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SUMMARY

This report presents the theoretical development and a
qgualitative evaluation of a new concept in the mathematical
modeling of dynamic structures. The method has several
unique features. It uses both test data and analytical

i approximations to identify the parameters of what is

’ termed an "incomplete model". The technique makes one of
the first substantial applications of the matrix pseudo
inverse to structural dynamics. The "incomplete model"

itself is unusual in that, while the mass matrix and damping

coefficient are physically meaningful, the stiffness matrix
is, in a sense, not physically related to the true (but

unknown) values. The model does, however, have the capa-

bility of predicting the response of the points of interest
on the structure over the frequency range.of interest and
can be wsed to predict the changes in natural frequencies
and normal modes due to structural changes. It is the
ability to correctly p:edict the effects of structural
changes which have been tested in the work presented in

this report.

The theory was tested by running simulated tests on a
= relatively simple structure, identifying the parameters

of the incomplete model, and using this model to predict

ii




the effects on frequency and mode shapes of several mass
and stiffness changes. The conditions of the tests were
varied by selecting different numbers of points of measure-
ment, varying the frequency range, and by including assumed
measurement error. Several analytical approximations were

used to formulate the incomplete model.

Based on the qualitative evaluation made, the following

conclusions are indicated.

1. The method presented appears to be an excellent tool
for the prediction of changes in normal modes and natural

frequencies due to structural changes.

2, The predicted effects are quite insensitive to reasonable

variations in the analytical mass distribution.

3. The procedure is relatively insensitive to measurement

error.

4. Attempts to make the model more complete by using a
greater frequency range for testing will not always be
successful unless the number o0f points of measurement are
also increased or off-diagonal masses are added. There
is a point in frequency beyond which the model will tend

to deteriorate.
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Because of the success of this preliminary evaluation, it

is recommended that the theoretical development be continued
and that applications to more complex structures be carried
out in order to develop a better understanding of the limita-
tions and capabilities of the method. A successful, more
definitive evaluation, could lead to .immediate practical

applications.
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INTRODUCTION

The need for mathematical models of aeroépace structures
is obvious. No attempt to determine a structure's suit-
ability for its intended mission could be made without a
means of predicting its response to the expected loads.

No ra:ional means of improvement or optimization would be
available without some ability to predict the effects of

structural changes on the response of the structure.

Pur~ly analytical modeling is necessary in the preliminacy
design stage of any structure. The evaluation of alternative
basic designs, the selection of materials, the arrangement

of components are some of the probpliems which must be solved
prior to construction of a test specimen. The science of
structural analysis has progressed to the‘point where s*ch

problems may be treated with reasonable confidence.

Prior to usage, any critical structure must be submitted

to actual testing, since the analysis, after all, is only
based on a hypothetical model of the system. An analytical
model is as important at this stage as it was in the pre-
liminary design. The actual mission force environment
cannot economically be duplicated in test and the effects

of possible changes cannot all be tested.



It would be reassuriny if the results of dynamic testing
could be used to give an analytical model of the actual
structure. To date, however, there is no generally accepted
method applicable to the dynamics of structures. In addition,
it appears that the unique identification of an analytical
model from test data alone must be limited to rather special

conditions.

The number of degrees of freedom of a linear model of a
dynamic system is equal to the number of independent spatial
coordinates and also to the number of normal modes of the
system. The response of any point on the structure is the
superposition of the responses of each of the normal modes
at that point. It is recognized that in linear systems,
measurable excitation of each normal mode is only achieved
by forces having frequencies near or above the natural fre-
quency of the normal mode in question. Thus, in order that
test data contain the information necessary for the unique
identification of a linear model having a specified number
of degrees of freedom, it is necessary that the applied
forces must have had significant components at frequencies
up through the same number of natural frequencies. Data
obtained from smaller ranges of frequencies of excitation
would not contain sufficient significant information for

such a unique identification.



There are conditions where it is possible to perform a

unique identification. One is where the number of points

of interest on the structure is small and it is feasible to
excite the structure over the appropriate frequency range.
Such a situation is treated in Reference 1. Another con-
dition is where the major portion of the motions are due to
rigid body responses and there is in effect only six physical
degrees of freedom. This is the primary area of past appli-
cations of identification techniques to such problems as

determining aerodynamic stability derivatives.

The problem considered in this report is concerned with what
is probably the more common situation when the application

is made to elastic structures. It is taken to be impossible,
uneconomical, or generally undesirable to excite the struc-
ture and measure responses over a sufficiently wide frequency
range so as to provide the information necessary for the

identification of a unique linear analytical model.

In this report, the concept of an "incomplete model” is
developed. This is an analyticai model which has fewer
normal modes than coordinates and is valid only over a
limited frequency range. It is shown how the parameters
may be determined using test data together with analytical

approximations. The attributes of the model are discussed



and certain of these are tested using computer simulated
test data. It is shown that it is possible to determine

a rational mass matrix and structural damping coefficient
and that it is possible to use the incomplete model to
predict the changes in frequencies and normal modes due to
mass and stiffness changes. It is further shown that the

procedures are relatively insensitive to measurement error.

This research project has demonstrated a new and useful
analytical tool. It is suggested that further development
of the theory and methods of application would result in
procedures which will lead to better understanding of
structures and increased capability to improve and optimize

the design of aerospace vehicles.



I. DESCRIPTION OF THE PROBLEM

An aspect of the following problem is considered in this
report. Consider a structure which is to be subjected to
dynamic testing. There are certain deflections and rota-
tions of points on the structure which are of interest. It
is desired to be able to predict each of these motions under
various loading conditions for the structure actually tested

and for modified versions of the structure.

It is assumed tha*t an analytical model consisting of P
lumped masses interconnected by linear springs with scalar
structural damping will be adequate to represent the defor-
mation of the structure under consideration (the more gen-
eral mass matrix with off-diagonal terms is not excluded).
The motion of each of the P masses is considered to rep-
resent the motion of P points on the structure including
the points of interest. It is also assumed that the
loading conditions of interest will contain primarily
force components at frequencies below some finite value
including less than P natural frequencies of the model.

It is required that the analytical model faithfully rep-
resent the dynamics of the "points of interest" over the
"frequency range of interest". It is further required

that the model have the capability of predicting the



changes in response due to structural changes including

mass, stiffness and support changes.

The work reported here is limited in scope as follows. The
analysis assumes knowledge of the normal mode shapes at each
of P points and natural frequencies of the structure through
the frequency range of interest (Knowledge of the modal
masses is not required). It is considered that this data has
been obtained from testing. The P points are distributed
over the structure so as to represent the characteristics of
the measured modes and include all the points of interest.

In the rest of this report, all these points will be con-

sidered to be the "points of interest".

In the computer experiments described below, the dissipative
component of the resonant response was tdken as a good ap-
ponximation to the normal mode. However, other more sophis-
ticated procedures such as those given in Reierences 1l or 2
might be justified, for example, if the resonances were not
well separated. In addition, it is assumed that a "reason-
able" analytical model of the mass matrix of the structure
has been derived through analytical or intuitive means.
Using these assumed data, a procedure is developed for
identifying the parameters in the equations of motion such
that the model has the capability of predicting the effects
of changes in mass and stiffness on natural frequencies and

modes.



II. BASIC RELATIONSHIPS

The material presented in this section is not new but is
derived here in the form in which it will be referenced
in following sections of this report. Definitions of all

the symbols used are summarized in the Glossary of Symbols.

The matrix equation of the spring-mass-structural damping
model discussed in . the previous section may be written

(see, for example, Reference 3)
My (t) + (1 + ig)Ky(t) = £(t) (1)

¥, v, £ are column matrices (vectors) representing the
acceleration, displacement (or slope), applied force (or
moment) as a function of time at each of the P points of
interest. M and K are PxP symmetric matrices representing
the mass and stiffness coefficients of the model. i is v/~1
and g is the structural damping coefficient. The imaginary
term is used here to indicate that the damping is in phase
with the wlocity but proportional to the displacement.

Under steady state sinusoidal oscillation at a frequency,

w, the equation becomes

{-sz + (1 + ig)K}y = £ (2)



where f may be thought of as the amplitude of the applied
forces and y as the amplitude of the displacements. y will,
in general, be complex because of the phase between the f{urce

and displacement.

Writing this equation in terms of velocity (§ = iwy)

(K + i(uM - %x)}§ = £ (3)

the (velocity) impedance matrix is given by
] i - l
2 = 3K + i(uM - £K) (4)
and the mobility matrix by

vy=31= {g-x + i(wM - -1‘51() yL (5)

It is interesting to note that the quantity directly ob-
tained through analysis is the impedance, Z, while the

quantity measured .in testing is the mobility, Y.

Consider now, the eigenvalue problem corresponding to

Equation (2).
K - 9§M}¢i =0 i=1,2,...P (6)

where Qi are the natural frequencies and ¢i are the normal
modes of the system. This equation may be written in two

ways:



M ikg, = 24, i =1,2,...P (7)

or
1
2¢i i = 1,2'.--P (8)

CMo, =
1

Q

i

where C, the influence coefficient matrix, equals K-l. The

orthogonality relationship is given by

T
¢iM¢j=° jF¥id

(9)
= my j =i

It is important to note that the normal modes (eigenvectors)

1

of MK and its inverse, CM, are the same and that the

respective eigenvalues are reciprocals. The dominant mode

1

of M "K is the one having the highest frequency and the

dominant mode of CM is the one having the lowest frequency.

It is convenient to write (7), (8), (9) using the ¢ matrix

where

©= [0y 6; -..0.] (10)

is a square PxP matrix. Then

M 1ke = ¢m§.1 (11)
el
cMo = @[‘—25] (12)
i
and
oMY = D (13)



From each of the above three equations, one can write

K = Morn§1¢'1

Q2

c = @Fi]o'lm'l
1

and
i

Substituting the third equation into the first two

2
i{,T
K=M¢[§;J¢M (14)
l11],.7T
C = ¢[' ‘J¢
szi (15)

These two equations may be written in the equivalent form

Kt ﬁm oM
f=1 Ty i'i (16)
p 1 T

C=1I ¢:9
by sl A7 (17)
i=1 Qimi

In connection with the discussion in Section VI, these may
be written in terms of principal idempotents (See Appendix
I) as follows 1

- P 2,1 .7
M K=1I Qi(m—i-¢i¢iu)

i=1 (18)

10



M= S, oTw (19)
i=] Qi i

Note that the product ¢i¢£ appearing in Equations (16) - (19)

are square matrices of order P but rank 1. When P of the

matrices of this type are summed as indicated, there' resuit

PxP matrices of rank P which are thus nonsingular.

The impedances and the mobility may also be expressed in

terms of the normal modes. Write Eguation (4) as

z=%(g-i)x+in

Use Equation (14) fcr K and factor M out on both sides and

the equation becomes
92
z = M{Zlg - i)@[};—%ﬂ + 1M LM

1

From (13), one can write

M= a»'TtmiJo'l
or
-1 R 11,7
M = Q a— Q
l’“i‘l

Substituting into the above equation for Z and factoring

the ¢ and QT matrices, there results
2

Q%
1 . 1] 1{yaT
2 = MQ{;(Q - 1i) {E‘I\- + i fr-n':] Jo°M

11



or

2 2

Q 2 @

g admelTlt ilw” = 74)1,Ty (20)
w mi

and in summation form

w2
arg,itla) -1

1l
Z & -
W rl mi

M, 1M (21)

- 1%

The mobility can be written as the inverse of the impedance,

from Equation (20):

2

2
) 40 2 _ 0 )
Y =3 1-m{m[ i*;‘“ i)leM} 1
i

T, -1 my -1
= u(d°M) — = (MJ)
[:nf + i(wl - nf)]

but from (13)

~ (0")"! = (o™i}t = ora%J
and
-1 -T -1 1,,.T
MO) ~ = {9 l‘miJ} = rm—in
then
1 T
Y = wé — ¢ (22)
{:i[gﬂi + i(m2 - ﬂfﬁ]

or in summation form

12



veol & i*gr)i-g'—f = °i¢i (23)

i-l[(n—) - 11+ g Qm

13



III. THE INCOMPLETE MODEL

The structure under considerat ‘on is represented analytically
by g, M, K (see Equation (1)). Consider, for the time being,
that g, M are known. It was seen that K and its inverse, C,
could each be written as a sum of matrices containing the

eigenvectors (Equations (16), (17)).

P Qi T
K==L — M¢p,o.M (24)
i=1 mi 171
- p
c=x1=71 1 4.7 (25)
i=1 nzm 171
i1l

and the impedance and mobility could be written in similar

forms (Equations (21), (23))

A
1 i . w, 2 T
2 ==z —{g . il{z7)" - 1]1IM¢. o.M (26)
w i=1 mi Qi i*i
(]
—2
_ p o (=) -
y=21=yz 21 g ;[ L §]¢i¢f (27)
i=1 om, [( w\é 1%+ g
!

All the square matrices (K, C, Z, ¥, M) are of order P,
the number of degrees of freedom, and the ¢ vectors have

P elements. The square matrices ¢i¢§ are each PxP but

14



are of rank 1 and are thus individually singular. Since
the ¢i's are linearly independent, a linear combination
of P of these simple products will be of rank P and thus

the summations will be nonsingular (See Reference 4, p.6).

If g, M and all the normal modes of the system were known,
the behavior of the system could be predicted by forming
the complete equations of motion. The question posed is
this: If incomplete information is available, i.e. only
the first N normal modes, is it possible to generate a
mathematical model that will give useful information about

the behavior of the system and modifications of it?

The following postulate.is advanced: The K, C, Z, Y matrices

obtained by using less than P terms can be used to predict

the behavior of the structure and certain modifications of it.

Part of the purpose of this report is to test aspects of the
above postulate. The analytical model described by the

incomplete summations will be called an incomplete model.

These matrices will be written

N Qi T
K. =131 — Mp,o:M
inc i=1 m, ivi (28)
N
1 T
C. = I $. ¢,
inc i=1 Qimi ivi (29)

15



2
N
1 i . wy2 _ T
Zine = & iz=1 _: {g + 1[(9—1) l]}M¢i¢iM (30)
2" )
N [0
_ 1 g-=-4i""i" -1 T
Yine =¥ I 27 7 S %% e
it I i) -1] +g

Certain characteristics of the incomplete model are

apparent:

(1) Since the terms containing the higher values of
Qi are not included, the dominant terms of K and Z will be

missing and thus Kin and Zine will not resemble the true

c
K and Z matrices.

(2) Conversely, the dominant terms of C and Y are
included in Cinc and Yinc' These are the matrices which
represent the responses due to applied forces and for the
model to have validity, it is necessary that they approach

the true values for w < QN.

(3) The four matrices are of order P (and represent
the P points of interest) but are of rank N. Thus, they
are all singular and they must be all formed separately

and not by inversion.

(4) The eigenvalue equation from (2B) or (29) can

be seen to be

16



2

N Q'
-1 R 1 T = 2 i =
=0 j >N

and similarly for CM. Thus it may be said that the in-
complete model contains only the first N modes of the

corresponding complete model.

17



IV. IDENTIFICATION OF THE MASS MATRIX

The previous discussion has assumed knowledge of the normal
modes. It is apparent that knowledge of the mass matrix is
also required. Before proceeding further with the dis-
cussion of the incomplete model, a method will be described
for identifying the mass matrix. As above, it is assumed
that the first N natural frequencies and normal modes have
been determined through testing. Each of these modes con-
tains P elements representing the relative motion of all

the points of interest.

The normal modes are orthogonal with respect to the mass

as given in Equation /9).
T . .
¢iM¢j =0 j#£ i (32)

Writing out the indicated multiplications in terms of the

individual elements, this equation becomes

P p-1lp

i = 1'200.N-1
i+l'..N

(33)

where ¢ki indicates the kth element of ¢i and M is an
element of the M matrix. The mass matrix has been assumed

symmetrical but not necessarily diagonal. Equation (33) is,

18



in reality, N(N-1)/2 linear equations having the mass
elements as unknowns with products of the elements of the

known normal modes as coefficients.

It is possible that certain mass elements may be known to
be zero or to have some definite value. If they are to be
zero, the corresponding terms are dropped. from the. equation.
If they are to be restricted to a particular value, the
corresponding terms are placed on the right-hand side of

the equation.

In addition, if any of the generalized. modal masses, m. .,

are known, Equation (9) for j=i can be used.

>

T -
¢$;Mép; = my (34)
or
5 o %m .+ 12-1 5 ¢ ¢' (35)
Bt 2 . . = m,
k=1 kl‘kk k=1 n=k+l ki nlmkn i

There is another possible known condition. The total
of the diagonal elements may be considered to be known
(the total mass of the structure, for example). This

leads to the equation

P
i My = My (36)

19



Equations (33), (35) and (36) may be written as

AR = R (37)

where m is a column matrix made up of the unknown elements
of M, A is a matrix formed by the coefficients of these
unknowns from Equation (33), and, if used, from (35) and
(36). R is a column nmatrix made up of the right-hand side
terms corresponding to known masses, if any, known gen-

eralized masses, if any, and possibly the known total mass.

There are, then, at least, N(N-1)/2 equations and possibly

as many as N(N+1)/2+1 if all the possible equations are used.

