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Abstract 

A systematic study on the prediction of the position and velocity of a satellite 
after many revolutions about the central mass is presented. I t  is shown that the 
methods of general perturbations are ideally suited for the prediction of orbits 
extending over many periods. The mathematical foundations for a theory of gen- 
eral perturbations using either the variation of coordinates or the variation of 
parameters, each with multivariable asymptotic expansions, as well as a theory 
of general perturbations using the variation parameters with Taylor's series expan- 
sions, are presented. 

Five theories of general perturbations are applied to the elementary problem 
of the damped linear harmonic oscillator. These applications illustrate the mathe- 
matical processes involved as well as the advantages and disadvantages of each 
theory. I t  is shown that the variation of coordinates and the variation of param- 
eters, each with multivariable asymptotic expansions, are the only theories from 
this group that will yield the superior, uniformly ~ ~ a l i d  approximation. 

Two satellite theories are exhibited: the theory of the variation of coordinates 
with multivariable asymptotic expansions, and the theory of the variation of 
parameters with Taylor's series expansions applied to the differential equations 
governing the motion of a satellite in an equatorial orbit about an oblate body 
(second harmonic only). In addition, a con~plete set of exact equations is devel- 
oped for this restricted satellite motion; that is, equations that yield the position 
and velocity of the satellite. The right ascension of the satellite is found to consist 
of constants and a Legendre normal elliptic integral of the first kind, whereas 
the time associated with the position of the satellite is found to consist of constants, 
powers of the radius distance, and Legendre normal elliptic integrals of the first, 
second, and third kinds. 

Extensive numerical accuracy studies are made in the case of the damped linear 
harmonic oscillator and in the case of the equatorial satellite, usingthe exact 
analytic solutions as the standards of comparison. It is concluded that only the 
application of the variation of parameters with n~ultivariable asymptotic expan- 
sions to the set of ordinary nonlinear differential equations governing the motion 
of a satellite predicts the position and velocity of the satellite to a sufficiently 
high accuracy after many revolutions about the central mass. 

A more realistic mathematical model of the motion of a satellite is qualitatively 
discussed; that is, the case where the satellite is perturbed by the asphericity of 
the central mass (second harmonic only), atmospheric drag, and the gravitational 
attraction of the sun, simultaneously, and where the initial conditions are not 
restricted to yield an equatorial orbit. 

Finally, the bibliography provides one of the largest (1376 citations) lists of 
references on satellite theory. 
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Prediction of the Position and Velocity of a Satellite 

After Many Revolutions 

I. Introduction 
One of the more difficult problems confronting astro- 

dynamicists today is the prediction of the position and 
velocity of a celestial body orbiting a much more massive 
celestial body. The complexity of this problem can be seen 
by the extent of subject material developed during the 
last two hundred years by many generations of scientists, 
among them some of the most brilliant and ingenious 
minds of history (see the Bibliography, Refs. 1-1370). 

The orbit prediction problem set forth above can be 
expressed as a mathematical problem that consists of the 
integration of a set of ordinary nonlinear differential 
equations with given initial conditions and given numeri- 
cal values for the physical constants appearing in the 
differential equations (initial value problem). The type 
and structure of these ordinary differential nonlinear 
equations depend on the formulation of the problem and 
on the character of the forces acting on the orbiting 
celestial body. The successful mathematical representa- 
tion of this physical problem is entirely dependent upon 
the ability of the astrodynamicist to mathematically rep- 
resent and include all of the important physical forces 
of the problem. 

Depending upon the character of the forces acting on 
the orbiting celestial body, the theory of solution may be 

either of two possibilities: planetaly theory or satellite 
theory, as described below. 

Planetary theory is concerned with the motion of a 
point mass moving around a central point mass so mas- 
sive as to dominate the system but under the disturbing 
influence of other point masses, relativity, etc. In general, 
the point mass under investigation moves in a nearly cir- 
cular orbit that lies in a slightly varying plane. The 
planets and current interplanetary spacecraft, in motion 
around the sun, are examples of orbiting celestial bodies 
whose motions are determined by using planetary theory. 

Satellite theory is concerned with the motion of a point 
mass moving around a central mass (not necessarily a 
point mass) so massive as to dominate the system but 
under the disturbing influence of other point masses, 
asphericity of the central mass, atmospheric resistance, 
etc. In general, the point mass moves in an osculating 
elliptical orbit that lies in a moderately varying plane. 
Artificial satellites in motion around a planet or a moon 
of a planet, as well as natural satellites in motion around 
a planet, are examples of orbiting celestial bodies whose 
motions are determined by using satellite theory. 

Classical planetary theory is concerned with the mo- 
tion of a planet under the gravitational attraction of 
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the sun and a disturbing planet, where all three bodies 
are treated as point masses, while classical satellite theory 
is concerned with the motion of the moon under the 
gravitational attraction of the earth and the disturbing 
sun, where all three bodies are treated as point masses 
(sometimes called the main problem of the lunar theory, 
Refs. 213 and 215). Classical satellite theory is better 
known as classical lunar theoly, since the moon was the 
primary natural satellite under investigation in the seven- 
teenth, eighteenth, and nineteenth centuries. 

The investigation herein is concerned primarily with 
satellite theory. 

A. The Problem of Satellite Orbit Prediction 

The objective of this investigation is to obtain a satel- 
lite theory that will predict the position and velocity of 
a satellite to a sufficiently high accuracy even after many 
revolutions about the central mass. The satellite theory 
should not be dependent upon the disturbing forces act- 
ing on the satellite; that is, once the disturbing forces 
acting on the satellite are defined, the satellite theory is 
then used to develop an orbit prediction process for that 
particular force field. 

1.  Description of the problent. The problem as previ- 
ously stated is concerned with orbit prediction, the com- 
putation of satellite orbits from given initial conditions, 
and should not be confused with the more general prob- 
lems in astrodynamics of 

(1) Orbit determination, the computation of satellite 
orbits from observational data, 

(2) Orbit selection, the choosing from sets of precom- 
puted satellite orbits particular satellite orbits that 
satisfy the orbit design constraints of a given mis- 
sion, and 

(3) Determination of physical constants, the calculation 
of the constants that appear in the differential 
equations of motion of the satellite (mass of the 
central body, coefficients of the harmonics of the 
central body, etc.) using satellite orbits computed 
from observational data. 

A careful examination of these three general problems 
of astrodynamics in Fig. 1, represented by simplified flow 
diagrams, will show that orbit prediction is the founda- 
tion for orbit determination, orbit selection, and determi- 
nation of physical constants and therefore that the 
achievement of the objective of this investigation will 
benefit each of the three general problems. 

The terminology "satellite theory" used herein is used 
differently by some astrodynamicists. Clemence (Ref. 277) 
defines the complete solution of problems in satellite 
theory as being an indeterminate number of theories, 
containing the minimum number of degrees of freedom 
that represent all the observations of every known satel- 
lite within limits fixed by the errors of the observations. 
Furthermore, Clemence states that, for a conlplete solu- 
tion, the maximum number of theories is equal to the 
number of satellites and the minimum number of theories 
is 1, but the n~in i~num will not be reached, since the 
motions of different satellites differ so much in character 
that a single theory including all of them would be un- 
manageably complex. Satellite theory as used by Clemence 
is force-field-dependent, since the character of the motion 
is determined by the disturbing forces acting. I t  is quite 
clear that if a listing of different satellite theories appear- 
ing in Refs. 1-1370 is made using Clemence's interpreta- 
tion of a satellite theory, there would be a very large 
number of possible satellite theories. However, if a listing 
of different satellite theories is made using the interpreta- 
tion of Section I-A, there would be ten or twenty possible 
satellite theories. Clemence's interpretation of a "satellite 
theory" will be referred to herein as a "solution to the 
motion of a satellite" (the solution to the motion of a 
satellite is force field dependent). 

2. Zntportance of the problem. The importance of this 
investigation is attributable to the National Aeronautics 
and Space Administration program for the exploration of 
the solar system, which is based upon the three following 
primary scientific problems confronting scientists today: 
the origin and evolution of the planets, the moon, and the 
sun; the origin and evolution of life; and the dynamic 
processes that shape man's terrestrial environment (Ref. 
1371). As a result, the NASA program includes the ex- 
ploration of the planets and the moon by placing artificial 
satellites in orbit about these celestial bodies. In the past 
decade, the initial objectives of placing satellies in orbit 
about the earth and the moon have been achieved with 
ovelwhelming success. In the present decade, the explor- 
ations of Mars and Venus are of high priority because of 
their relevance to the three primary problems above (both 
planets are believed to be uncontaminated by foreign 
matter). Because Mars is similar to earth in many im- 
portant respects, the study of Mars will contribute sig- 
nificantly to the solutions of these problems. For this 
reason, the exploration of Mars is of higher priority than 
the exploration of Venus. 

Placing an artificial satellite in an orbit about Mars or 
Venus, a much more difficult task than placing an arti- 
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ficial satellite about the earth or the moon primarily 
because Mars and Venus are at large distances from the 
earth (the point of launch and observation), requires 
knowledge beforehand of how an artificial body will 
move about the planet (what its orbit will be), how 
inevitable disturbances will influence its motion, and what 
regions of the planet it can explore. Such requirements 
imply that preliminary predictions of orbits must be made 
and that the accuracy of such predictions may be quite 
exacting. Furthermore, in order to avoid contaminating 
the surface of Mars or Venus with an unsterilized space- 
craft, NASA has established the design constraint that 
all unsterilized spacecraft (of which several are planned) 
that orbit the planet must have a lifetime of several years. 
Hence, sufficiently accurate long-tern~ orbit prediction is 
desirable (long-tern1 orbit prediction is not necessary for 
artificial satellites of the earth or the moon). 

The previous discussion has been concerned with the 
importance of orbit prediction in the general problem of 
orbit selection. However, as pointed out in Section I-A-1, 
orbit prediction also enters into the remaining two gen- 
eral problen~s of orbit determination and the determi- 
nation of physical constants, both of which are very 
important once an artificial satellite is placed in an orbit 
about Mars or Venus. Thus, the problem under investi- 
gation is not academic. 

The importance of the problem having been estab- 
lished, the question of a suitable satellite theory arises. 
Fortunately, orbit theory has been well investigated by 
many generations of scientists, as mentioned earlier. It  
should be quite simple to review the extensive literature 
(Refs. 1-1370) and choose a suitable satellite theory ac- 
cording to a specified set of selection criteria. Paradoxi- 
cally, this is not the case. 

First, the various theories that were developed in 
classical celestial mechanics for the solution and study of 
orbiting celestial bodies were concerned with classical 
lunar or planetary theory as defined above. For example, 
the works of Euler, Clairaut, D'Alembert, Lagrange, and 
Laplace in the eighteenth centru~y were concerned with 
the motion of the moon and the motions of the planets 
(Refs. 410 and 411; memoirs by Clairaut and D'Alembertl; 
Refs. 786 and 787; and 793). Furthermore, the works of 
Poisson, Gauss, Hansen, Delaunay, Leverrier, Hill, 
Newcomb, Gylden, Lindstedt, and Poincark in the nine- 
teenth century were also concerned with the motions of 

'Specific citations may he found in Refs. 936 and 1320. 

the moon and the planets (memoirs by Poisson1; Refs. 
468; 537-542; 343; 806; 567578; 984486; 518; 818 and 
819; and 1056). 

Although satellite theory is closely related to classical 
orbit theory (one of the oldest and most developed 
branches of celestial mechanics) satellite theory is inher- 
ently different from classical orbit theory. In the latter, 
the point mass moves only in a nearly circular orbit that 
lies in a slightly varying plane, and, in the former, the 
point mass can move in an osculating elliptical orbit that 
lies in a rapidly varying plane. Hence, classical orbit 
theory is primarily concerned with natural celestial bodies 
whose orbits are relatively stationary and have existed 
for a long time. Each orbit is investigated separately, as 
an independent phenomenon. However, satellite theory 
can be concerned with orbits that are complex and rap- 
idly changing. Furthermore, it may be necessary to study 
a whole class of feasible orbits rather than just one orbit. 
In satellite theory, phenomena can occur that have no 
analogies in classical orbit theory-for example, zero 
eccentricity, eccentricities near unity, inclinations near 
180 deg or the critical 63.4 deg,2 nonconservative forces, 
etc. 

In addition, the time scale in classical orbit theory 
(months or years) can be so different from that of satellite 
theory (hours or months) that many of the classical ex- 
pansions that converge for intervals of time on the order 
of hundreds of years in classical orbit theory would con- 
verge for intervals of time on the order of months at most 
in satellite theory. Finally, with the advent of the high- 
speed electronic conlputer, the use of a classical theory 
in the form in which it was originally developed would 
not be desirable. Because computational schemes in the 
classical theories were adapted to the technology of 
manual calculations, the simplicity of the algorithm was 
considered as second to the reduction of the volume of 
the calculations. However, with the use of high-speed 
electronic computers, the volunle of the calculation is 
not the dominant factor. As a result, simplicity and uni- 
versality of the algorithm play a much greater role (of 
great importance is the amount of information that must 
be stored in the memory of the computer for a transition 
from one stage of calculation to another). In conclusion, 
the widely used classical orbit theories are insufficient 
for use as satellite theories and have to be substantially 
developed and augmented. 

'For an  explanation of the critical inclination, see the Glossary 
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Second, many of the investigators of satellite theory 
in the twentieth century have been neophytes who have 
not taken the time to study classical orbit theory or the 
work that had already been done in satellite theory. 
Hence, the important contributions to satellite theory have 
been made by a relatively small number of investigators 
and, as a consequence, much work still remains to be 
done. For example, additional investigations are desir- 
able in 

(1) The use of a perturbed reference orbit as a basis 
for a satellite theory, 

(2) The use of variables and parameters that yield a 
sol~ltion to the motion of a satellite free from small 
divisors and mathematical singularities, and 

(3) The use of expansions that are valid for extremely 
long times, or, better, for all time. 

Third, the objective of astrodynamics has not been 
attained when a solution to the motion of a satellite is 
only more or less approximately developed, unless the 
explicit degree of approximation (numerical accuracy) is 
known. It  is therefore important to determine an upper 
limit for the error committed, a factor with which most 
investigators of satellite theory have not been sufficiently 
concerned. 

Finally, many solutions to the motion of a satellite 
that have been developed are force-field-dependent 
(Clemence's interpretation of a satellite theory). These 
solutions may yield excellent results for a particular force 
field, but when they are used with another force field, 
unacceptable results are obtained. 

3. Historical synopsis. Since satellite theory utilizes 
many of the results originally developed in classical 
orbit theory, it is perfectly correct to consider Sir Isaac 
Newton's geometrical studies of the problem of three 
bodies, written in the seventeenth century (Ref. 991, 
Book I, Section XI), as the origin of satellite theory 
(Kepler's work is not considered here since it consisted 
of three postulates deduced from the observations of the 
planets rather than an entire mathematical theory). 

Subsequent investigations were conducted by Euler, 
Clairaut, and D'Alembert in the middle of the eighteenth 
century using integration by series. During this time, Euler 
also began the theory of the perturbations of the planets 
and developed the analytical method of the variation of 
parameters. Lagrange and Laplace developed and aug- 
mented the work of Euler in the latter part of the 
eighteenth century. They succeeded in eliminating im- 
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proper secular ternls that were entirely due to the imper- 
fections of the nlethod of solution. 

In the first half of the nineteenth century, Poisson, 
Gauss, Leverriel; Hill, and Delaunay extended the ~7ork 
of Lagrange and Laplace. Hansen and Delaunay, in the 
middle of the nineteenth century, made great advances 
in the lunar t l ~ e o ~ y  and, during this time, Newcomb estab- 
lished that, in the case of planetary theory, the instan- 
taneous elements can be represented by purely periodic 
functions of time \vhich fornlally satisfy the differential 
equations of motion. 

In the latter half of the nineteenth century, Hill devel- 
oped a new lunar theory based on new concepts and 
mathematical methods. The fundamental concept was to 
use a non-Keplerian orbit as the fist approximate solu- 
tion. During this time, Linstedt and Gylden extended 
the work of Newcomb concerning representation by 
periodic functions. However, it was the ingenious work 
of Poincark that con~pletely revolutionized classical orbit 
theory. Poincare was the first to successfully investigate 
the aspects of series convergence and error of approxima- 
tion. For a more detailed account of classical orbit theory, 
reference should be made to Moulton (Ref. 936) or 
Brou~ver and Clemence (Ref. 205), froill which the infor- 
mation above has been extracted. 

The first significant investigation of satellite theory 
(differing froin classical satellite theory) occurred in the 
very first part of the twentieth century when Brown ex- 
tended Hill's classical lunar theory to a high degree of 
numerical accuracy, culminating with a lunar theory that 
is still used today (Refs. 212 and 213). In addition, Brown 
succeeded in developing a planetary theory based on 
Hamiltonian mechanics (canonical transformations) (Ref. 
214) quite similar to the planetary theory developed inde- 
pendently by von Zeipel (Ref. 1357) at about the saine 
time. Additional studies were conducted by Brown con- 
cerning both planetary and satellite theory (Refs. 206- 
211). Because of the success of the Hill-Brown lunar 
theory, the investigations in the next few years were pri- 
marily concerned with planetary theory; for example, 
Brouwer developed a i~lethod of integrating the equations 
of general planetary theory in rectangular coordinates 
which is free from most of the disadvantages of the classi- 
cal methods (Ref. 203). Clemence applied Brouwer's 
theory shortly afterwards (Ref. 283). Additional investi- 
gations into planetary theory were made by both Brouwer 
(Refs. 199 and 200) and Clemence (Refs. 282, 284, and 
285). 



Interest in satellite theory was again aroused by the 
launching of the first artificial satellite on Oct. 4, 1957. 
During the last decade, a tremendous number of investi- 
gations have been concerned with satellite theory. An 
attempt to indicate the order of these investigations will 
not be made here. However, Table 1 presents a list of 
investigators, with their works, who were either one of 
the first or one of the consistent investigators of the 
past decade. The works of the remaining investigators 
may be found in the Bibliography. In Table 1, the work 
of the investigator or investigators has been classified 
according to nine categories so that if a particular aspect 
of satellite theory is of interest, references concerning 
that aspect can be more readily found. For an investi- 
gator with multiple publications, the earliest reference 
number corresponds to the latest date of investigation. 
(This procedure has also been followed in the Bibli- 
ography.) Finally, more recent investigations into plan- 
etary theory have been conducted by Brouwer, Clemence, 
Duncombe, Danby, Musen, and a number of investigators 
at the Jet Propulsion Laboratory3 (Refs. 181,196, and 393; 
276, 278-281; 382-388; 324-331; and 943, 945, 946, 948, 
950, 957, and 973). 

Several textbooks often referenced, which have not 
been mentioned previously, include those by Tisserand, 
Charlier, Moulton, Subbotin, Whittaker, Smart, Goldstein, 
Finlay-Freundlich, Sterne, Duboshin, and Baker (Refs. 
1250; 250; 935 and 936, 1231-1233; 1320; 1172; 494; 426; 
1204; 379381; and 86 and 87). The textbook by Herrick 
(Ref. 564) and the textbook by Brouwer and Clemence 
(Ref. 205), both previously referenced, have been found 
to be exceptionally informative. 

B. Methods of Solution 

It  is well known that if a spherical body moves under 
the influence of a much more massive spherical body, its 
path of motion will describe a conic section. The massive 
spherical body will be located at the principal focus and 
will act as a point mass. This motion is conlnlonly called 
central-force-field motion or Keplerian motion (after 
Kepler, whose three laws concern this type of motion). 

However, if the mass distribution of either principal 
body is not spherical, if there is a resisting medium sur- 
rounding the massive body, if there are other celestial 

3Specific citations may be found in Pz~blications of the Jet P~.opul- 
sion Laboratory, Bibliography 39- series, published annually by 
the Jet Propulsion Laboratory, Pasadena, Calif. 

bodies attracting or any other way affecting the two 
principal bodies, or if there is any force acting upon 
the two principal bodies other than that of the mutual 
attractions of the two spheres, the path of motion of the 
less massive body will not describe an exact conic section 
and the theory of motion of this body in the noncentral 
force field is then called perturbation theory. The devia- 
tions from a reference orbit (not necessarily a conic sec- 
tion) in force, acceleration, velocity, or position are called 
perturbations; that is, the term perturbations may be used 
(1) for forces that have not been included in the force 
field defining the reference orbit, (2) for differences 
between the components of the total acceleration of a 
celestial body and those it would have in the reference 
orbit, and (3) for corrections to the velocity or position 
conlponents determined from the reference orbit. In some 
instances in astrodynamics, it is permissible to neglect 
perturbations, but in the majority of cases the perturba- 
tions have to be taken into account. In the case of satellite 
theory, it is impossible to describe the orbit adequately 
without considering them. 

It  is quite common to classify perturbations according 
to their period and their order. With regard to the period, 
the perturbations are divided into secular, long-period, 
short-period, and Poisson or mixed perturbations. (The 
mixed perturbations are called Poisson perturbations be- 
cause they were first encountered by Poisson in the dis- 
cussion of the variations of the major axes of the planetary 
orbits.) The perturbations that change proportionally to a 
power of the independent variable are called secular 
perturbations. The perturbations that are periodic in the 
independent variable are called periodic perturbations 
and are either long-period or short-period, depending on 
whether the period is relatively large or small, respec- 
tively. Sometimes perturbations arise that are the products 
of a power of the independent variable and periodic per- 
turbations. These are called Poisson perturbations. With 
regard to the order, the perturbations are classified 
according to their size relative to a small parameter of 
the problem. (Section 11-A-1 presents a more detailed 
discussion.) 

Perturbation theory is of such importance in astro- 
dynamics, and is at the same time so difficult, that efforts 
of many investigators have been directed toward it. In 
general, a complete and rigorous integration of the differ- 
ential equations of motion yielding closed analytical ex- 
pressions is manifestly impossible in orbit theory. As a 
result, these investigators have turned to the processes of 
approximation. I t  is customary in astrodynamics to dis- 
tinguish between two classes of perturbation methods 
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called "special perturbations" and " general perturbations" 
(both classes consisting of processes of approximation). 
However, a con~bination of special and general perturba- 
tions is also possible and will be considered herein as a 
third class of perturbation methods. Figure 2 presents a 
schematic diagram of perturbation theory showing the 
three classes of perturbation nlethods, their differences, 
and their similarities. 

1.  Special pet+tut+bations. The class of perturbation 
methods known as special perturbations consists of 
methods in which the accelerations of the disturbed body 
are integrated using numerical analysis (numerical inte- 
gration or mechanical quadratures). As a result, special 
perturbations methods generate a particular (or special) 
orbit for a particular (or special) disturbed body given 
particular (or special) initial conditions. The motion of 
the disturbed body is determined from point to point in 
discrete time intervals; that is, a continuous determination 
of the perturbed orbit is made by means of a step-by-step 
process. Before the perturbed orbit can be determined at 
the nth point, it must be determined at the n - 1 point. 

The methods of special perturbations are norn~ally 
classified according to the follnulation of the equations 
to be integrated, there being three possibilities as shown 
in Fig. 2. The first possibility is known as "Cowell's 
method and consists of the numerical integsation of the 
total accelerations in terms of coordinates (usually rectan- 
gular) with no reference to an osculating or reference 
orbit. The second possibility is known as "Encke's method 
and consists of the integration of perturbative accelera- 
tions in terms of coordinates. The perturbative accelera- 
tions are the differences in acceleration between those of 
the actual orbit and a reference orbit. The third possi- 
bility is known as the "variation-of-parameters method" 
and consists of the integration of perturbative variations 
in terms of parameters such as a, e, i, W, a ,  A4 or n, e cos W, 

e sin W, i, a ,  M .  The parameters characterize an osculating 
orbit which is a progressively changing reference orbit 
(not necessarily Keplerian) that yields the actual position 
and velocity at any given point or instant of time. Since 
these parameters are changing from instant to instant, 
they are called instantaneous paramkters. (These three 
methods are also discussed in the Glossary.) 

In each of the three basic methods of special 
perturbations, there are many processes for the numerical 
integration of the total or perturbative accelerations of the 
disturbed body, two of which, the Runge-Kutta and the 
second-sum processes, are indicated in Fig. 2 and are 
described in the Glossary. The Runge-Kutta process is 

often used because it features a variable integration step 
size, whereas the second-suin process has been used for 
many years in celestial mechanics because of its simplicity. 
Some processes are simpler to initiate than others, some 
are more accurate, some require less conlputing time or 
cornputer memory capacity, some pelmit variable step size 
(integration interval), etc. It  should be recognized that the 
nun~erical integration process is not theoretically dictated 
by the method of special perturbations being used. How- 
ever, in practice, it may turn out that one numerical in- 
tegration process is better suited than another for a 
particular  neth hod of special perturbations. 

The advent of high-speed electronic computers has 
eliminated one of the prime difficulties in the methods of 
special perturbations: the overwhelming computational 
labor. However, special perturbations methods still have 
the great drawback of accumulation of error. The source 
of this error is twofold, consisting of truncation error and 
round-off or rounding error. Truncation error is the differ- 
ence between the exact solution of the difference equations 
which approximate the differential equations and the 
exact solution of the differential equations themselves. 
Round-off or rounding error is the difference between the 
computed and the exact solutions of the difference equa- 
tions. The buildup of round-off and truncation errors in 
numerical integration is unavoidable. The influence of 
truncation error is usually pronlinent when a large value 
of step size is used. The influence of round-off error is 
usually prominent when a large number of steps have 
been taken, usually occurring when a small value of step 
size is used. (Because of the round-off errors that are 
encountered at each step and propagate with each step, 
a random walk away from the exact solution occurs and 
there is no tendency for these errors to average out.) 
Hence, the s~naller the step size taken, the less the trunca- 
tion error, but (for a given total interval of integration) 
then lnore steps are required, and thus more round-off 
error occurs. 

Another difficulty that may arise in a special perturba- 
tions method is the phenomenon of instability; that is, 
the occurrence of a solution of the difference equations 
that is unstable (unbounded) even though the solution of 
the 'differential equations is inherently stable (bounded). 
(Instability is discussed further in the Glossary.) In the 
Runge-Kutta and second-sum processes, instability will 
not occur, provided that the step size chosen is sufficiently 
small (Ref. 292). 

The methods of special perturbations have the extremely 
desirable characteristic of being immediately applicable 
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to any set of initial conditions (kind of orbit) and to any 
force field. On the other hand, these nlethods have the 
undesirable characteristic of requiring the conlputation of 
the coordinates of the d is t~~rbed body or the elements of 
its orbit at all the intermediate epochs prior to their 
computation at the epoch of interest (a sufficient number 
of intermediate epochs nlust be taken for an acceptable 
nun~erical accuracy). Furthermore, since these methods 
are purely nun~erical, the "general theorems" regarding 
the stability of the system (boundedness of the motion 
as the time approaches infinity) can not be obtained 
(Ref. 936, p. 429). 

The methods of special perturbations are ideally suited 
for calculating orbits having only a limited duration, such 
as lunar and interplanetary trajectories. These methods 
can also be used for calculating the motion of any body 
in the solar system for a few revolutions around its pri- 
mary with sufficient numerical accuracy. 

However, because of the large number of integration 
steps and the fact that the accumulated error increases 
with the number of steps, the methods of special pertur- 
bations are not well suited for the long-term prediction of 
the motion of a satellite or a planet. Furthermore, even if 
the numerical accuracy criterion is not stringent, as in 
preliminary orbit selection, these methods are still not 
suitable for long-tern~ orbit prediction because of the 
large amount of computing time required. Attempts at 
reducing the amount of computing time have been made 
by investigators; for example, Taratynova developed a 
process that consists of numerically integrating only a 
few revolutions in detail and, for the most part, taking 
the integration interval equal to the period of revolution 
(Refs. 861 and 1242-1244). 

2. General perturbations. The class of perturbation 
methods known as general perturbations consists of 
analytical methods in wllich the accelerations (usually 
the perturbative accelerations) are expanded into infinite 
series and integrated term by term. In practice, only a 
finite number of the terms in the infinite series is actually 
used. These methods give the solution of the differential 
equations of motion in the form of symbolic formulas 
which express the sought-for quantities as explicit func- 
tions of (1) the independent variable (usually time), (2) 
the constants of the problenl, and (3) the constants of 
integration, which are determined by the initial condi- 
tions of the problem. Thus, general perturbations nlethods 
yield solutions to orbit problems that are generally appli- 
cable to various disturbed bodies, given various values 
of the constants and initial conditions. 

A general perturbations method can be specialized to 
a particular disturbed body by introducing numerical 
values for the constants and initial conditions in place of 
their symbols. This method would then give the solution 
of the differential equations of motion in the form of 
synlbolic formulas which express the sought-for quantities 
as explicit functions of the independent variable con- 
taining numerical coefficients. Specialization of this sort 
is usually made in investigations of natural celestial bodies 
such as the moon or a planet in an effort to minimize the 
complexity of the investigation, for instance, in Brown's 
lunar theory (Refs. 212 and 213) in which numerical 
values are substituted for some of the orbital elements, 
or in Hill's theory of Jupiter (Refs. 573, 574, and 578), in 
which numerical values are substituted for all of the 
orbital elements, leaving time alone symbolized. 

Hence, general perturbations methods can be classified 
as either literal expansion methods or as numerical ex- 
pansion methods. However, this classification will not be 
made herein, since the latter is simply a special case of 
the former. Finally, the motion of the disturbed body in 
any general perturbations method is determined from the 
initial point to any point of interest in one step, without 
determination of the motion at intermediate epochs. 

The nlethods of general perturbations are normally 
classified according to the formulation of the equations to 
be integrated, there being two possibilities, as shown in 
Fig. 2. The first possibility is known as the "variation-of- 
coordinates method and consists of the analytical inte- 
gration of the accelerations (usually perturbative) in terms 
of coordinates (for example, x, y, z, i, j r ,  i or r, a, 8, d, d., i). 
The second possibility is known as the "variation-of- 
parameters method and consists of the analytical inte- 
gration of perturbative variations in terms of parameters 
(for example, a, e, i, a, 0, A4 or n, e cos w, e sin W, i, 0, L). 

In each of the two basic methods of general perturba- 
tions, there are many processes for the analytical integra- 
tion of the total or perturbative variations of the disturbed 
body. Several of these processes-successive approxima- 
tions, multivariable asymptotic expansions, Taylor's series 
expansions, canonical transformations, and averaging- 
are indicated in Fig. 2 and are described in the Glossary 
and later sections of this report. 

The prime difficulty of general perturbations methods 
is the overwhelming analytical labor required by the 
astrodynamicist in the development of the symbolic for- 
mulas of the methods. However, recent advances in com- 
puter programming technology indicate that high-speed 
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electronic computers may be able to execute all the 
necessary analysis associated with the development of 
most general perturbations methods and thereby eliminate 
this difficulty (Refs. 155-158, 216, 669, 1058, 1059, 1126, 
1154-11567 1251, and 1252). Most general perturbations 
methods consist of sequences of operations that can be 
computerized, such as expansions of functions in multiple 
trigonometric series, multiplication of trigonometric or 
power series, term-by-term integration and differentiation 
of trigonometric or power series, solution of algebraic 
systems of linear equations, etc. (Refs. 351, 476, 543, 
606-608, 1090, 1168, 1297, and 1309). 

The methods of general perturbations have the ex- 
tremely desirable characteristic of permitting the compu- 
tation of the coordinates of the disturbed body or the 
elements of its orbit at any particular time after the initial 
time without computation at intermediate epochs. Thus, 
it is possible to obtain the sought-for quantities at some 
point in the first orbit and then immediately at some 
point in any subsequent orbit. Since these methods are 
analytical, the general character of perturbations can be 
investigated (for example, the effect, order, and inter- 
action of individual perturbations can be obtained) and 
general theorems regarding the stability of a system can 
be obtained. 

Furthermore, general perturbations methods permit a 
clear interpretation of the sources of the perturbations in 
orbit determination; for example, the discovery of Nep- 
tune by Adams and Leverrier (independently) was made 
through the analysis of the motion of Uranus (Ref. 806) 
and, more recently, the discovery of the Earth's "pear" 
shape by O'Keefe and Eckels was made through the 
analysis of long-period terms in orbital eccentricity 
(Ref. 1005). 

On the other hand, most general perturbations methods 
have the undesirable characteristic of being applicable 
only to certain force fields; for example, the method which 
uses averaging requires periodic perturbations. In addi- 
tion, these methods require that a large number of terms 
of the infinite series be retained in order to achieve great 
accuracy. 

The methods of general perturbations are ideally suited 
for the prediction of orbits extending over many periods, 
such as artificial and natural satellites. These methods 
permit the development of the simplest and most econom- 
ical computing algorithms for long-term orbit prediction 
which, with the aid of high-speed electronic computers, 
can produce the required solution quickly and accurately. 
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3. Combination of special and general perttrrbations. 
The difficulties and characteristics of the methods of 
special and general pertul-haticns have been presented in 
Sections I-B-1 and I-B-2, respectively, and it should be 
clear that ihe choice of which of the two classes of 
rnetl~ods of solution is better suited for a particular motion 
depends upon the motion itself. In some cases of quasi- 
periodic motion, it is probable that the best means of 
determining the motion will be based on sonle com- 
bination of special and general perturbations. Perhaps 
the nonconservative perturbations could be numerically 
integrated and the conservative perturbations could be 
analytically integrated, or perhaps the nonperiodic per- 
turbations could be numerically integrated and the peri- 
odic perturbations could be analytically integrated, etc. 
In this way, advantage is taken of the repetitive character 
of the motion. 

C. Method of General Perturbations 

In order to obtain the most precise and efficient satel- 
lite theory described in Section I-A, it should be clear 
from the discussions in Sections I-B-1 and I-B-2 that a 
general perturbations method must be used rather than 
a special perturbations method (it is assumed that the 
perturbative forces are not of the type requiring a com- 
bination of special and general perturbations). Hence, the 
subsequent sections will be concerned with general per- 
turbations methods only. 

1.  Classification of theories. Satellite theory, from the 
mathematical point of view, can be thought of as the 
application of perturbation theo~y to the set of ordinary 
nonlinear differential equations that determine the motion 
of a satellite. Hence, a satellite theory can be described 
according to the method of perturbation theory used; for 
example, a particular satellite theory is the theory of gen- 
eral perturbations using the variation of parameters with 
multivariable asymptotic expansions (one branch of the 
diagram in Fig. 2). It should be pointed out that within 
each class of solutions to the motion of a satellite, there 
are many factors that can differentiate one solution from 
another, such as the order of approximation of the solu- 
tion (see Section I-C-4), the perturbations included, etc. 
However, these factors are a matter of numerical accuracy 
and completeness rather than differences between satel- 
lite theories. As a result, there are probably no more than 
ten or twenty different satellite theories. For a classifica- 
tion of solutions to the motion of a satellite, see Ref. 67 
(since this reference uses Clemence's interpretation of a 
satellite theory, solutions to the motion of a satellite are 
called satellite theories). 



It  should be pointed out that a satellite theory is con- 
sidered as fully developed to a particular order if suffi- 
cient expressions are given to obtain the position and 
velocity of the satellite at any time t to that particular 
order. 

2. Selection criteria. I t  has been stated in previous sec- 
tions that there are several possible satellite theories; 
therefore, the question of a suitable satellite theory arises. 
Unfortunately, there have been very few comparisons of 
satellite theories appearing in Refs. 1-1370, and thus this 
question is extremely difficult to answer. As a result, two 
satellite theories were selected on the basis of the criteria 
listed below. The theories are compared in  detail in sub- 
sequent sections. 

Criteria for selection of a satellite theory were as fol- 
lows: 

(1) A satellite theory should not introduce artificial 
secular or Poisson terms into the solution, such as 
those encountered in classical orbit theory where 
the independent variable (usually time) was re- 
moved from the trigonometric functions (usually 
sine and cosine). In this manner, the expressions 
for the sought-for quantities represent the required 
solution over a very large interval of time. 

(2) A satellite theory should not introduce small di- 
visors or mathematical singularities into the solu- 
tion for particular initial conditions such as those 
associated with eccentricities that are 0, small, or 
near 1, with inclinations that are 0, small, near or 
equal to 180 deg, or near or equal to the critical 
63.4 deg, etc. Since the choice of coordinates or 
parameters is directly related to avoiding small 
divisors or mathematical singularities, a complete 
freedom of choice of coordinates or parameters to 
be used in a satellite theory is desirable. I t  should 
be pointed out that the use of a nonsingular set 
of coordinates or parameters often colllplicates the 
formulation of the theory. 

(3) A satellite theory should not restrict the initial con- 
ditions of the satellite to those associated with 
orbits having a particular range of eccentricities. 
For example, several satellite theories restrict the 
initial conditions of the satellite to those associated 
with orbits of moderate eccentricity; otherwise, the 
infinite series of the theory converge very slowly. 
It  is very desirable to have a satellite theory that 
yields a solution applicable to initial conditions 
associated with eccentricities in the entire range 

0 L e  < 1. The choice of the correct independent 
variable eliminates slowly converging infinite series 
and permits initial conditions associated with eccen- 
tricities in the range 0 L e < 1. 

(4) A satellite theory should not restrict the perturba- 
tive forces acting upon the satellite; for example, 
a satellite theory should be able to yield the solu- 
tion to the motion of a satellite being perturbed by 
conservative forces, nonconservative forces, or a 
combination of conservative and nonconservative 
forces. (In the case of a satellite in an orbit around 
Mars, the effects of oblateness, atmospheric drag, 
and solar gravitation are all important.) 

(5) Finally, a satellite theory should yield a precise 
and efficient solution, should be easily adaptable to 
various satellites and force fields, and should be 
unexcelled in yielding an insight into the physical 
nature of the motion (Ref. 657). 

3. Selected theories. On the basis of the criteria speci- 
fied above, two satellite theories were selected for com- 
parison from the various satellite theories appealing in 
Refs. 1-1370. These theories are (1) the theory of general 
perturbations using the variation of coordinates with two 
variable asyn~ptotic expansions (Section V-C) and (2) the 
theory of general perturbations using the variation of 
parameters with Taylor's series expansions (Section V-D). 
Both theories are represented in Fig. 2. 

Two additional theories described in the glossary and 
represented in Fig. 2 are the theory of general perturba- 
tions using the variation of parameters with canonical 
transformations and the theory of general perturbations 
using the variation of parameters with averaging. Al- 
though both theories are quite elegant, neither satisfies 
all of the selection criteria specified in Section I-C-2. 

The theory of general perturbations using the variation 
of parameters with canonical transformations was first 
conceived by the French astronomer Delaunay, who ap- 
plied it to the solar perturbations of the moon (Ref. 343). 
Since then, the theory has been refined by the investiga- 
tions of Hill, Poincark, von Zeipel, Brown, and Brouwer- 
Hori (Refs. 578; 1056; 1357; 214; and 190-192). Using this 
theory, the investigation by Brouwer and Hori attempted 
to obtain the motion of a satellite being perturbed by 
asphericity and drag. They succeeded in establishing 
certain coupling effects between oblateness and drag 
perturbations which are not accessible by treating the 
oblateness and drag perturbations independently. Unfor- 
tunately, slowly convergent series appeared, and a device 
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to overcome this lack of convergence was of limited effec- 
tiveness only. Finally, the various series that develop in 
this theo~y are based upon certain constants or mean pa- 
rameters which must be determined by an initialization 
procedure. If these mean parameters are not determined 
precisely, secular error growths occur (Ref. 67). Addi- 
tional information concerning this satellite theory may be 
found in Refs. 88, 90, 183, 188-192, 194, 195, 197, 205, 
214, 343, 459, 487, 570, 578, 590, 591, 657, 664, 740, 760, 
885, 1056, 1264, and 1357. 

The theory of general perturbations using the variation 
of parameters with averaging was rigorously developed 
for the first time by the Russian mathematicians Krylov 
and Bogoliubov in the study of nonlinear oscillations 
(Ref. 776) (the concept of averaging was used in classical 
orbit theory but without special emphasis on mathemati- 
cal rigor). Since then, the theory has been generalized 
by Bogoliubov and Mitropolsky (Ref. 150). Investigations 
by Lass and Lorell, Lass and Sollo\vay, Lorell, Kyner, 
Morrison, and Musen have been concerned with deter- 
mining the motion of a satellite using this theory (Refs. 
798; 797; 825,826,828,829, and 831; 782 and 783; 929-931; 
and 946 and 947). They have shown that this satellite the- 
ory yields excellent first-order solutions to the motion of a 
satellite under the action of a single perturbation. Unfor- 
tunately, when higher-order solutions are desired to the 
motion of a satellite under the action of more than a 
single perturbation, the theory becomes extremely cum- 
bersome. However, a theory very similar to the general- 
ized theory of averaging, but much simpler, exists-the 
theory of multivariable asymptotic expansions, to be dis- 
cussed and compared subsequently. (Morrison has com- 
pared these two theories in Ref. 930, substantiating the 
relative sinlplicity of the latter theory.) Additional infor- 
mation concerning the generalized theory of averaging 
may be found in Refs. 39, 150,261,506,524, 776,781-783, 
797, 798, 825, 826, 828, 829, 831, 832, 919, 921, 922, 929- 
931, 946, 947, 1218, 1219, 1224, and 1326. 

It  is interesting to note that the theories of multivari- 
able asymptotic expansions, canonical transformations, 
and averaging have been conlpared with each other by 
Kevorkian, Kyner, and Morrison in Refs. 664, 782, and 
930, respectively. Their results indicate that the three 
theories yield equivalent solutions to the slightly non- 
linear oscillations of an autonon~ous system with one 
degree of freedom and subject to small damping. This 
does not mean that the three theories are equivalent or 
that they yield equivalent solutions to the motion of a 
satellite under all circun~stances. For example, the theory 
of canonical transformations requires the use of canonical 

variables, whereas the other two theories do not. As a 
result, mathematical singularities may arise in the solu- 
tion obtained using the theory of canonical transfor- 
mations, whereas a judicious choice of noncanonical 
variables in the other two theories may prevent the oc- 
currence of these singularities in the solutions. 

4. Order of an approximate solution. The concept of 
order in satellite theory has been used differently by 
various investigators and, as a result, requires clarifica- 
tion. There appear to be three distinct interpretations of 
"order of an approximate solution." 

The classical interpretation arises during the analytical 
integration of the derivatives of the parameters of a dis- 
turbed body when the process of successive approxima- 
tions is used. I11 this interpretation, order is used to specify 
the approxinlation number. For example, the equations 
of motion are of the for111 

for j = 1,2, . . . ,6, and the first approximation or first- 
order solution is obtained by replacing the qk of the 
integrands by the qh., which are constants or possibly the 
sum of constants and secular terms; that is, 

Through the use of the first-order solution, the second 
approxin~ation or second-order solution is obtained by 
replacing the qk of the integrands by the q j l ) ;  that is, 

The third approximation or third-order solution is ob- 
tained by replacing the qh of the integrands by the 
qj2) ,  and so forth. The end result would be  infinite series 
representing the qj. The correspondence between order 
and approximation number arises when the q k  are taken 
as constants, for then the qjl)  contain terms of order E 

(perturbative parameter), the qja contain terms of order 
E" etc. However, there is no guarantee that the qj l )  
contain all the terms of order E, the qj2' contain all the 
terms of order c2, etc., so that the correspondence is actu- 
ally between apparent order and approximation number. 
As a result, the classical interpretation of order in satel- 
lite theory will be referred to herein as apparent order. 
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The second interpretation of order of an approximate 
solution arises during the analytical integration of the 
equations of motion using one of the processes other than 
successive approxiinations indicated in Section I-B-2. In 
this interpretation, order is used to specify the highest 
order of terms con~pletely detemnlined in the solution. For 
example, a first-order solution using this interpretation 
would imply that "all" of the first-order terms in the 
expressions for qj have been determined. This interpre- 
tation of order of a solution is used herein. 

The third interpretation of order of an approximate 
solution is essentially the same as the second interpreta- 
tion except that this interpretation requires that all per- 
turbative forces that produce terms of the same order 
in the expressions for qj be included in the force field. For 
example, Brouwer has shown in his solution to the motion 
of an artificial satellite (Ref. 195) that terms with coeffi- 
cients J ,  and J, /J ,  appear in the first-order solution. Thus, 
although J ,  may be considered to be of order Ji, it is 
necessary to include the perturbative force due to J ,  in 
the force field in order to obtain a first-order theory 
(long-term prediction). The difference between these 
interpretations is that the second is purely mathematical, 
whereas the third is physical as well. 

Investigators who use Clemence's interpretation of a 
satellite theory (Section I-A-1) refer to "order of a solu- 
tion" as "order of a theory" and thus their terminology 
is a "first-order theory" rather than a "first-order solution," 
etc. 

5. Comparison criteria. An indication of the quality of 
a satellite theory can be obtained by investigating (1) the 
numerical accuracy of the resultant solution (assuming 
the satellite theory has been used optimally) to a particu- 
lar force field, (2) the adaptability of the theory to various 
satellites and force fields, and (3) the simplicity of both 
the mathelllatical operations involved and the form of the 
solution. These criteria are used to compare one satellite - 
theory with another, assuming that the selection criteria 
specified in Section I-C-2, with the exception of the last, 
are satisfied by both theories. 

