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SUMMARY

This report presents the theoretical development and a

qualitative evaluation of a new concept in the mathematical

modeling of dynamic structures. The method has several

unique features. It uses both test data and analytical

approximations to identify the parameters of what is

termed an "incomplete model". The technique makes one of

the first substantial applications of the matrix pseudo

inverse to structural dynamics. The "incomplete model"

itself is unusual in that, while the mass matrix and damping

coefficient are physically meaningful, the stiffness matrix

is, in a sense, not physically related to the true (but

unknown) values. The model does, however, have the capa-

bility of predicting the response of the points of interest

on the structure over the frequency range of interest and

can be used to predict the changes in natural frequencies

and normal modes due to structural changes. It is the

ability to correctly predict the effects of structural

changes which have been tested in the work presented in

this report.

The theory was tested by running simulated tests on a

relatively simple structure, identifying the parameters

of the incomplete model, and using this model to predict
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the effects on frequency and mode shapes of several mass

and stiffness changes. The conditions of the tests were

varied by selecting different numbers of points of measure-

ment, varying the frequency range, and by including assumed

measurement error. Several analytical approximations were

used to formulate the incomplete model.

Based on the qualitative evaluation made, the following

conclusions are indicated.

1. The method presented appears to be an excellent tool

for the prediction of changes in normal modes and natural

frequencies due to strucCural changes.

2. The predicted effects are quite insensitive to reasonable

variations in the analytical mass distribution.

3. The procedure is relatively insensitive to measurement

error.

4. Attempts to make the model more complete by using a

greater frequency range for testing will not always be

successful unless the number of points of measurement are

also increased or off-diagonal masses are added. There

is a point in frequency beyond which the model will tend

to deteriorate.
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Because of the success of this preliminary evaluation, it

is recommended that the theoretical development be continued

and that applications to more complex structures be carried

out in order to develop a better understanding of the limita-

tions and capabilities of the method. A successful, more

definitive evaluation, could lead to-immediate practical

applications.
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INTRODUCTION

The need for mathematical models of aerospace structures

is obvious. No attempt to determine a structure's suit-

ability for its intended mission could be made without a

means of pred i cting its response to the expected loads.

No ra',.ional means of improvement or optimization would be

available without some ability to predict the effects of

structural changes on the response of the structure.

Purp ly analytical modeling is necessary in the preliminary

design stage of any struc ture. The evaluation of alternative

basic designs, the selection of materials, the arrangement

of components are some of the problems which must be solved

prior to construction of a test specimen. The science of

structural analysis has progressed to the point where s-ch

problems may be treated wta reasonable confidence.

Prior to usage, any critical structure must be submitted

to actual testing, since the analysis, after all, is only

based on a hypothetical model of the system. An analytical

model i^i as important at this stage as it was in the pre-

liminary design. The actual mission force environment

cannot economically be duplicated in test and the effects

of possible changes cannot all be tested.
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It would be reassuring if the results of dynamic testing

could be used to give an analytical model of the actual

structure. To date, however, there is no generally accepted

method applicable to the dynamics of structures. In addition,

it appears that the unique identification of an analytical

model from test data alone must be limited to rather special

conditions.

The number of degrees of freedom of a linear model of a

dynamic system is equal to the number of independent spatial

coordinates and also to the number of normal modes of the

system. The response of any point on the structure is the

superposition of the responses of each of the normal modes

at that point. It is recognized that in linear systems,

measurable excitation of each normal mode is only achieved

by forces having frequencies near or above the natural fre-

quency of the normal mode in question. Thus, in order that

test data contain the information necessary for the unique

identification of a linear model having a specified number

of degrees of freedom, it is necessary that the applied

forces must have had significant components at frequencies

up through the same number of natural frequencies. Data

obtained from smaller ranges of frequencies of excitation

would not contain sufficient significant information for

such a unique identification.

I
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There are conditions where it is possible to perform a

unique identification. One is where the number of points

of interest on the structure is small and it is feasible to

excite the structure over the appropriate frequency range.

Such a situation is treated in Reference 1. Another con-

dition is where the major portion of the motions are due to

rigid body responses and there is in effect only six physical

degrees of freedom. This is the primary area of past appli-

cations of identification techniques to such problems as

determining aerodynamic stability derivatives.

The problem considered in this report is concerned with what

is probably the more common situation when the application

is made to elastic structures. It is taken to be impossible,

uneconomical, or generally undesirable to excite the struc-

ture and measure responses over a sufficiently wide frequency

range so as to provide the information necessary for the

identification of a unique linear analytical model.

In this report, the concept of an "incomplete model" is

developed. This is an analytical model which has fewer

normal modes than coordinates and is valid only over a

limited frequency range. It is shown how the parameters

may be determined using test data together with analytical

approximations. The attributes of the model are discussed

r
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and certain of these are tested using computer simulated

test data. It is shown that it is possible to determine

a rational mass matrix and structural damping coefficient

and that it is possible to use the incomplete model to

predict the changes in frequencies and normal modes due to

mass and stiffness changes. It is further shown that the

procedures are relatively insensitive to measurement error.

This research project has demonstrated a new and useful

analytical tool. It is suggested that further development

of the theory and methods of application would result in

procedures which will lead to better understanding of

structures and increased capability to improve and optimize

the design of aerospace vehicles.
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I. DESCRIPTION OF THE PROBLEM

An aspect of the following problem is considered in this

report. Consider a structure which is to be subjected to

dynamic testing. There are certain deflections and rota-

tions of points on the structure which are of interest. It

is desired to be able to predict each of these motions under

various loading conditions for the structure actually tested

and for modified versions of the structure.

It is assumed that an analytical model consisting of P

lumped masses interconnected by linear springs with scalar

structural damping will be adequate to represent the defor-

mation of the structure under consideration (the more gen-

eral mass matrix with off-diagonal terms is not excluded).

The motion of each of the P masses is considered to rep-

resent the motion of P points on the structure including

the points of interest. It is also assumed that the

loading conditions of interest will contain primarily

force components at frequencies below some finite value

including less than P natural frequencies of the model.

It is required that the analytical model faithfully rep-

resent the dynamics of the "points of interest" over the

"frequency range of interest". It is further required

that the model have the capability of predicting the

I

5



I

changes in response due to structural changes including

mass, stiffness and support changes.

The work reported here is limited in scope as follows. The

analysis assumes knowledge of the normal mode shapes at each

of P points and natural frequencies of the structure through

the frequency range of interest (Knowledge of the modal

masses is not required). It is considered that this data has

been obtained from testing. The P points are distributed

over the structure so as to represent the characteristics of

the measured modes and include all the points of interest.

In the rest of this report, all these points will be con-

sidered to be the "points of interest".

In the computer experiments described below, the dissipative

component of the resonant response was taken as a good ap-

prnximation to the normal mode. However, other more sophis-

ticated procedures such as those given in References 1 or 2

might be justified, for example, if the resonances were not

well separated. In addition, it is assumed that a "reason-

able" analytical model of the mass matrix of the structure

has been derived through analytical or intuitive means.

Using these assumed data, a procedure is developed for

identifying the parameters in the equations of motion such

that the model has the capability of predicting the effects

of changes in mass and stiffness on natural frequencies and

modes.
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II. BASIC RELATIONSHIPS

The material presented in this section is not new but is

derived here in the form in which it will be referenced

in following sections of this report. Definitions of all

the symbols used are summarized in the Glossary of Symbols.

The matrix equation of the spring-mass-structural damping

model discussed in.the previous section may be written

(see, for example, Reference 3)

My (t) + (1 + ig)Ky (t) = f (t)	 (1)

y, y, f are column matrices (vectors) representing the

acceleration, displacement (or slope), applied force (or

moment) as a function of time at each of the P points of

interest. M and K are PxP symmetric matrices representing

the mass and stiffness coefficients of the model. i is /--f-
and g is the structural damping coefficient. The imaginary

term is used here to indicate that the damping is in phase

with the xelocity but proportional to the displacement.

Under steady state sinusoidal oscillation at a frequency,

w, the equation becomes

{-w2M + (1 + ig)K)y - f	 (2)

t

I:
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where f may be thought of as the amplitude of the applied

forces and y as the amplitude of the displacements. y will,

in general, be complex because of the phase between the farce

and displacement.

Writing this equation in terms of velocity (y = iwy)

12-K + i (WM - W t) }y 	 f	 (3)

the (velocity) impedance matrix is given by

Z = 2K + i (wM - j-K) 	 (4)

and the mobility matrix by

Y = Z -1 - {2K + i (WM - WK) }-1	 (5)

It is interesting to note that the quantity directly ob-

tained through analysis is the impedance, Z, while the

quantity measured in testing is the mobility, Y.

Consider now, the.eigenvalue problem corresponding to

Equation (2).

{K - S22M}0 i = 0	 i = 1, 2, ...P	 (6)

where f2  are the natural frequencies and Oi are the normal

modes of the system. This equation may be written in two

ways:

8



M 1 x0 - S1 
i2
	 i Q 1, 2, ...P	 (7)

or

CM0i a 2¢i 	 1 = 1,2,.. . P	 (8)

Qi

where C, the influence coefficient matrix, equals K -1 . The

orthogonality relationship is given by

0 T M	 0	 j # i

=mi 	3=i

It is important to note that the normal modes (eigenvectors)

of M
-1 K  and its inverse, CM, are the same and that the

respective eigenvalues are reciprocals. The dominant mode

of M 1K is the one having the highest frequency and the

dominant mode of CM is the one having the lowest frequency.

It is convenient to write ( 7), (8), (9) using the 0 matrix

where

4D = 101 0 2	 ... Op )	 (10)

is a square PxP matrix. Then

M-1KO = O rQ2^	 (11)

CM@ _ 0 	 (12)

and

0TMO - rMij	(1.3)

I
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and

f

From each of the above three equations, one can write

K - MO M Q 
0-1

C = 0	 0-1 M-1

-1 = ^110TM
Substituting the third equation into the first two

2
i TKM^mlj^M	 (14)

C o f 1. OT	 (15)1
These two equations may be written in the equivalent form

2
P

K - i 1 
m M^1^1M	 (16)

p	 1	 T
C = E	 2	 ^ i ^ i	 (17)

i=1 t2imi

In connection with the discussion in Section VI, these may

be written in terms of principal idempotents (See Appendix

I) as follows	 _1	 p2 1 T

M K = i=1n1(mi^iM)	 (18)

10
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CM = E l (m i^iM)	 (19)
i61 f1i i

Note that the product ^i^i 
appearing in Equations (16) - (19)

are square matrices of order P but rank 1. When P of the

matrices of this type are summed as indicated, there-result

PxP matrices of rank P which are thus nonsingular.

The impedances and the mobility may also be expressed in

terms ofthe normal modes. Write Equation (4) as

Z=w(g- i)K + iwM

Use Equation (14) for K and factor M out on both sides and

the equation becomes

n2l	 _
Z = MT9 - i) @ 

i l 0
T + iwM 1 }M1

From (13), one can write

M : 0-T Im j o-1

Or
'C	 1 TM 1 s ^l^ ^

i

Substituting into the above equation for Z and factoring

the @ and 4T matrices, there results
i22

Z = MO{w (g - i) ml^ + i ^mli 
}mTM

i=	 i

11



t 3

or
oft n2	 2	 n2

Z w MO 
9 i + i(w - i) 

0 T	 (20)
m

i

and in summation form

w

p n	
2

2{ 9+itt	 - 1'}
Z= W	 mE	 i	 i	 M^i^ M	 (21)

i=1	 i

The mobility can be written as the inverse of the impedance,

from Equation (20):

^2	 2	 S22
Y = Z -1	 w{MO goi + i(w - i) 0TM)-1M 

i

W (OTM) 
-1	

2	

m
=	

i	
2 (MID) -1

g,Qi + i(w - rii)

but from (13)

(OTM) -1 = { tmi4 0-1 }
-1 = 0 Pm1J

and

(MO) -1 = {O-T [mlj 
}- 1 = ^.ml d OT

i
then

Y = wm	 1	
0T	

(22)
mi lgili + i(w2 - ni))

or in summation form

12



or	 2
w

w	
2 2

	
T

Y a w E 9 'i 
I I ^ -1 

' 1 Yii=1 I 
(Iri 

) - 11 + g a i m 1	 (23)

13



III. THE INCOMPLETE MODEL

The structure under considera+:on is represented analytically

by g, M, K (see Equation (1)). Consider, for the time being,

that g, M are known. It was seen that K and its inverse, C,

could each be written as a sum of matrices containing the

eigenvectors (Equations (16), (17)).

P	
i

K = E m MoiOiMi =1 i

P
C = K-1 = E	 1 ^i^i	 (25)

i=1 a 
2
mi

and the impedance and mobility could be written in similar

forms (Equations (21), (23))

2
S2.

Z	
p

 =	
E ml 

{g	 i [ (^W) 2 - 1] }M^i ^iM	 (26)

i=1 i	 i

W 2

) _

Y = Z-1 = w E --2r1 
9 

2 [ 
1 2	 2] OiOi (27)

i=1 SZ m.	 ['	
-1

0	 ] + g
^ 

i

All the square matrices (K, C, Z, Y, M) are of order P,

the number of degrees of freedom, and the ^ vectors have

P elements. The square matrices ^ i ^i are each PxP but

I

(24)
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are of rank 1 and are thus individually singular. Since

the Oi l s are linearly independent, a linear combination

of P of these simple products will be of rank P and thus

the summations will be nonsingular (See Reference 4, p.6).

If g, M and all the normal modes of the system were known,

the behavior of the system could be predicted by forming

the complete equations of motion. The question posed is

this: If incomplete information is available, i.e. only

the first N normal modes, is it possible to generate a

mathematical model that will give useful information about

the behavior of the system and modifications of it?

The following postulate . is advanced: The R, C, Z, Y matrices

obtained bX using less than P terms can be used to predict

the behavior of the structure and certain modifications of it.

Part of the purpose of this report is to test aspects of the

above postulate. The analytical model described by the

incomplete summations will be called an incomplete model.

These matrices will be written

__ N Qi	 T
Kinc

	

	 m. M^i^iM 	(28)i=1 i

__ N	 1	 T
Cinc i=1

	

S1 ?m^iOi
	 (29)

r
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N	 SZ?

	

Z inc - w E ml {g 
+ i(() 2 -1J }MOi O1M	 (30)

i=1 i	 i

w 2

__	 N	 1	 - i (r 	 -11	 T

Yinc	
w i=1 S22mi ( ( 

w ) 2 -1] + g2 ^i^i

	 (31)

Certain characteristics of the incomplete model are

apparent:

(1) Since the terms containing the higher values of

9i are not included, the dominant terms of K and Z will be

missing and thus Kinc and Z
inc Will not resemble the true

K and Z matrices.

(2) Conversely, the dominant terms of C and Y are

included in Cinc and Yinc' These are the matrices which

represent the responses due to applied forces and for the

model to have validity, it is necessary that they approach

the true values for w < "N.

(3) The four matrices are of order P (and represent

the P points of interest) but are of rank N. Thus, they

are all singular and they must be all formed separately

and not by inversion.

(4) The eigenvalue equation from (28) or ( 29) can

be seen to be

16



N St 2

M_ 
1Kinc^j	 ialmi ^i^iM^j - q^ ^

j	 j = 1,2,...N

0	 j > N

and similarly for CM. Thus it may be said that the in-

complete model contains only the first N modes of the

corresponding complete model.

I
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IV. IDENTIFICATION OF THE MASS MATRIX

The previous discussion has assumed knowledge of the normal

modes. It is apparent that knowledge of the mass matrix is

also required. Before proceeding further with the dis-

cussion of the incomplete model, a method will be described

for identifying the mass matrix. As above, it is assumed

that the first N natural frequencies and normal modes have

been determined through testing. Each of these modes con-

tains P elements representing the relative motion of all

the points of interest.

The normal modes are orthogonal with respect to the mass

as given in Equation (9).

OTMOj = 0	 j ^ i	 (32)

Writing out the indicated multiplications in terms of the

individual elements, this. equation becomes

P	 P-1 P
E	

ski ^kj mkr + E
	 E	

( Oki On j + 0ni Okj ) mkn = 0k=1	 k=1 n=k+1

i = 1,2 ... N-1	 (33)

j = i+1 ... N

where ski indicates the kth element of ^i and mkn is an

element of the M matrix. The mass matrix has been assumed

symmetrical but not necessarily diagonal. Equation (33) is,

I
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in reality, N(N-1)/2 linear equations having the mass

elements as unknowns with products of the elements of the

known normal modes as coefficients.

It is possible that certain mass elements may be known to

be zero or to have some definite value. If they are to be

zero, the corresponding terms are dropped from the.equation.

If they are to be restricted to a.particular.value, the

corresponding terms are _placed on the right-hand side of

the equation.

In addition, if any of the generalized..modal masses, mil

are known, Equation (9) for jTi can be used.

OTMOi = m 
	 (34)

or p	 2	 p-1 p

E	 Oki"kk + 2E	 E	 OkiOnimkn = mi	 (35)k=1	 k=1 n=k+1

There is another possible known condition. The total

of the diagonal elements may be considered to be known

(the total mass of the structure, for example). This

leads to the equation

p
E	 mkk = MT	 (36)
k=1

I
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Equations (33), (35) and (36) may be written as

Am = R	 (37)

where m is a column matrix made up of the unknown elements

of M, A is a matrix formed by the coefficients of these

unknowns from Equation (33), and, if used, from (35) and

(36). R is a column matrix made up of the right-hand side

terms corresponding to known masses, if any, known gen-

eralized masses, if any, and possibly the known total mass.

There are, then, at least, N(N-1)/2 equations and possibly

as many as N(N+1)/2+1 if all the possible equations are used.

A typical situation would use Equations (33) and (36) re-

sulting in N(N-1)/2+1 equations. If none of the mass elements

are considered to be known (other than zero), there are at

least P unknown diagonal masses and.as many as P(P+1)/2 if

the matrix is taken to be completely filled. In many sit-

uations, it will be desired to obtain a purely diagonal mass

matrix. In a typical situation, there will be, say, N(N-1)/2+1

equations in P unknowns.

When the number of equations is less than the number of

unknowns, there are an infinite number of solutions. When

the reverse is true, there will ordinarily be no solution.

20



This treatment will be limited to the first situation where

there are an infinite number of solutions to the equations.

This is not a severe restriction since the class of problems

considered includes a relatively large number of points of

interest and a relatively small number of known normal modes.

If these were nearly equal, it may have been possible with

a small amount of additional testing to have completed the

information requirements for other techniques (Reference 1).

A typical situation might include 4 normal modes plus the

total mass giving 7 equations and thus requiring more than

seven unknown masses. Similarly 6 normal modes would give

16 equations and 10 normal modes would give 46 equations.

As more normal modes become known for the same number of

points of interest, it may be necessary to introduce off-

diagonal masses as unknowns.

Return to the consideration of Equation (37) where A is an

ne x nv matrix (ne being the number of equations and n v the

number of variables) and n e < nv . m is nv x 1 and R is

ne x 1. The equations have an infinite number of solutions,

that is, there are an infinite number of mass distributions

which will cause the modes to be orthogonal. In fact, it

is quite possible for there to be an infinite number of

I
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mass distributions which will also give the same generalized

masses, mi l and thus result in the same Cinc and Yinc (see

Equations (29),(31)). In other words, it is quite possible

that different valid mass distributions used with the meas-

ured normal modes will predict identical responses of the

system to sinusoidal forcing.

