiplying m_{A} in mass identification (See Section IV)

C Influence coefficient matrix
f Force vector
g Structural damping coefficient
K Stiffness matrix
M Mass matrix
$m_{i} \quad$ Generalized mass of $i-t h$ mode
$m_{i j}$ Element of M
$m_{A} \quad$ Approximation to $\overline{\mathrm{m}}$
$m_{T} \quad$ Total of diagonal masses
$\bar{m} \quad$ Vector consisting of unknown elements of M
N Number of modes
ne Number of equations
$n v \quad$ Number of variables
P Number of points of interest
R Right-Hand side of mass equation (See Section IV)
$W \quad$ Weighting matrix referring to confidence in m_{A} (diagonal)

Y Mobility matrix
y Displacement vector

GLOSSARY OF SYMBOLS (Continued)

$\dot{y}_{R} \quad$ Real component of velocity vector
Z Impedance
$\Delta \quad$ Any change (as a prefix)
$\Phi \quad$ Matrix of modes
$\Phi_{i} \quad$ Modal vector (i-th mode)
$\Omega_{i} \quad$ Natural frequency of $i-t h$ mode
$\omega \quad$ Forcing frequency
$+\quad$ Superscript - pseudo inverse
[J Indicates diagonal matrix

APPENDIX I

PRINCIPAL IDEMPOTENTS

The expression of positive definite matrices in terms of their.principal idempotents has been discussed in Reference 5. It has been useful in the development of the incomplete model concept and some of the associated techniques. A brief discussion is given below.

Define ϕ_{i} as an arbitrary set of orthogonal vectors (P vectors each having P elements) and A as an arbitrary positive definite PxP matrix.

It is possible to express A as follows:

$$
\begin{equation*}
A=\sum_{i=1}^{p} \sum_{j=1}^{p} C_{i j} \phi_{i} \phi_{j}^{T} \tag{I-1}
\end{equation*}
$$

since the ϕ 's are independent and there are as many $C_{i j}$'s as there are elements in A. Note that $\phi_{i} \phi_{j}^{T}$ is a non-zero square matrix for all i, j combinations but $\phi_{j}^{T} \phi_{i}$ is a scalar and equal to 0 unless $i=j$ since the vectors are orthogonal.

Now pre- and post-multiply the equations by ϕ_{n}^{T} and ϕ_{k}

$$
\phi_{n}^{T} A \phi_{k}=\sum_{i=1}^{p} \sum_{j=1}^{p} C_{i j}\left(\phi_{n}^{T} \phi_{i}\right)\left(\phi_{j}^{T} \phi_{k}\right)=C_{n k}\left(\phi_{n}^{T} \phi_{n}\right)\left(\phi_{k}^{T} \phi_{k}\right)
$$

since each term in the summation is zero except when $i=n$ and $j=k$. Thus (note that $\phi_{n}^{T} A \phi_{k}$ is a scalar)

$$
\begin{equation*}
c_{i j}=\frac{\phi_{i}^{T} A \phi_{j}}{\left(\phi_{i}^{T} \phi_{i}\right)\left(\phi_{j}^{T} \phi_{j}\right)} \tag{I-2}
\end{equation*}
$$

Thus for any set of orthogonal vectors it is possible to express the matrix A as in Equation (I-1) by evaluating the coefficients as in Equation (I-2).

However, if the ϕ 's are the eigenvectors of $A, A \phi_{j}=\lambda_{j} \phi_{j}$ and

$$
c_{i j}=\frac{\lambda_{j} \phi_{i}^{T} \phi_{j}}{\left(\phi_{i}^{T} \phi_{i}\right)\left(\phi_{j}^{T} \phi_{j}\right)}=0 \text { for } i \neq j
$$

since now $\phi_{i}^{T} \phi_{j}=0$ for $i=j$, and

$$
c_{i i}=\frac{\lambda_{i}}{\phi_{i}^{T} \phi_{i}}
$$

Thus, the cross terms in Equation (I-1) become zero and

$$
\begin{equation*}
A=\sum_{i=1}^{p} \lambda_{i}\left(\frac{\phi_{i} \phi_{i}^{T}}{\phi_{i}^{T} \phi_{i}}\right) \tag{I-3}
\end{equation*}
$$

if and only if the ϕ 's are eigenvectors of A. Note that (for any orthogonal $\phi^{\prime} s$), if $v_{i}=\frac{\phi_{i} \phi_{i}^{T}}{\phi_{i}^{T} \phi_{i}} v_{i}^{2}=\frac{\phi_{i}\left(\phi_{i}^{T} \phi_{i}\right)_{i}^{T}}{\left(\phi_{i}^{T} \phi_{i}\right)^{2}}$
$=V_{i}$ thus V_{i} is idempotent. When the ϕ_{i} 's are the eigenvectors of A, V_{i} is called a principal idempotent.

By similar procedures it can be shown that the influence coefficient matrix and the stiffness matrix can be written in terms of their principal idempotents as follows (using the notation of the body of this report).

$$
\begin{align*}
& C M=\sum_{i=1}^{p} \frac{1}{\Omega_{i}^{2}}\left(\frac{\phi_{i} \phi_{i}^{T}}{m_{i}}\right) \tag{I-4}\\
& M^{-1} K=\sum_{i=1}^{p} \Omega_{i}^{2}\left(\frac{\phi_{i} \phi_{i}^{T} M}{m_{i}}\right) \tag{I-5}
\end{align*}
$$

Where the terms in brackets are the principal idempotents of $C M$ and $M^{-1} K$. It follows from the above two equations that

$$
\begin{align*}
& c=\sum_{i=1}^{p} \frac{1}{\Omega_{i}^{2} m_{i}} \phi_{i} \phi_{i}^{T} \tag{I-6}\\
& K=\sum_{i=1}^{p} \frac{\Omega_{i}^{2}}{m_{i}} M \phi_{i} \phi_{i}^{T}{ }^{T} \tag{I-7}
\end{align*}
$$

and that expressions of this form are only possible when the $\phi^{\prime} s$ are the eigenvectors of $C M$ or $M^{-1} K$.
I-3

APPENDIX II

PSEUDO INVERSES

The pseudo inverse, sometimes called the generalized inverse of a matrix is discussed in numerous publications (e.g. Reference 6). In this appendix, only the application made to the problem at hand will be discussed.

Consider the set of independent linear equations

$$
\begin{equation*}
A x=b \tag{II-1}
\end{equation*}
$$

where there are more equations than unknowns. A, then, is a rectangular matrix, $n_{e} x n_{v}$ where $n_{e}<n_{v} . x$ then is $1 \times n_{v}$ and b is $1 \times n_{e}$. There are then an infinite number of solutions to these equations.

The pseudo inverse of A, written A^{+}, is defined for this problem to be

$$
\begin{equation*}
A^{+}=A^{T}\left(A A^{T}\right)^{-1} \tag{II-2}
\end{equation*}
$$

where the ordinary inverse of $A A^{T}$ is used. This matrix, $A A^{T}$, is of order $n_{e} \times n_{e}$ and can be shown to be nonsingular when the original equations are independent.

Now

$$
\overline{\mathrm{x}}=\mathrm{A}^{+} \mathrm{b}
$$

is a solution to Equation (II-1) as can be seen from

$$
A \bar{x} \equiv A A^{+} b \equiv A A^{T}\left(A A^{T}\right)^{-l} b \equiv I B=b
$$

It is shown in the literature that this solution (of the infinity of solutions) is the one having the minimum sum of squares of the individual elements, i.e. the "smallest" in a least squares sense.

Using Equation (II-2) to obtain the pseudo inverse of AW^{-1} from Equation (39) in the main text (where W^{-1} is a diagonal matrix),

$$
\begin{aligned}
\left(A W^{-1}\right)^{+} & =\left(A W^{-1}\right)^{T}\left\{\left(A W^{-1}\right)\left(A W^{-1}\right)^{T}\right\}^{-1} \\
& =W^{-1} A^{T}\left\{A W^{-1} W^{-1} A^{T}\right\}^{-1}
\end{aligned}
$$

APPENDIX III PROGRAM LISTING AND SAMPLE COMPUTATION

This appendix contains the Fortran listing of the computer program discussed in Section VIII. Included are the operating instructions and a sample computation of test 16.

The program was compiled and run on an IBM 360, Model 40 , having 128 K bytes of storage under DOS, release 17.

REPRQDUCIBILITY OF THE ORIGINAL PAGE IS POOR

MISK חRFRATING SYSTEM/360 FRRTRAN 36ON-FO-451 31

7A: ArTIJI DHI'S (PHIII, JI, IEI,NFPEG),I=I,NII

```
INPIIT - PART II - INFNTIFICATION
    8. HFAO2 COL I =IC?, CCL ?-8n HFACING
                |C.2 = n, NORMAL ||NPUT 9,10.11,12FF|
                            1. NEW APPPOX MASS - CTHFR CATA UNCHANGFD (11.I2FE)
    9. GFNERAIIIFO MASS - KNCWN VALUES CNIY - IF NONF USF I RLANK CARD
        CO1 rML 1-10 NG, NO CF VELUES IlO 10 max
        FOLLOWING CAPOISI I.GN(II
    10. KNOWN MASSFS - IF NONF IISE I PLAAK CARD
        COl COL 1-1J NK. NO OF VAlUES
        FOLLOWING CAROISI I.J,KMII,JI (SEE *NCTEI
        FNTEP LTWER TRIANGLE VALUFS CAL` II .r.F. JI Al2I2,F6)
        SYMMETRY ASSUMED
        ONLY NON ZERO MASIFS
    11. APPROX MASS CAPDS - DFFINE UNKNTWAS
            CO1 COL 1-10 NV. NO CF UAXACWN MASSES lln 20 max
                COL 20 ICT= O AN CCATACL ON TPTAL MASS
                        I TMTAI IINKNCWN OIAGONAL MASSES CONSTANT
            fnllOWING rAROS, NNF PFQ mASS - LCWFR TRTANIGLF ONLY
            COL 1-5 I ISFE FNCTEI
                A-10 J ISFF ENCTFI
            11-7n AM, APPROX MASS (WAY EE JPRO IF TFF DIAG)
            21-30 W, WCIGHTING FACTPR 215,2F10
            HIGHEQ W INDICATFS GREATFO CRNFICENCE IN ECTIMATE
            nO NחT IISF h= n
        NOTE, ALL mASSES NCt DEFINFD IN IO CR 1! WIIL Rf TERT
        SFE SURROUTINF IONASS FIR FRDCR WFSSAGFS
INPUT - PART III - FFFECTS OF VAPYING UASS CD STIFENESS
    12. HEAN3 COL 1= IC3. COL 2-80 HFACING
        IC3 = n. MASS CHANGF (INPUT 13,12FFI
            - 1. PFTURN TI DART I I!I
            =?. RFTURN T! DART I| (P)
            = 3. STIFFNFSS (14,12FF)
            -q, ENN OE FIIN
    13. CHANTAF MASE PMRDS
    FIPCT CARN POL 1-10 NR., NC CF CHANGFGG
    MEXT RADDSISI I,J.MASE P,HANPF ISEE *NOTEI RI2I2.EGI
                L!NER TRIANCLE RNLY, SYNNFTRY ASPIIME!
    14. CHANGEN STIFENESS CAPOS
    SAME FTRM AS 13. FXCFDT
                                    41912,F16)
    NHITE. NFYT CAON PEAD IS 12. THFST WASS CHANTEE ARF INLV
    TEMPIGADILY STMRFD, VARIGUS CHAAGES RAN AF RIJN IN SFOIIENCF.
    #&ITF I.J ARF INOTCFS PF TFST PRIATS, NET APTIIAL SYSTEM
```