A typical situation would use Equations (33) and (36) re-
sulting in N(N-1)/2+1 equations. If none of the mass elements
are considered to be known (other than zero), there are at
least P unknown diagonal masses and.as many as P(p+l)/2 if

the matrix is taken to be completely filled. 1In many sit-
uations, it will be desired to obtain a purely diagonal mass
matrix. In a typical situation, there will be, say, N(N-1)/2+1

equations in P unknowns.
When the number of equations is less than the number of

unknowns, there are an infinite number of solutions. When

the reverse is true, there will ordinarily be no solution.

20



This treatment will be limited to the first situation where
there are an infinite number of sclutions to the equations.
This is not a severe restriction since the class of problems
considered includes a relatively large number of points of
interest and a relatively small number of known normal modes.
If these were nearly equal, it may have been possible with

a small amount of additional testing to have completed the
information requirements for other techniques (Reference 1).
a typical situation might include 4 normal modes plus the
total mass giving 7 equations and thus requiring more than
seven unknown masses. Similarly 6 normal modes would give
16 equations and 10 normal modes would give 46 equations.

As more normal modes become known for the same number of
points of interest, it may be necessary to introduce off-

diagonal masses as unknowns.

Return to the consideration of Equation (37) where A is an
n, x n, matrix (ne being the number of equations and n, the

number of variables) and n_, < n. m is n, x 1 and R is

n, x 1. The equations have an infinite number of solutions,
that is, there are an infinite number of mass distributions
which will cause the modes to be orthogonal. In fact, it

is guite possible for there to be an infinite number of

21



mass distributions which will also give the same generalized

masses, mi, and thus result in the same Cin and Yin (see

(o c

Equations (29),(31)). In other words, it is quite possible
that different valid mass distributions used with the meas-
ured normal modes will predict identical responses of the

system to sinusoidal forcing.

If, however, it.is desired to use the model for making pre-
dictions under other conditions, especially to predict the
effects of changes in parameters, then it is apparent that
the masses used in the model should be as near to the "true"
values as possible. The best information available as to
what the "true” values are, is the approximation arrived at
by the analyst. These analytical values will not, in gen-
eral, satisfy the orthogonality condition of the normal

modes, i.e. Equation (37).

The pseudo-inverse (see Appendix II) is an elegant mathe-
matical tool which can be used to obtain the solution to
Equation (37) which is the closest (in a least squares
sense) to any specified analytical approximation. Another
way of saying this is that the smallest possible changes
in the approximation cun be found so as to satisfy the

conditions of orthogonality.

22



Define a column matrix, ma

m and subtract Am, from both sides of (37) giving

, which is the approximation to

A(m - m,) = R - Am, (38)

At this point, a weighting function is introduced in the
form of a diagonal matrix, W. Each element is a measure of
the analysists confidence in the corresponding approximation.
The result will be that masses having higher values of
weighting functions will tend to vary least. Inserting

1

the identity W "W into the above equation results in

aw ) (wim - m)} =R - Am, (39)

Defining (aw 1)t as the pseudo-inverse of AW, the solution

given by

= - =l.+,o
W(m - m,) = (AW ) "{R - Am,} (40)

is the one of the infinite number possible having the
smallest weighted sum of squares of the differences of
m and m,. Using ordinary matrix algebra ivom this point,

there results

— S RS B S
m - m, = W “(aw ) {R AmA}
mewliaw R+ (1 - W_l(AW-1)+A}mA

23



It is shown in Appendix II that
(Aw-l)+ - w-lAT{A(w-l)ZAT}-l
Then defining
- w‘l(Aw'1)+ - (w'l)zAT{A(w-l)zaT}-l

B

Bm=I-BRA

the equation for the mass elements is

ms= BRR + BmmA (41)

24



V. MASS CHANGES

One of the criteria for evaluating the usefulness of an

analytical model is its ability to predict the effects of
changes. In this section, the use of an incomplet~ model
to predict the effects of mass changes on the natural fre-

quencies and normal modes is discussed.

The stiffness matrix and the influence coefficient matrix
are independent of the mass of the system. The expression
derived in terms of the normal modes do contain the mass,
however. (Se2 Equations (16), (17)). Thus, it must be con-
cluded that when the mass is changed, the normal modes and
frequencies must change in such a way that the summations

remain invariant. In other‘*words

2 .
KL Mo M=l 7"‘1_+M'“+ (M+AM) (6, +86 ) (67 +A47) (M+AM)
= = 1 .
(42)
P 1 T ) 1 T T
C=t: 0. 0T = T (6.+86¢,) (¢1+847)
i1 @2m, P gl (@480 %(mgtam) L4 P

(43)
where the A's indicate the changes due to tii@ change in

mass, AM.
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While the above expressinons must be true when summed over
all the modes, they will not be exact for incomplete summa-
tions, i.e. for the incomplete model. Of the two (K and C),
it is to be expected that Cinc will be less sensitive to
mass changes. The reason is that the dominant terms are
included in Cin

and omitted in Kinc' thus, C. is much

C inc

closer to the invariant matrix C than Kinc is to the in-

variant K.

This hypothesis has been tested by calculating the fre-
quencies and modes of a modified system using matrix
iteration on cinc(M + AM). The changes predicted were'

in excellent agreement with the true values. These results

are given in Section XI.
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VI. STIFFNESS CHANGES

The effect of a change in the stiffness matrix cannot be
handled as directly as the mass change discussed in the
previous section. Both the K and C matrices must change
when the stiffness is changed. Since the dominant terms

of K are missing in Kin it does not appear to be reason-

C

able to hypothesize that (K + AK)inc = Kinc + AK since even

small AK's can easily be greater by orders of magnitude

than the elements of Kinc'

’

As discuss.d in Appendix I (and also derived previously,
Equation (16)), it is possible to write K in the following

form

Q2

1 T
m, Mé; oM

g (44)

-

if and only if the ¢i's are eigenvectors of M-lK. Other-

wise there must be coupling terns of the form aijM¢i¢§M.
Thus, if K + AK is expressed in terms of the eigenvectors

of M-lK, the equation must be of the form
4 T
K + AK = f aijM¢i¢jM (45)
Now, pre- and post-multiply this equation by ¢E,¢n

T _P T T -
¢k(K + AK)¢n = ; aij(¢kM¢i) (¢jM¢n) = aknmkmn(%)
1
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because of the orthogonality of the ¢'s. And since K¢n

02
= iMp

T _ T T 2,T T _
b (K + AK) O = 0. Kb+ ¢ ARG = QLo Mo, + 6 AK¢ = a, m

kn kmn

or

220
+
(W'}
il
=

2T T
p.Mp. + ¢, AK¢.
L DgeMey * egaKes

iy ~ m.m, .

P
3

6T 6.

Thus, substituting into (45), the expression for K + AK

can be written

2 T
p @ P P ¢:AK b

K+ 0K=1 =My ¢M+ I 3 °ﬁ%1§‘1)m¢i¢?M (48)
i=1 M i=1 j=1 iy J

This expression when summed over all P modes is exact.

Note that the first summation is equal to K.

Now, truncating the series at the last known mode, the

expression can be written

(K + AK) ? g ¢§AK¢* M. M (49)
+ . = K. + —t . A
inc inc 7y oy WyMg i%j5
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This expression can now be evaluated and it is hypothesized
that M-l(K + AK)inc can be used to obtain good approxi-
mations to the new natural frequencies and normal modes.

This hypothesis has been tested and the results given later

appear quite satisfactory.
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VII. IDENTIFICATION OF DAMPING COEFFICIENT

If the identified model is required to predict responses,

in addition to predicting the effects of changes on the
natural frequencies, it is necessary to identify the damping
coefficient. The responses to sinusoidal loading is, in
effect, the mobility (See Equation (23)). The real com-
ponent of the velocity response at the driving point is
given by:

g 1 (50)

1]2 + g2 Qimi

Yo = W L
R Tga1q, 2 -
(72)

&y

where the modes are normalized at this point. When the
modes are reasonably well separated, §R at a resonance is
nearly completely dependent on the term due to the one mode.

Thus

: S S
Yr{%;) = ga.m;

(51)
can be used to compute g when §R(Qk) has been measured.
If the modes are not separated, it is possible to use the

incomplete version of (50) which also contains only the

one unknown, g.
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erm):sz.?:] —l (52)
3 3 i=1 [(ﬁi) 112 + o2 oZm,

1

Using this procedure, g's may be obtained at each resonance.

Experiments discussed in following sections have shown fine
consistency among these values and good agreement with the

exact value.

Having obtained g and knowing the mass matrix, the natural
, frequencies, Qi' and the normal modes, ¢i' for i =1, N
the dominant portion of the mobility matrix may be con-
structed at any frequency up to the vicinity of the Nth
natural frequency. It is expected that this information
allows the prediction of steady-state responses although

this has not specifically been tested in the work reported

in this report.
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VIII. DESCRIPTION OF COMPUTER PROGRAM

In order to subject some of the hypotheses presented to a
qualitative evaluation, a computer program has been de-
veloped. The program performs three functions: (1) it
simulates a test; (2) it identifies the mass; (3) it finds
the modes and frequencies after mass and stiffness changes.
The program logic is outlined in Figure 1 and the program
listing is given in Appendix III. Below is a general de-

scription of the program.

Part I - Simulated Test

In order to simulate a test, the program first accepts a
complete description of the "actual system" corsisting of
a mass matrix, M, a stiffness matrix, K, (or optionally,
an influence coefficient matrix, C) and a scalar damping
coefficient, g. The "actual" number of degrees of frecdom

(the order of the matrices) is limited to 20.

The test to be simulated consists of measurements of the
resonant response at P points on the structure due to
.sinusoidal excitation at one point. Thus, the data required
for the simulation of the tests consists of the driving
point, the points at which measurements are taken, the

frequencies of excitation, and the measurement error.
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=D

1

GO TO

PART I
ENPUT: ACTUAL

CAICULATE N EXACT
RESONANT VELOCITY
RESPONSES

SET PHI EQUAL TO .
REAL RESPONSE AT
P MRASUREMENT

POINTS

APPLY ERRORS
TO PHI'S

T

PART II
INPUT: KNOWN MASSES,
APPROX. AND WEIGHTING

LIST INPUT DATA,
DESCRIPTION OF

TEST, RESPONSE,
PHI

P I
PORM EQUATIONS,

SOLVE USING
PSEUDOINVERSE

LIST INPUT,
A, R, By, By,
MASS, RINC'

Crne

PART 11I INPUT
aM OR &K

PORM
Mrpup = M+ AM

CALCULATE RESONANT
RESPONSE OP
IDENT. SYSTEM

LIST
ABOVE

)
[

ITERATE FOR N MODES
AND FREQUENCIES

USING CrycMppyp

FORM &K\~

LIST 8Kipe

ITERATE FOR N MODES
AND FREQUENCIES

-1
USING K™ (Kpyo + 8Kppe)

|

LIST MODES

PREQUENCIES

FIGURE 1, LOGIC DIAGRAM OF CNMPUTER PROGRAM,
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The frequencies of excitation, which should be the N res-
onant frequencies, are assumed to have been computed outside
this program. The measurement ~rror is taken to be a fixed
bias error plus a uniform random distribution, each expressed
as a percentage of the exact measurement. The procedure,

then, is as follows: (1) calculatz the impedance,
% K+ i(uM - % K), of the "actual" system at each of the N

resonant frequencies; (2) invert these complex matrices to
obtain the exact mobilities; (3) store the elements corres-
ponding to the P measurement points of the column corres-
ponding to the driving point; (4) apply the specified

measurement errors to these values.

This data will be a good simulation of data which would be
taken in an actual test. The test data rgqqued in the
following parts of the program are the normal modes of the
system. It is known that a column of the real component

of the mobility near resonance will be a good approximation
to the normal mode when the natural frequencies are
separated. This can be seen from Equation (23). It is
this information, then, which is passed on to Part II of
the rogram as the N measured normal modes, each consisting

of P points.
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As an option to the above procedure, the program will accept
as input the normal mcdes themselves. This procedure would
simulate the use of a more sophisticated method of computing
them. These modes are then polluted with errors as before,

prior to being transferred to Part II of the program.

Part II - Mass Identification

The procedures given in Section IV of this report are carried
out numerically. The input consists of any known generalized
masses or mass elements and the masses which are to be
treated as unknowns. For each unknown mass, an approximation
and a weighting function is supplied. In addition, one may
specify that the total of the diagonal masses must remain
constant. Based on the input, the A matrix is formed as

are Am, and W. The solution for the "best." mass distribution

is obtained as given in Equation (41).

At this point, the identified mass matrix is formed, the
generalized mass matrix (&TM¢) is computed as are the in-
complete stiffness and influence coefficient matrices
(Equations (28), (29)). As a check, the resonant response
and the natural frequencies and normal modes of the iden-

tified incomplete model are computed.
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Part III - Mass or Stiffness Changes

There now is sufficient data to compute the changes in fre-
quencies and modes due to mass or stiffness changes. The
program will accept changes to either the mass matrix or

the stiffness matrix. For mass changes the matrix M + AM

is formed, where M is the identified mass matrix. The first

N frequencies and modes are obtained by iteration on

Cinc(M + AM) as discussed in Section V.

For stiffness changes, (K + AK)inc is formed as given in
Equation (37). The N frequencies and modes are computed

-1
by iteration from M " (K + Ax)inc'
The program is written so that changes can be made on the

identified model in sequence without rerunning the first

two parts of the program.
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IX. THE SIMULATED TESTS

In order to test the hypotheses presented regarding the
characteristics of the incomplete model, it was necessary

to select a structure on which to perform the simulated
testing. It was decided not to select so simple a system
that success would give nc confidence that the methods would
work in practice. On the other hand, it was not desirable
to make the first tests using such a complex system that

one would not have a good intuitive understanding of the

system and modifications of it.

As a compromise, a structure.was selected whose behavior

is quite well understood yet is not so simple as to yield
trivial results. The structure selected is a simple, thin,
beam of constant EI having 18 lumped macses arranged so as
to approximate a uniform mass distribution. The beam is
allowed to deflect transversely only. The deflection is
constrained at one end and at a point approximately 70 pez-
cent of the length of the beam, leaving an overhang of
approximately 30 percent. A structural damping ccefficient

of .02 was used.
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Most of the simulated testing was performed using this
system. This system is designated Specimen I. Some tests
were also carried out on a structure identical with the
above except that two rotary inertias were added, one at
the second support and one at the free tip of the beam.
This system is called Specimen II. These beams are illus-
trated schematically in Figure 2. The natural frequencies
and mode shapes of the two beams were computed using a
standard computer prcgram. These results are illustrated

in Figqure 3.

For each of the two specimens, two arrangements of test
measurements were selected, referred to as tests A and B.
These ére also illustrated in Figure 2. In each test, the

system was considered to be driven at station 60.

Associated with each specimen and each test is an approxi-
mate mass distrikution. For Specimen I, test A, there are
three approximate mass distributions (1, II, III). Each of
these is somewhat reasonable. Table I lists the various
mass approximations used. These are discussed further in

Section X.

The simulated tests which were run are summarized a:.c

described in Table II.
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Figure 3. Exact Normal Modes of Test Specimens.
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TABLE I.

APPROXIMATE MASS DISTRIBUTIONS

Specimen I Specimen II
Sta. True Test A Test { True Test Test
In. Mass I II III W+ B Mass A B
0.4 .05 .05
10. .10 : .10
20. .10 .30 .25 .25 0.1 .25 .10 .30 .30
30. .10 .10
40. .- .15 .15 .13 1.0 .20 .10 .15 .15
50. .13 10 .10 .12 0.5 .10 .10 .10
60. .10 .10 .10 .10 1.0 .20 .10 .10 .10
70. .10 .10 .10 .12 0.5 .10 .10 .10
80. .10 .15 .15 .13 1.0 .20 .10 .15 .15
90. .10 .10
100. .10 .30 .25 .25 0.2 .25 .10 .30 .30
110. .10 .10
120. A .10 .10
130. .10 .10
140. .10 -25 .20 .15 0.5 .25 .10 .25 .25
150. .10 .10 .10 .13 11l.0 .10 .10 .10
160. .10 .10 .10 .12 1.0 .is .10 .10 .10
170. .05 .05 .05 .05 1.0 .05 .05 .05 .05
1@120. 0 100. 100. 0
(W=.01%*)
1@170. 0 10. 10. 0
(W=0.1%)
A Support points
F W= 1.0 except for test 6 when it was used as shown and
for tests 18-20 when it was used to minimize the dominance
of the large magnitude of the inertias.
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TABLE II. DESCRIPTION OF SIMULATED TESTS

No. of Mass
Test | Specimen Test Resonances Approx.
No. (See Fig. 2) or Modes (Table I) Remarks*
1 1 A 4R** I
2 I A 4M I
3 I A 3R I
4 I A 3M I
5 I A 3R I Variable mass
6 I A 3R I Weighting fun,|
(See Table I)
7 I A 3R II
8 I A 4R I11
9 I A 3R III Variable mass
10 I A 3R III
11 I A 3R I11 5% Bias and
12 I A 3R I11 +5% Random
13 I A 3R ' III Measurement
14 I A 3R I11 Error
15 I A 3R III
16 I B 3R
17 I B 3R Variable mass
18 II A 4R Inertias
19 II A SR weighted
20 II A 2R {See Table I)
21 I1 B 4R )
22 11 B 3R
I Unless so indicated, total mass held constant, no
weighting, and no errors assumed.
**R indicates resonant data used, M indicates actual mode
shapes used.
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X. THE IDENTIFIED MASSES

The masses identified by the program based on the simulated
tests are given in Table III. The data is listed by test
number. Refer to Table II for a description of the tests.
The masses are given in the table to two significant figures
for ease of reading except for tests 10-15 in order that the
scatter may be observed. These are all identical except
that tests 11-15 contain test measurement.errors of 5 per-
cent bias and +5 percent random on amplitude. In addition
to the masses themselves, the table indicates the changes

from the approximation in terms of the rms of the variance.