The principal test of a satellite theory herein is that it 
yields the position and velocity (or equivalent param- 
eters) of a satellite to a sufficiently high accuracy even 
after many revolutions about the central mass. The only 
means of deciding whether a given theory yields a suffi- 
ciently accurate solution is to compare the resultant solu- 
tion with a standard of comparison of much higher 
accuracy than the desired accuracy. Unfortunately, ob- 

taining a standard of comparison with this characteristic 
is a difficult task. There are four possible approaches in 
the selection of a standard of comparison: 

(1) The most common approach is to choose a standard 
of comparison determined by a special perturba- 
tions method. This approach is unacceptable herein 
because of the buildup of truncation and round-off 
error after many revolutions of the satellite about 
the central mass. 

(2) The second approach is to determine a standard 
of comparison by making the most precise obser- 
vations of a particular satellite, develop the solu- 
tion to the motion of that satellite using the satellite 
theory, and then compare the results. This approach 
is also unacceptable herein because the "real 
wor ld  is extremely difficult to simulate in a general 
perturbations theory; that is, all of the perturba- 
tions acting upon an actual satellite can not be 
successfully incorporated into the satellite theory. 

(3) The third approach is to choose another satellite 
theory to determine the standard of comparison to 
the required accuracy. This approach is unaccept- 
able because there is no satellite theory as yet that 
yields a sufficiently accurate solution even after 
many revolutions of the satellite about the central 
mass. 

(4) The fourth approach, and the one which is adopted 
herein, is to restrict the force field and the initial 
conditions of the satellite so that there is an exact 
analytic solution to the motion of the satellite that 
can be used as the standard of comparison. Of 
course, the solution to the motion of the satellite 
using the satellite theory must be determined ac- 
cordingly. As a result, there is no guarantee that 
the accuracy as determined by a study of this type 
will exist in the solution to the unrestricted motion 
of a satellite determined using the satellite theory. 

The adaptability of a satellite theory to various satel- 
lites and force fields is highly desirable. Although the 
subsequent sections used several satellite theories to ob- 
tain the solution to the motion of an equatorial satellite 
being perturbed only by asphericity of the central mass 
(second harmonic only), in an actual application to a 
satellite in an orbit about Mars, the motion of a satellite 
being perturbed at least by the asphericity of Mars, 
atmospheric drag, and the gravitational attraction of the 
sun is required and, as a result, the theories must be 
adaptable to this motion. 

14 JPL TECHNICAL REPORT 32- 1267 



The simplicity of the mathematical operations involved matical model, including the physical constants, with 
as well as the form of the solution govern the speed with sufficient accuracy. 
which a solution may be obtained using a high-speed 
electronic computer. The speed of computation is ex- 
tremely important in the problem of orbit selection, where 
the totality of possible orbits must be analyzed econom- D. Summary of Contents 
ically (the slower the speed, the larger the cost). In addi- 
tion, the simplicity of the form of the solution determines 
the ease with which the effects of certain perturbations 
may be analyzed, an important characteristic in the prob- 
lems of orbit determination and the determination of 
physical constants. An indication of the simplicity of one 
solution with respect to another can be obtained by com- 
paring the amount of information that must be stored in 
the memory of the computer for a transition from one 
prediction point to another (core storage requirements) 
and, of course, the speed of computation per prediction 
point. 

6. Solution procedure. The procedure in obtaining the 
solution to the motion of a satellite using a particular satel- 
lite theory (general perturbations) consists of the steps 
given in Table 2. The satellite theory selected will define 
the reference orbit or the solution of the principal part 
of the equations of motion, the first- and higher-order 
solutions, and the constants of integration during step 6 
of Table 2. Furthermore, the accuracy of the solution 
(assuming the satellite theory satisfies the selection cri- 
teria specified in Section I-C-2) will be strongly depen- 
dent upon how well step 1 is performed; that is, how 
successful the astrodynamicist is in defining the mathe- 

Table 2. Solution procedure 

of general perturbations using the variation of coordinates 

with multivariable asymptotic expansions). 

parameters or coordinates and independent variable. 

satellite theory and obfain the parameters or coordinates 
of the satellite as functions of the initial conditions and the 

independent variable. 

This report is arranged in seven principal sections. The 
first section consists of the statement of the problem, the 
historical background of the problem, the methods of 
solution of the problem, and many definitions and con- 
cepts concerning satellite theory. The second section pre- 
sents the mathematical foundation for a theory of general 
perturbations using the variation of coordinates or pa- 
rameters with multivariable asymptotic expansions, and 
the third section presents the mathenlatical foundation 
for a theory of general perturbations using the variation 
of parameters first with Taylor's series expansions and 
then with nlultivariable asymptotic expansions. Neither 
of these two sections considers the two extremely difficult 
questions of the convergence of the infinite series and 
the analytical estimation of the error committed by re- 
placing the infinite series by finite numbers of their first 
terms. In general, the series which appear need not be 
convergent in the sense in which the mathematician de- 
fines this term. The terms of these series can first decrease 
rapidly and then start increasing, since the accuracy de- 
sired by the astrodynamicist usually permits him to stop 
with the first several terms of the series long before these 
terms have ceased to decrease. The divergence of these 
series is inconvenient only if they are intended for giving 
an arbitrarily close approximation or if they are intended 
for rigorously establishing certain results, such as the 
stability of the motion under study. Furthermore, some 
of the mathematical processes which are used in develop- 
ing the theories are largely formal. While mathematical 
rigor is desirable when it can be attained, the use of 
formal processes is justified whenever the results, not 
obtainable otherwise, are useful for the prediction of 
physical phenomena. 

In Section IV, five perturbation theories are applied to 
the elementary problem of the damped linear harmonic 
oscillator in order to illustrate the mathematical processes 
involved and the advantages and disadvantages of each 
theory. This problem was chosen as an example because 
of its simplicity and the fact that an exact analytic solu- 
tion is obtainable. From the results of this section, the 
theory of the variation of coordinates with two variable 
asymptotic expansions and the theory of the variation of 
parameters with Taylor's series expansions are determined 
to be more desirable than the other theories. 
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In Section V, the two more desirable perturbation 
theories determined in Section IV are applied to the 
equations of motion of a satellite to obtain specific solu- 
tions. In studying the numerical accuracy of approximate 
solutions to problems without exact analytic solutions, 
the difficult question of the standard of comparison arises. 
As a result, it was decided to start the study of approxi- 
mate solutions of satellite motion on a simple case which 
has an exact analytic solution that can be used as the 
standard of comparison-the case where the initial con- 
ditions and the perturbative force yield the motion of an 
equatorial satellite about an oblate body (second har- 
monic only)-and work up to the more difficult cases, 
such as the motion of a satellite being perturbed by the 
asphericity of the central mass, atmospheric drag, and 
the gravitational attraction of the sun "simultaneously." 
The objective of this section is to analyze the satellite 
theories rather than the resulting motion, since the motion 
of an equatorial satellite about an oblate body has re- 
ceived enough attention already (Refs. 23, 49, 50, 71, 
110, 112, 132, 136, 163, 169, 172, 446, 517, 566, 597, 702, 
747,931,961,1035,1038, 1135, 1136,1286, and 1302). For 
purposes of additional comparison, the theory of special 
perturbations using the Cowell formulation with a fourth- 
order Runge-Kutta process is used to obtain the solution 
to this example. 

After the analysis of a simple case of satellite motion 
in Section V, Section VI considers the more realistic 
mathematical model of the satellite problem; that is, the 
case where the satellite is perturbed by the asphericity 
of the central mass (second harmonic only), atmospheric 
drag, and the gravitational attraction of the sun, 'simul- 
taneously, using the better of the two theories analyzed 
in Section V. Although Section VI is largely qualitative, 
it does outline the next important step in the investiga- 
tion of satellite theory in considerable detail. In addition, 
the solution to this particular force field should provide 
an excellent orbit prediction program that can be used 
to help place an artificial satellite in an orbit about Mars 
or Venus. 

The last section presents a summary of results and 
recommendations for further study. Finally, the bibli- 
ography presents probably the mqst complete list of 
references on satellite theory ever compiled. 

! I .  Theory of Mlultivariable Asymptotic 
Expansions 

The basic concept of the theory of multivariable asymp- 
totic expansions-the use of a distorted time scale in order 

to remove artificial secular or Poisson terms (terms intro- 
duced by the nlethod of solution)-was first used by 
Lindstedt in his studies of planetary theory (Refs. 818 and 
819). Later, Poincar6 provided the illathematical founda- 
tion for the use of this concept (Ref. 1056). More recently, 
Cole and Kevorkian generalized the work of Lindstedt 
and Poincar6 into the theory of two-variable asymptotic 
expansions (Refs. 289 and 668). I t  appears that in solving 
for the motion of a satellite being perturbed by more than 
one perturbation, the work of Cole and Kevorkian must 
also be generalized into the theory of multivariable asymp- 
totic expansions. Additional investigations into the use of 
multivariable (primarily two-variable) asymptotic expan- 
sions may be found in Refs. 290, 394-398, 6W667, 785, 
930, 1162, and 1274. 

A. Mathematical Concepts 

Although the mathematical foundation of the theory of 
multivariable asymptotic expansions is not yet perfect in 
the eyes of a pure mathematician, the approximate solu- 
tions obtained by this theory are very useful in practical 
applications and so warrant its use. (The theory of multi- 
variable asymptotic expansions is extremely similar to the 
theory of averaging as stated in Section I, and since the 
mathematical foundation of the theory of averaging is 
rigorously given by Bogoliubov and Mitropolsky in 
Ref. 150, the rigorous mathematical foundation of the 
theory of multivariable asymptotic expansions can be 
assumed as given there-implicitly-as well.) 

1. Order of a function. The mathematical measure of the 
magnitude of a function depending upon a vanishingly 
small parameter E in a perturbation solution is called the 
"order of the function." This concept provides a basis for 
determining the degree of approximation in a perturbation 
solution. The order of a function is indicated by the 
symbol 0 and is used as follows: 

x (t; E )  = 0 ( V  (E)) uniformly in t as E -+ 0 

for all t in the range of t, 

thAt is, if in comparing x (t; E) with some gauge function 
v (E) (whose limiting behavior is well known), the ratio 
x (t; E)/V (E) remains bounded as E -+ 0 for all t in the range 
of t. I t  should be pointed out that other order symbols 
exist having different meanings; for example, the symbol 
o (Refs. 407 and 1274). However, only the order symbol 0 
is used in this report. Furthermore, the gauge functions are 
always chosen herein to yield the sharpest degree of ap- 
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proximation; for example, ~ s i n t  = 0 (E) would be used 
rather than E sin t = 0 (1). 

The rules for algebraic operations with order symbols 
are given in Ref. 407; two of these rules used extensively 
in this report are as follows: 

(1) The order of a sum or difference is that of the dom- 
inant term; for example, 0 (E) I+ 0 (e2) = 0 (E), 

(2) The order of a product or ratio is the product or 
ratio of the orders. 

In general, order symbols may be integrated but not 
differentiated with respect to E or an independent variable. 
However, order symbols are assumed to be differentiable 
with respect to the independent variable herein. 

2. Asymptotic sequences atad expansions. The sequence 
of functions v j  (E) where j = 0,1,2, . . . is called an asymp- 
totic sequence for E +  O if, for each i, 

v j+i (E) lim - = 0 
< + o  V j  (€1 

A very useful asymptotic sequence, because of its 
simplicity and familiar properties, is (E) = d ,  where 
i = 0,1,2, . . . . Other examples of useful asymptotic 
sequences may be found in Refs. 290, 407, and 1274. 

The series 

J 

2 v j (E) x(j) (t) 
i = o  

is called an asymptotic expansion to J terms of x (t; E) as 
~ + O i f  

J 

x (t; E) = 2 v j  (E) x ( ~ )  (t) + 0 (vJt1(€)) as E + 0 
j = o  

(1) 

where v j  (E) is an asymptotic sequence as E +  0. The 
asymptotic expansion in Eq. (1) is called uniformly valid 
if the remainder in this equation is of 0 ( V ~ + ~ ( E ) )  uniformly 
in t (that is, for all t in the range of t). 

In general, infinite asymptotic expansions may either 
converge for some range of E or diverge for all E. The 
present investigation does not require that the asymptotic 
expansions be convergent, since the mathematical con- 
vergence depends upon the behavior of terms of in- 
definitely high order, which are usually never determined 
in practical applications. In general, the astrodynamicist 
calculates only the first few terms and hopes that they 
rapidly approach the true solution. 

The important characteristic of an asymptotic expan- 
sion is that the error is of the order of the first neglected 
term and therefore tends more rapidly to zero the smaller 
the size of E. For a fixed value of E, the error can be de- 
creased by adding terms; but if the series is divergent, a 
point is eventually reached beyond which additional terms 
increase the error. However, the values of E which appear 
in astrodynamics are so small that sufficient numerical 
accuracy is usually obtained, in the case of diverging 
series, before the point of increasing error is reached. 

It is clear from Eq. (1) that the error committed in ap- 
proximating x (t; E) by an asymptotic expansion of J terms 
is of 0 (v,,, (6)). Unfortunately, knowing the mathematical 
order of the error committed does not yield the actual 
numerical error committed, because no account is kept 
of constants of proportionality; that is, if the 

error = 0 (vJtl (E)) 

then the 

error = C vJcl (E) 

where C is finite but otherwise unknown. Theoretically, 
C can have any finite value (1; 10,000; 1,000,000; etc.). 
However, in practical applications, the proper choice of 
normalization constants and E usually yields constants of 
proportionality near unity (0 < C < 10) so that an estimate 
of the actual numerical error can be obtained. 

The series 

is called a multivariable asymptotic expansion to J terms 
of x (t; E) as E -+ 0 if 

where vj(e) is an asymptotic sequence as E-+ 0 and the 
variables f, . - . are functions of 6 multiplied linearly by 
time (for example, t=  t [ l  + e2 TZ f e3 r3 f 0 (c4)] and - 
t = t ~ [ l + ~ T + ~ ~ % f  0(e3)] where T Z , T ~ ,  . . .  and 
N - 
TI, TZ, . . . are constants). The variables 'i;E . . . are 
either of the fast variable type t or of the slow variable 
type Tand are formally treated as being distinct variables. 
The multivariable asymptotic expansion in Eq. (2) is called 
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uniformly valid if the remainder in this equation is of 
0 (vJ+,  (E)) uniformly in c K  . . . ; that is, for all t in the 
range of t .  

3. Unifortlzity conditiotzs. Two concepts are necessary 
for the success of the multivariable asymptotic expansion 
technique; they are the first and second uniformity con- 
ditions, discussed below. These correspond to what some 
investigators call boundedness conditions, a terminology 
that is misleading. 

The first uniformity condition states that an approximate 
solution, in the form of a multivariable asymptotic expan- 
sion, to a differential equation containing a small param- 
eter E can not contain secular or Poisson terms in the fast 
variable (or variables) if the solution to the same differen- 
tial equation with E = 0 does not contain secular or Poisson 
terms in the natural independent variable. Briefly, if the 
solution of the system with E = 0  is bounded, then the 
solution of the system with E # 0 will not contain secular 
or Poisson terms in the fast variable (or variables). How- 
ever, this does not imply that the solution of the system 
with E +  0 must be bounded, since secular and Poisson 
terms in the slow variable (or variables) are allowed; that 
is, growth or decay is possible but it must be slow. In this 
respect, to call this first concept a boundedness condition 
is misleading. 

It should be noted that the first uniformity condition 
can not be applied to the solution of a differential equa- 
tion that is unbounded for E = 0. For example, the time in 
the motion of a satellite about an oblate body can be 
determined in terms of angle variables, in which case 
the time will be proportional to the fast angle variable 
(time is an unbounded function). 

The second uniformity condition is a consequence of 
the definition of a uniformly valid multivariable asymp- 
totic expansion given in Section 11-A-2. It states that the 

V j + l  (E) x ( j t l )  (KT . . . ) 
lim = O  
E-- t  V j (€) x ( j )  (F,X . . . ) 

for any j and all t in the range of t .  The condition (3) 
implies that given any d > 0, there exists an such that 

V j + ,  (Ed) x ( j + l )  (El,%, . . 
v j  (€a) x ( j )  ($,&, . . . ) ) I  < d  (4) 

for any td in the range of t and any j. Now, if the ratio 
x ( j i l ) / x ( j )  in (4) contains a secular or Poisson term in any 
of the slow variables (like G) ,  assuming the secular and 

Poisson terms in the fast variables (like Fd) have been 
removed by the &st uniformity condition, then 

for some td regardless of how small ~d is taken to be, 
since there exists a td such that 

vj+l ( ~ d )  - 
td cos Fa 

vj ( 4  

etc., is of 0 (1). Thus, the ratio x ( j t l ) / x ( j )  can not con- 
tain secular or Poisson terms in the slow variables. How- 
ever, this does not mean that the x ( j )  ({T . . . ) can not 
have secular or Poisson terms in the slow variables; for 
example, if 

and 

then 

x ( l )  (KT . . . ) - 
x(o)(T,K.  . . ) - cos t' 

Hence, x ( j + l )  ( E  . . - ) can never become as large as 
x(j )  (<x . . . ) for any j ,  but x ( j )  (KX . . . ) can become 
large. In this respect, to call this second concept a bound- 
edness condition is misleading. 

Note that even if the first uniformity condition can 
not be applied (that is, if the solution to the unperturbed 
differential equation is unbounded) the second uniformity 
condition may still be used to eliminate nonuniform 
terms. As a result, the concepts of uniformity as used 
herein appear to be more flexible than those used by 
previous investigators (boundedness conditions), since 
even the unbounded function, time, in the motion of a 
satellite about an oblate body can be handled nicely (see 
Section V-C). 

4. Initially and uniformly valid expansions. The multi- 
variable asymptotic expansion given in Eq. (2) is called 
initially valid if the remainder in that equation is of 
0 (vJ+, (E)) uniformly in Ez . . . only over the initial por- 
tions of their ranges; that is, for all t in the range O L t  < tl 
where t ,  is finite (the entire range of t is assumed to be 
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O G t < co). It is always possible to find an initially valid 
multivariable asymptotic expansion but it may not always 
be possible to find a uniformly valid multivariable asymp- 
totic expansion. 

B. Development of Solution 

The motion of a satellite about a central mass is gov- 
erned by three second-order ordinary nonlinear differen- 
tial equations characterized by the presence of small 
accelerations active for a long time; that is, 

where r is the radius vector from the dynamical center 
(usually the center of the central mass) to the satellite, 
p, is the mass function, and k' represents the perturbative 
accelerations, which act upon the satellite and are small 
relative to (dZr)/(dt2) and pp (r/r3). The initial conditions 

as well as the physical constants such as p,,,J2, etc., are 
known (orbit prediction problem). 

Most satellite theol-ies yielding solutions in terms of 
the small parameters measuring the perturbative accel- 
erations and one time variable are not uniformly valid 
for the complete time interval 0 L t < co due to the 
cumulative action of the small accelerations. However, a 
satellite theorv that uses asymptotic expansions in terms 
of several time variables appears to provide a means of 
obtaining uniformly valid solutions for the complete time 
interval 0 4 t < c~ . 

The physical significance of various time variables (for 
example, the fast time variable based upon the period 
of unperturbed motion, the slow time variable based upon 
the decay time, etc.) will become clear from the discus- 
sion of the damped linear harmonic oscillator in Sec- 
tion IV. The classical problem of the damped linear 
harmonic oscillator has been chosen because of its sim- 
plicity, because its exact analytic solution is obtainable, 
and because of its similarity to the satellite problem (with 
damping by drag). The various time variables have phys- 
ical significance since they are based upon dimensional 
physical constants that enter into the differential equa- 
tions of motion. Furthermore, each of the small param- 
eters of the problem can be expressed as a ratio of two 
of the significant time scales of the problem. 

The "customary" development of the solution to the 
equations in (5)  begins with a dimensional analysis to 
determine the normalization constants, perturbative pa- 
rameters, fast time scales, and slow time scales. The dif- 
ferential equations of motion are then normalized accord- 
ingly. Next, multivariable asymptotic expansions of the 
form shown in Eq. (2) are assumed to approximate the 
solution uniformly in time; that is (using vector notation), 

where E is the perturbative parameter. From Eqs. (6), the 
first and second derivatives of r (t; E) are obtained by 
formal differentiation (it is not, in general, permissible 
to differentiate asymptotic expansions): 

dr dJ3 -, 
- (t; E) = - (t, t, . . ' ; E) 
dt dt 

and 

d2 r d 2 R  -- 
- (t; E) = - (t, t, . . ' ; E )  
dt" at2 

a2r(j) -, + 7 (t, t, . . ' )[g(.)I2+ . . .) 

where 

are treated as distinct variables, and the functional de- 
pendencies of x i :  . . . upon E and t have been previ- 
ously chosen (however, the pxoportionality constants have 
not been determined as yet). Equations (6),  (7), and (8) 
are introduced into Eqs. (5) (properly normalized), after 
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which terms of like powers of E are combined. Since the A. Principal Concepts 
expansions must hold (at least in an asymptotic sense) Three principal concepts arise in the theory of the 
for arbitrary values of the perturbative parameter E, the variation of parameters: an osculating orbit, perturbative 
coefficients of the powers of E must separately equal zero. differentiation, and instantaneous parameters. 
Setting these coefficients equal to zero yields second- 
order partial differential equations in the r( j )  which, be- 
cause of their special form, can be solved in sequence 
(,to) -+ r( l )  -+ r(,) -+ etc.) by using the theory of ordinary 
differential equations. The initial conditions r(j) (O,0, . . . ) 
and (ar(j)/a$ (O,0, . . . ) necessary for the complete solu- 
tion of the partial differential equations are obtained by 
evaluating Eqs. (6) and (7) at  t = 0 (then t= 0, r= 0, . . ), 
by using the known initial conditions r (0; E) and 
(dr/dt) (0; E), by combining terms of like powers of E, 

and by setting the coefficients of the powers of E sepa- 
rately equal to zero. During the sequential solution of 
the partial differential equations, secular or Poisson terms 
usually arise in the r(j) which are eliminated by using 
the uniformity conditions discussed in Section 11-A-3 and 
the arbitrary constants of proportionality arising from the -- 
t, t, . . . . Thus, the flexibility introduced into the satel- 
lite theory by using several time variables is necessary 
in order that a uniformly valid solution can be obtained'. 
The r( j )  and the fully determined time variables are now 
introduced into Eqs. (6), yielding the required solution. 

I t  should be pointed out that the natural independent 
variable, t, in Eqs. (5)  can be transformed into an inde- 
pendent angle variable and the concepts previously dis- 
cussed would still be applicable (in this case, there would 
be distinct fast and slow angle variables). 

Ill. Theory of Variation of Parameters 

The basic concept of the theory of the variation of 
parameters (also called the variation of elements or the 
variation of constants)-the use of an osculating orbit (or 
trajectory)-was first used in the middle of the eighteenth 
century by Euler in his studies of the mutual perturba- 
tions of the planets Jupiter and Saturn (memoirs by 
Euler). In this work, Euler did not consider all the orbital 
elements as being variable simultaneously, and thus the 
complete development of this theory was given for the 
first time by Lagrange in 1782 during his investigation 
of comets moving in elliptical orbrts (Ref. 786). Since 
then, the theory has been used extensively by astrono- 
mers and a~trod~namicists. Nearly all the textbooks on 
celestial mechanics or astrodynamics d%scuss this theory; 
for example, detailed discussions may be found in 
Moulton (Ref. 936), Herrick (Ref. 564), or Brouwer and 
Clemence (Ref. 205) (the discussions in this section follow 
those of Moulton and Herrick). 

1. Osculating orbit. Consider the motion of a spherical 
body of mass m relative to a much more massive spherical 
body of mass %, so that the only force acting upon the 
smaller mass is the force of attraction of the central 
mass m,. According to the results of the two-body prob- 
lem, the path of motion of the smaller body will describe 
a conic section C ,  whose elements are uniquely deter- 
mined from the initial cond'itions r, and io as shown in 
Fig. 3. Suppose that when the smaller body arrives at  
the position r,, it becomes subject to an instantaneous 
impulse of intensity I, as shown. The position r, and the 
velocity i, (after the impulse) deternline a new conic 
section C, in which the smaller body will move until it 
is again disturbed by some external source. Suppose that 
when the smaller body arrives at the position r,, it be- 
comes subject to another instantaneous impulse of inten- 
sity I ,  as shown. The position r, and the velocity i-, (after 
the impulse) determine a new conic section C, in which 
the snlaller body will move until it is again disturbed by 
some external source. Assuming that additional impulses 
occur at subsequent positions, the smaller body will be 
moving in conic sections which change from time to time 
as a result of the disturbing impulses. Finally, suppose 
that the instantaneous impulses become very small and 
that the intervals of time between them become shorter 
and shorter so that, in the limit, the impulses become a 
continually disturbing force and the path of motion be- 
comes a continually changing conic section. This continu- 
ally changing conic section is called the osculating orbit 
in this report. 

Fig. 3. Osculating orbit of mass m 
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According to this concept, the smaller body is always 
moving in a conic section, but in one that changes at each 
instant. The osculating orbit is tangent to the path of 
motion at every point and the velocity associated with 
the osculating orbit at the point of tangency is the same 
as the actual velocity of the smaller mass at that point. 
The parameters (or elements) of the osculating orbit are 
called instantaneous or osculating parameters (or ele- 
ments). The osculating orbit may be visualized as rolling 
along the path of motion of the smaller body (varying 
in the parameters that describe the size, shape, and orien- 
tation of the conic section) in such a way that the actual 
position and velocity of the smaller body can be calcu- 
lated from the instantaneous values of the parameters 
of the osculating orbit at each instant by simple Keplerian 
formulas (two-body formulas). If, a t  an instant, all dis- 
turbing forces are removedl (instant of osculation), the 
smaller body would move in a conic section characterized 
by the instantaneous parameters at that time. 

The perturbations are the differences between the 
Keplerian parameters of the osculating orbit at the start- 
ing epoch (the classical reference or intermediate orbit) 
and those at  the instant of osculation and may be ob- 
tained by integrating the variations of the parameters for 
the given interval of time. It  should be pointed out that 
the reference (or intermediate) orbit does not have to be 
the osculating orbit at the starting epoch but may be 
some kind of a continually changing approximation. In 
this case, the perturbations would be the differences 
between the parameters of this approximation and the 
parameters of the osculating orbit at the instant of 
osculation. 

2. Perturbative diflerentiation. Consider the variation 
(time-derivative) of any function f (p,, p,, . . . , pj, t) of 
the type that may arise in the theory of the variation 
of parameters, as the sum of two parts; that is, 

where p,, p,, . . . , p j  are the instantaneous parameters 
of the osculating orbit which vary only because of the 
disturbing forces ( j  --L 6) and where all the variables have 
been normalized using the proper length and time scales. 
The function f (f-dot) is the Keplerian or two-body vari- 
ation that remains at the instant of osculation if all the 
disturbing forces are suddenly removed, and the function 

f '  (f-grave) is the perturbative variation caused by the 
disturbing forces. Accordingly, since 

Eq. (9) yields 

There are three types of variations which arise in this 
theory, namely, 

df . - -  
nt 

- f where f ' = 0, (11) 

f - 
dt 

= f ' where f = 0, 

nf - = j + f ' where both parts exists. 
d t  (13) 

Since the velocity associated with the osculating orbit at 
the point of tangency is the same as the actual velocity 
of the disturbed body at that point, 

so that the components of dr/dt in an inertial coordinate 
system are of the first type, Eq. (11). Variations of the 
second type, Eq. (12), arise for parameters that would 
be constant in Keplerian motion such as a, e, i, w, and so 
that the variations are due only to the disturbing forces, 
that is, 

da - d e - - a',- - 
dt  dt 

- e' , etc. 

where 
. . a = e = .  . . = O  

Variations of the third type, Eq. (13), arise for parameters 
that are referred to perturbed reference directions such 
as u, M, E and for all accelerations; that is, 

and (16) 
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Two techniques are available for obtaining the per- 
(,,\ = - 

turbative part of the variation of a function f (the 
Keplerian part is either known or can be easily obtained). 

;.2 .\ 
The first technique consists of developing the total vari- +-li('+ l j s i n v  
ation of the function, df/dt, and then removing the e ( ~ 1 %  (21) 

Keplerian part; that is, 

AX 

1" b\ sin u Q'=p.x 
, - u,l f -z-f and 

The second technique consists of using perturbative M ' =  - ( I - e 2 ) s  a '+  a ' c o s i + -  ( $') (2.3) 
differentiation as developed by Herrick (Ref. 564). Per- 
turbative differentiation consists of taking the grave where 

derivative of a given relationship in which only the vari- i ' = i . ' ~ + r $ ~ + r & ~  
ations due to the disturbing forces are considered and in 

(2,424) 

which Eq. (14) is used. For example, consider the vis viva The Keplerian variations of these parameters are 
integral (Ref. 564) in nomlalized variables, 

( ; = ; x i = ; =  &i = o r  

Using perturbative differentiation, one obtains 

since 1" = 0 from Eq. (14). Henceforth, perturbative dif- 
ferentiation will be used in obtaining the perturbative 
part of the variation of a function. 

3. Instantaneous parameters. In general, six instanta- 
neous parameters are required to describe the osculating 
orbit completely; for example, a, e, i, W, a ,  and M .  Using 
perturbative differentiation, the following perturbative 
variations of the illustrative parameters may be obtained 
(Ref. 564) in normalized coordinates and parameters: 

and 

The instantaneous parameters are obtained by proper 
integration of their variations; that is, 

and 

(18) (It should be noted that Eqs. (26) are intended as an 
illustration and are not intended to represent the best 
set of integral equations that may be used.) In the case 

e \ = " ( ~ s i n v ) + $ [ ( ~ + l ) c o s v + e ]  of Keplerian motion, the elements a, e, i, a, n , and M ,  have 
PIh specific geometrical significance (they describe the size, 

(19) shape, and orientation of the orbit) but in the case of 
perturbed motion, the corresponding instantaneous ele- 

p ments lose their geometrical significance and are to be 
i\ = - cos ti 

p% (20) regarded merely as parameters in terms of which the 



theory is developed (in general, it becomes impossible to 
define elements of the actual orbit). 

B. Development of Solution 

The differential equations of motion of a satellite about 
a central mass are, from Section 11-B, 

d 2 r  r 
-+ ,Lp- -P=O 
dt' rJ 

where the initial conditions 

and the physical constants are known. As in Section 11-B, 
the development of the solution begins with a dimensional 
analysis to determine the normalization constants, pertur- 
bative parameters, and possibly the fast and slow time 
scales. The differential equations of motion are then 
normalized accordingly and transformed into six first- 
order differential equations. The next step consists of 
selecting the reference (or intermediate) orbit and the 
remaining steps in determining the perturbations of vari- 
ous orders for this reference motion. 

The reference orbit, or reference motion, can be chosen 
in such a manner that the most important perturbing 
forces are included (at least partially) in the differential 
equations describing the reference motion. Then, the 
nature of the motion is more or less defined and only 
small corrections remain to be introduced subsequently; 
that is, the departure of the actual motion from the ref- 
erence motion chosen would be small. It should be 
pointed out that the expressions describing the reference 
motion must be reasonably simple so that they can be 
easily manipulated. Reference orbits are classified either 
as dynamical reference orbits (closed-form solvable orbits 
of given potential functions) or as geometrical reference 
orbits (orbits that are defined by specific parameters and 
their variations but that do not necessarily satisfy any 
potential function). 

At this point of the discussion, it is necessary to differ- 
entiate between the development of the solution with 
Taylor's series expansions and the development of the 
solution with multivariable asymptotic expansions. 

1 .  With Taylor's series expansions. In this development, 
the three second-order ordinary nonlinear differential 
equations given above are transformed into the six stan- 

dard first-order ordinary differential equations (highly 
coupled) in terms of the instantaneous parameters of the 
osculating orbit; for example, Eqs. (18-23) and (25) (the 
transformation process is illustrated during the analysis 
of the damped linear harmonic oscillator in Section IV). 
The radial (i.'), orthogonal (or circumferential) (Id'), and 
normal (~7;') components of the perturbative acceleration 
i' are known (assuming the mathematical model of the 
satellite motion has been defined) and can be expressed 
in terms of the instantaneous parameters. Furthermore, 
the functions p/r, (p/r) sin v,  ( p / ~ ) ~ ,  etc., appearing in 
Eqs. (18-23) can be expressed in terrns of the instan- 
taneous parameters (Ref. 564) so that the variations 
a', e', i', u', n '  and M' can be expressed entirely in terms 
of a, e, i, U ,  n ,  and M; for example, 

a' = a' (a, e, i, W, n , M) 

Introducing these expressions for the variations into 
Eqs. (26) yields six integral equations in terms of the 
six unknown osculating parameters a, e, i, o, 0 ,  and M, 
which cannot, in general, be solved in closed form. As a 
result, a process of approximation must be used. 

The process of approximation is based upon the devel- 
opment of a reference orbit and associated reference 
parameters that approximate the actual instantaneous 
orbit and associated actual instantaneous parameters suf- 
ficiently well so that Taylor's series expansions may be 
used to obtain the actual instantaneous parameters from 
the reference parameters. Let the state of the actual orbit 
at some arbitraly time t be represented by the state vector 
q (a,, e, i, o, n , M). Then, from Fig. 4, 

where q is the reference state vector at the time t and 
~q is the difference between the actual state vector and 
the reference state vector at time t. The ~q is obtained 
from Taylor's series expansions about ij using the deriva- 
tive (known in terms of a, e,  i, W, n ,  M) 

where q represents the Keplerian variation of the state 
vector, Eq. (25), and q' represents the perturbative vari- 
ation of the state vector, Eqs. (18-23) after transfoma- 
tion into expressions in a, e, i, w, a ,  and M. In order to 
insure that ~q be small, the reference state vector q must 
contain all the secular and zero-order periodic terms (as 

JPL TECHNICAL REPORT 32- 1267 



~ \ G I V A L  r u J 1 1  IUIY HIYU VCLUCII  T 

REFERENCE ORBIT AT TIME t A 
REFERENCE POSITION 

VELOCITY AT TIME t 
AND 

OSCULATING ORBIT AT t = 0 

Fig. 4. Reference orbit 

well as resonance terms) that may arise. Hence, the first- 
order perturbations would contain first-order periodic 
terms, the second-order perturbations would contain 
second-order periodic terms, etc. Through the use of these 
concepts, each of the instantaneous parameters is obtained 
in the form of an infinite series of terms of increasing order 
in the perturbative parameter E; for example, 

a (t; E) = Z(t; E) 4- a( l )  (t; E) + a(2 )  (t; E )  + 0 (E3) 

The position and velocity is then obtained by using sim- 
ple Keplerian formulas; for example, 

M (t; E) = E (t; E) - e (t; E) sin E (t; E) 

and 

1. (t; E) = a (t; E) [l - e (t; E )  cos E (t; E)] 

These concepts and this development are illustrated in 
detail during the analysis of the damped linear harmonic 
oscillator in Section IV-F. 

2. With multivariable asynzptotic expansiot~s. In this 
development, a special functional transfolmation is 
chosen in such a manner that the three second-order 
ordinary nonlinear differential equations are transformed 
into six first-order ordinary differentikl equations (highly 
coupled) in terms of the instantaneous parameters of the 
osculating orbit but having a special form. The six first- 
order ordinary differential equations are of the form 
where fast time variables (excluding the natural inde- 
pendent variable of time) and slow time variables may 
be used as indicated by the fast and slow time scales 
arising during the dimensional analysis of the original 

differential equations of motion. Next, multivariable 
asymptotic expansions of the form shown in Eq. (2) are 
assumed to approximate the solution uniformly in time; 
that is (using the concept of the state vector), 

The subsequent developn~ent follows that of Section 11-B. 
In this manner, the instantaneous parameters are ob- 
tained in the form of asymptotic expansions that can be 
introduced into the expressions relating the instantaneous 
parameters to the original coordinates to obtain the posi- 
tion and velocity of the satellite in the folnl of asymptotic 
expansions. These concepts and this development are 
illustrated in detail during the analysis of the damped 
linear harmonic oscillator in Section IV-G. 

I t  should be pointed out that the natural independent 
variable t in the original differential equations of motion, 
Eqs. (5), can be transformed into an independent angle 
variable and the concepts discussed in this and the pre- 
vious sections would still be applicable. 

IV. Motion of a Damped Linear Harmonic 
Oscillator 

The mathematical basis for a perturbation theory is 
often obscured by the number of variables and the com- 
plicated expressions that must be used in obtaining an 
approximate solution to a problem. Many of the essential 
features of a theory can be illustrated by analyzing a sim- 
ple example that is not subject to the complexities of 
many variables and involved expressions. Such an example 
is that of the damped linear harmonic oscillator. The 
physical nature of this problem is quite simple and its 
exact analytic solution is easily obtained (a desirable fea- 
ture if numerical and behavioristic comparisons are to 
be made). 

A. Mathematical Model 

Consider the motion of a body of mass m restrained 
by a linear spring and damped by a force proportional 
to the speed as shown in Fig. 5. The symbols C,, Cg, and 
C, represent the spring constant, damping coefficient, and 
friction-of-rolling coefficient (assumed to be zero or in- 
cluded in Cd), respectively. 
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EQUILLBRIUM POSITION Introdt~cing Eqs. (32) and (33) into Eq. (29) yields 

Fig. 5. Damped linear harmonic oscillator 

The displacement of the mass is designated as x and 
is measured from the position of equilibrium of the mass 
(positive to the right), and the independent variable is 
chosen as the time t. Since the damping is assumed to be 
small, the motion is one of damped harmonic oscillations 
and is therefore bounded. Hence, the differential equa- 
tion of motion and the selected initial conditions are 

d2x dx 
m-+C,x+2Cd-=O 

dt" d t  

and 

where 

The first step in solving this system of differential equa- 
tions is to normalize the variables by means of appropriate 
normalization constants for length and time (the length 
and time scales). The appropriate constants are deter- 
mined by introducing normalized variables x* and t* into 
Eq. (29) and requiring that all coefficients be unity except 
for the coefficient of dx*/dtY, which should be a function 
of a small parameter E .  

Let 

where L ,  and T, represent the length and' time scales, 
respectively. Then 

at* - 1 dx dX* dt* - - -  - - L, dx* 
at T ,  , dt - LI-- = -- dt* at T I  at* 

and } (33) 

n?,I;, dzX* 
-- CdLl dx* 

T2 &*2 f CsL1x* + 2 - - = 0 
1 T ,  dt" 

Equation (34) shows that L, is arbitraly at this point, 

from which 

Cd T ,  = ( ~ ) ' h  and E = --- 
(C,m)'."L 

The small parameter E has an interesting physical inter- 
pretation, which can be seen by rewriting the second 
equation in (35) as 

The dimensions of the mass m and the damping coeffi- 
cient Cd are (using the brackets around the symbol to 
indicate "the dimension of") 

mass 
[m] = mass and [Cd]  = - time 

so that a second characteristic time scale appears, namely, 

Hence, the small parameter E becomes, using Eqs. (37) 
and (38) 

T1 E = -  
T ,  (39) 

the ratio of two characteristic time scales. The physical 
significance of these two time scales is clear. The time 
scale T I  is a measure of the period' of the oscillatory 
behavior of the system produced by the spring (charac- 
teristic time for the primary oscillations), while the time 
scale T 2  is a measure of the period after which the cumu- 
lative effects of damping become important (character- 
istic damping time). The ratio E is a measure of the 
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relative importance of the spring and damping forces and and independent variables, Accordingly, Eqs. (43), (44), 
is small as required since the damping is assumed small; and (45) become 
that is, 

Cd < < (C,m)'h and thus E < < 1 (40) 

as can be seen from the second equation in (36). Further- and 
more, (39) and (40) show that 

d2x dx 
- + x + 2 e - = O  dt" dt  

so that T, characterizes the fast variation of x(t; E) and 
T, characterizes the slow variation of x (t; E). Conse- 
quently, T, is the fast time scale and T, is the slow time O I t <  oo 
scale. The existence of these two time scales in the physi- (48) 

cal context of the problem is a fundamental feature of 
and where the units of x are initial positions x, and the 

the method of multivariable asymptotic expansions and 
units of t are periods of undamped oscillation, 

will be discussed in more detail in Section IV-D. 

Finally, the length scale is chosen as the initial posi- 
tion xo since this is the only dimensional constant appear- 
ing in the mathematical model with a dimension of - 

length; that is, B. Exact Solution 
A 

L1 = x,, (42) The exact solution of Eq. (46), subject to Eqs. (47) 
and (48), is easily obtained using the theory of ordinary 

Introducing Eqs. (35) into Eq. (34) and using L, and T, differential equations. Rewriting Eq. (46) yields 
from Eqs. (42) and (36), respectively, in Eqs. (30) and 
(31) yields the following differential equation of motion d2x dx 

- + & - + x = o  and initial conditions in normalized variables: dt2 dt 

d2X" d P  

dt*" 
-+  x * + ~ E - = O  

dt4 (43) 
SO that the auxiliary equation is 

and 

which implies 

(44) 
-2E f (4E2 - 4)M 

w =  2 where 

w =  - ~ + i ( l - - ~ 2 ) %  Rather than use the cumbersome star notation in the fol- 
lowing analysis, let x* and t" be replaced by the original 
x and t with the understanding that now the units of x since E < < 1. Hence, the general solution is 
and t are initial positions and periods of undamped oscil- 
lation, respectively, as may be seen from Eqs. (32), (36), x ( t ; ~ )  = Clexp{[-E + i ( l  - t )  
and (42). Thus, the normalization procedure may be 
thought of as simply a change of units of the dependent + C,exp{[-E-i(1 - ~ ~ ) * h ] t )  
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and 

x (t; E) = e-Et [C3  cos (1 - e2)3"L + CCq sin (1 - 9 ) s  t] 
dzX dZX(0)  dzx(l) 

- - - - 
dt" dt' + 6- 

dt" 
+ 0 ( 2 )  

(49) 
Introducing Eqs. (53), (54), and (55) into Eq. (46) and 

Evaluating Eq. (49) at t = 0 and using the first equation combining like powers of E, one obtains 
in (47) yields 

(50) CB = 1 

Differentiating Eq. (49) with respect to t once, evaluat- 
(56) 

ing at t = 0, and using the second equation in (47) yields Since the expansion (53) must hold (at least in an asymp- 
totic sense) for arbitrary values of the perturbative param- 

E eter E, the coefficients of the powers of E in Eq. (56) 
C' = (1 - € 2 ) ~  (51) must separately equal zero. ~ h u s ,  

Finally, with the introduction of Eqs. (50) and (51) into 
Eq. (49), the general solution becomes 

1 E 
x (t; E) = CEt COS (1 - E2)% t + 

(1 - E2)'h 
sin (1 - C ) H ~  J 

(52) and so forth. The initial conditions necessary for the 
complete solution of these differential equations are ob- 

where O L t  < m a  The speed dx/'dt is not determined tained by evaluating E ~ ~ .  (53) and (54) at t = 0, by 
explicitly here nor in the following sections but is easily using the initial conditions (47), by combining terms of 
obtained by differentiating x(t; E) with respect to t. like powers of E, and by setting the coefficients of the 

powers of E separately equal to zero. Thus, 

C. Solution Using Variation of Coordinates With a 
One-Variable Asymptotic Expansion 

and 
Consider the classical perturbation theory, used to 

obtain approximate solutions to highly nonlinear prob- dx" dx(u 0 = - (0) + 
dt  

E - (0) + 0 (€2) 
lems in celestial mechanics, which consists of assuming dt  
a solution to Eq. (46) in the form of a one-variable so that 
asymptotic expansion; that is, 

x (t; E) = do) (t) + EX(') (t) + 0 (E2) (53) 

dx(l) 
and sequentially solving for the functions of time x(O) (t), x(') (0) = 0 ,  dt (0) = 0 
x(l) (t), etc. Note that x(O) (t) can be thought of as the 

(60) 

reference motion, and EX(') (t), E ~ x ( ~ )  (t), etc., can be and fol-th. 
thought of as the perturbations to the reference motion. 
Also, note that the reference motion is simply the unper- me solution to E ~ ,  (57) is 
turbed motion of the system; that is, the motion of the 
system with E = 0. x(O) (t) = Bo cost + C, sin t (61) 

Differentiating Eq. (53) with respect to t yields and, by differentiation, 
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Evaluating Eqs. (61) and (62) at t = 0 and using Eqs. (59), 
one obtains 

B, = 1 and Co = 0 (63) 

so that Eq. (61) becomes 

x(O' (t) = cost (64) 

Thus, the reference motion is simple harmonic motion. 
Introducing Eqs. (63) into Eq. (62) and the results into 
Eq. (58) yields 

dZ2(1) 
at2 
- + x(l, = 2 sin t 

The solution to the corresponding homogeneous differ- 
ential equation is 

and a particular solution, from (A-4) in Appendix A, is 

xg) = -tcostsothat 

x(') (t) = B, cost + C, sin t - t cos t (66) 

Differentiating Eq, (66) and combining terms yields 

B,) sin t + (C, - 1) cos t (67) 

Evaluating Eqs. (66) and (67) at t = 0 and using Eqs. (60), 
one obtains 

so that Eq. (66) becomes 

x(l) (t) = sin t - t cos t (68) 

Similarly, the remaining terms of the asymptotic expan- 
sion (53) may be obtained. Introducing Eqs. (64) and 
(68) into Eq. (53) yields 

x (t; E) = cos t + E (sin t - t cos t) + O (E') (69) 

Equation (69) shows that the asymptotic expansion of 
the form (53) to 0 (E) contains a short-period perturba- 
tion, E sint, and a Poisson perturbation, - ~ t  cos t. The 
Poisson perturbation implies that x (t; E) decreases indefi- 
nitely with the time (both 1 cost lL 1 and I sin t 16 1). 
However, since ~ ( t ;  E) is known to be bounded from 
Section IV-A, the Poisson perturbation is not basic to the 

nature of the problen~ but only to the perturbation theory 
used. The expansion (69) is only an approximate expres- 
sion used for x(t; E), which is useful for a limited time 
only (initially valid). It appears that there are higher- 
order Poisson perturbations which, when included, would 
sum to a bounded function just as 

cEf cos (1 - e2)W t = cos t - et cos t + 0 (e2) 

is a function whose nu~nerical value does not exceed unity 
although a consideration of its expansion in the form of 
Eq. (53) to 0 (E) would lead to the conclusion that it 
decreases indefinitely with the time t. In order to show 
that this is the case, consider the series expansion of the 
exact solution given in Eq. (52) for E < < 1 and O l d  t L t,; 
that is, using Taylor's series (about t = O), 

+ [E + 0 (E')] sin [ l  - 0 (c3)] t )  

x (t; E) = cos t + E (sin t - t cos t) + O (E') (70) 

The expansion given in Eq. (70) is the initially valid 
expansion of Eq. (52) to 0 (E); that is, (70) approxi- 
mates (52) sufficiently well only over a finite time interval 
0 4 t 4 t, since the representations of the functions 
e-Et, cos (1 - E')% t, and sin (1 - ~ 9 %  t by finite numbers 
of terms of Taylor's series (about t = 0) are not accurate 
for large times. Comparing Eqs. (69) and (70), it is clear 
that Eq. (69) is an initially valid asymptotic expansion of 
Eq. 52). Furthermore, the nonuniform representation of 
the term e-Etcos (1 - e2)$$t in Eq. (52) introduces the 
Poisson perturbation, - ~ t c o s  t, into Eqs. (69) and (70) 
(a representation of a term is said to be unifolmly valid 
if the representation is valid for any time t in the entire 
range of t). The appearance of a secular or Poisson per- 
turbation in an approximate representation of a bounded 
function implies a nonuniform representation of some 
term in that function since all secular and Poisson per- 
turbations are unbounded. 