IVTEGEQ HFAO(20), (ISEJ(201, HEANZ(20)
IVTEGER HEAO3(20).ITN(101

1 YR(20,21), VI(20,211, RESR(10,20), RFSI(10,20), FPDP(17), PHI(20,10),
2 GPDF(10), MINC(20,20),CINC(20,20), KINT (20,20)
RFAL UTEMP(20.21), MNOE(201, PHIC(70.10), FRFCC(10), CTFMP(20,20)
REAL KTFMP(20.20), MINV(20.21), MOOM(20), CK120.201, FMASS(10).
1 DCDF 120,101
COMMJV M,K, C, 7 R, ZI,YR,YI,MINC,CINC,KINC, WTEMP,CTFMP
CIIMMON KTEMP,MINV,OK,DCDF
r
PART I - SIMULATED TEST
1 REAO (1,1000) 1C, HEAII
1000 FIJRMAT(II,A3.19A4)
WRITF (3.1NDII Ir, HEAN
1001 FIRMAT ('1'//T5.'INROMPLFTF MCOFL THFCRY - SIMULATFC TFCTM/I

ICC=IC+I
GO TO $110,10,20,70,11.11 \quad$ I.1.CC
10 KEAD (1,1002) NO, NU. NRCW, P.PCTTPCTE.IT
1002 FIRMAT $1215,110,3 F 10,0,20 \mathrm{X}, 1101$
(G) in 13
11 REAN (1. 20021 NIJ,NRHW,G,PCT,PCTR, 12
2JO2 FORMAT $(5 x, 15,110,3 F 10,0,20 x, 11 n)$
13 IX=12*2+1
(G) TO (14, 14,14,14,14,18),1CC
14 IF(NU-NO)15.18.18
15 RFAD (1.10n3) (USFN(I).1=1.NL)
ION3 FTRMAT (19141
D) $16: 1=\mathrm{NU}$
IFIUSEn(II-NanW)IE.17,16
16 CONTIVUF
NRIVEUSFC(1)
NQOWN = 1
WRITE 13.9991 NROW
349 FIJMAT ITS, '\#\# FRRCING POINT INVALID. SFT TCT $13 / 1 / 1$
G:] ro 20
17 NR'JWN=I
GO TO 20
18 NRIIWN=NRTH
$01 \quad 19 \quad 1=1.011$
19 USt) $11=1$

25 on $301=1,2 n$
1) $30 \mathrm{~J}=1 \mathrm{Na}$
$304(1, J)=0$

* © ADil. 1005! ann
I) 05 firuat (ILO)
IE (Nin) 40,4n.35

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

```
11/03/70
                FOFTMA| *
    35 REAO (l,10nG) (I.J.M(I,J),L=1,NONI
    1006 FURYAT IR\212.F6.01)
        CALL SYM IM,NNI
    40 r.1 TJ 150,00,70.70.70.701.1C.r.
    50 nO 55 1=1.NN
    55 QEAD (I.1004) (K(I.J),J=1.|)
        CALL SYM(K,NNI
        CALL INVRS (K,ND,C)
        G(1) TO 70
    60 UIJ 65 I=1,ND
    65 READ (1,1004) (C(I,J).Jal.I|
        CALL SYM (C,NO)
        CALL INVPS (C,NO,K)
    70 READ (1.10051 NFRFO
        RFAD (1,1004) (FREQ\11,IE1,NFREOI
        Gח TO 171.71,71,71,71.721,1CC
    71 WRITF (3,1007) NO,G
1007 FIORMAT ITIO, ACTUAL SYSTEM PARAMETERSPIIO,' CFG CF FRFEDOM, STRUCT
    I IAMPING CNEF EFFG.T/TIC.24('-O///TSO.'NASE MATOIX'/I
        GO T\ 74
    72 WRITE (3,200%) NFPEO.r
2\07 FORMAT (T10, 'ACTUAL MONES'IIO*' MODFS. STPUCTURAL OAMPIMG COEF EO
    1F6.3/T10.121'-1/1/1
    GO T0 90
    74 CALL MOUT2 {M,ND,NNI
    GO TO (75,75,80,80,80,80),1CC
    75 WRITF 13,10081
1.008 FORMAT ('1'.T50,'STIFFNESS MATQTXO//1
    CALL MOHIT2 (K,NO,ND)
    WRITE (3,10091
    IJ09 FORMAT I'I'T50, 'INFLUENCE COEFFIGIENT NATRIX'//I
    CALL MOUT2 IC,ND.NOI
    GO 10 90
    HO WRITE 12,10101
    1)10 FORMAT (//TIO, ACTUAL K AND C SAMF AS PAEVICUS CASFOI
    90 WRITE 13,10111 NROW,NI
```



```
        1 T2O, POINT AT WHICH SYSTFM IS FOACENIIG/T2O.'NO DF POINTS NF MEA
        ZSUREMFNT ' (8)
            GO 10 194,94,94,94,94,961,1CC
        94 IF(ND-NIJ 100.100.95
        G5 WPITE (3,1012) (ISFN(I),IEL,NUI
    III2 FJRMAT IT2O.'PNINTE AT WHICH MFASURFMFNTS APF TAKENO/T 3O, 2OIGI
    IOO WRITE (3,1013)IFRFOIII,I=1,NFEEOI
    IU1; FORMAT IT20, 'FRFQUFNC.IES OF FXCITATICN - H2:/IT3O.1PSFI5.4I:
        96 WRITE 13,10141 PCT,PCTA,IZ
    1JI& FOFMATI/T2O, 'AVE PANOTM AWPLITUDF FOAORIFIN.3/T2O.'GIAS AMPLTTUDF
```



```
        GOTO 1109,109,109,109,1C9.1011,1CC
    101 DO LU2 \al.4U
    102 RFAD (1.1004) (RFGR(IIJI|IEI,NFRFQ)
        Gi) T! 111
r
109 Oी 110:=1, NFEEO
    CALCUIATE RESCNAAT RESPCNSES
```

 DMEFRE?(I)
    ```
    CALL MIIB IM,K,F,NO,TM,2R,ZI,YR,YII
    On 110 J=1,N|
    JJ=USED(J)
r
    RESR(I,J)=YR(NROW,JJ)
    110 RFSI(I,J)=YI(NROW ,JJ)
r
    111 On 120 I=1,NU
        0n 120 J=l,NFRFO
        CALL RANNU IIX,IY,YFLI
        IX=IY
    120 PHIII,J)=RFSF(J,I)*(1.0* ?.0#PCT#{YFL-n,5)&PCTR)
r
    On 130 l=1,NFRFO
        GPP(I) =KESR(I,NROWN)
        GPPE(I)=PHI(NROHN.I)
        00 130 J=i,NU
        DHI(J,I)=PHI(J,I)/GPPEIII
        IF(IC-5) 129,130.130
    129 RESI(I,J)=RESI(I,J)/GPP(I)
    130 RFSR(1,J)=RESR(I,J)/GPP(I)
        GO TO 1135,135,135,135,135,1311,ICC
    131 WRITE (3,2015) (FRFOII),1=1,AFREC)
?J!5 FORMAT I//TIO,'FXACT MODFS OF ARTIJAL SYSTFM, NCRMALITED DN DRIVING
            I POINTI//T3.'FREO IIPIOF12.41
            GO TO }13
    135 WRITE (3,1015) {FRFO(I|,1=1,AFRFG1
INI5 FORMATI/ITID,'EXACT RESPCNSF CF ACTUAL SYSTFN,IN/SFC/PMNNN, NDRMAL
    IILED JN REAL CRIVING POINT RESPONSE'//T30,'RFAL PARTO//T3,'ERFO
    2.1P10E12.41
        WRITE (3,1016) {T,PP{I),1=1,NFFFO)
1\cap16 FORMAT(/T3, 'D.P.'/T4,'RESP '101NFI2.4)
    139 WRITE 13,1004)
        DO 149 I =1,NU
    140 WKITE (3,1017) USFD(1),(R=SR(J,II,J=1,NFRFO)
1017 FORMAT (16,3X,10F12,5)
    gO TO (142,142,142,142,142,141),|CC.
    141 WRITE (3,2014)
2:J19 FORMAT ('I'//TIO.'SIMIJLATEN WFASUPEN MNCES, ACTUAL OHI'OS WITH ERR
        100:/1
            GO TO 154
    142 WRITE 13,10181
1.)18 FORMAT ('1'//T3n.'IMAGINAFY OART'/I
    DO) 145 I=1,N1!
    145 WRITE (3,1017) USEN(T),IRFSI(J,II,J=1,NFRFC)
    WDITE (3.10191
1.19 FgRMAT ('1'//TIO.'SIMULATEJ IFST RFSPMNSE, RFAL MIOILITY WITH FRR
        ITRS USFD AS PHI''S'/I
            WKITE {3,1016) {TPPF(II,I=1,NFQFO)
            WGITE (3,10n4)
    154 CAI.L MOUT? PPHI,NHI,NFQFOI
                            pART I! - INEATIFY NASSES
    155 RGAO (1.10NO) It?,HEAN2
    CALL IOMASS IICZ,HEADZ,FRFO,PHI,NU,VFP?C,NIAC,TINC,KINC,GMASSI
                                    CALIIATF RFSONANT RESPCNGE FRCN KINC.MINR
```

(1) $1601=1, N F F F O$

OM=FRED(I)
CALL UOR (MINT,KINR,F,NI,CM, 2R, 7I,YQ,VI)
D') $160 \mathrm{~J}=1, \mathrm{NU}$
RFSRII, JI =YRIJ, NPCWNI
160 RESIII,JI=YIIJ, NFOWNI
OO $170 \quad I=1$ NFRFG
GPD (1) =RFSE (I , NROWNI
D) $177 \mathrm{~J}=1$:NU

RESIII, JI=RFSI(I:JI/GPPI!
170 RESR(I,JI=RESR(I,J)/TSPP(I)
WRITE (3.1020) (FFFQ(I),I=1.AFRFCI

1 T30, 'REAL PART"//
2 T3, 1 FREQ 1 IOLOF12.41
WPITE (3.1016) (GPPIII,I $=1, N F P F O 1$
WRITE (3.1004)
On $180 \quad 1=1, N U$
180 WRITE (3.1017) USFOIII, (RESRIJ,II,J=1, NFRFCI
WRITF 13.10181
Dn $1901 \approx 1 . \mathrm{NU}$
190 WPITE (3.1017) USEOIII, (RESI(J.II.JEIONFRFCI
IFIRST $=0$
GU TO 2.5