If, however, it.is desired to use the model for making pre-

dictions under other conditions, especially to predict the

effects of changes in parameters, then it is apparent that

the masses used in the model should be as near to the "true"

values as possible. The best information available as to

what the "true" values are, is the approximation arrived at

by the analyst. These analytical values will not, in gen-

eral, satisfy the orthogonality-condition of the normal

modes, i.e. Equation (37).

The pseudo-inverse (see Appendix II) is an elegant mathe-

matical tool which can be used to obtain the solution to

Equation (37) which is the closest (in a least squares

sense) to any specified analytical approximation. Another

way of saying this is that the smallest possible changes

in the approximation can be found so as to satisfy the

conditions of orthogonality.

I
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Define a column matrix, mA, which is the approximation to

m and subtract AmA from both sides of (37) giving

A (m - MA) = R - AMA	 (38)

At this point, a weighting function is introduced in the

form of a diagonal matrix, W. Each element is a measure of

the analysists confidence in the corresponding approximation.

The result will be that masses having higher values of

weighting functions will tend to vary least. Inserting

the identity W 1W into the above equation results in

(AW-1 ) {W(m - mA) } = R -AMA 	(39)

Defining (AW 
1)+ as the pseudo-inverse of AW-1 , the solution

given by

W(	 (AW-1)+{ R - AMA }	 (40)m - MA) _ 

is the one of the infinite number possible having the

smallest weighted sum of squares of the differences of

F and mA. Using ordinary matrix algebra from this point,

there results

m - MA = W 1 (AW-1 ) + {R - Am A}

W = W 1 (AW-1 ) +R + {I - W 1 (AW 1)+MMA

I
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It is shown in Appendix II that

(AW-1 ) + = W lAT(A(W-1)2AT)-1

Then defining

BR = W 1(AW-1)+ = (W 1 ) 2AT {A(W 1)2AT)-1

Bm - I - BRA

the equation for the mass elements is

m = BRR + BeA

I

(41)
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V. MASS CHANGES

One of the criteria for evaluating the usefulness of an

analytical model is its ability to predict the effects of

changes. In this section, the use of an incomplet: model

to predict the effects of mass changes on the natural fre-

quencies and normal modes is discussed.

The stiffness matrix and the influence coefficient matrix

are independent of the mass of the system. The expression

derived in terms of the normal modes do contain the mass,

however. (Sea Equations ( 16), (17)). Thus, it must be con-

cluded that when the mass is changed, the normal modes and

frequencies must change in such -a way that the summations

remain invariant. In other•words

2

R = E=mm 	 MyiM = E	
(mi

+Ami	 2 (M+AM) 4 1+A 0i ) (0i+A 0i ) (M+ AM)i 1 i	 _ 1 i	 i
(42)

C E -^l
	

E	
12	 (^i+Ami) (4i+A ^i )

i=1 t2imi	i=1 Mi+Ani ) (mi+Ami )

(43)

where the A's indicate the changes due to the change in

mass, am.

r
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While the above expressions must be true when summed over

all the modes, they will not be exact for incomplete summa-

tions, i.e. for the incomplete model. Of the two (K and C),

it is to be expected that Cinc will be less sensitive to

mass changes. The reason is that the dominant terms are

included in Cinc and omitted in Kinc' thus, Cinc is much

closer to the invariant matrix C than Kinc is to the in-

variant K.

This hypothesis has been tested by calculating the fre-

quencies and modes of a modified system using matrix

iteration on C inc (M + AM). The changes predicted were

in excellent agreement with the true values. These results

are given in Section XI.
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VI. STIFFNESS CHANGES

The effect of a change in the stiffness matrix cannot be

handled as directly as the mass change discussed in the

previous section. Both the K and C matrices must change

when the stiffness is changed. Since the dominant terms

of K are missing in Kinc it does not appear to be reason-

able to hypothesize that (K + AK) inc = K inc + AK since even

small OK ' s can easily be greater by orders of magnitude

than the elements of Kinc'

As discussed in Appendix I (and also derived previously,

Equation (16)), it is possible to write K in the following

form

P	
2

K = E M. MoioiMi=1 1

if and only if the 0 i 's are eigenvectors of M-1K. Other-

wise there must be coupling tends of the form aijMoio^M.

Thus, if K + AK is expressed in terms of the eigenvectors

of M 1K, the equation must be of the form

P P

	

K + AK = E	 E	 aijM^i^iM	(45)i=1 j=1

Now, pre- and post-multiply this equation by ^k'0n

P P
^k( K + AK) on = E	 E	 aij (0kMoi) iMon ) = aknmkmn (46)

i=1 j=1

I

(44)
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because of the orthogonality of the O's. And since KO 

2
^nMOn

^k(K + ^K)^n = ^kK^n + 0kAKOn = S2n^kMOn + ^kOKOn - aknmkmn

or

= 52
-^- 1 O7 + ^lAK^ _	

^l + ^TAK ^ .a. 	 = i
lj	 mimj	 mi	 m?	

7
1

^iiQOj

1 7

Thus, substituting into (45), the expression for K + AK

can be written

P

	

Q
?	 P P	 ^TAK ^

K + AK = E ml Mai Tm + E	 E	 ( M.M.  )M^i^^M (48)

	

i=1 i	 i=1 j=1	 .i

This expression when summed over all P modes is exact.

Note that the first summation is equal to K.

Now, truncating the series at the last known mode, the

expression can be written

N	 N	 Oi,&K^i	 T(K + AK) inc	 Kinc + i=1 j=1 mimj+ M^
i ^ IM	 (49)

I
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This expression can now be evaluated and it is hypothesized

that M-1 (K + AK)inc can be used to obtain good approxi-

mations to the new natural frequencies and normal modes.

This hypothesis has been tested and the results given later

appear quite satisfactory.

r
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VII. IDENTIFICATION OF DAMPING COEFFICIENT

If the identified model is required to predict responses,

in addition to predicting the effects of changes on the

natural frequencies, it is necessary to identify the damping

coefficient. The responses to sinusoidal loading is, in

effect, the mobility (See Equation (23)). The real com-

ponent of the velocity response at the driving point is

given by:

•	 p	 1	 (50)
y = w E

R	
i=1 [ ^. -1] 2 + g SZimi

^i
where the modes are normalized at this point. When the

modes are reasonably well separated, yR at a resonance is

nearly completely dependent on the term due to the one mode.

Thus

yR(^di) = olm	 (51)
g i i

can be used to compute g when y R ("k ) has been measured.

If the modes are not separated, it is possible to use the

incomplete version of (50) which also contains only the

one unknown, g.

r
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I

•	 N	 1
YR (^ j)

	 Qj i=1 [	 -1] 2 + g2 
SEilmi	

(52)

^i

Using this procedure, g's may be obtained at each resonance.

Experiments discussed in following sections have shown fine

consistency among these values and good agreement with the

exact value.

Having obtained g and knowing the mass matrix, the natural

,frequencies, Q i , and the normal modes, O i , for i = 1, N

the dominant portion of the mobility matrix may be con-

structed at any frequency up to the vicinity of the Nth

natural frequency. It is expected that this information

allows the prediction of steady -state responses although

this has not specifically been tested in the work reported

in this report.
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VIII. DESCRIPTION OF COMPUTER PROGRAM

In order to subject some of the hypotheses presented to a

qualitative evaluation, a computer program has been de-

veloped. The program performs three functions: ( 1) it

simulates a test; (2) it identifies the mass; (3) it finds

the modes and frequencies after mass and stiffness changes.

The program logic is outlined in Figure 1 and the program

listing is given in Appendix III. Below is a general de-

scription of the program.

Part I - Simulated Test

In order to simulate a test, the program first accepts a

complete description of the "actual system" corsisting of

a mass matrix, M, a stiffness matrix, K, (or optionally,

an influence coefficient matrix, C) and a scalar damping

coefficient, g. The "actual" number of degrees of freedom

(the order of the matrices) is limited to 20.

The test to be simulated consists of measurements of the

resonant response at P points on the structure due to

sinusoidal excitation at one point. Thus, the data required

for the simulation of the tests consists of the driving

point, the points at which measurements are taken, the

frequencies of excitation, and the measurement error.

32
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I

END

9
START

1
GO TO
1,2,9

PART I 2

NP 

UT: ACTUAL
YSTEN, TEST

PART II PART III INPUT

4NO

INPUT:ENDWN MASSES,
pN OR GKPROX.AND WEIGHTING

CALCULATE N EXAC2 FORM EQUATIONS,
S

RESONANT VELOCITY
SOLVE USING CHANGE? No

RESPONSES S

YES

SET PHI EQUAL TO LIST INPUT,
A, R, BR , HN, FORM

REAL RESPONSE AT
P MEASUREMENT MASS, KINC, MTww ' M + AN

POINTSI
CINC

ITERATE FOR N NODES
AND FREQUENCIES

APPLY ERRORS
USING C INCMTENPTO PHI'S

CALCULATE RESONANT
RESPONSE OF

IDENT. SYSTEM
LIST INPUT DATA,
DESCRIPTION OF
TEST, RESPONSE,

PHI

LIST
ABOVE

NTEMP ' M1

LIST MODES
AND

FREQUENCIES

FFNESS	
NO

ANGE

YES

FORM AX INC

LIST AXINC

ITERATE FOR N MODES
AND FREQUENCIES

ING F; 1(KINC + AXINC)

FIGURE 1. LOGIC DIAGRAM DF MUTER PROGRAM.
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The frequencies of excitation, which should be the N res-

onant frequencies, are assumed to have been computed outside

this program. The measurement -rror is taken to be a fixed

bias error plus a uniform random distribution, each expressed

as a percentage of the exact measurement. The procedure,

then, is as follows: (1) calcula a zhe impedance,

g K + i(wM - K), of the "actual" system at each of the N

resonant frequencies; (2) invert these complex matrices to

obtain the exact mobilities; (3) store the elements corres-

ponding to the P measurement points of the column corres-

ponding to the driving point; (4) apply the specified

measurement errors to these values.

This data will be a good simulation of data which would be

taken in an actual test. The test data requ:.red in the

following parts of the program are the normal modes of the

system. It is known that a column of the real component

of the mobility near resonance will be a good approximation

to the normal mode when the natural frequencies are

separated. This can be seen from Equation (23). It is

this information, then, which is passed on to Part II of

theFrogram as the N measured normal modes, each consisting

of P points.

I
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As an option to the above procedure, the program will accept

as input the normal modes themselves. This procedure would

simulate the use of a more sophisticated method of computing

them. These modes are then polluted with errors as before,

prior to being transferred to Part II of the program.

Part II - Mass Identification

The procedures given in Section IV of this report are carried

out numerically. The input consists of any known generalized

masses or mass elements and the masses which are to be

treated as unknowns. For each unknown mass, an approximation

and a weighting function is supplied. In addition, one may

specify that the total of the diagonal masses must remain

constant. Based on the input, the A matrix is formed as

are AmA and W. The solution for the "best:" mass distribution

is obtained as given in Equation (41).

At this point, the identified mass matrix is formed, the

generalized mass matrix (4^TMO) is computed as are the in-

complete stiffness and influence coefficient matrices

(Equations (28), (29)). As a check, the resonant response

and the natural frequencies and normal modes of the iden-

tified incomplete model are computed.

I
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Part III - Mass or Stiffness Changes

There now is sufficient data to compute the changes in fre-

quencies and modes due to mass or stiffness changes. The

program will accept changes to either the mass matrix or

the stiffness matrix. For mass changes the matrix M + OM

is formed, where M is the identified mass matrix. The first

N frequencies and modes are obtained by iteration on

Cinc(M + LAM) as discussed in Section V.

For stiffness changes, (K + AK)inc is formed as given in

Equation (37). The N frequencies and modes are computed

by iteration from M-1 (K + AK)inc'

The program is written so that changes can be made on the

identified model in sequence without rerunning the first

two parts of the program.

I
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IX. THE SIMULATED TESTS

In order to test the hypotheses presented regarding the

characteristics of the incomplete model, it was necessary

to select a structure on which to perform the simulated

testing. It was decided not to select so simple a system

that success would give no confidence that the methods would

work in practice. On the other hand, it was not desirable

to make the first tests using such a complex system that

one would not have a good intuitive understanding of the

system and modifications of it.

As a compromise, a structure was selected whose behavior

is quite well understood yet is not so simple as to yield

trivial results. The structure selected is a simple, thin,

beam of constant EI having 18 lumped masses arranged so as

to approximate a uniform mass distribution. The beam is

allowed to deflect transversely only. The deflection is

constrained at one end and at a point approximately 70 per-

cent of the length of the beam, leaving an overhang of

approximately 30 percent. A structural damping coefficient

of .02 was used.

I
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Most of the simulated testing was performed using this

system. This system is designated Specimen I. Some tests

were also carried out on a structure identical with the

above except that two rotary inertias were added, one at

the second support and one at the free tip of the beam.

This system is called Specimen II. These beams are illus-

trated schematically in Figure 2. The natural frequencies

and mode shapes of the two beams were computed using a

standard computer program. These results are illustrated

in Figure 3.

For each of the two specimens, two arrangements of test

measurements were selected, referred to as tests A and B.

These are also illustrated in Figure 2. In each test, the

system was considered to be driven at station 60.

Associated with each specimen and each test is an approxi-

mate mass distribution. For Specimen I, test A, there are

three approximate mass distributions (I, II, III). Each of

these is somewhat reasonable. Table I lists the various

mass approximations used. These are discussed further in

Section X.

The simulated tests which Caere run are summarized a:.L

described in Table II.

t
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EI = 10  LB-IN.2

X (INCHES)	 0	 20	 40	 60	 AO	 100 120 140 160

MASSES 2	 .10 .10 .10 .10 .10 .10 .10 .10 .05
(LB-SEC /IN.) Q5	 0 	 lot .10 .10	 0	 lo .10	 0

TEST I-A	 1	 2 3 4 5 6	 7	 ,9 10 11

TEST I-B	 1	 2	 3	 4 I 5	 6	 7 8

SPECIMEN I

I = 10 LB-SEC 2IN.

I = 100 LB-SEC 2INR

X (INCHES)	 0 ^ 20 I 40 1 60 ! 80 1160 ! 1T (140 1 160 I

MASSES 2	 .10 .10 .10.10 .10 .10 .10 .10 .10
.10 .10.10	 .10	 .10	 .10	 .10 .10	 .05

TEST II-A	 1	 2 3 4 5 6	 7	 12	 8 9 10 11 13

TEST II-B	 1	 2 3 4 5 6	 7	 i	 8 9 10 it

NOTE:	 INDICATES SLOPE MEASUREMENT

SPECIMEN II

Figure 2. Schematic Representation of the Simulated
Test Specimens.

I
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I

FREQUENCY
Hz

I	 II
8.32	 7.91

18.6	 :8.40

49.05 44.01

I WITHOUT INERTIAS
--- ^I WITH INERTIAS

(SEE FIGURE 2)

0	 20	 40	 60	 80	 100 120 140 160

Figure 3. Exact Normal Modes of Test Specimens.
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TABLE I. APPROXIMATE MASS DISTRIBUTIONS

Specimen I Specimen II

Sta. True Test A Test True Test Test
n. Mass I II III W* B Mass A B

0.A .05 .05
10. .10 .10
20. .10 .30 .25 .25 0.1 .25 .10 .30 .30
30. .10 .10
40. .20 .15 .15 .13 1.0 .20 .10 .15 .15
50. .lv .10 .10 .12 0.5 .10 .10 .10
60. .10 .10 .10 .10 1.0 .20 .10 .10 .10
70. .10 .10 .10 .12 0.5 .10 .10 .10
80. .10 .15 .15 .13 1.0 .20 .10 .15 .15
90. .10 .10
00. .10 .30 .25 .25 0.2 .25 .10 .30 .30
10. .10 .10
20.A .10 .10
30. .10 .10
40. .10 -.25 .20 .15 0.5 .25 .10 .25 .25
50. in .10 .10 .13 1.0 .10 .10 .10
60. .10 .10 .10 .12 1.0 .la .10 .10 .10
70. .05 .05 .05 .05 1.0 .05 .05 .05 .05
@120. 0 1.00. 100. 0

(W=.01*)
@170. 0 10. 10. 0

(W=0.1*)

Support points

W = 1.0 except for test 6 when it was used as shown and
for tests 18-20 when it was used to minimize the dominance
of the lar a magnitude of the inertias.
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TABLE II. DESCRIPTION OF SIMULATED TESTS

No. of Mass
rest Specimen Test Resonances Approx.
No. (See Fig. 2) or Modes (Table I) Remarks*

1 I A 4R** I
2 I A 4M I
3 I A 3R I
4 I A 3M I
5 I A 3R I Variable mass
6 I A 3R I Weighting fun

(See Table I)
7 I A 3R II
8 I A 4R III
9 I A 3R III Variable mass
10 I A 3R III
11 I A 3R III 5% Bias an
12 I A 3R III +5% Random
13 I A 3R III Measurement
14 I A 3R III Error
15 I A 3R III
16 I B 3R
17 I _ B 3R Variable mass
18 II A 4R Inertias
19 II A :R weighted
20 II A 2R (See Table I)
21 II B 4R
22 II B 3R

Unless so indicated, total mass held constant, no
weighting, and no errors assumed.

**R indicates resonant data used, M indicates actual mode
shapes used.
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X. THE IDENTIFIED MASSES

The masses identified by the program based on the simulated

tests are given in Table III. The data is listed by test

number. Refer to Table II for a description of the tests.

The masses are given in the table to two significant figures

for ease of reading except for tests 10-15 in order that the

scatter may be observed. These are all identical except

that tests 11-15 contain test measurement errors of 5 per-

cent bias and +5 percent random on amplitude. In addition

to the masses themselves, the table indicates the changes

from the approximation in terms of the rms of the variance.