Certain characteristics of this data.can be observed. It
appears that "better" appsoximations have smaller variances
associated with them. This is what wouldAbe expected since
the better the approximation, the smaller the change re-
quired to make it satisfy the equations. 1In the cases of
Specimen I, test A, approximations II and III are in-
tuitively better than I since I includes the masses at

the supports. It is apparent, by comparing similar con-
ditions from tests 1-6 with 7-15 that the variances are
significantly lower for apprximations II and III. Com-

parison of 16, 17 with 9, 10 which use effectively the
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TABLE III. IDENTIFIED MASSES

h‘est+ Point of Measurement (See Figure 1) Var.
No. 1 2 3 4 5 6 7 8 9 10 11 |RMs

Specimen I (See Figure 1)

AL* .30 .15 .10 .10 .10 .15 .30 .25 .10 .l0 .05

1 .28 .16 .12 .11 .12 .17 .26 .23 .088 .093 .074}.019
2 .25 .20 .12 .08 .11 .22 .21 .25 .11 .078 .092|.043
3 .29 .15 .11 .12 .12 .15 .,2% .23 .077 .092 .076].016
4 .29 .15 .11 .12 .12 .15 .29 .23 .077 .092 .075|.016
5 .29 .15 .12 .12 .12 .16 .29 .24 .081 .095 .077|.01é
6 .27 15 .13 .11 .13 .15 .25 .24 .097 .10 .066f.023

AII* .25 .15 .10 .10 .10 .15 .25 .20 .10 .10 .05

7 .25 .15 .11 .11 .11 .15 .24 .19 .081 .097 .061}.0065

AITII*( .25 .13 .12 .10 .12 .13 .25 .15 .13 .12 .05

8 .25 .15 .12 .085 .12 .15 .26 .15 .11 .099 .059|.014

9 .25 .13 .13 .11 .12 .13 .25 .15 .12 .12 .047{.0040
10 .250 .134 .125 .106 .124 .131 .248 .146 .124 .115 .047.0040
11 .256 .142 .130 .104 .117 .123 .245 .147 .125 .115 .044}.0066
12 .255 .138 .125 .101 .118 .126 .249 .150 .129 .116 .043|.0044
13 +251 .138 .130 .109 .125 .130 .244 .144 .120 .111 .048{.0069
14 .252 .138 .130 .109 .124 .126 .243 .143 .120 .113 .052|.0070
15 .257 .142 .127 .100 .114 .122 .247 .150 .129 .117 .044].0059

B * .25 .20 .20 .20 .25 .25 .15 .05
16 .24 .20 .22 .21 .24 .24 .14 .055 .010
17 .24 .20 .22 .21 .24 .24 .14 .055 .010

Specimen II (See Figure 1)

*x .30 .15 .10 .10 .10 .15 .30 .25 .10 .10 .05
18 .24 .16 .14 .12 .089 .14 .35 .26 .10 .071 .080.034
19 .30 .15 .11 .11 .11 .16 .30 .24 .090 .098 .067].015

20 .30 .15 .10 .10 .10 .15 .30 .25 .10 .10 .051|.0005

* .30 .15 .10 .10 .10 .15 .30 .25 .10 .10 .0OS

21 .73 -.36 -.08 .41 .27 -.33 .27 1l.11 -.31 -.19 .18 |.409
| 22 .29 .12 .068 .082 .10 .17 .33 .28 .13 .11 .,027].023

* Mass approximation used for tests following (See Table 1)

* Inertias not tabulated. Identified inertias were virtually exact
See Table 1I for description of test.
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same distribution suggests that the smaller the number

of points, the greater the variance will be. One reason

for this is that the approximation having the greater number
of masses is an intuitively better representation of the
system, everything else being equal.

There is another, more mathematical reason for this effect.
There are fewer equations than there are unknown masees (See
Section IV). If these numbers were the same, the mass would
be unique and have no necessary relation to the approxi-
mation. As the number of unknowns is increased, the set

of solutions expands and the probability of finding one of
these solutions closer to a given approximation increases.
The same effect is true when the number of unknowns stays
the same but the number of egquations is decreased, as when
the number of modes used is reduced. Notice tests 18, 19,
20, for example, where the variances associated with 4, 3,

2 modes are .034, .015, .0005 respectively.

Thus, it could be reasoned that, the more nearly complete
the model (for a constant number of masses), the greater
will be the variances in the identified masses from the

approximation. The data presented here tends to bear out

this argument.
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The effect of the constraint on the sum of the masses has
little effect as can be seen by comparing tests 3 and 5,

9 and 10, 16 and 17.

The use of exact modes instead of the resonant responses,
in these examples, shows nc significant improvement in
terms of the variances. It is interesting to note that
test 1 using four resonant responses has a variance of
.019 while test 2 which was identical except that true
normal modes were used has a variance of .043. in tests
3, 4, which are identical to 1,2 except that 3 modes were

used, the results are virtually identical to each other.

For Specimen II, test B, an intentionally poor test and
approximation was made by ignoring the large inertias and
.omitting the measurements of slope at these points. Test
21 using 4 resonances results in very poor masses including
several negative values. However, when only three res-
onances were used, the identified masses show general
agreement with the approximation. 1In actual testing,
results such as from test 21 could point up the omission

of a significant parameter in the analysis.
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The effects of the measurement errors is rather small. 1In
five simulated ide::tical tests (11-15), errors of 5 percent
bias and 5 percent random were applied to the response am-
plitudes. This is identical to.a uniform random distribution
between 0 and +10 percent. In each case, the variances are
small. None of the individual mass elements vary .y more

than 8 percent over the five tests.

In general, the masses identified appear to.be acceptable
approximations (except in test 21). The test as to whether
they are satisfactory or not will come when they are used

to predict the effects of structural changes.
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XI1. THE EFFECTS OF MASS CHANGES

Two different lumped masses were considered to be added to
the structure and the new frequencies and modes were cal-
culated for the tests described in Table II. The method
used has been described in Section V and its implementation

in Section VIII.

The lumped masses were added at a point midway between the
supports (change "A") and at the free end of the beam
(change "B"). These masses were 1.0 lb-secz/in. This
represents an increase in total mass of the beam of almost

60 percent.

Table IV summarizes the results of the frequency calculations.
The table shows the frequencies at which the simulated
testing was conducted (the frequencies of the original bk<am),
the exact frequencies of the modified beams, and the pre-

dicted results for each of the simulated tests.

In general, the results are surprisingly good and relatively
insensitive to the Juantities that were varied. For
Specimen I, change B (the more extreme of the effects),

the first mode changes frequency by 54 percent and the

poorest prediction is within 8 percenct of the correct value.
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TABLE IV. COMPUTED FREQUENCIES DUE TO MASS CHANGE

Mode 1 2 3 4
[£* 8.32 18.65 49.06 96.12
o8 A B A B A B A B
f** 6.05 3.82 15.46 14.77 48.37 47.06 79.53 78.81}
1 6.30 4.09 15.67 14.85 48.46 47.31 84.65 85.17
2 6.33 4.12 15.69 14.85 48.49 47.31 83.81 84.43
3 6.29 4.08 15.69 14.87 48.52 47.48
4 6.29 4.08 15.68 14.87 48.55 47.48
5 6.33 4.12 15.71 14.88 48.53 47.48
6 6.32 4.11 15.70 14.88 48.50 47.41
7 £.19 3.97 15.60 14.84 48.50 47.43
8 6.20 3.98 15.59 14.82 48.44 47.28 83.48 84.22
9 6.21 3.99 i15.62 14.84 48.4¢8 47.37
10 6.21 3.9¢ 15.62 14.84 48.48 47.37
11 6.23 3.83 15.51 14.96 48.47 47.46
12 6.10 3.89 15.81 14.69 48.48 47.34
13 6.26 4.03 15.54 14.73 48.46 47.42
14 6.25 4.05 15.76 14.99 48.49 47.35
15 6.12 3.91 15.71 15.00 48.45 47.29
16 6.17 3.95 15.59 14.84 48.53 47.50
17 5.18 3.95 15.60 14.84 48.53 47.50
kﬁ, 7.91 18.40 44.01 65.94
f ** 5.91 3.78 14.92 14.58 44.00 . 40.23 60.33 62.72
18 6.14 4.02 15.15 14.68 44.00 40.40 61.42 62.82
19 6.19 4.01 15.15 14.69 44.00 40.69
20 6.06 3.94 15.07 14.72
21 5.01 2.92 14.30 14.37 43.99 40. 36 63.46 64.48
22 5.88 3.73 14.91 14.56 43.99 40.01
E Frequency before changes, i.e. frequency tested.
* Exact frequency after changes.
+ Addition of 1.0 lb-sec2/in. at Sta 60 ("A") or Sta 170 ("B").
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For a more typical situation, Specimen I, change A, where
the second mode changes frequency by about 17 percent, the

poorest prediction is within about 2.5 percent.

The data bears out the expectation that the better mass
approximations will result in better frequency predictions.
The results of tests 7-10 (the better mass distributions)

are seen to be slightly better than tests 1-6.

A better illustration of this effect is seen in test 21
which, as discussed in Section X, was given an intentionally
bad mass distribution. Even though this model would pre-
dict the resonant responses and also the sinusoidal responses
over the frequency range of interest (this has not been
shown but is assumed to be true from theoretical consider-
ations), its ability to predict the changes in frequency

due to mass changes has been adversely affected by the poor

approximation.

Test 22 which is the same as 21 except that only 3 res-
onances are used seems to contradict the above conclusions
since the predicted frequencies are excellent. The fact
that these predictions are better than those corresponding
to better mass approximations is probably a coincidence.

It is not surprising, however, that the 3 resonance data
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gives better results than the 4 resonances data. Tl - effect
is discussed in Section X in connection with the mass iden-

tification. It may be surmised from this limited data that

as the number of equations approaches the number of unknowns
the solutions corresponding to poorer mass approximations

will tend to deteriorate more rapidly.

The effect of measurement errors is seen to be slight fron.
tests 11-15. The maximum scatter in predicted frequencies
is about 2.5 percent even though the measurement error was

randomly distributed between 0 to 10 percent.

The predicted normal modes behave in a manner similar to

the predicted natural frequencies in that they are generally
quite acceptable. Figure 4 illustrates the effect of change
B on Specimen I for the first three modes. The figures show
the original modes and the exact new modes. They are both
normalized to be equal at station 60 vhich was the driving
point in the simulated test. For modes 1 and 2, the results
of tests 1-9 are all very close to the exact curve. The
scatter obtained in tests 11-15 containing error compared

to the exact curve and to test 10 (same conditions but

without error) are quite satisfactory.
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The results for the third mode show an interesting effect.
The results based on data containing only 3 modes does not
predict the proper shape as well as the tests containing 4
mode data. There is a slight tendency in this direction in
the frequency data also (see tests 1, 2, 8, 18). The reason
for this effect may be surmised. Assuming that the new
modes contain components of the same and adjacment old
modes, then one may expect that the predictions of the
highest mode measured will be missing the significant

effects of the next higher old mode.

Figure 44 illustrates the third mode of Specimen II, change
B fﬁr the three tests: 18, 21, 22. Test 18 is the "good"
approximation to Specimen II using 4 modes and shows good
agreement with the exact mode. Tests 21, 22 represent the
"bad" approximation for 4 and 3 modes, respectively. While
both of these.predict the frequency of this mode nearly
equally well, the four mode data produces a considerably
better third mode t>an the three mode data. This is in

agreement with the effect previously noted.

While only sample modes are illustrated, these are quite
typical of those obtained in all the computations made.
The fourth modes are not shown because of the small amount

of data available.
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1.0

EXACT I

CHANGE B ;Z-'";‘

= A TESTS 1-9
- TEST 10
] TESTS 11-15

-2.04 \

Figure 4a. Computed Mode Changes Due to Mass Change
First Mode, Specimen I, Change B.
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1.8 ke 0 TESTS 1-9
- TEST 10
} TESTS 11-15

EXACT 1

EXACT I
CHANGE B

Figure 4b. Computed Mode Changes Due to Mass Change
Second Mode, Specimen I, Change B.
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0 TESTS 1,2,8 (4 MODE TESTS)

8
i "~ O TESTS 3-7,9 (3 MODE TESTS)
/ \ - TEST 10
/ Q ) TESTS 11-15
T / 4 \ 1-B ExACT

Figure 4c. Computed Mode Changes Due to Mass Change
Third Mode, Specimen I, Change B.
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Figure 4d. Computed Mode Changes Due to Mass Change
Third Mode, Specimen II, Change R.
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XII. THE EFFECTS OF STIFFNESS CHANGES

In general, the same conclusions may be drawn regarding
stiffness changes as mass changes. The only possible .:-
ception being the conclusions regarding the prediction of
the change in the highest mode shape measured. This is in
doubt only becaus: the stiffness changes made had very
little effect on the third mode and no conclusions can be

drawn.

Two kinds of stiffness changes wcre considered. The first
type consisted of adding a spring to ground at each of the
same points where the masses were added. These stations
were the mid-point between the supports (change "K") and
the tip of the beam (change "L"). The spring constants
were 1000 1lb/in. AK consisted of a change of the corres-
ponding diagonal element of the K matrix (See Figure 6).
As discussed in Section VI, the full (K + AK)inc matrix
was computed and the frequencies and modes were obtained
by iteration on MLk + 8K), .. The results of the fre-
guency computations are given in Table IV and sample modes

are illustrated in Figure 5.

The other stiffness change consisted of the addition of

a uniform beam as illustrated in Figure 6, resulting in
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a AK matrix consisting of nine terms. The results are

given in Table V(b).

All the stiffness changes resulted in quite adequate pre-

dictions of the changes in frequency and normal mode with

the exception of test 2) (as anticipated).
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TABLE V(a).

COMPUTED FREQUENCIES DUE TO STIFFNESS CHANGE

ode 1 2 3 4
fe 8.32 18.65 49.06 96.12
+ K L K L K L K L
3l 9.34 11.25 ] 19.32 21.23 49.07 49.20 96.26 96.49
1 9.20 10.97 | 1%.21 20.80 49.07 49.19 96.22 96.39
2 9.19 10.93 ' 19.20 20.7¢€ 49.18 96.22 96.40
3 9.21 11.00 | 19.22 20.84 49.19
4 9.21 11.00 | 19.22 20.85 49.19
5 9.19 10.96 | 19.21 20.78 49.18
6 9.20 10.97 | 19.21 20.80 49.19
7 9.27 11.13 ] 19.26 21.03 49.07 49.2"
8 9.26 11.10 | 19.26 20.98 49.07 49.20 96.24 96.44
9 9.26 11.10 | 19.26 20.99 49.07 49.20
10 9.26 11.11 | 19.26 20.99 49.07 49.20
11 9.24 11.34 | 19.28 21.13 49.21
12 9.34 11.16 | 19.23 21.25 49.22
13 9.22 11.02 { 19.26 21.02 49.20
14 9.24 ~..08]19.21 20.80 49.20
15 9.32 11.26 | 19.25 20.99 49.22
16 9.28 11.14 | 19.27 21.05 49.07 49.20
17 9.28 11.14 | 19,27 21.05 49.07 49.19
£+ 7.91 18.40 44.01 65.94
fhe 8.86 10.80 | 19.11 20.66 44.01 44.41 66.03 66.15
18 8.73 10.53 | 19.00 20.29 44.01 44.36 66.02 66.12
19 8.75 10.57 | 19.01 20.34 44.01 44.37
20 8.78 10.68 | 19.05 20.51
21 9.47 11.89 119.75 22.77 44.01 44.82 66.01 66.11
22 8.89 10.87 | 19.14 20.77 44.01 44.52

* Freguency before
*+ Exact frequency after changes.
+ Addition of 1000 lb/in. spring to ground at Sta 60 ("K")

or Sta 170 ("L").

changes, i.e.

frequency tested.

See Figure 6.
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TABLE V(b).

COMPUTED FREQUENCIES DUE TO
STIFFNESS CHANGE 'M'

.
Mode 1 2 3 4
£4 8.32 18.65 49.06 96.12
e 8.92 19.32 49.13 99.86
Test
No.

1 8.83 19.26 49.18 99.86
3 8.87 19.33 49.19

€ 8.86 19.32 49.20

F Frequency before changes.

* Exact frequency after change M.

See Figure 6.

|
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1.0

L 1
140 160
EXACT I-L

B 0 TESTS 1-9
- TEST 10

] TESTS 11-20 EXACT I

-2.0F

Figure 5a. Computed Mode Changes Due to Stiffness Change
First Mode, Specimen I, Change L.
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0 TESTS 1-9
- TEST 10
] TESTS 1l1-15

Figure 5b.

Computed Mode Changes Due to Stiffness Change
Second Mode, Specimen I, Change L.