In general, an asymptotic expansion of the form of 
Eq. (53) leads to an initially valid approximation of the 
solution. Since the objective of this investigation is to 
obtain a satellite theory that will predict the position and 
velocity of a satellite to a sufficiently high accuracy even 
after many revolutions about the central mass (t > > O), 
the perturbation theory aescribed in this section is un- 
acceptable (Laplace and Lagrange realized the inade- 
quacies of this perturbation theory during their studies 
of the perturbations of the planets; see Section I-A-3). An 
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acceptable perturbation theory is one which yields a uni- reference motion is not necessarily the unperturbed mo- 
formly valid approximation of a solution; that is, the tion of the system, since both F and Treflect the effects 
approximation does not contain nonuniform representa- of the perturbative parameter e.  
tions of terms in the exact solution. 

As mentioned in Section 11-A-2, the convergence of the 

D. Solution Using Variation of Coordinates With a 
Two-Variable Asymptotic Expansion 

In this section, the perturbation theoiy of the previous 
section is modified in such a manner that an acceptable 
perturbation theory is obtained. 

1.  Selection of coordinates and independent variable. 
The natural coordinates x (t; E) and dx/dt are chosen as 
the coordinates, and the natural independent variable t 
is chosen as the independent variable. 

2. Equation of motion. The differential equation of 
motion and initial conditions, for the coordinates and 
independent variable chosen (properly normalized), are 
given by Eqs. (46), (47), and (48); that is, 

d2x dx 
- + X + 2 E - - = O  
dt" dt 

and 

where 

3. Development of solution. Consider the perturba- 
tion theoly which consists of (1) assuming a solution to 
Eq. (46) in the form of a two-variable asymptotic expan- 
sion, that is, 

x (t; €) = X (f 2; 3 5 do) ( K i j  + EX(') (ii) 
+ E2x(" (Eq + 0 (e3) (71) 

where 

asymptotic expansion (71) is of no interest in this investi- 
gation. The important objective is that the approximation 
of the solution by a finite number of terms of an expan- 
sion illustrate all the essential features of the motion and 
provide a close numerical approximation to the exact 
result for all time t in the range of t, 0 L t  < c ~ ,  assum- 
ing the parameter E is sulfficiently small (the previous 
perturbation theory failed in this respect). 

The need for "two" distinct time variables t a n d  Twas 
indicated in Section IV-A by the occurrence of the two 
independent time scales, TI and T,, in the physical con- 
text of the problem. The time variable Tis a fast time 
variable normalized by using the fast time scale TI, as 
may be seen from Eq. (72), by returning to natural time 
units and using the second equation in (32), 

The time variable ?is a slow time variable normalized 
by using the slow time scale T,, as may be seen from 
Eq. (73), by returning to natural time units and using 
t" = t/T1 from Eqs. (32) and Eq. (39), 

The distinct variable 5 is the variable close to t that is 
introduced to account for the frequency shift appearing 
in Eq. (52) due to the generalized damping, as is done 
in the Lindstedt-Poincar6 theory for periodic solutions. 
The distinct variable 7 is the slowly changing variable 
that is introduced to account for the slow modulation of 
the oscillations appearing in Eq. (52); that is, the slow 
decay. 

(72) For conciseness, the following notation is adopted: 
- A  
t = ~t (73) axcj) axcj) azxcj) 

1 - - =  ,gj) = T ,  "-1) = -=- 

and the T ~ ,  . . . are undetermined constants, and (2) 
at atz 

sequentially solving for the functions xt") (cq, x(') (cq, a z x t j )  a z x ( j )  (74) 
=v-=x(i) =-- 

etc., using the concepts discussed' in Section 11-A. Note at at Y1 a? 
that x(") (cq can be thought of as the reference motion 

where 
and (Ct), e2x(2) (53, etc., can be thought of as the 
perturbations to the reference motion. Also, note that the i=0 ,1 ,2 ,  . . 
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Differentiating Eq. (71) with respect to the natural inde- 
pendent variable t and using the notation in Eqs. (74) 
yields 

Differentiating Eqs. (72) and (73) with respect to t yields 

Introducing Eqs. (76) into Eq. (75) and combining like 
powers of E, one obtains 

Differentiating Eq. (77) with respect to the natural inde- 
pendent variable t and dsing the notation in Eqs. (74), 
one obtains 

dF dF  dF 
+ - + X ( l )  - + X ( 2 )  - + X ( 2 . )  - dq + 0 (€3) 

d t  '"t l1 d t  '"t 

Introducing Eqs. (71), (77), and (79) into the differential 
equation of motion (Eq. 46), and combining like powers 
of E yields 

Since the expansion (80) must hold (at least in an asymp- 
totic sense) for arbitrary values of the perturbative pa- 
rameter E, the coefficients of the powers of E in (80) must 
separately equal zero. Thus, 

and so forth. The initial conditions necessaly for the 
complete solution of these partial differential equations 
are obtained by evaluating Eqs. (71) and (77) at t = 0, 
by using the initial conditions (Eqs. 47), by combining 
terms of like powers of E, and by setting the coefficients 
of the powers of E separately equal to zero. Thus, since 
t= 0 and T= 0 when t = 0 from Eqs. (72) and (73), 

and 

so that 

xt2) (0,O) = 0 ,  xi2) (0,O) = - xi1) (0,O) - r2 X Y )  (0,O) 

Introducing Eqs. (76) into Eq. (78) and combining like (86) 
powers of E, one obtains 

and so forth. 

d2x 
dl." 
- = xi;) + E (2x1;) + x;:)) The general solution to Eq. (81), 
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and a particular solution, from (A-3) and (A-4) in 
Appendix A, is 

X ( O )  (63 = B ( O )  @ cos t+  C ( O )  @ sin t (87) -- 
xF) ( t , t )  = - -- 

In solving the partial differential equation (Eq. 81), Tcan 
[d:F + c ( O )  ;sin? 

be thought of as a parameter rather than an independent 
variable since the partial derivative with respect to Fdoes 

dBCO) - -  

I 
[ dr + B ( ' ) ]  FCOST (92) 

not appear. Hence, the theory of ordinary differential 
equations may be used, remembering that any constants SO that 
which ordinarily would appear must be functions of the (Eq = (3 cos t + C ( l )  (r2j sin 't- 
parameter iT This phenomenon is an essential character- 
istic of the theory i f  muItivariable asymptotic expansions. - 

Taking the partial derivative of Eq. (87) with respect 
to f one obtains - [s + B ' O ) ]  ;cost (93) 

X ; o )  = - ~ ( o )  8 sin 't- + ~ ( 0 )  @ cos F (88) Now, the solution to the differential equation (46) with 
E = 0 and subject to the initial conditions (47) is cost 

Evaluating Eqs. (87) and (88) at t = 0 (t= 0 and F= 0) 
(periodic in the natural independent variable t )  as shown 

and using Eqs. (84), 
in Section IV-C, so that from the first uniformity condt- 
tion, as discussed in Section 11-A-3, no secular or Poisson 

BcO) (0) = 1 and C(O) (0)  = 0 (89) perturbations in the fast time variable Fare allowed. Thus, 
the first uniformity condition requires that 

At this point, another essential characteristic of the theory 
of multivariable asymptotic expansions arises. All of the dB(O) 
known conditions on x(O) (Eq and, hence, on B(O) (3 and - + ~ ( 0 )  = 0 a (94) 
C(O) (t) have been applied without a unique determina- 
tion of these functions. This attribute is exactly what is and 
required in order to prevent the occurrence of secular dC(O) 
or Poisson perturbations in the approximation to the solu- - + ~ ( 0 )  = 0 

dF (95) 
tion, as will be seen during the solution of Eq. (82). 

Note that secular or Poisson perturbations may arise in 
Introducing Eq. (88) and its partial derivative with the slow time variable 7 indicating a slow decay because 

respect to Tinto Eq. (82) yields of the damping. 

The solutions to Eqs. (94) and (95) are 
cost -- - - - 

B(O) @ = Bo e-t and C(O) (t) = C ,  e-t 
- 2 [Cc0) cos F- BtO) sin31 (96) 

Evaluating Eqs. (96) at ?= 0 and using Eqs. ,(89) yields 

dB(0 )  so that Eqs. (96) become + 2 [7 + B'O)] ~ i ~ f  (90) - 
B(O) 6 = e-t and C(O) @ = 0 (97) 

Treating Fas  a parameter in the same manner as be- 
fore, the solution one obtains to the corresponding homog- Introducing Eqs. (97) into Eq. (87) yields the unifo~mly 

eneous partial differential equation is valid first approximation to the solution (reference 
motion) : 

"$1 (t,q = ~ ( l )  8 costs+ ~ ( 1 )  fi sin 7 (91) X ( O )  (t",q = e-Tcos t (98) 
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Thus, the reference motion is not the unperturbed motion, and 
cost, as is the case in Section IV-C. 

It should be noted that the uniformlv valid first amrox- 
a a 

imation, r(O) (<q, is completely determined by applying 
certain logic (first uniformity condition) to the next highest whose solutions are, using Solution (A-1) in Appendix A, 
term of the expansion; that is, x( l )  (c3. Similarly, the 
uniforn~ly valid ith approximation is completely deter- 
mined by applying certain logic (first and second uni- ~ ( 1 )  @) = B~ e-7 
folmity conditions) to the i + 1 term of the expansion. 
Furthermore, although none of the ~j in the definition and 

of F(Eq. 72) have been obtained as yet, these constants 
(106) 

are determined as additional terms of the asymptotic ~ ( l )  fi = C,  e-t + T Z  + - t e-t 
expansion (Eq. 71) are obtainecl. 

- ( i)-- 
From Eqs. (93), (94), and (95), Evaluating Eqs. (99) and (100) at t = 0 (t= 0 and r= 0) 

and using Eqs. (85) and (102), one obtains 
x( l f  (<3 -- Ci) cos t+ C(,) @ s i n t  (99) 

and, by partial differentiation with respect to < Bc1) (0) = 0 and C(')  (0) = 1 (107) 

= -B(1) fi t sm . t + ~ ( " C i ) c O S t  (100) Evaluating Eqs. (106) atT= 0 and using Eqs. (107) yields 

Consider the partial differential equation (83) from which 
the functions B( l )  Ci) and C(l) @ as well as the undeter- B, = Oand C ,  = 1 
mined constant T, are determined. Taking the required 
partial derivatives of Eqs. (98) and (100) with respect 
to Fand one obtains so that Eqs. (106) become 

and 

- 
X ( 0 )  = -,-t 

11 cos t (101) B(l' (3 = 0 - - r-O) = - e-f cos t (102) and 
CI (108) 

xi;) = e-t cos (103) c") (4 = [I + ( T 2  + +)TI c' 
dB(1) - dC(1) 

X ( l )  = - - sin t 4 - dt" cos 7 (104) 
Introducing Eqs. (108) into Eq. (99) yields 

1 2  d r  

Introducing Eqs. (100-104) into Eq. (83) yields e-TsinF (109) 

X I : )  + ~ ( 2 )  = -2 
At this point, another essential characteristic of the theory - 
of multivariable asymptotic expansions arises. All of the 

+ 2 [$ + B " ) ]  ~ i ~ f  (105) known conditions on (Eq have been applied (with- 
out the determination of the constant 7 2 )  except the sec- 
ond uniformity condition as discussed in Section 11-A-3. 

Eq. (Io5) for r"' (cq and applying the first uni- The second uniformity condition requires that 
formity condition results in the two equations yields 

lim 
(E3 

=OforalltinOL-t < c/3 
6--10 (KT 
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so that, from Eqs. (98) and (log), 

lim = O  
€ + o  e-t cos 2- 

for all t in O L t  < w (110) 

Equation (110) requires that 

- - 
so that the coefficient of the term te-t s in t is  zero, and 
a uniformly valid perturbation (63 is obtained (see 
Section 11-A-3). From Eqs. (109) and ( I l l ) ,  

- - 
x(l) (< 3 = e-$ sin t (112) 

where, from Eqs. (72) and ( I l l ) ,  

Similarly, the remaining constants Tg, T*, . . . in F and 
perturbations E ~ x ( ~ )  (<q, E ~ x ( ~ )  (zq, . . in the asymp- 
totic expansion (71) may be obtained. 

The use of two distinct time variables, t and intro- 
duces a degree of flexibility into the theory of solution 
in such a manner that improper secular or Poisson per- 
turbations can be eliminated. The application of the first 
uniformity condition removes improper secular or Poisson 
perturbations in the fast variable < and the application 
of the second uniformity condition removes improper 
secular or Poisson perturbations in the slow variable 

The uniformly valid asymptotic expansion to 0 (E) is, 
from Eqs. (71), (98), and (112), 

or, using Eqs. (73) and (113), 

A comparison of the uniformly valid asymptotic expan- 
sion to 0 (E) (Eq. 114), with the exact solution (Eq. 52), 
shows a remarkable similarity. The expansion (114) ex- 
hibits the proper bounded motion, exponential decay, and 
frequency shift. Furthermore, the reference motion 

1 
do) (t; E) = e-Et cos 

is much closer to the actual motion than the unperturbed 
motion, cost. As a result, the perturbation theory de- 
scribed in this section is acceptable. 

E. Solution Using Variation of Parameters 
With Successive Approximations 

Consider the classical perturbation theory which con- 
sists of (1) defining an osculating trajectoly, (2) transform- 
ing Eq. (46) into differential equations in terms of the 
instantaneous parameters of the osculating trajectory, and 
(3) integrating these differential equations by using suc- 
cessive approximations. 

1.  Selection of parameters and independent variable. 
From Eq. (46), 

Assume that the mass m is always moving in a sinusoidal 
trajectory (the counterpart of the conic section in Sec- 
tion 111-A-l), but in one that changes at each instant. 
The sinusoidal trajectory is tangent to the path of motion 
at every point, as shown in Fig. 6, and the velocity asso- 
ciated with this osculating trajectoly a t  the point of 
tangency is the same as the actual velocity of the mass m 
at that point. Thus, 

OSCULATING 
TWKTORY 

TRAJECTORY 

Fig. 6. Osculating trajectory at time t ,  

JPL TECHNICAL REPORT 32- 1267 33 



where j: is the unperturbed variation and x' is the per- 
turbative variation (see Section 111-A-2). In addition (from 
the same section), 

Introducing Eqs. (117) and (118) into Eq. (116) yields 

and 

The solution to Eq. (119) is 

x(t) = bcost + csint  (121) 

and, by differentiation, 

j.(t) = -bsint + ccost (122) 

where b and c are the constants of integration in the case 
of unperturbed motion. In the terminology of astrody- 
namics, b and c are the parameters (or elements) of the 
sinusoidal trajectory of the mass m. 

The theory of the variation of parameters consists in 
permitting the parameters b and c (previously constant) 
to vary with the time t; that is, 

x (t; E) = b (t; E) cos t + c (t; E) sin t (123) 

and 

k (t; E) = - b (t; E) sin t + c (t; E) cos t (124) 

in such a manner that Eqs. (123) and (124) will satisfy 
the differential equation of perturbed motion (Eq. 116) 
for all values of time. 

The parameters b (t; E) and c (t; E) are the instantaneous 
or osculating parameters that describe the osculating tra- 
jectory. From a purely mathematical point of view, 
Eqs. (123) and (124) represent a special functional trans- 
formation from the original dependent variables x (t; E) 
and j. (t; E) to new dependent variables b (t; E) and c (t; E) 
which vary slowly with time. Note that if Eqs. (121) and 
(122) are evaluated at t = 0, 

so that their osculating counterparts are 

b (t; E) = xo (t; E )  and c (t; E) = i, (t; E) 

that is, the osculating parameters are the instantaneous 
initial conditions of the osculating trajectory. If, at an 
instant t,, the disturbing force is removed (E = O), the 
mass 17% would move in a sinusoidal trajectory of the form 

where b (t,; E) and c (t,; E) are the osculating parameters 
(initial conditions) at t,, as shown in Fig. 6. 

The functions b (t; E) and c (t; r)  and the variable t are 
chosen as the osculating parameters and independent 
variable, respectively. I t  should be pointed out that other 
selections are possible. 

2. Equations of motion, Equations (123) and (124) are 
linear in b (t; E) and c (t; E) and can be solved for these 
parameters because the determinant of their coefficients 
is unity. Hence, 

b (t; E) = x (t; E) cos t - c i  (t; E) sin t 

and (125) 

c (t; E) = x (t; E) sin t + jc (t; E) cos t 

Furthermore, from Eqs. (47), (117), and (125), 

A 
b, = b (0; E) = X (0; E) = 1 

and I 
The variations of the parameters b (t; E) and c (t; E) can 
be expressed as the sum of two parts; that is, 

where 6 and are the sinusoidal (unperturbed) varia- 
tions of b (t; E) and c (t; E) that remain at the instant of 
osculation if the disturbing force is suddenly removed 
and b' and c' are the perturbative variations caused by 
the disturbing force. Both b and c are constants in the 
case of unperturbed motion according to Eq. (121) so that 



This result can be substantiated by taking the dot deriva- 
tive of Eq. (125) and then using Eq. (119) as follows: 

E ; = -  xsint + ;cost - ;cost - jc'sint 

and 

d = x c o s t  +$sint  - i s i n t  +;cost 

or 

6 = -(" x +  x)sint = O  

and 

E = ( E + x ) c o s t = O  

In addition, using the concept of perturbative differenti- 
ation from Section 111-A-2, Eqs. (125) yield 

where x' = 0 from Eq. (117) and t' = 0 (the independent 
variable t is unaffected by the disturbing force). Intro- 
ducing Eq. (120) into Eq. (129) and using Eq. (124), 

and 

or, using trigonometric formulas, 

b' = -E [ b  (t; E) - b (t; E)COS 2t - c (t; E) sin 2t] 

and 

c' = - E  [C (t; E) + c (t; E) cos 2t - b (t; E) sin 2t] \ 
Introducing Eqs. (128) and ,(130) into Eqs. (127) yields the 
differential equations of motion in terms of the osculating 
parameters, or, in integral form, 

and \ 

where b' and c' are given by Eq. (130). 

It should be noted that the procedure in solving the 
integral equations (Eqs. 131) is just as difficult as the 

one in solving the original differential equation (Eq. 46) 
because of the coupling of the integral equations. 
The objective of the special functional transformation 
(associated with the osculating trajectory) from x (t; E) 
and 2 (t; E )  to b (t; 6) and c (t; E) is not to simplify the 
procedure of solution but rather to develop the equa- 
tions of motion so that series expansions can be effectively 
used. The appearance of E as a multiplier in Eqs. (130) 
shows that b' and c' are very small (as is the case in all 
perturbative variations) so that b (t; E) and c (t; E) change 
very slowly, a desirable characteristic when using series 
expansions. In general, the total variations of the param- 
eters are separated into variations of unperturbed motion 
which can be analytically integrated in closed form and 
perturbative variations which must be determined by 
using series expansions. 

3. Analytical integration of equations of motion. The 
process of successive approximations consists of approxi- 
mating the perturbative variations, b' and c', by succes- 
sively more accurate integrable expressions which, upon 
analytic integration, yield successively higher-order solu- 
tions. For example, a classical first-order solution is 
obtained by analytical integrations of Eqs. (131), using 
b' and c' from Eqs. (130) but with b( t ;  E) and c (t; E) 
approximated by b, and c,, respectively (in this manner, 
the reference motion is the unperturbed motion of the 
system, cost). Having a first-order solution (which yields 
better approximations of the functions b (t; E) and c (t; E) 

then b, and c,), a second-order solution is obtained by 
analytical integrations of Eqs. (131) using b' and c' from 
Eqs. (130) but now with b (t; E) and c (t; E) replaced by 
their respective first-order approximations, and so forth. 
It should be noted that the term "order" used in this 
section refers to "apparent order" as discussed in Sec- 
tion I-C-4. 

Consider the first-order solution to Eqs. (131) in the 
manner just described. From Eqs. (130) with b (t; E) and 
c (t; E) approximated by b, and c,, respectively, 

and \ (132) 

C\ = - e (c, + c, cos 2t - b, sin 2t) + . . . ) 
Introducing Eqs. (132) into Eqs. (131), one obtains 
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and 

(CO + Co COS 27 - bo S ~ E  27) d~ + ' ' ' 

so that, upon integration, the first-order approximations 
of b (t; E) and c (t; E) are 

1 
b (t; E )  = (bo + cco) 

and > 

Introducing Eqs. (130), with b (t; c) and c (t; E) replaced 
by their respective first-order approximations from 
Eqs. (133), into Eqs. (131) and integrating yields the 
second-order approximations of b (t; E) and c (t; E), and 
so forth, 

From Eqs. (126) and (133), 

1 
b(t;r)  = 1 - r ( t  -?-sin2t) + 

and 

Note that at t = 0, Eqs. (134) become 

x ( ~ ; E ) =  I - E  t--sin% cost [ ( : .  >I 

Thus, the first-order approximation in Eq. (135) obtained 
using the variation of parameters with successive approxi- 
mations is only initially valid (because of the Poisson 
perturbation) just as the first-order approximation ob- 
tained in Section IV-C using the variation of coordinates 
with a one-variable asymptotic expansion is initially 
valid. As a result, the perturbation theory described in 
this section is unacceptable (see the discussion at the 
end of Section IV-C). 

Since Eq. (135) is an initially valid approximation to 
0 (E), Eqs. (134) and (135) become 

1 
c (t; I€) = - 6 (1 - cos 2t) + 0 (€2) 

2 

and 

x (t; E) = cos t + E (sin t - t cos t) + 0 (e2) I 

b , = l +  . . .  and c o = O +  . . 

which satisfy Eqs. (126) to the order considered. Intro- 
ducing Eqs. (134) into Eq. (123) yields 

1. Selection of parameters and independent variable. 
The functions b (t; E) and c (t; E) and the variable t are 
chosen as the osculating parameters and independent 
variable, respectively, just as in the previous section. 

or, using trigonometric formulas, 

F. Solution Using Variation of Parameters With 
Taylor's Series Expansions 

The perturbation theory in the previous section yields 
only an initially valid approximation of the solution be- 
cause of the process used for the analytical integration 
of the perturbative variations and not because of the 
formulation of the equations to be integrated. As a result, 
a process for the analytical integration of the perturbative 
variations is developed in this section in such a manner 
that a more accurate perturbation theory is obtained. 

2. Equations of motion. The equations of motion in 
terms of the selected osculating parameters and inde- 
pendent variable, in integral form, are given by Eqs. (130) 
and (131); that is, 

and 

where 

x(t;e) = cost f ~ ( s i n t  - tcost) + . . - (135) b' = - -~[b( t ;e)  - b ( t ; ~ ) c o s 2 t  - c( t ;~ )s in2 t ]  
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and 

The corresponding initial conditions are given by 
Eqs. (126) as 

bo = 1 and c,= 0 

and the range of t is given by (48) as 

3. Analytical integration of equations of motion. The 
process of Taylor's series expansions is based upon the 
development of a reference motion and associated refer- 
ence parameters, (t; E )  and F(t; E ) ,  which approximate 
the actual motion and associated instantaneous param- 
eters, b (t;  E )  and c ( t ;  E ) ,  sufficiently well so that Taylor's 
series expansions may be used to obtain the instantaneous 
parameters from the reference parameters (see Sec- 
tion 111-B-1). The actual motion is then obtained from 
Eq. (123); that is, 

x ( t;  E )  = b ( t ;  E )  cos t + c ( t;  E )  sin t 

Let 

77 ( t ;  E )  = b ( t ;  6 )  + b(') ( t ;  E )  + b ( 2 )  (t; E )  + 0 (e3) 

and (137) 

b +  c 

The superscript within a parenthesis indicates the order 
of the perturbation with respect to the perturbative 
parameter E ;  for example, 

b(') (t; E )  = 0 ( E )  , bc2) (t; E) = 0 ( E ~ )  , etc. 

and the notation b + c implies that there is a correspond- 
ing equation for c which can be obtained from the equa- 
tion in b by~eplacing b with c. Note that the reference 
parameters, b (t;  E )  and E(t; E ) ,  depend upon E and there- 
fore the reference motion is not the unperturbed motion, 
cost. In addition, let 

b' = (b'), + (@)so + (b'),, and b+ c 

(138) 

where the subscripts s, sp, and Pp indicate those por- 
tions of b' or c' which yield secular, short-period, and 
long-period terms, respectively, upon integration. Poisson 
terms will be classified as either short-period terms or 
long-period terms depending upon whether their periodic 

portion is short-periodic or long-periodic, respectively. 
Finally, let the short-period and long-period variations 
be expanded in terms of powers of E so that Eqs. (138) 
become 

b' = (b'), + (b'):;) + (b')$) + (b\)ii) 

+ (b')j;) + (by;;) + (b')!", + 0 ( E 3 )  

and 
(139) 

b -+  c 

Introducing Eqs. (137) and (139) into the equations of 
motion in integral form (Eqs. 131), 

b (t; E )  + b( l )  (t; E )  + b(2)  (t; E )  + 0 ( E 3 )  = I 

and 

b +  c 

These equations are the basis for choosing the reference 
pzrameters, b (t;  E )  and F(t; E ) ,  and corresponding per- 
turbations. The reference parameters are chosen in such 
a manner that they are good approximations of the instan- 
taneous parameters, b (t; E )  and c (t; E), and yet reasonably 
simple so that they can be easily manipulated. Thus, the 
constant terms, secular terms, and terms of order one in 
Eqs. (140) are defined as composing the reference param- 
eters (in this manner, the reference motion is of the geo- 
metrical type) and the perturbations are defined by 
equating the remaining terms of the same order in 
Eqs. (140); that is, 

b, +lt [(b'), -4- (b.):;) + (b'):: + (&)!:)I d~ 

- /' [(b')!? + (b') jz,' 1 d i  + 0 ( € 2 )  

(141) 

[(b') 0 + (b') 0 1 dr , etc. 

and' 
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where some of the definite integrals have been separated 
into functions of t and constants (see "integral" in the 
Glossary) and where past experience has shown that the 
long-period variations decrease by one order upon inte- 
gration and so have been properly accounted for. Note 
that 

S t  [ ] dT 3 integrate integrand and evaluate at 

T = t only 

and } (142) 

i0 [ ] dT + integrate integrand and evaluate at 

T = 0 only (yielding a constant) 

In order to obtain the required secular, short-period, 
and long-period terms in Eqs. (141), b' and c' as given in 
Eqs. (130) must be expanded in Taylor's series (assumed 
to be uniformly convergent in th_e range 0 L t < M) 

about the point represented by b (t; E) and F(t; E) at 
time t. Since the perturbative variations, b' and c', are 
explicit functions of only b and c (E and t are assumed 
to be fixed) as shown in Eqs. (130), 

and 

b'+ c' 

where the bar over a partial derivative implies that the 
partial derivative is evaluated using b and i7 in place of 
b and c respectively. From Eqs. (137), 

From Eqs. (130), 

ab' 
- = - € ( I  - C O S ~ ~ ) ,  

ab' 
ab 

- = E sin 2t 
ac 

and 

Introducing the reference parameters into Eqs. (130) and 
(145) yields the &', c', and the partial derivatives required 
in Eqs. (143); that is, 

and 

Introducing Eqs. (144) and (146) into Eqs. (143) yields 

and 

b+c 

+ E (sin2t) [c(l)  + c(') + 0 (e3)] 
Note that because of the transformation from rapidly 

and 
changing dependent variables x and 2 to slowly changing (147) 
dependent variables b and c and because of the careful C' = - E ( c  + c cos 2t - sin 2t) 
selection of the reference parameters b and Z, the quan- + E (sin 2t) [b'l) + b(2)  + 0 (e3)] 
tities ~b and Ac are very small, allowing the rapid con- 
vergence of the two Taylor's series in Eqs. (143). - E (1 + COS 2t) [ d l )  + ~ ( 2 )  + 0 (E3)] 
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Let b' = (b')(O) + (&)(I) + (b')(2) + 0 (e3) and b -+ c in 
Eqs. (147) so that by equating terms of like powers of e 
and assuming that & and F are of order one, 

(b')(O) = (b')?) + (b')c,") + (b'):;) = 0 (148) 

(b') (1) = (b')r') + (b')cs') + (b'):;) 
- 

= -c(b - bcos2t - Esin2t) (149) 

(b')(" = (b')Y) + (b')g + (b')\"p' 

= - e (b(l) - bt1) cos 2t - c(l) sin 2t) (150) 

and so forth, and 

(C\)(2) = C\ (2 )  + C\ ( 2 )  + C\ (2)  ( ) s  ( )sp ( )!P 

= - e + cos 2t - b(l) sin 2t) (153) 

and so forth. 

If the functional dependence of the parameters I;, F, 
bcl), d l ) ,  . . upon t were known, the secular, short- 
period, and long-period terms of various orders appear- 
ing in Eqs. (141) could be determined from Eqs. (148)- 
(153). However, these functional forms are not known as 
yet. Note that the perturbative variations of order j are 
expressed in terms of the parameters of order i - 1 and 
therefore if the reference parameters can be determined, 
the first-order perturbative variations can be obtained, 
from which the first-order parameters can be obtained, 
and so forth. 

From Eqs. (141), 

z (t; 6) = 

and 

b-+ c 

where 

= bo - (b(l))o + 0 (e') } (155) 
and 

b +  c 

Note that both b, and are constants to be determined 
later. 

Since x (t; e) is bounded (see Section IV-A), it follows 
from Eq. (123) that both b (t; e) and c(t ;  E) must be 
bounded and therefore 

(b'), = (c'), = 0 (156) 

that is, b (t; e) and c (t; E )  cannot contain unbounded (sec- 
ular) terms (remember (b'), and (c'), are terms that yield 
secular terms upon integration). Furthermore, Eqs. (148) 
and (151) imply that 

(b'):;) = (b') = (c')',od = (c')$,"' = 0 (157) 

since secular, short-period, and long-period terms are of 
different character. Introducing Eqs. (156) and (157) into 
Eqs. (154) yields 

and (158) 

It is interesting to note that if 

and lt (c') jlp) di- 

were not included in the definitions of 6 (t; e) and E(t; e), 
respectively, then 

- 
I; (t; E) = bo and ~ ( t ;  E) = zo 

both of which are constants. However, if (t; E) and Z (t; e) 
are constants, then Eqs. (149) and (152) show that 

- 
(b\)(sl) = - E& and ( ~ \ ) p )  = - ECO 

contradicting Eqs. ( I S ) ,  which show that secular terms 
of all orders are zero (in general, bo and F0 are not simul- 
taneously zero). 
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Remembering that the integral of a long-period func- 
tion usually decreases by one order of magnitude, let 

lt (b')$' d i  = b(O) I P  (t; s) + B, 

and \ 

so that Eqs. (158) become 

Z; (t; E) = Lo + b$j (t; E) + Bo 

and 

E (t; E) = E,, + c(2 (t; E) + CO 
Introducing Eqs. (160) into Eqs. (149) and (152), using 
the results that the product of a constant or long-period 
function with a short-period function yields a short-period 
function, using (b')c) = (c'\J1) = 0 from Eqs. (156), and 
equating secular, short-period, and long-period terms, 
respectively, one obtains 

(b');;) = E (b:", cos 2t + c(pd sin 2t) (162) 

(c') !;I = - E (c($ cos 2t - b (2 sin 2t) (163) 

and 

Introducing Eqs. (161) and (164) into Eqs. (159) yields 

and 

whose solutions are (differentiating viri'th respect to t and 
solving the first-order differential equations) 

- 
bj;) (t; E) = b, e-ft 

and (165) 

cJ;) (t; E) = E,, e-ct 

respectively. Hence, from Eqs. (16O), (161), and (165), 

Z; (t; E) = 6, e-Et 

and I 
These equations determine the reference parameters and 
reference motion. I t  follows from Eqs. (162), (163), and 
(165) that 

(b'):;) = E (Eo e-Et cos 2t + Z, e-Et sin 2t) (167) 
and 

(c') '$1 = - E (6 e-ft cos 2t - bo cst sin 2t) (168) 

The next step is to determine the first-order perturba- 
tions, b(l) (t; E )  and c(') (t; E). Introducing Eqs. (167) and 
(168) into the expressions for bcl) (t; E) and c(l) (t; E) from 
Eqs. (141), respectively, and letting 

and i (169) 

yields 

e-El cos 27 + & e-Eisin 27) d~ + bj;) 

and 
- 

C(l) =. -€ (Co e-E7 cos 27 - bo e-E7 sin 27) d7 + c;;) 

From Ref. 1372 (p. 196), 

It 1 
e-€' cos 27 d~ = ----- e-" ( - E cos 2t f 2 sin 2t) 

(4 + s2) 

and 

1 
e-" sin 2~ dr = ------ e-Et ( - E  sin 2t - 2 cos32t) 

(4 + E2) 
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so that Eqs. (170) become 

E 
b'l' (t; E )  = --------- 

(4 + € 2 )  
e-Et [ - ( 2 6  + E&,) cos 2t 

+ (2& - Go) sin 2t] + b j:) (t; E )  

and (171) 

E c ( l )  (t; E )  = - ------- 
(4 + € 2 )  

e-Et [(2&, - EE,) cos 2t 

+ (2E0 -t EE,) sin 2t] + cji) (t; E )  

Introducing Eqs. (171) into Eqs. (150) and (153), using 
the result that the product of a constant or long-period 
function with a short-period function yields a short-period 
function, and equating secular, short-period, and long- 
period terms, respectively, one obtains 

(b\)r) = (c\)j2) = 0, in accordance with Eqs. (156) \ 
e2 

(b')::' = (q+,2) e-'t [(2z0 + EZ,) cos 2t 

- (2go - €5,) sin 2t] 

+ ~b j l p )  cos 2t + ~clplp) sin 2t 

e2 
(c\)::) = e-Et [(26, - eE0) cos 2t 

+ (2Z0 + €5,) sin 2t] 

- EC',:) cos 2t + ebli) sin 2t 

and } (173) 

Introducing Eqs. (173) into Eqs. (169) yields 

and 

whose solutions are (differentiating with respect to t and 
solving the first-order differential equations with the help 
of Solution (A-l)  in Appendix A) 

E 
bj,') (t; E )  = - - E t  B 

(4 + rZ)  e- [ 

+ (250 + A0) (1 + Et)] 

and } (174) 

E 
cl'," (t; E )  = - - 

- (2z0 - EG) ( 1  + Et)] 

where B, and C1 are constants of integration. Since there 
are no conditions specified for Eqs. (174) (the initial con- 
ditions, bo and c,, are used in defining 5, and E,), the 
constants B1 and C, are completely arbitrary and can be 
defined so as to simplify the expressions for b,',l) (t; E )  and 
cj;) (t; E ) .  Let 

and 

so that Eqs. (174) become 

E 
bj,') (t; E )  = - ---- 

(4 + € 2 )  
e-ct (2G + €6,) ( ~ t )  

and (175) 

E 
cj;' (t; E )  = -------- 

(4  + € 2 )  
e - ~ ~  (2E0 - EZ,) ( ~ t )  

Introducing Eqs. (175) into (171) yields the first-order 
perturbations 

b( l )  (t; E )  = \ 
E -- 

(4 + € 2 )  
cEt [2& + ~ b , )  ( ~ t  + cos 2t) 

- (2& - €6) sin 2t] 

and \ (176) 

c'l' (t; E )  = 

E -- 
(4 + e2) e-Et [ - (2&, - e&) (et - cos 2t) 

+ (2% + E G ~ )  sin at] I 
JPL TECHNICAL REPORT 32- 1267 



Similarly, the remaining perturbations Introducing the initial conditions, b, = 1 and c, = 0 from 
Eqs. (126), into Eqs. (177) yields two simultaneous equa- 

b(2)  ( t ;  e ) ,  5(3) ,(t; E ) ,  . , . , c ( ~ )  ( t ;  E ) ,  ct3) (t; E),  = . - tions in the two unknowns 6, and Fo whose solutions are 

in Eqs. (137) may be obtained. 

At this point, the initial values of the reference param- 
eters, 6, and E,,, can be determined to 0 ( E ) .  From 
Eqs. (155), 

6 ,  = bo - (b( ')) ,  + 0 (e2) 

and 

- 
Co = Co - + 0 ( € 2 )  

which become, using Eqs. (176) evaluated at t = 0,  

- E 
b, = bo + --- 

(4 + € 2 )  
(2G + E g o )  + 0 ( E 2 )  

and (177) 

- E 
Co = Co + ---- 

(4 + € 2 )  (26, - Go) + 0 (e2) 

and i (178) 

Thus, introducing Eqs. (178) into Eqs. (166) and (176) 
and the results into Eqs. (137), one obtains 

1 E [ E  (1 - Et) - E cos 2t + sin 2t] 

+ 0 ( € 2 )  

and' 

Note that at t = 0, Eqs. (179) become 

b (0; E )  = bo = 1 + 0 (c2) and c (0; E )  = C ,  = 0 + 0 (e2) 

in agreement with Eqs. (126) to the number of terms considered. Introducing Eqs. (179) into Eq. (123) yields 

1 1 1 
2 

c3 t cos t + -,e (1  + ~ t )  sin t - - E~ (COS 2t cos t + sin 2t sin t )  x ( t ; s ) = e - " [ ( 1 + z ~ 2 - l  ) 2 

1 
- - E (COS 2t sin t - sin 2t cos t )  + 0 (e2) 

2 I 
or, using trigonometric formulas, 

x ( t;  E )  = e-'l [ ( I  - $ ES t )  cos t + E ( 1  + 1 ~ t )  sin t ] + O (r2) (180) 

Thus, the approximation obtained in Eq, (180) using the variation of parameters with Taylor's series expansions is 
only initially valid (because of the Poisson terms), just as the approximation obtained in the previous section using 
the variation of parameters with successive approximations is initially valid. However, the initially valid approximation 
in Eq. (180) has a larger range of validity than that of the previous section. 
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Consider the expansion of the exact solution in Eq. (52) using Taylor's series (about t = 0) for E < < 1 and 0 t < t, 
as follows: 

1 I 1 
= e-" (cos t cos [% e2 + O (E') t + sin t sin [% r2 + O (E')] t 

or obtained from Eqs. (123), (137), and (166) is much closer 
to the actual motion than the unperturbed motion, cost. 

Although the process for the analytical integration of 
+ 0 (c4) (181) the perturbative variations in this section is superior to 

that of the previous section, the resulting approximation - - - -  

A comparison of the approximation in Eq. (180) with is still only initially valid. Thus, the perturbation theory 

the expansion of the exact solution in Eq. (181) shows described in this section is unacceptable. However, this 

that the approximation in Eq. (180) exhibits (1) the proper perturbation theory can be modified so that a uniformly 

bounded motion since valid approximation could be obtained. The modification 
consists of introducing a distorted time scale, 

t cos t 
lim (,) = o 
t + m  

and 

t sint 
lim (,) = o 
t + m  

(2) the proper exponential decay, and (3) the effects of 
the frequency shift. Furthermore, although Eq. (180) has 
been developed to first order explicitly, b (t; E) = 6 (t; E) + 
bcl) (t; E) + 0 (e2) and b -+ c, the approximation is accu- 
rate to nearly third order implicitly (the 1/2 e3 sin t term 
is missing). Thus, Eq. (180) becomes 

Finally, the reference motion 

S (t; E) = 6 (t; E) cos t + E ( t ;  E) sin t 

into the process of integration to account for the fre- 
quency shift as is done in the Lindstedt-Poincark theory 
for periodic solutions (Ref. 1056, Vol. 11). The resulting 
perturbation theory would then be acceptable. 

G. Solution Using Variation of Parameters With 
Two-Variable Asymptotic Expansions 

Rather than modify the perturbation theory of the pre- 
vious section into an acceptable perturbation theory by 
introducing a distorted time scale into the process of 
integration, it is desirable to proceed one step further 
and use two distorted time scales; that is, develop a 
process for the analytical integration of the perturbative 
variations using two-variable asymptotic expansions. 

1.  Selection of parameters and independent variable. 
Suppose the functions b (t; E) and c (t; E) and the variable 

or t from Section IV-E-1 are chosen as the osculating param- 
eters and independent variable, respectively. Then, the 

Z (t; E) = eEt [6, cos t + Co sint] (183) differential equations of motion and the corresponding 
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initial conditions are, from Eqs. (126), (127), (128), and 
(1301, 

b (0; E) = 1 

and 

C(0;E) = 0 

The standard procedure in solving this system of equa- 
tions using two-variable asymptotic expansions is to 
assume 

b (t; E) = B (t, E) 

= btO' (63 + Ebfl) (E'zj + E2 b(2) (63 
+ 0 (E3) 

and 

c(t; E) = C ( 6 % ~ )  

= C ( O )  (7,3 + E C ( ~ )  (F,T) + E' c(') (Z,'zj 
+ 0 (€3) 

and then follow a procedure similar to that of Section 
IV-D-3. Note that the natural independent variable t is 
chosen as the fast time variable Fsince it appears explic- 
itly in the differential equations of motion in Eqs. (184). 
Unfortunately, this procedure does not yield a uniformly 
valid approximation to x (t; E). Furthermore, all the stan- 
dard artifices to obtain uniformly valid approximations 
fail, such as letting 

- - 
i = t  and t = et [1 + &I + 0 (e2)] 

or introducing additional terms to the expansions (186) 
of the form 

B(O' (3 C(O) @j 
and - 

E E 

The difficulty here is easily identified, since a uni- 
formly valid approximation to x (t; E) has been obtained 
in Section IV-D, using 

- 
t = t [ 1  +E'T* + 0(c3)] and t = ~t 

(187) 

The difficulty is that the proper form for given in 
Eqs. (187) cannot be used with Eqs. (184) because of 
the explicit appearance of the time t in the trigonometric 
functions of Eqs. (184). As a result, the differential equa- 
tions of motion in (184) must be modified so that the 
proper form for ?can be used. Now, these equations were 
obtained in Section IV-E by permitting the parameters 
b and c to vary with the time t in such a manner that 
Eqs. (123) and (124) would satisfy the differential equa- 
tion of perturbed motion, Eq. (116), for all the values of 
the time in the range 014 t < co. The proper modifica- 
tion to these equations results if, in addition to permitting 
the parameters b and c to vary with the time t, the fre- 
quency of oscillation is permitted to vary from the un- 
perturbed case; that is, the argument t of the trigonometric 
functions in Eqs. (123) and (124) is replaced by Z In this 
manner, Eqs. (123) and (124) become 

- 
x (t; E) = b (t; E) cos 7 + C(t; E) sin (188) 

and 

where 

It should be noted that if ?# t, then from Eqs. (123) 
and (188), 

x ( t ; ~ )  = b ( t ; E ) c ~ ~ t + C ( t ; € ) ~ i n t  - 
= b (t; E) cos F + F(t; E) sin ? 

or, using t = ( t -  t) + t and trigonometric formulas, 

b (t; E) = (t; E) cos ( t  - t) + F(t; E) sin (7 - t) 

and ) (191) - 
c (t; E) = - b (t; E )  sin (F- t) + Z(t; E )  cos ( t  - t) 

- 
Thus, the instantaneous parameters b (t; E )  and z(t ;  E) are 
not the same as the instantaneous parameters of Sections 
IV-E and IV-F. 
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The functions g( t ;  E) and Z(t; E) and the variable t are 
chosen as the instantaneous parameters and independent 
variable, respectively. 