Certain characteristics of this data-can be observed. It

appears that "better" approximations have smaller variances

associated with them. This is what would be expected since

the better the approximation, the smaller the change re-

quired to make it satisfy the equations. In the cases of

Specimen I, test A, approximations II and III are in-

tuitively better than I since I includes the masses at

the supports. It is apparent, by comparing similar con-

ditions from tests 1-6 with 7-15 that the variances are

significantly lower for approximations II and III. Com-

parison of 16, 17 with 9, 10 which use effectively the
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TABLE III. IDENTIFIED MASSES

rest + Point of Measurement (See Figure 1) Var.
o. 1 2 3 4 5 6 7 8 9 14 11 RMS

Specimen I (See Figure 1)

I* .30 .15 .10 .10 .10 .15 .30 .25 .10 .10 .05

1 .28 .16 .12 .11 .12 .17 .26 .23 .088 .093 .074 .019
2 .25 .20 .12 .08 .11 .22 .21 .25 .11 .078 .092 .043
3 .29 .15 .11 .12 .12 .15 .29 .23 .077 .092 .076 .016
4 .29 .15 .11 .12 .12 .15 .29 .23 .077 .092 .075 .016
5 .29 .15 .12 .12 .12 .16 .29 .24 .081 .095 .077 .016
6 .27 .15 .13 .11 .13 .15 .25 .24 .097 .10 .066 .023

II* .25 .15 .10 .10 .10 .15 .25 .20 .10 .10 .05

7 .25 .15 .11 .11 .11 .15 .24 .19 .091 .097 .061 .0065

AIII* .25 .13 .12 .10 .12 .13 .25 .15 .13 .12 .05

8 .25 .15 .12 .085 .12 .15 .26 .15 .11 .099 .059 .014
9 .25 .13 .13 .11 .12 .13 .25 .15 .12 .12 .047 .0040
10 .250 .134 .125 .106 .124 .131 .248 .146 .124 .115 .047 .0040
11 .256 .142 .130 .104 .117 .123 .245 .147 .125 .115 .044 .0066
12 .255 .138 .125 .101 .118 .126 .249 .150 .129 .116 .043 .0044
13 .251 .138 .130 .109 .125 .130 .244 .144 .120 .111 .048 .0069
14 .252 .138 .130 .109 .124 .126 .243 .143 .120 .113 .052 .0070
15 .257 .142 .127 .100 .114 .122 .247 .150 .129 .117 .044 .0059

* .25 .20 .20 .20 .25 .25 .15 .05

16 .24 .20 .22 .21 .24 .24 .14 .055 .010
17 .24 .20 .22 .21 .24 .24 .14 .055 .010

Specimen II (See Figure 1)

** .30 .15 .10 .10 .10 .15 .30 .25 .10 .10 .05

18 .24 .16 .14 .12 .089 .14 .35 .26 .10 .071 .080 .034
19 .30 .15 .11 .11 .11 .16 .30 .24 .090 .098 .067 .015
20 .30 .15 .10 .10 .10 .15 .30 .25 .10 .10 .051 .0005

* .30 .15 .10 .10 .10 .15 .30 .25 .10 .10 .05

21 .73 -.36 -.08 .41 .27 -.33 .27 1.11 -.31 -.19 .18 .409
22 .29 .12 .068 .082 .10 .17 .33 .28 .13 .11 .027 .023

*	 Mass approximation used for tests following (See Table 1)
* Inertias not tabulated. Identified inertias were virtually exact

See Table II for description of test.
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same distribution suggests that the smaller the number

of points, the greater the variance will be. One reason

for this is that the approximation having the greater number

of masses is an intuitively better representation of the

system, everything else being equal.

There is another, more mathematical reason for this effect.

There are fewer equations than there are unknown masses (See

Section IV). If these numbers were the same, the mass would

be unique and have no necessary relation to the approxi-

mation. As the number of unknowns is increased, the set

of solutions expands and the probability of finding one of

these solutions closer to a given approximation increases.

The same effect is true when the number of unknowns stays

the same but the number of equations is decreased, as when

the number of modes used is reduced. Notice tests 18, 19,

20, for example, where the variances associated with 4, 3,

2 modes are .034, .015, .0005 respectively.

Thus, it could be reasoned that, the more nearly complete

the model (for a constant number of masses), the greater

will be the variances in the identified masses from the

approximation. The data presented here tends to bear out

this argument.

I
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The effect of the constraint on the sum of the masses has

little effect as can be seen by comparing tests 3 and 5,

9 and 10, 16 and 17.

The use of exact modes instead of the resonant responses,

in these examples, shows no significant improvement in

terms of the variances. It is interesting to note that

test 1 using four resonant responses has a variance of

.019 while test 2 which was identical except that true

normal modes were used has a variance of .043. in tests

3, 4, which are identical to 1,2 except that 3 modes were

used, the results are virtually identical to each other.

For Specimen II, test B, an intentionally poor test and

approximation was made by ignoring the large inertias and

omitting the measurements of slope at these points. Test

21 using 4 resonances results in very poor masses including

several negative values. However, when only three res-

onances were used, the identified masses show general

agreement with the approximation. In actual testing,

results such as from test 21 could point up the omission

of a significant parameter in the analysis.

r
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The effects of the measurement errors is rather small. In

five simulated identical tests (11-15), errors of 5 percent

bias and 5 percent random were applied to the.response am-

plitudes. This is identical to .a uniform random distribution

between 0 and +10 percent. In each case, the variances are

small. None of the individual mass elements vary )y more

than 8 percent over the five tests.

In general, the masses identified appear.to_be acceptable

approximations (except in test 21). The test as to whether

they are satisfactory or not will come when they are used

to predict the effects of structural changes.
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XI. THE EFFECTS OF MASS CHANGES

Two different lumped masses were considered to be added to

the structure and the new frequencies and modes were cal-

culated for the tests described in Table II. The method

used has been described in Section V and its implementation

in Section VIII.

The lumped masses were added at a point midway between the

supports (change "A") and at the free end of the beam

(change "B"). These masses were 1.0 lb-sec t/in.	 This

represents an increase in total mass of the beam of almost

60 percent.

Table IV summarizes the results of the frequency calculations.

The table shows the frequencies at which t'^e simulated

testing was conducted (the frequencies of the original bcam),

the exact frequencies of the modified beams, and the pre-

dicted results for each of the simulated tests.

In general, the results are surprisingly good and relatively

insensitive to the - ,.:dntities that were varied. For

Specimen I, change B (the more extreme of the effects),

4	 the first mode changes frequency by 54 percent and the

poorest prediction is within 8 percei.t of the correct value.

I
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TABLE IV. COMPUTED FREQUENCIES DUE TO MASS CHANGE

ode 1 2 3 4

* 8.32 18.65 49.06 96.12

A B A B A B A B

** 6.05 3.82 15.46 14.77 48.37 47.06 79.53 78.81

1 6.30 4.09 15.67 14.85 48.46 47.31 84.65 85.17
2 6.33 4.12 15.69 14.85 48.49 47.31 83.81 84.43
3 6.29 4.08 15.69 14.87 48.52 47.48
4 6.29 4.08 15.68 14.87 48.55 47.48
5 6.33 4.12 15.71 14.88 48.53 47.48
6 6.32 4.11 15.70 14.88 48.50 47.41
7 E.19 3.97 15.60 14.84 48.50 47.43
8 6.20 3.98 15.59 14.82 48.44 47.28 83.48 84.22
9 6.21 3.99 15.62 14.84 48.48 47.37
10 6.21 3.99 15.62 14.84 48.48 47.37
11 6.23 3.83 15.51 14.96 48.47 47.46
12 6.10 3.89 15.81 14.69 48.48 47.34
13 6.26 4.03 15.54 14.73 48.46 47.42
14 6.25 4.05 15.76 14.99 48.49 47.35
15 6.12 3.91 15.71 15.00 48.45 47.29
16 6.17 3.95 15.59 14.84 48.53 47.50
17 1	 6.18 i	 3.95 15.60 14.84 48.53 i	 47.50

* 7.91 18.40 44.01

** 5.91 3.78 14.92 14.58 44.00 40.23 60.33

651.94

162.72

18 6.14 4.02 15.15 14.68 44.00 40.40 61.2 62.82
19 6.19 4.01 15.15 14.69 44.00 40.69
20 6.06 3.94 15.07 14.72
21 5.01 2.92 14.30 14.37 43.99 40.36 63.46 64.48
22 5.88 3.73 1	 14.91 14.56 1	 43.99 1	 40.01

Frequency before changes, i.e. frequency tested.
* Exact frequency after changes.
Addition of 1.0 lb-sec t/in. at Sta 60 ( "A") ar Sta 170	 ("B").
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For a more typical situation, Specimen I, change A, where

the second mode changes frequency by about 17 percent, the

poorest prediction is within about 2.5 percent.

The data bears out the expectation that the better mass

approximations will result in better frequency predictions.

The results of tests 7-10 (the better mass distributions)

are seen to be slightly better than tests 1-6.

A better illustration of this effect is seen in test 21

which, as discussed in Section X, was given an intentionally

bad mass distribution. Even though this model would pre-

dict the resonant responses and also the sinusoidal responses

over the frequency range of interest (this has not been

shown but is assumed to be true from theoretical consider-

ations), its ability to predict the changes in frequency

due to mass changes has been adversely affected by the poor

approximation.

Test 22 which is the same as 21 except that only 3 res-

onances are used seems to contradict the above conclusions

since the predicted frequencies are excellent. The fact

that these predictions are better than those corresponding

to better mass approximations is probably a coincidence.

It is not surprising, however, that the 3 resonance data

I
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gives better results than the 4 resonance data. Tt. - effect

is discussed in Section X in connection with the mass iden-

tification. It may be surmised from this limited data that

as the number of equations approaches the number of unknowns

the solutions corresponding to poorer mass approximations

will tend to deteriorate more rapidly.

The effect of measurement errors is seen to be slight from

tests 11-15. The maximum scatter in predicted frequencies

is about 2.5 percent even though the measurement error was

randomly distributed between 0 to 10 percent.

The predicted normal modes behave in a manner similar to

the predicted natural frequencies in that they are generally

quite acceptable. Figure 4 illustrates the effect of change

B on Specimen I for the first three modes. The figures show

the original modes and the exact new modes. They are both

normalized to be equal at station 60 which was the driving

point in the simulated test. For modes 1 and 2, the results

of tests 1-9 are all very close to the exact curve. The

scatter obtained in tests 11-15 containing error compared

to the exact curve and to test 10 (same conditions but

without error) are quite satisfactory.

I
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The results for the third mode show an interesting effect.

The results based on data containing only 3 modes does not

predict the proper shape as well as the tests containing 4

mode data. There is a slight tendency in this direction in

the frequency data also (see tests 1, 2, 8, 18). The reason

for . this effect may be surmised. Assuming that the new

modes contain components of the same and adjacment old

mores, then one may expect that the predictions of the

highest mode measured will be missing the significant

effects of the next higher old mode.

Figure 4d illustrates the third mode of Specimen II, change

B for the three tests: 18, 21, 22. Test 18 is the "good"

approximation to Specimen II using 4 modes and shows good

agreement with the exact mode. Tests 21, 22 represent the

"bad" approximation for 4 and 3 modes, respectively. While

both of these predict the frequency of this mode nearly

equally well, the four mode data produces a considerably

better third mode than the three mode data. This is in

agreement with the effect previously noted.

While only sample modes are illustrated, these are quite

typical of those obtained in all the computations made.

The fourth modes are not shown because of the small amount

of data available.

I
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Figure 4a. Computed Mode Changes Due to Mass Change
First Mode, Specimen I, Change B.
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Figure 4b. Computed Mode Changes Due to Mass Change
Second Mode, Specimen I, Change A.
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Figure 4c. Computed Mode Changes Due to Mass Change
Third Mode, Specimen I, Change A.

55



-1

-2

r

Vl

d,ol

o o^

r	 '

r	 of
^	 4
t	 ^
t	 ^

I

Q,

	 II-7; RXA.rT

2	 a TEST 18

Q TFST 21
	

t 
100, 

II EXACT

p TEST 22

1
	

t

t

Figure 4d. Computed Mode Changes Due to Maus Change
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XII. THE EFFECTS OF STIFFNESS CHANGES

In general, the same conclusions may be drawn regarding

stiffness changes as mass changes. The only possible

ception being the conclusions regarding the prediction of

the change in the highest mode shape measured. This is in

doubt only because the stiffness changes made had very

little effect on the third mode and no conclusions can be

drawn.

Two kinds of stiffness changes were considered. The first

type consisted of adding a spring to ground at each of the

same points where the masses were added. These stations

were the mid-point between the supports (change "K") and

the tip of the beam (change "L"). The spring constants

were 1000 lb/in. AK consisted of a change of the corres-

ponding diagonal element of the K matrix (See Figure 6).

As discussed in Section VI, the full (K + AK)inc matrix

was computed and the frequencies and modes were obtained

by iteration on M 1 (K + AK)inc' The results of the fre-

quency computations are given in Table IV and sample modes

are illustrated in Figure 5.

The ot:ier stiffness change consisted of the addition of

a uniform beam as illustrated in Figure 6, resulting in

I
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a AK matrix consisting of nine terms. The results are

given in Table V(b).

All the stiffness changes resulted in quite adequate pre-

dictions of the changes in frequency and normal mode with

they exception of test 21 (as anticipated).

r
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TABLE V(a). COMPUTED FREQUENCIES DUE TO STIFFNESS CHANGE

Mode 1 2 3 4

f* 8.32 18.65 49.06 96.12

+ K L K L K L K	 L

f** 5.34 11.25 19.32 21.23 49.07 49.20 96-26 1

1 9.20 10.97 19.21 20.80 49.07 49.19 96 22 96.39
2 9.19 10.93 19.20 20.76 49.18 96..221 96.40
3 9.21 11.00 19.22 20.84 49.19
4 9.21 11.00 19.22 20.85 49.19
5 9.19 10.96 19.21 20,78 49.18
6 9.20 10.97 19.21 20.80 49.19
7 9.27 11.13 19.26 21.03 49.07 49.21;
8 9.26 11.10 19.26 20.98 49.07 49.20 96.24 96.44
9 9.26 11.10 19.26 20.99 49.07 49.20
10 9.26 11.11 19.26 20.99 49.07 49.20
11 9.24 11.34 19.28 21.13 49.21
12 9.34 11:16 19.23 21.25 49.22
13 9.22 11.02 19.26 21.02 49.20
14 9.24 -x.08 19.21 20.80 49.20
15 9.32 11.26 19.25 20.99 49.22
16 9.28 11.14 19.27 21.05 49.07 49.20
17 9.28 11.14 19.27 1	 21.05 49.071 49.19

f* 7.91 18.40 44.01 65.94

f** 8.86 10.80 39.11 20.66 44.01 44.41 66.03 66.15

18 8.73 10.53 19.00 20.29 44.01 44.36 66.02 66.12
19 8.75 10.57 19.01 20.34 44.01 44.37
20 8.78 10.68 19.05 20.51
21 9.47 11.89 19.75 22.77 44.01 44.82 66.01 66.11
22 8.89 1	 10.87 19.14 20.77	 1 44.011 44.52

*	 Frequency before changes, i.e. frequency tested.
** Exact frequency after changes.
+	 Addition of 1000 lb/in. spring to ground at Sta 60 ("K")

or Sta 170	 ("L").	 See Figure 6.
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TABLE V(b). COMPUTED FREQUENCIES DUE TO
STIFFNESS CHANGE 'M'	 -V'-

Mode 1 2 3 4

f* 8.32 18.65 49.06 96.12

f** 8.92 19.32 49.13 99.86

est
o.

1

3

6

8.83

8.87

8.86

19.26

19.33

19.32

49.18

49.19

49.20

99.86

Frequency before changes.
* Exact fresuency after chan ge M.	 See 'Ficture 6.
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-1.

-2.

Figure 5a. Computed Mode Changes Due to Stiffness Change
First Mode, Specimen Y, Change L.
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Figure 5b. Computed Mode Changes Due to Stiffness Change
Second Mode, Specimen I, Change L.
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Figure 5c. Computed Mode Changes Due to Stiffness Change
Third Mode, Specimen I, Change L.
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STA
40	 60	 80

EI = 5.33 X 107

CHANGE "M"

Figure 6. Stiffness Changes.
{
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XIII. THE IDENTIFIED DAMPING COEFFICIENTS

The damping coefficient was obtained using Equation (51).

This depends on the natural frequency, the real resonant

velocity response, and the generalized mass. Thus, the

damping coefficient may vary with the mode and with the

identified mass. Table VI gives all the identified co-

efficients and it is seen that almost all the identifica-

tions fall within 15 percent. Tests 21, 22 which started

with bad mass distributions behave as they did before.

Test 21 gives very poor results while 22 gives quite good

results for the firs" wo modes. The poor results for the

third mode of tests 18, 19 are not explained. It is noted,

however, that the response is very small.

In the tests with error (11-15), the simulated erroneous

response was used. The total scatter is of the order of

15 percent.

r
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TABLE VI. IDENTIFIED GENERALIZED MASSES AND
t1A Ufl Tttn nAL+L+L+ T f'+T L"ATTC

(Mode 2 3 4

^i 8.;+6	 1	 18.65 49.06 96.12

yR
.7487	 .3985 .01097 .08263

ml
i

m2 mg m4

1 1.512 .0175 1.268 .0169 17.32 .0170 1.338 .0150

2
3 1.496 .0176 1.254 .0170 17.44 .0166

4
5 1.533 .0172 1.285 .0167 17.78 .1176

6 1.521 .0174 1.247 .0172 16.83 .0188

7 1.391 .0189 1.166 .0184 15.77 .0183

8 1.404 .0188 1.178 .0182 16.18 .0192 1.134 .0176

9 1.411 .0187 1.182 .0181 15.40 .0192

10 1.410 .0187 1.181 .0181 15.39 .0192

11 1.436 .0178 1.139 .0188 15.04 .0196

12 1.291 .0183 1.235 .0171 15.36 .0185

13 1.473 .0170 1.168 .0173 14.95 .0187

14 1.443 .0173 1.278 .0166 16.32 .0181

15 1.317 .0181 1.189 .0175 14.35 .0189

16 1.376 .0186 1.155 .0185 16.48 .0180

17 1.379 1.0186 1.157 1	 .0185 16.51 1	 .0179

^i 7.909 18.40 44.01 65.94

y .6938 .4301 .000178 .0510

ml m2 m3 m4

1.8 1.705 .0170 1.108 .0170 587.4 .0345 2.585 .0183

19 1.674 .0173 1.159 .0173 587.5 .0346

20
21

1.594
.784

.0182

.0370
1.093
.542

.0184

.0371 277.8 .0732 2.894 .0164

22 1.401 .0207 .959 _.0210 418.4 1	 .0486
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XIV. CONCLUSIONS

It should be recognized that the following general con-

clusions are based on a small amount of simulated data on

a relatively simple structure. While these conclusions are

not proven, they are strongly suggested by the data ob-

tained.

1. The concept of an incomplete model of a dynamic structure

is valid and useful, at least, for predicting the effects of

structural changes on the normal modes and frequencies.

2. The parameters of an incomplete model may be determined

from measured modal data and a "reasonable" approximation

to the mass matrix.

3. The identified mass matrix will be • approximately equal

to the assumed values when the assumption is reasonably valid.

The identified structural damping coefficient will also be

a reasonable approximation under this condition.

4. The identified stiffness matrix, while not approximating

the true values, may be used to predict the effects of

stiffness changes.

I
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5. The identified influence coefficient matrix will be an

approximation to the true values.

6. The effects of mass and stiffness changes on the normal

modes and natural frequencies can be estimated using the

' .
	 to-chniques that have grown out of the incomplete model con-

cept. These predictions are not overly-sensitive to the

mass approximation and to errors of measurement.

7. The procedures may tend to deteriorate when fewer points

or more modes are used, reducing the degeneracy of the equa-

tions. It is expected that this condition can be simply
corrected by including off-diagonal masses as unknowns.