62

bt Bt



0 TESTS 1-9
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] TESTS 11-15
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3 | EXACT I i

Figure 5c. Computed Mode Changes Due to Stiffness Change
Third Mode, Specimen I, Change L.
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CHANGE "L"

EI = 5.33 X 10

CHANGE "M"

Figure 6. Stiffness Changes.
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XIII. THE IDENTIFIED DAMPING COEFFICIENTS

The damping coefficient was obtained using Equation (51).
This depends on the natural frequency, the real resonant
velocity response, and the generalized mass. Thus, the
damping coefficient may vary with the mode and with the
identified mass. Table VI gives all the identified co-
efficients and it is seen that almost all the identifica-
tions fall within 15 percent. Tests 21, 22 which started
with bad mass distributions behave as they did before.
Test 21 gives very poor results while 22 gives qu;te good
results for the firs' wo modes. The poor results for the
third mode of tests .8, 19 are not explained. It is noted,

however, that the response is very small.
In the tests with error (11-15), the simulated erroneous

response was used. The total scatter is of the order of

15 percent.
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TABLE VI.

IDENTIFIED GENERALIZED MASSES AND
DAMPING COEFFICIENTS

Mode 1 2 3 4
8 8.226 18.65 49.06 96.12
§R .7487 .3985 .01097 .08263
"y g ) g M3 g T4 g
1 1.512 | .0175 |1.268 | .0169 | 17.32 | .0170 | 1.338 | .0150
2
3 1.496 | .0176 | 1.254 | .o170 | 17.44 | .0266
4
5 1.533 | .0172 | 1.285 | .0167 | 17.78 | .2176
6 1.521 |.0174 | 1.247 | .0172 | 16.83 | .0188
7 1.391 | .0189 | 1.166 | .0184 | 15.77 | .0183
8 1.204 | co18s |1.178 | .0182 | 16.18 | .0192 | 1.134 | .0176
9 1.411 |.0187 | 1.182 | .o0181 | 15.40 | .0192
1.410 | .0187 |1.181 | .0181 | 15.39 | .0192
1.436 | .0178 | 1.139 | .o0188 | 15.04 | .0196
1.201 | .0183 |1.235 | .0171 | 15.36 | .0185
1.473 | .0170 | 1.168 | .0173 | 14.95 | .0187
1.443 | 0173 | 1.278 | .0166 | 16.32 | .0181
1.317 | -0181 | 1.180 | .0175 | 14.35 | .0189
1.376 | .0186 | 1.155 | .0185 | 16.48 | .0180
1.379 | .0186 | 1.157 | .0185 | 16.51 | .0179
7.909 18.40 44.01 65.94
.6938 .4301 .000178 .0510
ml m2 m3 g m4 g
1.705 | .0170 | 1.108 | .0170 | 587.4 | .0345 | 2.585 | .0183
1.674 |.0173 | 1.159 | .0173 | 587.5 | .0346
1.594 |.0182| 1.093 | .0184
‘384 |.0370| .s42 | .0371 | 277.8 | .0732 | 2.894 | .0164
1.401 |.0207| .9s59 | .0210 | 418.4 | .0486
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XIV. CONCLUSIONS

It should be recognized that the following general éon-
clusions are based on a small amount of simulated data on

a relatively simple structure. While these conclusions are
not proven, they are strongly suggested by the data ob-

tained.

1. The concept of an incomplete model of a dynamic structure
is valid and useful, at least, for predicting the effects of

structural changes on the normal modes and frequencies.

2, The parameters ¢of an incomplete model may be determined
from measured modal data and a "reasonable" approximation

to the mass matrix.

3. The identified mass matrix will be’approximately equal
to the assumed values when the assumption is reasonably valid.
The identified structural damping coefficient will also be

a reasonable approximation under this condition.

4. The identified stiffness matrix, while not approximating
the true values, may be used to predict the effects of

stiffness changes.
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5. The identified influence covefficient matrix will be an

approximation to the true values.

6. The effects of mass and stiffness changes on the normal
modes and natural frequencies can be estimated using the
techniques that have grown out of the incomplete model con-
cept. These predictions are not overly-sensitive to the

mass approximation and to errors of measurement.

7. The procedures may tend to deteriorate when fewer points
or more modes are used, reducing the degeneracy of the equa-
tions. It is expected that this condition can be simply

corrected by including off-diagonal masses as unknowns.

In general, the results of the qualitative study are quite

encouraging. It is recommended that a mofe definitive evalu-
ation of the concepts be carried out both from a theoretical
viewpoint and by more detailed computer experimentation with

more complex structures.
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GLOSSARY OF SYMBOLS

Coefficient matrix in mass equation (See Section 1IV)

Matrix multiplying R in mass identification (See
Section 1IV)

Matrix multiplying m, in mass identification (See
Section 1IV)

Influence coefficient matrix

Force vector

Structural damping coefficient

Stiffness matrix

Mass matrix

Generalized mass of i-th mode

Element of M

Approximation to m

Total of diagonal masses

Vector consisting of unknown elements of M
Number of modes

Number of equations

Number of variables

Number of points of interest

Right-Hand side of mass equation (See Section 1IV)

Weighting matrix referring to confidence in my
(diagonal)

Mobility matrix

Displacement vector
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GLOSSARY OF SYMBOLS (Continued)

Real component of velocity vector

Impedance

Any change (as a prefix)
Matrix of modes

Modal vector (i-th mode)
Natural frequency of i-th mode
Forcing frequency

Superscript - pseudo inverse

Indicates diagonal matrix
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APPENDIX I

PRINCIPAL IDEMPOTENTS

The expression of positive definite matrices in terms of
their principal idempotents has been discussed in Ref-
erence 5. It has been useful in the development of the
incomplete model concept and some of the associated tech-

nigues. A brief discussion is given below.

Define ¢i as an arbitrary set of orthogonal vectors (P
vectors each having P elements) and A as an arbitrary

positive definite PxP matrix.

It is possible to express A as follows:

A=% % c
i=1 =1 *J

T

¢1%4 ‘ (1-1)

¢

i

since the ¢'s are independent and there are as many Cij's
as there are elements in A, Note that ¢i¢§ is a non-zero
square matrix for all i, j combinations but ¢§¢i is a
scalar and equal to 0 unless i=j since the vectors are

orthogonal.

Now pre- and post-multiply the equations by ¢§ and ¢k




oL Rd, =

M- 0

p T T T T

since each term in the summation is zero except when i=n

and j=k. Thus (note that ¢gA¢k is a scalar)

T
¢.Ad.
= ____l_]__— (1-2)

C..
ij T T
(6505) (6505)
Thus for any set of orthogonal vectors it is possible to
express the matrix A as in Equation (I-1) by evaluating

the coefficients as in Equation (I-2).

However, if the ¢'s are the eigenvectors of A, A¢j = Aj¢j
and
T
Asb:ds
C,. = d 2 J -0 fori#j
13 (676,) (6562) -
i7i% 3N
since now ¢§¢j =0 for i = j, and
c ='>‘i
ii ¢T¢
ivi
Thus, the cross terms in Equation (I-1l) become zero and
T
A=2Z A ( ) (1-3)
i=1 L 479,
ivi
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if and only if the ¢'s are eigenvectors of A. Note that

T T T
(for any orthogonal ¢'s), if v $; 07 V.2 ¢i(¢i¢i)¢i
¢: ¢, T
i*i (¢i¢i)
= Vi thus Vi is idempotent. When the ¢i's are the eigen-

vectors of A, Vi is called a principal idempotent.

By similar procedures it can be shown that the influence
coefficient matrix and the stiffness matrix can be written
in terms of their principal idempotents as follows (using

the notation of the body of this report).

) (1-4)

T
-1, _ P 2(¢i¢iM)
{=] i my (I-5)

Where the terms in brackets are the principal idempotents

of M and M YK. It follows from the above two equations

that
P T
C=1  —=5— &9 (1-6)
i=1 Qimi
p Qi T
K = j2_=l m—i' M¢i¢iM (I-7)

and that expressions of this form are only possible when

1

the ¢'s are the eigenvectors of CM or M "K.
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APPENDIX II

PSEUDO INVERSES

The pseudo inverse, sometimes called the generalized
inverse of a matrix is discussed in numerous publications
(e.g. Reference 6). 1In this appendix, only the applica-

tion made to the problem at hand will be discussed.

Consider the set of independent linear equations

Ax = b (II-1)

where there are more equations than unknowns. A, then,

is a rectangular matrix, n, xn, where n, < n,. Xx then

is 1 x n, and b is 1 x ng- There are then an infinite

number of solutions to these equations.

The pseudo inverse of A, written A+, is defined for this

problem to be

+

(11-2)
where the ordinary inverse of aaT is used. This matrix,

AAT, is of order ng, X ng and can be shown to be non-

singular when the original equations are independent.
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Now

x=2a"

is a solution to Equation (II-1; as can be seen from

ax = Aa"b = aaT(aaT) b = 1B = b

It is shown in the literature that this solution (of the
infinity of solutions) is the one having the minimum sum
of squares of the individual elements, i.e. the "smallest"
in a least sguares sense.

Using Equation (II-2) to obtain the pseudo inverse of Aw-l

from Equation (39) in the main text (where W-1 is a diagonal

matrix),

aw Ht = aw HT (@l aw Tt

= wiaT{aw lw 1aT} 2
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APPENDIX III

PROGRAM LISTING AND SAMPLE COMPUTATION

This appendix contains the Fortran listing of the computer
program discussed in Section VIII. Included are the opera-

ting instructions and a sample computation of test 16.

The program was compiled and run on an IBM 360, Model 40,

having 128K bytes of storage under DOS, release 17.

ITI-1
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0

DUCIBILITY OF THE ORIGINAL PAGE IS POOR

NISK NPFRATING SYSTEM/360 FLRTRAN 16(GN=-FN=68]1 13}

COMRNUNIRBREA SR CMRR AR RS RERRREREAS s [NCMOD 9003000000084 SRR SRARAREN EXSSRR RS
INCOMPLETE MNDEL THENRY ~ TEST PRAGRAM = USES RFSONANT RESP AS MIDE

INPYUT = PARY I = SIMULATED TFST
le HEADL CNL 1 = 1C, COL 2-80 HFACING
1€, = 0Oy NORWMAL (INPUT 2,(3)4445,7,8FF)
1y SAME AS O, AUT £ TAPUT INSTEAD OF K (24(3)94,6,7,8FF)
2+ NEW ACTUAL WMASS ANN FRFC CNLY (INPUT 44748FF)
3y NEW FREQUENCTES CALY (TNPUT T,BFF)
&, SAME ACTUAL SYSTF¥, NEW TEST (INPUT 2A,(3),7,8FF)
5. NO ANALYTICAL MCDEL, ITNFUT PHI'S DIRECTLY (2A,7,7A,8)

2 CONTPOL CARD (PT, I

caL 1,5 NN, NO NF ACTUAL DEG CF FREFDMM 15 20 MAX
6910 Nl NC NF MFASURFVMENT  POINTS (USFN) 15 20 MAX
IF NU (LT, NN, RFADS 3,
11,20 NROW, NDRIVING PCINT INCEX 10
MUST REF A USEC PCINT
21,430 6 SCALAR STRUYCT NAMPING CrFF F10
31440 PCY RANDOM ERRCE CN ANPLITUCE, FRRAR F10
UNTFORMLY CISTRIBRUTEC AFTWFFN =/4
PCT*RESPANSF
41,50 PCTA RIAS ERRCR N AWP = PrTYRSRESP F10
71,80 12 SFEN FOR RANCECM NC GENFRATNR 110

2A, SAME AS 2, EXCFPT DOFS NOT READ AD

3. USEN STA, CARD
USFDUTY o111 4NU INCICFS CF STATINNS
TN RF USED + IN NUNFRICAL SFQUENCE 1914 19 Max

4e ACTUAL MASS CARD(S) .
FIRST CARDISY M{(To1)oIm14ND NIAGCAAL MASSES M

SEQUENCF, AS MANY CARNS AS NFCFSSARY 8F10
NEXT CARD €0OL 1,10 NOD, NC CF CFF=-CLAGCNAL MASSFS 110
NEXT CARDS (IF NOD oNEo 0) 1,J,WFASS BL212,F6)

LOWER TRIANGLE NANLY (SYMVETRY ASSUMEN
8 PFR CAPRD, AS MANY CARCS AS NECFSSAPY

Se ACTUAL K CARNS K(I,J) T2l AN 4J=ly]
STIFFNFSS MATRIX, LOWFR TRTANGLE TNPUT ONLY, MATRIX
WILL BE SYMMETRIZED
START FACH RCw ON NEW CART, ENC CN NIAGONAL
FLFMFENT RF10

6 ACTUAL C CAPDS CHll, I
INFLUFENCF CNOFF MLTRIX, SAME FORM AS K

Te ACTUAL NATURAL FREQ (USFDN IN STNJLATED TEST)
FIRSTY CAPD NFRFQ. MJMRFR NF FRECUFNCIFS 110 10 MAX
NFXT CARD(S) FREQIT) T =] yNFRF( AF10

b Y T T T Y T T T Y T T T T O Y T T T I Tie T T Wi 2 2P T Wi T Yo Y Mee T Jhin e 3 o Mion Then Mie Mwn M M Mo Mon M T Mo T o Moo e T A

TA. ACTUAL PHT'S  (PHI(T yJ)gdm] JNFREC) ,I=] A1

111-2



n1/03/170 FORTMALN 000?

INPUT = 2aRT 11 - INFNTIFICATION
8¢ MHEANZ2 COL 1 = [C2y CCL ?2=-80 HFACING
162 = A, NORMAL (INPUT 9,10,11,12FF)
19 NFh APPRAX MASS = CTHER CATA UNCHANGED (11,12FF)

9s GFNERALIZIFND MASS = KNCWN VALUES CMLY = IF NNNE USF 1 RLANK CARD
CN1  £NL 1-10 NGy, NN NF VEALUES 117 10 maAx
FOLLOWING CARPDISY 1,.G¥L1Y 8(12,F8)

10, KNOWN MASSFS = 1F NONF 1SF | PLARNK CARD
COL COL 1-19 NK, NO OF VALUES 110 20 MAX
FOLLOWING CARND(S) ToJyKM(ToJ) (SEE SNCTE)
FNTEP LNWER TRTANGLE VALUFS CALY (1 JAF. J) AL 2124 F6)
SYMMETRY ASSUMED
ONLY NON Z2ERQ MAZ3FS

11¢ APPROX MASS CARDS = DEFINE UNKNCWAS
CP1 CNL 1=10 NV, NO 0OF UNKACWNY WAGSES 110 20 MAX
coL 20 ICY = N AP CCATRCL ON TRTAL MASS
1 TNTAL HNKNCWN NIAGONAL VASSES CONSTANT
FALLNWING CARDS,y NNE PFR MASS « LCWFR TRTANGLF ONLY

Nt 1= 1 (SFE *NCTE)
=10 J (SFF SNCTF)
11=20 AM, APPRAYX MASS (NAY EBE 7FRN TF NFF NTAG)
21=30 Wy WFIRHTING FACTPR 215, 2F 10

HIGHER w INDICATES GREATFO CONFICENCE IN FSTIMATE
N NOT 1ISE W = N

NOTE, ALL MASSES NCT NEFINFD IN 10 CR 11 WILL RE ZERN
SEE SURRNUTING INDMASS FOR FRPACR MFESSAGFS

INPUT = PART 111 = FFFECTS OF VAPYING V¥ASS CO STIFENFSS

12, HEAD3 FOCt Y= 1C3, COL 2-80 FEACING
1€3% Ny MASS CHANGF (INPUT 13,12FF)
1, RETURN TN PART T (1}
7, RFTURN TN PART 11 (M)
A, STIFFNFSS (14,12FF)
9, ENN OF RUN

[ B B I B ]
~
-

13, CHANREN MASS TARDS
FIRST CARND fOL 1=-10 NC, N CF CHANGFS In
NEXT CAPDS(SY  T4JoMASS CHANCE  (SEE #MNDTE) A(212.F6)
LNWAER TRIANGLE ONLY, SYNUFTRY ASSHMFD

l4e CHANGEN STIFENESS CAPRS
SAME FNRM AS 13, FXCFoY 41212,F16)

NNTE, NFEXT CAON PEAD S 12, TUESE WASK CHANARES ARF (INLY
TEMPNGAR LY STNRFN, VARTOUS CHAANGES CAN AP RN [N SFQUENCE,

TTITTITTTIANAMIANANAMTATTAITMAAATIIITAAMNAIIINAAIAIAIAANIITIIANTIIN AN

BNOTE 1,J) ARF INDICFS (F TFSY PLINTS, N{T AFTIAL SYSTEM
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/03779  ENRTMAIN _ 0007

T Y YD

1
1000

1001

10
1002

11
702
13
14

15
1903

16

999
17
18
19

20
2%

1)0e

11056

SURRDJTINLS SYMGINVOS,MOUT2 4 #CB,CINV ¢MVBY  RANCU TEMASS ,PREIINN,MITER, GEN

INTEGER HFAD{20) 4USFED{20) 4HEAN(20)

INTEGER HEANI{(20),T1TN(10)

REAL M(27421)4K(2C, ?l’oC(?Ooll‘oF“EC(lO‘oZP(ZOoZI’ 71020, 210,
L OYRUZ20,21) (VI (204211 ,PESRIL042N) 4REST(100201,46PPL1N)4PHI(20,10),
2 GPPEULLONGMINC (20,20) 4CINCI20420),KINC(20420)

REAL MTEMP(20,21)4MNNE (201 ,PHICI20,10),FRECCIL10),CTFVP(20,20)

REAL KTFMP(?0020).MlNV(ZOo?l'o"NDN(7O? CK(20,201,MA5S(10),

1 DCOF(20,10)
COMMON MoKyC g 7R 214 YRy YT yMINCCINCoKINC MTENP,CTFMD
COMMON KTEMP 4MINV,NK,NCOF

PART | = STMULATED TFST

READ (1,1000) 1C.HEAN

FORMAT(11,A3,19A4)

WRITF (3,1001) IC,HEAD

FORMAT (*19//765,YINCNMPLFTE NCDFL THFECRY = STMULATFC TRSTeyy
| S olS(""v!2-3*'A3o19A605!o15(""III!