2. Equations of motion. Equations (188) and (189) are 
linear in E(t; E) and z(t ;  ,E) and can be solved for these 
parameters because the determinant of their coefficients 
is not identically zero. Hence, 

and 

- dx 
b (t; E) = x (t; E) cos F - - (t; E) sin t 

dt 

- dx 
c (t; E) = x (t; E) sin t + - (t; E) cos t 

dt  

Furthermore, from Eqs. (47) and from Eqs. (190) and 
(192) evaluated at t = 0, 

and 

Differentiating Eqs. (192) with respect to the time t, 
one obtains 

dK dx -) 2 - d2x - 
- = - (xsinf + -cost - + -cost - -sint 
dt dt dt" 

and 

or, using Eq. (46), 

and } (194) 

Introducing Eqs. (189) and (192) into Eqs. (194) and 
using trigonometric formulas yields the differential equa- 
tions of motion in terns of the instantaneous parameters - 
b it; E) and E'(t; E ) ;  that is, 

- 
-- db - act, €1 (1 - g) 
dt 

- E [Z(t; IE) - C (t; E) cos 2; - Z(t; E) sin 2i] 

and } (195) 

&- - 
-- 
dt 

- - b (t; ,E) (1 - 2) 
- E [ ~ ( t ;  s) + ~ ( t ;  €1 cos 21 - g(t ;  E) sin 2i1 / 

Note that if t== t as in Sections IV-E and IV-F, then 
Eqs. (193) and (195) become the same as Eqs. (184), as 
they should, since 

and, from Eqs. (191), 

w 
w 

b (t; E) = b (t; E) and c  (t; E) = c (t; E) 

An alternate development of Eqs. (195) consists of using 
concepts analogous to those of perturbative differentia- 
tion (Section 111-A-2); that is, 

@=$+z, and - = c + c '  cl i7 - 
dt dt  (196) 

where the dot and grave derivatives are formally analo- 
gous to the unperturbed variation and perturbative vari- 
ation of the parameter, respectively. 

Taking the dot derivatives of Eqs. (192) (remembering 
that dx/dt = ?;. since x' = 0) and using Eq. (119) yields 

and 
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3. Development of solution. The process of two-variable 
asymptotic expansions associated with Eqs. (195) consists 
of assuming 

i - - 
and (197) t = t [1  + E ~ T ,  + 0 ( e 3 ) ] ,  t = st (201) 

- - s- 
Z= -(xcosT- xsinz) b (t;  E )  = B (t, t; E )  

= Z ( 0 )  (T,J + EEi;(l) (t,?j + E ~ i ; ( 2 )  (t7j 
Introducing Eqs. (192) into Eqs. (197), one obtains + 0 ( E 3 )  

and 
a - -- - c (t; €) = C (t, t;  E )  b = F(t; 6 )  ( 1  - $) and $= -g(t; E )  ( 1  - $) 

= -FO) ( K 7 j  + € 3 1 )  (57) + I?'a2' (57) 
(198) + 0 ( E 3 )  

Note that if = t, then and then following a procedure similar to that of Sec- 
tion IV-D-3. The actual motion is then obtained from 

- .  Eq. (188); that is, - 
b = b = O  and C = ; = o  

a 

x ( t;  E )  = b (t; E )  cos ? + F(t;  E )  sin F 

as they should. 

Taking the perturbative derivatives of Eqs. (192) and 
using Eq. (120) one obtains 

Note that x(O) (E3 can be thought of as the reference 
motion where 

x ( ~ )  (iT,i'j = F(o) (t,ri) cos t + 70) (65 sin F (203) 

- and E X ( ' )  (K3, E ~ x ( ~ )  (z,3, etc. can be thought of as the 
p = -  2 sin t = 26; sin t I perturbations to the reference motion where 

and - - - 
C' = 2 cost = -2Ex cos t 

(199) (T,?j = gcl) (3 cost + 3) (t,3 sin t 

x(2) (t,J = Z(2) (i,Ltj cos t+ 3 2 )  (63 sin t 
where, from Eq. (190), and so forth. 

- 
t\ = t' [ l  + ~~7~ + 0 (c3)] = 0 For conciseness, the following notation is adopted: 

- aFj) - agcj) 
since t' = 0. Introducing Eq. (189) into Eqs. (199) 

b : j )  = 7, 
bLj) = - 

(dx/dt = L) and using trigonometric formulas yields 
aT 

and (204) 

- 
b' = -e [z (t; E )  - (t; E )  cos 2: - F(t; E )  sin 271 1 
and - 
c' = - E [F(t; E )  + F(t; E )  cos 2T - g (t; E) sin 2?] where i = 0,1,2, etc. Differentiating Eqs. (201) with 

respect to the time t yields 

Finally, Eqs. (195) follow from Eqs. (196), (198), and d t  
- = 1 +€'rz $ 0 (c3) and 

d r  - 
( 2 0 ) .  dt dt 

= E  (2%) 
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and differentiating Eqs. (202) with respect to the time t obtained by evaluating Eqs. (202) at t = 0, by using the 
yields, using Eqs. (205), initial conditions (193), by combining terms of like powers 

and ) (206) 

Introducing Eqs. (202), the first of Eqs. (205), and 
Eqs. (206) into Eqs. (195) and combining like powers of E 

yields 

- 
b : ~ )  + E [jj!l) + Zp)  + K(o)  (1 - cos 2 3  - Yo)  sin23 

+ e2 [K?) + gp) + T 2 @ )  + 
+ i;'l' (1 - cos 23 - F1' sin 2 3  

+ 0 (e3) = 0 (207a) 

and 

- 
c?) + E [F?) + ZT) + Z O )  (1 + cos 23 - DO) sin 271 

+ E2 [zy) +ql) + T 2 q o )  - 72g(0) 

+ 7') (1 + cos 2;) - g(l) sin 271 

+ 0 (e3) = 0 (20%) 

Since the expansions in Eqs. (207) must hold (at least in an 
asymptotic sense) for arbitrary values of the perturbative 
parameter E, the codcients of the powers of E in 
Eqs. (207) must separately equal zero. Thus, 

and so forth. The initial conditions necessary for the com- 
plete solution of these partial differential equations are 

of E, and by setting the co&cients of the powers of E 

separately equal to zero. Thus, since t = F= 0 when t = 0 
from Eqs. (201), 

and so forth. 

The general solutions to Eqs. (208) and (211), 
a i ; ' ~ ) / a ~  = 0 and ag0)/aT = 0, are 

- 
b(O) (T,3 = BcO) ($ and z(.co) (Kq = ~ ( 0 )  &) 

(217) 

respectively (the theory of ordinary differential equations 
may be used here, remembering that any constants that 
would ordinarily appear must be functions of the param- 
eter F as discussed in Section IV-D-3). Evaluating 
Eqs. (217) at t = 0 (?= 0 andy= 0) and using Eqs. (214), 
one obtains 

B(O) (0) = 1 and C(O) (0) = 0 (218) 

Note that all of the known conditions on Z ( O )  (Kq and - 
c(O) (x3 have been applied_without a unique deterrnina- 
tion of the functions B(O) ( t )  and C(O) @. This is exactly 
what is required in order to prevent the occurrence of 
secular or Poisson perturbations in the approximation to 
the solution as will be seen during the solution of 
Eqs. (209) and (212). Introducing Eqs. (217) and the par- 
tial derivatives of Eqs. (217) with respect to F into 
Eqs. (209) and (212) yields 

+ C(O) sin 27 

and } (219) 

JPL TECHNICAL REPORT 32- 1267 47 



Treating7as a parameter in the same manner as before, 
one obtains the general solutions to Eqs. (219): 

is not the unperturbed motion, cost. 

Froill Eqs. (220), (221), and (223), 

1 - KC1) ( 7 3  = B( l )  (2j + - e-f  sin 2? 
2 

1 1 + - BcO) sin2F - - C(O) cos 2F 
2 2 and (226) 

- 1 -  
3) (i-ij = C( ' )  (t) - - ct cos 27 

2 
and ) (2.20) 

and, by partial differentiation with respect to < 
1 1 

- - C(O) sin 2T- - B(O) cos 2F 
2 2 I 

and } Now, the unperturbed motion is bounded (as shown in 
Section IV-C) so that from the first uniformity condition 
as discussed in Section 11-A-3, no secular or Poisson per- 
turbations in the fast time variable ? are allowed. Thus, 
the first uniformity condition requires that 

Consider the partial differential eq~ations (2101and 
(213) from which the functions B(')  (t) and C ( l )  (t), as 
well as the undetermined constant T,, are deteimined. 
Taking the partial derivatives of Eqs. (224) with respect 
to T, one obtains - - b(o) = 0 and cia) = 0 (228) 

dB(,' 
dT + BcO) = O  and dC(O' + C ( W  = 0 

dF 

whose solutions are 

Introducing Eqs. (224), (226), (227), and (228) into (210) 
and (213) yields 

- - 
B ( o )  (q = B~ e-t and C(O) @ = C ,  e-t 

(222) 

respectively. Evaluating Eqs. (222) at r= 0 and using 
Eqs. (218), one obtains + C(')  sin 27 I 

and } (229) Bo = 1 and C ,  = O  

so that Eqs. (222) become 

- C ( I )  cos 2 ~ +  ~ ( l )  sin 27 1 - 
~ ( 0 )  ( 3  = e-t and CtO) @ = 0 (223) 

Solving Eqs. (229) for Kc2) (Eq and ( 7 3  and ap- 
plying the first uniformity condition results in the two 
equations 

Introducing Eqs. (223) into Eqs. (217) yields the uni- 
formly valid first approximations 

- - 
b(0) (i;q = e-t and 30) (z'?) = 0 (224) 

Note that the resulting reference motion, from Eqs. (203) 
and (224), 

and 
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whose solutions are, using Solution (A-1) in Appendix A, Since Eq. (235) must be valid for all possible initial con- 
ditions, using the second of Eqs. (217), (222), (226), and 

- 
B(l) @ = Bl e-t 

and 

Evaluating Eqs. (226) at t = 0 (t = 0 and T= 0) and 
using Eqs. (215) yields 

B'" (0) = 0 
1 

and CC1) (0) = 5 (231) 

Evaluating Eqs. (230) at r= 0 and using Eqs. (231), 
one obtains 

1 
B, = O and C -- 

I - 2 

so that Eqs. (230) become 

and 

c {[c~ + ( T 2  + +) T]  e-7- + g-~cos 2 ~ }  
lim 

Co kf- = 0 
E-- fO 

for all t in 0 6 t < w .  Equation (236) requires that 

in order that the coefficient of the term z ~ - ~ i s  zero and a 
uniforn~ly valid approximation is obtained (see Sec- 
tion 11-A-3). From Eqs. (234) and (237), 

1 Z1) (KT) = - @-?(I - cos 27) 
2 (238) 

B(l) 8 = 0 where, from the first of Eqs. (201) and from Eq. (237), 

Introducing Eqs. (232) into Eqs. (226) yields Similarly, the remaining constants T,, r,, . . . in 7 and the 
perturbations in the asymptotic expansions in Eqs. (202) 
may be obtained. Note that the use of two distinct time 

1 
btl) (T, 3 = 2 e-Tsin 27 (233) variables, T and% introduces a degree of flexibility into the 

theory of solution in such a manner that improper secular 
or Poisson perturbations can be eliminated just as in 

and Section IV-D. 

1 - 
~ ( l ) ( < ~ = - e - ~ ( l - c o s 2 ~ +  2 (W4) The uniformly valid asymptotic expansions to 0 (r) are, 

from Eqs. (202), (224), (233), and (238), 

At this point, all of the known conditions on b(l) (K2) and 
c(') (E2) have been applied (without the determination - _- - 1 
of the constant T ~ )  except the second uniformity condi- B (t, t; E) = e-t + - E e-risin 2F + 0 ( e2 )  

2 
tion as discussed in Section 11-A-3. The second uniformity 
condition requires that and 

lim 
€gl) (Z-7) 

= O f o r a l l t i n O L t <  w 
E.+O 2 0 )  (63 (235) 

- -- 1 - 
C (t, t; E )  = - E e-t (1 - cos 23 + 0 (r2) 

2 
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or, using the second of Eqs. (201) and Eq. (239), 

+ 0 (€2) 

and 

Finally, introducing Eqs. (239) and (240) into Eq. (188) 
and using trigonometric formulas, 

A comparison of the uniformly valid asymptotic expan- 
sion to 0 (E), Eq. (241), with the result of Section IV-D, 
Eq. (114), shows that both results are the same. Hence, 
the perturbation theory described in this section is ac- 
ceptable (see the discussion at the end of Section IV-D-3). 

H. Comparison of Approximate Solutions 

The five perturbation theories described in Sections 
IV-C-IV-G are now considered with respect to numerical 
accuracy and range of validity. Table 3 presents the 
exact solution and the approximate solutions obtained 
through the use of these perturbation theories. In review- 
ing Table 3, it is apparent that only three different ap- 
proximate solutions to x (t; E) have been obtained; that is, 

Hence, the following comparison is concerned with the 
numerical accuracy and the range of validity of X,, (t; E), 
X;i2 (t; E), and X,, (t; E) where the standard of compari- 
son is the exact solution; that is, 

E 
sin (1 - e2)U t 

(1 - E"% I 
where O L t  < w .  

It should be noted that X,, (t; E) and X,, (t; E) are ini- 
tially valid approximations, whereas XA2 (t; E) is a uni- 
formly valid approximation (see Sections IV-GIV-G). 

Consider the numerical accuracy and the range of 
validity of the three approximations given in Eqs. (242) 
for E = 0.001, 0.01, and 0.1 (increasing E corresponds to 
increasing the damping or decreasing the strength of the 
spring; see Eqs. 36). Figure 7 presents the exact position 
of the oscillator versus the time, as given in Eq. (243), for 
each of the three epsilons. (The data for this figure as 
well as for Figs. 8-16 have been attained using an IBM 
1620 electronic computer.) Figures 8-10, 11-13, and 
14-16 present the position and position error of the oscil- 
lator versus time for E = 0.001, 0.01, and 0.1, respectively. 
The position error is the difference between the exact 
position as given in Eq. (243) and the approximate posi- 
tion as given in Eqs. (242). Note that the position, position 
error, and the time in these figures are given in normal- 
ized form (see Section IV-A). 

Consider Fig. 7. The three values of epsilon, E = 0.001, 
0.01, and 0.1, clearly correspond to a slightly, moderately, 
and highly damped oscillator, respectively. 

X,, (t; E) = cos t + E (sin t - t cos t) + 0 (e2) 

where O t < t,, 
1 1 + O (E3) + 0 (E,) t + 0 (E') 

where O L t  < w ,  and 

> 1 

where 0 L t < t2. 
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Table 3. Exact and approximate soiutions to the problem of 
the damped linear harmonic oscillator 

Method of solution I Solution I 
1. Exact (Section IV-B) E 

cos (1 - e2)lh t + ( I  - € 2 ) M  
sin (1 - e2)x t 

where0lL-t < co 
I 

2. Variation of coordinates with a one-variable 
asymptotic expansion (Section IV-C) 

x (t; E) = cos t + E (sin t'- t cos t) + 0 (e2) 

where 0 L t < tl 

3. Variation of coordinates with a two-variable 
asymptotic expansion (Section IV-D) 

4. Variation of parameters with successive ap- 
proximations (Section IV-E) 

x(t;e) =cost  + e(sint - tcost) + 0(E2) 

where 

1 
c ( t;  E) = - E (1 - COS 2t) + 0 (€2) 2 

and 

O L t  < tl 

5. Variation of parameters with Taylor's series 
expansions (Section IV-F) 

+ 0 (E3) 

where 

1 
c (t; e) = - ~ e - ~ ~  [ ( l  + ct) - cos 2t - E sin 2t] + 0 (e2) 

2 
and 

O L t  < tz (tz > tl) 
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Table 3 (contd) 

6. Variation of parameters with two-variable 
asymptotic expansions (Section IV-G) 

where 

t, periods of undamped motion 

Fig. 7. Exact position of oscillator versus time (e  = 0.001, 0.01,O.l) 
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Consider Figs. 8-10 (E = 0.001). Although Fig. 8 im- 
plies that all three approximations are very close to the 
exact solution, Figs, 9 and 10 show that the approxima- 
tion XA2 (t; E) is superior to the two remaining approxi- 
mations, X,, (t; E )  and X,, (t; E). The maximum error of 
X,, (t; E) iS approximately 5.0 X 10-lo (well within the 
expected error of approximately e2 = 1.0 X le6 (see the 
second of Eqs. 242) and occurs at t = n/2. Furthermore, 
the relative maximum errors of Xa, (t; E) decrease as time 
increases, and no secular error growth exists (a highly 
desirable characteristic). Thus, the range of validity of 
X,, (t; E) is O L t  < c/s as expected (unifolmly valid). In 
contrast, the range of validity of X,, (t; E) is approxi- 
mately O L t < 2~ (t, s 2 ~ ) ,  whereas the range of validity 
of X,, (t; E) cannot be attained (because of insufficient 
data) but is clearly much larger than that of X,, (t; E) as 
expected; that is, 0 L t < t, where t, > > t,. It should 
be noted that the range of validity is assumed to be the 
range of time during which the actual error is less than 

or equal to the size of the first neglected telm of the 
approximate solution. 

Consider Figs. 11-13 (e = 0.01). Figure 11 clearly shows 
the inferiority of the approximation XAl (t; E) and implies 
that the two remaining approximations, Xa2 (t; E) and 
X,,, (t; E), are very close to the exact solution. However, 
Fig. 13 shows that the approximation X,, (t; E) is superior 
to the approximation XA, (t; E ) .  The maximum error of 
Xaz (t; E) is approximately 5.0 X (well within the 
expected error of approximately c2 = 1.0 X and 
occurs at t = ~ / 2 .  Furthermore, no secular error growth 
exists, and thus the range of validity of X,, (t; E) is 
0 I t  < co as expected. In contrast, the range of validity 
of X,, (t; E )  is approximately 0 t < 3 ~ / 2  (t, s 3 ~ / 2 ) ,  
whereas the range of validity of X,, (t; E) cannot be at- 
tained (because of insufficient data) but is clearly much 
larger than that of X,, (t; E) as expected. 

t, periods of  undamped motion 

Fig. 8. Exact and approximate positions of oscillator versus time (E = 0.001) 
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t, periods of undamped motion 

Fig. 9. Position error of oscillator versus time (E = 0.001 1, 
X E  (1; €1 - X A ~  (f; 61, X E  (f; €1 - X A ~  (t;  €1 
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0 157r 207r 257r 

t ,  periods of undamped motion 

Fig. 10. Position error of oscillator versus time ( E  = 0.001), 
X E  (t; E) - XA? (f; €1, X E  (f; E) - X A 3  (t; E )  
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Fig. 11. Exact and approximate positions of oscillator versus time ( E  = 0.01) 
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t, periods of undamped motion 

Fig. 12. Position error of oscillator versus time ( E  = 0.011, 
X E  (t; €1 - Xhl  (f; €1, XE (t; €1 - X A 2  (t; €1 
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0 4n 8n 12n 167r 2 0 ~  24n 

t, periods of undomped motion 

Fig. 13. Position error of oscillator versus time (E = 0.011, 
XE (t; EJ -- XA* (f; €1, X E  (f; E) - XA3 (f; E) 

Consider Figs. 14-16 (E = 0.1). Figure 14 unmistakably 
shows the inferiority of the approximation XA, (t; E) and 
implies that the two remaining approximations, XAz (t; E) 

and XA3 (t; E), are very close to the exact solution. How- 
ever, Fig. 16 shows that the approximation XA2 (t; E) is 
superior to the approximation XA3 (t; E). The maximum 
error of XA, (t; E) is approximately 4.5 X 10+ (well within 
the expected error of approximately e2 = 1.0 X 1P2) and 
occurs at t = n/2. Furthermore, no secular error growth 
exists and thus the range of validity of X,, (t; E) is 
0 L t < WJ as expected. In contrast, the range of validity 
of XAl (t; E) is approximately 0 4 t < T (t, r n), whereas 
the range of validity of XA3 (t; E) is 0 L t < WJ (although 
X,, (t; E) contains Poisson terms, the exponential decay 
overcomes the secular error growth for this large value 
of E and yields a uniformly valid approximation). 

It is evident from the preceding discussion that the uni- 
formly valid approximation XA2 (t; E) is superior to the 
remaining two approximations, X A l  (t; E) and XA3 (t; E), 
regardless of the value of E ,  as expected. Furthermore, 
from Eqs. (242) and Table 3, it is apparent that only two 
of the five perturbation theories considered in Sections 
IV-C-IV-G yield the approximation XAz (t; E): namely, 

the variation of coordinates with a two-variable asyrnp- 
totic expansion and the variation of parameters with two- 
variable asymptotic expansions. Hence, the application 
of either of these two perturbation theories (generalized) 
to the set of differential equations that govern the motion 
of a satellite appears desirable. The decision as to which 
of these two theories is more desirable depends upon the 
complexity of the set of differential equations that govern 
the motion of the satellite. If this set of differential equa- 
tions is relatively simple, as in the motion of an equatorial 
satellite about an oblate body, it is just as desirable to 
use the variation of coordinates with two-variable asymp- 
totic expansions as it is to use the variation of parameters 
with two-variable asymptotic expansions. However, if this 
set of differential equations is complex, as in the general 
motion of a satellite acted upon by several disturbing 
forces, it is more desirable to use the variation of param- 
eters with two-variable asymptotic expansions. In general, 
this theory involves the solution of first-order partial dif- 
ferential equations, whereas the variation of coordinates 
with two-variable asymptotic expansions involves the 
solution of second-order partial differential equations, 
which are usually more difficult to solve (see Sections 
IV-D and IV-G). 
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t, periods of  undomped motion 

Fig. 14. Exact and approximate positions of 
oscillator versus time (E = 0.1) 

t, periods of undomped motion 

Fig. 15. Position error of oscillator versus time ( E  = 0.1 1, 
XE (t; E) - X A ~  (t; €1, XE (ti E) - XAZ (f; E) 

2 .- .. .- 
8 
_" 4.0  
.- ... .- 
C .- 

7 
51 0 

U, - 
Z -4.0 
DL 

2 
DL W 

-8.0 
0 47r 8 7r 127r 167r 

t, periads of undomped motion 

Fig. 16. Position error of oscillator versus time ( E  = 0.11, 
X C  (f; €1 - Xaz (f; €1, XE ( f ;  €1 - Xas (f; €1 
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V. Motion of a Satellite in an Equatorial Orbit 
About an Oblate Body 

The principal test of a satellite theory herein is that 
it yields the position and velocity (or equivalent param- 
eters) of a satellite to a sufficiently high accuracy even 
after many revolutions about the central mass. The only 
means of deciding whether a given theory yields a suf- 
ficiently accurate solution is to compare the resultant 
solution with a standard of much higher accuracy than 
the desired accuracy. Unfortunately, obtaining a standard 
of comparison with this characteristic is a difficult task. 
As a result, it was decided to start the study of satellite 
theories by restricting the force field and the initial con- 
ditions of the satellite in such a way that there is an 
exact analytic solution to the motion of the satellite that 
can be used as the standard of comparison. In particular, 
the force field and the initial conditions of the satellite 
are chosen to yield the motion of the satellite in an equa- 
torial orbit about an oblate body (second harmonic only). 

Two satellite theories are investigated in this section. 
The two satellite theories consist of the application of 
(1) the theory of the variation of coordinates with multi- 
variable asymptotic expansions and (2) the theory of the 
variation of parameters with Taylor's series expansions, 
respectively, to the differential equations governing the 
restricted motion of the satellite. These satellite theories 
are more desirable than the other satellite theories since 
they are based upon the more desirable perturbation 
theories from Section IV. The variation of coordinates 
with multivariable asymptotic expansions yields a uni- 
formly valid approximate solution (the variation of pa- 
rameters with multivariable asymptotic expansions is 
equally desirable, yielding the same approximate solu- 
tion; see Section IV-H), whereas the variation of param- 
eters withTaylor's series expansions yields an approximate 
solution that is initially valid but one that has a large range 
of validity (the resulting numerical accuracy may be suf- 
ficient over a large enough range of time for practical 
applications). 

A. Mathematical Model 

Consider the motion of a satellite of mass m about an 
axially symmetric oblate body, as shown in Fig. 17. The 
initial conditions of the satellite and the oblateness of 
the body are assumed to have values that yield quasi- 
periodic motion in the equatorial plane of the body (the 
existence of quasi-periodic motion has been established 
by several investigators; for example, see Ref. 172). The 

Fig. 17. Motion of a satellite of mass m about 
an axially symmetric oblate body 

potential function (also called force function) of the oblate 
body is assumed to be of the form 

where pp is the mass function (p, = k2 (mp +m), mp =mass 
of body), a, is the equatorial radius of the body, J2 is the 
coefficient of the second harmonic, and r is the radius 
distance from the dynamical center (in this case, the 
center of the body). It should be noted that the potential 
function as given in Eq. (244) implies symmetry in the 
northern and southern hemispheres of the body (Ref. 564). 

The inertial basis or frame of reference, I, J, K, is chosen 
with origin at the center of mass of the oblate body, with 
the principal direction I directed towards the vernal equi- 
nox (indicated by T), and with the equatorial plane of 
the oblate body as its principal plane. 

The differential equation of motion of the satellite, in 
vector form and using the concepts of Section 111, is 

where 
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and a is the right ascension of the satellite. The per- 
turbative vector i' due to the oblateness of the body can 
also be written 

where the perturbative function R is, from Eq. (244), 

Thus, from Eqs. (246), (247), and (248), 

where 

since R is independent of a. From Fig. 17, 

or, since U and V are orthogonal vectors, 

and } (252) 

Furthermore, the initial conditions are 

dr 
r (to) = To, (to) = 1'0 

where, if J 2  = 0, these initial conditions would yield 
bounded (periodic) motion; that is, the satellite's orbit 
would be circular or elliptical. Finally, the range of time 
of interest herein is 

U = cosaI + sinaJ 

and 

V = -sin a1 + cos a J 

so that, by differentiation, 

Introducing Eqs. (249), (250), and (251) into Eq. (245) 
yields 

Following the procedure of Section IV-A, the differ- 
ential equations of motion of the satellite are normalized 
by letting 

Note that the right ascension a need not be normalized 
as long as its units are radians. Introducing Eqs. (255) 
into Eqs. (252) yields 

d2P da* 
- '* (=) 

and 
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The normalization constants for the length and the time 
(the length and time scales) L, and T ,  and the perturba- 
tive parameter E" are now determined, as in Section IV-A, 
by setting all of the coefficients in Eqs. (256) equal to 
unity except for the coefficient of the perturbing term, 
which is set equal to the perturbative parameter E'. 

Hence, 

and 

Now, Eqs. (257) are composed of two equations in the 
three unknowns L,, T,, and E* and thus a unique deter- 
mination of these unknowns is not possible. However, 
there appear to be only three attractive choices for the 
length scale L, in the physical context of the problem. 
These are the equatorial radius of the body a,, the initial 
radius distance of the satellite r,, and the semimajor axis 
of the unperturbed orbit a, (for this orbit, J, = 0 and the 
initial conditions are those given in Eqs. 253). The value 
of a, is obtained from the initial conditions (253) and the 
vis viva integral; that is, from Ref. 564, 

where 

so that 

Consider the three possibilities L, = a,, r,, and a,, 
respectively. Using Eqs. (257) and Kepler's third law as 
modified by Newton (Ref. 564), P = 2~aq$/~$, the respec- 
tive possibilities for TI and E* are obtained as presented in 
Table 4. 

In reviewing Table 4, it is clear that the use of a, as the 
length scale is most characteristic of the perturbed mo- 
tion since a first approximation to the perturbed motion 

is simply the unperturbed motion. Thus, the normalization 
constants are chosen to be 

L1 = a, and T, = (21% 
and, as a result, 

In Section IV-A, it was shown that the perturbative 
parameter is the ratio of two characteristic time scales; 
that is, 

and thus a second characteristic time scale for this motion 
may be defined as 

Introducing the second of Eqs. (259) and Eq. (260) into 
Eq. (261) yields 

The physical significance of these two time scales is clear. 
The time scale T, is a measure of the period of the pri- 
mary motion of the satellite produced by the inverse 
square portion of the force field of the body (character- 
istic time for the primary motion), while the time scale 
T ,  is a measure of the period after which the cumulative 

Table 4. Normalization constants for the 
equatorial satellite 

face of the body in a circu- 

whose semimajor axis is 
equal to the initial radius 
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effects of the second harmonic become important (char- 
acteristic perturbing time). The ratio E* is a measure of 
the relative importance of the primary and perturbing 
forces. In fact, E" is the ratio of the perturbing force to 
the primary force at a radius distance equal to the semi- 
major axis of the unperturbed motion a,. (The initial con- 
ditions of this motion are those given in Eqs. 253.) It 
should be noted that a, is, in a sense, a mean radius 
distance of the satellite since 

where yo = initial perifocal distance and rAo = initial 
apofocal distance as shown in Fig. 18. The fact that E* 

is the ratio of the perturbing force to the primary force 
at r = a, is substantiated by using the first of Eqs. (252); 
that is, 

perturbing force 
€* = [ 

primary force I .=, 

in agreement with Eq. (260) (the satellite mass m is intro- 
duced to obtain force from acceleration). 

In general, the value of J2 is small (1, = 0.001975 for 
Mars) and, since a,"- a, for a realistic satellite orbit, it 
is clear from Eq. (260) that E* < < 1. Furthermore, since 
E* < < 1, it is clear from Eq. (261) that T2 > > TI, and 
thus TI characterizes the fast (short-period) variations of 
the satellite and T2 characterizes the slow (long-period) 
variations of the satellite. The existence of these two time 
scales in the physical context of this problem implies that 
the theory of multivariable asymptotic expansions is 

APOFOCUS 

ideally suited for obtaining an approximate solution to 
the motion of the satellite. 

Introducing Eqs. (257) into Eqs. (256) and using 
Eqs. (255) and (259) in Eqs. (253) and (254) yields the 
following differential equations of motion and initial con- 
ditions in normalized variables: 

and 

where 

O L t * <  co 

Note that the quantity (p,/a0)% is the circular-satellite 
speed at r = a, of a satellite in the unperturbed orbit 
whose initial conditions are those of Eqs. (253), as may 
be seen from the vis viva integral 

Since a. can be thought of as the mean distance of the 
satellite, it follows that (p,/%)% can be thought of as 
the mean speed of the satellite; that is, 

Fig. 18. Mean radius distance of a satellite 

Following the procedure of Section IV-A, the cum- 
bersome star notation is eliminated so that Eqs. (263) 
become, setting E* = h * ~  as well, 
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and 

where 

natural independent variable t to the reference depend- 

dr 
ent variables ?I = la2/r and t and the reference indepen- 

1' (0) = To , - (0) = i,, d t  (267) dent variable a. Thus the reference coordinates are 
7 (a; E), t (a; E ) ,  (d?]/&) (a; E), and (dt/da) (a; E), and the 
reference independent variable is a. From these, the 

da 
( 0 )  = 0 ,  - (0) = &, (268) selected coordinates a (r; E), t (r; E ) ,  (dr/dt) (r; E), and 

dt  (&/at) (r; E) are determined where the selected inde- 
pendent variable is r. 

O L t < m  (269) 2. Equations of motion. The transformation of Eqs. 

(265-269) into the reference variables begins by integrat- 
and where the units of the variables and initial condi- ing Eq. (266) to yield 
tions are now as follows: 

& r2-=h 
[distances] = semimajor axes of the unper- dt (272) 

turbed motion a,, 
where, through the use of r (0) = r, and (da/dt) (0) = ho 

[speeds] = circular-satellite speeds of the - from Eqs. (267) and (268), 
unperturbed motion at r = a,, 9, 

[angular speeds] = radians per 1/27 peri- h = r;&, 
(270) 

(273) 
ods of the unperturbed 
motion, rad/(P0/27), The quantity h, the normalized angular momentum of the 

satellite, is constant (conservation of angular momentum). 
and 

[time] = 1/2x periods of the unperturbed 
motion, Po/2x. 

Note that, using Eq. (260), 

Let 

so that Eq. (272) becomes (r  is assumed to be greater than 
e* 3 e = - - = - J  
h4 2 

(271) zero) 
\ ,  

where the units of a, are now semimajor axes of the 
unperturbed motion, a,. The quantity h is the normal- - 

ized angular momentum per unit mass and is introduced Differentiating Eq. (274) with respect to t and using 
for the purpose of simplification, as will be seen in the Eq. (275) yields 
next section. 

B. Exact Solution and 

The differential equations that govern the motion of d2r -- - 1 d"a 
an equatorial satellite, given in Eqs. (265) and (266), are --?-- r12 d2rl 

at2 h da2 dt  h"2 (277) 
clearly nonlinear. Nevertheless, an exact analytical solu- 
tion is attainable in terms of familiar functions: namely, Introducing Eqs. (274), (275), and (277) into Eq. (265) 
elliptic integrals (or elliptic functions). yields 

d27 - 
1 .  Selection of coordinates and independent variable. cL2 + ~ - ~ - E ~ ~ = O  

In order to obtain the exact analytical solution to the 
motion of the satellite, Eqs. (265-269) are transformed Thus, the differential equations of motion and initial 
from the natural dependent variables 1. and a and the conditions in terms of the reference variables are, from 
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Eq. (275), the previous equation, and from Eqs. (274-276) 
evaluated at a = 0, 

and 

where 

o - L a <  00 (282) 

3. Relativistic theory of gravitation. The system of 
equations developed in the preceding section governs the 
motion of a satellite in an equatorial orbit about an oblate 
body. The intent of this section is to show that the same 
system of equations governs relativistic motion of a point 
mass moving around a central point mass so massive as to 
dominate the system (the motion of a satellite around a 
planet and the motion of a planet around the sun can be 
approximated by such a motion). 

According to the theory of general relativity (Ref. 1373), 
a motion of this type is governed by the ordinary geo- 
desics of the static Schwarzschild metric, which in simpli- 
fied form is 

where 

6 3 0  P P  1 and y = 1 - 2 - -  
c2 1. 

and where the quantities c and p, are the speed of light 
and the mass function, respectively. The quantities r, ~u, 
and 6 (6 0 )  are the position coordinates of the orbit- 
ing point mass and are analogous to r, a, and 6 in the 
Newtonian theory of gravitation (preceding section), 
whereas the quantities t and s are the coordinate time 
and proper time of the orbiting point mass, respec- 
tively. The proper time is analogous to the time t in the 
Newtonian theoly of gravitation. 

JPL TECHNICAL REPORT 32- 1267 

The differential equations of motion that result from 
the metric above are 

subject to the initial conditions 

dl' 
.I' (to) = ro, dt (to) = i.0 

da 
'Y(t0) = f f o ,  (to) = =o 

ds 
s (to) = So, 

Y o C  
;ZT (to) = 

where 

and 

O L t < w  

The quantities h,) and K are constants of integration and 
are given by 

and 

where 

Note that the quantity lz is the angular momentum per 
unit mass in the Newtonian theory of gravitation and that 
11, is analogous to 1z since both yo and K are dimensionless 
constants. 



Following the procedure of Section V-A, the preceding Now, with the elimination of the cumbersome star nota- 
equations are normalized by letting tion, these equations become 

where 

to obtain 

ds"' 

subject to the initial conditions 

dr* r  0 l'o 
1':"o) = - 3 - ( 0 )  = 

a, dt* (E) K 

wvhere 

0 1 t * <  w 

Furthermore, 

and 

ds Y 

subject to the initial conditions 

wvhere 

O l t < c o  

and where the units of the variables and initial conditions 
are now as follows: 

[distances] = semimajor axes of the unperturbed mo- 
tion a,, 

[speeds] = Y ~ / K  circular-satellite speeds of the unper- 
turbed motion at r = U , , ( ~ , / K )  

[angular speeds] = radians per ( K / ~ , )  ( 1 / 2 ~ )  periods of 
the unperturbed motion, 
rad/(dyo) (Po/27r>, 

[coordinate time] = ( K / ~ ~ )  ( 1 / 2 ~ )  periods of the unper- 
turbed motion, ( K / ~ , )  (Po/%), 

and 

[proper time] = c / 2 ~  periods of the unperturbed mo- 
tion, c P , / 2 ~ .  

Note that in normalized variables and initial conditions 
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and 

where the speed of light c is now expressed in units of 
circular-satellite speeds of the unperturbed motion at 
r = a, (this is equivalent to setting 

and then dropping the star notation). 

Finally, letting r = h2/7,, using h, = h, and using 
&/ds = h/r2 = $/h3, one obtains the differential equa- 
tions of motion and initial conditions 

d27, - + 7 , - 1 - ~ 7 , ~ = 0  
da" 

and 

where 

and 

In comparing the preceding differential equations 
of motion and initial conditions with those given in 
Eqs. (278-281), it is apparent that the first two differ- 
ential equations of relativistic motion and their respective 
initial conditions are the same as Eqs. (278-281) if the 
proper time s is interpreted as being analogous to the 
Newtonian time t. Hence, the solution to Eqs. (2T98-281) 
represents (1) the relativistic motion of a point mass mov- 

ing around a central point mass so massive as to dominate 
the system and (2) the motion of a satellite in an equatorial 
orbit about an oblate body. Note that in the case of the 
relativistic motion, the solution to the differential equation 
for the coordinate time t must be obtained in addition to 
the solution to Eqs. (278-281). 

4. Analytical integration of equations of motion. The 
quasilinear differential equation given in Eq. (278) can 
be solved by using the substitution 

Differentiating Eq. (283) with respect to a yields 

and thus Eq. (278) becomes 

Integrating Eq. (284) yields 

where ET is a constant of integration. Evaluating Eq. (285) 
at = 0 and using Eqs. (280) and (283), one obtains 

Note that, from Eqs. (272), (274), (276), and (283), 

or 

[z + vZ = (2hZ) (normalized kinetic energy) 

and that, from Eqs. (271) and (274), 
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or 

2 (7, + rn3) = - (2h2) (normalized potential energy) 

so that Eq. (285) can be rewritten as 

normalized kinetic energy + 
1 ET 

normalized potential energy = - - 2 1z2 

that is, 

1 ET normalized total energy = -- 
2 12' 

Thus, since the quantity h is constant as shown in 
Eq. (273), the normalized total energy of the satellite is 
constant (conservation of total energy). Note that the 
quantity E ,  can be thought of as a normalized total 
energy as well. 

Introducing Eq. (283) into Eq. (285) yields 

from which 

where, from the first of Eqs. (280), 

In addition, from Eqs. (279) and (287), 

and therefore, using the first of Eqs. (280) and (281), 

The integrals in Eqs. (288) and (290) are expressed in 
terms of Legendre normal elliptic integrals of the first, 
second, and third kinds in Appendix B. There exist com- 
plete and detailed tables of these noimal elliptic integrals, 
and their properties have been discussed exhaustively in 
the literature (for example, see Refs. 1374 and 1375). 
Elliptic integrals are basically as easy to use as circular 
functions. However, since they do not arise in the sci- 
ences as often as circular functions, they are not as 
familiar to most investigators, 

A summary of the integrals in Eqs. (288) and (290) in 
terms of Legendre nonnal elliptic integrals, as well as 
pertinent constants and relationships, is given in Tables 
B-1 and B-2 in Appendix B. The functions F(;\?k), 
E ($\t%), rr (k; $\A) are the Legendre normal elliptic 
integrals of the first, second, and third kinds, respectively. 
It should be noted that since $,, h, and are constants 
determined by the initial conditions, the quantities 
I?($,\&), E (;,,\A), and II (h; ;,\A) are also con- 
stants, As a result, the right ascension a of the satellite 
consists of constants and a Legendre normal elliptic inte- 
gral of the first kind, whereas the time t associated with 
the position of the satellite consists of constants, powers 
of r, and Legendre normal elliptic integrals of the first, 
second, and third kinds. Thus, a (r; r )  and t (r; E) are de- 
veloped where r = 1z2/17 is the independent variable. In 
order to determine actual numerical data, values of the 
elliptic integrals for various values of r must be obtained 
from tables of Legendre normal elliptic integrals of the 
first, second, and third kinds or from numerical determi- 
nations on a digital computer using elliptic integral com- 
puter programs. The latter are used in this investigation. 
For an insight into the tables of elliptic integrals, see 
Ref. 1375. 

Note that the reference coordinates are 71 (a; E) and 
t (a; E ) ,  where a is the reference independent variable, 
but that Eqs. (288) and (290) yield a (r; E) and t (r; E) 

where r is the independent variable instead. Actually, 
Eq. (288) can be expressed in terms of a Jacobian elliptic 
function in such a manner that 7, (a; E) is obtained (Refs. 
112 and 172). Then, introducing 7 (a; 6) into (279) and 
integrating (a difficult task), t (a; E) can be obtained. 
Thus, although a (r; E) and t (r; E) are developed herein, 
it may be assumed that 7 (a; E) and t (a; E) can be obtained 
as well. 

The proper signs in Eqs. (287), (288), and (290) depend Suppose noncircular quasi-periodic motion exists 
upon the behavior of 7, = h2/r; that is, upon whether r is (h" 6J2ag in normalized quantities; see Ref. 172) so that 
decreasing or increasing, as is shown in Appendix B. T,,~,, and r,,, both exist, and suppose the initial position 
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of the satellite occurs after or at  perifocal passage but passage is reached (r = T~,,~, , ) .  These equations are those 
before apofocal passage (see Fig. 18) so that i., > 0 or in the last colunln of Table B-1 but with the initial point, 

dLr 
i.o = 0 with - (0) > 0 

clt" 

represented by $,, replaced by the apofocus, represented 
by 4,. From Tables B-1 and B-2, 

12" 
then the equations in the first column of Table B-1, as - + 11 
well as 

A I'111ax 12' - 1 
sin"* = - A 

& Al,I ,X 
rmax 

da 12 - - - - 
at r.' 

and 
represent the motion of the satellite until apofocal pas- 
sage is reached (r = r1,,,,). Actual numerical data are v = - (& - AIilin) 

obtained by entering increasing values of r into these 
equations until rInax is reached. The number of data points so that 
is arbitrary and is not determined by an accuracy cri- 
terion, as in the case of the numerical integration of the A Alllax - A m i n  

differential equations of motion of the satellite. This is 
] " (291) 

m (a4 + AmaX - ~ m i n )  
the essential advantage of representing the motion of the 
satellite by elliptic integrals. Thus, 

6 Once the satellite attains apofocal passage, a different = ,, + ( , )"[F - F (;\A)] 
set of equations represents the motion until perifocal 6 (a1 + 03) 

(292) 
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The remaining pertinent expressions are given in the last column of Table B-1 and in Table B-2. The quantity 
son appearing in Eq. (292) and the quantity to* appearing in Eq. (293) are the differences in the right ascension 
and the time, respectively, between the initiai point and theA apofocus as determined from the equations for a! 

and t in the first column of Table B-1 with + replaced by +A. Actual numerical data are obtained by entering 
decreasing values of r in Eqs. (292-294) and the associated expressions in Tables B-1 and B-2 until rmi, is reached. 

Once the satellite attains perifocal passage, a different set of equations represents the motion until apofocal pas- 
sage is once again reached. These equations are those in t? first column of Table B-1 but with the initial point, 
represented by $0, replaced by the perifocus, represented by +,. From Tables B-1 and B-2, 

h2 1 - 
Amin and 

rmi n 2~ v = - (& - LIn1.x) 

so that 

Thus, 

+ [($ (f) - 1 + ($) r + (+) r z ]  " - u1 ($)'I [E (;,\A) - E (;\A)] 

+ (5) (;)"[F (;,,A) - F(i\h)] + $(:)' [ n (n; ;,\A) - n (A; ;\A)]$ (297) 
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and 

The remaining pertinent expressions are given in the 
first column of Table B-1 and in Table B-2. The quantity 
adP appearing in Eq. (296) and the quantity tAP appear- 
ing in Eq. (297) are the differences in the right ascension 
and the time, respectively, between the apofocus and the 
perifocus as determined from the equations for a and t 
in the last column of Table B-1 with $o replaced by 
$, and $ replaced by zero. Actual numerical data are 
obtained by entering increasing values of r into Eqs. (296- 
298) and associated expressions in Tables B-1 and B-2 
until r,,,,, is reached. 

At this point, the three sets of equations describing the 
motion of the satellite for a partial revolution (from the 
initial position to the apofocus) and one complete revo- 
lution (from the apofocus to the perifocus to the apo- 
focus) have been described. From these sets of equations, 
the position and velocity of the satellite after several 
revolutions can be obtained; that is, 

aj  = ( i  - 1) (a,,, + @PA) + a 

and i (299) 

t j  = ( j  - 1) (tAp + tpd) + t 

where 

j is the revolution number measured from the first apo- 
focal passage; 

and where the expressions for a, t, dr/dt, and h / d t  are 
given in Eqs. (292c294) for dr/dt < 0 and in Eqs. (296- 
298) for dr/dt > 0. 

