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Abstract 

The shock layer at a blunt body in hypersonic flow is studied in the Reynolds 
number regime where strong (nonlinear) vorticity interaction occurs between 
the viscous and the inviscid parts of the shock layer. The differential equations 
of a thin shock layer are reduced to classical boundary-layer equations on the 
basis of the assumption that the pressure across the viscous part of the shock 
layer varies only slightly. The transformations of variables that accomplish this 
reduction are given for various coordinate systems. 
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Reduction of the Viscous Shock-Layer Equations 

to Boundary-Layer Equations 

I. Introduction 

The classical boundary-layer theory applies only if the 
Reynolds number is sufficiently high. At lower Reynolds 
numbers, so-called "second-order effects" (vorticity inter- 
action, displacement, curvature, slip, and temperature 
jump) are important (Ref. 1). With a further decrease of 
the Reynolds number, the whole shock layer becomes 
viscous and merges with the thickened shock to a 
"merged layer" (Ref. 2). 

The following four methods have been used to extend 
the boundary-layer theory to lower Reynolds numbers: 

(1) On the basis of certain qualitative arguments, 
classical boundary-layer equations have been ap- 
plied to the viscous shock layer in the stagnation 
region where the pressure is approximately con- 
stant (Refs. 3, 4, and 5). 

(2) The method of matched asymptotic expansions has 
led to a second-order boundary-layer theory, which 
is applicable if the deviations from the classical 
boundary-layer equations are small (Ref. 6). 

(3) The Navier-Stokes equations have been integrated 
numerically in the stagnation region by the use of 
a similarity assumption (Ref. 7). 

(4) The Navier-Stokes equations have been reduced 
to a parabolic system of equations on the basis 
of a thin shock-layer approximation (Refs. 7, 8, 
and 9). 

The purpose of this report is to show that the differ- 
ential equations of a thin viscous shock layer in the 
nonlinear vorticity interaction regime can be reduced to 
the classical boundary-layer equations (with pressure 
being constant across the whole layer) by means of new 
variables. The boundary conditions, however, differ from 
their classical counterparts in some aspects, depending 
on the coordinate system that is used. 

I I .  Basie Equations 

Two-dimensional and axisymmetric steady flows are 
studied by the use of a boundary-layer coordinate system 
x, y, as indicated in Fig. 1. Let us assume that the shock 
layer is thin when compared to l/K, where K is the longi- 
tudinal curvature of the body (defined as positive if the 
body is convex). The conservation equations of mass, 
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momentum, and energy can then be written in the fol- 
lowing form (see Ref. 9): 

The velocity components in x- and y-directions are de- 
noted by u and v, respectively; j equals 0 for two- 
dimensional flow and 1 for axisymmetric flow; p is the 
pressure, p is the density, T is the absolute temperature, 
T is the distance of a point at the body surface from the 
axis of symmetry (not used in case of two-dimensional 
flow), p is the shear viscosity, k is the thermal conduc- 
tivity, and H is the total enthalpy, which is given in the 
present approximation by 

Fig. 1. Coordinate systems 

with h as specific enthalpy of the gas. Equation (1) 
applies to a general fluid. 

To satisfy the continuity equation, Eq. (la), a stream 
function t+h is introduced by means of the equations 

and 

With q and 2 = x as new independent variables (von Mises 
coordinates), the following equations of momentum and 
energy are obtained from Eq. (1): 

Partial derivatives with respect to x are taken with y held 
constant. Derivatives with respect to if, however, are 
taken with I# fixed. Inverting Eq. (3) yields 

Equation (5a) can be used for determining v if neces- 
sary, and Eq. (5b) gives a relationship between $ and y, 
which is needed for transforming the solution of Eq. (4) 
back to the boundary-layer coordinates x,  y. 