```
r PAPT III = CHANGFD WASSFS
```

200 HEAD (1.1000) 1C3.HFA03
IF(IC3-9)220,210,210
210 CALL EXIT
220 1CC $=1 C 3+1$
GO TO $1250.1,155,2501.1 \mathrm{CC}$
250 WRITE 13.10301 IC3.HEAD3
1)30 FORMAT ('1'//TS. 'PART III - CHANGEN wASEES CR STIFFAESSESO//TS.

READ (1.1005) NC.
$\rightarrow 55 \mathrm{nt} 2601=1$, NU
n $260 \mathrm{~J}=1$, NU
$K \operatorname{TFMP}(I, J)=0$
260 पTEMP $(1, J)=0$
1FIIFINSTI261,269,261
261 IFIIC 31265,265,300

CALL SYM IMTEMD,NH
WRITE 13.10311
1031 FNWMAT (T50. WMASC MATTIX CHANGESOI)
CALL MOITT2 (MTFMP, NII, NII
$2 t \rightarrow 71270 \quad 1=1 . N U$
0! $279 \mathrm{~J}=1, \mathrm{NU}$
CTFMP(I, J) $=$ C. INC, II. 11

ITFQATE IISNG CIAC *TENP:

C TN=MINT (NE!TWNI
nก $275 \mathrm{~J}=1$. i J

でら OHIC！J，II＝MONF（J）
ITN（I）＝1T
FREACI I）$=1.0 /$ SORTI OMEGI／6． 2832
GPDE（II＝GFN（MONE，MTFMD，NU）
CON＝OMEG／GPPF（I）
DO $280 \mathrm{~L}=1, \mathrm{NU}$
On $280 \mathrm{~J}=1, \mathrm{NU}$
280 CTEMP（L．J）＝CTFMP（L．JI－CON＊MODF（L）＊NCCF（J） IFIIFIRSTI285，291，285
281 WRITE（3．2032）（FFFQ（I），I $=1$, NFPEO）

1 T3．＇FRFQ 1O1OF12，41
CO TO 289
285 WRITE（3，1032）（FPFOCIII，I＝1，NFRFOI
1032 FORMAT 1 ＇I＇／／TIO，＇NFW FREQUFNCIES ANC MCCFS CF MDCIFIPD SVSTFMT／／
1 T3，＇FPEQ 1101OF12．41
239 WRITE 13,10331 （GPPFII），I＝1，NFRFC）
1033 FGRMAT（／T2．＇GFN MASS＇IP1OF12．41
WRITF（3．1034）（ITN（I），I＝1，NFREO）
1034 FORMAT（／T3，＇ITER＇101121
WRITE（3，1004）
DC $290 \mathrm{I}=1$ ， NU
2．40 WRITE（3．1017）USFO（I）．（PHICII．JI．J＝1，NFREG） IFIRST＝IFIRST＋I
GO TO 200
300 READ（1，3031）（I，J，KTEMP（I，J），L＝1，NC）
2031 FORMAT（41212，E16．01）
CALL SYM（KTFMP，NU）
WRITE（3．2031）
2031 FTRMAT（T50，＇K MATRIX CHANGFSII
CALL MOUT？（KTFMP，NIJ，NU）
Calculate nelta k incemplfif
CALL MMPY（KTFMP，PHI，NU，NU，NFPFO，DK）
nit 310 I $=1$ ，NU
DO $310 \mathrm{~J}=1$ ，NFDED
310 MINV（J，I）＝PHIII，JI
CALL MMPY IMINV，DK，NFRFO，NIJ，AFREC，DCCEI
nก $320 \quad \mid=1$ ，N！
DO $320 \mathrm{~J}=1$ ，NU
320 DK（1，J）＝0
DO 33 C IJ＝1，NFRFQ
nก $330 \mathrm{JI}=1$ ，NERFO
กn $330 \quad I=1, N U$
（17） $330 \mathrm{~J}=1$ ．NU

1 GMASS（J］）
CALL YMPY IMINC，OK，NJ，NIJ，NU，KTFMPI
CALL MMDY IKTFMP，MIN．，NU，NIJ，NII，DKI
WRITE 13.10401
1040 FOMMAT 1 ＇I＇T50．＇OTLTAK K INCOMPLFTE＇I
CALL MDUT？IDK，NII，NIJ
in $34 n \quad I=1$ ，NU
nก $340 \mathrm{~J}=1$ ．NU
340 KTEMP（I，JI＝KINR．（I，JItOKII，JI
CALL INVRS IMINC，N（J，MINVI

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

IIFFATF IISIAR MIAY由KTFNP

() $) 38!$ II $=1$, NFRFD
$1=$ NFKFO-II+1
CALL YITRPIMINV, KTEAP,NU, OCOOL. 75, MOCE, RNFC, ITI
(.) $\mathrm{V}=\mathrm{MOOF}$ (NR $\cap W \mathrm{~N}$)
nis $375 \mathrm{~J}=1$, MU
MกПE(J)=MחnF(J)/C CN
375 PHIC(J.II =MODF (J)
1TN(II=1T
CALL MMPY (MINC MOIDF, NU,NU, I, MONM)
FRFRC(I)= SORT(OMEC)/G,28?2
GPPE(I)= TFN(MONE, MINC. *NU)
CIN=OMFG/RORFIII
nก $389 \mathrm{~L}=1$, NU
Dก $380 \mathrm{~J}=1$. NU
$380 \operatorname{KTFMP}(L, J)=K T F M P(L, J)-C C A * M O \cap N(L) * M C \Gamma M(J)$
ril TO 285
END

SUSROITINF MOUTR (A,M,N)
KEAL $A(20,21)$
10=4IV)(N,10)
WRITE (3,1000) (1,1=1,10)
1000 EURMAT (/T5,101121
WRITF 13.10001
DO $10 \quad 1=1,4$
10 WRITE (3.1001) I,(A(I,J),J=1,ID!
1001 FORMAT $115,5 \times, 1$ P1OF12.4
(F (ID-N) 20,50.50
20 WRITE $(3,1000)(1,1=11, N)$ WRITE 13,10001
DO $30 \quad 1=1, M$
30 WRITE (3,1001) 1,(ACI,J),J=11,N)
50 RETURY
FND

SUGRDUTINE R:INV IA,R,N,R,DI

a ASSUMEN NON SIAGIILAR
REAL $A(20.21), 9(20,21), C 120.211,0(20,21), F(20.21)$
CALL INVHSIB,N,CI
CALL YMPY(C,A,N,N,N,F)
CALL YMPY(A,E,N,N,N,C.)
On $10 \quad I=1, N$
กO $10 \mathrm{~J}=1, N$
10 (1 ! , J) $=C(1, J)+R(1, J)$
CALL INVRS(C,N, N)
CALL MMPY(E, $\cap, N, N, N, \Gamma I$
D $20 \quad I=1, N$
Dr) $20 \mathrm{~J}=1 ; N$
$20 D(I, J)=0$ (1.J)
पE.TIJRN
ENO

SUBRJUTINF SYM (A,N) FORMS SYMMFTRIC MATRIX FRCN LCWFR TRIANGLE REAL A(20,21)
$\mathrm{Nl}=\mathrm{N}-1$
ก) $10 \mathrm{I}=1, \mathrm{Ni}$
I $1=1+1$
D) $10 \mathrm{~J}=11, \mathrm{~N}$
$10 \Delta(I, J)=A(J, I)$ RETIJR V
END

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

DISK UPERATING SYETEN/360 FPDTRAN 360N-FO-451 31

```
SURKJITINE IDMASC (IP,HEAD,FR,PHI,P,A, MASS,CINC,KINC,GMASSI USES PSEUCN INVFRSE TO CBTAIN UNKNCWN MASSFS AND IMCRMPLETE STIFFNESS ANO IMFLUFACF CNEFFICIENT MATRICFS SFF MAIN PROGRAM FIR INPIIT CESCRIPTION
INPUT ERRITR MESSAGFS
```

```
MASS 'I' INDEX TON LARGE
```

MASS 'I' INDEX TON LARGE
MASS '!' I LFSS THAN J
MASS '!' I LFSS THAN J
MASSES 'I' ANO 'J" HAVF DUPLICATE INDICES
MASSES 'I' ANO 'J" HAVF DUPLICATE INDICES
WFIGHTING FUNCTION '1'=0
WFIGHTING FUNCTION '1'=0
APPROX MASS 'I' AND KNCWA NASS 'J" HAVE SAMF INOICPS