It should be noted that in one complete revolution, the 
change in the right ascension of the satellite does not 
equal 2~ radians, (aAp + apA) # 2 ~ ,  as in the case of 
KepIerian motion ( E  = 0). Furthermore, it is clear from 
Eqs. (299) that the position and velocity of the satellite 
in any revolution (other than the first) can be determined 
from the data of the first complete revolution and the 
constants mod, aAp, apA, toA, ~..IP, tP/,, and j. Finally, each 
data point determined from the elliptic integrals is inde- 
pendent of the error of the previous data point, and thus 
error propagation does not occur as in the case of the 
numerical integration of the differential equations of mo- 
tion of the satellite. Consequently, the numerical accuracy 
of the position and the velocity of the satellite after many 
revolutions can be controlled by the astrodynamicist. 
This is the principal reason for restricting the force field 
and the initial conditions of the satellite. Numerical com- 
parisons in Section V-E-1 between approximate solutions 
and the exact solution to the motion of the satellite are 
free from any uncertainty in the data of the exact solution. 

In the case where the initial position of the satellite 
occurs after or at apofocal passage but before perifocal 
passage (see Fig. 18) so that i, < 0 or 

d2r 
i o  = o  with ,(O) dt < o  

aj and t j  are the right ascension and the time of the the previous discussion must be modified with respect 
satellite, respectively, in the ith revolution; to the order of the sets of equations representing the 

motion of the satellite. The equations in the last column 
a,, and tAp are the differences in the right ascension of Table B-1, as well as 
and the time of the satellite, respectively, between the 
apofocus and the perifocus (previously determined); dm - h --- 

dt r2 
ap, and tpn are the differences in the right ascension 
and the time of the satellite, respectively, between the represent the motion of the satellite from the initial p s i -  
~erifocus and the a~ofocus as determined from the tion to the perifocus. From the perifocus to the apofocus, 
equations for a and t in the first column of Table B-1 Eqs. (295-298), with (aoA + map) and (to* + top) replaced 
with $, replaced by $P and $ replaced by zero; by sop and top, respectively, represent the motion of the 
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satellite. The quantities sop and top are the differences 
in the right ascension and the time of the satellite, respec- 
tively, between the initial position and the perifocus as 
determined from the equations for a and t in the last 
column of Table B-1, with $ replaced by zero. From 
the apofocus to the perifocus (second perifocal passage), 
Eqs. (291-294), with a,, and tnA replaced by (a,,p + ap,J 

and (to, + tpA), respectively, represent the motion of the 
satellite. The quantities ap, and tpA are the differences 
in the right ascension and the time of the satellite, respec- 
tively, between the perifocus and the apofocus, as deter- 
mined from the equations for (Y and t in the first column 
of Table B-1, with 4, replaced by 4p and 4 replaced by 
zero. 

(other than the first) can be determined from the data 
of the first complete revolution and certain constants (in 
this case, L Y O ~ ,  apA, a,ip, ~ O P ,   PA, t 4 ~ ,  and i). 

If circular motion exists so that rmi, = rIUa,, then 
Eqs. (B-21) from Appendix B represent the motion of 
the satellite; that is, 

At this point, the three sets of equations describing The initial conditions for this case are, from Eqs. (B-20) 
the motion of the satellite for a partial revolution (from in Appendix B, 
the initial position to the perifocus) and one complete 
revolution (from the perifocus to the apofocus to the 
perifocus) have been described. From these sets of equa- clr 
tions, the position and velocity of the satellite after several (O) = f i  = 40, ;ii (O) = io = O = O , )  

revolutions can be obtained; that is, 

aj  = ( j -  l)(apA + aAp) + (Y ) 
and (300) 

ti - (i - 1) (tpA + tAp) + t Note that the expression for dro is obtained by using 
Eqs. (B-20) in Appendix B in conjunction with Eq. (273) 

where and with Eq. (B-17) in Appendix B; that is, 

j is the revolution number measured from the first peri- 
focal passage; 

aj and t j  are the right ascension and the time of the 
satellite, respectively, in the ith revolution; 

(YP,~ and tpA are the differences in the right ascension Since T ~ n i n  = rmax, a complete revolution for this case is 
and the time of the satellite, respectively, between the defined by a change of radians in the right ascension 

perifocus and the apofocus (previously determined); of the satellite. 

a A p  and t,, are the differences in the right ascension 
and the time of the satellite, respectively, between the 
apofocus and the perifocus, as determined from the 
equations for a and t in the last column of Table B-1, 
with ;,, replaced by 4, and $ replaced by zero; 

and where the expressions for a, t, dr/dt, and da/dt are 
given for dr/dt < 0 in Eqs. (292-294) with a,,, and to, 
replaced by (sop + spa) and (t,p + tpA), respectively, and 
for dr/dt > 0 in Eqs. (296-298) with (@,A + asp) and 
(to,( + to,') replaced by mII. and t i , ,  respectively. Again, 
the position and velocity of the satellite in any revolution 

Finally, it should be pointed out that Tables B-1 and 
B-2 present the equations representing the motion of a 
spacecraft in an escape trajectory as well (second and 
third columns in Table B-1). However, since the present 
investigation concerns only quasi-periodic motion, a de- 
tailed discussion of the escape trajectory is not presented. 

In addition to r, a, dr/dt, da/dt, and t, several addi- 
tional quantities are useful in satellite theory. These are 
the total speed of the satellite ds/dt and the osculating 
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parameters of the satellite's orbit, a, e, q, v,  and w (see 
the Glossary). From Ref. 564 and Section 111, 

where 

and 

Note that s' = r' = 0' = 0 but that v' # 0. From the vis 
viva integral (Ref. 564) in normalized form, 

so that 

From Ref. 564, 

p = 1z2 = a (1  - eZ)  

and thus 

Also, 

q = a ( l - e )  (310) 

From Ref. 564 in normalized forms, 

dr 1 -- dt - e sin v and p = h2 = r ( l  + ecosv) 

so that 

clr 
h- 

v = t a n  i?] -- 

where 

dr  
O < v < n  if - ; i ; ; > O  

dr 
n < v < 2 a  if - ; i ; ; > O  

dr d2r 
v = O  if - = 0  and - > O  

d t  cl tL 

and 

dr  d' r 
v = n  if - = O  and dt? < O  

d t  

Finally, since the line of nodes is physically nonexistent 
for an equatorial orbit, the longitude of the ascending 
node can be defined in a suitable manner; for example, 

A a = o  (312) 

so that 

P =  + o - t v = o + v = u  (313) 

and, since (Y = P  in this case, 

o = a - v  (314) 

where 0 A 2 ~ .  It should be noted that if 6;) is not 
defined equal to zero, then is replaced by 8 = + w 

so that 

a = @ - 0  

that is, the longitude of perifocus is used in place of the 
argument of perifocus. Equations (312-314) are used 
herein. 

C. Solution Using Variation of Coordinates With 
Two-Variable Asymptotic Expansions 

There are two perturbation theories that use multi- 
variable asymptotic expansions. Either of these perturba- 
tion theories can be used to find the solution for the motion 
of an equatorial satellite about an oblate body. The first 
theory, the variation of coordinates with multivariable 
asymptotic expansions, and the second theory, the 
variation of parameters with multivariable asymptotic 
expansions, are discussed in Sections IV-D and IV-G, 
respectively, with regard to the damped linear harmonic 
oscillator. It  is shown in Section IV-H that these theories 
are very similar, yielding the same approximate solution, 
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but that the variation of parameters is more desirable 
whenever the differential equations of motion are complex. 
Since the differential equations of motion for the equa- 
torial satellite about an oblate body are simple, there 
appears to be no advantage of one theory over the other 
theory. Consequently, the variation of coordinates with 
multivariable asymptotic expansions is arbitrarily chosen 
in this section and applied to the differential equations 
of motion of an equatorial satellite about an oblate body. 

1.  Selection of coordinates and independent uariable. 
It is desirable to select 7) (a; e), t (a; e), dV/& (a; e), and 
dt/da (a; e) as the coordinates and a as the independent 
variable, in place of the natural coordinates r (t; e), a (t; e), 
dr/dt (t; e), and da/dt  (t; e) and the natural independent 
variable t. 

3. Development of solution. The approximate solution 
is assumed to be of the form 

A 
7) (a; E )  = H (cu, ;;; c) = h', (E) (E,;;;) 

+ h,  (E) (CY,;) 

+ h2 (E) 7 ) ( 2 )  (z,%) 

+ 0 ( h 3  (4 )  
and 

A 
t (a; E) = T (CU, T; E) = 70 (E) t ( O )  (iji,;) 

+ 7 ,  (E) t(l)  (CY,Z) 

+ 7 ,  (E) (Z%) 

+ ( 5 3  (4)  

2. Equations of motion. The differential equations of where the sequences of functions hi (E) and 7 j  (E), 
motion and initial conditions in terms of the selected i = 0,1,2, . . . , are asymptotic sequences (see Section 
variables are given by Eqs. (278-282); that is, 11-A-2); where the fast variable E is dependent upon 

in a manner that expresses a frequency shift; that is, 

and 

where 

O L a < m  

A 
1; = [l + a, (e)  a, + a, (E) (Y, + 0 (a3 (E))] (320) 

and where the slow variable is given by 

- A  
a = A (E) a (321) 

The sequence of functions a j  (E), i = 1,2, . . . , is also 
an asymptotic sequence, and the aj, i = 1,2, . . . , are 
undetermined constants. The need for two distinct angle 
variables E and T is indicated in Section V-A by the 
occurrence of the two independent time scales TI and T,  
in the physical context of the problem (see the discussion 

A .  

of two time scales with regard to the damped linear 
Through the use of Eqs. (273) and (289), the 'On- harmonic oscillator in Sections IV-A and IV-DJ). 
ditions can be rewritten as 

a7 Unfortunately, the correct functional forms of hi (E), 
17 (0) = 170, (0) = t o  (315) ~j (E), aj (E), and A(€) are not easily determined and, 

consequently, a certain amount of experience and fore- 
sight is required by the astrodynarnicist in the selection 

(316) of these functions. Let 

where 

and 

74 

h (E) = 7 j (E) = € j  
A 

(322) 
to = - hi.,, (317) 

where i = 0,1,2, . . . , and let 

p = h2 = ~ 4 0  ;Yg (318) a, ( E )  = ~j and A(€) = E (323) 
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where j = 2,3, . . . and a, (E) = 0. Then Eqs. (319), (320), 
and (321) become 

7 (a; €) = H (Z,Z; €) = 7(O) (Z,Z) + c7(l) (Z,Z) 

+ E211'2' (Z,CY) + E37(3) (GZ) 

+ 0 (€9 (324) 

and 

t(a; E) = T(Z,%; E )  = t(O) ((u,'2;) + €t(l) (;;,%) 

+ Ezt'2) (Z,Z) + e3t(3) (a;;) 

+ 0 (€4) (325) 

where 

= a [ l  + @a2 + e3a3 + 0 (e4)] (326) 

and 

;= €a (327) 

Note that 7,(O) (Z,;;) and t(O) (Z,Z) can be thought of as 
representing the reference motion of the satellite, and 
that E ? ( ~ )  (Z,%), E ~ ~ ( ~ )  (Z,;;), etc., and ~ t ( l )  (Gq, e2t(l) (a',;), 
etc. can be thought of as the perturbations to the ref- 
erence motion. Furthermore, note that the reference mo- 
tion is not necessarily the unperturbed motion of the 
system, since both and Z reflect the effects of the per- 
turbative parameter E. 

In accordance with Section 11-A-2 the convergence of 
the asymptotic expansions (324) and (325) is of no inter- 
est in this investigation. The important objective is that 
the approximation of the solution by the two expansions, 
each consisting of a finite number of terms, illustrates all 
the essential features of the motion and provides a close 
numerical approximation to the exact result for all values 
of a in the range of a, 0 4 0  < co, assuming the param- 
eter E is sufficiently small. 

For conciseness, the following notation is adopted 
(similar to that of Section IV-D-3) : 

atcj) at(j) 
t;i) = - and t(j) = - 

aor 2 az (329) 

where 

j=o,1,2,  . . - 

Consider the development of the expansion (324) using 
the first of the differential equations of motion in Sec- 
tion V-C-2 (Eq. 278). Differentiating Eq. (324) with 
respect to the right ascension a and using the notation 
in Eqs. (328), one obtains 

Differentiating Eqs. (326) and (327) with respect to a 

yields 

and (331) 

Introducing Eqs. (331) into Eq. (330), and combining like 
powers of E, one obtains 

Differentiating Eq. (332) with respect to the right ascen- 
sion a, using Eqs. (328) and (331), and combining like 
powers of E, one obtains 
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In addition, from Eq. (324), so that 

Introducing Eqs. (324), (333), and (334) into the differ- 
ential equation of motion for 7 (a; E), Eq. (278)) and com- 
bining like powers of e, one obtains 

Since the expansion (335) must hold (at least in an asymp- 
totic sense) for arbitrary values of the perturbative pa- 
rameter E, the coefficients of the powers of E in Eq. (335) 
must separately equal zero. Thus, 

and so forth. The initial conditions necessary for the com- 
plete solution of these partial differential equations are 
obtained by evaluating Eqs. (324) and (332) at a = 0, 
by using the initial conditions (315), by combining terms 
of like powers of r, and by setting the coefficients of the 
powers of E separately equal to zero. Thus, since Z = 0 
and Z = 0 when a = 0 from Eqs. (326) and (327), 

0 = [77(O) (0,O) - + E7(l) (0,O) 

+ .E2 (0,o) + E3 ~ 7 ' ~ )  (0,O) + 0 (E4) 

and 

0 = [771°) (0,O) - t o 1  + ~[77(:) (0,O) + 7l1) (0,O)I 

+ .E2 [ a 2  7710) (0)O) + 772' (0, 0) + 7)y) (0) O)] 

+ E3 [a3 'qy) (0,o) + aa 77:') (0,o) 

+ (0,o) + 77(13) (0, o)] + 0 (c4) 

and so forth. 

The general solution to Eq. (336)) through the use of 
the procedure in Section IV-D-3 and Solution (A-2) in 
Appendix A, is 

- - 
T ( O )  (;,a) = iii? (a) cos Z + Z$) (a) sin cY + 1 (344) 

Let 

- - A -  - 
a(O) N (a) = ecO) (a) COSZ(O) (Z) 

and 
- (345) - - A -  - 

a$) (a) = ecO) (a) sinTO) (a) 

so that Eq. (344) becomes 

7)(O) (;,q = 1 + Z(O) (Z) cos [Z - Z(O) (Z)] (346) 

Note that, through the use of Eqs. (274) and (318)) 
Eq. (346) can be written as 

p = r'" ((Cy,%) (1 + 2 0 )  (Z) COS [;; - 3 O )  (;)I) (347) 

which is similar to the equation of perturbed motion; 
that is, 

p = r (a; E) (1 + e (a; E) cos [a - w (a; E)] ) (348) 

where v (a; E) = [a - (a; E)]. At first glance, Eqs. (347) 
and (348) imply that 

1. (a; E) = r ( O )  (Z,;) + (Z,Y) -t 0 (e2) (349) 

e (a; e )  = 70) (2 + (2 + O (€2) (350) 
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and - 
o (a;  E )  = Z(') (a)  -t- EF) (J + 0 ( E ~ )  (351) 

However, a careful scrutiny of Eqs. (347) and (348) shows 
that Eqs. (350) and (351) are incorrect, inasmuch as 
Eq. (347) contains the fast variable Z explicitly, whereas 
Eq. (348) contains the fast variable a explicitly. The 
proper implication from these equations is 

- 
e (a ;  E )  cos [ a  - w (a; E ) ]  = Z(O) (3 cos [Z- 7,) ( a ) ]  

Although Y(o)  (2 and 3,) (z) are not the zero-order ap- 
proximations of the instantaneous parameters e (a; e) and 
o (a; E ) ,  respectively, it is still proper to consider then1 
as zero-order approximations of an eccentricity and an 
argument of perifocus, respectively, as may be seen by 
considering the multivariable plane where Z is the fast 
variable and the physical plane where a is the fast vari- 
able. Figure 19 shows sketches of Eq. (347) and of 
Eq. (348) to 0 ( E )  where 

r (a;  E )  = r(") (a;  e) + 0 ( E )  

e (a;  e )  = do)  (a;  E) 4- 0 ( E )  

and 

" (a;  ,E)  = "(0) (a;  E )  + 0 ( E )  

Now, 30) @ and ;3(O) (L) are simply the zero-order ap- 
proximations of the instantaneous eccentricity and argu- 
ment of perifocus, respectively, in the multivariable plane 
where Z is the fast variable, whereas e(O) (a; E )  and 
o f o )  (a;  E )  are the zero-order approximations of the instan- 
taneous eccentricity and argument of perifocus, respec- 
tively, in the physical plane where a is the fast variable. 
In order to distinguish between these two types of instan- 
taneous parameters, those parameters such as Z(a; 6) and 
;(a; E )  defined in the multivariable plane will be called 
instantaneous multivariable parameters, whereas those 
parameters such as e (a ;e )  and o (a; E )  defined in the 
physical plane will be called simply instantaneous pa- 
rameters as usual (see the related discussion of the func- 
tions b ( t ;  E )  and c (t; E )  and the functions b ( t ;  E )  and 
?(t; E )  in Section IV-G-1). 

Taking the partial derivative of Eq. (346) with respect 
to Z yields 

??) (1;) = -P" 6) sin [z- ;5'O) (;)I (352) 

Evaluating Eqs. (346) and (352) at a = 0 (Z= 0 and - 
a = 0 )  and using Eqs. (340), one obtains 

and 

to = Z(O) (0)  (0)  

from which 

and 

Note that for the initial conditions 7 ,  = 1 and 6,  = 0,  
eo = 0 and W, is undefined. However, for these initial 
conditions, Eqs. (317) and (318) yield 

1 Go = - 
r3/2 and i., = 0 (356) 

and from Eq. (265) evaluated at t = 0 (a = 0 )  and 
Eqs. (356), 

Now, d2r/dt2 (0)  < 0 since E > 0 and If > 0. Hence, from 
Eqs. (311) evaluated at t = 0 ( a  = O), for i.,, = 0 and 
d2r/dt2 (0)  < 0, one obtains u, = T ,  which corresponds 
to COO = -T from Eq. (314) evaluated at t = 0 (0 = 0) or 
oo = T ,  since 0 4 oo 4 2 ~ .  Therefore, for the initial con- 
ditions 77,  = 1 and to = 0, 

e,  -- 0 and w,, = T (358) 

Taking the partial derivative of Eq. (352) with respect 
to 2 yields 

- aO' + e(O) (a )  - d 2  cos [Z - T o )  (;)I (359) 

and, from Eq. (346) and trigonometric formulas, 

1 
[?'O' (a;Z)l2 = 1 + - [Z(O) (Z)]2 

2 

+ 220) (1;) cos [F- 70) G)] 
1 ,  + 5 [do)  (:)I' cos 2 [Z - 1" (z) ] (360) 
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a 

MULTIVARIABLE PLANE 

a 

PHYSICAL PLANE 

Fig. 19. Instantaneous parameters in the multivariable and physical planes 
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Introducing Eqs. (359) and (360) into Eq. (337) yields 

d J 0 '  + 2 3 )  (1 - =) cos (" - ;'"j 

0) + 2 ----- sin (Z- 7O)) 
d;; 

1 - + 5 (e("))2 cos 2 (;;: - 7 3 ) )  (361) 

Note that the dependence of a function on a variable or 
variables is not indicated explicitly in Eq. (361). When- 
ever the dependence of a function upon a variable or 
variables has been established or is obvious subsequently, 
the dependence is not usually indicated explicitly. 

The general solution to Eq. (361), through the use of 
the procedure in Section IV-D-3 and Solutions (A-2)- 
(A-5) in Appendix A, is 

d 2 0 )  - + 20) (1 - =) a. sin (z- ;(a)) 

d20'  - -- 
dZ ff cos (Z - ;;(O)) 

Let - - - 
aj,? 6) = e(l) (a) cos3l)  (2) 

and - - I (363) 
a$) (Z) = e(l) (:) s i n P )  G) 

Now, the solution to the differential equation (278) with 
E = 0 and subject to the initial conditions given by 
Eqs. (280) and (281) is simply bounded Keplerian motion 
(the initial conditions are restricted so that quasi-periodic 
motion exists; see Section V-A) so that from the first uni- 
formity condition as discussed in Section 11-A-3, no secular 
or Poisson perturbations in the fast angle variable (Y are 
allowed. Thus, the first uniformity condition requires that 

and 

Multiplying Eqs. (365) and (366) by sin;(") and COSZ(~),  
respectively, and adding the results, one obtains 

whereas by nlultiplying Eqs. (365) and (366) by cosZO) 
and sinZ('), respectively, and subtracting the results, one 
obtains 

It follows from Eqs. (354) and (368) that 

and from Eqs. (355), (367), and (369), since e, is not 
necessarily zero, that 

so that Eq. (362) becomes, through the use of trigonometric formulas, 

d;(o' 
- [;(o) 6 - =) sin;(,) + - 

dl? cos;;(O' zcosu "" I 
cos w(O) - - 

dZ 
;sin; I 
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Introducing Eqs. (369) and (370) into Eq. (346) yields the 
uniformly valid first approximation to the motion of the 
satellite (reference motion) : 

17(0) (ZG) = 1 + eo cos (F - o, - Z) (371) 

Thus, the reference motion is not the Keplerian motion 

17 (a) = 1 + e, cos (a - w,)  

where 

P 
n ( 4  = and o = a - w ,  

From Eqs. (364), (365), (366), (369), and (370), 

Consider the partial differential equation (338), from 
which the functions (G) and Z(l) (;;), as well as the 
undetermined constant a, (see Eq. 326), are determined. 
From Eqs. (371) and (372) and from trigonometric 
formulas, 

1 5 
17") = (1 + + e. (1 + Ee;) cos (Y- W, -3 

1 
- - e; cos 2 (F- a(, - T) 

6 

1 -- - 
12 

e: cos 3 (Z-  W, - a) 

+ e(l) cos (CY- ;;(I)) 

1 + - e, cos (w, + - 7')) 
2 

1 - - 4- - e, e(l) cos (2;- - - 71) )  (373) 
2 

Taking the required partial derivatives of Eqs. (371) and 
(372) with respect to a and (Y yields 

= - encos(a- oil -3 (374) 

- 
qg) = - e,, cos (Z - o, ,  - a) (375) 

&( 1) - 
= -- 

d;; 
sin 6- ;(I)) + e(l)  - cos (T -  7 1 ) )  

d'& 

where 

- 
l1P)  = eo sin (Z-  W, - a) (377) 

and 

Evaluating Eqs. (372), (377), and (378) at a = 0 (;;= 0 
and G'= 0) and using Eq. (341), one obtains 

+ Y1' (0) cos [ -7''' (0) I 

1 
- - e; cos 2 (-,,) 

6 

and 

-Z(l) (0) sin [-;(I) (O)] 

from which 

1 
(0) = {[a cos 2.. - (1 + 2 e;)] * \ 

e; sin 2wo + eo sin a, 

and ) (379) 

1 
- e5 sin 20, + e, sin uo 

7') (0) = t ax1  
1 

cos 2 ~ .  - (1 + 
e:) 
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Introducing Eqs. (373-376) into Eq. (338) yields From the first unifoimity condition, as discussed in 
Section 11-A-3, the coefficients of the Poisson terms must 
be set equal to zero; that is, 

nzl) + 2 3 )  (1 - r) cos (G-Ti))  

c l 3 )  
f 2 -  sin (C- ;(I)) (1;; - + e, e(l) cos (oo + F- T1)) 

- + e, 2') cos (2;- o, - a - ;3(')) 

The general solution to Eq. (380), if one uses Solutions 
(A-2)-(A-5) in Appendix A, lets 

- -  - -  
ai? (a) = e@) (a) cos;;'" (Z) 

and (381) 

- Z') (z) = e(z) (z) (z) 

e ,  (+ + 12 ei + a, sin (a, + 7 " 
dwll' + 31) (1 - --g) sin 7') + - cos;(l) = o d;; 

and } (383) 

Equations (383) can be solved more easily if they are 
transformed back to 3;) (z) and 6). Taking the 
derivatives of Eqs. (363) with respect to i; yields 

and \ 

and uses trigonometric formulas, is 

1 1 - + - e; cos 3 (CY - 0, - Z) - - e,&) cos (2;- 00 - a - ;(I)) 
48 3 

3 5 

) 
d;( ' ) 

- [e, (- + - e: + a, sin (w, + ;i.) + 7") (1 - + - 
2 12 dZ 

C O S ~ ; ( ~ )  cvcosn I 
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Introducing Eqs. (363) and (384) into Eq. (383) yields and 

- - 
- - a;;) (a) = C3 cos Z+ C, sin T 

- - -a$' - a; e, (% + % e: + a, 

(385) 

and 
(391) 

where C,, C,, C,, and C, are constants determined from 
the initial conditions. 

(386) Differentiating Eq. (390) with respect to a yields 

Differentiating Eqs. (385) and (386) with respect to Z -- fij,! 
dz - - C, s i n l  + C, cos Z 

yields 

&-$ ) - ."( d2Z-p -- - 
3 5 

0 - - e , ( - + - e g + a ,  dY 2 12 + Tcos (0, + Z)] (392) 

(387) 
Introducing Eqs. (391) and (392) into Eq. (385) yields 

and 

(C2 + C,) cos - (C, - C,) sin Z = 0 
-- 

d 2  dF so that, since ;is not a constant, 

(388) 
C, = -C3 and c, = c, (393) 

Introducing Eq. (386) into Eq. (387) and Eq. (385) into 
Introducing Eqs. (393) into Eqs. (390) and (391) yields Eq. (388) yields the required equations 

and i 

The solutions to Eqs. (389), through the use of Solutions 
(A-3) and (A-4) in Appendix A, are 

- - 
a;) (a) = C1 c o s l  + C, sin G' 

- - 
aj:) (a) = C, cos; - C:, sin \ 

and j (394) 

Now, evaluating Eqs. (363) at = 0 and using Eqs. (379), 
one obtains 

- 
a:) (0) = el cos W, 

and - 
agf  (0) = el sinw, 
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Thus, evaluating Eqs. (394) at Z = 0 and using Eqs. (395), one obtains 

el cos o1 = C, and el sin a, = C, 

It follows from Eqs. (394) and (396) and from trigonometric formulas that 

and 

Finally, from trigonometric formulas and from Eqs. (363) and (397), 

e(l) cos (z- ;(I)) =:(1) c o s ~ c o s ~ ( ~ )  + z(1) sinzsinG(l) = z(1) cosz + zg) 

+ el sin Zsin (w, + @ + e, 

- 3 5 
e(l) cos (Z - ;(I)) = el cos (Y - u1 - + eo Z sin (Z - o0 - Y) 

Introducing Eq. (398) into Eq. (372) yields 

At this point, all of the known conditions on 17(1,) (K'Z) have been applied (without the determination of the con- 
stant @,) except the second uniformity condition as discussed in Section 11-A-3. The second uniformity condition 
requires that 

q ( l )  (Z,%) - 
lim -T - 0 for all in 0 . L  a < c~ 
E + O  r l ( O )  (a, f f )  

so that, from Eqs. (371) and (399), 
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1 + elcos(Z- a, -CY) - -e:cos2(Z- a, - Z )  
lim 

6 

€ + o  1 + e , c o ~ ( Z - ~ ~ - Z )  

Equation (400) requires that 

As a result, the coefficient of the term Z sin (a- "0 -%) is zero, and a uniformly valid perturbation E ~ ( I )  6,;) is ob- 
tained (see Section 11-A-3). Consequently, from Eqs. (363), (397), and (401), 

and 

so that 

,..- 
e(l)  (z) cosG(l) (z) = el cos (a1 + ;;) 

- - - 
e(l)  (Q) sin;(') (a) = el sin (a1 + %) 

- - - 
e(l)  (Q) = el  and 7') (Q) = W1 + (Y 

Furthermore, introducing Eq. (402) into Eq. (372) yields 

and introducing Eqs. (383) and (402) into Eq. (382) yields 

1 1 
q'') (ZG) = 2 (1 + 2 e:) + en el cos (a, - u,) + 2') cos 6 - 7,)) - - el cos 2 (F- a, - Z) 3 

where, from Eqs. (326) and (401), 

Note that if (Y, did not appear in Eq. (399), the nonuniform term could not be eliminated and the asymptotic ex- 
pansion being developed would not be uniformly valid. The  domain of validity would be 

As a result, if the fast and slow angle variables are chosen as 

- - 
a = a  and cr = E a  (407) 

that is, if the constant Q, is not introduced into the development by means of Z, the resulting asymptotic expansion 
to 0 (E') would not be uniformly valid. 

84 JPL TECHNICAL REPORT 32- 1267 



Consider the partial differential equation for 17(3) (z$ (Eq. 339) from which the functions Z2) ('z) andY2) (z), as well as 
the undetermined constant a, (see Eq. 326), are determined. From Eqs. (371) and (404) and from trigonometric formulas, 

1 
n(") ?(') = [2 (l + ei) + e. el cos (w, - u,) cos (a, + - ii(.)) 

1 1 - 
- - e, el cos (2Z- o, - - 2;) + - eoZ(2) cos (2Z- *, - - P ) )  

3 2 

7 -- 1 1 
4 8 e : , c o s 3 ( Z - ~ , -  --eielcos(3Z-200 - w l  -%) + - e : ~ o s 4 ( Z - ~ , - ~ )  

6 96 (408) 

and from Eq. (403) and trigonometric formulas, 

Taking the required partial derivatives of Eqs. (377), (403), and (404) with respect to ZandZ yields 

and 

&72' d22) 
+2) = - - sin (z- ~ ( 2 ) )  + z(2)- 

4 
1 2  &- d z  cos (Z - F)) - - e?, cos 2 (Z- COO - Z) 

3 

3 4 + -e ;cos3(~-  w, -Z) - -ee,e,cos(2F-W, --al - 2;;) 
16 3 (413) 
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17(0) -. - e 
1 , sin (Z - 0, - Z )  

= -e 1 
I , s in(Z--  0, -z) + -egs in2(~-  W, - Z )  

3 

1 
?(:) = e,sin(Z- -'Z) - 3efs in2(~--  Wo -;) 

and 

;5 
17':' = -'Z2) sin (Z - T 2 ) )  + 3 e?j sin 2 (Z- W, - E) 

Evaluating Eqs. (404), (414), (416), and (417) at a = 0 (E= 0 and Z = 0) and using Eqs. (342) and (401), one 
obtains 

1 1 + - e; cos 3 (-o,,) - -e, el cos (-., - W1) 
48 3 

and 

2 1 2 
-Z2) (0) sin [--W(2) (O)] + -5- e?j sin2 (-o,) - - e; sin 3 ( - o ) , )  + - e,, el sin (-wo - = 

16 3 

from which 

1 1 1 
Z2) (0) = { [-2 (1 + $ e;) + 5 e,, el cos (w, + w,) - e, e, cos (u, - 0,) + -el cos 20, - - e; cos 30, 

3 48 1 ' 
1 1 1 

e, el sin (0, + 0,) + - e, (18 + 5e6) sin W, + - eg sin 20, - - e; sin 30), + el sin 0, 
12 3 16 1 ' $" 

A 
- - e, 

and 
2 1 1 1 
- eo el sin (w, + w,) + - e, (18 + 5e:) sin W, + -e; sin 20, - - e; sin 30, + el sin W, 

3) (0) = tan-= 
3 12 3 16 

1 1 e, e, cos ( o h  + w,) - e, el cos (w, - w,) + - ef cos 20, - - e; cos 30, 
3 48 

A 
- 0 2  
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Introducing Eqs. (374), (401), and (408-413) into Eq. (339) yields 

1 
el + - el + 2eo el cos (w, - w,) + eoZ(2) cos (a, + Z - 3')) 

2 

5 + 2e,, [t (7 + 2 el) + e, el cos (wo - wl) + a s ]  cos (B- wo - Z) 

~ 7 2 )  d32) + .!@2) (1 - x) coS (F- W)) + 2 -sin (h- V@)) 
dZ 

The general solution to Eq. (419), using Solutions (A-2) through (A-5) in Appendix A, letting 

and 

and using trigonometric formulas, is 

1 1 ' 1  1 
77") ( 9 ~ )  = 4 (1 + 2 ei) + (1 + 2 el ) + ?2e: + - el + 2e0 el cos (w, - Y,) + eoZ(Z) cos + ir- 7 2 ) )  

2 

1 
c o ~ 2 ( h - - ~ , - ~ - - e : c o s 2 ( z - ~ ~ - ~ ~  6 

2 1 - 
- - eo el cos (2Z- W, - w, - 2 3  - - e .-(2) 

3 3 0 e  
COS (2z - 0, - ff - W)) 

1 ( %:) sinz(2) + 
- - e; el sin (2w0 - w1 + 3 + F2) 1 - - 

12 

1 dz(2) 
12 ( ::) cosZ(2) - - sin ~ ( 2 )  - - ei el cos (20, - U, + '2;) + F2) 1 - - 

&- 
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From the first uniformity condition, as discussed in Section 11-A-3, the coefficients of the Poisson terms must be set 
equal to zero; that is, 

1 1 &-'a 
12 12 

( y:) sin ~ ( 2 )  + - cos = o C, sin (w, + Z) - - ef el sin (al + Z) - - eef el sin (20, - o1 + 72) + +(2) 1 - - d 2  

and 
d22) 

(422) 
1 1 ( y:) cos;(2) - - sinz(z) = 0 

C o c o s ( ~ o f Z ) - - e f e l c o s ( w l + Z ) - - e f e , c o s ( 2 ~ , - ~ l + Z ) + 8 ~ 2 ~  1-- 12 12 dZ 

where 

5 
C, = e, [$ (7 +%e:) + e,el cos (u, - w,)  + a 3  I 

Equations (422) can be solved more easily if they are transformed back to Z1,2) (z) and iig) (z). Taking the deriv- 
atives of Eqs. (381) with respect to ;;; we obtain 

&day d.3) d;(;c"j d@ - &72) dL;(z) 
- - C0S;;(2) - ~ ( 2 )  - sinz(zj and Sinow + ~ ( 2 )  - dF C O S ~ ~ ~  

d z  dZ dZ d Z  d;; (424) 

Introducing Eqs. (381) and (424) into Eqs. (422) yields 

daci,? - 1 1 - = --a$) - C, sin (o, + Z) + - e: el sin + Z) + - e; el sin (20,, - 0, + Z) 
dz- 12 12 (425) 

and 

&in:' - - 1 1 
- - a:) + C ,  cos (w, + Z) - - ei el cos (o, + Z) - - e: el cos (20, - wl + Z) 
dZ 12 12 (426) 

Differentiating Eqs. (425) and (426) with respect to Z yields 

d2 a:) - - - 
1 1 

a 2  
a" C, cos (0, + Z) + - e; el cos (w, + 3 + - e. el cos (zO, - o,l + Z) d- 12 12 (427) 

and 

- 2  d2ak - 1 1 
&2 - d 2  12 12 C, sin (w,, + Z) + - ef el sin (a, + Z) + - & e, sin ( ~ o J , ,  - 0, + 'Z) (428) 

Introducing Eq. (426) into Eq. (427) and Eq. (425) into Eq. (428) yields the required equations 

d2 Zi? 1 1 
d 2  $3:) = ~C,COS(O,  +Z) + - e f e , c o s ( ~ ~  +Z) + -ef e ,cos(2~,  - w, + Z )  

6 6 

and (429) 

d"g) 1 1 
d2 + = -2Co sin (w, + Z) + - eef el sin (w, + Z) + - ef e, sin (20, - w, + Z) 

6 6 
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Through the use of Solutions (A-3) and (A-4) in Appendix A, the solutions to Eqs. (429) are 

1 1 
Zi?) (Z) = C , C O S ~ +  C6sinZ- C,';;sin(~, +Z) + - e;elZsin(wl +Z)  + - ege,Zsin ( ~ o J , ,  - OJ, + Z) 

12 12 (430) 

and 

1 1 
Z$)(E) =C,cosZ+ C,sinZ+ C,ZCOS(~ ,  + Z )  - - eSelZcos(o, + Z )  - -ee20eliji~~~(2~o-- wl 4-3 

12 12 (431) 

where C,, Cs, C,, and C, are constants determined from the initial conditions. 

Differentiating Eq. (430) with respect to Z yields 

dZ2) 1 1 
= -C, sinZ + C6 cosZ - C, sin (w, + Z) - C,Zcos (w, +Z) + - ef el sin (OJ, + Z) + -eg el FCOS (0, + Z) 

d z  12 12 

1 1 + - eg el sin (20, - o1 + Z) + - eg el Zcos (20, - a, + Z) 
12 12 (432) 

Introducing Eqs. (431) and (432) into Eq. (425) yields 

(C, + C,) cosZ - (C, - C,) sinZ = 0 

so that, since Z is not a constant, 

C6 = -c, and c5 = C, (433) 

Introducing Eqs. (433) into Eqs. (430) and (431) yields 

1 1 'it?) (3 = C5 cos Z - C7 sinZ - C, Zsin (w, + Z) + - e; el Zsin (w, + 'Z) + - e; el Zsin ( 2 ~ ,  - W, + 'Z) 
12 12 

and (434) 

1 1 
ZP) (z) = C, COSZ + C6 sinZ + C ~ Z C O S  (w, + 2) - - e; elZcos (Wl + Z) - - ei e, Z'cos (20, - W, + T )  12 12 

Now, evaluating Eqs. (381) at Z =  0 and using Eqs. (418), one obtains 

Zf) (0) = e, cos W, and Tg) (0) = e, sin o, 

Thus, evaluating Eqs. (434) at Z =  0 and using Eqs. (435), one obtains 

e2 cos W, = C6 and e2 sin W, = C, 

It follows from Eqs. (434) and (436) and trigonometric formulas that 

1 1. 
Z?) (z) = ee, cos (w, + G) - CC, Zsin (w, + Z) + - eg el Zsin (w, + Z) + - e; e,Zsin ( 2 ~ ,  - W, + Z) 12 12 

and (437) 

1 1 
'it$) (Z) = e,  sin (w, + Z) 4- C, Zcos (a, + Z) - - e; el Zcos (a, + Z )  - - eg el Zcos ( 2 ~ , ,  - U,  + Z) 12 12 
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Finally, from trigonometric formulas and from Eqs. (381) and (437), 

or, through the use of Eq. (423), 

z(2) cos ( ~ y  - ;;(2)) = e p  cos ((Y- w 2  - Z) 

Introducing Eq. (438) into Eq. (404) yields 

At this point, all of the known conditions on 17(2) (F,:) have been applied (without the determination of the constant 
a,) except the second uniformity condition as discussed in Section 11-A-3. The second uniformity condition requires 
that 

E ~ ~ ( ~ ) ( Z > Z ) -  E ~ ( ~ ) ( ; - -  
lim (,, -, - lim "" )  = o  for all a in  O L a  <oo 
, - to  77 (a, ff)  e + o  v ( l )  ( F 4  

so that, from Eqs. (403) and (439), 

(440) 
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Equation (440) requires that where, from Eqs. (405) and (441), 

so that the coefficient of the term Zsin ( Z -  a, -Z) is - Le3[(7 + i e i )  +3eoelcos(wo 5 - 
zero, and a uniformly valid perturbation e2 ?7(2) (z,Z) is 2 

obtained (see Section 11-A-3). Consequently, from Eqs. 
I 

(381), (423), (437), and (441) and from trigonometric 
formulas, 

(445) 

T2) ( 3  COSZ(~)  (Z) = e2 cos (02 + Z) 
and 

Z(2) (Z) s i n F )  (3 = e, sin (02 + Z) 

and therefore 

Y 2 )  (Z) = e2 and (3 = a2 + 2 (442) 

Furthermore, introducing Eqs. (442) into Eq. (404), one 
obtains 

1 
.r(2) G,Z) = 2 (1 + ,ei) + e0 el cos (a, - a,) 

+ e 2 ~ ~ ~ ( ~ - ~ 2  -3 

1 
- - e, el cos ( 2 ~  - - - 5%) 

3 (443) 

Similarly, the remaining constants a,,a,, . . . in Z and 
perturbations e3 17(3) (E,Z), e4 17(4) (-,̂ . a a), . . . in the asymp- 
totic expansion (324) may be obtained. 

Thus far, sufficient information is available to describe 
the orbit of the satellite to an accuracy of 0 (e2). HOW- 
ever, additional information is necessary to describe the 
position of the satellite in its orbit: namely, the asymptotic 
expansion for time. For orbits inclined with respect to 
the equatorial plane, the differential equations of motion 
can not be uncoupled (unlike Eqs. 278 and 279) and thus 
the asymptotic expansions for 17 (a; E) and t (a; E) must be 
developed sin~ultaneously. 

Consider the development of the expansion (325) using 
the second of the differential equations of motion in 
Section V-C-2 (Eq. 279). Differentiating Eq. (325) with 
respect to the right ascension a, using the notation in 
Eq. (329), using Eqs. (331), and combining like powers 
of E, one obtains 

and introducing Eqs. (422) and (442) into Eq. (421), one + e3 (a3ty') + a 2 t y  + ty)  + t(3) I 1 + 0 (e4) 

obtains (446) 

1 1 1 
17'" (i?,Z) = 4 (1 + 3- ei) + (1 + + $ e: + - e: + L?eO el cos (a, - w,) 

2 

+ e, e, cos (w, - a,) + Z(3) cos (Z- 3 3 ) )  - - e: ( 9 + - e2 "coS2(Z-ao - Z )  
9 

1 2 
- - e ~ c o s 2 ( ~ - - ~ 0 ~ - Z ) - - e ~ e ~ c o s ( 2 ~ - ~ ~ - ~ ~ - 2 2 )  

6 3 

1 1 
- -eoe2cos(2Z- U, - o, - 5%) + -e:cos3(Z- -Z) 3 12 

1 1 + -eielcos(3Z- 2wo - - 32) - -e;cos4(Z- QO -Y) 16 432 (444) 
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Introducing Eqs. (334) and (446) into the differential equation of motion for t  (a;  E ) ,  Eq.  (279), and combining like 
powers of E,  one obtains 

[ ( 1 7 ( 0 ) ) 2  t:O) - h3] + E [ ( ? ( O ) ) 2  ($60)  + t(1,)) + 2?(0) r l ( l )  t ( 0 ) ]  

) + 21,'~' 17'1' (tp" + tl") + [ ( 7 7 ' 1 ' ) 2  + 21,(O) ti0)) + E2 { ( 1 1 ( 0 ) ) 2  (a2  ti0) + t p  + t(2) 

+ E3 { ( 1 7 ( 0 ) ) 2  (a3 tjO) + a2 t l l )  + t 2 )  + t i3))  + 277") 77")  (aZ  tjo) + t!') + ti2)) 

+ [ ( 7 7 ( 1 ) ) 2  + 2+0) 7 7 ( 2 ) ~  ( t p  + t i1) )  + ( ~ I , ( o )  7 7 ( 3 )  + 241) p)) t i o ) )  + o ( € 4 )  = o (447) 

Since the expansion (447) must hold (at least in an asymptotic sense) for arbitrary values of the perturbative parameter 
E, the coefficients of the powers of E in Eq. (447) must separately equal zero. Thus, 

and so forth. The initial conditions necessary for the complete solution of these partial differential equations are 
obtained by evaluating Eqs. (325) and (446) at = 0, by using the initial conditions (316), by combining terms of 
like powers of E, and by setting the coefficients of the powers of E separately equal to zero. Thus, since Z= 0 and -- 
(Y - 0 when = 0 from Eqs. (326) and (327), 

0 = tcO) (0,o) $. E t(l) (0,o) + E2 t(') (0,O) f E3 t f 3 )  (0,o) + 0 ( E l )  

and 

so that 
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and so forth. Note that the initial conditions for the par- 
tial derivatives will be satisfied automatically and are 
given only for the purpose of checking results. e, cos E ( ~ z ) ]  

Introducing Eq. (371) into Eq. (448) yields Taking the partial derivative of Eq. (461) with respect 
to a yields 

- 
a 5  - a~ 

e i n )  - acu (eo sin E) , 
- O r r  
- 

(I + e, c0si7)~ 1 - eg 
from which 

or, using Eqs. (460) and (46l), 

- 
aE 1 - e, cos E a 5  -- - 
a - (1 - 4 a, 

Similarly, 
where the constant of integration is replaced by a func- 
tion of the slow variable Z and where Z behaves as a 
constant in the integral since Zand Zare distinct variables 
and, consequently, the integration can be performed with 
respect to (z- a, -- Z)  rather than Z. It should be noted 
that if a partial differential equation consists only of 
derivatives with respect to one independent variable, its 
solution may be obtained by treating the partial differ- 
ential equation as if it were an ordinary differential equa- 
tion and then replacing the constants of integration that 
would normally arise by functions of the other indepen- 
dent variables. 