1CC=lC+1

GO 10 (10,10,20,70,11,411 1e1CC

READ (1,1002) ND, NU, NRCW . o PCToPCTR, 12

FNRMAT (215,110,3F10,0,20X%X,110)

6 10 13

READ (142002 NUWNRNW,G,PCT, P('“olz
FORMAT (S5Xs15,110,3F10,0,420%,110)
IXz12%2¢]

60 TO (16,14,14,14,4,14,18),1CC
IF{NU-ND}15,18,18

RFAD (1,1003) (USFNITY I =] ,nNL)
FORMAT (1914)

DY 16 [=]1,NU

TEQUSENLTI-NRNWY 16,417,168

CONTINUE

NROIWsUSED(])

NQ(uWN= |

WRITE (3,999) NRPW

FIIMMATY (TG, '#*s  FOARCINSG POINT TNVALID, SFT TCO 13/7//7%
G 7O 20

NRIWNs]

GO Y0 20

NROWN=NRNW

DY 19 Ts],4U

used (i) st .
GO TO (2525025025, T0,70),1CC

00 30 Is]l,ND

D 30 Jsl NN

M{1,J)s=0

REAND {(1,1000) (#(]1,1),1=],ND)
FlkMAT (3R], N

READ{ !, LOOS)Y NN

FIRMAT (110)

1€ (NIDY 40,4N,%5%
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“"Y/03/770 FNETMATY 0onoe

35 READ (141004) (T 4JeM{] sd) sl NODY
1006 FORMAT (R1212,F6,0))
CALL SYM (M NN}
40 GO T (50,60, 70,70,70,70),1CC
S0 N 58 [=l,ND
55 READ (1,1006) (K{14J)edml,l)
CALL SYM{K ND)
CALL INVRS (K ND,C)
GO T0 70
60 D1) 65 1=l ND -
65 READ (141004) (C(T1,5J),0m],1)
CALL SYM (C,ND)
CALL INVRS (CoND,K)
70 READ (1,1008) NFRFO
RFAD (1,10N04) (FREQUTY ,I=] ,NFREQ)
GN TO (T1eT1eT1,T71,71,72),1CC
71 WRITE (3,1027) ND,C
1007 FORMAT (T10,*ACTUAL SYSTEM PARAMETERS'110,' CEG CF FREENOM, STRUCT
1 DAMPING CNEF m'F a3/ TLCe26(0=2)7/T30,"VASS NFATAIY /)
GO 10 T4
T2 WRITE {3,2007) NFREQ,H
2007 FORMAT (T10,°ACTUAL MOANES'T10,' MONES, STRUCTURAL NAMPING COEF =°¢
1 F,3/T10,121°0=-0)/7/)
GO 10 90
T4 CALL MNUT2 (M NDyND)
GO YO (75,75,80,80,80,80),1CC
75 WRITF 13,1008)
1308 FORMAT ('19,T50,¢*STIFFNESS MATQIXY//)
CALL MOUT2 (K.NDND)
WRITE (3,1009)
1309 FORMAT (*1°'T50, *INFLUENCE COEFFICIENTY VATRIX®//)
CALL MOUT2 (C +ND ND)
Gn 10 90
80 WRITE (2,1010)
1910 FORMAT {//T10,'ACTUAL K AND C SAMF AS PREVICUS CASF?)
90 WRITE (3,1011) NROWyNU
1011 FORMAT (*1%/7/T10,'NFSCRIPTINN NF STNULATEN TEST!/T1N,29(t=-¢)//
1 T20,'PNINT AT WHICH SYSTFM [S FORCEN' (4/T20,'NO OF PNINTS OF MEA
2SUREMFENT [ 8)
GO TO (94¢94¢94,94,94,986),1CC
94 IF(ND-NI}) 100,100,95
6% WRITE (3,1012) (USEDN{T),Is]l N}
1712 FORMAT (T20,'PNINTS AT WHICH MEASURENMENTS APE TAKEN'/T30,2014)
100 WRITE (3,1013)(FRFO(T) ,Is],NFKEQ)
1013 FORMAT (T20, 'FRFQUFNCIES OF EXCITATICN - H297(730,1P5F15,4))
90 WRITE (3,1014) PCY,PCTR,IZ
1314 FORMAT(/T20, 'AVE RANNNN AMPLITUDF ERRORIEIN,I/T20,¢ATAS AMPLITUDE
1ERRNAIF16,37/7T720,'SFEN FCR RAND KN GFENTRATCR[12/7)
GO IO (1N9,109,109,109,1€9,1011,1CC
101 NN 102 Jd=]l MU
102 RFEAD (141004) (RFSR(TI ¢J)I=nl NFRFEQ)
Gy TN 111
r CALCULATE RESCNAANT RESPENSES
109 00 110 1=1,NFFFQ
NMsFRENL])
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CALL MO8 (MyK NNt 2R ZT YR, Y1)
NN 110 J=1,4NU
JJ=USEDLY)
r COMPLEY FOn N
RESR(T 4J) =YR(NQDMW ,JJ)
110 REST(1,J) =YL INROW LJ D)
r CALC ASSUMEN PHI®S = RFAL RFSOANSF WITH FRONR
111 00 120 I=1,NU
NN 120 J=1,NFRFQ
CALL <ANDU {IX,TY,YFL)
I1xalyY
120 PHILTI JISRESK{S+TI*(1,002,0%PCT=(YFL=N,5)4P(TH)
£ NORMALTZIF ON NEIVING PCINY
N0 130 1=1,NFRFQ
GPP 1) =aRFSR{] NROWN)
GPPE(1 13PHI (NRNUWN,T )
00 130 J=1,NU
PHI(J L )=PHT LI 1) /GPPE(L}
1IFCIC~-5) 129,130,130
129 RESI{TI,JI=RESI(1.JV/GPP(])
130 RESR{I yJI=RESRIT J)/GPP(])
GO O (135,135,135,135,135.131),1CC
131 WRITE (3,2015) (FRFQUIV,I=),AFRFC}

2315 FORMAT {(/7/T104,FXACT MONES OF ACTUAL SYSTFM, NCRMALTZED ON DRIVING

1 POINT®*//T3, 'FREQ '1P10F12.,4)
GO TO 139
135 WRITE (3,1015) (FREQLI),1=1,AFRFC)

1915 FORMAT(//7TI0,EXACY RESPONSF CF ACTUAL SYSTEN,IN/SFC/PNINND, NORMAL
112ED IN REAL DRIVING POINT RESPONSE'//T30,'0FAL PARTC/ /T, 9FRFQ
2¢1P10FE 124 4)

WRITE (3,1016) (GPP{1),1=] ,NFFFEQ)
1N16 FORMAT(/T3,1,P, Y /T4,'RESP '1P10F12,.4)
139 WRITE (3,1004)
DN 149 [=2]1,NU
140 WKITE (3,1017) USFDU1) 4 (RZSRUJ,1)9J=1NFRFQ)
1017 FORMAT (16,3X,10F12,5)
GO TO (142,142,142,142,142,141),1CC
141 WRETE (3,2019)
2919 FORMAT ("1 /7/T10.'SIMUYLATEN ¥FASURER MNCES, ACTUAL OWHI®**'S 4ITH FERR
10r /)
60 D 154
142 WRITE (3,1018}
1718 FORMAT (*L%//T73N, "I MAGINARY PART*/)
0 145 T=1NU
145 WRITE (3,1017) USENIT) (RFST(Jy1)odm]l  NFRFC)
WREITE (33,1019}
1319 FORMAY (01 /7/T10.¢STMULATED YFST RESPANSE, REAL MPPILTITY WITH FRR
10RS USFD AS PHIsPgey/)
WRITE (341016 (GPPF(I),12],NFRFQ)
Wk ITE (3, 10N4)
154 CALL MOUT2 (PHT (NUINFRFD)
r PART 1 ~ IDNENTIFY NMASSFS
159 RtAD (1, 1000) (C2,HEAD2
CALL TNMASS (IC2.HFAN2 ,FRFEQPHI ¢ NUNFPEC¥INC,CINC,KINC,GMASS)
r CALUATE RESONANT RESPONCE  FRLM KINC,MINC
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4

/703

160

170

1n20

180

190

200

210
220

250
1130

285

260

2¢1}
2k5

/70 FORTMATHN 0006

ND 160 1=l NFFFQ

OMz=FRENLT)

CALL YOR (MINC,KINC,RyNUsCMy 2Ry 7T,YR,V1)

DY 160 J=1,NU

RESRUT ¢ JVY=YR (Jo NPCHWNY

REST(1 4 J V=Yl (JoNROWN)

DO 170 1=1,NFRFO

GPP(1)=RFSE{] JNROWN)

D 179 J=1,4NU

RESI(I «JVSRESI(I IV /GPPLT)
RESR({1,J¥=RESR{T,J})/5PP(1)

WRITE (3,1020) (FRFQU1),1=]1,AFRFQ)

FORMAT (*1%//T10,'PFSINANT RESPONSE CF INFNTIFRIEN SYSTFMeyy
1 T30,'RFAL PARTY//
2 T3,'FREND *1P10F12,4)

WRITE (3,1016) (GPPLI) ,1=],NFRFQ)

WRITE (3,1004)

DO 180 [=1,NU

WRITE (3,1017) USFDUIYL(RESR(J,1),0J=14NFRFQ)
WRITF (3,1018)

NN 190 I=1,NU

WPITE (3,1017) USED(V1Y 4 (REST{Jy1)oJml NFRFQ)
IFIRST =0

GO TO 2.5

PART 111 = CHANGFN WASSFS

READ (1,1000) 1C3,HFAD3
IF1103-9)220,210,210
CALL EXIT

1CC=1C 3«1

60 TO (2504141554250 ),1CC

WRITE (3,1030) 1C3,HFANI

FORMATY (019/7/75,'PARY [11 - CHANGEN VASSES CR STIFEMESSESY//TS,
1 150%®9),12,3X9A3,19A4,5X,15(%%%)/7//) -
READ (1,1005) NC

N 260 [=1,NU

N0 260 J=1,NU

KTEMP(1,4.J)=20

MTEMP(T,J)=0

[CFLIFIRSTIZ61,266,261

1F(1C31265,265,300

PEAD (1,1006) (1 4JeMTEMP(] 4J) oLl NC)

CALL SYM (MTEMP NI

ARITE (3,1231)

FALMAT (TH0, "MASS MATIIX CHANGES?/)Y

CALL MNIIT2 (MTFMP Mg, NI

T 270 T=1.MU

Y 27D J=1,NU

CTRUP( T, J¥sCINC LT, )

MTEMP( [, J)Y=MTEMD (T, )Y+ M NCUT o I

TTFRATE USING CINC # MTEVE

0 280 1 =zl 4NFKEQ

CALL MITHR{CTIEMP JMTF D (NU o 0NCNL 425 VNDF ,CVEG,TIT)Y
CINSM)INE ([ MROWN DY

nn 275 JslNU

MONE(J s Y /CPN
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219 OHICLI,, 1Y =MNDF LY
TINtL) =1 T
FREQCLIN=1.,0/SART(NMEG Y /6, 2832
GPPE(I Y =GFN(MONE (MTEMD (NL)
CON=QMEG /GPPF(T)
DO 280 L=1,NU
DN 280 J=1,Ny

280 CTYEMP(L ¢ J)=CTFMP (L JY=CONSMODF(LI®NMCEF (Y)Y
IF(IFIRST1285,281,285

281 WRITE(3,2032) (FFPEQ{T1) ,1=1,NFPEOQ)

2032 FURMAT (*1%//710,FRFQUENCIFES AND MOCES CF TNENTTIFIFN SYSTFMY Yy
1 T3,tFRFQ 11010F12,6) '
GO TO 289

285 MRITE (3,1032) (FRPFOC(1),1s],NFRFQ)

1032 FORMAT (*1'//T10,*'NFW FREQUENCIES ARND NCCFS CF MOCIFIFN SYSTEMYY/
1 T3,'FREQ 'IP10F12,.4)

2839 WRITE (3,1033) (GPPF(I),I=1l,NFRFQ)

1033 FORMAT (/T72,'GFN MASSY1P10F12.4)
WRITF (3,1034) (1TNI1),I=],NFREQ)

1034 FORMAT (/T3,'JTER*1INIL2)
WwRITE (3,1004)
ND 290 1=1,NU

290 WRITE (3,1017) USFDII) J(PHIC(TI,J)oJdml NFRECH
IFIRSTaIFIRST4]
G0 70 200

100 READ (1,3031) (T14JeKTEMP(],J)Lal,NC)

2031 FORMAT (4{212,€16,01)
CALL SYM (KTEMP,NU)
WRITE (3,2031)

7031 FNRMAT (T80, 'K MATRIX CHANGFS?)
CALL MOUT2 (KYFMP N, NU)

c CALCULATE NELTA Kk INCCMPLFTY

CALL MMPY (KTEMP,PH] 4MUsNY4NFPFQ DK} .
N9 310 1=1,NU
D) 310 J=l,NFREQ

310 MINVIJL1)=PHILT ,J)
CALL MMPY (MINV ,DK,NFRFQ¢NUUsANFREC,NCOF)
N0 320 [=]1,NY
NO 320 J=1,NU

320 DK{1,J)=0
DO 330 [J=l,NFRFQ
NN 330 JI1=1,NFRFQ
NN 330 1=1,NU
DI 332 J=1.NU

330 DK{1yJ)sOKIT o JYePHILT LTIV 2PHTLS ST IRCCNRITI L JTY/GMASS( 1YY/
1 GMASSLJ])
CALL MMPY (MINC DK NUGNGNUKTFNPY
CALL VMDY (KTEMP,MING (NUJNU,NIJ,DKY
WRITE (3,1040)

1040 FORMAT (*1°TSO,*NFLTA K INCONPLFTES)
CALL MDUT? (DK NN
nn 360 Isiy,NU
NN 340 J=l.NU

340 KTEMP{ [, JY=XINCLT JV40K(T 40}
CALL INVRS (MINC (NU,MINY)
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Y1/03/10 FNRTMATY

r

375

380

TIFFATF USTIANC MTAVEKYFNMD
N0 380 [1=1,KFRFQ
1aNFRFQ=11+1
CALL MITER(MINV JKTF'AP ¢NU e OCNOL 425 4 NONE 4CNHFR,TT)
CONaMDUOF { NRDWN)
N 375 J=1,NU
MONE(J)sMNNF L) /CON
PHIC(J,1)=MaDF (J)

TTNCIN=1T
CALL MMPY (MINC 4MODFyNUGNU L 4MNNMY
FREQC(1)= SARTLOMER) 16,2822

GPPE(IY=GFNIMNANE (MINC 4NU)

COAN=OMFG /GPPFIT)

NN 380 L=1,NU

NN 380 J=1.NU

KTEMP ULy J)=KTFMPIL,J)=CONXMONN (LI RMAEM( J)
64 7O 285

END

I11-9
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1000

10
101
20

30
50

DISK NPERATING SYSTEM/36C FCRTRAN

SUBROJTINE MOUT2 (A MN)

REAL A(20,21)

ID=MIND(N, 10D

WRITE (3,1000) (1,1=1,1D)

EORMAT (/T5,10112)

WRITF (3,1000%

DO 10 I=]1,M

WRITE (3,1001) To(A(T,d),J=],I0G
FORMAT (154,5X,1P10F12,4)

tF (ID=N) 20,50,50

WRITE (3,1000) (1,1=11,N)

WRITE (33,1000}

N0 30 I=sl M

WRITE (3,1001) T,0A01,J),4Jd811,N)
RETURN

END

I11-10
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NISK NPERATING SYSTFN/360 FCRTRAN IAON=FN=451 3]
SUBROUTINE CINY (A,R,N,C,D)

C+1%D = INVERSE CF A¥]#P 1=SQRT(=1)
A ASSUMED NON STNGULAR

REAL A(20921)4802052114C120,21)4D(20,21),€(20,21)
CALL INVRSIB.N,C)

CALL MMPY(CsA g NyNyNyE)
CALL MMPY({A,E o NgNyN,oC)
DO 10 I=]l,N

DO 10 J=l,N
Cer,0)eC {1 yJV¢RlI, I
CALL INVRS(CyN,M)

CALL MMPY(E qDNgNyNyN,CH
DN 20 I=l,N

D) 20 J=1l,N
DUTydY==N{1,J}

RETURN

END

I11-11
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NISK QPFRATING SYSTFM/360 FrRTRAN 36NN=FN=646] 3]

SUBRIUTINF SYM (A,N)
FORMS SYMMETRIC MATRIX FRCW LCWFR TRIANGLFE
REAL 4(20,21)
N1l=N=-]
NY 10 I=1,N1
Tl=l+}
DN 10 JsIlyN
A(TyJ¥=A1Js1)
RETURN
END

111-12
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DISk OPERATING SYSTEN/360 FrPTRAN J60N=FO=~451 31

SURRIITINE TOMASS (IC,HEAD oFRPHI ,PyNyWASS,CINCIKINC,)GMASS)
USES PSEUNN INVFRSE TO NBTATN UNKNCWN MASSFES AND
TMCOMPLETE STIFFNESS AND TAFLUEACFE CPREFFICIENT MATRICFS
SFE MAIN PROGRAM FNR INPUT NESCRIPTION