In general, the results of the qualitative study are quite

encouraging. It is recommended that a more definitive evalu-

ation of the concepts be carried out both from a theoretical

viewpoint and by more detailed computer experimentation with

more complex structures.
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NEW TECHNOLOGY

This entire report is considered to be a "reportable item"

in accordance with the New Technology Clause (NASA Form

1162).
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GLOSSARY OF SYMBOLS

A	 Coefficient matrix in mass equation (See Section IV)

BR	Matrix multiplying R in mass identification (See
Section IV)

Bm	Matrix multiplying mA in mass identification (See
Section IV)

C	 Influence coefficient matrix

f	 Force vector

g	 Structural damping coefficient

K	 Stiffness matrix

M	 Mass matrix

M.	 Generalized mass of i-th modei

mid Element of M

m 	 Approximation to m

mT	Total of diagonal masses

m	 Vector consisting of unknown elements of M

N	 Number of modes

n 	 Number of equations

n	 Number of variablesv
P	 Number of points of interest

R	 Right-Hand side of mass equation (See Section IV)

W	 Weighting matrix referring to confidence in MA
(diagonal)

Y	 Mobility matrix

y	 Displacement vector
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GLOSSARY OF SYMBOLS (Continued)

yR	Real component of velocity vector

Z	 Impedance

A	 Any change (as a prefix)

0	 Matrix of modes

^ i	Modal vector U -th mode)

0	 Natural frequency of i-th mode

w	 Forcing frequency

+	 Superscript - pseudo inverse

t	 Indicates diagonal matrix

73



APPENDIX I

PRINCIPAL IDEMPOTENTS

The expression of positive definite matrices in terms of

their.principal idempotents has been discussed in Ref-

erence 5. It has been useful in the development of the

incomplete model concept and some of the associated tech-

niques. A brief discussion is given below.

Define ^i as an arbitrary set of orthogonal vectors (P

vectors each having P elements) and A as an arbitrary

positive definite PxP matrix.

It is possible to express A as follows:

__ p p	 TA	 C

	

i=1 j=1 13^1^3	 (I-1)

since the O's are independent and there are as many Cij's

as there are elements in A. Note that ^i^^ is a non-zero

square matrix for all i, j combinations but 070 ; is a

scalar and equal to 0 unless i=j since the vectors are

orthogonal.

I

Now pre- and post-multiply the equations by 0n and Ok

I-1



P P
OnA ^k 	i-1 	 Cij (Ony (0i Ok) = Cnk (on On)(OkOk)

since each term in the summation is zero except when i-n

and j=k. Thus (note that 0TAOk is a scalar)

0T AO
C j =	 1 

j	 (I-2)
1	 (OTOi) (0^0j)

Thus for any set of orthogonal vectors it is possible to

express the matrix A as in Equation (I-1) by evaluating

the coefficients as in Equation (I-2).

However, if the O's are the eigenvectors of A, AO j - aj0j

and

X OTO

1
C j = 	 i 1	 = 0 for i# j
 (OTO i ) (OTOj)

since now ^i^j = 0 for i = j, and

^ ^i
Cii	 ^T^

i i

Thus, the cross terms in Equation (I-1) become zero and

	

P	 iT

	

A = E	 a (	
i)	

(I-3)

i=1 1 OTOi

I-2



if and only if the O's are eigenvectors of A. Note that

	

(for any orthogonal O's), ifOiOT ,	 2 = ^i(^T Oi)OV -
	

V	 i
i 
	 1	

2_

= Vi thus Vi is idempotent. When the 0 i 's are the eigen-

vectors of A, Vi is called a principal idempotent.

By similar procedures it can be shown that the influence

coefficient matrix and the stiffness matrix can be written

in terms of their principal idempotents as follows (using

the notation of the body of this report).

T
M

CM = E	
2(^l )	

(I-4)
i=1 Q? 

m
i

T
-1	 p	 2

M K = i=1 S2i ( m
i )	 (I-5)

Where the terms in brackets are the principal idempotents

of "M and M-1 K. It follows from the above two equations

that

P
C = EZ
	 ^i^i	

(I-6)

i=1 S2imi

P	
2

K = E ml M^i^jm
	 (I-7)

i=1 i

and that expressions of this form are only possible when

the ^'s are the eigenvectors of CM or M 1K.

I
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APPENDIX II

PSEUDO INVERSES

The pseudo inverse, sometimes called the generalized

inverse of a matrix is discussed in numerous publications

(e.g. Reference 6). In this appendix, only the applica-

tion made to the problem at hand will be discussed.

Consider the set of independent linear equations

Ax=b
	

(II-1)

where there are more equations than unknowns. A, then,

is a rectangular matrix, n  x n v where n  < nv . x then

is 1 x n  and b is 1 x ne . There are then an infinite

number of solutions to these equations.

The pseudo inverse of A, written A+ , is defined for this

problem to be

A+ = AT (AAT ) -1	(II-2)

where the ordinary inverse of AA  is used. This matrix,

AAT , is of order ne x n  and can be shown to be non-

singular when the original equations are independent.

I
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Now

x=A+b

is a solution to Equation (II-1) as can be seen from

Ax - AA+b - AAT (AA T ) -lb - IB = b

It is shown in the literature that this solution (of the

infinity of solutions) is the one having the minimum sum

of squares of the individual elements, i.e. the "smallest"

in a least squares sense.

Using Equation (II-2) to obtain the pseudo inverse of AW 1

from Equation (39) in the main text (where W-1  is a diagonal

matrix) ,

(AW-1)+ = (AW 1 ) T { (AW 1 ) 
(AW 1)T1-1

I

= W 1AT{AW 1k-1AT)-1

II-2



APPENDIX III

PROGRAM LISTING AND SAMPLE COMPUTATION

This appendix contains the Fortran listing of the computer

program discussed in Section VIII. Included are the opera-

ting instructions and a sample computation of test 16.

The program was compiled and run on an IBM 360, Model 40,

having 128K bytes of storage under DOS, release 17.

r
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M SK nPFRATING SYSTEM/360 FVPTPAN 	 3604-Fn-431 31

C*•*********««*******************^ ► * INC.MQn *********«•ss**•******************
r
r	 14COMPLF.TC MOOFL THEnRY - TFST PPnn0AM - USFS Q FSQNANT RFSP AS WIDE
r
r INPUT - PART I - SI MULATED TFST
r•	 1* HFAD1 C pl 1 * IC, CCL ?-80 HFACING
C	 I( n 0, NORMAL	 (INPUT 29(3194959798FF)
r	 It SAME AS 0, PUT f• fhPUT INST R An OF K (2,(319496,798FF1
r	 2, NEW ACTUAL. MASS ANn FRFC CNLY (INPUT 4979OFFO
r	 39 NEW FREQUENCIES ONLY (TKPUT 79RFF1
f 4. SAME ACTUAL SYSTF M , NFW TFST (INPUT 2A*0197,9FF1
r	 5. NO ANALYTICAL MCnEI, IKFUT PMI I S nIRECTLY 42A,7t7A981
r
r	 2* CnNTPnL CARD (PT * 11
f	 rOL 195 ND,	 NO nF ACTUAL I)FG CF FRrFOrM 	 15	 20 MAX
r	 600 NIL,	 NC nF MFASIIRFMFNT POINTS ( IJSFn1	 I5	 20 MAX
r	 IF NU * LT* Nnq RFAOS 3*
r	 11,20 NROW,	 nRTViNG P(I TNT INCEX	 110
C	 MUST RE A USEC PCfhT
r	 21,30 r.	 SCALAR STGIJCT nAMPIKr, CCFF	 Fln
r	 31,40 P CT	 RANn(1M E R RC Q CN AMPLITI)CF., F.RQnP 	 F10
r•	 UNIFORMLY CTST R IPUTFC RFTWFFN •/•
C.	 PCT*RESPRNSF
r	 41950 PCTR	 BIAS ERPCR Ch AMP s PrTP*PFSP	 F10
r	 71990 T1.	 SFEn FOR PANcrm KC GENF.RATnR 	 110
r
r	 2A9 SAME AS 2. EXrr-PT DOTS NOT REAn Nn
r

3. USF n STA * CARD
f	 IJVn(IIO2I9NII	 INCICFS CF STATIONS
r	 Tn 9F USEn	 , IN NUMFR ICAL SFCUENrF	 1914	 19 MAX
r
r	 4, ACTUAL MASS CARDS)
r	 FIRST CARD(S)	 M(1•II,I u 1,Nn nIAGrhAL MASS cS IN
r	 SFOUFNCF, AS MANY CARCS AS KFCFSSA PY	 8F10
r	 NEXT CARD COL 1,10 Nnn, NC rF rFF-CIAGONAL MASSFS 110
r	 NFXT C TIROS (IF NOn * NF * 01 1 ,J, MA c.S	 9(2129F61
r	 LnWER TRIANGLE nhLY ( SYMM FTQY ASSUMFm
r	 8 PFR CARD, AS MANY CARCS At NFCFSSAPY
r

r	 5* ACTUAL K rARnS K(I,J)	 1 n l,h^ ,J=1,I
r	 STIFFNESS MATRIX• LnWFR TRIAhGI,E INPUT C1NLY9 MATRIX
r	 WILL BE SVMMFTPI7FD
r	 START FACH RC!% nN NEW CORC, ENC Ch n1ArpyAL
r	 FLFMFNT
r
r	 6*	 ACTLIAI r. CAPnS C(I,JI
r	 INFLUFNCF rn ;: F MI;TPIX, SAMF F('PP AS K
r
''	 7* ACTUAL NA%PAL FREQ (USPn IN SIMULATEn TCST)
r	 FIRST rAPn	 NFRFA, AI)MRFR nF FRFCIIFACIFS
r	 NFXT CARD([)	 FQFQ ( T1,1-1•NrPrC
r
r	 ?A. ArT')%1 0 111 1 S	 (PHI(I,J1,,1s19NFP9C1,ImI,1m

AFIn

110	 10 MAX
AF10
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F Or, TMAIN
	

0007

INPUT - OART It - TnF%ITIFICATION
Be HFAn2 CnL 1 = IC7• CCL 7-80 HF ACING

IC2 = no NORMAL (INPUT 9910o11.12FF)
1, NF l% APPPnX MASS - CT NFR CATA IINCHANGFO 111.12FE1

9. GFNEPAt I IFD M ASS - KNCWN VALIIE5 CNIY - IF NnNF US v 1 PLANK CARD

Cnl rnL 1 - 10 NG • Nn PF VAtUES	 III 10 MAX
FOLLOWING CAPOIS) 19GM(11	 81121Fg1

10. KNnWN M ASS E S - IF NONF 1.I5E 1 PLANK CARO
Cnt CAL 1-10 NK, NO OF VALUES	 Ito 20 MAX
FOLLOWING CARM S) I•J 9 910 1190 (SEE *NOTE)
FNTEP LOWER TRIANGLE VALUES CAt" 11 • 4',F• JI	 R(212•F61
SYMMV(RY ' SSUMFD
nNLY NnN ZERO MASSES

11. APPROX MASS CA R DS - DEFINE 1)NKNrWAS
Cnl C.nL 1-10 NV. NO rF UKK%CW M M ASSES	 tln 20 MAX

	

CnL 20	 IC T w n hr CCATPCL rN T rTAL MASS
1 TnT AI. IINKNCWN nT AGONAL M ASSES CONSTANT

FnLLnwING f.ARI)Sq nor PFR M ASS - LCWF R TRTANI:LF ONLY
CnL 1-5	 1	 WE *NCTF1

	0 1 -10 J	 ISFF *NCTF1
I1- ?n A4 9 APPRnX MASS (MAY EE 7FRn IF '1FF MAGI
21-30 w, WF InHTT NG F ACTrR	 21 S 9 2F In

HIGHER w TNOICATFS GREATF O M F ICENCE IN ESTIMAT E
nil k0VT 11SF. % n n

NnTE • ALL MASS E S NCT nf. FINFD IN lA CF 11 Wll L AF tERn
SFE Sl1RRpUTTNC I11MASc FOR FRPCP MFSSAGFS

INPUT - PAR T fit - FfF r CTS OF VNPYINA M ISS CO STIFFNESS

12. HEA113 f of 1 • IC39 COL 2-80 I-FACING
ICA • no MASS CHANGF I I N P t1T 13917FF 1

* 1• RFTUPN Tn PART i III
n 7. RFTURN To P AR T 11 (p)

STIFFN ESS (14#12FF)
• q^ CNn OF PuN

13, CwAN r Fn HAS P- f'APDS
VIPST (;ARn	 r(IL 1-10 W e Nr CF CHANGFC	 Iln
1,4 r XT rA Q nS(S)	 19J. M AS t r p ANrr•	 ISEF W"T c ) R1212•061

Lflwr R TRI ANC+LE ONLY, SYMMFTRY ASS11M97

14. r. "64 q [ n S T IF F N E SS CAp05
SANE FIRM AS 13. FXCF PT

	
4( 212• F 161

Nr1Tr, Nr-XT CA01 PEAR iS in	 TufSF MASt CHANrcf% ARF ONLY
TF kl;J nQAPILV STnRFQj	 VAPIr+US Cu AakG r c CAA qr. 01)N IN trQ'IrNCE.

VWTF I•J An  INnICFt rF IF 97 PrIKTC, 04 CT ACT, IAL SYCTWM
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^1/ 3/70	 FnOTMAIN	 Onol

r
P
r
r	 SU9R3jTtNCS CYM.TNVOS.MOUT?,MCA•f.INV,MI+PV,RAkCU•1SMAtS.PtFIInp,Mirr•Ror•EN
r

INTEGER HFAO42nl•IlSF')1201. ►+E4n21201
INTFVR HFAn31201,I TN( 101
p FAL y l?^•211• KI ?C,?11.CtT.n.L11.F p Ef;t101.1P (20r211.1T12'1.211.
1 YR120,21) ,^Tt20.211,RESRI1Qr101,RFS1110,20{•GpPll^)•PHI120.101.
2 GPPrII019MINr(20920)•CINf.1209201,KINC(20.2nI
REAL 4TEMP(20,21),Mn0E(201•PHIC(?0,10),FRFCC(l01•CTFMP(20.201
REAL KTFMP1209201,MINV(.20,211.MnOM12019CIt170.2019GMASS1101,

1 OCOF 1 20, 101
COMMON M.K*Ct?P,Z1•YR,Yt.MINC,CINC,KINf90TEMP,CTFMP
COMMON KTFMP,MINV,nK,f)COF

r	 PART I	 SIPULATED TEST
1 READ t I t 10001 IC.HEAII

1000 FURMAT(I1,A3.1gs4)
WR ITF 13, 111011 IC,HEAn

1001 F1IRMAT ('1'//T59 1 14CO MPLFTf MCOFL THFCRr - SI MUL ATFC TFCT•//
1	 T5 •151•*^1.T2.3x•A3•L9A4•Sx,151^•'1///1

ICC=IC+I
GO TO 110910920,70,11.11	 I.ICC

10 READ (100021 NT1. NU,	 NRCW•r.PC.T,PCTP•1t
1002 F(1RMAT (215•IlO.3FIM.0,20X.110)

GO TO 13
11 READ ( 1,2002) NlJ,NPnW,G,PCT.PC.Ta,ij

7102 Ft1RMAT (5X9I59t10,3F1090,20X,11n)
13 lX=TZ•2+1

GO TO 114914914,14.1491819ICC
14 IF(NU-Nn115.18,1R
15 RFAn (1,10031 (USFr)(11,I01940

10113 F c)RMAT ( 19T41
n') 16 I •1,NU
IFIUSEn(i )-NPnwl11,•17, 16

16 CONT14UF
NK^1W=tlSFD( 1)
NQOWN n 1
WP ITE. (3,9441 NPnW

949 F, ) w 4AT (T5 9 1 •*r	 F r`Rrt!V, Pn1N T TNVALTn• CFT T[ • T3/111
Gi) TO 20

17 NR,)WN•I
Gil To

IS NR(IWN=NRnW
nl L9 T n 1.'J11

19 USr')ill n T
20 GIl TO (2592592li•?5•7! ► .701•T(r
?'+ 00 30 1 a I. kir,

0 4 1 30 Js1.Nn

?i► MI t,Jl:q
R F 4 1) 11.10 n41 I M (1 .T ).T=1.Nn1

1)04 FiIk M AT 13F1?•f11
w t:AO(1.10 or, I Nnn

i MS F 1Q 14AT (t 101
I 	 (N In  40.4".35
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^I/U3/70	 9nPTMA11k1	 On04

35 READ ( 1, lOnh) ( 1,J, ►'(1 ,J1 ► LsI ► NP(1w
1006 FORMAT (A(212,f6.011

CALL SYM (M,Nn)
40 GO TJ ( 50960, 70 9 709 70,701 9 1 CC
50 no 55 i•1 ► Nn
55 READ ( 1,10041 ( K (I,JI,Jn I,II

CALL SYM(K,NP)
CALL INVRS (K•ND,CI
Go TO 70

60 DU 65 l•1,N0
65 HEAD (1 9 10041 1C1),J),J81.11

CALL SYM (C,Nn)
CALL INVRS (C,ND,K1

70 READ (1 ► 10051 NFRF0
READ (1,1004) IFPEO(I191*1 ► NFREO)
GO TO (71 ► 71 ► 71,71,71,721 ► 1CC

71 WR I TF (3,1007) NNG
1007 FORMAT (T10, • ACTUAL SYSTEM PAPAMFTERS 1 1109' CEG CF FRFF904t STRUCT

1 DAMPING CnEF • 1 F6.3/71C 924( 9 - 0 1//T50, 1 MA5 It MATRIX'/I
GO T!7 74

72 WRITE 1392001) NFRE09
2307 FORMAT ( TIO, • ACTUAL yOnE S'110 , • MOQFS. STRUCTURAL nA oll p m COCF =•

I Fb.3 /T 10,12i'-')//1
GO TO 90

74 CALL 4rIUT2 IM,NO,NnI
GO TO (75975980980 ► 80,80191CC

75 WR ITF 13910001
1008 FORMAT ( 1 1 9 ,1`50, 41 ST( F FNESS MATRT1t'//)

CALL MOOT2 (K,Nn,N0)
WRITE (3910091

1309 FORMAT ( ' L'T50 9 1 1NFLUENCF COFFFICTFI \ T 101TRIX•//1
CALL MOUT2 (C,NO,NnI
Gn TO 90

80 WRITE (', ► 1010)
1010 FORMAT (//T10,'AC TUAL K AND C SAMF AS PREVICUS CASFO1
90 WRITE (3,1011) NRnW,NU

loll FORMAT ( ' I'//T10, # nFSCPIPT1nN nF SIMULATFn TEST' / Tln929 ('-11//
1 T209'PnINT AT WHICH SYSTFM IS FnRCEn'14/T209 1 NO OF Pn1NTS OF MFA
2SURE04FNT'181
GO TO (94,94994,94994,961,TCC

94 1F (ND-NO) 100, T 00, 95
95 WRITE 13910121 (I1SFn(I1 ► T•1.kUt

1112 FORMAT (T2n,'Pn1NT9 AT WHIC H MFASURFMFATS APF TAKEN ► /T3n,2n141
100 WRITE (3,10131(FRF0111,i=1,NFkE01
10)3 FORMAT (T20 9 1 FRFOUFNCIFS OF FXCITATICN - NZ4 /IT3091P5F15.4)1

96 WRITE (3 9 10141 PC T, PC T F!, I Z
1014 FORMAT (/T20,'AVE PANn7M A MPLITUDF FRRnR'Fln.3/720 9 0 41AS AMPLITI1nF

IEAR0it 9 F16.3//T?0,'SFEn FCR RANn An GFNrPATPR'112//1
GO TO 1109, I09,109,109,IC9.1O119TCC

101 4O 102 J u l e fUl
1P2 RFAO 11910041 	 (RFSR( i,JI,I n I,NFRFQ)