Taking the partial derivatives of Eq. (457) with respect 
to Z' and Z, respectively, yields 

and 

At this point, it is desirable to introduce the instantan- 
eous multivariable true anomaly and eccentric anomaly Introducing Eq, (464) into Eq. (462) and Eq. (465) into 

Eq. (463) yields 

- - 
aE 1 - e, cos E -- 
acu - (1 - eg)mg 

and and \ 

respectively, so that 
respectively. - It should be noted that if KI T dC(Z,Z) AK, T, 
then KI T 4 E (FZ) L K2 T where K, < K, and both are 
integers. It follows from Eq. (458) and trigonometric 
formulas that 

Now, introducing Eq. (457) into Eq. (456) and using 
Eq. (C-8) in Appendix C (with F= e,), one obtains cos C(cu, z) + to 

cos E (KZ) = 
1 + e, cos T ( Z Z )  

t'" (Z,Z) = 
h3 [E ( q z )  - 

(1 - eg)% 
e ,  sin E (Z Z) 1 + T(') (z) 

(1 - eg)s sin??&$ 
sin E(z,z) = 

1 + e, cos 5 6 , ~ )  (460) 
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Equation (468) can be rewritten in an interesting form. and from the first of Eqs. (452), as well as Eq. (470) 
From the normalized equations (see Section V-A) evaluated at CI = 0 (Z= 0 and a = 0), that 

p = h ' = l - e Z  A 
(0) = - [E (0,O) - eo sin E (0, O)] = T o  (474) 

it follows that 

h" ((1 - e;)% Taking the partial derivatives of Eq. (470) with respect 
(469) to and a yields 

Introducing Eq. (469) into Eq. (468) yields 

t'") (F, 3 = (.I, Z) - e, sin (E,  Z) + (Q (470) 

- 
- aE 

t;,) = (1 - e,, cos E) - az 
and 

Furtheinlore, from - 
- aE ~ T ' o )  

(471) 
ti0) = (1 - e,cosE)- + - 2'0) (CZ) = ( E , ~ )  - ~ ( 0 )  (q a; d z  i 

where ((u,q is the zero-order approximation of the from which, using Eq. (467), 
instantaneous multivariable mean anomaly, 

dT'0' 
t60) = -t(O) + a(0) (z,z) = E(Z, Z) - eo sin I? (ZZ) (472) 7 (476) 

which shows that Eq. (468) is equivalent to a zero-order Introducing ~ q .  (476) into ~ q ,  (449) yields 
multivariable Kepler equation. - 

It follows from Eqs. (457) and (458) evaluated at 
CI = 0 (Z  = 0 and a = O), respectively, that or, using Eq. (448), 

Introducing Eqs. (371) and (403) into Eq. (477) yields a partial differential equation in terms of and Z but with 
no partial derivatives in so that, by integration, 

d (z- W 0  -Z) d ( z -  W0 - Z) 
t(l) (z, = h3 [ l  + e, cos (F- Wo - Z)I3 

cos(Z- m, - ~ ) d  (F- wo - Z) sin(;- wO -Z)d((cu- wo -3 
- 2el cos (wo - ol + 2elsin(W,-.,)/ [ 

1 + e,cos(Z- wo - ii;)I3 1 + e0 cos (Z  - W, - Z)I3 

where 

and 

94 

cos (Z - ol - Z') = cos (F- oo - E) cos (w, - wl) - sin (T - W, - Z) sin (w, - w,) 

cos2(F- Wo -3 = 1 - 2sin2((Y- W, -Z) 
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and-where all the constants and functions of the slow variable Z resulting from the individual integrals are included 
in T(') (Z). Now, introducing Eq. (457) into Eq. (478) and using Eqs. (C-8), (C-9), (C-11), (C-16), and (C-18) in Appendix 
C (with Z= e,) as well as Eq. (469), one obtains 

- 
t(l) ( ~ 3  = 7, I + T, cos E + i, sin E + r, cos 2E + T, sin BE - EF + T(1) &- (480) 

where 

A 
T q  = - 

2el sin (w,, - u,) 
(1 - ef)!'. 

A 1 7 
T, = - [3e0 (I + g ei) - 2 (1 + ei) el cos (oh, - w ,  

1 - e: 

A 1 eo el 
T* = - sin (w, - o,) 

2 (1 - ef)% 

and 

It follows from Eqs. (457) and (458) that both Z(,Z) and E(,q are unbounded functions of , and since E(a;$ 
appears secularly in tcO) (ZZ) ,  (Eq. 470), and in t(l) (FZ), (Eq. 480), both of these functions (and therefore t (a; E ) )  

are unbounded. Consequently, the first uniformity condition (see Section 11-A-3) can not be applied to t(a; E ) .  

However, from the second uniformity condition (see Section 11-A-3), 

€t(l) (,z) 
lim = O  fora l la inOLa < ca 
E+ 0 t(O) (Cy, 3 

so that, from Eqs. (470) and (480), - 
E ( T ~  cos E + T, sin E + T4 cos 2E+ T5 sin 2E) 

E - e, sin B + T(O) 
+ E - a, sin E + T(o)  = 0 

Equation (482) requires that 

as shown in Appendix D, so that the coefficient of the term -5 is zero and a uniformly valid perturbation et(l) (z,%) 
is obtained. Consequently, from Eqs. (474) and (483), 

Furthermore, introducing Eq. (484) into Eq. (470), one obtains 

tco) ( , -  a a )  = 'E-e , s inE+ T, 

and introducing Eq. (483) into Eq. (480) results in 

- 
t(')(,iji) = r l E  + TZcosE+ T,sinE+ i,cos2E 

+ i5 sin 2E + 
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Note that if the initial conditions of the satellite corre- Taking the partial derivatives of Eq. (486) with respect 
spond to the case where en = 0 and on = n, (Eqs. 358), to and respectively, yields 
then Eqs. (457) and (458) yield - 

- - t j l )  = ( T ~  - TZ sin E + 7, cos I!? - 27, sin 2E - E = v = Z - o n - a  - 
- aE 

4- 275 cos 2E) - 
and Eq. (486) becomes, using Eqs. (481) with en = 0 and a~ (488) 

w, = n and with el = 1 and w l  = T (from Eqs. 379, with and 
e, = 0 and w,  = T), - - 

ti1) = - TZ sin E + T3 cos E - 2~~ sin 2E - 
t ( l)(~i;Z) = -(a- T -Z) - 2 s i n ( ~ -  T -72) + TT")  - - 

- aE dT( l )  
(487) 

1- 275 cos 2E) -'+ - az d i ~  (489) 

Now, if the argument of consistency used in Ref. 665 (for so that, introducing Eq. (467) into Eq. (488) and the 
example, see p. 268) is applied to Eq. ,(480), that is, if Zis results into Eq. (489), one obtains 
not allowed to appear as a power, the correct result 
(Eq. 483) is obtained. However, for en = 0 and wo = x, a+' t i l )  = + - 
t ( l )  (CZ) is given by Eq. (487), which shows that t ( l )  (zi;;) dZ (490) 

actually contains Z to a power, namely, one. As a result, 
the argument of consistency can not be applied rigorously Also, from Eqs, (476) and (483), 
to an unbounded function like t (a; E )  since the nonexis- 
tence of Z to a power is never known a priori. For this t ; o )  =: - t ( n )  1 (491) 
reason, the second uniformity condition is preferred 
herein rather than the argument of consistency. and from Eqs. (491) and (449), 

Consider the partial differential equation for t (2)  ( , z )  
(Eq. 450) from which the function (z) is determined. 

Introducing Eqs. (490); (491), and (492) into Eq. (450) yields 

or, using Eq. (448), 

Now, from Eqs. (403) and (443), 

or, using Eqs. (479) as well as similar expressions, 
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where 

and 

c, = 2 - e; - el cos (0, - wl) - e, o s  (w, - lo?)] 
A [:6 

A 
ce = 2 [el sin (o), - o,) + e, sin (a, - w,)] 

a 4 
c3 = - - eo e, sin (w,, - w,) 

3 

From Eqs. (409) and (479), as well as similar expressions, 

where 

2 
c, = 3 1 + -eg + - ei + - ei. cos 2 (w,, - I,)] [( 3 2 I ) ;  

c, = 3 2e, 1 + - eg cos (., - .,)I 
A [  ( 3 2 )  

cs = -3 2el 1 + - e; sin.(w, - w,) " [ >  I 
A 

c9 = -3 e: sin 2 (a, - w,) 

- e: cos 2 - 1,,,)] 

A 
cll = - 2eg el cos (o, - I 

a 
clZ = - 2 4  el sin (a, - a,) 

and 

Evaluating Eq. (486) at a = 0 (Z = 0 and Z = 0) and using the first of Eqs. (453) yields 

- A (0) = - [ T ~  E (0,O) + T, cos E (0,O) + TQ sin E (0,O) + T, cos 2E (0,O) + i-, sin 2E (0, O)] = T ,  (498) 

where E(0,O) is given by Eq. (473). 
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Introducing Eqs. (371), (494), and (496) into Eq. (493) yields a partial differential equation in terms of cu and but 
with no partial derivatives in so that, by integration, 

+ C I S  [ 
C O S ( F - C O ~ - Z ) ~ ( Z - U ~ - Z )  s sin@- o, - ijT)d(a- W, -2) + c, 

1 + e , c o s ( ( ~ - o , - Z ) ] ~  [ l  + e, cos ( z  - a, - $)I3 

d ( z -  on -z) C O S ( ~ - ~ ) , - Z ) ~ ( ~ - O ~ - ; ; )  
+ ~ ~ / [ l + e , c o s ( ~ - o , - ~ ] ~  +c'/ [ 1 + e n c ~ ~ ( ~ - o , - ~ ) 1 4  

sin(Z- oo -Z)d(E-oo -z) 
[l + en cos (a- - q ] 4  

+ c,/ 
sin(Z- on - Z ) c o s ( ~ -  - - z )d ( ( (~ -  - Z )  

[ l  + en cos (a -  o, - @I4 

s inyz-  a, -;;;Id(,- -Z)  COS"E- oo -Z) d (z- oo - ii3) 
[ l  + e, cos (a - - Z)I4 

+ C12/ 
sin3@- 0, - z ) d ( ~ -  -, -3 s c o ~ ~ ( c u - ~ ~ - z ) d ( a - ~ ~ - i j T ) \  + CIS [1 + e,cos(Z- o, -Z)I4 [ l  + e,, cos ((Y - 00 - Z)ld f 

where all the constants and functions of the slow variable T resulting from the individual integrals are included in - 
T(2) (q. NOW, introducing Eq. (457) into Eq. (499) and using Eqs. (C-8-C-22) in Appendix C (with Z = en) as well as 
Eq. (469), one obtains 

dTcl) h3 tc2) (cil) = 7, E + 7, cos E + r, sin E + r,, cos 2 8  + ill sin BE + r,, cos 3 2  + i13 sin 3& - (= - F )  T + T(2) 

(500) 
where 

1 
T7 = - (2 - 2a2 + c4) + ---- 2 1 - e: [cO (2 + el) - 3cl en + clo] 

+ 1 
(1 - ef)2 [ c ~  (2 f 3 4  - c7 eo (4 + ef) - c,, en (3 + 2ef) + 2c,,] 1 

f' 
A 1 ,.,=--- 1 

(4c2 - 4c3 en + 3c,,) + -------- 4 (1 - ef)+s [c, (4 + e:) - Sc, e, 
1 - e; (502) 

T g = - -  
1 A 

(4 (1 - a2) en + -- 
4 [Sco en - 4 ~ 1 ( 1  + ef) + c,, en] 

1 - ef 

+ 1 
(1 - e:)2 [3cG e, (4 + e;) - c, (4 + l lef )  - 3cl1 (1 + 4e:) - 4cl,] (503) 
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A 1  1 
TI,, = - 

1 
(CZ eo - GI f - 1 - e; [2ca e, - c, (1 + ef)] (504) 

a - 
T,, - - { 

1 1 
c4 - - (c, ef - c, e, - c,,) - [3c, e; - c7 en (2 + el) - 3cl, e, + 4cl,] 

(1 - eX) (1 - el)" 

and 

Although the integrals with coefficients c, and c13 in Eq. (499) have double forms individually (one form for 
0 < eo < 1 and another form for e, = 0), their sum has only one form (valid for 0 4 en < 1); that is, through the 
use of Eqs. ((2-13) and (C-15) in Appendix C, as well as c5 from Eqs. (495) and c,, from Eqs. (497), 

cos3 E d 5  cos%dC - J (1 + e ,  cos El3 
- (c,, E + c15 sin I + c16 sin 2E + c,, sin 33) + l j  (508) 

+ / (1 + e, cos q4 (1 - el)% 6 

for 0 6 e, < 1 where 

A 1 1 
clc = - - e; (1 - 7ef) , 

24 and C17 = - - 
36 e' 

As before, the first uniformity condition can not be applied to t (a; E). However, from the second uniformity condition, 

eZ t(2) (a;iii) Et(.) (E,Z) - 
lim = lim - 0 for all in 0 L < c~ 
€ 0  t l ( )  €+ , t ( l ) (qZ)  

so that, from Eqs. (486) and (NO), 

lim f E (78 cos E -k T~ sin + 710 cos 2E + T,, sin 2E + 71. cos 3E + T,, sin 3E) 
€ 4 0  ) 

dF(1) 
E [ T7E- ( I;). + I ( . ) ]  I = o 

(510) 
+ 7,E + 7, cos E + T3 sin B + r, cos 2E + 7, sin 2E + T(l) 
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Following the same procedure as that used in Appendix 
D, one can reduce Eq. (510) to 

lim e = 0 
E + O  

which requires that 

dT(1) h" A 
- a constant = 0 

d 6 (511) 

and 

The constant in Eq. (511) can be defined as zero because 
there are no other conditions on d ? ( l ) / d ~  that is, the 
constant is arbitrary. Consequently, from Eqs. (469), (498), 
and (511), 

Tt1) (Z) = T ~ C Y  + TI (513) 

where 

Note that (Z) as determined in Eq. (513) satisfies 
the required condition (D-7) in Appendix D; that is, 
Ti1) (z) is a linear function of since i; = E@. Furthermore, 
it follows from Eq. (512) that T(z )  (z) must. be either a 
bounded function of Z or, if unbounded, at most a 
linear function of a since the unbounded part of 
E (z,z) is a linear function of a (remember 2 = ~a 

and F =  (1 +e2a2  + . . . )a). 

Introducing Eq. (513) into Eq. (486) and into Eq. (500) 
yields, respectively, 

t(l) (a; F) = T,, z + TI E + T2 cos E + T 3  sin E 
+ T4 cos 2E + T, sin 2E + T, (515) 

and 
- 

t ( ~ )  (01, - T7 E -t- T8 cos E + T9 sin E + TI, cos 2E 

+ 71, sin 2E + TI, cos 3E + TI, sin 3E + T ( 2 )  

(516) 

Note that F(2) (Z) can not be determined completely 
without developing third-order expressions and, as a re- 

sult, is not completely determined herein. However, from 
the first of Eqs. (454) and from Eq. (516), 

- 
T(" (0) = - [ T ~  E (0,O) + TS cos E (0,O) -t TD sin E(0,O) 

+ T10 cos 2E (o,o) + Tll sin ~ E ( o ,  0) 

+ 7 1 2  cos 3E (o,o) + T13 sin 3E (o,o)] 

where E(0,O) is given by Eq. (473) and thus 

F1') (z) = Tz $. 7 6  7:;) (z) @I8) 

where F::) (z) represents the undetermined portion of 
F(? )  (Z), Now 

F:;) (z) -+ 0 as a +  0 

and since 

T'&.)(z) <<E($$ for a > O  

the quantity ?I$) (Z) contributes very little to t(Z) ( ~ , z ) ,  
Thus, Eq. (516) can be replaced by 

- - - - 
t(,) (KT) T; E + TS cos E + T~ sin E + 71, cos 2E 

+ TI ,  sin 2E + 71, cos 3E + T13 sin3E + T, 

(519) 

'At this point of the development, the uniformly valid 
asymptotic expansions to 0 ( E ~ )  are determined for 17 (a; E) 

and for t (a; +). In addition to these, the quantities 
(dvI/da) (a; E) and (dt/da) (a; e) are required to com- 
pletely describe the motion of the satellite (see Section 
v-C-1). 

As in Section V-B-3, let 

a77 [ (a; E )  = - (a; e) cl a 

In addition, let 

A 
[ (a; €) = E (Z,% E) = [ ( O )  (Z,Z) + ($Z) + ($Z) 

+ e3[(3) (Z,Z) + 0 (E4)  (521) 

Introducing Eqs. (332) and (521) into Eq. (520), combin- 
ing like powers of e, and setting the coefficients of the 
powers of E equal to zero (since the expansion must hold 
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for arbitrary values of the perturbative parameter e) 
yields 

((0)  = rly) (522) 

((1) = (0 )  + 9 2 (523) 

( ( 2 )  = a29y) + rly) + ?I;') (524) 

and so forth. Now, from Eqs. (414) and (522), 

( ( O )  (ZZ) = -eO sin (T- a. - 3 (525) 

from Eqs. (377), (415), and (523), 

1 
[(l)(Z,Z) = e o s i n ( ~ - o o  -2') + - e i s i n 2 ( T - ~ ~  -E )  

3 

- el sin (Z - a, - iii) (526) 

and from Eqs. (414), (416), (417), (442), and (524), 

( f 2 )  ( , Z )  = - a2e0 sin (Z - a, - Z)  

1 + - e g s i n 2 ( ~ -  -Z)  
3 

1 
- -eisin3(Z- oo - Z )  

16 

+ el sin (Z - a, - Z) 

2 + - eoel sin (2z- oo - a, - &) 
3 

- e2 sin (Z - - Z )  (527) 

so that the uniformly valid asymptotic expansion to 0 (8 )  
is determined for (drl/da) (a; E)' = 6 (a; E). Also, from 
Eq. (279), 

dt  h3 
- (a; 6) = - 
dol q2 (a; 4 

where 7 (a; e) is given by Eqs. (324), (371), (403), and 
(443) to 0 (E2). 

Finally, from the selected coordinates 7 (a; E), t (a; E ) ,  

(d?/da) (a; E ) ,  and (at/&) (a; E), the desirable quantities 
l' (a; 4, (dr/dt) (a; 4 ,  (da/dt) (a; 4 ,  (h/dt)  (a; 4, a (a; 4 ,  
e (a; E), q (a; E), 2) (a; E), and (a; E) can be obtained. Thus, 
from Eq. (274), 

h' 
1. (a; E) = -- 

rl (a; 4 

from Eq. (305), 

ds 
- (a; E) = ([g (a; 3 ] + [ r (a; .) -& (a; t) 
dt I2SU 

from Eq. (308), 

1' (a; E) (532) 

from Eq. (309), 

from Eq. (310), 

4 (0; 6) = a (a; E) [ l  - e (a; E)] (534) 

from Eq. (311), 

v (a; E )  = tan-] 

where 

[ h, " €:I 
-- 
1' (a; 6) 

dr 
0 < 0 (a; E) < 7 if .;it (a: E) > O  

dr dLr 
v = 0 if (a; e) = 0 > 0  and -g (a; E) 

dr d2r 
u = i7 if -(a; E )  = 0 < 0  and tit' (Q; E) 

dt 

and where, tlxough the use of Eqs. (277) and (278), 

d21' 1 
-(a; E) = - - [rl (a; E)]' (1  - (a; E) + E [17 (a; E)]') dt2 124 

and, from Eq. (314), 

w (a ;  e) = a - 2) (a; E) 

from Eqs. (276) and (520), where 0 L o 4 2 ~ .  

dr 1 d9 1 In conclusion, the pertinent relationships of this section 
-(a;€) = ---(a;€) = --((a;€) dt h dor h (530) are summarized in Tables 5, 6, and 7. 
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fable 5 .  Summary of constants arising in the two-variable asymptotic 
expansions representing the motion of the equatorial satellite (Part 1)  

tan-' - l ) ]  for all 6 and 77, except [, = 0 with 7, = 1 
e, = [(vO - + [;]3$, for [, = 0 with 7, = 1 

- 
if KIT LOO L KzX,  then K ~ T ~  L E (0,O) &K,?T 

where K' < K Z  and both are integers 

4 
cz = 2 [el sin (w, - o,) + e,  sin (o, - 0,)] , cs = - -eOel sin (w, - a,) 3 

c9 = -3e:sin2(0, - 0,), 

cll = - 2eie1 cos (o, - wl) , c,, = - 2ege1 sin (w, - w,) 

(2 - 7e2 + 5e4, - 10e6,), 
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Table 6. Summary of constants arising in the two-variable asymptotic 
expansions representing the motion of the equatorial satellite (Part 2) 

[I + 3e; - 3eoe1 cos (u, - ol)] , 

[co (2 + el) - 3cleo + c,,] 

[c, (2 + 3el) - c,eo (4 + el) - clleo (3 + 2et) + 2cl,] 

[cs (4 + e;) - 5c,eo1 

[8c,eo - 4c1 (1 + el) + cloe0] 

[3c,eo (4 + ef) - c, (4 + l lel)  - 3c1, (1 + 4el) - 4cl,] 

[3c,e; - c,eo (2 + el) - 3c,,e0 + 4cl,] 

713 = - - 

To = -[E(o,o) - e,sinE(0,0)] 

TI = - [rl E (0,O) + s2 cos E(o, 0) + 7, sin E (0, 0) + 7, cos 2E (o,o) + 7, sin 2E (0, o)] 
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Table 7. Summary of the two-variable asymptotic expansions 
representing the motion of the equatorial satellite 

r l ( O )  = 1 + e, cos (Z - o0 - 3 

1 
?(l) = (1 + i e i )  + e,cos(a- wl -a - - e ; c o s 2 ( ~ -  o0 -n 

6 

t(l) = T,,; + TIE + T 2  cos E + T 3  sin E + 7 4  cos 2 3  + 7, sin 2E + T I  

t@)  r T.iE + 5 8  cos E + T 9  sin E + 710  cos 2E + T I ,  sin 2E + T I ,  cos 3E + 7 1 3  sin 3E + T ,  

17 = 7 1 ( 0 )  + ~ ~ ( 1 )  + E ~ ~ ( ~ )  + 0( f3 ) ,  'g = ( ( o )  + ~ ( ( l )  + ~ ~ ( ( 2 )  + o (e3) 

t = t(O) + et(l) + e2t(') + 0 (e3) , r = h2/rl 

o = a - 2 ,  
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D. Solution Using Variation of Parameters With 
Taylor's Series Expansions 

Consider the satellite theory that consists of the varia- 
tion of parameters with Taylor's series expansions applied 
to the differential equations of motion of an equatorial 
satellite about an oblate body. The principal concepts of 
this theory are given in Section III. In addition, the vari- 
ation of parameters with Taylor's series expansions is used 
to obtain the solution to the damped linear harmonic 
oscillator in Section IV-F (the essential features of this 
perturbation theory are given there). Note that this theory 
yields an initially valid approximate solution but one that 
has a large range of validity. 

1.  Selection of parameters and independent variable. 
In general, six instantaneous parameters are required to 
describe the osculating orbit completely: for example, 
a, e, i, m, 0, and LM (see Fig. 20). However, in the case 
of an equatorial satellite, i - 0 and 66 is physically inde- 
terminant, as may be seen from Figs. 17 and 20. A suitable 
definition for the longitude of the ascending mode is 

A 
0 = 0 (an often-used definition for 62 is the limit of the 
expression for the 0 for all inclinations as i-+ 0). Fur- 
thermore, as is shown in Section V-B (Eq. 272), the angu- 
lar momentum of the satellite (for the restricted motion) 
is constant. As a result of these factors, only three instan- 
taneous parameters are required to describe the oscu- 
lating orbit of the equatorial satellite about an oblate 
body: for example, e, o, and M. 

In order to avoid small devisors and mathematical 
singularities in the solution due to small and zero eccen- 
tricities, respectively, the classical parameters e, a, and M 
are replaced by aA. = e cos o, a~ = e sin w, and M (also, 
the use of a,\. and anl instead of e and w introduces certain 
symmetries into the development of the solution; this 
choice enables mathematical checks to be made as the 
development proceeds and, consequently, permits the 
elimination of algebraic errors more easily). 

Finally, in order to avoid slowly converging infinite 
series for particular values of eccentricity, the natural in- 
dependent variable t is replaced by the right ascension a. 

Thus, it is desirable to select an. (a; E), (a; E), and 
t (a; E) as the parameters and a as the independent vari- 
able in place of the classical parameters e (t; E ) ,  (t; E), 
and M ( t ; ' ~ )  and the natural independent variable t. 

2. Equations of motion. The differential equations of 
motion for the selected instantaneous parameters and 
the selected independent variable are, using Eqs. (E-16) 
from Appendix E, 

da, 

-- dt  - r2 
duN 
do: - & ah, 

and 

where = tiJf = 0 since 2 = = 0 and where a;, and a:, 
are as given in Appendix E. Introducing Eqs. (E-18) into 
Eqs. (537) yields 

PLANE 

da, - = - E [(f)' sin 1 da 
and 

Fig. 20. Osculating orbit plane 
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Next, the functions r"/p's, (p/r)'sin a, and ( ~ / r ) ~  cos a Thus, using Eqs. (544) with j = 3, one obtains 
are expressed in terms of the selected instantaneous pa- 
rameters. From Eq. (348) and trigonometric formulas, 

- '-1 - +aATcosa+a,sina 
1' (540) and 

It follows from Eq. (540) and trigonometric formulas that (5)' l a  p 3  sin. = - - ( r )  3 aa, 

or, from Eq. (542), 

+ (a5 - a&) cos 2a + a N a ~  sin 2a 
2 (541) 

cosa 

and that 
1 

(93 = 
3 3 

1 + (a& + a&) + q a ,  (a,:, + a& + 4) cos a 

I + - aA7a, sin a + ax cos 2a 2 

1 + adl sin 2a + - (a; - a&) cos 3a 
4 

1 

1 
+ ' a7a, sin 30: 2 + 3aA7a, sin 2a + -ax (a; - 3a&) cos 3a 

4 

1 
(542) 

and + q al (3af - ajR) sin 3a 

1 
Consider the partial derivatives of ( p / ~ ) j  with respect to (:)' sin a = a ~ f  + - 2 arau cos a 

an, and a~ (see Ref. 564); that is, 

and \ 

sin a - all cos 2a 

1 + aN sin 2a - - axaai cos 3a 
2 

1 + - (aA?. - a;) sin 3a 
4 (546) 

From Eq. (540), 
Introducing Eqs. (545) and (546) into Eqs. (539) and 

Eq. (541) into Eq. (538) yields the differential equations y:) = cos a and -(:) 2 =sin. of motion in terms of the selected osculating parameters 
a a ,  aaAf and independent variable 

- 1 7 sin a 
1 + - (a:. - a;) sin 3a 
4 I 
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Finally, it foIlows from Eqs. (547-552) that 

1 + ar cos 2a + ant sin 2a + - (a,$ - a&) cos 3a 4 

1 + - a7ant sin 3a 
2 

and 

I 
d t  p3/2 - - - 
da ( 1  + ax cos a + ax sin (549) 

ciaar 
aAlf = a,,, + - (a'; E )  da' I d f f  

J o 
and 

The initial conditions and the range of the independent A 
variable for these differential equations of motion are where i ~ 0 ,  6a = 0, and P = 1%' and is constant. 

and 

A 3. Analytical integration of equations of motion. The 
a~ (0)  = a T o  process of Taylor's series expansions is based upon the 

development of a reference motion and associated refer- 
A (550) ence parameters, (a;  E ) ,  & (a;  E ) ,  and T(a; E ) ,  which 

an, (0 )  = axo approximate the actual motion and associated instanta- 
neous parameters, ax (a;  E) ,  an[ (a; E ) ,  and t (a ;  E ) ,  suffi- 

t ( 0 )  = 0 ciently well so that Taylor's series expansions may be 
used to obtain the instantaneous parameters from the 
reference parameters (see Sections 111-B-1 and IV-F-3). 

0 4 a <  CO (551) 

respectively. I t  should be noted that 

and 

axo = e ,  cos w, 

(552) 

anro = eo sin OJ, 

tan-' -- P [(iP: o r  a , a n -  except 
l'o 

P i., = 0 with - = 1 
00 = 1'0 

1.7 for i., = 0 with - = 1 
1'0 

Following the procedure of Section IV-F-3, let 

a ,  (a; E )  = ii;, (a;  E )  + a:;) (a;  E )  + a y )  (a; E )  + 0 (e3) 

and 

a ,  -+ a, -+ t i 
(554) 

and let 

and 

as -+ aAlt -+ t I 

(555) 
The notation used here corresponds to that of Section 
IV-F-3. Introducing Eqs. (554) and (555) into the equa- 
tions of motion in integral form (Eqs. 553) and following 
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the procedure of Section IV-F-3, one obtains 

(a; E) = aA-o + 1" [(%I, + (2):; + (2)::' + (%)::'I dat 

/ " [(%)::' + (%);:'I 

da, 
a:) (a; €1 = J " [(-;i;;),,J + (2)::'] dm1 

&N ( 3 )  

a:.) (a; E) = J" [(2)::' + (z), ] G, etc. 

and 

Consider the determination of the reference (mean) parameters Kj7 (a; E) and (a; E) (the parameter T(a; E) is deter- 
mined later). From Eqs. (556), 

and 

where 

and 

Note that and ZMo are constants to be determined later. Furthermore, Eqs. (F-7) and (F-10) in Appendix F imply 
that 

Since r (t; E) is bounded (the initial conditions are re- 
stricted so that quasi-periodic motion exists), it follows 
from 

(561) 

ax = e cos and ant = e sin o (559) since secular, short-period, and long-period terins are of 
different character. Introducing Eqs. (560) and (561) into 

and from e < 1, 1 cos w I L 1, and 1 sino I L 1 that Eqs. (557) yields 

1 a ,  1 1 and labt/ 1 

that is, ax and a,,, are bounded. Consequently, and (562) 
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Remembering that the integral of a long-period func- 
tion usually decreases by one order of magnitude, one 
can let 

and (563) 

&" At = (a,) 5;) (a; €) + Ax0 L a ( d p  
so that Eqs. (562) become 

itN (a; E )  = Znro + (ax) (:; + AN0 

and 

EM (a; E )  = a,,, + (a,) g) + AN,, I 
Introducing Eqs. (564) into Eqs. (F-8) and (F-11) in 
Appendix F,  using the results that the product of a con- 
stant or long-period function with a short-period function 
yields a short-period function, using 

from Eqs. (560), and equating secular, short-period, and 
long-period terms, respectively, one obtains 

- (a,) j;) cos 2a + (aN) jOp) sin 2a 

1 
- - (aN)  (ax) cos 3a 2 
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1 + , (ahr):;) (a,) j;)  sin a 

+ (aN):;) cos 2a + (aAI):;) sin 2a 

1 + - (aA.) $ O p )  (ax) jOp) sin 3a 2 

= - E (aAf)  ji) 

and (568) 

Now, introducing Eqs. (565) and (568) into Eqs. (563) 
yields 

and 

whose solutions are 

(aN)  0 = K,.,, cos ca - adlO sin 

and (569) 

(al f )  5: = GI, cos ~a + Epo sin ECY 

respectively, Hence, from Eqs. (564), (565), and (569), 

- 
ax = Go cos ~a - Go sin ca 

and 
- 

(570) 
a, = Ear0 cos + GO sin €a 

Let 

- A -  - A -  
ax,, = e cos G, and aaro = e s h o o  (571) 

so that Eqs. (570) become, using trigonometric formulas, 
- - 
as = Zcos (z0 + €a)  and a, = Z sin (z,, + E@)  

(572) 
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Finally, let Furthermore, the appearance of the Poisson terms, 
(Eqs. 577), in Eqs. (575) shows that this solution is not 

(573) uniformly valid. 

so that Eqs. (572) become 
- - 
u., = zcosz and a, = Esinw (574) 

In this manner, i?;. and are analogous to a, and a,. 
These equations and the equation for to be obtained 
later, determine the reference parameters and reference 
motion. 

The next step is to determine the first-order perturba- 
tions, a$)  (a; E )  and a s )  (a; E ) .  Following the procedure 
of Section IV-F-2, using the equations for a',!) (a; E )  and 
aj;) (a ;  E )  from Eqs. (556), using Eqs. (569), (571), (573), 
and (574), using Eqs. (F-9) and (F-12) in Appendix F ,  and 
using trigonometric formulas, one obtains 

1 a;) = - 
4 

E [ -4C5C(Ea) s inz  + 2 (2 + Z 2 )  cos a 

- C?' cos (a  - 2 ~ )  + 4C2Z cos (201 - 5) 

+ C,Z2 cos (3a - 25)]  

and (575) 

1 = - 
4 

E [4C,E(ea) COST + 2 (2  +e2) sin a 

+ ClZ2 sin (W - 2;) + 4C2Zsin (2a - E )  

+ CaZ%in (3a - 241 

where 

and where 

( a , )  = - cC5Z (€a)  sin o 

and 

(a,)\;) = €c5e ( € a )  cos o I 
I t  should be noted that an excessive amount of tedious 
algebra is required in attaining a g )  and a(&) in Eqs. (575). 

In a similar manner, the second-order perturbations, 
a$) (a;  E )  and a g )  (a; E ) ,  are obtained using the equations 
for a,[?(a; E )  and a(,:(@; E )  from Eqs. (556), using Eqs. (573- 
575), and (577), using Eqs. (F-9) and (F-12) in Appendix F, 
and using trigonometric formulas: 

= -- 2 
s 4 ' E { 2 c 5  [c,z~ (ca) sin (a - 2 ~ )  

- 2C2Z(ea) sin (2a - G) 

- C,Z2 (€a)  sin (3a - 20)] - 4C9 cos cr 

+ 2c:c1,e2 cos (a  - 23) 

- ClC,C,Z3 cos (2a - 30) 

- 8C5C4Z cos (2a - G )  

- 2CzC11E2 cos (3a - 24 

+ C1C,CiZ3 cos (4a - 33))  + (a,),';) (578) 

and 

1 
a ( 2 )  = - - E  { 
Y 4 

2C5 [ClZ2 (€a)  COS (a - 2 ~ )  

+ 2CK (€a)  cos (2a - G) 

+ C3Z2 (€a)  COS (3a - 20)] - 4C9 sin cr 

- 2C:CloZ2 sin (a  - 2G) 

+ C,C,CGE3 sin (2a - 3 ~ )  

- 8C,C:Zsin (2a - -LT) 

- 2C2C,lZ'sin (3a - 2 ~ )  

+ C,C,C,Z3 sin (4a - 3 ~ ) )  + (u.,~),';) (579) 

where 

and where 
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and 

Note that ( ( L ~ ) : ; )  and (a,,r)(;;: can not be determined without developing third-order expressions and, as a result, 
a?) and a',:) are not completely determined herein. It  should be clear that (as):;) and (aAv):;, as well as the remaining 
perturbations a$),  a:;'), . . . and a%), a!;), . . . , can be obtained from the higher-order expressions (the use of a high- 
speed electronic computer is strongly recommended; see Section I-B-2). 

The reference (mean) parameter T(a; E) and the perturbations t ( l )  (a; E) and t(2)  (a;€) are now considered. Since the 
time t is an unbounded function of a, the previously used concept of boundedness can not be applied in the determi- 
nation of these functions. As a result, the expressions for T(a; E), t(') (a; E ) ,  and t(2)  (a; E) from Eqs. (556) are rewritten as 

and 

where 

- & (1) ( 2 )  d t  '"' 
to = - / O  [((z),, + (z), + ($)::' + (z)llJ ] dar + O (E3) I 

and where the integrals are to be determined individually rather than the integrands. It  should be noted that the short- 
period terms in t(" (a; E) can not be determined con~pletely (nor can the long-period terms) without determining 
(aw) :? and (aAv) ',;) from third-order expressions (the expression for (dt/da) 2) contains (ax)  6;; and (aM) ii) multiplied 
by short-period functions yielding short-period functions; see Eqs. (578) and (579) and Eq. (F-15) in  Appendix F). 
Consequently, t(" (a; E) is not determined herein. 

Introducing Eqs. (574), (575), (578), and (579) into Eqs. (F-13), (F-14), and (F-15) in Appendix F and using trigo- 
nometric formulas, introducing the results into Eqs. (581) and using the integral expressions in Appendix C with - 
v (a; E) = a - c (a, E) yields 

- - 
t (a; E) = TI E - TZ sin E + [T3 - T, (1 - ~ c o s  (em) + T" (583) 

and 

t( l )  (a; E) = E {Tj sin E sin 2E + [T, (1 - ~ C O S  El2 + 7, (cos E - Z) (1 - ~ C O S  E) 
+ ., (COS E - q 2 ]  (1 - zcos E) ( E ~ ) )  (584) 

where 
- 
u ( * ; ~ ) = a - o = ( l - € ) o l - 3 ~  

9PL TECHNICAL REPORT 32- 1267 1 1  1 



and 

E (a; E) = 2 tan-I I 
where 

A (1 - eg)3/2 1 c18 = c12e 1 
[-(2 + a ) ( 4  -2) - 2 ~ 4 1  +e2)  - - c 1 c 3 ( 2  +a) - c,c12~(i -a2)] (1 -22)7/2 2 2 

(587) 

and 

A (1 - e9)3/L 3 
C19 = C1B2 

1 [- (2 + IZ) - C, (1 + 28) + - C,C, (2 - 5E2) - C,C12e (1 - E2) 
( 1 - e 2 ) 7 / 2  2 2 I 

and where 

and 

- 
(589) 

It should be noted that if K ~ T ~  --L 2) (a; E) 4 K27i, then --L E (a;  6) L KzT, where K ,  < K ,  and both are integers. 
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At this point, the initial values of the reference parameters can be determined. From Eqs. (558) and (582), 

and 

Introducing Eqs. (575), (578), (579), and (584), evaluated at a = 0, into Eqs. (590) yields 

1 - 
a,, = a,, - - E [2 (2 + Z 2 )  + 4C2ZcosZo - (C,  - C,) E2 cos 20,] 4 

1 
- 7 e2 [4C9 + 8C5CIZ C O S G ~  - 2 (C:Clo - CiC11) 5' cos 230 

+ C,C, (C,  - C,)T3 cos 3 ~ ]  - (aH):;) (0)  + 0 (e3) 

- 1 
a,, = a,, + - E [4C,E sin 5, + (C, + C,) 2 sin 2w,] 4 

1 + - c2 [8C5CzZsinG + 2 (C:C,, + C!C,,) Z 2  sin 2;s, 4 

- C,C3 (C,  + C,)Z3 sin 33;0] - (aN)($ (0)  + 0 (e3) 

and 
- 
t, = - E  sin E (01 + 7 ,  sin 2 E  (011 + o (c2) 

I t  should be noted that as, and anl, are given by Eqs. (550) and that 

- - 
ah', = e c o s ~  and a,, = ZsinG 

from Eqs. (571) so that Eqs. (591) and (592) are two simultaneous equations in the two unknownse and G,, (the quan- 
tities (aA7)!;) (0 )  and (a,)$) (0)  are assumed to be negligible in this determination). The solution to these equations is 
attained by an iteration process and the use of a high-speed electronic computer. The quantity is then obtained from - 
e, Zn, and Eq. (593). 

It  is clear from the appearance of the Poisson terms in 
Eqs. (575), (578), and (579) that an initially valid approxi- 
mate solution has been obtained. Furthermore, although 
a ,  (a; E )  and anf (a;  E )  have been developed to 0 ( € 9 ,  ex- 
cept for the second-order long-period terms, the time can 
be developed to 0 (e)  only. 

Finally, from the selected parameters ax (a;  E),  aN (a; E) ,  
and t (a;  E) ,  the desirable quantities e (a;  E ) ,  (a;  E ) ,  

v (a;  €1, a (a;  €1, q (a ;  €1,  ~ ( a ;  €1, (dr/dt)  (a; 4, (da/dt)  (a; 4 ,  
and (cls/dt) (a;  E )  can be obtained (a  0 and i=O). 
Thus, from the definitions of a, (a;  E )  and an{ (a;  E) ,  

e (a; E )  = { [a, (a;  e)]  + [anf (a; e ) ]  2)ah (594) 

and 

for e (a ;  E) # O  
O (a; ' E )  = 

for e (a ;  E )  = 0 

(595) 

where 

O L o L 2 7  

From Eq. (314), 

v (a; E )  = a - o (a ;  E )  where 0 t, 27 (596) 
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Table 8. Summary of constants arising in the Taylor's series expansions 
representing the motion of the equatorial satellite (Part 1)  

- 
if KIT Lz,, 50 KK~T, then K,T -L E (0) 6 K,T 

where K~ < KZ and both are integers 

C, = 5 - 166 + 86" 

C, = 1 - 76 $ 4e2, Cs = 2 + C2(3 - 6)TZ, C,, = CS6 f C2C3C8 

C,, =Z C56 + C1C2C8, C , 3 = 5 - 4 ~ + ~ ~ ,  C14 = 13 - 326 + 16e2 

C1, = 7 - 1 6 ~  + 8e2, C,, = 12 - 226 + l l e 2  

114 JPL TECHNICAL REPORT 32-1967' 



from Eq. (309), from Eqs. (307), 

a (a; E )  = 
h" 

1 - [ e  (a;  E )  ] 
dor 
- (a; E) = 

h 
dt [ 1 ' ( f f ;  412 

from Eq. (310), and from Eq. (531), 

q (a; E )  = a(a ;  E )  [ l  - e (a; E ) ]  (598) 
ds 
- (a; E )  = - a; E )  + T4 (a; €) 

from Ref. 564, dt { [  1 2 [  dt  

r (a; E )  = 
h" 

1 + e (a; E )  cos v (a; E )  (599) 

and 

1 
In conclusion, the pertinent relationships of this section 

dr 
- (a; E )  = - e (a; E )  sin v (a; E )  h (600) are summarized in Tables 8, 9, and 10. 
dt 

Table 9. Summary of constants arising in the Taylor's series expansions 
representing the motion of the equatorial satellite (Part 2) 
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Table 9 0. 5vrnrnai.y of the Taylor's series expansions representing 
the motion of the equatorial satellite 

1 
ag) = - E [ - 4C,e (€a) sin 3 + 2 (2 + e2) cos a - ClZ2 cos (a - 20) 

4 

+ 4C2Z cos (2a - 3) + C3E2 cos (3a - 2 ~ ) ]  

1 
ac)  = - E [4C5Z (€a) cos z + 2 (2 + Z2) sin a + C1g2 sin (a - 2 ~ )  

4 

+ 4C2e sin (2a - 3) + C3E2 sin (3a - 2 ~ ) ]  

1 a$) - - 
4 

e2 {2C5 [C22  sin (a - 2 ~ )  - 2C,Bsin (2a - 5) - C3F2 sin (3a - 25)] (€a) 

- 4C, cos a + 2C:C1,E2 cos (a -' 2 ~ )  - ClC3C,E3 cos (2a - 33) 

- 4C, sin a - 2CTCl,E2 sin (a - %) + C1C3C,E3 sin (2a - 3 ~ )  

- 8C%C5Bsin (2a - G) - 2C$CllZ2 sin (3a - 25) + C1C3CiZ3 sin (4a - 35)) 
- 

1 1 E = 2 tan-1 [(-) tan y (a - T)  
if KIT  4 (a - T) 6 K ~ T ,  then KIT 4 E KZT 

where K~ < K 2  and both are integers 
- - 
t = T ~ E  - T2 sin Z + [ T 3  - 7, (1 - ~ C O S  E)2] (€a) + T ,  

- - 
t(1) = E { T ~  sin E + T ,  sin 2E + [ T ,  (1 - Zcos E)z + T~ (COS ,!? -7) (1 - ZCOS E) + T T ~  (COS E - 

ax = & + a:) + a;? + 0 ( E ~ ) ,  ax = 7& + a$) + ag)  + 0 (e3) 

t = t+ tcl) + 0 (e2), e = (a i  + a&)% 1 tan-. (2) for e + o 
w =  where 0 I OJ L 271 

\ 7 for e = o 

Z, = a - w where O A ~ L ~ T ,  
h" a = - q = a ( 1  - e) 

1 - e 2 '  

hz dr e -- da h 
r = - sinu, -- - - 

1 - ecosu ' dt - h dt r2 

A 
~2 = O  and i s 0  

dt 

-q2] (1 - BCOS E) (Ea)) 
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E. Comparison of Approximate Solutions 

The quality of each of the two satellite theories being 
investigated can be obtained by examining the numerical 
accuracy of the resultant approximate solution, the adapt- 
ability of the theory to various satellites and force fields, 
and the simplicity of both the mathematical operations 
involved and the form of the approximate solution (see 
Section 1-C-5). 

1. Numerical accuracy. Consider the numerical accu- 
racy of the two approximate solutions developed in Sec- 
tion V-C and V-D for the six sets of initial conditions 
given in Table 11 (these six sets summarize the eleven sets 
of initial conditions for which orbital data were obtained). 
The standard of comparison is the exact solution given 
in Section V-B. 

Table 11. Initial conditions for a satellite in the 
equatorial plane of Mars (yd = 42829.5 km3/s2, 

ad  = 3393.4 km, J~~ = 0.001975) 

Note that the initial true anomaly v, of Set 1 is 180 deg. 
I t  follows from Eq. (311) that if 

v,  = 180 deg I 
Now, from the equations for dr /d t  and r on page 73 , 

dr  
- (0) = ;, = 0 
dt 

and r, h2 (604) 

for the value of the initial eccentricity e, of zero. From 
the result r, = 1x2 and Eqs. (265) and (272), 

and since E > 0 and r f  > 0, 

Thus, u, must be 180 deg for e, = 0; that is, the satellite 
is initially at apofocus for e, = 0. In addition, because of 
Eq. (606) and 

it is clear that AT# 0, and therefore the satellite orbit is 
not circular. In contrast, the initial eccentricity of Set 2 
is slightly greater than zero and the satellite orbit is cir- 
cular as shown in Appendix B (see Eq. B-18). For this 
case, v,  must be 0 deg. In Sets 3-6, e;en though all the 
values of v, are permissible with each of the e,, only 
the value of v, = O deg is exhibited. 