INPUT ERRIR MESSAGFS
MASS 'T* INDEX YOO LARGE
MASS *T* 1 LESS THAN J :
MASSES [0 AND ' J? HAVE DUPLICATE INDICES
WETGHTING FUNCTION *1* =0
APPRNX MASS Pl AND KNCWA MASS "¢ HAVE SAMF INDICFS

INTEGER HFAD{20) 4P oIGMIIC) o IKM(20) oJKM(200 ,1 AN (200, JAM(20)
REAL PHI(20910) 4GMIL1D) yKM(20) 4AMI20) 4W(20)9A(20420),4R(20),
1 AW(204,20),RR(20.21),8M[20,20) 4MMIN(20) o#PAR(20),DFL{20)},
2 FRULODI4MASS(204620) 4CCOFF{10),KCOFF (101 (CINC(20,20)KINC(20,20)
REAL GMASS(LIN)Y
INPUT
10 WRITE (3,1001) IC,HEAD _
1001 FORMAT {'1°%//710+'PART 11 ~ IDENTIFICATICN'//TS5,15( %), 12,3X,
1 A3,1944,5%,15('s")y/7/ /)
1FR =0
[ERR=0
ICC =1C+1
1002 FIRMAT (2110)
GD TO (41,42),1CC
4] REAN (1,1002) NG
42 TF(NG)Y 50950460
S0 WRITE (3,1007)
1007 FORMAT (//T204'ALL GFNERALIZED MASSFS UAKNCWN!/)
. GO TO 70
60 GO TD (61462),1CC
61 READ (1,1008) (IGMUI),GM(I),I=],4NG)

1008 FORMAT (8(12,F8,0))

62 WRITE (3,1000) (TIGM{T),GM(1) 1=l ,NG)

1009 FORMAT (//T20,*KMOWN GENERALIZED MASSES//7(TS, *M{']2,') = ¢
1 IPELD.4¢T29,12¢%) & TELO.G T2T o MV T51412,4%) = *F10,4,T09,"'M{?
2 T73,12,%) = 'EL1Qa& s TTLo*M{VTG5,12,%) & 'FL0,4,T93,'M( "))

70 60 TO (71,72),1rC

71 READ (1,1002) NK

72 IF (NK)} H0,80,90

80 WRITE (3,1010)
1010 FORMAT (/7/T20,ALL MASSES UNKNNWN® /)

GY T 1IN0

930 6N TO (91,92),1CC

G1 QEAD (Ly1011) {(IKMUTY ,JKNM{T) oKM(T) ,T=] ,AK) .
1011 FNRMATY (BU2]12,F6.0V)

92 WRITE (3,1012) CIKM{TY o JKMET ) XKM(T)4Im] 4NK)

1912 FOKMAT (//T20, 'KNNWN MASSESE//{Ta  40M('12,%,'12,°') = "]PEL1L.4,
IT3191209 %02, %) =tF12,4,T29, W {787 4124 %12+%) 2%F12,4,T855 , 'M(?
2781124 %4%12,) B2, 4,TTO, 'MW 'T106,12,%,'12,%) =20E12,4,T1N4,
3IM("))

r TAPUT FRR(CR TFST

NN 920 Ta]lNK
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N1/33/7170 TOMACS ' 000?

LalKM({T)
KaJKM(T)
IF(L=-P) 901,901,902
901 IF(K=-P) Q905,905,602
902 IF(IER) 903,903,904
903 WRITE (3,2000)
2000 FORMAT (/TS,0INPUT FRRORSy KNCOWN MASSFGt7)
904 1ER=[FR+]
WRITE (3,2001) 1
2001 FORMAT (T10,'MASSYTI4, " INDEX TOO LARGF')
905 IF(L-K) 906,910,910
906 IF(IER)907,907,908
9307 WRITE (3,2000})
908 IER =IFR+1
WRITE (3,2002) 1
2002 FNRMAT (T10,'MASS'T4,%, | LESS THAN J%)
210 IF{I=-NK) 911,920,920
911 Jli=l+}]
NO 920 J=Jdl,NK
IF(L-IKM({J)) 920,612,920
912 IF(K=-JKM(J)) 920,913,920
913 IFLIER) 914,914,616
914 WRITE {3,2000)
915 IER=[ERe1
: WRITE (3,2003) [,J
© 2003 FORMAT (T10,'MASSES'14,' AND®14,% HAVF CUPLICATE (INDICFSY)
© 920 CONTINUE
100 READ (1,1013) NVLICT,(TAMIT) oJAMIT) oAM{ T yWIET) oI=lyNV)
© 1013 FORMAT (110,9%,11/1215,2F10.,0))
o INPUT FRROR TEST
. .NO 950 [=1,NV
L=TAM( 1)
KsJAM(T)
IF{L=-P) 921,921,922
921 1F(K=-P) 925,925,922
922 IF(IERR) 923,923,924
723 WRITE (3,2004)
2004 FORMAT (/T%, 'INPUT ERRNRS, APPRAYX MASSESY/)
924 JERR=IERR+1]
WRITE (3,2001) 1
925 IF(L~-K) 926,929,929
Y26 IF(IERR) 927,927,928
927 WRITE (3,2004)
7128 [ERR=][FORe]
WRITE (3,2002) 1
929 IF(Wll)) 935,91(C,935
930 IF(IFAR) 931,931,632
931 WRITE (3,2004)
932 1EKR=IFRRe])
WRITE (3,2025) 1
2I05 FURMAT (T10,'WETRHTING FUNCTICN® T4, = Q)
939 [F(1=-NV)936,5642,942
s 936 Jl=lel
NN 94) J=Jl NV
TF(L=-TAM{J)) G41,937,94}
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703719 TDVMASS

937 1F({K=JAM(J)) 941,978,941
934 1FL1ERR1939, 639,940
939 WRITE (3,2004)
940 IERx=]EQR+]
WRITC (3,2003) T,J
941 COMTINUF
962 IF(NK)} 95Cy950,963
943 DU 950 J=l,NK
IFLL=-1KMI YY) 950,544,950
944 IFIK=JKM(J))G9504545,950
945 IF(IERR) 94649464947
940 WRITE (3,2004)
947 1ERR=[ER?+]
WRITE (3,2006) 1.J
2006 FORMAT (T10,*APPROX MASS'14,¢ AND KNCWN PMASSOT4,*HAVFE SAME INDICFS
1Y)
950 CONTINUR
IFUIER 1951,951,500
951 IF{JERAR)101,101,500
101 NZE = N*(N-11/2
NE = NIF+NG+MINO(ICT,1)
NR aNV-NE
WRITF (3,1014) NF,NV,NR
1014 FORMAT (//720,°'PRPORLEM DEFINITION NO F£F ECUATINNS = 12/
1 T4l,*ND OF VARIABLFS = *]2/T37,90RDER CF CFGENERACY = *12)
IF (NR) 11041204149
110 WRITE (3,1015)
1015 FORMAT (49765, 'NOTE = NO EXACT SOLUTICA PNSSIBLE')
60 70 149
120 WRITE (3,1016)
1016 FORMAT (*+¢T65,'NOTE =~ (INLY CNE SNLUTICN PrSSIBLF, APPQNX MASSES N
10T USEN®)
149 TF{ICTI13041514130C
130 WRITE(3,2016)
2016 FORMAT (/T41,'TOTAL NF DI AGONAL MASSFS CCANSTANTY)
151 IF(NE-20) 155,159,152
152 WRITE (3,3N016)
016 FORMAT (//T10,9%%% TOO MANY FOUATIOANS, LINIT (S 29 sase)
60 70 500
159 G2 T2 (150,2500,1CC
FORM A MATRIX (NE X AVY, 7 VECTOR (NF)
150 D) 160 1=],NF
160 RUT)=)
NEF=NIAGONAL FOQUATICAS
[E=0
Nlen=1
NN 200 T=1.N}
Jl=l+]
0N 209 J=J1,N
IFsliel
DN 180 1Vs] NV
L=TaM{TV)
KajaM(Iv)
IFIK=L) 170,165,170
165 AUIF, IVIaPHI(L IVePHITL S
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N0y 10 nvace 0004

60 T3 190
170 AUIELIVIZPHT(L o 1) OPHT (Ko JI4PHTIXKGTYSPHTI (L, )
180 CONTINUF
TEINK) 200,200,188
185 N0 199 IK=], NK
Lelkm{ix)
KsJKM( V)
IF(K=L) 195,19Nn,19%
190 RUIFISR(TIE)=KM{ ¥ )INPHT (LyT)*PHT (L ,J)
Gd) T0 199
195 RUIE)=R(IE)=KMIIKI®(PHI (L I) PRI (Ko JYePHTI(K,T1V8PHTI(L,yJ))
199 CONTINUF
200 CONTINUE
IF(NGY 250,250,21C
f FQS CCRRESPOANCING TF CIAG TFRWS
210 DN 240 11=]4NG
I=sIGM{ 1)
1E=1E+1
NN 230 1Vs],NV
LslaM(iIv)
K=JAM(TV)
1F (K=-L) 225,220,225
220 AUIEZIVISPHI(L,T)®PHIIL, 1)
GO Y0 230
225 A(IEyIVIa2,0%PHT(L,11*PH]I (K, T}
230 CUONTINUF
R{IEIsGML])
IFINK) 240,240,2W)
231 DO 239 (k=] ,NK
La1iM(IK)
T KsgKM(IK)
1F({K=1) 235,232,235
232 RULEVSR{TE)=KM{TIKISDH] (L,1)ePHItL,1)
60 10 239
235 RILEISRUTE V=2, NOKMITKISPHT(L ,1ISPHT (K, T}
239 CONTINUF
240 CONTINUF
250 IFLICTYI251,260,25]1
s FOQUATICN FNR SUIM CF NIAGCNAL MASSFS
251 l€=[E+]
R{IF)=D
NN 259 V=] NV
LstAMI]IVY
KsjaM(lv)
IR{L=<) 25R,4252,?5A
252 ALIF,IVI=l,D
QUIE)=?(1F)elNlTV)
TN 259
25 A(1E,1V)=0
289 CUMTINYE
s A NATOIY CUTDLT
260 ARITF (3,101 7)1 NF MV
1917 FIRMAT (1977720, %A MATRI XY T4, X'13//)
CALL MNUT? (A N VY)Y
WRITE (3,101
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01703/ 10 1OMASS 000%

1719 ENRMAT (/77T20,'F VECTOR//)
WRITE (3,10200(R(1),I=],NF)
1320 FURMAT (/(T6,1P10EL12,41))
r FCRM AW = A/Ww
DU 270 Jsl NV
Wisl,0/Wi )}
00 270 [=)1,NF
270 AvllyJdisAll J)*nWl
¢ FORM B8R
CALL PSEUND (AW,NENV,BR)
DO 280 1si,NV
Wisl,0/Wil)
0N 280 J=]1,NE
280 BR{14J)=RR(T,JV2 W]
¢ FORM 8M
CALL MMPY (RR,A NV,NF,NV,AM)
, DO 290 Is=]yNV
DN} 290 Js=l,NV
M 1,J)s-BM{1,J)
IFt1-J) 290,285,290
285 BNM(1,J)sBRM{I,J)¢1,0
290 CONTINUE
WRITE (3,1021) NV,NF
1021 FORMAT (*1%//T20,°AR MATRIX'T4e* X*13//)
CALL MOQUT2 (RR,NV,NF}
WRITE {3,1022) NV,NV
1022 FORMAT (*1%//720,'AM MATRIX®*14,* X*'13/7)
CALL MOUT2 (BMy,NV,NV)
o FORM SOLUTIOM
CALL MMPY (BRyRyNV,NE,1 MFIN}
* CALL MMPY (BAM,AM NV NV,1 MRAR)
™ =0
TMB =0
OEL S=0
N0 210 Is],NV
MBAR(T )sMBAR({TIeMMIN(T )
TMuTM+AM( )
TMAaTMBeMBAR( 1)
DEL(I)=MRAR(TVI=AM{Y}
310 DFLS=DELSeDELITI®NEL(T)
DELS=SQR T(DELS/NV!}
¢ MASS CuTPUT
WRITE (3,1023}
1323 FORMAT {219/7/T7T30,%AFST MASS SCLUTICON'//7T765,°1 J APPRIX MASS W

16T FACTY MIN M“ASS REST MASS CHANGE® 7 /)
WRITE (3,1024) (TAMET) fJAMUTYAMIT) oW( L) MMINLT)  MRARET),DELITY,
1 "lQNV'

1026 FORMAT (165,14,1PC15.64,0PF10,4,1P3ELS¢4)
WRITE (3,1025) TM,TMA,DELS
1925 FURMAT (//T4,'TOTALS*IPELSe4 TS0 F15.4/ /T4 RMS NF CHANGFS®F1244)
r FORM COMPLETE MASS MaATRIX
DU 320 isl,P
N0 320 Js1,P
320 MASSII,J) D
DU 330 [=1,NV
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01/03/70 1OMASS _ 00n*

Lalam(l])

K=JAM( 1)

MASS(L K)=MRAR(T)
330 MASSI{K,L)1=MAAR(T)

IF{NK) 355,355,34C
340 DD 350 I=l,4NK

L=TKM{T)

K=JKM(T}

MASS{L oK )=KM(])
350 MASS(KyL)sKkMiL)
3155 WRITE (33,1026}

1026 FORMAT (*1¢//T30, *FULL WMASS MATRIX*//)
CALL MOUT2 (MASS,P,P)
c FORM GFNERALTZEC MASS MATRIX
r {BRM, RR DFESTRNYF.DY

DO 370 1=],p
ND 370 J=1,N

370 AMUJ,T)¥=PHI(T,3!
CALL MMPY (BM,MASS,N,P,P,RR)
CALL MMPY (AR ,OHTN,P4N,BM}
WRITE (3,102

1027 FORMAT (*1°%//T30,'GFNFRALIZED MASS MATRIX'//)
CALL MOUT2 (BM,N,N)
DD 375 I=1,N

375 GMASS{T)=RM(I,T1)

¢ FORM Cy K FMATRICFES

N0 390 1=1,N
OM=FR{1)*FR(1)%39,4784
CCOEFLTIYI=1.,0/(OM*RAM(T,1))

390 KCOEF(1)=0M/AM(],T1}
DY 395 [=1,P
NQ 395 J=1,P
CINC(T1,J)=0

395 KINC{(I,4)=0
D0 400 IN=1,N
D0 400 I[=1,P
NO 400 J=1,°P
CINCUI s d)=CINCUT o JI+CCOEFLINI*PHILT L INYSPHIL Y, IN)

400 KINCUT yJI=KINCUTI yJY+KCOFF(INI®AR(INLZI)2PR(IN,J)
WRITE {3,1029) (KCOFF(1),1=1,N)

1029 FORMAT (*1%//T30,'INCOMPLFTE STIFFNFSS CNEF*'//T1D,'MNDAL CNEFFICTFE
INTS'/T6, 1P10F 12, 4)
CALL MOUT2 (KINC,P,P)
WRITE (3,1028) (CCOFF{T1)1=1,N)

1928 FORMAT (*1%//T30,INCOAMPLFTYF INFLUENCFE COFF'//T10,'MONAL CNEFFICIF
INTSY/T6,1P20F 12, 4)
CALL MNYT2 (CINC,P,P)

9200 RFTUPN ’
END
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AN NN

10
il

15
20

30

40

50-

DISK NPERATING SYSTEM/360 FCRTRAN 260N=-FN=45]1 31
SUBROJTINE MITFR (AyRAy Ny TCLy TTMAX FUN,VAL,ITY

TTERATFS NN A®B FOR DOMINEAT ETGFANFUNCTINN (FUN)
AND FIGENVALUE (VAL),

N IS OrpER

TOL 1S NECIMAL (401 PFRCENT) TCLEFANCE ON VAL,

ITMAX TS MAX NC OF ITFRATTCNS,

IT IS NUMARER OF TTERATIONS PERFCRMFOD,

A8 ARE SQUARE OF CPDER N (DINMENSTCNED (20,21) )V,

USES MMPY (AR yN1yN2,N3,C)

REAL A(2042114B(20,21),C(20,21),NUM(20) ,FUN(20)
CALL MMPY (A,RyNyNyN,C})
VALO=100,

IT=]
0N 10 I=14N

FUNITI=1,0
CALL MMPY (CoFUNyNyN,1 ,DUM)
VAL=NUM( 1)
N0 20 I=2,N
IF(ABS(VAL)-ABS(DUM{I11)15,20,20
VAL=DUM(T)
CONTINUF
ND 30 I=1,N
FUNCIY=DUMIT)/VAL
IF(ABS{VAL/VALD=-1,0)~TOLY 50,50,40
1T=1Te 1
VALO=VAL

IFCIT-1TMAX) 11,11,50
RETURN
END
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20

NISK NPFRATING SYSTEN/3GC FrRTRAN

FUNCTION GEN (FUN AN}

GEN = FUN(TRANS) * A #* FiIN

DIMENSIUN A(20,21),FUN(20)
GFENs=Q

NN 20 1=1,N

DUM=0

DO 10 J=14M
DUMsDUMEA (T4 JI*FUNLY)
GEN3GENDUMSFUNI(T)

RETURN

END

S
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NISk NPERATING SYSTEWM/I6C FCPTOAN  3IAON-FN=451 31
SJUARIUTINE PSEIDN (A 4HRGKC4CH