GO Tn 111
f	 C.ALC.UiATf RFSCNAAT RCSPCNCrS

109 00 110 1 =1,NFrro
OM=FR E11 I )
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11/ni/^0	 rnPTMA1y	 nrim

CALL 408 (N,K.r,,Nn,C'M,I.R,Zi,rP,Yt)

nn un J=1,NU
JJ=USED(J)

r	 C('MPLEV CORM
RESRI1,JI sYR(N Q OW •JJI

110 Q FSI(I,JI-YI (NRnW ,JJ ►
r	 CALL ASSUMEn PNt'S = RFAL R FS onNSE WI T 4 FRQnR

111 On 120 I =1,NU
n7 120 J=l,NFPFO
CALL -iANnU IIX9IV,VFL1
IX=IV

120 PHIII,JI=RFSk(J,tl*(1.0*2.0*PCT*(VFL -n.91*PCTPI
r	 NORMALTIF nN nPTVTNG PCINT

r)n 130 1=1,NFRFQ
GPP (I I =k l: SR (I ,'VRnWN)
GPPEIII=PHI(NRnWN,TI
00 130 J=19NU
PHI(J,f1=PHT(J•I1/GPPF(Il
IF( IC-51 1?.9,130.130

129 RESI(I,JI=RES111•J1/GPP(II
130 RFSR(l•JlwRFSRII • J)/GPP(I1

GO TO 1135.135,13591359135,131191CC
131 WRITE (3.20151 (FRFQ(II•I=I,AFRFCI

? x)15 FORMAT (//T10•'FXACT MOnFS nF ACTUAL SYSTF M , NCRMALTIFO ON DRIVING
1 POINT'// T 39 1 FREO	 '1P1OF12.41
GO TO 139

135 WRITE (3, lnl51 tFP Fg tt I.t=1,AFRFCI
1J15 FORMAT (// TIO,'EXACT RFSPCNSF rF ACTUAL SVSTFM,IN/SFC / P r1U4n, NORMAL

1IZED 3N REAL DRIVING POINT RESPONSE' //T30 9 ' aFAL PART'//T3,4cRFQ
2 1 IP IN 12.41
WRITE (3.10161 (r,PP(11,1=1,NFPFGI

1116 FnRMAT(/T3,'n.P. 9 /T49'RFSP '1dinF12.4)
?	 139 WRITE 13.1004)

nO 140 12101)
140 WkITE (3910171 USFO(T),lR'SRtJ,tl•J=1•NFRF01
1017 FORMAT (16,3X,10F12s5)

GO TO t 142,142. 142.142.142,141) • IC.0
141 WRITE (3,20191

2119 FORMAT ('1'//T10 •' ST 41JLA7En "F ASUPEn MnC_E9 9 ACTUAL ONI • ' S WI T H ERR
too,/)
fn TO 154

=	 142 WRITE ( 3,10181
1)18 FORMAT ( 1 1'//T30 9 1 IMAGINARY PART'/1

nr) 145 1 =1,N1i
145 WRITE (3,1017) USEn(T ► •(RFST(J,I),J=1,NFRFr,1

W R ITE MvI0191
1119 FORMAT ('1'//T109'SI mULATE0 TFST RFSPnNSE, RFAL M r °1LI T Y WITH FRR

I r)RS USFO AS PHI"S'/l
WkITE 13 91nl61 ( 6PPFt11 • I=1.AFRFQI
WM I TE ( 39 10n4T

154 CALL MOUT2 JPHI,NIt,NFRFU)
r	 PART It - TnFNTIFY MAeSrS

155 RiAD 1 1, lonol IC7,wEin2
CALL TnNASS ( If2+14F4n2,FRFQ , PHI9NU , 4FPFC•MTNC,CINC,KTNC , r,MASSI

r	 ('ALi14TF RF.SnNANT PfSPCNC c F R C N KINC.MT',JC
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'A 1/03/70	 FnPTwAItj	 0006

nil lb3 I=IvNFaFO
nM=FRFQ(I)
CALL AOR 1MINr,KINr.G.NU•rM,ZP,71,Va,Y1)
D 11 160 J=1•NU
RFSR(1•J)=YR(J•NPCWNI

160 REST(IrJ)=VI(J•NR0W•41
4n 170 I=1•NFRFQ
GPP ( I ) =R F sr.( 1 ,NRnWNI
n0 170 J-19NU
RESI(I •J 1=RE Si (I,J1 /GPPI ! 1

170 RFSR(I•J1=RESR(I•J) 1;PP(T)
WRITE (3.1020) (FPF0(I),1=l,hFPFCl

112U FORMAT ( 0 1 1 //T10 9 4 PFS-INANT RES PONSE CF 1 'CFNT IFIEO SVCTFM§//
1 T30•' RFAL PART(//
2 T3 9 1 FREO	 '1P10F12.4)
WA I TE 1 3.10161 (GPP(I ) .1 =1,NFPF01
WRITE (3910041
nn 180 I =1.NU

180 WRITE ( 3.10171 USFn ( I1,(RESP(J,I),J=irNFQFQ)
WRITE (3,10181
On 190 1-19NU

190 WRITE (3.1017) IItED(11,(RFST(JrllrJsl,NFQFCI
(FIRST =0
GO TO 2A

r	 PAPT III — CH4NGfn wASSFS
200 READ (1.1000) TC3,HFe03

IF(IC3-91220.210.210
210 CALL EXIT
220 ICC=I 1C 3t1

.,0 TO (250.1.155.250 I.ICr.
250 WRITE (3.10301 Ir,3,HCA03
1)30 FORMAT ('l' //T59 1PART III - CHAN0Et) WASSFS CA STIFFMFSSES'//TS•

1 15('*')•T293X9A3.19A495X915('*'1///1
READ (1,1005) NC

?55 nil 260 I =1•NU
no 260 J=1rNU
K TEMP (I,J)=0

260 MTcMP(I•J)=0
I F I IFIRST)261 069,261

261 IF(IC31265.265,300
2 14 5 p KAn t 1.10061 (1.J•'+TCMP(I •JI.L=I,NC)

GALL SYM (MTfMP,Nl11
WRITE (3.0311

1;)31 F -IRMAT t T5(;, IMAC S MAT7I X CHANO[S'/1
C A LL Mn) T 2 (MTFMP,Nl1•rdl))

?t) ^ 1 270 1=19MU
Y) 273 J=1•NU
f.TFMP(T..ti =rT^►Cll •.il

)70 MTFMPtI •.11=wTF"^o(1..11^M'tir11•JI
r	 t TFRATE iICTNG CINC • kTFwr-

^)n 2H^) 1 =1.r^ckGn
CALL .1T!•k(CTF MPV MT F 1.0 9NU99O!10n1 •25•wrOFrrNFr:,TTI
ClN:V'lnl (NR0*1WN1
nn 275 J c ItN U
MnnC { J ) =MnnI- (J 1 /r rN
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"1/03/70	 rCFTNATN	 0007

?15 o mcw, ,11=MnnF(J1
I TN( 11=IT
FKEQC( I 1=1.0/S09 7 1nMF r1164 2832
GPPE(1)=f.FN(MnnE,MTFMP,NU)
CnN=OMEG/GPPF(I)
DO 280 L =1,NU
Dn 280 J=1,NU

280 CTEMPIL,J)=CTFMP(L,J)-Ct1N*MOOE(L)*MCCFIJI
IF( IFIRST1285,291,285

281 WR1TE(3,20321 (FPEQ(I),I=1,NFPE0)
9A32 FORMAT ( t l' //T10, • FRFQUENCIFS ANC MCCES CF TOENTTFTFO SYSTFMo//

1 T3,'FKFO	 'IDlOF12,41
GO TO 289

285 WRITE (3,10321 (FPF0C(I),Ts1,NFRF0)
1032 FORMAT ( 1 1'//T10, 8 NFW FREQUENfIES ANn MCCFS CF NQCT F IFn SYSTFM•//

1 T3 9 1 1: REQ	 11010F12.41
289 WRITE (3,10331 (GPP I-(I ), I =1,NFRF0

1033 FORMAT (/T2,'G F N M OSS' 1PLOF12.4)
WRITF (3 9 10341 (1TNII)9I=1,NFPE0)

1034 FORMAT (/T3,'ITEP810I12)
WRITE (3,10041
00 290 1 -1,NU

790 WR ITE (3910171 USFn(I),(PHICII,J1•J=1•NFRF0
IFIRST=IFIRST+1
GO TO 200

00 READ (1 9 3031) (1,J,KTFMP(T,JI9Li19N0
11031 FORMAT (4(2T29E16,011

CALL SYM (KTFMP,NU)
WRITE (3920311

7031 F rIRMAT (T50, l K M ATRIX CHANGFS')
CALL 4nUT? (KTFMP,NIJ,NU)

r	 CALCULATE DELTA P INCCMPLFTF
CALL MMPY (KTF4P,PHI0lU,NJ,NFPFQ,DK1
7il 310 I =1,N11
DO 310 J=1,NFREQ

'i10 MINV(J9I)=PHI(I,J1
CALL MMPY (MINV,nx,NFRFQ,NIJ,AFREC,t;COF)
nO 320 I =1,NU
nO 320 J=19NU

320 DK(I,J)=0
DO 330 IJ=1,NFRFQ
I)n 330 JI=1,NFRFO
nn 330 I =1,NU
I' ll 330 J=1,NU
nK(I,J1=')K(I,J)+PHI(T,TJ1*PHTIJ,JT1*CcnF(IJ,JT1/GM4SC(IJ)/
I G tA ASS(Jl )
CALL MMPY (MINC ,Ple,NU9NIJ*NU99TFPP)
CALL MMOY (KTcMP,MINf; ,NU•NIJ,N11,nKI
WRITE (3, I 040)

1(140 FORMAT ('1'T SO, inrtT: K IRCnMPLFTr-61
CALL 4O1)T? (DK,NII,NU)
on 34n I=1,NU
nn 340 J =1. N L1

14U KTEMP(I,JI=KINC(I,J1+OK(I,JI
CALL INVRS (MIN(	 NAJj *4INV)
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'1/.)3/70	 9!nPTMgTv	 n'1 II

TIFFATF IISTK r MTP,V*KTFNP
nil 38O 11 =It NFPFr)
I z NFR F 0- 1 1+ 1
CALL 4IT rp (M1NV ,KTF'4P ,NU,,00001•25,100f^F•rNFr,TTI
Ci) y =MOl)F i NPnWN)
nr) 375 J =1,r4U
14n')E(J 1=MnnF (JIIC Ml

A75 PHIC(J,1) =mOnF- (J1
ITN(II=IT
CALL MMPY (Ml KIC •MODF,NU,N'11.1,Mnpml
FRFRC( 1) = 	 S()RT(OW:1,) / h, 28?2
GPNE(11=r,FN(MnnE,MTNC. •NU)
CnN=nM F G /r,PPF (1 1
nn 380 L=1•Nl.l
nn 380 J=1011

380 KTFMP(L,J)=KTr-MP(L,J)-CCN*MOnM(L1*MnCM(J)
r„1 TO 285
ENn
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OTSK nPERATING SYSTEM/360 FCRTRAN	 i6nN -Fn-451 31

SUKROITINF MOUT? IA,M,NI
REAL 41209211
1D=41401N,101
WRITE 13,1000) 11,1=1910)

1000 C URMAT (/75,101121
WR I TF 13,10001
DO 10 I=194

10 WRITE 1391001) 191A(T,J) 9J=19In?
1001 FnRMAT ( 1 595X,1P10F12o 4)

IF IID-N) 20950950
20 WRITE 13910001 (19I=119N)

WR I TE ( 3 9 1000)
DO 30 1=19M

30 WRITE 1391001) I9(A(I,J)9J=119N1
50 RFTUR4

END
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r

nl SK (IPFRATINO SYS T FI+/360 FrPTRAN	 16n4-Fn-451 31

SUB R OUTTNE CINV (A,p,N,C,01
r

C+l*D - INVFR9F CF A+l * p 	 1-S9RT(-il
f
f	 R ASSUMEn NON S WIILAR
r

REAL Al20,211,9(20r211,C(2Ar211,n(20r211,F(?0,211
CALL INVRSI©,N•CI
CALL 44PY(C9A949N9N9F)
CALL NMPY(A,F,N,N,N#Cl
Dn 10 I -19N
DO 10 J -19N

10 Clr4J)-C(IrJ)+a(1•J1
CALL INVRSICrN,n1
CALL yMPY(E,n,N*N,N,CI
Dr) 20 1-1,N
DO 20 J-1,N

?0 D(I,J1--nIl,Jl
RETURN
END
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DISK OPFRATING SVSTFN/'160 vrATRAN 	 36nN-Fn-451 31

SUBRJJTINF SYM IAPNI
r

	

	 FORMS SY MM FTRIC MATRIX FRC M LCWFR TRI64GLC
kEAI 4!209211
N 1=N-1
D0 10 I n 1oN1
I1 n I+1
Gfl 10 J=IIIN

10 A(IOJ1=41Jri1
RFTUR4
ENr)
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DISK U D FRATING, SVSTFM/360 FrPTRhN 	 36ON-PO-451 31

SURkIV INE 10 M ASC (If',HEAD,FR,PHI,P,N,YASS,CINC,KINCiGMASS)
r	 (ISFS PC^-unn INV F RSF TO r8ThlN UNKNCWN MASSFS ANn
r	 v1CnMPLPTF STIFFNESS AND INFLUFNCF CC'FFFICIFNT MATRICFS
r	 SFF MAIN PROGRAM FnR INP11 T CESCRTPTION

r	 INPUT EP g IR MFSSAGFS
r	 MACS I T' INDEX TV LARGE
r	 MASS 'T' I LESS THAN J
r	 MASSES 'T' AND 'J' HAVF DU PLICATF TNDTCFf,
r	 WFIGHTING FUNCTION '1' an
C

	

	 APPRnX MASS 1 1' ANn KNrWK MASS 'J' HAVF S4MF 1NOICFS

INTEGER HF4n(20),P,Tr,M(ICI,IKM(20 ► ,JKM(201,IAM(201,JA'4t201
REAL PHI(20•lO)tCM(10),1cM1201,AM(20),W(2019A(2092())•R(2019
1 AW(20920I9AR(20,21),HM(20,20),MMIN(201,MPAR120190FL(?O),
2 FR(10),MASS120,20),CCnFF(10),KCt'FFt1(11,CINC(20.20)•KINC(20.20)
REAL GMASS(101

INPUT
10 WRITE (3,10011 TC,HFAO

1001 FORMAT ('1'// T IO•'PART 11 - IDFNTIFICATiCN'//T5 9 15('*' ), 12,31(,
1	 A39194495X,15('*'11//1

IFR=0
IERR=0
ICC =IC+1

1002 FORMAT ( 21101
GO TO (41,42),TCC

41 REAn (1,10021 NA
42 TF(NGI 50,50t6O
50 WRITE (3x10071

1007 FORMAT (//T20,'ALL GFNERALIZED MASSFS UNKNOWN'/)
•	 GO TO 70
60 GO TO (61.62),ICr
61 READ (1.10081 (TGM(T)9GM(I)91s19NG)

1008 FORMAT (8(129F R. 011
62 WRITE (3,1009) (IGM(I),GM(I),I+I,NGI

1004 FORMAT (//T20, 1 01OWN GFNERALTIFO MASSFS'//(T59 ' M ( 1 I29 1 ) ; '
1 1PE10.49T29,I29') s 'E10.49T279'M('T519I2,') s 'F10.4,T49,'M('
2 T7302 9 1 ) = 'F10.4,T71,' M I'T95,12,'1 r 1F10,4,T93,'M('1)

70 GO TO ( 71.721, Trr
71 R FAD ( 1 9 1002) NK
72 IF (NK) 80980,9(1

80 WRITE (3910101
1010 Ff)kMAT ( //T20,'ALL MASSES UNKNnWN' /)

V) T(1 1n0
70 (;(. TO (91,92), TCr
4I READ (1,1011) (T1(M(II,JKN(II,KM(T)9T=19NK1

1011 FnkMAT 181212,F6.011
92 WRITE (3,10121 (IKM(1),JKM(II,KM(T),I•1,AK1

1 ,112 FnkMAT (//T20,'KNrW N 4ASCFS'//(T4 	 ,'M('179'9 1 1201 _ 910E11.49
IT31,129 0 9'12, 1 1 *'FI2,4,T29, 4 00 ( 1 157 ,12,','12,'1 s ' c 12,4,T55 .•M('
2T81,1200T70) s'rl?,4,T79,'M('TlO6,I2,','!?,81 ='E1294,T1f14,
3'M(')1

INPUT F.RR(• R TFST
nrl 920 T=I,NK

III-13



11103/70	 T DMA C S	 0007

L=IKM( 1)
K=JKM(II
IF(L-P) 90199019902

901 IFIK-PI Q05,9n5,Q02
902 IF(IEQ) 90399039904
903 WRITE (3,20001
2000 FORMAT ( /T59'INPUT FRRORS9 KNL'WN MASSFS'/l
904 IER=IFR+1

WRITE (3920011 I
2001 FORMAT (Tln9' MASS'14,' INOFX TOO LARGF11
905 1 F (L-K ) 906 9 910, 410
906 IF( IE2 19079 9079 908
907 WRITE (3,20001
908 IER =IFR +1

WRITE (3920021 I
?002 FORMAT (T109' MASS 0 I49'9 I LESS THAN J91
910 IF(I-NK) 91199209920
911 J1=I+l

DO 920 J=J1,NK
IF(L-IKM(Jll 92099129920

912 IF(K-JKM(J ► ) 92099139920
913 IF(IEQ) 914,914,915
914 WRITE 13920001
915 IERsIER+I

WRITF (3920n31 19J
2003 FORMAT ( T109'MASSFS'14,' AND 1 149' HAVF CUPLICATF INnICFS' )
920 CONTIVUF
100 READ (191013) NV,IC T ,IIAM(I)IJAMIII P AM( 119W(1)ol u t NV)
1013 FORMAT (110,9X,11/(21592F10.011

INPUT FRROR TEST
on 950 I=19NV
L=IAM(l)
K=JAMIII
IF(L-P) 92199219922

921 IF(K-P) 92599259922
922 IF( WIR 1 9230239924
923 WRITE (3,20041
2104 FORMAT (/T5,'INPUT ERRORS, APPRnw MASSE' /)
924 JERR=IERR+1