```
APPROX MASS 'I' AND KNCWA NASS 'J" HAVE SAMF INOICPS
```

INTEGER HFAOI201, P,IGM(IC),IKM(20),JKM(20), IAN(20), JAM(20)
REAL PHI (20,10), FMI10),KM(20), AM(20), W(20), A120,2n),R(20),
1 AW(20,20), RR(20.21), HM(20,20), MMIN(20), MPAR(20), DFL(20),
 REAL GMASS(IO)
C
I NPUT
10 WRITE (3.1001) IT, HEAO

1 A3,1944,5X,15(1*91///1
I $F R=0$
$I E R R=0$
$I C C=I C+1$
1002 FJRMAT (21101
GO TO (41,42),IC.C.
41 READ (1,1002) NG
42 [F(NG) 50,50,60
50 WRITE 13,10071
1007 FORMAT $1 / / T 20$, 'ALL GFNERALIZED MASSFS UAKNCWNO/I
gO TO 70
60 GO TO (61.62),ICR
61 READ (1.1008) (IGM(I),GM1I),I=1,NGI
1008 FORMAT $\left\{\begin{array}{l}\text { AII2.F9. } 011\end{array}\right.$
62 WRITE (3,1009) (IGM(I),GM(I), I=I,NG)
1009 FORMAT $/ / / T 20,{ }^{\circ}$ KMOWN GFNERALITED MASSFST//(TS. $\cdot M 112,1=1$

70 fin TO 171,721, ir?
71 RFAD 11.10021 NK
72 IF (NK) 80,80.90
80 WRITE 13.10101
1010 FOKMAT $1 / / T 20.14 L L$ MASSES UNKNOWN•/I
rin in 100
70 Gre TO 191.921 .1 Cr
G1 READ (1, 1011) (IKM(I), JKN(I),KM(II,IEI,AK)
1011 FOKMAT (81212.F6.01)
92 WRITE 13,10121 IIKM(II,JKM(II,KM(II,I=1, AK)

 3'M(1)

IAPUT FRRCR TFST
nก y20 $1=1$. Nk
111-13

LEIKM(I)

K=JKM(I)
1FIL-P) 901.901.902
901 $\mid F(K-D)$ 905,909,902
902 IF(IER) 903,903.904
903 WRTTE 13,20001
2000 FORMAT I/TS,'INPUT FRRORS, KNCWN MASSFST/I
904 IER=IFR+1
WRITE 13,20011 !
2001 FDRMAT (TIO, 'MASS'I4, ' INOFX TOO LARGFI)
905 IF(L-K) 906,910,910
906 IFIIEス1907,907,908
907 WRITE 13,20001
908 IER =IFR+1
WRITE 13,20021 I
2002 FMRMAT (TIO, 'MASS'T4,', I LESS THAN J'I
910 IF(I-NK) 911,920,920
$911 \mathrm{~J}=1+1$
DO $920 \mathrm{~J}=\mathrm{Jl}$, NK
IF(L-IKM(J)) 920,912,920
912 If(K-JKM(J)) 920,913,920
913 IF(IEP) 914,914,915
914 WRITE 13,20001
915 IER=IER + 1
WRITF 13,20031 I.J
2003 FURMAT (TIO.'MASSFS'I4,' AND'I4,' HAVF CUPLICATF INDICFS'I
920 CONTIVUF.
ion READ (1,1013) NV.ICT, IIAM(I),JAM(I), AM(I),W(I),IEI,NVI
1013 FORMAT (110,9X,11/(215,2F10.01)
INPUT ERROR TEST
. Dn 950 I=1.NV
$L=\mid A M(1)$
$K=J A M I I)$
IF(L-P) 921,921,922
421 IF (K-P) 925,925,92?
922 IFIIERR1 923,923,924
223 WRITE (3.2004)
2004 FORMAT (/T5, 'INPUT ERRORS, $\triangle P P R O X M A S S E S O /)$
924 IERR=IERR+1
WRITE 13,20011 I
925 IF(L-K) 926,929,929
426 [F(IFRR) 927,927.928
327 WRITE (3.2004)
22日 IEKR=IFOR+1
WRITF 13.20021 I
929 [FIW(I) 935.93 C .935
930 IF (IFQR) 931.931 .932
931 WRITE 13,20041
332 IEFR=IFRR+1
WRITF (3,2025) I
DJOS FURMAT ITIO, 'WFIFHTING FUNCTICN'I4,: $=011$
935 IF(I-NVI936,942,94?

- $936 \mathrm{Jl}=1+1$
nn $941 \mathrm{~J}=\mathrm{Jlin} \mathrm{NV}$
|FIL-IAMIJ) 1941.937 .941

```
    337 |F{K=J4Y(J|| 941.938.941
    734 IFIIERR1939,939.940
    734 WRITE (3.2004)
    940 IERMEIEQR+1
    WRITC 13,2003) I,J
    941 COATIVUF
    942 IF(NK) 95C.950.943
    943 D) 950 J=1,NK
    1FIL-IKMIJ|\950,944.950
    944 IF|K-JKM(J)/950,945,950
    945 IF(IEVR) 946,946,947
    946 WRITE 13,20041
    447 IERR=IERQ+1
        WRITE 13:200%) I:J
2006 FOHMAT (T10, "APPOOX WASS'I4," AND KNCWN MASEPT4, MAVF SAME INDICFS
    1'1
    950 CONTIVUF
        IFIIER 1951.951.500
    951 [F(IENR)101.101,500
    101 N2E = N*(N-1/1/2
    NE=N7F+NG+MINOIICT,II
    NR =NV-NE
    WRITF 13,10141 NF,NV,NR
1J14 FORMAT I//T20,'PPORLEM DEFINITION NO RF EGUATIMNS E I2I
    I T4L,'NS OF VARIABLFS = I2/T37, OROER CF CFEENEOACY % I2I
        IF (NQ) 110,120,149
    110 WRITE (3,1015)
1015 FORMAT ('+'T65.'NOTE - NO FXACT SOLUTITA PNSGIELE'I
    GO TO 149
    120 WRITF (3,10161
1016 FORMAT ('&'TG5, ONOTF - ONLY CNE SOLUPIOA PRSSIPLF, ADPQOX MASSES N
    10T USE\:1
    149 IFIICTI130.151.130
    130 WRITE(3,2016)
20I6 FOKMAT (/TG1, 'TOTAL OF OIAGONAL MASSFS CCNSTANTVI
    151 IF(NE-20) 159,159,152
    152 WRITE (3,3016)
```



```
        G\cap TO 500
    159 GO TJ (150,2501.ICr
    15001 160 1=1,NF
    160R(|)=?
                                DFFONIARONAL FOUITITAS
        IE=0
        NL=N-1
        N'7 200 | = I,N1
        J1=1+1
        On 200 J=J1,N
        IF=1L:1
        O^180 1V=1,NV
        L=|AM||V)
        K=JAM(IV)
        IF(K-L) 170,165,170
    ItS A|IF.IV)=PH|(I.||#PH|||.,J|
```

GO iJ 191
170 AIIE,IVI=PHI(L,II*PHIIK,J)\&PHI(K,I)*PHI(L,J)
1\%O CONTINIJE
IF(NK)200.200,1日5
1月5 no 199 1 $K=1$.NK
LEIKM(|K)
$K=J K M(\mid K)$
IF(K-L) 195,190.195
190 R(IF) =i(IF)-KM(IK)*PHI(L.I)\&PHI(t.J)
G TO 199
195 R(IE)=R(IE)-KM(IK)*(PHI(L,I) \#PHI(K,J)+QHI(K,I)*PHI(L,J))
199 CONTIVUF
200 CONTIVUF.
IF(NG) 250,250,21C
r.

EOS CCRRESPONCINE TR CIAG TFAMS
210 D7 $24011=1, N G$
$I=1 \mathrm{Gm}(11)$
IE =IE+I
on 230 IVEI.NV
L EIAM(IV)
$K=J A M(I V)$
IF $(K-L) 225,220,225$
220 A(IE, IV)=PHI(L,I)*PHI(L,I)
GO TO 230
225 A(IE, $\mid V)=2,0 * P H I(L, 1) * P H I(K, I)$
230 CUNTINIJF
R(IEIEGM(I)
(FINK) 240.24n,231
23100239 IK=1,NK
$L=\mid K M(I K)$

- K=JKM(IK)
(E\{K-1) 235,232,735
232 R(IE)=R(IEI-KN(IK)*OHI(L,I)*DHI(L,I)
fin TO 239
235 R! $|E|=R(|E|-2$. O*KM(IKI*PHIIL,II*PHI(K,I)
239 CONTIVIJF
240 CRNTIVIF.
250 IFIICTI251,260,251
r
251 IE=IE+1
P(IF)=0
i) 259 IV=1.NV
$L=\mid A M(I V)$
$k=J A M(I V)$
1F(L-र) 25H.253.75H
252 A(IF, |V)=1.0
Q($\mid E)=?(|f|+E M(\mid V)$
(a) In 259

25 A(IE,IV)=0
)69 rimitivije
20J NHITF 13.12171 NF, A.V

CALL MNUT? (A,NE.NVI
WPITE 13.10191