The stream function $ defined by Eq. (3) contains a 
constant of integration. This constant is chosen so that 
J/ = 0 at the body surface. Then 1 ~ ,  represents the mass 
flow between the streamline $ = const and the body sur- 
face (per unit depth for two-dimensional flow and per 
unit azimuthal angle for axisymmetric flow). Therefore, 
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the value $, of the stream function at the shock point 
given by the radius T is (Fig. 1) 

Velocity, density, pressure, and specific enthalpy of the 
uniform, free stream are denoted by U,, pw, p,, and 
h,, respectively. The density ratio across the shock is 
defined by 

P m  c = -  ( = 5 for a perfect gas 
Ps ) (7) 

where -y is the ratio of specific heats and E is assumed to 
be very small in accordance with the thin-layer approxi- 
mation. With terms of order c neglected, the flow quan- 
tities immediately behind the shock are 

the following orders of magnitude: 

where To is the (adiabatic) stagnation temperature, T,, 
is the wall temperature, and CF and C H  are the coeffi- 
cients of skin friction and heat transfer, respectively. 
Hence, the effects of velocity slip and temperature jump 
are negligibly small for a highly cooled body; therefore, 
the following nonslip and nontemperature-jump condi- 
tions are used in the present analysis for $ = 0: 

However, the use of the simple conditions (nonslip and 
nontemperature-jump) is just a matter of convenience. 

(8) The problem of reducing the shock-layer equations to 
boundary-layer equations is not affected by the boundary 
conditions at the body surface. 

where p is the body inclination angle (Fig. 1). I t  is 
implied in Eq. (8) that viscosity and heat-conduction Ill. Reduction to Boundary-Layer Equations 
effects are negligibly small immediately behind the shock in von Mises Coordinates 
(as well as in front of the shock, of course) which means 
that the Reynolds number is assumed to be sufficiently 
high to justify the concept of an adiabatic shock wave. 
Thus, we exclude the so-called merged layer regime 
from consideration, and direct attention to the (linear 
and nonlinear) vorticity interaction regime. 

According to the Eqs. (6) and (S), the outer boundary 
conditions for the shock-layer equations of Eq. (4) for 
$ = qs are: 

Slip and temperature jump at  the body surface should 
be considered (Ref. 1) in relation to the inner-boundary 
conditions. Cheng (Ref. 9) pointed out that the velocity u 
and the temperature jump A T  at the body surface are of 

Equation (4), which describes the flow field of a thin 
viscous shock layer, is similar to the well-known system 
of boundary-layer equations. There is, however, an es- 
sential difference. The pressure is taken to be constant 
across the layer in boundary-layer theory, whereas 
Eq. (4b) shows that in the thin shock layer there is a 
nonzero pressure gradient in the direction normal to the 
body surface. This pressure gradient yields a pressure 
difference between the shock and the body surface of 
the order of, according to Eq. (4), 

K 
ps - ptO .-+ -- u , ~ $ ~  p,U; Kr cos p r3 (12) 

This pressure difference must not be neglected (the stag- 
nation region and special body shapes excepted). Despite 
this fact, the viscous shock-layer equations can be re- 
duced to boundary-layer equations by means of the fol- 
lowing analysis. 
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This analysis is based on the assumption that the 
pressure variations across the viscous part of the shock 
layer are negligibly small. In this case, viscous part 
means the part of the shock layer in which viscosity and 
heat conduction have an essential effect on the flow field. 
The assumption is obviously justified if the total pressure 
variation across the whole shock layer is small, as is the 
case in the stagnation region. But, more generally, it is 
also justified if the viscous part of the shock layer is suffi- 
ciently thin. This does not necessarily mean that the 
viscous part of the shock layer should be very thin in 
comparison with the total thickness of the shock layer. 
The primary contribution to the pressure difference given 
in Eq. (12) comes from the outer parts of the shock layer 
where the centrifugal forces are high; that is, from the 
parts of the shock layer where viscosity is least impor- 
tant. Thus, we can say that the following results apply 
in a Reynolds number regime that covers the classical 
boundary-layer regime, the linear-vorticity interaction 
regime (where second-order effects can be taken into 
account as small perturbations), and-most important- 
the nonlinear vorticity interaction regime (which cannot 
be treated by second-order boundary-layer theory). 