WRITE (3 9 20011 I
925 IF(L-K) 92699299929
426 IF( IEQRI 927,9279928
927 WRITE (3920041
928 jkQR*IFOR+1

WR I TF 13 9  20021 I
929 I r-( W( 1 1) 935993C9935
930 IFI IFRQ 1 9319Q319942
931 WA I TE 13, 20041
432 IERR=TFRR+I

WRITE (3 9 2015)  1
7')n5 FdkmAT (T109'WFIr. HTING FUNCTICN 1 14 9 ' = 001

935 IF(I-NV)93699429Q42
# 936 J l=l+l

r)n 941 J = J 1 9 NV
IF(L-IA4(Jll 941,937,941

III -14



I

n!/03/70	 IDwASS	 0301

137 IF(K-JA4(J)1 941,999,941
936 IF( IERR1939,939,94n
-04 WR I Tt (3920041
94U [ERR n IERP+I

WA I T[ ( 3, 20(13) 1 • J
941 CO"JTIVUF
942 1F(NK) 950,9509943
943 Oil 950 J=1,NK

1F(L-IKMIJI) 950,S449950
944 IF(K-JKM(J)195n,945,950
945 IF (IFRR 1 946, 946, 947
946 WRITE 13920041
947 IERR=IERR+1

WRITE 0 9200h1 I,J
2006 FORMAT (T10 9 1 APP O UX MASS 4 I49 4 AND KNCWN b A 9 9$ 14, l H AVF SAMF INDICFS

1')
950 CONT14UF

IF( IF 	 1951,951,500
951 IF(IERR 1 101,101,50(1
101 NZE	 N*(N-11/2

NE = N7F+NG+MIN0(ICT911
NR=NV-NE
WRITF (3910141 NF9NV9NR

1314 FORMAT (//T209 0 PPnRLEM DEFINITION	 h0 CF ECUATin4S = X12/
1 T419 1 NO OF VARIABLFS = 1 12/T37 9 4 0RDER [F CFGFNF R ACY • 0121
IF (N q ) 110.1209149

110 WRITE (3910151
1015 FORMAT ('+'T6Sv l NnTF - NO EXACT SDLUTIrN PnSSieLE')

GO TO 149
120 WRITE (3,1016)

1016 FORMAT ( l +'Th5,'NnTF - ONLY C:NE SOLUTTnA PrSSIPLF, Aoognx MASSES N
10T USE")'1

149 IF(ICT)130,151913C
130 WR 1 TE ( 3. 20161

2016 FOkMAT (/T41, lTOTAL nF nIAGQNAL MASSFS CCKSTANT'1
151 IF(NE-201 159,159,152
152 WRITE (3,3n16)
'4016 FORMAT (//T10,'*** TOO MANY FOUATIOkS9 LIMIT IS 20 ***•1

Gn TO SnO
159 GO TO ( 150,2501,1Ct'

r
	

FnP4 A MATRIX (NF X KV1, 1 V ECTOR IVFI
150 01 160 I =1,NF
160 R ( I )=l

r	 nFF-nIAnPNAL FOUJITIf!kC
IE=^
N 1 =N-1
no 200 I=1,N1
J1=I+1
On 200 J=J1,N
IF=IL+1
D el 180 I V=1 •NV
L=lAM(1V1
K=JAM(IVI
I F I K-L 1 170 9 1 65,1 7n

its AIIF91VI20HI(1.9II*P ►+1(L9J)
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r

()1/03/70	 my.6cc	 0004

Gn T7 19 0
170 A(1E,iVJ=PHI(L,1)*PHi(K•JI+PHi(K,11*PHI(L•JI
180 CONTINUF

iF(NK)2()0,20O91P5
185 no 199 iK=I,NK

L=IKM(1K1
K=JKM(IKI
IFIK-LI 195,19n,195

190 R(IFI=k(IFI- KM(Iv1*PN 1(L,I)*PHI(L•J1
GO TO 19Q

195 R(IE1=RIIE)-KM(1K1*(PHI(L•I)*PH1(K•JI+Pr1(K•i)*PHI(L•J)1
199 CONTIVUF
200 CONT14UF.

1FING1 250,7509210
^.

	

	 FOS CCRRCCP pNCiNf Tr CI AG TFRyS
210 D 11 240 i 1 =19 NG

1=iGMt(II
IEmIE+l
nn 230 IV=19NV
L=lAM(iVi
KnJAM(1V)
iF (K-L) 225.2209225

220 AIIE9iV ► =PHI(L•Ii*PH((L911
GO TO 230

225 A(IE9[V)=2*O*PHi(L,1)*PHI(K*fl
230 CONTINUF

R(IEISGM(I)
IFINKI 2409240,231

231 00 239 iK n 19NK
LaiKM(iKI
K=JKM(IK)
(c(K-LI 735t232035

232 RIIE) =R(IE)-Kk ( IK1+PH1(L91) * PHI(L91)
Gn TO 239

235 RII EI=R(iF1-2.0*KM(TKI*PHill•1)* PHI(K9 /I
239 CONT9411F
240 C(1NTI4LIF.
250 1FIICT1251926(1,2r+1

r	 FOUATiCN FnR SLI M CF riAGCNAL MASSFS
251 iExIE+1

R(iFI=0
11 x1 259 I V=I 9 NV
L=IAM(IV)
K-JAM(IV)
IF(L-<1 259,257,759

252 A( I F , IV) =1.l
atiEl=?(iFt•eMttVl
;l1 Tn 259

25	 A(IE9iV)=0

259 rtINTi109
A wAT0 1 V CUTW4JT

2t+J dk I TF ( 3 9 11171  NP 9PV

1117 F'IWMAT ( #1'//T*Pn,'A MATRI X 1 14• • )(113//1
CALL MnUT? (A,NrgVVI
WRITE (3,1191

III-26



I

01/03/ 10	 InVASS	 0005

1019 FORMAT (///T209 0 9 VECTOR'//I
WRITE (39102014P(T1,IsIoNF1

1020 F IJAMAT 1 /ITb,1P10E17.411
r	 FCRM AN	 A/W

DU 270 Js1,NV
W1s140/WIJI
00 270 IsI,NF

270 AWII,J1s411,J)*W1
r	 FORM BR

CALL PSElinfl (AW,NEiNV,8R1
DO 280 I s1,NV
W1•i.o/WITI
Dn 280 JzlvNE

280 BRIIrJ) nRR(I,JI*WI
C	 FORM RM

CALL MMPY (RR9A,NV9NF9NVt8MI
DO 290 IsI,NV
DU 290 Js1,NV
BM(I,Jis- BM(I•J)
IFI I-J ) 290,2859290

285 8M(IsJIsRM(I,J1+1.0
290 CnNTIVUE

WRITE (3.10211 NV,NF
1021 FORMAT l'1'//T?O,'RR MATRIX'14 0 X'13//)

CALL MOUT2 (RR,NV,NF)
WRITE 13.10221 NV•NV

1022 FORMAT ('1'//T209'R M MATRIX O T49 1 X11311)
CALL 4OUT2 (8M9NV9NV)

r	 FORM SCILIIT10%
CALL MMPY (5R9R9NV9NEvlvMMIN)
CALL MMPY (RM,AM•NV•NV,I•MPARI
TM s0
TMB sO
OEL Ss0
no ?110 IsI,NV
MBAR(l)=MRARITI+MMIN(l)
TMsTM+AM(I 1
TMRsTMB +MBAR(i)
OFLIII=MNAR(I)-AM(II

310 DFLS*lELS+nFL(T1+nEL(I)
DELS=SGR TIDELS/NVI

r'

	

	 MASS CUTPUT
WRITE (3910231

1023 f!Jw mAT 1 0 1'//T309 9AF ST MASS SOLUTION'//T5,'1	 J	 APPROX wAS rA W

IST FAST	 MIN OAS%	 AFST MASS	 CHANGE'//1
WRITE 13.10241 (IAM(1),JAM(I19AM1T), W(II,MI+IA(I1,""AR(I),OFL(IIt
I IsI,NVI

1074 FORMAT lI5,14,1PC15.4,OPF10949IP3E15.41
WRITE 13,10251 TM,TMA.DELS

1125 FORMAT (//T49'TCITALS'1PE15.4,T509F.1S.4// 71,•' RMS nF CHANGFS'1:12.41
r	 FORK CrMPLETF MASS MATRIX

DU 321 1 s1,P

no 32n J sl,P

320 MASS(I , J 1 sn
DO 331 Ts1,NV

III-17



-)1/03/70	 Tomb SS	 00n1%

L-IAM( I 1
K=JAM( I 1
MASS(L,K)*MPAa(11

'330 MASSI K 9 I:KRA4 ( T 1
IFINKI 355, 355,34C

340 DU 350 I=19NK
L-TKM(t)
K=JKMI t 1
MASS(L,KI sKMIT )

350 MASS(K*L1sKMIII
355 WRITE (3910261
1026 FORMAT l'1'//T309	 'FULL MASS MATRIX'//i

CALL 40UT2 (MASS,P,PI
f	 FORM GFNERALT7EC MASS MATRIX
f.	 t AM * RR OFSTRnbF•; 1

nil 370 1 * 1, P
Dn 370 J=1,N

370 F3M(JtI )*PHI (19J)
CALL MMPY (IIM,4ASS9N9P,P98R1
CALL MMPY (5Pt0HI,N9p*N*8M1
WRITE (3*10271

1027 FORMAT ('1'//T30 * fGFNFRALIZEn MASS MATRIX'//)
CALL MOUT2 (RM*N*N)
DO 375 I = 1, N

375 GMASS(11=RM(I,T1
f

	

	 FORM C, K MATRICFS
n0 390 T =I t N
OM=FR(I1*FP(1)*39.4784
CC0EF(I)=1.0/(OM*PMII*I11

390 KCOEF(I1=nM/HM(I,T)
DO 395 1=19P
00 395 Js1*P
CINC(T9J1-0

395 KINCl19J1=O
00 400 IN=19N
00 400 I =1, P
DO 400 J=1,P
C INC(I, J )=C TNC ( I * J)tC, CnEF(IN1*PHI ( 1.• 1N) *FHt t J, 1N1

400 KINCIT•JI=KINC(I,J)*KCOFF(TN1*Rp(lN,1)*PR(IN,JI
WRITE (3,1029) tKCnFFII) •1-1,K1

1029 FORMAT ( 9 1'//T30,'1NCnMPLFTF STIFFNFSS Cr-FF'//T11,'M 11DAL CnFFFICIF
1NTS' /T6, IPInF12.41
CALL MnUT2 (KINC0901
WRITE (3,1028) (CC^FFItl,t=1 ,NI

1')28 FORMAT ( 4 1' //T30, 1 TNC'IMPLFT 1: INFLIIENCF CCFF'//T10,'Mn r)AL CnFFFICTF
1NTS'/176,1P1AF17.41
CALL MnUT2 (CINC,P.PI

')UO RFTUPN
ENn
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DISK nPERATiNG SYSTE M /360 FrPTRAN	 16ON-Fn-451 31

SU1RO.JTINE MITFP (AtntNgTCL,ITMAX,FUNtVAL,IT)
r
r	 ITERATFS nN A}B FrA DONINEKT EIGFNFUNCTION (PIN)
r	 AND FIGENVALUF (VAL).
r	 N IS OPOEQ
r	 TQL IS OFCIMAL (.01 PFRCFNTI TCLEFANCE ON VAL.
r	 ITMAX IS MAX NC OF ITFRATICNS.
r	 IT IS NUM a FR OF ITERATIONS PFRFrRMFO.
r
C	 A,R APE SQUARE OF OPDFP N lOthENSTCNEO (209211 1.
r
C	 USES MMPY (A98019N2,090

RFAL A(20921). 9( 20.71),C(20921),DUM(20),FUN(2(11
CALL MMPY (A,RvNtNtNPC)
VALO=100.
I T=1
Of) 10 1=19N

10 FUNI[1=1.0
11 CALL MMPY IC,FUN,NtN,I,DUMI

VAL =DUM111
00 20 1=29N
IF(ABS(VAL1-ABS(DUM(I)I)15920920

15 VAL =DUM(I )
20 CONT14UF

DO 30 I=1.N
30 FUN( I ) =DIJM( I ) /VAL

IF(ABS(VAL/VALQ-1.01-TOL) 50950940
40 IT=IT+1

VALO=VAL
IF(IT-ITMAX) 11.11,50

5O- RETURN
END

r



r

nI SK f)PFRATINr, S VST F M /CEO Ff'RTRAN	 ?4NN-F^-451 31

F UNCTION GFN (FUN,A,N)
r
r	 GFN : FUN(TRA%C) * A * RIN

r

DIMFNSIUN Al20,21)9FI)y(20)
f,FNsO
On 20 1=19N
OUM=0
DO 10 J=1,N

10 UUM=UUN*A(IjJ)*FUN(J)
20 GFN=GFN*DUM*FUNGI	 ^.

RFTURV
NO

11I-2n



I

DISK r)PCRATING SYSTEM/36C FC R T U AN	 360-4-O!1-451 31

SjAR)jTINF PSFiIpn (A,'iR,KC,CI
r
r	 C = PSFUnnINVF P SE OF A	 A UnDISTuPPEC

r	 A IS A P r CTANGULAP WATPIX rF MAXIMDL Y ANK ( N Q V NC)
r	 NO .GT. OP .LT, NC

r
r	 -1	 -1
r	 C	 IA'A1	 h e	 nR	 Al(AAI1
r
r	 Na,NC MAY ^!OT FXCFEn 20
r

GCAL A(20,20),a120,21)gC(20.21)
r	 A : As

On 10 I=1•Nk
DO 10 J=1,NC

10 R(J•I1=A(I•JI
IF(14R-NC)20920,30

r	 NR . LEA NC
f	 C s AAl

20 CALL, 44PY (A,R fMP,NC,NR,C)
r	 A = I NV 9F C

CALL 114VPS (C,NP,A)
r

	

	 C = P Iz E000INVFRSF rF A tNc x NR ►
CALL MMPY tR9A9NC,NQ9NR,C)
GO Tit 40

r	 NC . LT. KIP
r	 r. = A'A

30 CALL MMPY (S,A,NC,NR,NC,C)
r	 A = I NV OF C

CALL 1NV P S (C,NC•AI
r

	

	 C : PSFUnnINVFRSF rF A (NC V NR1

CALL 44 0 Y (%,R,NC,Nf,NP,C)
r	 RFCTnOF A

1.0 )ti 50 1=1,N-1
*)•) 50 J=1 •N..

50 A(I•J1=3(J•I)
Kr-TUQV
.;'J')
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(1ISK OPFRATING SYSTEM1360 FCRTRAN	 36nN-FO-451 31

/	 SUER3 ,JTINE INVRS (p*N /A1
r.	 A - INV F RSF. nF A	 8 UNCISTUP8F0

DIMENSI1N A(209211/')120121191ROW(21191CCL12119P.(209211
DO 1 I=1*N
DO 1 J=1*N

i A(19J1=8(I/J)
M=Ntl
nO 7 Ia1/N
IRnW(I)=I

7 1COL(Ilal
DO 20 Ka11N
AMAX= A(K9K)
00 LO I=K9N
00 10 J=K1N
IF(ABSI A(I•JI)-ARS(AMAX1)1n/9/4

9 AMAX= A(19J1
Ica[
JCSJ

10 CONTINUE
KI=ICJL(K)
ICOL(K)=ICOL(IC)
ICOL(ICl=KI
K1=IRIW(K)
IROW(K l u lROW(JC 1
IROW(JCI=KI
IF(AMAX) 11912911

12 WRITE 131 131
13 FORMAT( I SOLUTION ()F FXISTING MATRIX NCT PCSSIPLF11

GO TO 100
11 00 14 J=1/N

F =A(K*JI
A(K9Jl=A(IC/J1

14 A(IC9J 1=E
On 15 I=19N
F =A(19K)
A(19K1=A(I*JCI

15 A (I/ J: 1=F
DO 16 I=19N
IF(I-K) 18917/18

17 A(I/M1=1,
GO TO 16

18 A(I/M)=0.
16 CONTINUE

PVT=AIK*KI
In 8 J=19M

8 A(K1J)=A(K1J1 /PVT
on 19 1=1*N
IF( I-K 121/19921

21 AMULT-A(I/K1
DO 22 Jal1M

22 A(I/J)=A(I*J)-AMULT*A(K9J)
19 C,LMITINUE

00 20 I=1*N
20 A([*KI =AO1M1
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01/03/70	 1NVP;	 00n2

n0 25 I=1,N
no 24 L=19N
IFI IR")W( I )-L) 24,23924

24 CnNTINUF
23 UU 25 J=1,N
25 OIL ► J)=A(I,JI

n0 26 J=1,N
OU 28 L=19N
IF(IC3L(JI-L) 29929929

28 CONTINUE
29 n0 26 I=1,N
26 A(I,L)=D(1,J)

100 RFTURV
END
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f

n)SK n D FRATING SYSTFM/164 FQRTRAN 	 W N— FQ-451 11

SUURUJTV1F MMPV IAgSgNlvN2vN3•CI
r
r	 f. = A * 8
r	 A (N1 X N21	 8 (N2 X NI)	 C (N1 x NI1
r

REAL Al20^21T%(20,21l tC(20.211
Ors 20 1=1 :N1
00 20 J=1tN3
Cl191)=n„
Del 20 K=1 tN?

20 C(I•J)=C(I•Jl+AII9KI*e(K,J)
RFTURV
FNn
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I

DISK 0 D FR 4TI NG SYSTEM/360 FCPTPAN	 360N-FO-451 31

SURRJUTINF RAN OIU TTX,I V.YFLI
C	 THIS SURROUTINF IS FRC M SS p VEQS. 11

TY*IX«65539
IFIIY159696

5 1 Y u IY+2147 183647+1
6 YFLsIY

YFL n YFL*,4656613-9
RETURN
ENT►
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O

OTSK r1 PERATING SYSTE10 1360 FC Q TRAN	 160N-FI-451 31

S11 13ROUTINE MDR (M,K,R,N,rM,ZP,Zi,YR,YI1
r
r	 CALCIILATFS COMPLEX IMPFOANCE ANC IWCPILTTY
r	 M IS SOUA RF. MASS MATRI x
r.	K IS SQUAR E STTFFNFSS MATRIX
f	 r, IS SCAT AR STRUCTURAL 7)AMPING
C	 OM IS FP r q!IFNCY IN NFPTZ

N IS ORDER
r
r	 IMPFOANCF IS ZR + I*ZI	 It = SOPT(-1)1
r	 MOAILITY = YR + I*YI

r,
r	 ALL SQUARE MATPTCES ARF DIMFNSICNFO (209711
r

USES CTNV, INVPSv MMPY
f

REAL 4(20t211 ► KI2092119ZRI20,21)91I(20t21),YP(20921ltYI(209211
OMR=O4*6.283185
CON=G/OMR
00 10 I=1,N
DO 10 J=19N
ZR(I,J)=C0N*KII,JI

10 ZI(I,Ji=UMR*M(I,J)-K(T,J)/OMR
CALL CTNV (ZR,ZI ► N,YR,YII
RETURV
ENO
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I

1`If *Pt19Tr 41 *0FL T4 r 1PY - %I 11 1 1 L Af4 11 TFit
t

•^•••^•••^^^^^• 1	 II.f21 - a11P1 - fir) 	 T ►tl It,

• C IIIAL STSTF4 PAPAMFTf Pt
	

14 OFf- flF FffrPClr. t1NI1rT QAm niNr. tnFr ti (1.120

2
1

S
n
t
a
9

to
I!