```
    1019 f\RMAT (///T2O, 'f VECTOR'///
```

 WRITE \((3,1020)(P 11), 1=1\), NF \()\)
 1.J20 FIJRMAT (/(16.1DIDE12.4)
 FCRM \(A W=A / W\)
 DO \(270 \mathrm{~J}=1 \mathrm{INV}\)
 Wlel.0/WIJ)
 OS 270 I \(=1, N F\)
 270 AW(I,J)=A(I,J)*WI
 FORM BR
 CALL PSEURII (AW,NE,NV,BRI
 DO \(2801=1\),NV
 WI=1.0/WII
 On \(280 \mathrm{~J}=1\), NE
 280 RR(I.J)=RRII.J)Wl
 C
FORM BM
CALL YMPY IRR,A,NV,NF,NV, RMI
DC 290 I=1,NV
DU $290 \mathrm{~J}=1 \mathrm{NV}$
BM(I,J) $=-8 M(1, J)$
(FII-J) 290,285,290
285 BM(I,J)=BM(I,J)+1.0
290 CNNTIVUE
WRITE 13.10211 NV,NE

CALL MOUT2 (AR,NV,NFI
WRITE 13.10221 NV,NV

CALL MOUT2 (BM,NV,NV)
FORM SOLIITION
CALL MMPY (BR,R,NV,NE,I,MPINI
CALL MMPY (AM,AM,NV,NV,I,MRAR)
$T M=0$
TMB =0
OEL. $S=0$
no $3101=1, N V$
MBAR(I)=MRAR(I)+MMIN(I)
TM=TM+AM(1)
TMA = TMB +MBAR (i)
DFL(I) =iHAAR(I)-AM(I)
310 DFLSODELS+OFL(I)*NELII)
DELSESORTIDELSINVI
mass CUTPUT
WRITE 13,10231

IGT FACT MIN MASS AEST MASS CHANGET/I
WRITE (3.1024) IIAM(I), JAM(II,AMIII,WIII,MMIAIII,MAAQIII,DELII).
1 I=1,NVI
1024 FURMAT (15,14,1PE15.4,0PF10.4.1R3E15.41
WRITE 13,10251 TM, TMA, DELS

r
DU 32, i=1,p
no $320 \mathrm{~J}=1, \mathrm{p}$
320 MASS(1,J)=A
OH $3301=1, N V$

L=IAM(1)
$K=J A M(1)$
MASS(L,K) $=M B A F(I)$
330 MASS(K,L)EMRARII)
IF(NX) 355,355,34C
340 DU $350 \quad 1=1, N K$
$L=\{K M(I)$
$K=J \times M(t)$
MASS(L, K) $=$ KM(I)
350 MASS(K,L) $=$ KMI! $)$
355 WR:TE (3,1026)
1026 FORMAT (il'//T3D, \quad FULL MASS MATRIXP//I
CALL MOUT2 (MASS,P,P)
Di) $370 \quad 1=1, p$

DO $370 \mathrm{~J}=1, \mathrm{~N}$
370 BMIJ, I) =PHI(I,J)
CALL MMPY (BM,MASS,N,P,P, BR)
CALL MMPY (RR, OHI,N,P,N, AM)
WRITE 13.10271
1027 FORMAT ('1'//T30, 'GFNFRALIIED MASS MATPIX'//I
CALL MOUT 2 ($B M, N, N$)
OD $375 \quad i=1, N$
375 GMASS(I) $=$ RM(I,I)
r
DO $390 \mathrm{I}=1, \mathrm{~N}$
OM=FR(I)*FP(I)*39.4784
CCOEF(I)=1.0/10M*RM(I.1)
390 KCDEF(I) $=$ OM/BM(I.I)
D) $395 \mathrm{I}=1, \mathrm{P}$

DO $395 \mathrm{~J}=1, \mathrm{P}$
CINC(I,J) $=0$
395 KINC(I, J) $=$?
$00400 \quad[\mathrm{~N}=1, \mathrm{~N}$
DO $400 \mathrm{I}=1, p$
D0 $400 \mathrm{~J}=1, \mathrm{P}$
CINC(I, II =CINCII,JI+CCDFFIIN) \#PHI(I.,INI*FHIIJ,IN)
400 KINC(I,J)=KINCII,J)+KCDFF(IN)*RP(IN,II)*PR(IN,J)
WRITE 13,10291 IKROFF(I),I=1, N)
1029 FOKMAT ('I'//T30.'INCNMPLETE STIFFNESS CCEF'//TIT, 'MONAL CNFFFICIF INTS'/T6, IP10F12.41
CALL MOUT2 (KINC,P,D)
WRITE (3.1028) (CCMFF(I),I=1,N)
 INTSO/T6,1P10F12.41
CALL MOIITZ (CINC,P,PI
SUO RFTUPV
ENT

SUBRO.JTINE MITFR (A, A, N,TCL, ITMAX,FUN,VAL,ITI
ITERATFS ON A*B FRR DOMINEAT EIGFAFUNCTIDN (FIIN)
and figenvalue ivall.
N IS DPOER
TOL IS DFCIMAL (.O1 DERCENTI TCLERANCE DN VAL.
ITMAX IS MAX NC OF ITFRATICNS.
It IS NIJMAER of Itferations perfrrnfo.
a. A APE SQUARE OF CPDER N IDIMEASICNED 120.211).

USES MMPY $(A, B, N 1, N 2, N 3, C)$
RFAL $A(20,21), B(20,21), C(20,21)$, DUM(20), FUN(20)
CALL MMPY (A,R,N,N,N,C)
$V A L O=100$.
$1 T=1$
On $10 \quad I=1, N$
10 FUN(1) $=1.0$
11 CALL MMPY IC,FUN,N,N,I,DUMI
VAL $=$ OUM (1)
DU $20 \quad \mathrm{I}=2, \mathrm{~N}$
IFIABSIVAL)-ABSIDUMII)||15,20.20
15 VAL=DUM(I)
20 CINTIVUE
no $30 \quad I=1, N$
30 FUNPII =DIJM(II/VAL IF(ABSIVAL/VALO-1.0)-TOL) $50,50,40$
$40 \quad I T=1 T+1$
$V A L D=V A L$
IF (IT-ITMAX) 11,11,50
50. RETURV

ENO

NISK TDFRATINr, SYSTEM/3GC FCRTRAN
 34nN-Fn-451

FUNCTION GEN IFUN,A,NI
GFN = FUN(TPAACI - A FIN

DIMFNSIUN A(20,21),FIN(20)
r,FN $=0$
Dก 20 I $=1 . N$
OUM $=0$
D() $10 \mathrm{~J}=1, \mathrm{~N}$
10 DUM $=[U M+A(1, J) \neq F$ UN(J)
20 GFN=GEN+DUM*FUN(I) RETURV
END

OISK OPERATING SYSTEM/BGC FCRTOAN 3KON-Eก-451 3

SJARJITINF RSFIDC IA, 'JR,NC.CI
C = PSFUUOINVFQSE OF Δ A IJADISTURPEC a IS A PECTANGULAR MATRIX TF NAXIMAL EAAK (NR Y NEI NR . IT. OR .IT. NC
$C=(A \cdot A)^{-1} \Delta \cdot$ OR $A \cdot(A A P)^{-1}$
no.nc may niot fxCfen 20
FEAL A(20.201.R120.21). C(20.21)
on 10 1 $=1$.Nk
n? $10 \mathrm{~J}=1$, NC
10 R(J.IIxAlI.J)
IF('Vマ-NC) 20.20.30

20 CALL YMPY (A,R,NP,NC,NR,C)
CALL INVPS IC,NF,AI
CALL MMPY (R, $\triangle, N C, N R, N R, C I$
GO 1040

> NR . LE. NC $C=A A$

NC. LT. ND

$$
r=A O A
$$

30 CALL YMPY (S,A,NC,NR,NC,C)
$\Delta=$ INV DF P .

- CALL INVDS (C.,NC,A)
C = pSFUNOINVFRSF PF A (Nr. X NRI
CALL YMPY (1, P, NS,NS,NP,CI
RFSTIRFA
40) $051=1, \mathrm{~N}^{2}$
[1. $50 \mathrm{~J}=1, \mathrm{~N}^{-}$
$50 \Delta(1, J)=\{(J, 1)$
kETUQV
Fi?

SUERTJTINE INVRS (R, N, A)
\triangle = IVVERSE OF $A \quad B$ UNRISTURBFO DIMENSIIN A(20.21), n(20,21),1ROW(21),1CCL(21), E120,211
DO $1 \quad 1=1, N$
DO $1 \mathrm{~J}=1, \mathrm{~N}$
$1 A(1, J)=B(I, J)$
$M=N+1$
$007 \quad 1=1, N$
|ROW(II=1
7 ICOL(I)=1
DO $20 \mathrm{~K}=1, \mathrm{~N}$
AMAX $=A(K, K)$
$0010 \mathrm{I}=\mathrm{K}, \mathrm{N}$
$0010 \mathrm{~J}=\mathrm{K}, \mathrm{N}$
IFIABSI AII,JII-ARS(AMAXIIIO,9,9
9 AMAXE AII,J)
IC $=1$
$J C=\mathrm{J}$
10 CONTIVUE
KI=ICJL(K)
ICOL(K) $=I C O L$ (IC)
ICOL(ICI=KI
$K I=I R T W(K)$
IROW(K) =IROWIJCI
IROWIJCI =KI
IF(AMAX) 11,12.11
12 WRITE 13,13)
13 FORMATI' SOLUTION IF EXISTING MATRIX NCT PCSSIRLF'I
GO TO 100
11 DO $14 \mathrm{~J}=1 \mathrm{~N}$
$E=A(K, J)$
$A(K, J)=A(I C, J)$
14 A(IC, J) $=E$
DC $15 \quad I=1, N$
$E=A(I, K)$
$A(I, K)=A(I, J C)$
15 A(I, J $=1=F$
DO $16 \quad[=1, N$
(F(I-K) $18,17,18$
$17 \mathrm{~A}(I, M)=1$.
f0 TO 16
$18 \Delta(I, M)=0$.
16 CONTINUF
PVT=A(K,K)
ก $\quad 8 \mathrm{~J}=\mathrm{l}, \mathrm{M}$
$8 \Delta(K, J)=\Delta(K, J) / P V T$
on $19 \mathrm{I}=1, \mathrm{~N}$
IFII-K121.19,21
21 MMULT=A(I,K)
DO $22 J=1, M$
22 AlI,J) $=A(1, J)-A M I L T * A(K, J)$
19 CINTINUE
DO $20 \quad I=I, N$
20 A(I,K)=A(I,M)