The assumption of small pressure variations across the 
viscous part of the shock layer has three obvious conse- 
quences. First, as in boundary-layer theory, the pressure 
p,, at the body surface can be calculated by methods for 
inviscid flow fields. In consistence with the thin-layer 
approximation, the uniformly valid solution given in 
Ref. 10 might be used, for instance. Second, the viscosity 
and heat conduction terms of Eq. (4) can be taken with 
local pressure p(F,q) replaced by surface pressure p,(z). 
Third, in the viscous part of the shock layer, also the 
pressure gradient term (l/p)ap/aZ can be taken with plo 
substituted for p; that is, this term can be replaced by 

It will now be shown that the last substitution applies 
not only in the viscous part, but also in the inviscid part 
of the shock layer. 

The pressure-gradient term (l/p)ap/aT is an order of 
magnitude smaller (in terms of the density ratio E) than 
the leading term uau/aF. Despite this fact, however, the 
pressure gradient term should be retained to keep 
the equations uniformly valid (Ref. 7). The reason for 
this can be seen in the following estimate. When the 
viscous term is omitted, and when the inviscid form of 

the tangential momentum equation is integrated, we 
obtain 

where the subscript * refers to conditions immediately 
behind the shock at the point where the streamline 
q = const intersects the shock. The entropy s remains 
constant on a streamline in inviscid flow without shock 
waves. This is incorporated in Eq. (13). Because the 
pressure variation dp/p with entropy held constant is of 
the same order of magnitude as the density variation 
dp/p, the magnitude of the integral term in Eq. (13) can 
be evaluated as 

Since the gas may expand strongly on streamlines com- 
ing from the stagnation region, so that In (pB/p) can 
become very large, it is now obvious that the integral 
term in Eq. (13) and, correspondingly, the tangential 
pressure-gradient term in Eq. (4) must not be neglected, 
although E (( 1 has been assumed (Ref. 10). However, fol- 
lowing the method that led to a uniformly valid soIution 
of the inviscid problem (Ref. lo), we can show that the 
pressure p (5  q) in the tangential pressure-gradient term 
can be replaced by the surface pressure p,,(F). The inte- 
gral in Eq. (13) is divided into two parts to give 

The first integral is of the same order of magnitude as the 
integral shown in Eq. (14) and, therefore, should not be 
neglected. The second integral can be similarly estimated 
to be 

Results of inviscid flow-field calculations for the smooth 
body shapes, which are of practical interest, show that 
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the pressure somewhere in a thin shock layer is of the 
same order of magnitude as the pressure on the body 
surface at the same value of x (Ref. 10). Since effects of 
viscosity certainly cannot change the wall pressure by an 
order of magnitude, we may assume that In (p/p,,) is of 
order 1 in all cases of practical interest. Hence, according 
to Eq. (16), the second integral in Eq. (15) can be 
neglected as a higher order term; Eq. (15) then becomes 

Differentiating Eq. (17) with respect to F, and observing 
that p,, u,, and s do not depend on T, we obtain 

Since the entropy s is not a convenient variable in viscous 
flow (in contrast to inviscid flow), we substitute for s by 
means of the thermodynamic equation of state s = s(p, h). 
According to the general thermodynamic relations, 

the entropy variation due to a pressure change is an order 
of magnitude smaller (in terms of the density ratio E )  

than the entropy variation due to an enthalpy change; 
therefore, we may write 

Thus, with the pressure p(T, $1 replaced by p,,(y) in the 
inviscid terms as well as in the viscous terms, Eqs. (4a) 
and (4c) become 

and 

where new variables are defined by 

and a Prandtl number (which does not necessarily have 
to be a constant) has been introduced as 

with c, as specific heat at constant pressure. The boundary 
conditions, Eqs. (9) and (l l) ,  can simply be taken fro111 
Section I1 of this report. Equation (21), which consists 
of two equations for the two dependent variables u and H, 
is completely identical with the classical system of 
boundary-layer equations for u and H in von Mises co- 
ordinates. However, j7, p, etc., are not the real, local values 
of density, viscosity, etc. To obtain the physically real 
density, viscosity, etc., we should calculate the pressure 
in the shock layer. This calculation may be done by inte- 
grating Eq. (4b), which has been disregarded so far. Then 
we obtain 