12

ti
1•

1S

Ib

1A

1

•
S
h
1

In
I1

12

11

l+

IS

Il

i^

l 2 i 6 S 6 7 P V to

R . JOG It-J2 n.0 A.1 n.n 0.0 %'1 1.0 1.1 1.1 0.0
('. 0 1.OA00E- 01 n. 1 (1. 0 0.0 o' .-I 0.0 1.1 0.0 0.0
0.(1 0.0 1. )OW -01 00 n.n 00 0.0 0.1 0.1 00
^.0 ton n,n 1.OnN1r-01 0.0 no 1.0 1.0 0.1 0.1
r..n ^.n non non I.0604F _1)1 n.n 00 non 0.1 0.1
^.+ 0.0 non n.n 1).0 1.001)1)19-oI n o n 1).n 0.1 n.1)
M.o 1.0 n.4 non 0.0 n.0 1.000(119-01 M.1 1.1 00
1).o 1.0 O.1 1).0 n.0 M.,) 0.0 1.10n0F-fW1 0.1 00
^.0 0.0 0.3 n.^ o.n 1.n 0.0 M.a 1.o111e-01 a.n
% a.0 n.1 n.n n.A 1).1 1).n 0.1) 0.1 1.1000r-01
%n u.0 0.1 o.n 1).n o.n 1.n 1.1 1. a 0.0
1).t, 11.0 A.11 %n n.1) 1.0 o.n 1.3 n.1 0.1
n.0 0.1 0. r1 n.n n.0 n.n 00 '1.) %1 0.0
n.0 0.0 0.1 n.0 n.0 n.1) A.0 1).0 J.1 0.0
1).0 n.0 n") n.1) n.0 Co.n 00 0.1 0.1 0.0
1).n 1.n n.a O.n 0.0 n.1 1.0 ).1 0. ) 0.4
^.0 0.0 1),1 1).A 0.0 1.1) 1).0 11.1 n. ) 0.1)
1).a 1.1) n.n n.1) n.0 0.0 1).0 1.1 0. 1 0.0

!t 12 18 14 15 16 11" In

^..) 1. tt 0.1 0.1) 0.n 1.1) 1).0 1.1
r, 1.0 n.1 n. 0 n.n 0.0 n. 0 1. 1
1).n ).n 1).n %0 ()on 0.1) 1).1 1.1..n 1.0 n.) n.0 n.n ).1 o.n 1.1
1).o 1.1 1),1 n.n n.1 0.0 3.0 1).n
1).0 i,1) 1.1 non oA 1.1 1).0 0.n
^. n 1. n 1. 1 1.1 n. n 1.0 n.1 n. 1
1).0 0.1 0.) 1).1 Coon 1.0 1).0 M.n

n o n n.n 1.n 8.0 1).1
1).0 l,1) 1),n Co.n 1).0 %0 1.1) non

1.0-10 1 !	 91 0.0 1),0 O.^ n.o 1.0 non 1),n
^.^ 1.lnnnr-fit 0.1 1.n M.1 A.n
1). 1 9.0 1.nA^1)F-11 1.1 (,on n.1) 1.0 a.n
'^.	 1 •J.1) 1.9 ► .AOn1r .1) 1).A 1).n n.r 1.n
^.6 1.n %'1 1).n 1.1n111(-11 n.n 1.1) 1.1
1.A non 1).1 1).1 n . n I.On11c - nl O.n 1.11
r .(. 9.1 1.1) 1.0 1).n 1).1 I. One o r -01 1.1
1).n .I,1) 4.1 9.0 1).0 1.n n.^ S.1n111F -1)r
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2.562SE 05 -9.1077E 44 1.4019F 06 -1.O6O4F 04 4.4560E OS -1.2174f OS 1.0316E 04 -1.67: 411 04 266421f 04 -4.4296E 04
-h. 0673E 04 4.1434E 0% -1.0604E 06 1.434OF 46 -t.O?SlF 06 4•6161F OS -1.164E OS 1.0626F M -Is606SF 04 2.6407f 04

1.6246E 04 -1.1n61F 011 4.4S41E OS -I.O?S4F 06 1.4442E 46 -1.0756F 06 4.4196[ OS -1.011SF OS 2.S729f 04 -1.0619E 04
-S.5l36F 03 3.2066E 04 -1.2341F OS 4.S104E OS -1.0756F 06 104310[ OA -i.OSA3f 06 4.3OS1E OS -1.0992E OS 3.7033E 04
9.01146E 03 -1.3416E 04 3.0330E 04 -1.216SE OS 4.4196E 49 -1.45113E 06 1.410SF 44 -1.0590F 06 4.44SSE OS -1.2676E OS

-4.6611E 03 1.42465. 04 -1.6113E 44 1.0621F 04 -1.4715E 01 4.3051[ 09 -1.049OF n& 1.4351E 06 -1.0406E 06 4.6117E OS
1.0711E 04 -2.9030E 2.ASM 04 -1.6071E 04 2.9139E 04 -1.0993E 09 4.44STF 4S -1.06091 06 1.4S61F 06 -1.0917E 06

-1.10173E 04 4.2111E ♦ -4.4314E 04 2.6426F 04 -1.4114E 04 S.70SIF 04 -1.2679F Of 4.6121E OS -1.0916E 46 1.43T0E 06
1.2206E 04 -3.5196E 4 4.OS6tF 04 -7.9742E 04 2.1116E M -2.7463E 04 4.2640f 04 -1.7946E OS 4.5909E 09 -1.0632E 06

-6.0113E 0 1.4119F/04 -2.2654E 04 1.9140E 04 -1.606?f. 04 1.304E 04 -1 9 9627f  04 3.462TE 44 -1.2264E OS 4.5061E 05.
3.4669E 03 -9.9953E 03 1.1944E 04 -1.0074[ 04 6.0199E 01 -6.tO97F 03 9.4219E 01 -9.4S9SE Al 1.19114E 04 -1.1939E 09

-4.6616E 03 1.)16 04 -1.3139E 04 4.6194E 03 -7.2049E 03 4.3200E 0S -4.4664# 43 S.1721E 01 -9. 144 OF 03 3.1211f 04
M 9699F. 03 -2.0451E 04 2.1169F 44 -I.SO2SF 04 1.2699F 44 -1.7311f 04 1.11164E 04 -6.9416E 03 6.4919E 01 -1.1111E 04

-6.7366E 03 2.2627F 04 -2.4414E O4 2.4236[ 04 -1.9424# 04 1.6066f 04 -1.4121E 114 1.2169E 04 -6.92SM 01 9.6166E 01
1.S331F n3 -1.4667E 04 P0261E 44 -7.2124E 44 1.7179E 04 -I.l%llF 04 1.0766E 04 -9.41%6f 01 7.'1914f 03 -7.2266E 03

-1.30SE 02 4.1114E 03 -7.1122E 03 7.9219E 03 -5.9014E 04 1. 141 SF 03 -2.6271F 01 3.001W O3 -2.3 1 'Sf 01 2.0164E 03

11	 12	 13	 t4	 lS	 16	 17	 14

I.2206[ 04 -6.0192E 01 3.4726[ 03 -4.6691E 03 6.9790E M -6.7394E 03 7.5297E 01 -7.2639E 02
-%St92E 04 1.6121E 04 -1.0004[ 04 1.1200E 04 -7.0467E 04 2.2629E 04 -1.44SOF 04 4.1042E 01

4.OS46E 04.-2.2644E M 1.1944E 04 -1.3197E 04 7.1404E 04 -7.6391E 04 2.2727E n4 -7.1152E 03
-2.9T2EE 04 1.9690E 04 -1.0021E 04 6.42n9f 43 -1.110115 04 2.4196E 04 -2.2262E 04 7.9105E 03

7.2103E 04 -1.6052E 04 0.070OF 0 -7.1o33F 0) 1.26SO q 04 -1.9163E n4 1.1126E 44 -5.9120F 03
-7.254OE 04 1.3491F 04 -6.4o4SF 01 6.3036E 03 -1.2261E 44 1.6012F 04 -1.1456E 04 1.1765E O1

4.2652E 04 -1.SS99F 04 9.4146E 03 -5.4619E 01 1.1526E 44 -I.SOA4 F 04 1. 04.f 04 -2.AISIE O)
-1.1942F  OS 1. S605F 04 -9.6612E 01 S.I76lF 01 -6.6602E 01 1.27SOF 04 -90WOF 43 2.9943E 03

4.S901of OS -1.2262f 0% 1 .19%4F 04 -9.1161E 01 6.3619E 41 -11.6911E 03 7.166OF 01 -2.110!F 03
-1.0632E 06 4.5046E 011 -1.1931E 04 1.1200E 04 -1.1044E 04 9.1762F 01 -7.I93SF 01 2. 11646E 01

1.4430E 06 -1.0T24F 06 4 0 469OF OS -1.1910E 011 1 0 67n4F. 44 -1.4042E 04 1.0426f 04 -2.4700 6 03
-1.0T24F 06 1.43114E 06 -1.0104E J6 4.4909E OS -I.7717F 0 11 4.SS44F 04 -1.6996E 04 4.6229F 01

4.4649E IS -1.0104F 06 2.4360 E 06 -1.0740F OA 4.4610E GS -1.11167f 04 4.246E 04 -6.9196E O1
-1.1930E 05 4.4906E CS • 1.0T46E 06 1.4431E OA -1.0424! 06 4.%971[ 03 -1.212116 04 2.1449E 04

Lfi211E 04 -1.2715f OS 4.S6275 05 -10470  06 1.4399E 04 -1.0S03F 06 4.0116F OS -6.S$T±E 44
-1.094SE 04 4.11S33E 04 -1.397of OS 4.S9S2E OS -10161F 04 1061'lf 04 -4.Wof 4S 2.4403F OS

1.0661E 04 -1.4996E 44 4.764SF 04 -10104F OS 4.0709E OS -1.1204E 04 9.4}476 nS -1.4164E OS
-2.6645E 03 4.42SNF 04 -6.9110[ 01 70136Sf 04 -6.1167E n4 '?04396# 03 -1.4747F A S 1.S4291 OS
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INF LUF ACF CEfFfiClf Ni a47ui1

l0

1	 1.OJOOF-06 9,16SO-fl? 6.3371F-07 7.494i'-n1 h.4415 9 -n7 4.62419-07 4.9948E-01 4.161SE-O7 3.3241F-07	 2.4948E-01
1	 4.14540-01 3.4471f-nS 6.052 %F-W) 1.8244E-0 11 6.6462 01-0% 9.2011F-05 4.97740-04 As 2 1434F-OS 1.0971F• M	 5.61410-OS
1	 E. 3327E-07 6.OS1 5f -nS 1.11dAf-04 1.4473E-(14 I.h05AF-4 1.77599 -04 1.13039-04 1.6027E-04 1.)1214-04	 1.O9S9s-04
4	 7.494ef-07 1.8244F-OS 1.487)F -04 70321F-4 2.)7ttF-4 2.S149F-04 2.4613E-04 2.2976[-04 1.9984E-04	 1.57999-04
S	 A.661SF-07 8.44#.? 9 -05 1.695'9-04 7.11tSF-04 2.45119 -4 1.0746E -04 1.0711E-n4 2.9673E-04 2.4944E-34	 1.98889.04
6	 %d 2Alf-n7 9.2011 9 -45 107S9F-04 1.51491-04 3.01849 -04 3.409 11F-04 3.4646 E-04 1.2101E-04 2.46730-04	 2.2916[-04
1	 4.9964E-07 6.91249-05 1.7391 0 -04 7.4613E-04 1 .073IF-04 3.464AF-04 ).An6SF- 4 3.46489-04 1.O131f-04	 2.44130-04
1	 4.161SF-01 8.2434F-OS 1.6071E-04 1.297hf-n4 2.66119-04 1.270 1I9-04 1.4644E-04 3.4n9 )f-04 3.0744E-04	 2.5149E-04
4	 1.3241F-01 7.0973E-05 1.3827 E- 4 1.0486E - (14 2.49449 - 114 7.86139 -04 1.0111E-A4 1.3198E-04 2.4511 01 -04	 2.3?ISE-04

In	 7.4941E- 07 S.6141F- 05 1.09590- ,1, 4 1.57999-04 1.946AE-4 2.19749-04 !.481)9-4 2.9149E-04 2.1TVIF-04	 2.03209.04
I1	 1.661SE-01 hCalIF-0 9) 7.S499E-04 1.09490-04 1.1A74E-4 I.4077F-M 1.1)9'10-n4 1.1199E-04 1.6958E-04	 1.4823E-4
12	 4.297SE-08 1.9896E-05 1.6871 0-OS 5.6111E-OS 7.097 101-05 6.2412 01 -OS 8.9122f-nS 9.2n09F -OS M 646001 -OS	 1.8243E-09,
It	 7.5194E-11 6.2401 0 -04 1.6Sn7F-07 7.4744E-07 3.10410-07 4.14179-01 4.47S6F-07 S.4109F-01 6.6414E-07	 7.4841E-07
14	 -6.264SE-08 -1.98159-05 -1.9876F-OS -4.61C%F-nS -7.08770-45 -4.2310F -05 -9.957101-Ot -9.191DOE-01, -4. 4292F-OS -1.8004E-09
15	 -1.6613[-07 -3.96140-nS -1.77990 -0S -1.12440-04 -1.41(1/ 0-n4 -1.65079-04 -1.1063E-04 -1.4421F-04 -1.1716E-04 -1.567SE-04
16	 -7.50Stf-07 -$. 9770-09 -1.1671E-94 -1.447AE-04 -7.1124F-4 -2.47TIF-04 -1.6066E-O4 -2.1661E-04 -2.65nSF-04 -2.31148f-04
17	 -11.3411E-07 -7.9644F .. nS -l.SS71E-04 -7.2501[-04 -7.44469-04 -3.1034E-04 -3.59649-04 - t. 6691E-04 -3.S469F-04 -3.1417E-04
lA	 -4.2011E-01 -9.93904 • n4 -1.946001 -n4 -7.AI7hf-n4 -).55409- (14 -4.12899-04 -4 .49)59-G4 -4.41200-04 -4.4 1thRE-04 -3.9282E-04

11 12 11 14 15 16 L? 18

1	 1.661SF-01 8.291'.9 -0e 2.S70OF-11 -6.24450-06 -1.661 1; f -nl -2.SOS2f-O7 -1.14379-n1 -4.1031f-07
1	 1.8611E-05 1.9496F-OS 4.140if-08 -1.987SF-OS -3.9414 E-OS -9.971hF-OS -7.9696F-OS -9.959er-OS
1	 7.Stl99E-OS 3.6471E-OS 1.001F-07 -1.4A W -OS -7.1109E-05 -1.1677F-n4 -1.SS71 F -04 -1.9460E-04
4	 1.09W-04 5.61130 -oS 7.4784E-37 -5.41050 -0 1S -1.1244E-04 -1.6A?6F-04 -2.2501F-n4 -2.4126F -f)4
5	 1.30126E-04 7.0971 9 -OS 3.300)0-01 • 1.9871 9 -04 -1.4?n1F-4 -2.13240-4 -2.8436E-04 -).SS40F-04
6	 1.6011E - J4 4.1431F-(1S 4.1411E-n1 -4.741OF-04 -1.65(170-04 -2.4771E-04 -1.)0140-n4 -4.1269E-04
1	 1.119)F-4 d.9777F-OS 4.47SO-07 -8.9473E-04 -1.10610-04 -7.6946E-04 -1.59141-04 -4.49SV-04
4	 1. 7759f-04 9.20099-0S S.e109F-07 -0.1410f-09 -1.6421E-04 -2.7661E-04 -1. 669'%F-04 -4.6120f-n4
1	 1.69SAE-04 04.84609 -04 4.6474E-07 -0.67 1920-04 -1.77160-4 -2.66099-04 -1. S469F-n4 -4.4368F-04

10	 1. 41123E-4 7.824if-OS 7.4841E-07 -7.An04F-OS -1.467SE-04 -1.1S46F-04 -t. 14179-4 -3. 9702E- n4
It	 1.l leef-4 6.05269 -OS 6.321AF-AT -4.0191E-nS -1.211tF-04 -1.424(10-04 -7.4'1459-04 -3.9441E-04
17	 f.P514[-OS 3.44TIF-019 0.1613E-07 -?.4169F- 04 -6.92SIE -OS - 104)19 -04 - 1.39309 - 04 -1.74449-04
It	 A. 1220-U1 -1.161 0-07 1.0000E-06 1.0412E-06 1.1MSF- 116 1.149AF-06 1.1131E- 06 1.4164C-06
14	 -•.02530-O5 -1.41691'-05 1.(1812F-06 4.4510E-n9 6.9640F-nS 1.3474 F -04 1.19469-04 2.+491F-04
15	 -1.7111E-04 -4. 92SI F -n5 1.166S9 -06 5.9640E-04 1.4AIIE-04 2.6824E-04 4.8414f-04 4. 4441F-()4
1%	 -1.414UF-04 -1.0611 E -4 1.)498f-06 1.3414F-04 1.84?4F-4 4. 111710-04 4.1A44F-4 1.81919-4
11 7	-7,4365E-04 -1.39349 -04 1.3311 F-06 1.19A4F-04 1.88149-04 S.1684 f -04 4.SS1SE- n4 I.39S4f-01
11	 -b044TE-134 -1.7446F- no, 1.4 144F-(I& ?.74919-4 4.6641E-4 7.8191F-4 1.n9S4^-03 1.4149E-01
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n c SFkIPT19N 1E S TyULATFn TEST

P914T IT wIITC ►+ SVSTFM IS FOPCFn	 7
NO lF P(I INTS nr rF 4SURFMFN7	 q
'OIV T S AT WHTC.N yrASUQFMFNTS APF TAKFA

3	 5	 7	 4 11	 15 17 18
F G FJUENCI C S nF F XCITATICN - ►+7

9.3160E 00	 1.8654F nl	 469055F O1

AVE PANOnM AMPLITME ERROR 	 0.0
31AS A %DLITUn F FPROR	 0.0

SEED Flu RAND NO ,FNERATOR	 0

FWArT RESPONSE OF ACTUAL SVSTE y .IN/SFC/Poo Nn, NCRMALIZFn ON RFAL DRIVING POINT RESPONSE

REAL PART

FPIF7 9.3160E 00 1.8654E	 O1 4.9055F 01

n.P.
7ESP 7.4873E-01 3.9857F -nl 1.1)967F-02

3 0.47153 0.66158 -4.76195
5 0083368 1.04127 -3.72077
7 1000000 I.000nn 1.n000n
9 0.91745 0.60815 4.77066

11 0.57490 0.14263 1.75490
15 -0.75043 0.51650 -0.585RR
17 -1.58366 1.39374 1.48294
1R -2.00865 1.87730 2.88484

r
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I

r 1 M l)LATCU TEST 7FSP I)NSF, D EAL MOBILITY WITH FRRCPS I1CFC AS PHIIS

N C, .