```
01/03/70INVPS
no \(25 \quad I=1, N\)
n 24 L=I.N
IF(IRTW(I)-L)24,23,24
24 CONTINUF
\(2310025 \mathrm{~J}=\mathrm{I}, \mathrm{N}\)
25 D(L,J)=A(I,J)
no \(26 \mathrm{~J}=\mathrm{l}, \mathrm{N}\) DI) \(28 \mathrm{~L}=1, \mathrm{~N}\) IFIICJLIJI-L) 28.29.29
28 cintinue
\(290026 \mathrm{I}=1, \mathrm{~N}\)
26 A(I,L)=D(I,J)
100 RFTURV
END
```


SUBRUJTINF MMPY (A,R,N1,N2,N3,C.I

$C . A \not B$

A (NIXN2I BIA2XN3) CIN1XNZ|
REAL $4(20,21),^{R(20,21), C(20.21)}$
DII $201=1, N 1$
Dn $20 \mathrm{~J}=1, \mathrm{~N} 3$
$C(I, J)=n_{\text {. }}$
DI) $20 \mathrm{~K}=1, \mathrm{~N}$?
$20 C(I, J)=C(I, J)+4(I, K) * 8(K, J)$ RFTURV
FNH

SURRJITINF RANIU (IX,IY,YFI.I
IY=IX*65539
|F|IY|5,6,6
$5 \quad \mid Y=1 Y+21474$ R3647+1
© YFL $=1 Y$
YFL=YFL*。4656613r-9
RETURV
ENO

SIMRDUTINE MOR (M,K, F,N, CM, ZR,ZI,YR,YII

CALCIILATFS COMPLEX IMPEDANCE ANC MCPILITY
 M IS SOUARF MASS MATRIX
 K IS SOUARE STIFFNFSS MATRIX
 ro IS SCAIAR STRURTURAL JAMPINE
 OM IS FE=O!IFNCY IN MFRTZ
 N IS MROER

IMPEDANCF IS $2 R+1 * 21$ II = SORT(-11)
MORILITY $=V R+I$ \& 1
ALL SQUARE MATPICES ARF DIMFNSICNFD 120,711
USES CINV. INVRS, MMPY
REAL M(20,21),K(20,21),2R(20,21),21(20.21),YR(20,21),Y(120,21) OMR=OM $\$ 6.283185$
CON =G / OMR
$0010 \quad 1=1, N$
DI $10 \mathrm{~J}=1, \mathrm{~N}$
2R(I.J)=CON*K(I,J)
$102(1(1, J)=U M R * M(1, J)-K(I, J) / O M R$
CALL CINV (ZR,ZI,N,YR,YI)
RETURV
END

| | | | |
| :---: | :---: | :---: | :---: |
| | | | |
| | | | |

APTIAL SYSTEM DADAMFPFO

vacs जatefy

| 1 | a． $3002 \mathrm{~F}=\mathrm{J2}$ | 7．0 | n． 2 | n．n | 0.9 | 1．7 | 0．0 | 9．） | 2.3 | 0.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | C． 0 | 1．0noof－01 | ก． 7 | n．0 | 0.0 | 0.7 | 2.0 | 0.1 | 0.1 | 0.0 |
| \cdots | 0.11 | 0.0 | 1． $30 n 0 \%-01$ | $0 \cdot 0$ | 0.0 | 0.7 | 0.0 | 0.7 | 0． 2 | 0.0 |
| 6 | $n \cdot 0$ | 1.00 | $n .0$ | 1．Bnnnt－01 | 0.0 | n． 0 | 1． 0 | 9.0 | 0．2 | 0.1 |
| 5 | $0 \cdot 0$ | Jon | | 0.0 | 1．nnonfent | $n, 0$ | 0.0 | $0 \cdot 0$ | 0.1 | 0.1 |
| 6 | n．t | 2． 0 | $n \cdot n$ | 0.0 | $n .0$ | 1．00nnc－01 | 0.0 | 9.7 | 0.7 | 0．0 |
| 7 | nor | 2．0 | n． 1 | non | n．0 | 0.0 | 1．00006－nt | 0.1 | 9．3 | 0.0 |
| 0 | 2.0 | 0.0 | 0.7 | n． 0 | 0.0 | 0.0 | 0.0 | 1．nコロOF－n1 | 0.1 | 0.0 |
| 9 | n． 0 | 0.0 | 0.3 | 0.0 | 0.7 | 3．0 | 0.0 | 0．${ }^{\text {a }}$ | 1．07725－81 | 0.1 |
| 10 | n． 6 | 3．0 | 0.7 | $n \cdot n$ | n．n | 0.3 | n． 0 | 0.1 | 0.7 | 1．9000E－01 |
| 11 | n． 0 | U． 0 | 0.9 | 0.0 | $n .0$ | 0.0 | 9．7 | 9． 1 | 9．3 | U．0 |
| 17 | 7.6 | 0.0 | 0.9 | n． 0 | n．n | n， 0 | 0.0 | 0.3 | n． 1 | n． 0 |
| 13 | n． 0 | 0.1 | 0.11 | n．n | 0.0 | $n \cdot 0$ | 0.9 | 1．） | n． 1 | 0.0 |
| 16 | noin | 0.0 | 0．7 | n．0 | 0.0 | n．n | n．n | n．0 | Jo 3 | 0.0 |
| 13 | 0.0 | 1．0 | ก， 1 | $n \cdot n$ | 0.0 | 0．9 | 0.0 | 9.1 | 9． 1 | 0.0 |
| 16 | $n \cdot 0$ | 7．1 | n． 3 | 0.0 | 0.0 | n． 2 | P． 0 | 0.1 | 0.1 | 0.1 |
| 17 | ก． 0 | 0.0 | ก．n | n． 1 | 0.0 | 0．n | $n .0$ | 0．9 | 0.1 | 0.0 |
| 1^{*} | n．J | n． 0 | n．n | n, n | 0.0 | 0.0 | 0.0 | 0.1 | 0．： | 0.0 |
| | 11 | 12 | 13 | 14 | 14 | 16 | 11° | 18 | | |
| | | | ＇ | | | | | | | |
| 1 | n．${ }^{1}$ | 2．0 | 0.7 | 0.7 | 0.0 | 9.0 | 0．0 | 1．1 | | |
| 7 | P． 3 | 3． 0 | n． 1 | 0.11 | n．n | 0.0 | n．0 | ค． 1 | | |
| 3 | $n \cdot 0$ | 9．0 | $n \cdot n$ | 9．0 | 0.0 | 0.0 | $n \cdot n$ | 2．？ | | |
| 6 | 4．11 | 1.0 | ก． 2 | n．0 | n．n | 0.1 | n．0 | 2.1 | | |
| 4 | n．0 | 1.9 | 0.1 | 7.1 | n． 1 | 0.0 | 3.0 | n．n | | |
| 4 | n． 0 | ．1．n | 7.1 | 0.7 | $0 \cdot 7$ | 7． 1 | n．0 | n． 0 | | |
| 1 | $n \cdot 0$ | 7．9 | n． 1 | 9.7 | non | 7． 2 | n． 2 | 0． 1 | | |
| ． | r．o | 0.9 | 3） 1 | A． 9 | $0 \cdot n$ | 9．9 | 0.0 | n． 1 | | |
| 4 | n． 1 | 1.9 | n． 1 | 0.10 | 0.0 | 1．n | n．0 | n． 1 | | |
| 10 | $n .0$ | 7.0 | $n \cdot n$ | n．n | 0.0 | 9．0 | n．n | n．n | | |
| 11 | 1．000nt－11 | 0.0 | ก． 0 | $0 . n$ | n． 2 | 7．0 | n．r | 0.0 | | |
| 12 | $n \cdot ?$ | 1．TANOF＝01 | 0.9 | 9．n | n．n | n，n | 0.1 | 7.1 | | |
| $1{ }^{1}$ | H． 7 | J， C | 1．30nnt－n | 7.7 | $r \cdot 0$ | O．n | 1．0 | 1）．n | | |
| 14 | $\cdots \cdot 1$ | 1． 0 | 7.9 | 1．nonnr－n 1 | ren | n．n | n, c | 1．n | | |
| 14 | n．c | 1.0 | 9． 1 | n． 0 | 1．9n6ir－91 | 0.0 | 7． 1 | 1．7 | | |
| 1% | n． 0 | | 7． 1 | 0.7 | $n \cdot n$ | 1．0n7ne－01 | 0.0 | 9．1 | | |
| 17 | r．f | J． 0 | 30 | 3． 0 | $n \cdot n$ | n．${ }^{\text {a }}$ | 1．0ncor－ni | 7.7 | | |
| 1^{14} | $n \cdot n$ | 1．1） | n． 1 | 3.3 | n． 0 | フ． 0 | n． 0 | 5.90975 | | |

111－27

INELUFMCF CRFFEICIFAT MATWIX

| 1 | 7 | 9 | ＋ | 5 | 6 | 1 | \％ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1． $0.300 \mathrm{~F}-06$ | 9，1654F－67 | 0．33915－07 | 7．494s－07 | A，क大15F－n7 | 4．82A1F－07 | 4．9948F－07 | 4．16194－07 |
| $9.1654 F=07$ | 3．4411F－05 | 6．052 5F－ns | 7．4244F－04 | H．04026－75 | $9.2011 F-05$ | H．9774F－04 | 日．24148－05 |
| －3327E－37 | 6．0529F－n5 | 1．11才AF－04 | 1．4n）3r－04 | 1．875日F－04 | 1．7759R－04 | $1.73935-04$ | 1．6027t－04 |
| 7．6464F－07 | 7． 52445 －05 | 1．41835－04 | 7．n321f－n4 | 2．3715f－04 | 2．5149F－04 | 2．4ni3E－04 | 2．29706－04 |
| A．6015F－07 | | 1．5935r－04 | 7．1745F－04 | 2，85116－04 | 1．07A日f－04 | 3．0771F－04 | 2．4673E－04 |
| 5． 4281 f －${ }^{\text {a }}$ | 2．2011r－ns | $1.77595-04$ | 2．51491－04 | 3.97186 .94 | 3．4093F－04 | $3.464 \mathrm{FF}=04$ | 1． 210 \％－04 |
| 4．9964E－07 | 1．9124F－05 | $1.7393 F-04$ | 7－4A13F－04 | 1．01318－04 | 3.464 FF－04 | 3．ACESF－04 | $3.4648 \mathrm{~F}-04$ |
| 4．1615F－01 | 8．2434F－05 | 1．4027E－04 | 2．297hF－04 | 2．4674F－06 | 1．2701F－04 | 3．46405－04 | $3.47938-04$ |
| 3．32B1F－07 | 7．0973F－05 | 1．38275－04 | 1．9BAMF－n4 | 2．4948F－74 | 2．8613F－04 | $3.0731 F=64$ | |
| 9．4943E－07 | 5．6141F－09 | $1.09595-3.4$ | $1.5799 F-04$ | 1．99AME－74 | 2．297hF－04 | 7，4813F－04 | $2.51496-04$ |
| 1．A615E－ 51 | 3．5811F－05 | 7．5899\％－05 | 1．09498－04 | 1．3ATAE－D4 | 1．4027F－n4 | 1．739\％－ 4 4 | 1． $17598-04$ |
| A． $24758-00$ | 1．982ef－09 | 1．AB71f－04 | | P．n9715－DS | 8．24320－05 | 6．9722F－04 | －7009－05 |
| ？．519AE－11 | －24015－08 | 1．65n3F－97 | 7．47A日F $=07$ | 3．304＊－07 | 4．1417F－07 | $4.97548-07$ | 5．110¢－0） |
| － $0.26456-00$ | －1．98154－05 | － $3.3876 F-05$ | －5．6105k－05 | －7．04716－n9 | －8．7310F－05 | －4．95718－04 | 9．1830E－05 |
| －1．6615c－77 | －3，9月14F－04 | －7．1794F－05 | －1．12448－04 | －1．42078－04 | －1．430？f－04 | －1．79635－04 | 1．34230－04 |
| － $3.30582-07$ | －5，977Af－ 05 | －1．1671E－24 | －1．6A7nt－04 | －7．1724F－04 | －2．4771F－04 | －2， $898 \mathrm{AR}=04$ | 2．1n61f－06 |
| $\begin{aligned} & -3.3437 E=07 \\ & -4.2031 E-07 \end{aligned}$ | $\begin{aligned} & =7.96965-05 \\ & -9.9546-74 \end{aligned}$ | $\begin{aligned} & -1.5371 E-04 \\ & -1.94600-04 \end{aligned}$ | $\begin{aligned} & =7.2503(-04 \\ & =3.8126 F-04 \end{aligned}$ | $\begin{aligned} & -7.8486 f-74 \\ & -3.3540 f-14 \end{aligned}$ | $\begin{aligned} & -3.1034 t-04 \\ & -4.1284 F-04 \end{aligned}$ | －3．59A4F－04 | $\begin{aligned} & 3.64938-04 \\ & 4.41204-04 \end{aligned}$ |
| 11 | 12 | 11 | 14 | 15 | 16 | 17 | 10 |
| 1．6615F－07 | B．2975F－08 | 2．579af－ 11 | | －1．6615 $5-77$ | －2．5052F－07 | － $3.34385-07$ | 4．2031f－07 |
| 2．estiE－OS | 1．94965－05 | H． $2401 \mathrm{f}=0 \mathrm{O}$ | －1．9A75F－05 | －3．9月145－05 | －4．9776F－05 | －7．9698f－09 | －9．4946F－05 |
| 7．5499E－05 | 3． 1 H71E－09 | 1．6503F－01 | | －7．7197f－n5 | －1．1677F－04 | －1．55715－04 | $-1.94806-04$ |
| 1．09995－04 | 5．6173F－05 | 7．4748E－37 | －9．h105c－05 | －1．1244F－04 | －1．6n76f－04 | －2．2403s－04 | －2， $1124=14$ |
| 1.343 of $=04$ | 7．097ir－0s | 3．1093F－01 | －7．7877\％－04 | －1．4701F－04 | －2．1324F－04 | －2，8434．E－04 | － $3.5540 \%-04$ |
| $1.8027 E=34$ | 7． 2 －37F－n5 | 4.141 1E－n 1 | － R ． $2110 \mathrm{~F}-04$ | －1．6Sn？F－04 | －2．4771F－04 | －3．3034F－n4 | －4．12A + －-14 |
| 1． $1343 \mathrm{~F}=04$ | a．97228－05 | 4．475hF－n7 | －6．9473F－04 | －1．74635－04 | －2．b084c－06 | －7． 9 91．45－04 | －4．49558－04 |
| 1．7799F－04 | 4． 20095 | S． $81095-51$ | －7．18 30F－05 | －1．0423F－04 | $-2.7 \mathrm{HCl} \mathrm{F}^{\text {－}}$－06 | －3．6894F－04 | －4．6120¢－04 |
| 1．A 93AE－04 | H．8460F－09 | 4，6474E－C7 | － 4 － 17384 －09 | －1．7716F－04 | －2，66n4F－04 | －7．9489F－74 | －4．4 $368 \mathrm{AF}-04$ |
| 1．4H23F－04 | 1．82＋3f－09 | 7，414．1F－07 | －7．nnosfr－05 | －1．5075E－04 | －2，754．8F－04 | － $\mathrm{P}_{0} 14172-04$ | －3，79028－04 |
| 1．1188F－04 | 6．0526F－05 | 6．327 $6 ¢-n 1$ | －h． 725 TE－15 | －1．2171F－04 | | $-7.43456-04$ | $3.74478-04$ |
| f．09．try－0s | 3．44715－05 | 4．1613E－07 | －？． 418 of－05 | －6．9231E－05 | －1．0443F－04 | －1．3939F－04 | －1．7444F－04 |
| A．1224F－ 01 | 9．161， 5 － 07 | 1．7000F－06 | 1． 2 A 73r－06 | 1．1ARSF－NA | 1．249af－06 | 1．7311F－n6 | 1．4104C－06 |
| －A． $123535-05$ | －3．4109\％－05 | 1．nil32F－06 | $4.45305-05$ | H．9440F－ns | $1.34745-04$ | 1．1914F－06 | 2． $34918=04$ |
| －1．2133E－04 | －5． $72515-05$ | 1．14656－76 | 1．9640f－05 | | 2．natut－06 | 4，月n 44F＝ 34 | |
| 1． 12 24Ut－04 | －1．04 13 ram | 1． 24788 －06 | 1．3474F－04 | 2，An） $4 \mathrm{F-R4}$ | 4． 5178 F －04 | | 7．8191F－04 |
| － $7.434 .35-74$ | －1．39396－04 | 1．33：1F－06 | 1．79A4F 04 | 3．8．344－94 | 5．1604F－04 | 1．553sr－n4 | 1．0954F－03 |
| － $3.04415-134$ | －1．1644F－n6． | 1．41A4f－06 | 3．74915－04 | H．AMAIE－St | 7．8191F－04 | 1．n954r $=03$ | 1．41498－03 |