Finally, the solution obtained in von Mises coordinates 
- 
x, $ can be transformed back into the usual boundary- 
layer coordinates x, y by the integration of Eq. (5),  which 
yields 

with p = p(p, h). However, the skin friction and heat 
transfer at the wall can be determined without having 
transformed the solution. By using Eq. (5), we obtain the 
following expressions for the heat flux q,, and the shear 
stress T,, at the wall: 
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IV. Transformed Boundary-Layer Coordinates Eq. (21) is equivalent to 

It was shown in the previous section that the viscous 
shock-layer equations, if they are written in von Mises -( a .- a 1'1~~1) + --;; (rjj3) = 0 a? (2%) 
coordinates, can be reduced to boundary-layer equations 
by the replacement of the local pressure with the wall 
pressure. However, this substitution is not permitted in au au 1  dp,,  1 a 
the transformation equation (Eq. 24), which is equiv- u-+z-+--=-- 
alent to the continuity equation. Therefore, the original 

ar ag p d.y p ag (~s) (288") 

shock-layer equations of Eq. (I), written in boundary- 
layer coordinates x and y, cannot be reduced to the cor- 
responding boundary-layer equations if we simply neglect 
the pressure variations across the layer. The following (28c) 
transformation, however, will accomplish the reduction: 

which is the classical system of boundary-layer equations 
in terms of the new variables defined by Eq. (26). 

f" V. Crocco's Transformation 

P The general features of the present theory, and in 
(26) particular the effect of the outer-boundary conditions on 

the flow-field characteristics, can be shown by the appli- 
cation of Crocco's transformation to Eq. (28). For sim- 

P 
plicity, let us assume two-dimensional flow. (In case of 

E = v - ; J + u -  
P 

axisymmetric flow, we can first apply Mangler's trans- 
formation by which the equations of axisymmetric 
boundary layers are reduced to the equations of two- 
dimensional flow, and then we can use Crocco's trans- 

where P=P(P, h, and F = P ( P ~ , ~ )  in accordance with the formation.) In terms of the variables used in Eq. (28), 
definition in Eq. (22a). From Eqs. (3) and (26) we obtain, c~~~~~~~ transformation is based on 2 = 2 = and as 
by straightforward calculations, independent variables and the use of the transformed 

shear stress 

-- a' - + r j  9 ac as one of the dependent variables. When Eq. (28) is trans- 
formed and when Z.7 is eliminated (Ref. l l ) ,  the following 
equations are obtained: 

Thus, the original flow field [u = u(x, y), v = v(x, y), . . ] 
and the transformed flow field [u = u(2, iJ), 5 = 5(?, 9, 
. . . I  have the same stream function +. That is to say, the (30a) 

transformation from the old variables (r, y, p, u, v) to 
the new variables (2, ?j, F, u, 5) has been chosen so that 
the auxiliary coordinates 5 = x and ', which are related - aH - apt0 aH - -, 

a ( 1  

aH) i - F ~ - a r a ~  
FPP" - p x g  -7 - 7- +-r-- 

to the old coordinates by a von Mises transfolmation in ~ Z L  azc ~r a z ~ a u  
terms of the old dependent variables, are also related to 
the new coordinates by a von Mises transformation, but 
in terms of the new dependent variables. It follows that (30b) 
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These differential equations are, of course, formally 
identical with the.classica1 boundary-layer equations for 
Crocco's variables. The nonslip and no-temperature jump 
conditions at the wall, together with the tangential 
momentum equation, yield the following inner-boundary 
condition for u = 0: 