.1 FCV	 7.4873[-U1 3.9852F- 71 1.0967E-02

1 2 3

1 4.7153E-01 6.6158E -01 -4.2619E 00
2 A.3368E-01 1.0412E	 on -3.720AE 00
3 1.0000E 00 1.OnOOF 00 1.0000F 00
4 9.1745E-01 6.0815E-01 4.7707F 00
5 5.74gOF-01 1.4269E-01 3.7549E 00
6 -7.5043F-01 5.1650E-01 -5.8588E-01
7 -1.5837E 00 1.3937 E 	00 I.4829F 00
8 -7.0087F 00 1.8724F	 00 2,8848E 00
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I

DAc?T I  - ll)FVTIFICATION

se^aee+ssssssss 0	 TI. 021 - R1IRI - IICI	 TFST 16

°	 ALL rF NEPALI FED MASSFS UNKNCWN

ALL MASSFS IINKNnWN

PRU3LEM OFFINITI M 	 Nn OF rouaTInNS n 4
NO (IF VA Q I AR LFS n e

nROER nF nFfsFI,CRACY a 4

TGTAL nF nIAGCNAL MASSFS CrNtTANT

S
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A Me Tviz	 4 x 9

1	 2	 3	 4	 5	 6	 7	 8

1

	

	 1.1195E-01 9.6805E-01 1.0000F On 5.5794F-01 8.1999E-02 -3.976OF-01 -2.2072E 00 -3.7h10F 01
-7.0096E 00 -3.1019E nn I.000nE 00 4.3768E nO 2.1597E 00 4.3966E-01 -2.3485E 00 - 5.7,946F On

3	 -7.8194E 00 -3.8741E On 1.0000E 00 7.9013F 00 r+.3556 F -Ot -3.0261F-01 2.0668E 00 5.4016E 00
4	 1.0000E 00 1.000OF 00 1.nOnOF 00 1.nnOnF O f) 1.0000° 09 1.0000E 00 1.0000 r- 00 1.0000E nn

R VEGTne

n. n	 0.0	 0. n	 1. 55nnF 00

I
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T

RR MATRIX	 R X 4

1 2 3 4

1	 -4.3193E-02 -4.2510F-03 -7.0886E-02 1.466GF-01
2	 1.7264E-01 -9.0493F-02 -5.7130E-03 1.4509E-01
it	 4.3394E-01 -1.21?0E-01 1.7112E-01 1.3181F.-Ol
4	 R.4392F-02 4.0135F-02 6.880SE-02 1.4657E-01
5	 -1.8300E-01 9.849SF-02 -7.0437E-02 1.5234E-01
6	 -2.7448E-01 I.0553F-Ol -1.1863F-01 1.4612E-01
7	 -2.7324E-01 6.7839E-02 -8.0967E-02 9.8685F-02
8	 8.2929E-02 -9.6052E-02 1.0671E-01 1.2784E-07
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9N 144TRIX	 R X 8

1 2 3 4 5 6 7 8

1 6.5846E-01 -3.9691F-01 -2.827OF-02 1.0176F-01 -9.S918F-02 -1.8292F-01 -I.OS41F-01 4.9210E-02
2 -3.9691E-01 4.0221F-01 -2.2l53F^-01 1.7123E-01 3.9159E-02 -4.0117E-07 3.5257E-02 1.0706E-02
3 -2.d2TOE-02 -2.2153F-01 3.8433F-01 -3.399OF.-01 2.6029E-03 1.4145E-01 1.8768E-01 -1.2631E-01
4 1.0176E-01 1.7123E-01 -3.3990E-01 4.3106C.-01 -2.7697E-01 -1.1068E-01 -8.249OF-03 3.1745E-02
5 -9.591BE-02 3.9159F-02 2.4014E-03 -1.7697F-01 6.8777E-01 -2.8789E-01 -1.7936E-01 1.1061E-01
6 -1.9292E-01 -4.0117E-07 1.4146E-OL -1.1068F-01 -2.8789E-01 6.6519E-01 -2.5892E-01 703882F.-02
7 -1.0541E-01 3.5256F-02 1.8768F-01 -R.2482F-03 -1.7936F-01 -2.5892F-01 6.2469F-01 -2095RIE-01
8 499209F.-02 1.OTOSF -O7 -1.2637E-01 3.1745F-02 1.1061F-01 70882F-02 -2.9588E-01 1.4610E-01

I
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PEST MASS sn LUTION

1 J APPROX MASS MC,T FACT MIN MASS @FST MASS CHANGE

I 1 2.5000E-01 1.0000 2.2723F-01 2.4410E-01 -5.9003F-03
2 2 2.0000E-01 1.1000 2.2489E-01 2.0163E-01 1.628SE-03
1 2.0000E-01 100000 2.0431E-01 2.1967E-01 1.9667E-07
4 4 2.0000E-01 1.0100 2.2718F-01 2.0953E-01 8.S347E-03
S 5 2.5000E-01 100000 2.3612E-01 2.4370f-01 -6.3010E-03
6 6 295000F-01 1. 1000 2.2649E-01 2.'i807E-01 -1.1926E-0?
7 7 1.5000E-01 100000 1.5296E-01 1.3892F-01 -1.1085E-02
H A 5.0000E-02 1.0000 5.0815E-02 S.5379F-02 5.3789F.-03

TOTALS	 1.5500E 00	 1.58i0Of 00

RMS 3F CNAVGFS 1.0191F-02

I
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F ULL MASS MORI x

1 z 3
u

4 5 6 7 8

1	 2.4410E-01 0.0 0.0 0.0 0.0 000 060 000
7	 n.0 2.0163F -M 0.0 %0 0.0 000 000 0.0
3	 0.0 000 2.1967F-01 000 000 000 n.0 000
4	 000 000 O.n 2.0853F-01 0.0 0.0 000 000
5	 000 000 0.0 NO 2.4370E-01 0.0 0.0 090
6	 n.0 0.0 0.0 000 0.0 2.3807E-01 0.0 000
7	 0.n 0.0 0.0 0.0 000 000 1.3892E-01 0.0
N	 090 0.0 000 000 000 000 fie 0 5.5379E-02

I
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GENF R ALtIEO M ASS MATRIX

1.3760E 00 -5.9605F-OA 2.563CE-06
S.960SE-08 1.1547F 00 -1.1Q21F-07
19847TE-06 -5.9605E-OR 1.6474F 01
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I

INCOMPLETE	 STIFFNFSS COEF

MnnAL	 COEFFICIFNTS
1.9841F.	 03 1.1897E	 04 5.7663E	 0?i

1 2 3 4 !S e 7 8

1 6.5775E 03 4.9422E 03 -8.45S U 02 -S.6807F 03 -S.3906E 03 190327F 03 -9.1406E 02 -7.0457F n2
2 4.9422E 03 3.8258[ 03 -3.283	 S 02 -3.9231E C3 -3.8250E 03 8.S094F 02 -4.8096E 02 -4.6923E C2
3 -8.4537E 02 -3.2836E 02 9.4806E 07 1.67SOF 03 1.3110E 03 6.6814E 01 6.1104E 02 4.2487E 02
4 -5.e807E 03 -3.9231E 03 1.67SOE 03 5.9710E 03 5.3550E 03 -6.8244E 02 1.3904E 03 1.030 1F 03
S -5.3906E 03 -3982SOF 01 1.3110E 03 S.3SSOE 03 4.8817E 03 -7.34110E 02 1.1059E 03 8.S494E 02
6 1.0322E 03 8.S094f. 02 6.4814F 01 -6.8144E 02 -7.1480E 02 i.5S40F 02 1.9SS3E 02 6.2629E 01
7 -9.1406E 02 -4.8096F 02 6.1104E 02 1.3904E Oa 1.101;9F 03 1.9553E 02 7.8669E 02 4.1717E 02
N -7.8457E 02 -4.6973E 07 4.2487F 02 1.0307E 03 8.5494E 02 6.2629E 01 4.7117F 02 2.9964E 02
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INfn m PI C TF INFL11FNCr CnFF

MrnAL COEFFICIENTS
2.661RF-04 6.3042E-05 6.3092E-07

1	 2	 3	 4	 S	 6	 7	 R

1 4.8380E-05 1.SR20F -04 1.6450E-04 192752F-04 6.78P1E-05 -7.lOSOF-05 -1.4468E-04 -1.9187F-04
`	 2 1.5820E-04 2.6220E-04 2.8517F-04 2.3217E-04 1.2801F-n4 -1.3123E-04 -2.6347F-74 -3.2969E-04

3 1.6450E-04 2.8517E-04 3.2986E-04 2.8559F-04 1.6442E-04 -1.6756F--04 -3.3273E-04 -4.1478E-04
4 1.2752E-04 2.3217E-04 2.8559F-04 2.619nF-04 1.5731E-04 -1.6524F-04 -3.2878F-04 -4.0995E-04
5 6.7881E-05 1.2801F.-04 1.6442E-04 195731F-04 9.6267F.-05 -1.1160E-04 -2.2625E-n4 -2.8362F-04
ti -7.1050E-05 -1.3123E-04 -1.6756E-04 -1.6524E -n4 -1.116nF-04 1966949 -04 1.6116F-04 4.6112E-n4
7 -1.4468E-04 -2.5347E-04 -3.3273E-04 -3.287RE-04 -2.2625E-04 3.6116 E-04 7.9144F-04 1.0140E-03
R -1.o187F-04 -3.2969F-04 -4.1478E-04 -4.099SE-04 -2.8362E-n4 496112F-04 1.0140E-03 1.3003E-03

I
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4FSrNA47 AESP7NSF	 r1F	 IO C NTIr1E0	 SYSTFM

FEAL PAPT

FWFO A.3160E 00 1.R654F	 01 4.'i055F	 01

MP.
1 FSP 6.9333E-01 3. 6940E — ')i 9. H4 70F-03

3 0.47317 0.66153 — 4.26025
S C.83608 '04131 -3671752
7 1.00000 1000000 1.00000
4 0092231 0.60820 4.77137

11 0.57813 0.14266 3.75450
15 —005294 0#51639 — 0.58527
17 -1.50554 1.39374 1.48293
IR —2.01776 1.87224 2.89604

a
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rcr-NIENCI c S 4V0 yr)DES nF inFNTIFIFD SYSTCM

FRFO 9.3160E 00 19 g6S4F % 4.9055F 01

:EV m ASc 1.3760E 00 1.1547E	 00 1.647SF 01

ii FA 10 7 3

3 0.4r1S3 0.66158 -4.26195
5 0.83366 1.04122 -3.72076
7 1.00000 1000010 1.00000
9 0.91744 0.60015 4.77061

It 0.57490 0.14263 3.75489
15 -0.75043 0.51650 -10S9S89
17 -1.Su366 1.39374 1.48291
10! -2.0Jd65 1.8724n 2.0P. 85

f
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N!M* li ► - ("AY.F() MASSte nu STICC NrSSFS

•p...up^.tt• 0	 11.1:71 - R 13 9 1 - Itr1 - A	 TEST 16
	 N •fit tf tt^tN ^•

VASS -ITAIY fMANGFS

1 2 3 t 5

t	 n.0 '1. D 0. 0 n.0 n,n
t	 n. ^.n n.n n.n n.o
3	 ^.o n.o 1.Dnocr no n.o n.0
t	 r.o n.o n.0 1.0 f.0
s	 n.0 o. o o.1) n.o 0.0
6	 n.o 0.0 0.0 0.0 0.0
T	 n.o 0.0 n. n n.0 n.0
a	 n.0 0.0 n.n n.n n.n

6 7 q

n.0 0.0 0.
00 n.n o.n
n.n n.o n.n
n.n 0.0 0.11
n.n 4.0 0
n.n 0.0 0.11
n.n n.0 0.0
n.n n.0 0.11
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f

41: M Ff FOUFNLI rS AND rnOFS nv 4nnI c IFn SvtvFm

	

FAFO	 6.1740E 00 I.S591F 91 4.8S25F At

G1 , 4 MASS 2.1092E 00 L n79)f n0 1.2491 E A2

	

It FO	 9
	

h	 4

	

]	 0.48715
	

0.421 n0	 -12.911041

	

S	 0.6$1"34
	

1.21949	 -II.97fl9a

	

7	 1.00000
	

1.000'1n	 1.10nnn

	

v	 Q.P8d26
	

0.3224	 Rl%a0652

	

I1	 I.51196
	

-6.27171	 9.867491

	

IS	 -J.61529
	

1.19564	 -I.SP307

	

17	 -1.26145
	

4.41410	 1.86984

	

I8	 -1.59019
	

5. 41f% 7P 	 7.S792Z
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P OT III -	 CHAN+t0 MASSES n v STIFFNF50-S

•^..t^^^q^^^^• 0 11.021 - 8110 1 -	 IIC1	 -	 n TEST	 16 •^s^^^^^^^^^^^•

MASS -ATQIX CNANGFS

2 l 4 S 6 7 B

I n.0 3.0 0.') n.0 00 n.n 0.0 0.0
2 Mn 0.0 O.0 n.n 0.n 0.0 0.0 0.0

0.O 0.0 0.0 0.0 0.0 0.0 O.0 0.0
4 n.0 0.0 O.O 0.0 0.0 0.0 0.0 (1.0
S 0.0 0.0 0.0 0.0 n.n O.0 0.0 0.0
6 n.0 0.0 0.0) 0.0 0.0 O.n 0.0 0.0
7 0.0 0.0 O.0 0.0 0.0 0.0 0.0 0.0
d 0.0 0.0 0.0 n.0 0.0 00 0.n 1.0000E 00

0
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Nrw F"EQ11ENCIFS ANn PmFS nF 4QOIFIEO trSTFw

W n 3.9449Ih	 00 1.4895F	 01 4.7504F	 01

GIN 4Aft 1.0368E	 01 6.6600E-01 7.48CSF 01

ITFF 6 S 7

3 0.44550 n.5620S -5.29998
5 0.80524 0.99479 -4.74020
7 1.00000 1.00000 1.0000
9 0.97245 0.75677 504816

11 0.65901 0.34147 4.713x6
15 -1.02809 -0.03372 -10'4567
17 -2.24498 0.11025 -:1.51286
IA -2.81363 0.20756 x.44880

I
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I

o4xT III -	 CMANGEO 4ASSfS nA STIfaNFSSES

•r4rrrwrrrrrrr ) 11.071 - Bile) - Ito -	 x TEST	 IA

K YATRIx CMAWS

t 2 3 4 S A 7 8

t 0.0 0.0 n.n n.n 00 n.0 0.0 0.0
2 n.o 0.0 n.n 0.0 0.0 0.0 0.0 0.n
3 n.0 n. o t.nnnnE 03 O.n 0.n n.0 13.0 0.0
4 n.o 0.0 n.11 o.n 0.A 0.0 0.0 0.1
S 0.0 0.0 n.0 00 0.0 0.0 0.0 n. 13

6 n.0 0.0 n.0 0.0 0.0 0.0 n.0 00
T n.o 0.0 o.n 0.0 0.0 0.0 0.0 0.0

s n.o 0.0 n.n 0.0 0.0 0.0 0.0 0.0

•r^rrrrsrt^rrt•
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PF:L7A K INCCP9lF'9

1	 2	 3	 4	 S	 6	 7	 8

1	 2.4714E 01 4.14419 01 5.4242E 01 4.9S9OF 01 3.0060 E Ol -S.ln06F 00 3.2559F 00 1. 4 97SE	 00
2	 4.1442E 01 6.67899 01 9.IMr.:F 01 1 .99729 01 4.8446E 01 -8.2241F 00 S.2474F. 00 4.8222F 00
1	 5.9242E 01 9.38669 01 I.1192F 02 7.1132[ 02 6.8087 9 01 -1.1S53F 01 7.3748E 00 b.7772E 00
4	 4.959OF 01 T. 9921f M 1.1212F 07 4.5636F 01 5.7972E 0I -9.8366F 00 6.2792E n0 5.7704F 00
S	 % n060E 01 4.8446F 01 6.8C87F 01 S.7972E 01 1.S!418 n1 -5.9627F 00 3.8063E 00 1.4974E	 00
4	 -5.1006E 00 -8.22039 00 -1.15S3F 01 • 4083AAF 00 -5.9627E 00 1.0117F 00 -6.4566F-01 -S.9350f-01
7	 1.15591- 00 5.2474f 00 7.3748f 00 6.1792E 00 3.8063E en -6.4S86F-01 4.1128E-01 1. T887F-01
B	 1.11921E 00 4.82229 no 60772F 00 S.7 ?(14F 00 3.49798 00 -5.935OF-01 1.788TF-01 7.4816E-01

I
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N F M FAFOUENCI ES ANn Mnvi no Mnn ► F1En c7tTfr

	

F M EO	 9.2806E 00 102690. nl 4.Yn71f. 01

GEN MASt 1.6264E UO 1.02SnF 00 1.5671f 01

	

ITEo	 9	 9

	

0.45074	 00 AS371	 -4.17774

	

5	 0.01931
	

1.03218	 -3.41470

	

7	 1.00000
	

I * 0060f)	 1. ncann

	

9	 0.94000	 0.62304	 4.69599

	

It	 0.60901	 0.16623	 7.69139

	

Is	 -0.8S466	 0.44015	 -O.S754:

	

17	 -1.03513	 1.21278	 1.4S7Rh

	

lA	 -2.17705	 1.63518	 2.63SS4
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PANT ITT - CMAg G10 MASSES nQ STICP4ESSP4;

•^r^r•^^N^^w• ) IlrCtl.- 41101 -	 IICI -	 t TEST	 16

PATOI n GIIAfi ► S

l t 3 ♦ S A

1 NO 0.0 % 0.0 0.0 n.0
2 0.0 0.0

,
0.0 0.0 0.9) 0.n

n.o 0.0 n.0 0.0) No r). (I
♦ n.o 0.0 n.o n.n n.n nrn
S n.0 0.0 0.0 n.o n.0 0.n
A 0.0 0.0 0.n 0.0 n.n 4.11

No 0.0 n.o o.n n.n 0.n
e n.o oro 0.0 o.n 0.0 Oro

^ e

0.4 o.^
0.0 n.o
n.0 0.r
000 0.0
000 0.0
orn 0.0
9.0 1000ooE o)
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rfLTA 9	 INCCPFtFTF

l 2 ) 4 9 6 7 6

l 7.71091F 00 3.2064E 00 -6.9164F 00 -R.6671F 00 -1.061191 00 -1.6464E 01 -4.9277E 01 -9.1660E	 01
2 ?G. 20641 00 1.1162E 00 -7.6672. 00 -1.6S16F 00 -4.166q 1-01 -1.4621E 01 -2941661 01 -1.1016E 01
1 -6.S36S1 00 -2.6672E 00 S.4761F 00 7.44191 00 8.943OF-01 1.22511 01 4.9671E 01 2.6413E O1
4 -6.6621F. 00 -3.6516F 00 7.4439E 00 1.0115F. 01 1.2193E 00 4.3627E 01 6.7SOIF 01 3.60190 of
9 -1.0671E 00 -4.3666F-01 6.9433E-01 1.21S7F 00 1.4601E-01 S.26SH 00 6.1094E 00 4.1117E co
6 -% 8460 01 -I.S671F 01 1.2293E 01 4.7627E 01 9.2612. 00 1.6969F 02 2.92471 02 1.S622E 02
7 -5.9272E 01 -2.4366E 01 4.9671E 01 WSW 01 6.109419 00 2.P2471 02 4.5O4SF 02 2.406CF 02
6 -% 166o1 of -1.3016E 01 2.6513E 01 1.60959 01 4.1316F 00 1.46221 02 7.4060E 02 t.26StE 02

M-51



41'11 F&KOtolCI ► S 4k0 Wif)FS no arm9iFO SvSTFp

	

Fo^^	 1.1144E 01 2.IOSIF 01 4.419SF 01

CAN r4tc 5.9799E-01 2.0937F On 1.60721' 01

	

tT^•	 1	 10	 9

	

0.S0149	 0.75713	 -4.19111

	

S	 0.86779	 1.13590	 -3.6Slll

	

7	 1.00000	 1.00000	 1.00000

	

0.8S99S	 0.48712	 4.7067

	

11	 0.48955	 -0601144	 3.66881

	

1S	 -0.47878	 0.90316	 -O.Stlll

	

17	 -0.93919	 2.26488	 1.67907

	

18	 -1.16655	 3.02643	 3.OS487

t
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