€ = PSEUNNINVERSE OF A A UNDISTURREC

& 1S A PECTANGULAR WATRIX NF WAXTMAL EANK (NR ¥ NC)

NR o6T, NR (LT, NC

-1 -l
C = (A®A)Y A* NR AM(AA"Y

N2 NC MAY MOT EXCFED 20

REAL A120429),R120,2101,C (20,21

R = Al
DN 10 T=s14NK
D2 10 J=14NC
10 ARlJsIV=A(T4J)
IF(NR=-NC)20+¢20,30
NR L] LEr NC

C = AAY
20 CALL MMPY (A RyMP (NCNR,C)
A = INV OF C
CALL INVPS {CyNP,A)
C = PSEUDDINVFRSE CF A& (NC X MNR)Y
CALL MVPY (R,A4MC 4NRGNR,C)
GO 1O &0
NC +LTe NP
f = A'A
30 CALL vMPY (5,A4NC4NR,NC,C)
A = INV OF C
- CALL INVARS (CyNC,A)
C = PSFUNNINVERSFE rF 3 (N Y NRY
CALL MMPY (1,8 ,NC 4NC(NR,,C)
RESTNARF A
& M) 5) =1l ,NR
1) 50 J=l N7
SO A(L,Jd1=3 00,1
xETURY
E3Th
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NISK OPFRATING SYSTEM/360 FCRTRAN 36ON=-F0=-451 31

SUBRIJTINE INVRS (RyN,yA)
A = INVFRSE NF R B UNCISTURBFD
DIMENSTIN A(20,21)4D(20,21),TROWI2LY,ICCLL21),R{20,21)
DO 1 [=s1lyN
NG 1 J=14N
1 All,d)=B(],J)
M=aN+] :
no 7 I=214N
IROW(T ¥ =]
T ICaLit)=l
N0 20 Ksl,N
AMAXs A(K,K)
D3 10 [=3K,yN
00 10 JazK,yN
IF(ABS( A(l,J4)V)=-ARS(AMAX)I10,9,9
9 AMAX= A(l,J)
IC=1
JC=J
10 CONTINUE
KI=ICILIK)
ICOLIKI=ICOL(IC)
ICOL{IC) =Kl
Ki=IRIW(K)
JIROW(K )=2IROW({JC)
IROW( JC) =K1
IF(AMAX) 11,12,11
12 WRITE (3,13}
13 FORMAT(® SOLUTION OF EXISTING MATRIX NCT PCSSIELF*Y
GN T0 100
11 DO 14 J=1,N
EzA{KyJ)
A(Kyd)=A(ICHJ)
14 A(IC,J)=E
DO 15 I=14N
E=All,K)
AlT«K)=A{T,JCY
15 A(I,JC)=F
DO 16 Is1,4N .
IF{I=-K) 18417,18 )
17 AlT M) =],
60 1D 16
18 A{1,M)=0,
16 CONTINUE
PVT=ALK,K)
NN 8 Jzl,M
8 A(K, J)=2A(KoJ)/PVT
00 19 I=1,N
IF(]=-X121,19,21
21 AMULT=A{T,K)
DO 22 J=l,M
22 ALT ¥ =21, J)=AMULT*A(K,,J)
19 CONTINUE
N0 20 [=1,N
20 Al[yX)=A(TM)
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01/03/70 INVRS

24
23
25

28
29
26
100

NO 25 1al4N

NN 24 L=al 4N
TFCIRIWLT )=1) 24423424
CONTINUF

DO 2% J=1yN
DiLyd)=A(],J)

N 26 Jsl N

DD 28 L=1,yN
IFCICILEII=L) 28,29,28
CONTINUE

N0 26 1=1yN
ALTL=D(T,4J)

RFTURN

END
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NISK NPERATING SYSTFV/160 FORTRAN

SUBRUIJTINF MMPY (A,RyN1,N2yN3,C)

IANN=-FN=451 3]

P
c f = A=*8
r A (N1 X N2} B (N2 X N3} C (N1l X N3)
PS

REAL AlZO.Zl):R(ZOgZI)9C(20o21)

Dit 20 [=1,N]

NO 20 J=1,4N3

Cllyd)=n,

DN 20 K=1,N2 :

20 CUT4J)sC Ul oJ)¢A(TK)I*B{K¢J)
RFTURN
FND
111-24
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DISK (PERATING SYSTFM/340 FrRTRAN 360N=-FN=451 131

SURRIUTINE RANDU (TX,1Y,YFL)
THLS SUAROUTINF 1S FRC¥ SSP VERS, (Y
IYsIX% 65539
IFLIY)S4 646
5 [YslY+214T4R364T+])
& YFLs=lY
YFLBYFL®, 46566137 =9
RETURN
END
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DISK NPERATING SYSTENM/360 FCRTRAN 36NN~FN=451 31
SUBROUTINE MOB (MyK Gy NyCMy 2R, ZT,YR,VYI)

CALCHLATES COMPLEX IMPENDANCE ANC NCAILITY
M 1S SOUARE MASS MATRIX

K IS SQUARE STIFFNESS MATRIX

i 1S SCALAR STRUCTURAL DAMPING

OM 1S FeSNUENCY IN HFRT?

N IS NRNER

IMPEDANCF IS IR + [*2} {1 = SQRY(-1))
MORILTITY = YR + [esy]

ALL SQUARE MATRICES ARF NIMENSTCNED (20,219
USES CINV, TNVRS, H4MPY

REAL M(20421)9sK120421)42R(20,21),71020421)V,YR(20,211,Y1(20,21)
OMR=aOM*6,283]85

CONs=G/0OMR

00 10 Isl,N

DY 10 JsLyN

IR({TI¢J)=CONSK(T ,J)

LUGToJ)sUOMREMLT 4 J)=KI(T 4J) /OMR

CALL CINV (ZRyZT1yNyVYR,Y1)

RETURN

END
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&, S9N9F
«le 22648
Yo 1994
=9 144 0F
6o 4079¢
-0, 9256¢
Te 19146
-2, 32588

S POOR

10

=1e 51718
4 21018
“4,4296¢
2.0407¢
YLl L]d
3.T033%
“1:2076F
4eb1LTE
=1.0017¢
145708
=1,0032¢
4.5007F
=1.19)%¢
3.1219¢
“le1118¢€
F.8108¢
=T.2200¢
2. 07048




N D ER NP RPN~
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- . e o
E R R e RV i o L

-y

1. 0900F- 006
Qe L694F= 07
", 3327€=-07
1. 4968F=07
ha6615F=0T7
S8 281E-07
be 996 8E~ 07
6o 1 615F=07
3. 3281F-07
24 4948€-07
le 661 5E-27
A 2975608
2. 57198~ 11)
=N, 2848€-08
=1.6615C~97
~2:5082¢t-07
=% 3431€=07
=4,2031€~07

11

1 6615F~07
A% BITIE-0
Te 5899€~05
1.0999¢-06
1o IH206=00
10602 7€=04
le 1393F=04
1. TT89¢-04
1o 69%RE=-00
lean23F= 04
1e1188F=0%
€,06264r-0%
A, Y2284~ 07
-4, 0293F=0%
=1 2133E=04
= 1.826a0E=04
P, b 3aBF=D
=, 044 TE=14

9.,16%4F-07
Je4a11F=0%
80 052%F=nS
TeB244F=0%
B4 BANPF=0N
7 20117 -8
8.9724F =08
8e2434F-08
T7.0973F=-0%
S.61647F-0%
3. 8871F-0%
1. 9896E-0%
8, 2401%-08
=1.987%-04
=3, 9N 4F=-N8
~5:9770F-05
«7.9696F- 09
=90 95V0F - N8

12

8.2975F-08
1.9896F .08
3. 0BTIE-NS
Se6173-08
7.09717 =08
Mo 2432F-08
4, 9722603
94 2009€ 208
He BAGOF-08
T.8243¢-0%
64 0%24F-05
3.64T716-0%
9 161 3F-07
~3.0169¢-05%
=54 9251608
~1.00817- 04
=1,3939F-04
“lotebatani

8, 332 1F=07
6o N328F=N%
1.118AF=06
1,402 ~04
1eh988F N4
1o 7759F=04
1. 7393F~04
1602 7¢=N4
1 1827C=04
1s NS 9F =34
T+ 8899r-0%
Y. 8871£-08
1e 68036=127
=3, 3876F-09%
-1, 7799f-0%
“1s16776=94
~1.%33716-04
“le 060t =N4

i3

2.5798F=11
R 2401 E=-0d
1.650%-07
72e4T88E=D7
3.309%¢~07
[YSEIRIL))
4, 97%4F=n7
9,81 09F~-07
Asb6T4E-07
7,484 7F-07
8. 3220€=07
9,161 3E-07
1+ NOOOF-04
1, N832F =06
1.1668F=9¢
1: 2498F =00
1,3321F-00
leblAGF=Db

INELUFNCE

Teh 945 =07
T.0244F~09%
Le4A23F N4
72:N321F =04
2.3738F =04
245169704
20801 3F <00
2.2974F <04
Lo 9AAF NS
1+9799F =04
10949604
S461T73F-09
244TARF=0T
=5,581CHE=NS
=1.1244F-04
“1AATAE=04
=2:290% =04
«?2.R126F =04

14

“He2A485=n8
=1.9078F-08
=2, AR24F=0%
«S4A105F <08
«~T7.7877F =04
-R,2%10F-0%
=~A,9%73F=08%
=3,1830F =08
~H AP82F-08
~T+AN04F =08
~he N2 VE-NS
=3.4169F~08
tsNRIZIT=06
4.45%20F-08
N, 9640F =08
1e3674F=04
1o TIAAF <04
2.72491F =04

CrEFFICIRNT

A ARISE=NT
A,0482¢=05
1:A9%488=04
2374004
2088511 F=na
3.N780¢F=%
1,0731€=04
2.0671F=04
246948814
1o 9%ARE=N4
1e3A24E~N4
T.09718=0%
3, 3083607
«7:0877¢8=N%
=1.42076=-04
“2,1%24F=04
=2:84VF-0¢
=3,55%40F=N4

13

“1.6616€-017
“3.98145-08%
aT,1799¢=0%
*1e1224F=04
“led207F=04
~1,88026-04
=1:79635-04
=1s8623F =04
1 TT106F=N4
=1%¢75€-04
=1+2131F=008
“6,9251E-0%
le1865F=10
0,9440F =03
1.A811€-04
2.8024F=014
1. 8034€6-7%
4o ARG LE-NS

111-29

“AtelR

8,82A16=07
9.2011F=n3
1. 7799¢-04
2,514%9E=0s
1.0780F-04
3,40936=04
Jo4nARE-0S
Ye2703F =04
2.8673F =04
2429TAF=04
1.A027F =Ny
8.2632¢-08
4, 1417F=07
~8.,2310F=0%
=1e 480204
«2.47716=0s
«3. 3034604
~4:1209F~04

1s

«2,5092F8-07
=%.0776F =08
=1.1677F=04
=1.6AT0F=04
=241324F =04
“2.,4T71F=04
~2.6966E-06
2, Th61¢=-0s
=2,68N8F =04
=2, 154RF~04
“1,A2408 =04
=1:043¥F =04
102490F~06
1e3474F =04
2.88266-06
481 TVF=04
5,1604F =04
T.0191F~04

€.9940F=07
A, 97248-08
1.7393F=04
2. 4R1 3F=N0
207V F=Ns
3, 46405=04
,608%6-04
3.46486-04
3,071 F=-N4
P.48130-04
1. 7139%-Ny
0.9722F-09
4,8754F-07
=8,9%7%<0%
1, 7903E=04
=2,896060 =04
«3,5904F-04
-4,49556=04

7

«%,3437FanT
=7,9694F-09
“1:9571F=04
-2,2%0%-04
~2,86)6E04
=3,3034F=n4
-1, 99045« 08
=3,689% =04
-3,5409F=N4
=1, 1417804
“P 463656204
-1,3938F=04
1.33MF=0p
1.7984E- 04
UAAVAF=04
he LARAE=04
8,8535F=N4
1.19%4r=0)

4o 1061%€-07
A, 243 =08
Le60278=0s
2.2978( =04
2. 9673E~04
3.2703-04
34004 8F=04
3.4N93~-0s
3.37886-04
2.51498€=04
Lo 778G8-0s
09,2009 =03
S.A10%=07
~9,18308-0%
“~1:862¥=04
=2+ 108 1€-04
=3,6893~04
~4oh120F=04

=4, 2031607
=9,939¢¢F-08
“1,9400F=-04
=2.8124F=N4
=3,5540F=068
-4, L209€~04
-4, 4954F =04
=4, 51206~N4
4.4 360F-04
=3,92026 =06
=3.747-04
~ls 1484F~08
teb164(-06
24 2491F =04
4o ARGLF=N4
T 8191F-04
1,7954¢=0)
le418%E~01

REPRODUCIBILITY OF THE ORIGINAL PAGE 1S POOR

3. 3281F =07
Te 0973F- M
1e 33276 =04
1, 9588F =04
20 4900E=24
20067304
3. 0731¢-04
3, 078A¢ =04
2. 4511500
FRRALLET Y
Ls 69587 =04
fe 84605 =03
B 04 74E-07
=8, 8252F~0%
=le 7716E=-00
=2: 5505804
=3, 5489F =04
~&e A VME =04

10

2446 948€-07
Seb 167608
109597 ~04
157995 =08
1.9800¢ 04
242976E 04
240013604
245 149€=04
2:379%€-04
2:0320F 04
1.4823€ -04
T.8243¢-0%
Tes847£-07
=T.8004%~-0%
~1e5475E-08
~2+3948€-04
3o 1417606
“3.92028~04




NESCREPTION OF STMULATFD TP QY

POINT AT WHICH SYSTEM [S FORLFN 7
ND F POINTS NF MFASURFMFENT f .
POINTS AY WHICH MOASUIFMFNTS ARF TAKFN
3 5 7 9 11 15 17 18
FOEQUENCEES NF FXCITATICN - W)

8. 316 0F 00 1. 8654F 01 4.9085¢ 01
AVE PANDNM AMPLITUDE FRROR 040
ATAS AMOLITUNF FPANR N.0
SEED FN® RAND MO GENERATOR 0

FYATT RESPONSE OF ACTHAL SYSTEN,IN/SFC/PNUNN, NCRFALIZEN ON REAL DRIVING POINT RESPONSE

REAL PARY

FREN A43160F 00 1,8654E N1 4,9955F 01
NeP,

IESD To4BT73E-01 3,9852F-01 1,7967F-02

3 047153 0,66158 -4 26195

5 0+83368 1,04122 -3, 72077

7 1.00000 1, 00000 l.0n0000

9 0691745 0, 60815 4477066

1 0457490 0. 14263 3.75490

15 =Na75063 0.51650 -0.50588

17 =1+58366 1. 39374 1.48294

1R =2.00865 1.87239 2.88484

111-30



Do ®e
+FESP

WP DNE N

SIMILATCHD TEST IFSPIINSF,

TeeB730=-01

4, 7153E~01
R, 3368E-01
14 QQ00E 00
9, 1745E-01
SeT490F=01
-7.5063F-01
~1.5837€ 00
-2.0087F 00

3.9852F-01

he 6158F-01
1, 0412€ OO
1. 0000F 00
6,0815F=01
1.4263~01
5. 1650€-01
1. 3937F 00
1,8724F 00

REAL MOBILITY WITH FRACRS USER AS PHI'S

140967F~02

3

~4,2619F 00
-1, T7208E 00
1. 0000F 00
4, TT07F 00
3.7549F 00
-s. 8588F=n1
1.4829F 00
2.8848F 00
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pART [

IDENYIFICATION

stesrovkaREstER () T1(.02y = R(IRY - T TFESY 16

ALL GENERALTZED MASSFS UNKANCWN

ALL MASSFS HINKNNWN

PRUILEM DFFINITION NN OF FQUATIONS = &4

NO OF VARTARLFS = 8
NROER NF NFGFAFRACY = &

TGTAL OF DVAGCNAL NMASSES CPNSTANT

111-32




£ e I —

4 MATW [ X LI

2, 1195F=01 H,6805F=0]
=2.0096E 00 ~3.10197 00
-?8190E QU ~3,8741F ON

1.0000€ 00 1.0000F 00

R VECTNR

N0 Ne0 Ne 0

1+ 0000F 09
142000€ 00
1, 3000€ 00
1.N000F 00

5e5794F =01
4+3768F 00
?2.9013F 00
1+N0Q0OF 00

1. 5500F 00

I11-33

8,1994F~02 =3,8760F-01 =2,2072F
2.1%87F 00 4,3966E~01 ~2,3485F
5e3554F=01 =3,0261F=-01 2,0668¢%
1,0000¢ 0 1,5000% 00 1,0000F

00 ~3.7610F 00
00 =5, 79646F 00
01 5,401¢E 00

0o

1.0000€ 0N

bitibies Lo



Dy O NP Py

AR MATRIEX 8 X

~4e3193E-02
14 7264E~-01
4e 3394E~-01
ﬂo“ 392F- 02
- 1.8300€-01
-2, 1448E=-01
=247324E-01
8. 2929€-02

=44 251 0F=02
=9, 0493F~-02
=1e2120E~01
by 0135F=~02
9e B495F-02
10553€=-01
b647839€-02
“9.6052F-02