These equations, too, are formally identical with the 
corresponding inner-boundary condition of the classical 
boundary-layer theory. The outer-boundary conditions, 
however, will show a difference between the present 
formulation and the classical boundary-layer theory. In 
boundary-layer theory, the asymptotical transition from 
the viscous boundary layer to the inviscid flow field is 
formulated as 7 = 0 for u = urn (with urn as velocity of 
the inviscid flow at the wall). In the viscous shock layer, 
however, the outer-boundary condition is controlled by 
the shock wave. We formulate the outer boundary 
condition for u = us:  

where us is the tangential velocity component at the 
shock and Fs is the transformed shear stress immediately 
behind the shock. 

Let us recall that viscosity and heat-conduction effects 
are very small immediately behind the shock in the 
vorticity interaction regime (including the nonlinear vor- 
ticity interaction regime). Hence, 'is may be calculated by 
the use of inviscid flow equations together with ordinary 
Rankine-Hugoniot conditions. The result is 

Applying the thin-layer approximation, we finally 
obtain the following outer-boundary condition (with p 
denoting body inclination angle) for u = U ,  cos p: 

where Re, is a Reynolds number defined by 

Prn Urn Re, = - 
ps Ko 

with KO as longitudinal curvature at the stagnation point. 
Again, the density ratio across the shock is assumed to 
be very small. 

The boundary condition of Eq. (34) is of the same form 
as the outer-boundary condition in Crocco's classical 
boundary-layer equations. Equation (34) differs from its 
classical counterparts only by the fact that 7 is nonzero 
at the outer edge of the layer. The classical boundary- 
layer limit is reached when ?'+ 0 with Re, -+ co . The 
effect of viscosity at the outer edge of the layer is con- 
trolled by the parameter €Res, which is essentially the 
parameter K2 introduced by Cheng (Ref. 8). 

VI. Conclusion 

It has been shown that the equations of a thin shock 
layer in the nonlinear vorticity interaction regime can be 
reduced to classical boundary-layer equations in terms 
of von Mises coordinates F, IJ. Then a new variables trans- 
formation has been given by which the shock-layer 
equations are transformed into classical boundary-layer 
equations in terms of a boundary-layer type of coordinate 
system 2, i j. Finally, Crocco's transformation has been 
applied to show the mean features of the analysis. 

The following is a list of three suggested applications: 

(1) Determination of heat transfer and skin friction on 
a blunt body in the linear and nonlinear vorticity 
interaction regime by the use of existing boundary- 
layer calculation schemes. 

(2) Transfer of existing analytical results and,known 
features of boundary-layer flow to viscous shock- 
layer flow. 

(3) Generalization of the present reduction method to 
more complex problems, such as three-dimensional 
shock layers and shock layers with nonequilibriunl 
flow. 
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Nomenclature 

coefficient of skin friction x, y boundary-layer coordinate system, see Fig. 1 

p body inclination angle, see Fig. 1 coefficient of heat transfer 

y ratio of specific heats total enthalpy 

E density ratio across the shock, e = p,/p, specific enthalpy 

p shear viscosity 0 for two-dimensional flow; 1 for axisymmetric 
flow p density 
longitudinal body curvature 

7 shear stress 
thermal conductivity 

Prandtl number 
$ stream function 

Subscripts 
pressure 

Reynolds number m,  s, w refer to conditions in the free stream, immedi- 
ately behind the shock, and at the wall, 
respectively distance of a point at body surface from axis 

of symmetry * refers to conditions immediately behind the 
shock at the point where the streamline t+b 

= const intersects the shock 
specific entropy 

absolute temperature 

free-stream velocity Superscript 

refers to new variables, see Eqs. (22a), (22b), 
(26), and (29). 

velocity components in x- and y-directions, 
respectively 
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