The six sets of initial conditions in Table 11 represent 
a sufficiently broad spectrum of the possible sets of initial 
conditions. The dependence of the numerical accuracy 
of each of the two approximate solutions upon both the 
initial eccentricity and the initial perifocal distance is 
exhibited (the dependence of the numerical accuracy 
upon the initial true anomaly of the satellite was investi- 
gated and found to be essentially independent and, con- 
sequently, is not exhibited herein). 

Figures G-1-G-140 in Appendix G present orbital data 
for the selected sets of initial conditions. A tabular sum- 
mary of Appendix G is given in Table 12. The data for 
these figures were obtained using an IBM 7094 electronic 
computer in conjunction with "double precision" pro- 
grams. The special perturbations program consists of the 
Cowell formulation and a fourth-order Runge-Kutta 
integration process with a variable step size (see Section 
I-B-1). 

Table 12 shows that the errors in the coordinates and 
osculating parameters (the error in v is equal to the nega- 
tive of the error in and, consequently, is not exhibited) 
are exhibited for each of the sets of initial conditions, 
whereas the actual variations of the coordinates and oscu- 
lating parameters are exhibited only for those sets of 
initial conditions that yield elliptical motion, with the 
exception of the elliptical motion determined by special 
perturbations (the last column in Table 12). The error 
in a coordinate or parameter is defined to be the differ- 
ence between the value of that coordinate or parameter 
determined in the exact solution and that determined in 
the approximate solution; for example, the error in t is 
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Table 12. Synopsis of the parametric comparisons for a satellite 
in the equatorial plane of Mars 

equal to the exact t minus the approximate t. In addition, 
the independent variable for these figures is the right 
ascension of the satellite modified to yield portions of a 
revolution (the largest integral number of apsidal periods 
of revolution of the satellite is subtracted from the right 
ascension). 

Consider the numerical error in the time t associated 
with the position of the satellite made by the approxi- 
mate solutions. Figures G-1, G-10, and G-19 exhibit the 
numerical error in t during revolutions 1, 5000, and 
10,000, respectively, for Set 2 of the initial conditions 
(circular orbit). It follows from these figures that the 
multivariable asymptotic expansion predicts the time with 
greater accuracy after many revolutions than does the 
Taylor's series expansion (in the first revolution, the errors 
in t are approximately the same in both expansions). The 
error in the prediction of the time by either expansion 
is extremely small; for example, Fig. G-19 shows that the 
error in the time is less than 3 s in the 10,000th revolution, 
that is, after approximately 750 days. However, it should 
be noted that the error in the prediction of the time by 
both expansions exhibits a secular growth, so that, even- 
tually, the error will become significantly large. This 

behavior is characteristic in approximating an unbounded 
function such as the time by a series or an asymptotic 
expansion. As a result, the order of either solution is dic- 
tated by the required accuracy of the time in the largest 
revolution of interest. 

Figures G-19, G-28, G-47, and G-66 exhibit the de- 
pendence of the numerical error in t, during the 10,000th 
revolution, upon the initial eccentricity. The increasing 
magnitude of the error in t with an increasing e,  that is 
shown is partially due to the increasing initial period of 
revolution of the satellite, so that if the error in t is 
plotted in normalized form, a significant reduction in 
the increase of the error with e, will be exhibited. Again, 
the superiority of the multivariable asymptotic expansion 
of the time after many revolutions is exhibited. 

Figures (2-4'3, G-85, and G-104 exhibit the dependence 
of the numerical error in t, during the 10,000th revolu- 
tion, upon the initial perifocal distance (if the error in t 
is plotted in normalized form, a significant reduction in 
the increase of the error with q, will be exhibited). The 
superiority of the multivariable asymptotic expansion of 
the time after many revolutions is still exhibited in 
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Figs. G-47 and 6-85 but not in Fig. G-104, where the E 

is very small (since E E 1/72.' from Eq. (271) and 1x2 E q, 
when e,  is fixed from p = h2 = q, (1 + e,) ,  E K  l /q& so 
that for a very large q,, E is very small; see Table 11). 
The Taylor's series expansion of the time is just as good 
as the multivariable asymptotic expansion of the time 
with respect to numerical accuracy if the E is sufficiently 
small (this is a consequence of a theorem discussed by 
Picard in Ref. 1376). 

Finally, Figs. G-1 and G-123 exhibit the superiority of 
the multivariable asymptotic expansion of the time (even 
in Revolution 1) to a special perturbations determination 
of the time (not necessarily the best special perturbations 
solution) in the case of a circular orbit; that is, for Set 2 
of the initial conditions in Table 11. A similar result is 
exhibited by Fig. G-66 (the maximum error shown for 
the 10,000th revolution is approximately 6 X lo5 s, about 
0.01 percent, so that the maximum error in the first revo- 
lution is approximately 60 s) and by Fig. G-132 for Set 4 
of the initial conditions. 

Next, consider the numerical error in the radius dis- 
tance r of the satellite made by the approximate solu- 
tions. Figures G-2, G-11, and G-20 exhibit the numerical 
error in r during Revolutions 1, 5000, and 10,000, respec- 
tively, for Set 2 of the initial conditions (circular orbit). 
It  follows from these figures that the multivariable asymp- 
totic expansion predicts the radius distance with greater 
accuracy after many revolutions than does the Taylor's 
series expansion. The error in the prediction of the radius 
distance by either expansion is extremely small; for exam- 
ple, Fig. G-20 shows that the error in the radius distance 
is less than 1 m in 3,578,000 m in the 10,000th revolution 
(after 750 days). (Note that e3a, r 0.07 m, so that the 
resulting error agrees with the expected error.) However, 
it should be noted that the error in the prediction of the 
radius distance by the Taylor's series expansion exhibits 
a Poisson growth (for example, Ea cos a) SO that, eventu- 
ally, the error will become significantly large. In contrast, 
the error in the prediction of the radius distance by the 
multivariable asymptotic expansion is strictly periodic 
(without a secular or Poisson growth). This behavior is 
characteristic in approximating a bounded function such 
as the radius distance by a multivariable asymptotic ex- 
pansion. I t  should be noted that the apparent phase shift 
of the error curves in Revolutions 1, 5000, and 10,000 is 
caused by the definition of a revolution for a circular 
orbit that is used (a change in the right ascension of the 
satellite of 2~ rad) and does not occur in the error curves 
for the other sets of initial conditions. 

Figures G-20, G-29, G-48, and G-67 exhibit the depen- 
dence of the numerical error in r, during the 10,000th 
revolution, upon the initial eccentricity. The increasing 
magnitude of the error in r with an increasing e,  that is 
shown is partially due to the increasing initial semimajor 
axis of the satellite, so that if the error in r is plotted in 
normalized form, a significant reduction in the increase 
of the error with eo will be exhibited. Again, the highly 
desirable periodic variation of the numerical error made 
by the multivariable asymptotic expansion of the radius 
distance is exhibited. I t  should be noted that the principal 
cause of the numerical error made by the multivariable 
asymptotic expansion of 1. after many revolutions is the 
approximation of the fast angle variable, 

as may be seen by the phase shift of the approximate 
relative to the exact 1. in Figs. G-38, G-57, and G-76. 

Figures G-48, G-86, and G-105 exhibit the dependence 
of the numerical error in r, during the 10,000th revolu- 
tion, upon the initial perifocal distance (if the error in r 
is plotted in normalized form, a significant reduction in 
the increase of the error with q, will be exhibited). The 
superiority of the nlultivariable asymptotic expansion of 
the radius distance after many revolutions is still exhib- 
ited in Fig. G-48 but not in Figs. G-86 and G-105, where 
the values of E are very small (the Taylor's series expan- 
sion of the radius distance is just as good as the multi- 
variable asymptotic expansion of the radius distance 
with respect to numerical accuracy if the E is sufficiently 
small). 

Finally, Figs. G-2 and G-124 exhibit the superiority 
of the multivariable asymptotic expansion of the radius 
distance (even in Revolution 1) to a special perturbations 
determination of the radius distance in the case of a cir- 
cular orbit; that is, for Set 2 of the initial conditions in 
Table 11. A similar result is exhibited by Fig. G-67 (the 
maximum error shown for the 10,000th revolution is ap- 
proximately 4800 km, about 4 percent, so that the maxi- 
mum error in the first revolution is approximately 0.5 km) 
and by Fig. G-133 for Set 4 of the initial conditions. 

The remaining unbounded and bounded functions pre- 
sented in Figs. G-1-G-140 in Appendix G behave simi- 
larly to t and r, respectively, and consequently are not 
discussed explicitly. 

The preceding parametric comparisons disclose clearly 
that the use of the variation of coordinates with multi- 

JPL TECHNICAL REPORT 32-1267 



variable asymptotic expansions yields a numerically more 
accurate approximate solution after many revolutions of 
the satellite than does the use of the variation of param- 
eters with Taylor's series expansions. 

2. Adaptability. Consider the adaptability of each of 
the two satellite theories under discussion to various 
satellites and force fields. The first satellite theory, the 
variation of coordinates with multivariable asymptotic 
expansions applied to the differential equations of motion 
of a satellite, is applicable to various satellites and force 
fields as shown in Section I1 (it may be necessary to use 
the variation of parameters in place of the variation of 
coordinates for some force fields). In general, three multi- 
variable asymptotic expansions must be developed simul- 
taneously, and more than two distinct time or angle 
variables must be used. 

The second satellite theory, the variation of parameters 
with Taylor's series expansions applied to the differential 
equations of motion of a satellite, is equally applicable 
to various satellites and force fields as shown in Sec- 
tion III. In general, the angular momentum is not con- 
stant nor is the inclination identically equal to zero, so 
that expansions for six parameters must be developed 
simultaneously; for example, n (0; E), ax (0; E ) ,  a, (0; E), 
i ( 0 ;  E), L (0; E ) ,  and t (0; E), where 0 is an angle measured 
in the initial orbital plane and from an inertial reference 
direction (0 = a for an equatorial orbit). 

3. Simplicity. Consider the simplicity of the mathe- 
matical operations involved in each of the two satellite 
theories being compared and consider the simplicity both 
of the required mathematical operations and of the form 
of each of the respective approximate solutions obtained. 
It  follows from Sections I1 and V-C that the mathematical 
operations involved in the variation of coordinates with 
multivariable asymptotic expansions are straightforward 
except for, possibly, the solution of the second-order 
partial differential equations that arise (the use of the 
variation of parameters with multivariable asymptotic 
expansions involves the solution of only first-order partial 
differential equations and is, therefore, more desirable). 
In contrast, it follows from Sections I11 and V-D that the 
mathematical operations involved in the variation of 
parameters with Taylor's series expansions are straight- 
forward, although an excessive amount of tedious algebra 
is necessary (avoiding algebraic errors is extremely diffi- 
cult). 

Finally, comparisons of Tables 5, 6, and 7 with Tables 
8, 9, and 10, respectively, show that both the mathe- 

matical operations involved and the form of each of the 
two approximate solutions are of equal simplicity. Fur- 
thermore, the amount of information that must be stored 
in the memory of the IBM 7094 for a transition from one 
prediction point to another and the speed of computation 
per prediction point for the two approximate sol~~tions 
are essentially the same (the third approximate solution, 
the special perturbations solution, required much longer 
computation times). 

VI. Motion of a Satellite After Many Revolutions 

In general, in the first-order solution for the motion 
of a satellite, different disturbing forces cause different 
perturbations (also called inequalities), although each 
disturbing force produces a multitude of first-order per- 
turbations. In a higher-order solution, a perturbation may 
arise from the simultaneous effect of several disturbing 
forces, producing the effect known as perturbation super- 
position. This effect can lead to significant variations in 
the solution. (Most solutions for the motion of a satellite 
presume the linear independence of the perturbations 
resulting from the different disturbing forces, an incorrect 
premise since the differential equations of motion of a 
satellite are nonlinear.) Furthermore, several disturbing 
forces can act in resonance so that the resulting variations 
could be more significant than the sum of the individual 
variations. For these reasons, the motion of a satellite, 
even after many revolutions, subject to the simultaneous 
effect of the three principal disturbing forces is consid- 
ered in this section. 

A. Selection of Mathematical Model 

A disturbing or perturbative force (or perturbation) 
acting on a satellite can be categorized as either a gravi- 
tational force or a nongravitational force. The gravita- 
tional forces consist of those forces that are due to the 
asphericity of the central mass, n bodies where n > 2 
(usually assumed to be point masses but possibly includ- 
ing asphericity effects), and relativity, villereas the non- 
gravitational forces consist of those forces that are due 
to aerodynamic drag and lift, low thrust, electromag- 
netism, solar radiation pressure, and meteoritic pressure. 
(Table 1 presents a partial list of references that discuss 
the effects of these disturbing forces upon the motion of 
a satellite.) 

The instantaneous effects of the disturbing force (or 
forces) can be easily summarized by considering the 
orthogonal components of the force (or sum of forces) 
in the directions of the tangential unit vector S, the nor- 
mal unit vector T, and the binormal unit vector W (§ is in 
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the line of the tangent and is positive in the direction 
of motion, T lies in the orbital plane perpendicular to S 
and is positive in the direction of the central mass, and 
W is perpendicular to the orbital plane and forms a right- 
handed orthonormal set with S and T; see Fig. 21). Thus, 
Table 13 and Fig. 21 summarize the instantaneous effects 
of the components of the disturbing force upon the oscu- 
lating parameters of a satellite (Ref. 936). The results are 
for positive values of the components (for negative com- 
ponents, the variations change sign). It  should be noted 
that ZL = 0 + w (see Fig. 20). 

Unfortunately, the three principal disturbing forces act- 
ing upon a satellite can not be selected unless the central 
mass and the range of radius distances from that central 
mass are specified. For example, Fig. 22 presents the ap- 
proximate magnitudes of the larger accelerations acting 
upon a satellite about the earth (Ref. 510). I t  follows from 
this figure that the three principal disturbing forces acting 
upon a near-earth satellite are those due to the second and 
fourth harmonics of the aspherical earth and to atmo- 
spheric drag, whereas the three principal disturbing forces 
acting upon a distant-earth satellite are those due to the 
second harmonic of the aspherical earth and to lunar and 

Table 13. The instantaneous effects of a disturbing 
force upon the osculating parameters 

of a satellite 

lncreoses in 

interval EPB; 

decreases in 

interval BAE 

0 

Osculating 
parameter 

Increases in 

interval PEA; 

decreases in 

interval AEP 

Decreases in 

interval PEA; 

increases in 

interval AEP 

0 

a Always increases 0 0 

Effect for indicated direction component 
of disturbing force 

Increases in 

interval DPC; 

decreases in 

interval CAD 

0 

S 

0 

Increases in 

quadrants 1 
and 4 of u; 

decreases in 
quadrants 2 
and 3 of u 

Opposite of 
variation in 

multiplied by 

cos i 

Increases in 

quadrants 1 
and 2 of u; 

decreases in 

quadrants 3 
and 4 of u 

T 

Fig. 21. The instantaneous effects of a disturbing 
force upan the osculating parameters 

of a satellite 

W 

GEOCENTRIC RADIUS DISTANCE, km 

r 

Fig. 22. Accelerations acting upon a satellite 
about the earth 

solar gravity (the satellite is assumed to be of the type 
with small area-to-mass ratios so that the disturbing force 
due to solar radiation pressure is relatively small). In 
contrast, Table 14 presents the approximate magnitudes 
of the larger accelerations acting upon a satellite about 
Mars (Ref. 923). I t  follows from this table that the three 
principal disturbing forces acting upon a near-Mars satel- 
lite are those due to the second harmonic of Mars, atmo- 
spheric drag, and solar gravity (the satellite is assumed 
to have a representative value of the area-to-mass ratio 
of 0.20 cm2/gm so that the disturbing force due to solar 
radiation pressure is relatively small), whereas the three 
principal disturbing forces acting upon a distant-Mars 
satellite are those due to the second harmonic of Mars, 
solar gravity, and solar radiation pressure. 

Because of the interest in the exploration of Mars and 
Venus by placing artificial satellites in orbit about these 
celestial bodies (see Section I-A-2), the present section 
considers the motion of a satellite having a close perifocal 
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Toward center  

Solar radiation 

Jupiter's gravity 

Table 14. Aeeelerations aefing upon a of the 1', J', K' basis from the inertial center 0' to the 
satellite about Mars center of the moving planet m, so that the I, J, K basis 

differs from the 1', J', K' basis only in origin. Note that 
the I, J, K basis is not inertially fixed since its origin is the 
center of the accelerating planet and is used only to sim- 
plify the decomposition of vectors and vector equations. 
All of the vectors, their components, and the governing 
dynamical equations are defined relative to the 1', J', K' 
basis. 

From the law of universal gravitation and Newton's 
second law of motion, 

where 

i = 1,2, . . . ,n ,  and j # i  

distance and subject, simultaneously, to the three princi- 
pal disturbing forces due to the second harmonic of the 
aspherical planet, atmospheric drag, and solar gravity. 

Let 1', J', K' be an inertial basis or frame of reference 
having a plane parallel to the equatorial plane of the 
planet as the principal plane; that is, the 1'-J' plane in 
Fig. 23 (the effect of the precession of the axis of rotation 
of the planet upon the motion of the satellite is assumed 
to be negligible; see Ref. 180). Let I, J, K, be a translation 

k2 is the gravitational constant (k2 = G) 

mi and mj  are the masses of the ith and jth bodies, 
respectively, in the system of n bodies 

Ri is the position vector of the ith body relative to the 
inertial basis 

pi represents all other vector accelerations existing in 
the system of n bodies relative to the inertial basis 

and 

K' R.. * I  = R j  - Ri, from which Rij = -Rji and R i j  = Rji  

Consider the motion of a satellite (m, = m) about a 
planet (m, = m,) being disturbed by the gravitational 

m3 attraction of the sun (m, = m,). From Eqs. (607), 

d%, R12 
- = k z ( m , - - + m 3 s )  dt2 Biz R: , 

and (608) 

d2 R2 
dt2 

Let r be the position vector of the satellite with respect 
to the center of the planet; that is, 

Fig. 23. The inertial basis for the motion of a satellite r = R, - R, (609) 
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as shown in Fig. 23. Differentiating Eqs. (609) with 
respect to the time twice yields 

and, using Eqs. (608), one obtains 

Introducing 

R21 = -HI2 and Rzl = R12 

into Eqs. (610) yields 

and 

where 

d2 r --- = i.' + 3 
dt" 

from Section 111-A-2. Two additional perturbing acceler- 
ations or perturbations are considered in this section. 
They are the perturbations due to the asphericity of the 
planet and the atmosphere surrounding the planet. Hence, 

;. = ?,? + c, + PQ (617) 

where 

p2 - pl = Pt2 + iAD (618) 

and 

Consider the spherical conlponents of the vector equa- 
tion of motion in Eqs. (613). It follows from Fig. 24 that 

Through the use of cos a cos S sin a cos S 

COS a 

r = Rlz,  T = R12 
- cos (Y sin S --sin (Y sin S cos S 

RZ3 = r o - r ,  RZ3 = lr, - rl (620) 

R13 = r o ,  R13 = T o  
(612) where a and 6 are the right ascension and declination 

pP = k2 (ml +%) = k2  (my) + m) of the satellite with respect to the center of the planet. 

and Differentiating Eqs. (620) with respect to the time, noting 
that 

as shown in Fig. 23, Eqs. (611) become 

since I, J, K is simply a translation of the inertial basis 
d 2 r  - r 

- (613) I', J', K', and using Eqs. (620) in the results yields 
dt" - 

which are the relative motion form of the equations of 
0 

dw 
- cos S motion of a satellite. dt 

da 
0 - - cos s 

dt  The unperturbed motion is taken as the classical two- 
body motion so that Eqs. (613) yield ds -- da 

- - sin S 
r dt d t  .. r = - p d p -  

T 3  (614) (621) 
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K Next, consider the perturbation due to the second har- 
monic of the aspherical planet, r>l The perturbative 
function due to J2 of the planet is given in Ref. 564: 

1 R = -  
2 p P ~ %  a j  (f) (1 - 3 sinZ S) (626) 

It  should be noted that the planet is assumed to be an 
axially symmetric oblate body with symmetry in the nor- 
thern and southern hemispheres. The perturbative accel- 
eration ij,? can be written as 

- 
aR i.' - - 1 aR 1 aR 

J? ar i + - -  j+- -k  
rcos s a, 1. as 

T so that, using Eq. (626), one obtains 

Fig. 24. The moving basis for the motion of a satellite aR 3 
a t  i = - = - - P I  a ( )  (1 - 3 sinz 6) r ~ z  ar 2 

Now 

as shown in Fig. 24. Differentiating Eqs. (622) with re- 
spect to the time and using Eqs. (621) yields and 

and 

Consider the drag perturbation due to the atmosphere 
surrounding the planet, c. The perturbative accelera- 
tion ?), can be written as (Ref. 657) 

where 
Equations (624) express the acceleration vector in terms is the density, which varies with 
of its spherical components. Introducing Eqs. (614), (622), (other functional dependencies are assumed negligible) 
and (624) into Eqs. (616) and taking the dot product of 
the result with respect to i, j, and k, respectively, yields dr/dt is the velocity of the satellite given by Eqs. 623 

d2 r d8 da / 1 , ~ 1  

dr,/dt is the velocity of the atmosphere - (  - (  c o s 2 ~ = - -  r2  + ? * i  CD is the drag coefficient, which depends upon the 
shape and orientation of the satellite and the manner & [ $ ( r 2 2 c o s 2 S ) ]  = ? * j  of reflection of the atmospheric particles 

(625) S is a characteristic area of the satellite 
and 

and 

m is the mass of the satellite 
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Finally, introducing Eqs. (619), (627), and (628) into 
Eqs. (617) yields 

1 P = - 3p, J ,  a; ($) [5  (1 - 3 sin2 6)  i + (sin 6 cos 6) k I 

from which i.' i, i.' * j, and i' a k can be obtained. These 
are then introduced into Eqs. (625), yielding the desired 
differential equations of motion of the satellite. The initial 
conditions for these equations are 

dr 
1' (to) = T O ,  ;-, (to) = 1:" 

" (to) = "0 , 
ah  ,, (to) = Ao 

where, if J ,  = CD = /J., = 0 (2  = O), these initial condi- 
tions would yield bounded (periodic) motion; that is, the 
satellite's orbit would be circular or elliptical. In addition, 
the range of time that is of interest in this forn~ulation is 

It  should be noted that simplifications of both the per- 
turbation due to atmospheric drag and the perturbation 
due to solar gravity are necessary before an approximate 
solution to the motion of the satellite can be obtained 
using a general perturbations method. The necessary sim- 
plifications as well as the proper normalization of the 
differential equations of motion are left as initial steps 
in the next phase of investigation into the motion of a 
satellite. 

B. Selection of Method of Solution 

Due to the highly nonlinear nature of the differential 
equations of motion given by Eqs. (625) and (629), an 
exact analytic solution is not possible, so that an approxi- 
mate method of solution must be used. In accordance 
with the conlparisons in Sections IV-H and V-E, it is 
concluded that the selection criteria specified in Section 
I-C-2 are best satisfied by the satellite theory consisting 
of the application of the variation of parameters with 
multivariable asymptotic expansions to the set of ordinary 

nonlinear differential equations governing the motion 
of the satellite. This satellite theory is described in 
Section 111. 

C. Selection of Parameters and Independent Variable 

In order to avoid small divisors, mathematical singu- 
larities, and slowly converging infinite series, a nonsingu- 
lar set of instantaneous multivariable parameters (see 
Section V-C-3) and. an angular variable (measured with 
respect to an inertial direction) are selected as the oscu- 
lating parameters and independent variable, respectively. 
The explicit selection of these quantities is left as a step 
in the next phase of investigation into the motion of a 
satellite. 

D. Equations of Motion 

The differential equations of motion for the selected 
instantaneous multivariable parameters and the selected 
independent variable are obtained from Eqs. (625) and 
(629) using the procedure of Section IV-G-2. These 
equations are first-order ordinary nonlinear differential 
equations. 

E. Development of Solution 

The procedure in developing the approxinlate solution 
is given in Section 111-B. It  should be noted that a large 
amount of analytical labor is required in this section. Not 
only is this overwhelming analysis time-consuming, but 
a small error at the beginning of the development of the 
solution propagates itself through the analysis, vitiating 
the effort. Consequently, the use of automated manipula- 
tion techniques is desirable. 

In order for autoinated manipulation to be useful, it 
should be necessary to state only the particulars of the 
problem and of the development of the solution in order 
to obtain the solution in the desired form. The computer 
algorithms for many of the basic manipulations which 
would be comprised in such a hybrid program have al- 
ready been developed: for example, the ALPAK system 
developed at Bell Telephone Laboratories (Ref. 216), the 
FORMAC system developed at International Business 
Machines, Incorporated (Refs. 155-158, 1251, and 1252), 
and the FORMAN system under development at Com- 
puter Sciences Corporation, Los Angeles, Calif. 

VII. Summary 
The final section of this report summarizes the conclu- 

sions and original contributions and presents recommen- 
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dations for further study (for a summary of the contents 
of the entire report, refer to Section I-D). 

A. Conclusions 

It  follows from Section I-B-2 that the methods of gen- 
eral perturbations are ideally suited for the prediction 
of orbits extending over many periods such as for those 
for artificial and natural satellites. (In some cases of quasi- 
periodic motion, it is probable that the best means of 
determining the motion will be based on some combina- 
tion of special and general perturbations.) 

In Section IV, five theories of general perturbations 
are applied to the elementary problem of the damped 
linear harmonic oscillator illustrating the mathematical 
processes involved and the advantages and disadvantages 
of each theory. Only two of these theories yield the 
superior uniformly valid approximation: the variation of 
coordinates with multivariable asymptotic expansions 
and the variation of parameters with multivariable asymp- 
totic expansions. The application of either of these theo- 
ries to the set of differential equations that govern the 
motion of a satellite constitutes an acceptable satellite 
theory (see Section I-C-2). The decision as to which of 
these theories is more desirable depends upon the com- 
plexity of the set of differential equations that govern the 
motion of the satellite. If this set of differential equations 
is relatively simple, as in the motion of an equatorial 
satellite about an oblate body, it is just as desirable to use 
the variation of coordinates with multivariable asymp- 
totic expansions as it is to use the variation of parameters 
with multivariable asymptotic expansions. However, if 
this set of differential equations is complex, as in the 
general motion of a satellite acted upon by several dis- 
turbing forces, it is more desirable to use the variation 
of parameters with multivariable asymptotic expansions 
(more than two distinct variables are necessary in this 
case). Finally, a third theory, the variation of parameters 
with Taylor's series expansions, yields an approximate 
solution that is initially valid but has a large range of 
validity, so that the resulting numerical accuracy may 
be sufficient over a large enough range of time for prac- 
tical applications. 

Two satellite theories are investigated in Section V: 
the application of the theory of the variation of coordi- 
nates with multivariable asymptotic expansions and the 
theory of the variation of parameters with Taylor's series 
expansions, respectively, to the differential equations gov- 
erning the motion of a satellite in an equatorial orbit 
about an oblate body (second harinonic only). In addi- 

tion, the exact solution is developed for this restricted 
satellite motion. In the exact solution, the right ascension 
of the satellite, a (r;  E), consists of constants and a Legendre 
normal elliptic integral of the first kind, whereas the 
time associated with the position of the satellite, t (r;  E ) ,  

consists of constants, powers of r, and Legendre normal 
elliptic integrals of the first, second, and third kinds. 
In the theory of the variation of coordinates with multi- 
variable asymptotic expansions, the inverse of the radius 
distance of the satellite and the time associated with 
the position of the satellite are both successfully approxi- 
mated to 0 (e2) by uniformly valid asymptotic expan- 
sions in terms of a. During the development of the asymp- 
totic expansion for the time, the argument of consistency 
used by Kevorkian (Ref. 665) is inappropriate and is 
replaced by the second uniformity condition given in 
Section 11-A-3. As expected, the theory of the variation 
of parameters with Taylor's series expansions yields ini- 
tially valid expansions and, therefore, is inferior with 
respect to the numerical accuracy after many revolutions 
of the satellite about the oblate body (the majority of the 
satellite theories reviewed in Refs. 1-1370 yield initially 
valid solutions). In addition, the variation of parameters 
with Taylor's series expansions, although equally adapt- 
able, is more difficult to apply to general satellite motion 
than is the variation of coordinates (or parameters) with 
multivariable asymptotic expansions. 

Finally, the recommended satellite theory consists of 
the application of the variation of parameters with multi- 
variable asymptotic expansions to the set of ordinary 
nonlinear differential equations governing the motion of 
a satellite. This theory predicts the position and velocity 
of a satellite to a sufficiently high accuracy even after 
many revolutions about the central mass (the remaining 
selection criteria specified in Section I-C-2 are also 
satisfied). 

B. Original Contributions 

There are four primary contributions. First, a system- 
atic study on the prediction of the position and velocity 
of a satellite after many revolutions about the central 
mass is presented. Second, a comprehensive discussion 
of the theory of multivariable asymptotic expansions is 
provided and the concepts of the uniformity conditions 
are introduced (see Section 11). Prior to this discussion, 
this theory had been limited primarily to two-variable 
asymptotic expansions and to the use of boundedness 
and consistency conditions. Third, the theory of the vari- 
ation of parameters with multivariable asymptotic expan- 
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sions is developed and its usefulness demonstrated (see 
Sections 111 and IV-G, respectively). Finally, thorough 
numerical accuracy studies of the uniformly valid asymp- 
totic expansions obtained by using the concepts of multi- 
variable asymptotic expansions are made, and the 
effectiveness of these concepts is established (see Sec- 
tions IV-H and V-E-I as well as Appendix G). 

In addition to the primary contributions, there are 
four secondary contributions. First, a complete set of 
exact equations for the motion of a satellite in an equa- 
torial orbit about an oblate body (second harmonic only) 
is obtained; that is, equations are developed which yield 
both the position and velocity of the satellite after many 
revolutions (see Section V-B). Prior to this analysis, only 
the radius distance as a function of an inertial angle had 
been developed. Second, a complete and uniformly valid 
set of approximate expressions (to 0 (e2))  for the motion 
of a satellite in an equatorial orbit about an oblate body 
is presented (see Section V-C). This approximate solution 
clearly shows the effects of the oblateness of the central 
mass upon the motion of the satellite, whereas the exact 
solution does not. Third, the limited usefulness of a solu- 
tion obtained by using the theory of the variation of 
parameters with Taylor's series expansions as developed 
in Sections IV-F and V-D is exhibited (the solution is 
initiaIly valid). Finally, the bibliography provides one 
of the largest lists of references on satellite theory. 

C. Recommendations for Further Study 

The next important step in the investigation of the 
motion of a satellite after many revolutions is to apply 
the variation of parameters with multivariable asymptotic 
expansions to the differential equations of motion of a 
satellite being perturbed by the asphericity of the central 
mass (second harmonic only), atmospheric drag, and the 
gravitational attraction of the sun, simultaneously, as out- 
lined in Section VI of this dissertation (it may be advan- 
tageous to first apply this perturbation theory to the 
differential equations of motion of a satellite being per- 
turbed by only the asphericity of the central mass, allow- 
ing all inclinations, and then to the differential equations 
of motion of a satellite in an equatorial orbit being per- 
turbed by the asphericity of the central mass, atmospheric 
drag, and the gravitational attraction of the sun, simul- 
taneously). Furthermore, since a large amount of tedious 
algebra is involved (characteristic of general perturba- 
tions methods), a study into the use of a high-speed 
electronic computer to aid in the development of the 
solution is desirable. 

Eventually, the motion of a satellite acted upon by a 
more complex force field than those previously discussed 
will be required. Consequently, the use of the variation 
of parameters with multivariable asymptotic expansions 
in conjunction .with a special perturbations method will 
probably be necessary and should be investigated. 
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Definitions 

Analytic solution. A solution in the form of symbolic 
formulas which express the sought-for quantities as 
explicit functions of the independent variable (usually 
time), the constants of the problem, and the constants 
of integration which are determined by the initial con- 
ditions of the problem. 

Apofocus. A point on an orbit farthest from the principal 
focus or dynamical center. Designated 1;1 or r,,,,,. 

Apsidal period of revoltrtion. The time elapsed when an 
orbiting body completes one revolution from perifocus 
to perifocus (usually more or less than 360 deg). 

Apsis. A point on an orbit where the radius distance is a 
minimum (perifocus, designated q or T,,,~,) or a maxi- 
mum (apofocus, designated 1;, or r,,,ax). 

Asymptotic expansion of x (t; E) as E + 0. The series 

J 

2 v j  (6) x( i )  ( t )  
j = o  

where 

J 

x (t; E) = 2 v j  (E) x(j)  ( t )  + 0 (vJ+, (E)) as E -+ 0 
j = o  

and where v j  (E) is an asymptotic sequence as E-+ 0. 
(See Section 11-A-2.) 

Asymptotic sequence for E-+ 0. A sequence of functions 
l J i  (E)  where i = 0,1,2, . . . and where 

vj+l (E) - lim - - 
€ 4 0  v j  (E) 

for each i. (See Section 11-A-2.) 

Classical lzlnar theory. The theory of motion of the moon 
under the gravitational attraction of the earth and the 
disturbing sun where all three bodies are treated as 
point masses. Sometimes called the main problem of 
the lunar theory. 

Classical planetary t1zeol.y. The theory of motion of a 
planet under the gravitational attraction of the sun and 
a disturbing planet, where all three bodies are treated 
as point masses. 

Cowell's method of special pertzwbations. The method in 
astrodynamics which consists of the direct, step-by- 

step, nuluerical integration of the total acceleration 
(central and perturbative) of a body in nlotion with no 
reference to an osculating or other reference orbit. The 
differential equations of motion, which must be inte- 
grated twice to obtain the position of the disturbed 
body, are (in normalized vector form) 

where i.' is the total perturbative acceleration due to 
asphericity, drag, and so forth. It  should be noted that 
this method is not strictly a perturbation method since 
the term perturbation implies that a distinction is made 
between the principal terms and the perturbation terms 
in the accelerations. However, in keeping with astro- 
nomical tradition, this method is classified as a per- 
turbation method. (See Ref. 564.) 

Critical inclination. The perturbations due to the aspheri- 
cal central inass introduce various terms into the solu- 
tion of the motion of the satellite, which have the 
denominator (1 - 5 cos2 i). This denominator becomes 
zero at the critical inclination of 63.4 deg and, as a 
result, mathematical singularities arise in the solution 
of the motion of the satellite. 

Encke's methocl of special perturbations. The method in 
astrodynamics which consists of the step-by-step nu- 
merical integration of the difference between the total 
acceleration of a body in motion and the acceleration 
of the body in an osculating or reference orbit; that is, 
the acceleration the body would have if it continued 
to move in the conic section corresponding to the posi- 
tion and velocity at a particular instant called the epoch 
of osculation (the departures from the osculating orbit 
are called perturbations and are zero at the epoch of 
osculation). There are a relatively small number of 
epochs of osculation in this method as compared with 
the variation of parameters method of special perturba- 
tions, where the reference orbit is continuously chang- 
ing. The differential equations of motion, which must 
be integrated twice to obtain the perturbation in posi- 
tion, are (in normalized vector form) 

d 2 p  r - - -- - 
dt" T 3 + : + ?  1'P 

where i' is the total perturbative acceleration due to 
asphericity, drag, and so forth and where p is the dif- 
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ference between the actual position vector and that of 
the osculating orbit; that is, p = r - re. (See Ref. 564.) 

Epoch. An instant of time for which the initiai conditions, 
elements, parameters, or constants of an orbit or tra- 
jectory are specifiecl. Designated t,,, 

Equatorial satellite. A satellite whose orbital plane coin- 
cides with the equatorial plane of the central mass. 

General perturbations. The class of perturbation methods 
that consists of analytical methods in which the accel- 
erations (usually the perturbative accelerations) are 
expanded into infinite series and integrated term by 
term. 

Harmonics. A nlathematical harmonic progression of 
terms that represent the dynamical differences between 
a reference spheroid and a sphere. The zonal harnlonics 
represent latitudinal differences, the sectoral harmonics 
represent longitudillal differences, and the tesseral har- 
monics represent both latitudinal and longitudinal dif- 
ferences. 

Initially valid asymptotic expansion of x ( t;  E) as E + 0. 
The asymptotic expansion of x (t; E) as E +  0 ~vhere the 
remainder is of 0 (v,,,, (E)) only in 0 -L t < tl and ~vhexe 
t, is finite (the entire range of t is assumed to be 
0 L t < WJ ). (See Section 11-A-2). 

Instability i i z  numerical integration. The occurrence of an 
approximate solution calculated by a finite difference 
method that is unstable (unbounded) even though the 
solution of the differential equation is inherently stable 
(bounded). This phenomenon usually occurs when the 
difference equation used is of higher order than the 
differential equation, for it then has more independent 
solutions than the differential equation, and among 
them there may be increasing solutions even when the 
differential equation possesses only decreasing solu- 
tions. (See Refs. 292, 357, and 358.) 

Instantaneous or osculating parameters (or elements). The 
continually changing parameters (or elements) of the 
osculating orbit. 

Integral. In general, 

where q,, q,, . . . are functions of t. Let 

and 

so that 

In this manner, 

Q ( q l ,  q2 ,  . . . , T) d~ =+ integrate integrand and 
evaluate at T = t 

and 

I" Q (q,, q2,  . . . , T) d~ * integrate integrand and 
evaluate at 7 = 0 
(yielding a constant). 

Long-period perturbation. A perturbation that is periodic 
in the independent variable and that has a large period; 
for example, cos ~ a .  

A4ultivarinble asymptotic expansion of x ( t ;  E )  as  E +  0. 
The series 

where 

and where 11, (E) is an asynlptotic sequence as E + 0 and 
the variables < . . . are functions of E multiplied 
linearly by t. The series is uniformly valid if the remain- 
der is of O (v,,,, (6)) for all t in the range of t. (See Sec- 
tions 11-A-3 and 11-A-4.) 

Normnlizatio~z of variables. The process of dividing each 
variable of a set of equations by an appropriate scale, 
for example, x- = x/L1 and t" = t / T l  where L, is a 
length scale and T ,  is a time scale. 

Order of a. function. The mathematical measure of the 
magnitude of a function depending upon a vanishingly 
small parameter E in a perturbation solution. (See Sec- 
tion 11-A-1.) 
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Order of art app~.oximate solzction. The highest order of 
terms completely determined in the solution; for exam- 
ple, a first-order solution implies that "all" of the first- 
order terms in the solution have been determined. 

Oscitlatiizg orbit. A continually changing conic section 
that is tangent to the path of motion at  every point and 
that yields the same velocity at  the point of tangency 
as the actual velocity at that point. 

Perifoczts. A point on an orbit closest to the principal focus 
or dynamical center. Designated q or T,,,~,,. 

Perturbation. A deviation from a reference orbit (not 
necessarily a conic section) in force, acceleration, ve- 
locity, or position. 

Pertzi,rbation theory. The application of a special method 
of solution to a set of differential equations of motion 
containing a small parameter (or parameters). In astro- 
dynamics, the theory of motion of a body in a non- 
central force field; that is, a central force field plus 
perturbative forces. 

Pertttrbative diflerentiation. The process of differentiation 
in which only the variations due to the disturbing forces 
are considered and in which r' = 0 (see Va~.iation). 

Planetary tlieory. The theory of motion of a point mass 
moving around a central point mass so massive as to 
dominate the system but under the disturbing influence 
of other point masses, relativity, and so forth. In gen- 
eral, the point mass moves in a nearly circular orbit 
that lies in a slightly varying plane. 

Poisson or mixed pertttrbation.. A perturbation that is a 
product of a power of the independent variable and 
a periodic perturbation; for example, a cos a: or a cos €a. 

Potential or force fttnction. A function a whose partial 
derivative with respect to a coordinate or parameter 
yields the force component associated with that coordi- 
nate or parameter; for example, 

In general, this function is the negative of the potential 
energy per unit mass, for example, the potential func- 
tion for Keplerian motion is 

Range of validity. The range of the independent variable 
during which the actual error of an approximate solu- 
tion is less than or equal to the magnitude of the first 
neglected term of the approximate solution. 

Reference or itztermediate orbit. An approximate orbit to 
which perturbations are added to obtain the actual or 
perturbed orbit. 

Round-of or rozrnding ewor in  numerical integration. The 
difference between the computed and the exact solu- 
tions of the difference equations. The influence of 
round-off error is usually prominent when a large num- 
ber of steps have been taken, usually occurring when 
a small value of step size is used. (See Refs. 292, 357, 
and 358.) 

Rzcnge-Kuttn. nzcmerical integration process. A self-starting 
process for the integration of ordinary differential equa- 
tions using numerical analysis. For example, the general 
fourth-order integration formulas for a second-order 
differential equation in the variable r are 

1 
Ti+ ,  = T i  + 6 h (4, + 2P, + 2P, + P,) 

and 

where h is the interval of integration (step size) and 
where the P j  and kj, i = 1,2,3,4, depend upon 12, ri, 
and iqi. (See Ref. 564.) 

Satellite theory. The application of a perturbation theory 
to the set of ordinary nonlinear differential equations 
that determine the motion of a satellite. More specifi- 
cally, the theory of motion of a point mass moving 
around a central mass (not necessarily a point mass) 
so inassive as to dominate the system but under the 
disturbing influence of other point masses, asphericity 
of the central mass, atmospheric resistance, and so 
forth. In general, the point mass moves in an osculating 
elliptical orbit that lies in a moderately varying plane. 

Second-sum or Gauss-Jackson nzcnierical integration 
process. A process for the integration of ordinary dif- 
ferential equations using numerical analysis (it should 
be noted that the starting values of the sum and differ- 
ence table must be supplied). For example, the general 
integration formula for a second-order differential equa- 
tion in the variable r is 

where 12 is the interval of integration (step size), 2, j:i 
is the second sum of Fi, and is the second differ- 
ence of i:i. (See Ref. 564.) 
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Seczllur pel.turbation. A perturbation that is proportional 
to a power of the independent variable; for example, 
Ca. 

Slzort-period perturbnticun. A perturbation that is periodic 
in the independent variable and that has a short period; 
for example, cos a. 

Special perturbations. The class of perturbation methods 
that consists of methods in which the accelerations are 
integrated using numerical analysis (numerical integra- 
tion or mechanical quadratures). 

State vector. A set of position and velocity components or 
osculating parameters that completely describe the 
dynamical state of a moving object at a time t; for 
example, the set r, a, 6, i., G,$ or the set a, e, i, a, a, M .  

Tl1eol.y of general p.e~.turbations using the variation of 
parameters with averaging. In this theory, the orbit 
of a satellite is defined by six parameters of elliptic 
motion expressed as symbols and thought of as continu- 
ously varying because of the perturbations that they 
undergo. Thus, the equations of motion will be of the 
form 

where E is a small parameter, E < < 1. A typical set of 
qj  is the set a, e, i, m, a ,  M. Introducing the shorthand 
notation Qj (q, t) in place of 

(a similar notation is used for other functions that arise), 
the independent variable t is such that the Qj (q,t) 
are periodic in t, of period T, SO that 

Also, Qi (q, t) can be represented by 

Because the first derivatives dqj/dt are proportional to 
the small parameter E, it is plausible to consider the qj  
as slowly varying quantities. Hence, each qj  can be 
represented by the sum of a smoothly varying term qi 
(secular or long-period terms) and small vibrational 
terms (short-period terms). Thus, 

where the ?7jk) (4, t) have period 7 in t and the smoothly 
varying quantities qj satisfy the averaged equations 

It can be shown that 

A - 
= Qjl )  (3 

and 

(7, t) = [Qj" (q, t) - Qj') (7)] dt s 
where the qi are held constant in evaluating the inte- - 
grals and the constants of integration associated with 
the indefinite integrals are set equal to zero. Further- 
more, 

A -  
= QjZ) (7) 

and 

where the qj are held constant in evaluating the inte- 
grals, the constants of integration associated with the 
indefinite integrals are set equal to zero, and the con- 
vention of summing over repeated indices is used. Simi- 
larly, higher-order terms can be obtained. Finally, 

from which the qj are obtained and 

qj  = 3 + EQ;;) (7, t) + E~Q~:) (7, t) + . . . 

(See Refs. 150 and 828.) 

JPh TECHNICAL REPORT 32-1267 



Theory of general perftcrbations ztsing the oariatio?z of 
parameters with canonical transfo~matiorw. In this 
theory, the orbit of a satellite is initially defined by six 
parameters of elliptic motion expressed as symbols, 
thought of as continuously varying because of the per- 
turbations that they undergo, and chosen in such a way 
that they have the canonical form; that is, the param- 
eters consist of three pairs, and, for any pair, the 
derivative of one with respect to the time is equal to the 
partial derivative of a function F with respect to 
the other, while the derivative of the other with respect 
to the time is equal to the negative partial of F with re- 
spect to the one. For example, for a conservative force 
field, 

(for a nonconservative force field, these equations take 
the form 

where P j  and Qj  represent the nonconservative forces). 
The function F, called the Hamiltonian, is developed 
in an infinite series in terms of the six parameters. By a 
succession of transformations of variables, in which the 
canonical form of the equations is preserved, the 
Hamiltonian is made to take a sinipler and simpler 
form, until in the end the continuously varying param- 
eters are expressed explicitly as functions of six con- 
stants and the time. These constants nlust be determined 
by an initialization procedure. The contribution made 
by von Zeipel consisted of introducing a determining 
function to accomplish the equivalent of a Delaunay 
transformation. In this manner, a whole class of terms 
can be eliminated from the Hamiltonian simultaneously 
in a single transformation rather than just one periodic 
term as in a typical Delaunay transforn~ation. (See 
Ref. 205.) 