=7.0886F=~02
=S5: T130F=03
e 7112F-01
648805€-02
~7.0437€-02
-1.1863F=01
-8,0967€-02
1. 0671€~01

1e466CF-01
1e4509F =01
1.3181F-01
1:4657F~01
1.5234€-~01
144612F-01
2,8685F-02
1.,2784F =02

I11-34

Myttt



DN N

BM MATRIX 8 X

64 5846E~01 -3,9691F=-01
=3.9691€-01 4,0221F=01
«2.8270€-02 =-2,2183F~01

1s0176E-01 147123F=01
=9,5918E-02 3,9159F-02
-1.8292E~01 ~4,0117€-02
~1.0541E-01 13,5256F~=02

4¢$209€-02 1,0705F~02

8
3 4

~28270F=02 1,0176F-0]
~2,2153F-01 1.T123€-01

3.8433F=0]1 ~3,3990F-01
~343990F=01 4,31060-01

2:6034F=03 <2,7697F=01

le4146E-01 =1,1068F-01

1e8T68F =01 =Re2482F-03
=1e2637€E=01 341745F=02

IT]-X¢

«9.5918F=~02
3.9159€=-02
2.6029€-03

~2.7697€=-01
6.87TTE-01

~2.8789E-01
~1,7936F=-01
1.1061F-01

=1,8292F-01
~4.0117F=02
1e4145€-01
~1.1088F~01
-2,8789E~-01
646%19€=01
=2+5892F-01
7.3882F=-02

7 8
=1.05641F-01 &.92106-02
3,5257%=02 14970¢F-02

1,8768€-01 =1,2637¢=-01

=8, 2690F-03 3,1745€-02
=1.7936F-01 1,1061F-01
~2,56892E-01 7,3882F-02

6,26089F=01 «2,9588E~01)
~2.9588F=01 1l.461CE-OL



1 J APPRIIX MASS

1 1 245000E-01
2 2 2.0000E-01
3 3 24.0000€-01
L3 4 2+0000€-01
5 5 2, 5000F-01
6 6 205000601
7 7 1.5000€~01
L} R $40000€E-02
THATALS 1.5500€ 00

BEST MASS SOLUTION

WGT FACT

1. 0000
1. 7000
1. 0000
1. 0700
1., 0000
1. 3000
1« 0000
1. 0000

RMS JF CHANGFS 1,0191F-02

MIN MASS

2:42723F=01
24 264R9€-01
2, 0431F=0)
2+ 2718F=01
2. 3612€=01
24 2649E-01
1¢ 5296F~-01
5.0815€E=02

111-36

BFST MASS

2.4410€6-01
2.0163F=01
241967F=01
2.,08%3F=01
244 3T70F-01
24°807€-01
1. 3892F~-01
5.531719€-02

1. 5%00F 00

CHANGE

=5,9003F=-03
1,62856-03
1:9667F~0?
He5347E-0)
=6¢3010€=-03
=141926¢=0"
=1.1085€-02
5.3789€-03



RN R R N

2.6410E-01
0. 0
. 0
0.0
0,0
0,0
0.0
0.0

FULL MASS MATRIX

0.0
2, 0163F~-01
0,0
0,0
0,0
0,0
0s 0

&
Qe O 0.0
0.0 0,0
2. 1967F=01 0,0
0, 0 ?2.0853F~01
0, 0 060
0.0 0.0
0, 0 0.0
0.0 Ge0

111-37

0.0
040
0.0
0,0
2.4370€-01
0.0
0.0
0.0

069
0.0
0.0
0.0
243607€=-01
0,0

0.0
0,0
0,0
0.0
0,0
0,0
1.3892€~01
fie 0

0.0
060
0e0
0,0
0.0
0.0
0.0
5.5379€-02



GENFRALIZED MASS MATRIX

14 3760€ 00 ~5,9605F-08 2,%563CE=06
5.9605€-08 1,1567F 00 =1,1921F=07
16864T7E~06 ~5,9605F-08 1,647%F 01

I11-38



ENO NP W N -

INCOMPLETE STIFFNFSS CCEF

MNNDAL COEFFICIENTS

1.9841F 03
1

64 5775E
be 9422F
-B8.4537€
~5,6807€
=5, 3906F
1. 0322€
=9 1406E
~Te R4S TE

1,1897€¢ na
2

03
03
02
03
03
93
02
Q2

4e9422¢
3.8258¢C
~3,2836€
=3.923)F
-3, 8250¢
Be 5094C
=+ 8094F
=bo h923F

5 T663F 0%
3

Ny ~8,4587¢
03 =3,2836¢
02 9,4806¢
03 1,675CE
0% 1,3110€
02 6.6814F
02 6, T104F
02 4.2487F

02 ~5.68C7F
02 ~3,9231F
02 1.,67%0F
03 S5,9710¢
03 $5,3550E
01 =6,8244F
02 1.3904F
02 1.0307F

111-30

03 =5,3906¢
€3 -3,8250€F
03 1.,3110€
03 5,35%0€
03 4,8R17F
02 =7,3480E
0%  1.,1089¢
03  8,%494¢

03
03
n3
03
03
02
03
02

1.0322F
A.5094¢F
6e6814C
=6 R244F
=7+ J4R0E
1.5540F
1.955%¢
6.2629E€

03
02

02
02
02
02
ol

-9, 1608F
=4y AOGLE
b4 T104E
163904E
1. 10%99€
1,95%3€
Te 86L9E
4 TT1TF

02
02
02
03
03
02
02
02

=T.8457
4469236
4e2487E
1,0307¢
80 5494¢
6026264
4o TTLTE
20996 4E

02
c2
02
03
02

02
02



D~ PP NN

INCOVMPLETE TNFLUENCT COFF

MRNAL CNEFFICIENTS
24 661 A8F =04

6.}0“25'05 603R92E-07
1 2 3
9, 8380E-05 1.5R20F=0N& 1,6650E=04
15820604 2,6220f=-04 2,8517F-04
1e64%0E-04 2.8517F=-04 3,2986E-04
102752€=04 2.3217E=04 2,8559F=04
6o T8B1E~05 1. 2801F=04 1.6442€-04
=Te1050E=05 ~1,3123€«0h =~1,6756F=04
=1eb4b68E~0% =2,834TE~06 =3,3273E-04
~lecl8TF=04 ~3,2969F-04 ~4e14TBE~04

1:2752F =064
263217604
208550F =04
2.6190F=04
1e5731F=04
=1.6524F =04
=3.287RE=-06
=4,0995€=04

H11-40

6,748 1E~-0S
1.28J1€~06
1.6442E-04
1,5731€=04
9,8267E=05
=1, 1160F=04
=2,2625€-04
=28362E~04

=7.1050F=-0%
=1.3123E-04
=146736F- 06
=1,6524F-04
=1.1160E=-04
Leb6694F =04
3,6116F=04
4,6112F=06

=lebs68E=04
=2, 634 TF=04
=3,3273E=04
~3,2878F~04
=242625E~04
3.6116F=04
Te91464F-04
1.0140F-03

=1.9187F=04
~3,2969€E-04
=bo 14T8E~04
-4o 0995€-04
=2.3362F-04
4a6112E-04
140140E=-03
1+ 300=03



AFSANANT RESPINSK NF INENTIFIED SYSTFM

RLAL PAPRT

FUERQ Re3160E N0 L.AHSHF 0) 4, I055F 01
Deoy

4 €SP 6.9333E=01 3, 6940E=71 9, A4 70F~03

3 0,47377 0, 46153 =4,2602%

5 C.83608 ‘e 04131 -3.71752

? 1.00000 1, 00000 1.00000

9 0.92231 0,60820 4, 77137

i1 0.57813 0.142664 3. 75450

15 =0.75294 0,51638 -0.58%27

17 =leb8554 139374 1,48293

1R =2,0177¢8 1.87224 2.88604
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FOEMIENCIES AND MNNDES NF INFNTIFIFD SYSTEM
FRFQ 3e3160E 00 1.R654F N1 4.9955F 0O}

HEN MASS  1,3760E 00 1.1547€ 00 1,6475F 01

ITFR 10 7 3
3 Qe&ll5) N 66158 ~4,26195
s 083368 le 24122 -3,72076
7 1.00000Q 1. 00090 100000
9 0e91744 0. 60R15S 4e TT061
il 0457490 Do 14263 3.75489
15 -0e 75043 0, 51650 ~%.58589
17 -1s58366 le 39374 le48291
| L] -2.00865 le8724N 2. 88485

111-42




BAKT 1T = CHRANGED) 44SSHS N STIFENECSFS

*esus sesesnsess ) 10ef?) « REI0Y = TUCY = A TEST 16 [ITTTITIT YT Y

WASS wATRIX CHANGFS

1 2 3 & 5 b ? L]
3 N0 7.0 20 N.0 N0 1.0 0.0 049
? Nyt 2.0 %1 [y 0.0 %N N0 N.n
3 f,0 0.0 1.300CF 00 0,0 0,0 0.0 n.0 NN
s a0 0,0 N0 %240 (L] 0,0 2.0 0.n
L N0 0.0 D 2 N0 0.0 NN N.0 fe}
6 0.0 2,0 0,0 0.0 n.o N0 0.0 0.2
7 0.0 0.0 N N.0 N0 0.0 N0 8.9
4 £, 0 0.0 0, N N0 Ne0 NN N0 0.0
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NEW FREQUENCIFS AND MNNES NF MONIEIFN SYSTFN
FRFQ 6.1760E 00 1.95593F 21  4,8525%F N}

GEN MASS  2,1092F 00 T.NT92F DO 1,2963F N2

{TEa 9 [ 4

3 O.4HT)S N H21NN  =12,31041

5 CedSlia 1. 21949 =11,97m93

7 1.00000 1. 20090 170000

9 NaR8328 0e 32242 1+ 80652

11 Y531 96 ~0e 27173 2,8C T2

15 ~Jah1929 1. 79564 =le5R3INY

17 =1.26345 4619110 14869RY
18 ~14520%9 5. 92078 ToeS742Y -

1H1-44




PAFY 117 = CHANAGED MASSES NP STIFFNESSHS

2888 88880000888 () 1{.02) - B(38) =~ [{C) = A TEST 16 FESEEEISEGEOI O

MASS wATQtX (HANGFS

M 2 3 L3 5 ] T 8
1 0,0 2,0 0.1 N.0 0.0 LI 0.0 0.0
2 0, 0 0.0 N 0 .0 0.N 0.0 2.0 0.0
3 0.0 0,0 N0 N0 0.0 0.0 N.0 0.0
L3 0.0 0.0 N0 0,0 0.0 0.0 0.0 0.0
L] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0
6 0,0 0.0 0.9 9.0 0.0 e 0.0 0.0
7 0.0 0.0 0.0 040 0.0 0.0 0.0 040
a 0,0 0.9 09 0,0 0.0 NN 0.0 1.N000E 00
©
I11-45




NFPd FREQUENCEIFS AND MPNES NF MODIFTED SYSTEM
FREN 349499t J0 le4BISE 01 4,75C4F ™M

AGEN MASS  1,036HE Ol 6466N0F-01 2,48CS5F 01

ITER [ & 3
3 Qe 44550 N, 56208 -%429938
5 0.,80324 0, 93473 ~4s 74020
? 1.00000 le 00000 1.000n0
9 097245 Q. 75637 Se 74816
11 0,56%5901 Qs 34192 4o 71396
15 ~1,02809 =0s03372 =le24567
17 =2s26498 0.11025 -0481286
14 ~2.481363 0. 20256 Ne 44800
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PART TH1 = CHANGE MASSES Na STIFENFSSES

stsavesssensess ) 1(o02) = B{I) = I{C) = K TEST 14 24458008 0800880

K FATRIX CHANGES

1 2 3 4 L] ] 7 8
1 0.0 0,0 1 ] 0.0 0,0 N0 0.0 0.0
2 N, 0 2.0 %9 0.0 0.0 060 0.0 060
3 0,0 0,0 1. 00N0E 03 0.0 0.0 N0 0,0 0,0
4 Ne 0 0.0 LI ] 0,0 0.0 0e0 9.0 NeN
s 0,0 0,0 N0 0.0 0.0 9.0 0,0 0.9
[ 0.0 0.0 LD} 0,0 0.0 0.0 N0 0.0
T 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
] 0,0 0.0 0¢N 0.0 0,0 0.0 0.0 0sN
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D> AP SN~

2447148
4 14428
8. 8242¢
4 9590F
Y N06IE
=%, 1000F
e 2559t
2.9921C

ol
ul
(]}

00
00
00

4o J442F
be 5786
9. 30066F
Te 9922F
4o BoWHF
=8,220%F
Se2474F
&, 8222F

8. 8262F
9 YAGIF
1.3192¢
1, 1232F
6. 8CBTF
~1.15%3F
Te 3748F
b6 TTT2F

01
01
02
0?
01
01
L 1]
L L]

FELTA X INCCPPLETF

[y

4,9%90F
Te9922¢
l1e12320
Ve 56356F
$.7972¢
¢ J4BIAAF
6.2792F
S.T704F

[11-48

01
131
n2
o1
(3}
00
on
00

S

3.0060F
4,8446F
6,8087¢
8.7972¢
Ye8141F
-%,9627F
3+80A1F
3,4979¢

=5, 1006F
=8,2203F
~1.1553F
«9,8366F
«5.9627F

1,0117F

00
09
01
0o
00
00

=6,4586F-01
=5.9350F=01

3.255SF
84 2674F
To3T48F
60 27728
3.806%F

00
00
00
nn
00

=6, 4504F-01
4o 1228F=01
3. 7887F=01

249921 00
4, 8222¢ 00
8, 7772€ 00
5, T704F 00
1.4916€ 00
=5.,938CF~-01
1. 78876 =01
Y. 481 LE-01



HFW FREQUENCIES AND MNNES NE MANTEIEN SYSTEM
FueQ . 2806E N0 1,92609F N1 &, 9NTIE O}
GEN MASS  1,6260F 00 140250F 00 1.5871F O}

1TEe 4 ) ]
1 0,45AT46 e r53TY ~4e) 1224

s 0814931 1, 03218 =3.83420

1 1.00900 1. 00900 1, 06000

9 0,94080 0.623864 4.69%99

i 0,860901 0,16623 3.69139
18 «0,85068 0,44018 ~0, 97542
1? ~1.83513 1.21229 1645788
1N =2,33705% 1.03%14 2,83%8%4
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PARYT 111 = CHANGED MASSES NR STIFFNESSES

sessccsncssense 3 Tles2) .= AEIM) - ({CY) = L TEST 16 0096008948080

K PATRIX CHAMNGHS

1 2 3 4 s s ? 8
\ 0,0 R 0.0 LY 0.0 0.0 0.0 . . 0:0 0s0
2 0e0 . 0.0 : 0,0 0.0 . 0,9 0.0 " 0e0 [ %)
3 No 0.0 N0 0,9 0,0 N0 8.0 Ned _
4 0,0 0.0 0.0 N0 0,0 Ny L Oefi o e
5 Y] 5 0.0 0.0 0,0 L] N0 0.0 0.0 ’ : ’
L) 0,0 . 0.0 (1% 0.0 0.9 NeN 0.0 0.9
7 N0 0,0 0.0 0,0 e Ne0) - . 0ef 09 :
[} 6.0 * Ge0 0.0 0.0 n,0 0.0 , 0.0 1,0000¢8 03
4 "
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REPRODUCIBILITY OF THE ORIGINAL PAGE 15 POOR

PFLTA K INCCPELFTE
1 2 3 . s ) ? [

Te?7993F 00  3,2064F CO ~0,%9364F 00 ~A.ANZ1F 00 =1,06TLE N0 =3,0684F 01 ~8,9272€ 0] =9, 1560¢ O
302006C 00 1o 382F 00 =2,6872F 00 =V.0310F 00 =4.38098=01 «~1,5821€ O] ~2,4360f 01 -1,3014¢ O1
=645305E 00 =2,H072F 00 S.6781F NN  T.4439F 00 8,9430F~01 3,2293F 01 44,9679 OV 2,683 Of
=8, 0021F 00 ~3,6516F 00 T7.4439C 00 1.0119% 01 1,2193€ 00 4,3827¢ 01 6.7%501F Ol 3.,608%¢% 01
=1s0671C 00 ~443068-01 08,9433F=0) 1,2152F 00 1.4608E-01 8,2693F 00 60,1094 00 4,3317 00
=T 0484 O -1.9821F 01 3.2293F 01 4,3827¢ 01 $,26%72F 00 1,8989F 02 2,9247¢ 02 1,.%622¢ 02
=S 92T2E 01 =2,4360F 01 4,9675€ 01 6.75G1F 01 6.10942 00 2.5247¢ 02 4,904%¢ 02 2,406CF 02
=3 J660E Ol =14.3016F Ol 2,6533E 01 3,6083%° Ol 4.1318F 01  1.5622€ 02 2,4060F 02 1.2082¢ 02

L G K Y % TN
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Cen

SFu FrnbQUENCIFrS AND MONES NE WPDLIELFN SYSTFY
fFaen T.1166F O 2.1081F 01 4,316%F O}

GEN MASS  3,9799E-0L 2.0937F 0N 1,5072F 0)

tres 3 10 9

3 0.50149 0. 75213 ~4,1911)

3 Ne86779 113590 -3.65111
1.00000 1. 00000 1.00900

o 0.85993 0.48712 4. 703062

13 0.48953 ~0. 01144 3.60881%
15 ~0.47A78 0. 90318 =%.51111
17 =0.93919 228408 1.62507
L] =~1.16655% 3. 024883 3. 0547
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