```
A!SCKIPTITN JF SIMULATFD TEST
PIIVT AT WHPCH SVSTEM IS FODCFN T
NO TF POINTS OF MFASUREMFNT
OOIVTS AT WHICH MEASUGFMFNTS ADF TAKFA
```



```
FOFQUENCIES TF FXCITATICN - HT
                                    8.3160F ON 1.8654F 01 4.9055F 01
AVE QAVONM AYPLITINE FRROR 0.O
BIAS AMOLITUNF FPRIRR O.O
SEED FIN RANN MN GENERATOQ O
FYATT KESPONSE OF GCTIIAL SYSTE:MIN/SFP/PDUNO, NCRMALIZEO ON QFAL DRIVING POINT RESPONSE
                    RFAL PART
    9.3160F 00 1.8654E 01 4.9055F 01
    7.4873E-01 3.9852F-01 1.7967F-02
        0.47153 0.66158 -4.26195
        0.83368 1.04127 -3.72077
        1.00000 1.00000 1.00000
        0.91745 0.60815 4.77066
        0.57499 0.14263 3.75490
        -0.75043 0.51650 -0.585AA
        -1.54366 1.39374 1.48294
        -2.00865 1.87770 2.88484
```

CIMILATEU TEST ZFSPITNSF OEAL MORILITY WITH SRRCRS IIFFF AS PHI'S

| \&FP | 7.6873[-0] | 3.9852F-01 | 1.0967F-02 |
| :---: | :---: | :---: | :---: |
| | 1 | 2 | 3 |
| 1 | 4.7153E-01 | $6.6158 F-01$ | -4.2619E 00 |
| 2 | ค. $3368 E-01$ | 1.0412E 0n | -3.7208E OO |
| 3 | 1.0000 E 00 | 1.0000F 00 | 1. OOOOF 00 |
| 4 4 | 9.1745E-01 | 6.0815F-01 | 4.7707F 00 |
| 5 | 5.7490F-01 | 1.4263F-01 | 3.7549F 00 |
| 6 | -7.5043F-01 | 5.165 OE-01 | -5.858 F F-01 |
| 7 | -1.5837E 00 | 1.3937F 00 | 1.4829700 |
| 8 | - ? 0087F 00 | 1.8724500 | 2. 8848 E O |

CAGT II - IDEVTIFICATIGN


```
ALL GFENERALITED MASSFS UNKNCWN
ALL MASSFS INNNOWN
PRUJLEM DFFINITIINN NN OF FOLIATINNS = 4
NO OF VAOIARLFS=8
    MROER TF MFGFAFRACY = 4
    tgTal of oiafrnal masses cingtant
```

111-32

A MATHIX 4×8

| 1 | 2 | 3 | | 4 | 5 | 6 | 1 | 8 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.1195F-01 | 4.6805 5 - 01 | 1.0000F | 00 | 5.57945-01 | 8. 199月5-02 | -3.8760F-01 | -2.20725 | 00-3.761 of | 07 |
| -7.0096E 00 | -3.1019 ${ }^{\text {a }}$ On | 1.0000 E | 00 | 4.3768500 | $2.1587 F 00$ | $4.3966 E-01$ | -2.3485F | 00-5.1.946F | On |
| - ?.8190E OU | -3.8741F On | 1. D , | 00 | ?.9013F 00 | 9.355AF-01 | -3.0261E-01 | $2.0668{ }^{\text {c }}$ | On 5.401tE | 00 |
| 1.0000E 00 | 1.000050 | 1. DONOF | 00 | 1.nonof 0n | 1.0000^{5} n) | 1.0000500 | 1.00005 | On 1.00n0E | 03 |

a vectip
2. 0
0.0
0.0
1.550nf 00

AR MATRIX $\quad \mathrm{B} 4$

| 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: |
| -4.3193E-02 | -4. $2510 \mathrm{~F}-03$ | -7.0886F-02 | 1.466CF-01 |
| 1.7264E-01 | -9.0493F-02 | -5.7130F-03 | 1.4509F-01 |
| 4.3394E-01 | -1.2120E-01 | 1.7112F-01 | 1.3181f.01 |
| R.4392F-02 | 4.0135F-02 | 6.8805E-02 | 1.4657F-01 |
| - $1.8300 \mathrm{E}-01$ | 9.8495F-02 | -7.0437E-02 | 1.5234F-01 |
| -2.7448E-01 | 1.0553E-01 | -1.1863F-01 | 1.4612F-01 |
| -2.7324E-01 | 6. $7839 \mathrm{~F}-02$ | -8.0967E-02 | 9.8685F-02 |
| B. 2929E-02 | -9.6052F-02 | 1.0671E-01 | 3.2784F-0? |

| 1 | 2 | 4 | 5 | 6 | 7 | 8 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| | | | - 1 17 | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 4.0221F-01 | 2. $2153 \mathrm{~F}-01$ | 1.7123 | 3.9159E- 22 | 4.0117F-02 | 3.52575-02 | . $97045-02$ |
| - ? . 8270E-02 | -2.2153F-01 | $3.8433 F-01$ | -3.3990F-01 | 2.6029E-03 | 1.4145F-01 | 1.8768E-01 | -1.2637E-01 |
| 1.0176E-01 | 1.7123F-01 | -3.3990f-01 | 4.3106C-01 | 2.7697E-01 | -1.1088F-01 | -8.2490f-n3 | 3.1745t-02 |
| -9.5918E-02 | 3.9159F-02 | 2.6034F-03 | -7.7697F-01 | 6.A777E-01 | -2.8789E-01 | 6F-01 | |
| 1. $3292 \mathrm{E}-01$ | -4.0117E-02 | $1.4146 E$ | 1068F-0 | -2.8789E-01 | 6.6519E-01 | 1 | 7.3882F-02 |
| -1.0541E-01 | 3. $5256 \mathrm{~F}-02$ | 1.876日F-01 | -6.2482F-03 | 1.7936F-0 | 2.5892F-01 | 01 | 01 |
| 4.9209F-0 | 1.0709F-0? | -1.2637E-01 | 3.1745F-02 | 1.1061F-01 | 7.3882F-02 | -2.9588F-01 | 1.461 CE-01 |

BFST MASS SOLUTIUN

| 1 | J | APPROX MASS | WGT FAC, 1 | MIN MASS | EFST MASS | CHANGE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2.5000E-01 | 1.0000 | 2.2723F-01 | 2.4410E-02 | -5.9003F-03 |
| 2 | 2 | 2.0000E-01 | 1.7000 | 2.2489F-01 | 2.0163F-01 | 1.6285E-03 |
| 3 | 3 | 2.0000F-O1 | 1.0000 | 2.0431F-01 | 2.1967F-01 | 1.9667F-07 |
| 4 | 4 | 2.0000E-01 | 1.0700 | 2.2718F-01 | 2.0853f-01 | H.5347E=03 |
| 5 | 5 | 2.5000F-01 | 1.0000 | 2.3612F-01 | 2.a310F-01 | -6.3010E-03 |
| 6 | 6 | 2.5000f-01 | 1.10000 | 2. $2649 \mathrm{E}=01$ | | -1.1926f-0. |
| 7 | 7 | 1.5000E-01 | 1.0000 | 1.5296F-01 | 1.3892F-01 | -1.1085F-02 |
| H | A | $5.0000 E-02$ | 1.0000 | 5.0815E-02 | 5.5379f-02 | 5.37898-03 |
| TIT | | 1.5500 E 00 | | | 1.5900F 00 | |
| ems jF Chavgis 1.01 | | | | | | |

111-36

FULL MASS MATEIX

| 2.4410E-01 | D. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 2.0163F-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 0.0 | 2.1967F-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 0,0 | 0, 0 | 2.0853F-01 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 0.0 | 0.0 | 0.0 | 2.4370E-01 | 0.0 | 0.0 | 0.0 |
| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.3807E-01 | 0.0 | 0.0 |
| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.3892E-01 | 0.0 |
| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | S.5379E-02 |

111-37

GENFRALILED MASS MATRIX
123
$\frac{1.3760 E ~}{1} \quad 20-5.9605 F-08 \quad 2.563 C E=06$ 5.9605E-08 1.1547F 00-1.1921F-07 $1.8477 \mathrm{E}-06=5.9605 \mathrm{~F}=0 \mathrm{~A} \quad 1.6475 \mathrm{~F} \mathrm{O}$

INCOMPLETE STIFFNFSS COEF

INRTMPLETF INFLIIENCT COFF

MINAL COEFFICIENTS
2.661 BF-04 6.3U42E-05 6.3H92E-07

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | ค |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9.8380E-05 | 1.5820F-04 | $1.64505=04$ | 1.2752F-04 | 6.78ค1E-n5 | -7.1050F-05 | -1.44685-04 | -1.91年7F-04 |
| 1.5820E-04 | 2.6720E-04 | 2.8517F-04 | 2.3217E-04 | 1.28516-04 | -1.3123E-04 | -2.6347F-04 | -3.2969E-04 |
| 1.6450f-04 | 2.8517F-04 | 3. 2986 -04 | $2.8559 F-04$ | 1.6442E-04 | -1.6756f.04 | -3.3273E-04 | -4.147 EF-04 |
| 1.2752E-04 | 2.3217E-04 | 2. $15595-04$ | 2.6190F-04 | $1.5731 \mathrm{E}=04$ | -1.6524F-04 | -3.2878F-04 | -4.0995E-04 |
| 6.7881E-05 | 1. $2801 \mathrm{~F}=04$ | 1.6442E-04 | 1.5731F-04 | 9.8267E-05 | -1.1160E-04 | - -. 2625 5-04 | -2. $1362 \mathrm{~F}-04$ |
| -7.105UE-05 | -1. $3123 \mathrm{E}-04$ | -1.6756f-04 | -1.6524F-04 | -1.116nF-n4 | 1.6694F-04 | 3.6116F-04 | 4.6112F-04 |
| -1.4468E-04 | -2.3347E-04 | -3.3273E-04 | -3.287 AE-O4 | -2.2625f-04 | 3.6116F-04 | 7.9144F-04 | $1.0140 \mathrm{E}-03$ |
| -1. $6187 \mathrm{~F}-04$ | -3.2969F-04 | -4.1478E-04 | -4.0995E-04 | $-2.8363 E-n 4$ | 4.6112f-04 | $1.01405-03$ | 1.3003F-03 |

| FWFO | | heal dapt | |
| :---: | :---: | :---: | :---: |
| | A. 31 nue $n 0$ | 1.8654F 01 | 4. 7055 F 01 |
| $\begin{aligned} & 0.0 \\ & \angle E S D \end{aligned}$ | | | |
| | 6.03335-01 | 3.6940E-71 | 9. H 4 70F-03 |
| 3 | 0.47317 | 0.66153 | -4.26025 |
| 5 | C.83608 | $\therefore 04131$ | -3.71752 |
| $?$ | 1.00000 | 1.00000 | 1.00000 |
| 9 | 0.92231 | 0.60820 | 4.77137 |
| 11 | 0.57813 | 0.14266 | 3.75450 |
| 15 | -0.75794 | 0.5163 A | - 0.58527 |
| 17 | -1.36554 | 1.39374 | 1.48293 |
| 19 | -2.01776 | 1.87274 | 2.89604 |

WASS WITGIY CMANGFS

| 1 | 9.0 | 7.0 | 0.7 | | 0.0 | $n \cdot n$ | 3.0 | 0.0 | 0.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $?$ | n. ${ }^{0}$ | 3.0 | 9. 1 | | $n \cdot n$ | 0.0 | n. 0 | $n .0$ | 0.0 |
| 3 | $n \cdot 0$ | 0.0 | 1.3006r | 00 | n.0 | 0.0 | n.0 | n. 0 | n. 1 |
| 4 | $r .0$ | ก. 0 | ก. 0 | | 0.0 | $n \cdot 0$ | 0.0 | 0.0 | 0.1 |
| 5 | $n_{4} 0$ | 0.0 | 0.1 | | ก.0 | 0.0 | n. n | 0.0 | r.f |
| 6 | 0.0 | 2.0 | 0.0 | | 0.0 | 0.0 | n.0 | 0.0 | 0.1 |
| 7 | n. 0 | 0.0 | n. n | | n.0 | $n .0$ | n.0 | n. 0 | 0.0 |
| 4 | $\cdots .0$ | 0.0 | $n \cdot n$ | | n. 0 | 9.0 | n.n | n.0 | 0.1 |

| FAFO | $6.1740 E \mathrm{JJ}$ | 1.5593531 | 4.8525F nı | |
| :---: | :---: | :---: | :---: | :---: |
| Gfy mass | ?.1092f 00 | 7.07725 00 | 1.2999F 02 | |
| 17 FR | 9 | h | 4 | |
| 3 | 0.44715 | 0.4210n | -12.91041 | |
| 5 | O. 65134 | 1. 21949 | -11.97n98 | |
| 7 | 1.00020 | 1. $200.7 n$ | 1.900nn | |
| 9 | 0.8tale | 0.32243 | 17480652 | |
| 11 | त. 53196 | -0.27173 | 7.8c742 | |
| 15 | - 0.61524 | 1.79564 | -1.583nt | |
| 17 | -1.26145 | 4.61410 | 1.85984 | |
| 1 1\% | -1.52039 | 5. 87076 | 1.57423 | \checkmark |

111-44

NAET III - GMANGED MASGES RD STIFFNESSFS

WASS Mataix Changifs

111-48

| FMCO | 9.2006E 00 | 1.9249\% 01 | 4.9\#71E 01 |
| :---: | :---: | :---: | :---: |
| GEN MASP | 1.6264500 | $1.0250 \% 00$ | 1.5871F 01 |
| 1180 | 4 | 9 | 9 |
| 1 | 0.45974 | 0.63373 | -4.17174 |
| 5 | 0.81431 | 1.0321. | -3.44,70 |
| 1 | 1.00000 | 1.00nnn | 1.n¢000 |
| 9 | 0.94080 | 0.62384 | 4. 49599 |
| 11 | 0.60901 | 0.16623 | 1.69139 |
| 15 | -0.8566 | 0.46015 | -0.57543 |
| 17 | -1.83513 | 1.21220 | 1.4576n |
| 10 | -2.33705 | 1.03519 | 2.83594 |

111-49

DARF IIt - CMAHCEO MASSES NO STIFFMESSFE

| | | | | mfita | 1 l | COFLFTF | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | | 2 | 3 | 4 | | \pm | 6 | | 7 | | 0 | |
| 7.7.443F | 00 | 3.2064F 00 | -6.9364F 00 | | 00 | -1.0671E 0n | -3.84R4E | 01 | -4.92787 | | -3.1860\% | 01 |
| 3.20645 | 00 | 1. M132F on | -7.6372\% 00 | - 7.63169 | 00 | -4.3149F-01 | -1.382te | 01 | -2.6360f | 01 | -1.3014t | 01 |
| -6.5343t | 00 | -2. 3 ¢72F 00 | 5.41816 O0 | 7.44346 | 00 | 8.9430F=01 | 3.2253F | 01 | 4.3675t | 01 | 2.6413F | 01 |
| - 0_{0} (1)21F | 00 | -3.65164 00 | 7.4434E On | 1.01156 | 01 | 102153 ¢00 | 4. 1187\% | 01 | 6.75017 | 01 | 3.6039 | 01 |
| -1.0671E | 00 | -4.3460F-01 | 0.9433f-01 | 1.2ts2f | 00 | 1.46nse-01 | S.2643F | 00 | E.1044E | On | 4.33176 | 00 |
| | 01 | -1.5821F 01 | 3.2253601 | 4.78276 | 41 | 5.26E2*00 | 1-39e) | 02 | 2.9247 | 02 | 1.sedze | 02 |
| -6.9272E | 01 | -2.43606 01 | 4.9675801 | 6.75017 | 01 | 6.1094! 00 | 2.4247 | 02 | 4.5045 | 02 | 2.406 cf | 02 |
| -3.1660F | 01 | -1.301解 01 | 2.6543E O1 | 3.60355 | 01 | +.3314F On | 1.7622E | 02 | 2.406 0t | 02 | l.24ste | 02 |

| foro | 1.1146F 01 | 2.1051F 01 | 4. 71 95F 01 |
| :---: | :---: | :---: | :---: |
| CEN MAKS | 4.97996-01 | 2.0937\% on | 1.6072 F 01 |
| 178 | 1 | 10 | 9 |
| 3 | 0.50149 | 0. 75713 | -4.19111 |
| 5 | 0.64779 | 1.13590 | -3.65111 |
| 7 | 1.00000 | 1.00000 | 1.00000 |
| \cdots | 0.85975 | 0.48712 | 4.76362 |
| 11 | 0.48455 | -0.01164 | 3.40883 |
| 15 | -0.47878 | 0.90316 | -9.51111 |
| 17 | -0.93919 | 2.244ng | 1.675n7 |
| 18 | -1.16655 | 3.02633 | 3.05 ค月7 |