Truncation error in numerical i~ztegration. The difference 
between the exact solution of the difference equations 
that approximate the differential equations and the 
exact solution of the differential equations themselves. 
The influence of truncation error is usually prominent 
when a large value of step size is used. (See Refs. 292, 
357, and 358.) 

Uniformly valid asymptotic expansion of x (t; E )  as E + 0. 
The asymptotic expansion of x (t; E )  as E +  0 where the 
remainder is of 0 (v,,, (E)) uniformly in t (that is, for 
all t in the range of t). (See Section 11-A-2.) 

Vnriation or derivative. The rate of change of a coordi- 
nate or parameter with respect to an independent vari- 
able, for example, time or right ascension. The variation 
of a function f is composed of two parts, j and f .  The 
function f is the Keplerian or two-body variation that 
ren~ains at the instant of osculation if all the disturbing 
forces are suddenly removed, and the function f is the 
perturbative variation caused by the disturbing forces. 
(See Ref. 564.) 

Variation of coordinates method of general pertzwbations. 
The method in astrodynamics which consists of the 
analytical integration of the accelerations (usually per- 
turbative) in terms of the coordinates of the disturbed 
body (for example, x, y, z, 2, tj, i or T, a, 6, i., &, g). 

Variation of pnrametelqs method of gene~al  pertzwbations. 
The method in astrodynamics which consists of the 
analytical integration of perturbative variations in terms 
of parameters of the disturbed body (for example, 
a, e, i, a, a ,  LM or n, aa, a,,, i, P, L). 

Variation of parameters mtlzod of special perturbations. 
The method in astrodynamics which consists of the 
step-by-step numerical integration of the perturbative 
variations of the osculating parameters of the disturbed 
body. As an example, a complete set of integral equa- 
tions that must be integrated is (in normalized form) 

and 

I t  should be noted that the reference orbit varies gradu- 
ally in such a way that it always yields exactly the same 
position and velocity as those associated with the actual 
path; that is, p (t), e (t), and u (t) vary in such a way that 

p (t) = r (t) [l + e (t) cos u (t)] 

is always satisfied. Hence, the varying reference orbit 
is always "osculating" and the constant elements of the 
two-body problem become varying parameters defining 
the varying orbit. 

JPL TECHNICAL REPORT 32- 1267 



English Symbols are defined explicitly as they arise 
in the sections) 

the semimajor axis of an orbit (a mean 
distance) C, the damping coefficient or the drag 

coefficient 
the quantity e sin w 

Cf the friction of rolling coefficient 
a set of functions that depend upon a 
slow variable and that arise in the 
terms of an expansion (these functions 
are defined explicitly in Section V-C-3) 

C ,  the spring constant 

c a parameter for the damped linear har- 
monic oscillator (see Section IV-E-1) 

the quantity e cos w 
CO, CI, ' ' ' a set of constants that arise in the 

terms of an expansion (these constants 
are defined explicity in Section V-C-3) 

a set of functions that depend upon a 
slow variable and that arise in the 
terms of an expansion (these functions 
are defined explicitly in Section V-C-3) a set of functions that arise in an 

expansion (these functions are defined 
explicitly as they arise in the sections) the equatorial radius of a planet 

(or oblate body) 
T a slowly varying parameter for the 

damped linear harmonic oscillator 
(see Section IV-G-1) 

a set of constants that arise in the 
terms of an expansion (these constants 
are defined explicitly as they arise in 
the sections) a set of slowly varying functions 

that arise in an expansion (these 
functions are defined explicitly in 
Section IV-G-3) 

a set of functions that depend upon 
a slow variable and that arise in the 
terms of an expansion (these functions 
are defined explicitly as they arise in 
the sections) 

E the eccentric anomaly 

A A 

E (+\nz.) the Legendre normal elliptic integral 
of the second kind; that is, an angle measured along a great circle 

normal to the orbital plane or a param- 
eter for the damped linear harmonic 
oscillator (see Section IV-E-1) 

A 
A A A A 

E ($\m) = 1' (1 - & sin' 0)" d0 

a set of functions that arise in an 
expansion (these functions are defined 
explicitly as they arise in the sections) 

E ,  the total energy per unit mass of the 
satellite 

E the multivariable eccentric anomaly or 
the reference (mean) instantaneous 
eccentric anomaly 

a slowly varying parameter for the 
damped linear harmonic oscillator 
(see Section IV-G-1) 

e the eccentricity of an orbit (should not 
be confused with the exponential; 
for example, ee) 

a set of slowly varying functions 
that arise in an expansion (these 
functions are defined explicitly in 
Section IV-G-3) eo, el, . . . a set of constants that arise in the terms 

of an expansion (these constants are 
defined explicitly in Section V-C-3) a set of constants that arise in the 

terms of an expansion (these constants 
are defined explicitly as they arise 
in the sections) 

co, Cl, . . 
- 
e the initial eccentricity e,  or the refer- 

ence (mean) instantaneous eccentricity 
of an orbit 

a set of functions that depend upon 
a slow variable and that arise in the 
terms of an expansion (these functions 

ZT the instantaneous multivariable 
eccentricity of an orbit 
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1', J', K' 

a set of functions that depend upon a 
slow variable and that arise in the 
terms of an expansion (these functions 
are defined explicitly in Section V-C-3) 

the force.or the negative of the 
Hamiltonian function (F = 4, - kinetic 
energy per unit mass) 

the Legendre normal elliptic integral 
of the first kind; that is, 

an arbitrary function 

the universal constant of gravitation 
(equivalent to k2) 

the angular momentum (equivalent 
to p%) or the interval of integration 
(step size) 

an inertial basis with an arbitrary fixed 
origin 0' having a plane parallel to 
the equatorial plane of-the central 
mass as the principal plane and the 
direction of the vernal equinox T PS 

the principal direction (I' is the unit 
vector in the direction of the vernal 
equinox, J' forms a right-handed 
orthonormal set with I' and K', and 
K' is the unit vector in the direction 
of the north celestial pole) 

a translation of the 1', J', K' basis from 
the inertial center Or to the center of 
the moving central mass (the I, J, K 
basis differs from the I', J', K' basis 
only in origin) 

the inclination of an orbital plane to 
the principal plane 

a rotating basis with the center of the 
moving central mass as the origin, the 
plane i-j as the principal plane, and 
the unit vector i in the direction of 
the radius vector of the satellite as the 
principal direction ( j  is the unit vector 
~erpendicular to i and lying in the 
principal plane of the I, J,  R basis in 
the general direction of the motion of 
the satellite and k forms a right-handed 
orthonormal set with i and j) 

J? 

J' 
J 
i 

i 
'K' 

K 

k 

k 

L 

L, 

P 

M 

m 

mi, mi 

mo, m,, . . . 

mp 

A 

m 

n 

A 
n 

P ( 0 )  

p, Q, w 

the coefficient of the second zonal 
harmonic in the gravitational potential 
of a spheroid of revolution 

see If, J', K' 

see I, J, K 

a summation index or the revolution 
number 

see i, j, k 

see 1', J', K' 

see I, J, K 

a gravitational constant (k2 = G) 

see i, j, k 

the mean longitude (L = M + o + n )  
the length scale 

the true longitude (P = u + o + CI) 

the mean anomaly 
( M = M o + n ( t - t o ) = E - e s i n ~ )  

the mass of the object whose motion 
is under study 

the masses of the ith and ith bodies, 
respectively 

the masses of the sun, earth, . . 

the mass of the planet or central body 

the parameter in the Legendre normal 
elliptic integrals of the first, second, 
and third kinds 

the mean angular motion 

the characteristic in the Legendre 
normal elliptic integral of the 
third kind 

a polynomial in o (see Appendix B) 

a basis with the center of the moving 
central mass as the origin, the orbital 
plane as the principal plane, and the 
direction of the perifocus as the 
principal direction (P is the unit vector 
in the direction of the perifocus, 
Q forms a right-handed orthonormal 
set with P and W, and W is the unit 
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vector perpendicular to the 
orbital plane) 

p the semiiatus rectum or parameter of 
an orbit (p= h2) 

pj  the ith instantaneous parameter of the 
osculating orbit (usually 
j = l , 2 ,  . . . , 6 )  

pi the perturbative acceleration acting 
upon the ith body 

Qj the ith generalized function 

q the perifocal distance of an orbit 
(q = n(1 - e )  and q = r,,,il,) 

qi the jth generalized coordinate 

R the perturbative function 

Ri the position vector of the ith body 
relative to the inertial basis 
It, J', K' (Ri = 1 Ri 1) 

Rii the position vector of the jth body 
relative to the ith body expressed with 
respect to the inertial basis 
I f ,  J', K' (Ri = Rj - Ri 
and Rij = lRijI) 

r~ the apofocal distance of an orbit 
(T,~ = a (1 + e )  and T A  = r,,,) 

r the radius vector of the object under 
study with respect to the dynamical 
center (center of the central mass) 

dr,/dt the velocity of the atmosphere of a 
planet 

S a characteristic area of a satellite 

S,T, W a basis with the center of the object 
under study as the origin, the orbital 
plane as the principal plane, and the 
direction of the tangent in the direc- 
tion of motion as the principal direc- 
tion (S is the unit vector in the line of 
the tangent and positive in the direc- 
tion of motion, T is the unit vector 
lying in the orbital plane perpendicu- 
lar to S and positive in the direction 
of the central mass, and W is perpen- 
dicular to the orbital plane and forms 
a right-handed orthonormal set with 
S and T). 

s the magnitude of the velocity vector 
of the object under study (note that 
ds/clt = .i since dr/dt = i and r' = 0) 

T the time of perifocal passage 

To, TI, . . . a set of constants which arise in the 
terms of an expansion (these constants 
are defined explicitly as they arise in 
the sections) 

TI the fast time scale 

T 2  the slow time scale 

F(o), Tu), . . . a set of functions that depend upon 
a slow variable and that arise in the 
terms of an expansion (these functions 
are defined explicitly in Section V-C-3) 

T see S, T, W 

t the time 

a set of functions that arise in an 
expansion (these functions are defined 
explicitly as they arise in the sections) 

the fast time variable 
(r= t (1 f ~ ' 7 2  f 0 (e3))) 

the slow time variable (T= ~ t )  

a basis with the center of the moving 
central mass as the origin, the orbital 
plane as the principal plane, and the 
direction to the object under study as 
the principal direction (U is the unit 
vector in the direction of the object 
under study, V forms a right-handed 
orthonormal set with U and W, and W 
is the unit vector perpendicular to the 
orbital plane) 

the argument of latitude (zc = v + w )  

see U, V, W 

the true anomaly 

the multivariable true anomaly or the 
reference (mean) instantaneous true 
anomaly 

i, the angular velocity 

W see P, Q, W; S, T, W; and U, V, W 

JPL TECNhllCAL REPORT 32- 1267 



Xi, Yi, Zj the coordinates of the it11 body relative 
to the inertial basis It, J', K' 

x, y, z the coordinates of the object under 
study relative to the basis I, J, K 

x(o)  . . . 
7 7 a set of functions that aiise in an 

expansion (these functions are defined 
explicitly as  they arise in the sections) 

Greek Symbols 

a the right ascension of the object under 
study 

a ,  a ,  a set of constants that arise in the fast 
angle variable F (these constants are 
defined explicitly in Section V-C-3). 

Z the fast angle variable 
(F = a (1 + €'a2 f 0 (c3))) 

Z the slow angle variable (i;i = €or) 

I',, I?,, r3 a set of transformation constants 
explicitly defined in Appendix B 

a transfornlation constant explicitly 
defined in Appendix B 

A a small increment 

6 the declination of the object under 
study or a difference in numerical 
analysis (6, a2, . . . ) 

E the perturbative parameter 
(necessarily small) 

% the integration variable associated 
with 7 = 12'/r 

7 the quantity hZ/r 

+o), 7(1), . . . a set of functions that arise in an 
expansion (these functions are defined 
explicitly in Section V-C-3) 

o a function of B (see Appendix A) 

8 an angle measured in the initial orbital 
plane from an inertial reference direc- 
tion to the radius vector of the object 
under study or an arbitrary variable 
(see Appendix A) 

A  
Q the integration variable associated 

A 
with + in the Legendre normal 
elliptic integrals 

~i a set of increasing integers; that is, 
K * < K y <  " '  

A a transformation variable for the 
Legendre normal elliptic integrals 

A1,A2,A8 a set of transformation constants for 
the Legendre normal elliptic integrals 
(these constants are defined explicitly 
in Appendix B) 

p the mass function (in the two-body 
problem, = k2 (nz, + m,)) 

PO, PCB, ' ' ' the mass functions of the sun 
= k2mo), earth (Era = k2ma), . . . 

acting as disturbing bodies 

pp the mass function of the central body 
or planet (p, = k2 (m,, + m)) 

v a gauge function or a transformation 
variable for the Legendre normal 
elliptic integrals 

vj a sequence of functions (these func- 
tions are defined explicitly as they arise 
in the sections) or a set of transforma- 
tion constants for the Legendre nor- 
mal elliptic integrals (these constants 
are defined explicitly in Appendix B) 

the quantity &/do: 

a set of functions that arise in an 
expansion (these functions are defined 
explicitly in Section V-C-3) 

A A  A  

n (n; +\m) the Legendre normal elliptic integral 
of the third kind; that is, 

A A  A 

(n; +\m) = 

x the ratio of the circumference of a 
circle to its diameter (T 3.1416) 

the longitude of perifocus ( B =  o + 0 ; 
the symbol i~ is script pi and should 
not be confused with ;3 or n, both of 
which have different meanings) 

p the atmospheric density of a planet or 
the magnitude of the vector p 
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the difference in position between the 
actual orbit and a reference orbit in 
Encke's method of special perturbs- 
tions ( p  = Ipl)  

Special Symbols 

A boldface letter denotes a vector 

a bar above a letter denotes a reference 
(mean) quantity or fast variable a sum in nunlerical analysis 

(Z, z2, . . . ) a wavy line above a letter denotes a 
slow variable or a slowly varying 
function 

a transformation variable for the 
Legendre normal elliptic integrals 
(u" [ + v )  brackets around a letter denote "the 

dimension of" 

a starred letter denotes a normalized 
variable 

the Keplerian or two-body variations 
that remain at the instant of osculation 
if all the disturbing forces are suddenly 
removed 

a set of transformation constants for 
the Legendre normal elliptic integrals 
(these constants are defined explicitly 
in Appendix B) 

the integration variable associated 
with the time 

a set of constants that arise in the fast 
time variable (these constants are de- 
fined explicitly as they arise in the sec- 
tions) or a set of constants that arise in 
the terms of an expansion (these con- 
stants are defined explicitly as they 
arise in the sections) 

the perturbative variations caused by 
the disturbing forces 

, ., , 

d d" - -  
dB ' dB" 

the total derivatives with respect to the 
independent variable @ where 

d 
and- = . 

dB 
the potential function 

a a  a the quantities a8, %, =F, . . , the amplitude in the Legendre normal 
elliptic integrals of the first, second, 
and third kinds 

respectively, where 0 = t, a, 

the superscripts within parenthesis 
indicate the order of the function, 
term, or perturbation 

order of 

the longitude of the ascending node of 
an orbit 

a forcing function (should not be con- 
fused with Q ; see Appendix A) 

an arbitrary set of constants or func- 
tions of a parameter treated as a con- 
stant (see Appendix A) 

the argument of perifocus of an orbit 
vernal equinox 

a set of constants that arise in the 
terms of an expansion (these constants 
are defined explicitly as they arise 
in the sections) 

other equations can be obtained by 
replacing q1 by q2, q3, . . . 

implies integrate and evaluate at T = t the reference (mean) instantaneous 
argument of perifocus of an orbit 

implies integrate and evaluate at 7 = 0 
(yielding a constant) the instantaneous multivariable 

argument of perifocus of an orbit 
absolute value or magnitude 

identically equal to 
a set of functions that depend upon a 
slow variable and that arise in the 
terms of an expansion (these functions 
are defined explicitly in Section V-@-3) equal to by definition 
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equal to except for an additive 
constant 

f not equal to 

approximately equal to 

E proportional to 

< < much smaller than 

>, < greater than, less than 

h, greater than or equal to, less than or 
equal to 

=+ implies 

Subscripts 

A apofocus or approximation 

a atmosphere 

D drag 

e Encke reference orbit 

f friction 

i, j integers; for example, the ith or ith 
mass 

Pp long-period 

0 value associated with the epoch, to 

p perifocus 

p planet or central mass 

s secular or spring 

s p  short-period 

0 sun 

@ earth 

C moon 

d Mars 
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Appendix A 

PartieuEar Solutions of Differential Equations 

During the analysis in Sections IV and V, linear ordi- 
nary and partial differential equations are solved by 
determining the solutions to the corresponding homo- 
geneous differential equations and adding particular solu- 
tions to them. These particular solutions are given in this 
appendix. It should be noted that if a partial differential 
equation consists only of derivatives with respect to one 
independent variable, its solution may be obtained by 
treating the partial differential equation as if it were an 
ordinary differential equation and then replacing the con- 

stants of integration which would normally arise by func- 
tions of the other independent variables (these variables 
may be thought of as parameters treated as constants dur- 
ing the process of solution). 

Let Dl, a,, and i2, be constants or functions of param- 
eters treated as constants and let D 0 (0) represent either 
an ordinary or partial derivative of 0 (0) with respect to 8.  
The solutions are given in Table A-1. 

Table A-1. Particular solutions of differential equations 

(02 + 1) 0 (0) = a (0) 

sll cos sl, (8 3- Q,) 
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Appendix B 

Transformation of Elliptic Integrals Into Legendre Normal Form 

Consider the transformation of the integrals in Eqs. (288) and (290), Section V-B-4, 

and 

into Legendre normal elliptic integrals. Let 

[ = a Z - v  

where v is a constant to be determined. Introducing Eq. (B-1) into Eq. (288) yields 

Consider the polynomial appearing in the denominator of the integrand in Eq. (B-2), designated P (a). The polynomial 
can be rewritten as 

Choose v so that 

From the theory of cubic equations (see Ref. 1375, p. 17), let 

so that Eq. (B-4) becomes 

n3 -t- C,A + C, = 0 where 
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and 1 

Now, if 

there will be one real root and two conjugate imaginary 
roots; if 

there will be three real roots, of which at least two are 
equal; and if 

there will be three real and unequal roots. 

The question of which root nj to choose in determining 
11 can be answered by investigating the maximum and 
minimum values of the radius distance r. From Eq. (276), 
Section V-B-2, 

so that, since dr/dt  = 0 at  an extremum, 

Introducing Eq. (B-8) into (287) from Section V-B-4 yields 

Comparing Eqs. (B-4) and (B-9) shows that the roots of 
Eq. (B-9) are the same as the roots of Eq. (B-4); that is, 

- qj  = v j  where j = l , 2 , 3  (B-10) 

Thus, introducing Eq. (B-10) into Eq. (244) from Sec- 
tion V-B-2 and using (B-5) yields 

1z2 - - 12" 
"=q 1- where i = 1,2 ,3  

2E Aj 

(B-11) 

Equations (B-11) clearly show that there are three theo- 
retical extremums. However, physically, there is at least 
one extremum (a nlininlum radius distance, T,,,~,) or there 
are at most ts7o extremums (a maximum and a minimum 
radius distance, T ,,,,, and T,,,~,,). Three physical cases may 
arise. First, the initial conditions of the satellite may be 
such that an escape trajectory exists so that only one 
extremunl arises, T,,, ,,. Second, the initial conditions of the 
satellite may be such that a circular orbit exists so that 
two extremums arise but both are the same, r , i n  = r,,,,. 
Third, the initial conditions of the satellite may be such 
that a periodic trajectory exists so that two different ex- 
t remum~ arise, I;,,~,, and T ,,,,. 

In all three cases, the radius distance must be real and 
satisfy 

which excludes trajectories that intersect the surface of 
the oblate body. As a result of inequalities (B-12) and 
Eqs. (B-ll), the root A must be real ( h  and E are real) 
and satisfy 

Inequalities (B-13) will help to determine the physically 
meaningful extremums in each of the three cases discussed 
above. 
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One final condition required to determine the physi- in order to have a circular orbit for all time. Note that if 
cally meaningful extremun~s concerns the existence of a (dr/dt)  ( 0 )  = 0,  then 
circular orbit. Suppose that the initial conditions are such 
that a circular orbit exists at t = 0;  that is, 

dr 
- (0 )  = ;, = 0 
d t  

(B-14) for i = 3 , 4 ,  . . . 

Consider the value of r at a small time later by expanding 
r in a Taylor series about the point t = 0; that is, 

since 

from Eq. (265), Section V-A.  Furthennore, note that if 
vo = T instead of v ,  = 0 as in Eq. (B-17), e, = -~(lz~/r;),  
which is impossible since e, h 0. Thus, a necessary and 
sufficient condition for the existence of a circular orbit is 
that at  t = 0, 

or, using Eqs. (B-14), 

For a circular orbit, AT = 0 for all t so that Eq. (B-15) 
requires 

Then, using Eq. (272) from Section V-B-2, one obtains 

and so forth. Thus, with the use of Eqs. (265) and (272) 
from Sections V - A  and V-B-2, respectively, evaluated at 
t = 0 and the first of Eqs. (267), 

and 

where 0 L t < CG . Now, because of their simplicity, 
Eqs. (B-21) are used in the case of a circular orbit rather 
than Eqs. (288) and (290). Consequently, the possibility 
of a circular orbit is excluded in determining the proper 
A; that is, The equation of an osculating conic is p = r , ( l  + e cos v )  

where p = h2, SO that at t = 0 

h2 = T~ ( 1  + e,) (B- 17) 
The necessary information for determining the proper 

root A, and thus v, is now available. Consider the three pos- 
sibilities for the quantity [(C;/4) + (C;/27)] in Eqs. (B-7): 

where v ,  = O since 1:" = O ( v ,  = T is impossible as is sub- 
sequently shown). It follows from Eqs. (B-16) and (B-17) 
that (1 )  The possibility that [(C;/4)  + (C;/27)] > 0. For 

this possibility, the condition that A be real elim- 
inates the two conjugate imaginary roots so that 

or, using Eqs. (271) from Section V-A,  h.' 
Anlin = C ,  + C ,  and rmiri = 

1 --  2E A m i n  

(B-23) 
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are the only physically meaningful root and ex- 
tremum, respectively. This possibility corresponds 
to an escape trajectory (case 1). 

(2) The possibility that [(CS/4) + (C:/27)] = 0. For 
this possibility, Eqs. (B-7) become 

A, = ( -4C,)% and c2 45 
A. = A, = (.;-) 

(B-24) 

where 

Introducing the last of Eqs. (B-6) into Eqs. (B-24) 
yields 

inequality (B-24) is not satisfied, A, = A, are not 
possible roots, so that 

and 

are the only physically meaningful root and ex- 
tremum, respectively. These conditions correspond 
to an escape trajectory (case 1). However, if in- 
equality (B-27) is satisfied, A, = A, are possible 
roots, so that 

Amin = smaller of A, and A,(= A,) 

A,,, = larger of A, and A,(= A,) 

and } (B-25) 

Imposing the condition (B-13) yields 

and 

Suppose inequality (B-26) is not satisfied; then A, 
is eliminated as a possible root. This leaves A, = A, 
as the only possible roots, which implies Anlin = 
A,,, or, using Eqs. (B-11), rnIi,, = r ,,,. But this con- 
tradicts inequality (B-22) so that inequality (B-26) 
must be satisfied and A, is a possible root. Now, if 

are the physically meaningful roots and extremums, 
respectively. These conditions correspond to a peri- 
odic trajectory (case 3). 

(3) The possibility that [(Cz/4) + (C;/27)] < 0. For 
this possibility, a trigonometric solution for the Aj  
is desirable. From Ref. 1375, p. 17, let 

for j = l , 2 ,3  

where 

and 

c 2 
cos y = - -c; % 

(T) 
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Imposing the condition (B-13) yields 

for j = l ,2 ,3  

or, using the second of Eqs. (B-6), 

for j = l ,2 ,3  (B-33) 

Consider the conditions for which inequalities 
(B-33) are valid. Both the lower and upper limits of 
cos rj are near Yz since E is small. Furthermore, 
since E > 0, it follows that the upper limit of cos rj 

satisfies 

Now, the lower limit of cosr j  may be either less 
than or greater than $5 depending upon hz/ap; 
that is, 

so that 

2 ~ h "  
I--  a .  1 

h2 1 
- > - [1 - (1 - 4qh] and 

h2 1 
if both - < - [ l  + (1 - 4 ~ ) ~ ]  a, 26  a, 2~ 

(B-35) 
2 (1  - 4r)u ' 5  

whereas 

Figure B-1 shows both sets of conditions. 

The fact that the rj differ from each other by 
exactly 120 deg (see Eqs. B-31) forces at least one 
of the r j  to be invalid in either set of conditions, 
and, since the rj define the lij through Eq. (B-30), 
at least one of the is invalid. Furthermore, it 
follows from the geometry shown in Fig. B-1 that 
for conditions (B-35) there are two valid roots, Amin 
and A,,,, and that for conditions (B-36) there is just 
one valid root, A,,,,. Hence, the condition (B-13), 
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eliminates at least one of the roots Aj. For condi- 
tions (B-35), the two valid roots, Amin and A,,,, 
yield 

h2 h2 
Tmin = 1 

and r,,,, = 
- - 1 
Z E  Anti 1, 

--  2E Amax 

(B-37) 

as the only physically meaningful extremums. 
These conditions correspond to a periodic trajec- 
tory (case 3). For conditions (B-36), the valid root, 
A,,,, yields 



VALID 
REGIONS7 , VALID 

REGIONS 7 

Fig. B-1. Determination of the transformation constants for the elliptic integrals 

as the only physically meaningful extremum. These or 
conditions correspond to an escape trajectory 
(case 1). P (a) = - 2 €a2 [(a: - u2) (0: - u2)] 

3 
(B-40) 

For a periodic trajectory, both T , ~ ,  and c,,, exist and where 
are constants so that the motion of the satellite is re- 
stricted to an area of the equatorial plane that is bounded 
by two concentric circles as shown in Fig. B-2. U: = ?{(I 46 + ~ E V )  

At this point, it is clear that the quantity v may be one 3 (1 + v + s V z ) l n )  

of two possibilities, using Eq. (B-5), 
and (B-41) 

I 

(B-39) 1 6 ~  
- [(1 + 2EV)Z - - 

3 (1  + v + Evz)]M) 
I 

The form of Eq. (B-40) is dictated by the fact that u2 < a:, 
since U: = 0 (l/e) and u2 = 0 (1) as may be seen from 

where both possibilities satisfy Eq. (B-4). The proper Eqs. (B-1), and (B-5) and inequality (B-13). Introducing 
choice between these two possibilities is made sub- Eq. (B-40) into Eq. (B-2) yields the canonical form for the 
sequently. elliptic integral of the first kind: 
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Fig. B-2. Region of motion in the equatorial plane 

Next, consider the transformation of the integral (290) 
into elliptic integrals in canonical form. From a theorem 
due to Legendre (see Reference 1374, p. 297), the inte- 
gral (290) can be expressed as a linear combination (with 

constant coefficients) of an integral of a rational function 
of ' and of integrals of the following types: 

I3 = 

and 

I4 = 

where I,, I,, and I, are the elliptic integrals of the first, 
second, and third kinds, respectively. Consequently, using 
a recurrence relation from Ref. 1374, p. 299, 

Rewriting Eq. (B-44) and using I, = ( 6 / ~ )  I, from the last of Eqs. (B-43), one obtains 

Introducing Eqs. (B-43) into Eq. (B-45) and the results into Eq. (290) (at the beginning of this appendix) yields 

1 2  ' l  
- 'h - - ( E ~ - ~ + ~ + E )  E~'  

Following the procedure used in obtaining the canonical form of a, (Eq. B-42), let ' = U' - v so that 

2 1 
+-1,--I3 ET E T  (B-45) 

' l o  
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where, using Eqs. (283) and (285) evaluated at a = 0 as well as (ds/da) (0) = - hl:, from Eqs. (280), all from Sec- 
tion V-B-2, 

It is now possible to express a and t in terms of Legendre normal elliptic integrals of the first, second, and third kinds. 
Let (see Ref. 1375) 

u A (7 + ~ 1 %  A - - - sin 0 , = sin 4 , (go + ")% 
= sin 4, 

u2 '72 u2 

V 

(B-48) 

= ( z ) ' ,  and n = -  A u: 

where 

2 1  2 
'J2 - 'J1 

as may be seen from Eqs. (B-41). Then 

and 

I 
- - -- 

(aZ - v) [(u? - u2) (u; - u2)]% 
(To + 1') 5'. ulv. , ' ( .? .  u2 (1 - t u2){[l - (I)] [l - t)(t)]} 

Introducing Eqs. (B-49), (B-50), and (B-51) into (B-42) and (B-47), respectively yields 
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and 

or, with the use of the mathematical notation 

A 

A A A A A  
E ( m )  = ( 1  - .,,sin2 0 ) x  do 

and 

the quantities (Y and t become I 

and 

The question of the proper signs in Eqs. (B-53) can now be considered. From Eqs. (276) and (287), Section V-B-2, 

or, with the use of Eq. (274) from Section V-B-2, 
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Equation (B-54) shows that the upper signs in Eqs. (B-53) and (B-54) correspond to a decreasing r, since then dr/dt<O, 
and the lower signs in Eqs. (B-53) and (B-54) correspond to an increasing r, since then dr/dt > 0. Hence, the proper 
signs in Eqs. (B-53) and (B-54) are initially determined by the initial condition i, as follows: 

if ;, > 0, r is increasing and the lower signs should be used; 

if j., < 0, r is decreasing and the upper signs should be used; 

if i., = 0 and d'r/dt2 (0) > 0, r is increasing and the lower signs should be used; (B-55) 

and 

if $, = 0 and d2r/dt2 (0) < 0 , ~  is decreasing and the upper signs should be used. 1 
The latter two statements follow from the Taylor series 
expansion of r about the point t = 0; that is, 

for i*, = 0 

The case where j., = d2r/dt2 (0) = 0 is excluded from 
Eqs. (B-55) since then d j ~ / d t j  (0) = 0 for j = 3,4, . . . 
from Eqs. (B-19) and ~r = 0; that is, the satellite is in 
a circular orbit so that Eqs. (B-21) are used and not 
Eqs. (B-53) and (B-54). 

At this point of the analysis, the proper choice for v 

from Eqs. (B-39) can be determined. I t  follows from 
Eq. (B-10) that, a t  an extremum, 

In addition, from Eq. (B-1), 

where [ is the integration variable associated with 7;  that 
is, [ = 7 in Eq. (B-57). Thus, Eqs. (B-56) and (B-57) show 
that the proper choice for 11 depends upon whether r is 
increasing or decreasing and whether r,,,,, exists. 

If r is increasing and r,,,, exists, then r < r,,, and 

from Eqs, (B-39) so that, with the use of Eq. (274) from 
Section V-B-2 and Eqs. (B-11), 

Equation (B-58) shows that 

7 f v = 0  at t' = rmax 

and 

17 + v S O  since 

for r L r n l a ,  and since h2 > 0; that is, 7 + v satisfies the 
conditions (B-56) and (B-57). 

If r is decreasing, then r > rmin and 

from Eqs. (B-39) so that, with the use of Eq. (274) from 
Section V-B-2 and Eqs. (B-11), 

Equation (B-59) shows that 

" , + v + O  as r 3 rn~in 

and 

q + v = O  at  r = TIM i n 
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that is, 7 + v satisfies the condition (B-56). However, respectively, where 

,q + v L O  since 

for r h  rlniII and since 1z2 > 0; that is, 7 + v does not sat- 3 
isfy the condition (B-57). In order to eliminate this con- - -E v3 + - v 2  + - - 

3 2 (  2~ E 
tradiction, the transformation (B-1) must be replaced by 

p = - (u2 + v) 
which shows that v is still determined from Eq. (B-4) and 

(B-60) that U: and u': are still determined from Eq. (B-41) (the 
discussion following Eq. (B-4) is also applicable here). 

for ' decreasing' Introducing Eq. (B-60) into Eq. (288) (at N ~ ~ ,  altllougll Eq. (B-56) is still applicable, Eq, (B-57) is 
the beginning of this appendix) and Eq. (B-46) yields replaced by 

and 

in accordance with (B-60). If one rewrites Eqs. (B-59), 

which shows that 

-(v + v)+O as 1' + rmin 

-(, + V )  1 0  since 
- do (d - t)20 

(u" v) [ -  (u" u:) (u2 + a;)]% 
for r 2 T,,,~,, and since h2 > 0; that is, - (, + V )  satisfies 

(B-61) the conditions (B-56) and (B-62). 

If r is increasing and r,,, does not exist (escape trajectory), then 

and 

- (7 + V )  $5 

do 
(u" v) [ -  (u2 + u:) (u2 + a;)]% 

- (Vo + 1 8 )  "r 
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It  is now apparent that Eqs. (B-53) are applicable only when r is increasing and r,,,,, exists. Furthermore, the proper 
signs in Eqs. (B-53) are clearly the lower (minus) signs. If r is decreasing or if r is increasing with r,,,,, nonexistent, 
Eqs. (B-61) or Eqs. (B-63), respectively, must be used. 

Consider the transformation of the integrals in Eqs. (B-61) and (B-63) into Legendre normal elliptic integrals. Since 
the elliptic integrals in these equations are real, 

for all o except when u2 = -u: or u2 = -US, two isolated points in the range of U. There are only two ways that this 
inequality can be satisfied, namely, (a2 + u:) < 0 or (u2 + a:) < 0, which can be rewritten as -a: > u2 or -a$ > u2, 

respectively. Furthermore, since u2 0 for real elliptic integrals, either -u: > 0 or - U: > 0; that is, either U: < 0 or 
a; < 0. I t  is clear from Eqs. (B-41) that U: A a: so that U ;  < 0 and a: > 0; otherwise both U: and U: would be less than 
zero. Let (see Ref. 1375) 

and 

where a; = -a: and where a: and a: are given in Eqs. (B-41). Thus, from Eq. (B-64), 

A 
m. (u: + u ~ ) ~  A A A 

du = sin 0 cos 0 dB 
u:u 

from Eq. (B-64) and trigonometry, 

A u (u; + u;)% $4 
sin 0 = and 

0 3  (u: + u2)% 
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from Eqs. (B-64) and (B-67), 

and from Eq. (B-71), 

Introducing Eqs. (B-64-88) into the integrals in Eqs. (B-61) and (B-63) yields 

s - ( q + v ) %  - ( q + v ) l i  
du =s d o  

[ -  (uZ + u:) (a2 + u$)llh [(US + u2) (u; - 02)]% 

-(qo+v)'h -(?o+V) ',i 

4 A 

A  A A  $ A  A A  
sin 6' cos 0 do sin 0 cos 0 dB 

u:u 
A  
m (u: + u ~ ) ~  

A  A A  
sin 0 cos 0 do 

a: 
u3 sin $1 (: cos $) [in + u2)%] [(o: + ~ 3 %  

using Eqs. (B-70), 

? A  

= / $0 ($) llu2)1h] d$ = %J' ( 1  - m A sin2 A 01% 
using Eqs. (B-71) 
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using (B-72), 

Finally, introducing Eqs. (B-73), (B-74), and (B-75) into Eqs. (B-61) and (B-63), respectively, yields, for decreasing r ,  

and 
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and, for increasing r and r,,, nonexistent, 

6 -Lh A A  

= [ f (a: + a;) ] [ F  (+\m) - F ($o\h)l 

and 

2€ ) - [ )] 
% A A  A  A A  A  

3 (a: + 0: 
[n (m; +\m) - n (m; +o\m)I 

2e 

13. +-  $[ A E (a: 6 + a:) ]]" A  A 
[ F  (+\m) - F ($o\%l 

6 w A A 
[n (n; +\m) - n (n; +~\m) l  

A  A  A  A A A  A  
where F (+\m), E (+\m), and n (n; +\m) are given in Eqs. (B-52) and where, from Ref. 1375, p. 600, 

A  A  
A A  A  1 A  A  m sin 2cj 

n (m; +\m) = 7 E (+\m) - 7 A  A 
1 - r n  1 - m 2 (1 - msin2 4)s  

In conclusion, the pertinent relationships of this appendix are summarized in Tables B-1 and B-2. 
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Table 8-2. Constants and relationships arising in the transformation of elliptic integrals into Legendre normal form 

1 h4 3  
E  T - - 2,' [+ (6 + E) r; - (L + - cs -)I and e = -J, (%)'where h = rld, 

P,, 3  rj, 2 

3  
E 

h' 
> O , t h e n ~ , ~ , = C , + C , a n d r , ~ , ~ =  

1 - - 2e Am i t i  

1  andif if^>[^(^--- 4~ 26' E 3 ~ ~ ) ] "  > (k - $) is not satisfied, 

rh2 

1 - - ZE Arniii 

then A,,,, = smaller of A, and A, (= A,), A,,, = larger of A, and A, (= A,) 

&' h" 
rmin = 1 

, and r,,, = 
- - 1 
26 A m i n  

- - 
2€ Amax 

3 1 %  
where A, = [% ( 3 ~ ~  + - - -)I and h2 = A, = 

E 2€" 

( ;)$ cos ri for = 1,2,3 < 0, then A~ = 2 - - 

Y 1 1 where r, = - , r, = - (y + 2x), r - - (r + 4x), and cos 7 = - 
c2 

3  3  3 - 3  

If there are two of the ni which satisfy the necessary condition - > Ai > - - - for j = 1,2,3 
2€ ( $) 

then A,,, = smaller of the two valid A,, A,,, = larger of the two valid n j  

h' h" 
rmin = 1 

, and T,,, = 
- - 1 

A m  i n  
- - 

2€ 26 Amax 

If there is only one which satisfies the previous necessary condition, 

h2 
then A,~, = the valid Ai and rmi, = 

1 - - 
2€ A m i n  

A 

Q 
A 

d2 
Q 

A  A A A A  
F (+\m) = 4 A '  (1 - m sin2 0)s do, 

(1 - m sin2 0)s 

A 

Q 
A A  A  

'II (n; +\m) = 
di' 

A  A  A A  
,, (1 - n sin2 0) (1 - m sin2 0)s 

and 

I 
A  A  

A A  A  A  A m sin" 
II (m; +\m) = - A  E  (+\m) - 7 

A A  
(1 - m) 1 - m  2(1-msin2+)w 



Appendix C 

!ntegra%s in the Pime Expressions 

The following special integrals appear in .the develop- and trigonometric formulas, the following identities, 
ment of the time expressions in Section V-C-3 and V-D-3: which will be useful in evaluating the above integrals, 

can be derived: 

sins v'd5 / sin U cos GdU / (1 + Ecos B)i 
' (1 + z cos Z)" 

E sin Ed77 
and (1 + B cos 5)3 

sin G - 1 - 
- 

l+ecosi j  ( 1 - q s s i n E  (C-3) 

cos 5 - 1 
-- (COS i? - E) 

1 + E c o s 5  1 - Z 2  ((3-4) 

1 - 1 
-- (I - E cos E) 

w h e r e ~ = 2 , 3 , 4 ;  k = 3 , 4 ; ~ = 1 , 3 a n d s = 1 , 2 f o r k = 3 ;  1 f B c o s b  1 - 2  (C-5) 

a = 1 , 3 , 4 a n d s = 1 , 2 , 3 f o r k = 4 .  
and, by differentiation, 

The parameter B is either the multivariable (Sec- 
tion V-C-3) or the mean (Section V-D-3) instantaneous 
true anomaly, whereas the parameter E is either e, (Sec- 

dE= 
(1 - E2)a - d E  

1 - Ecos E 
- 

tion V-C-3) or the mean instantaneous eccentricity 
(Section V-D-3). It should be noted that 0 L B < 1 so In addition, from Ref. 1372, p. 148, and Eq. (C-2), 

that the integrands in (C-1) are finite for all possible 
values of Z;  that is, the integrals exist. Furthermore, 8 is a - - 2 -1 tan-l [(=-)I" tan $ E ]  l + e  
constant in both sections. e ) 

- I - - 
In order to evaluate the integrals above, the classical (1 - q l h  

astronomical transformation 
where the constant of integration is omitted so that the 

1 + 2 %  1 -  symbol =means that the functions on the left and right 
(C-2) of this symbol differ by a constant. This procedure is 

followed throughout the appendix. Consider the inteaal 
in (C-I), 

is desirable where the parameter is either the multi- 
variable (Section V-C-3) or the mean (Section V-D-3) in- dE 
stantaneous eccentric anomaly. With the use of Eq. (C-2) / (1 + Zcos q2 

- 

From Eqs. (C-5) and (C-6), 

d 5  E cos El2 (1 - - 
J(1+ 

-dE = 
s c o s a ) z / ( 1 ( 1 - z 2 ) Z  i-7icosE (1 - q n  / t ~ - ~ c o s ~ ) d E  
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Consider the integral in (C-I), 

From Eqs. (C-5) and (6-6), 

Consider the integral in (C-I), 

From Eqs. (C-5) and (C-6), 

Consider the. integral in (C-1), 

[ cosu'di? 
1 (1 + zcos 513 

From Eqs. (C-4), (C-5), and ,(C-6), 
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cos 5 d6 - [ - ~ ~ E + ( l + ~ ~ ) s i n ~ - - ~ s i n 2 ~  / (1 + H cos a)" (1 2)" 2 4 -1 
Consider the integral in (C-1), 

cos Zi dZi 
/ (1 + Bcos5)' 

From Eqs. (C-4), (C-S), and (C-6), 

cos 5 d5 cos B - z (1 - zcos E)3 (1 - ~ ~ ) ~ 5  

/ ( 1  + ZCOSB)~ / 1 - ~ 2  (1-22)3 l - z C O F ~ d E  

cos B di7 - - 1 1 
/(i + ZCOSZ)~ 

e l ) e [ - 2 ~  (1 + - j ~ z ) E  + (1 + + ~ 2 ) s i n E  

1 1 
- - i? (2 + E2) sin 2E + - Z2 sin 3E 12 -1 (C-12) 

4 

Consider the integral in (C-1), 

/ (l 

From Eqs. (C-4), (C-5), and (C-6), for 0 < Z < 1, 
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c0s3Udii 1 - -- 1 
(1 + ecosq373 + - 3  e ( 1 - -9)511 4 -1 B - ( 1  - 3 8 )  sin E - L ~ Z s i n  2E 

and for F = 0, T = E from Eq. (C-2), and 

c0s3 i id5 / (1 + ZTCOST)~ 'j cos3 EdE = - (3 cos E + cos 3E) d E  = 
4 - -  lS 4 

so that 

[(l - ;z2 + 3z4 E + e (1 - 3z2) sin I + 1 ~ 2  sin 281) 4 
for o < e < 1 

fore=O I 
Consider the integral in (C-1), 

From Eqs. (C-4), (C-S), and (C-6), 

c0s3 BdiT - - 
[ I -  

- 3 - 3 
1 + c 0 s 4  

( l - p ) n  y e ( 3 + 2 z 2 ) ~ - - j  (1 + 4e2) sinE + - -~s in2E 4 - - 12 s i n 3 ~  -1 (C-14) 

Consider the integral in (C-I), 

From Eqs. (C-4), (C-S), and (C-6), for 0 < Z< 1, 

cos4 T ~ T  (cos E - q4 (1 - ~ ~ 1 %  - /'$ [(I -3) - (1  - i m s  i l l 4  
-dE = / (1 + TcosT)~ / (1 - 1 - Fcos E (1 - Z2)% 1 - BCOS iT d E  

- 

+/ 6 (1 -72)2 (1 - Zcos E)2 - 4 (1 - e2) (1 - icos  E)3 (1 - Ecos El4 
1 - ecos E 1 -ecosE 

- - 1 d E  
~4 (1 - 2 ) n  1 - Fcos E - - 4(1 - P ) ~  + 6(1 - 3 )~ / (1  - ZCOSI) d f  
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1 - -Z3 sin 3E 
12 -1 

and for Z = 0, 5 = E from Eq. (C-2), and 

so that 

( 143 - ) 4 
1 
12 -1) f o r o < ~ < l  +Y 1 - - - e 2 + 6 k  s i n E + ~ ~ 2 ( 1 - - 4 ~ 2 ) r i n 2 ~ + - ~ ~ s i n 3 ~  

1 - (12E + 8 sin 2E + sin 48) for Z =  o 
32 

Consider the integral in (C-1), 

sinT ddu 
/(1 + Hcos 5)3 

From Eqs. (C-3), (C-5), and (C-6), 

sin 5'dF - - ( - c o s ~ + ~ a c ~ s ~ ~ )  (c-16) 
/(1 + ZCOST)~ ' (1 -2')' 4 
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Consider the integral in (C-1), 

From Eqs. (C-3), (C-S), and (C-6), 

sin 6 d F  -/ sin (1 - ~ c o s  E)3 11 - z2)% 
/(l+TcosT)j)'' ( 1 )  ( l - ~ ) " - * c o s ~ d E  

- - /[(I + $T) sin P - Bsin 2H + 1z2 sin 3E dB (1 -e2)3 4 -1 

Consider the integral in (C-1), 

From Eqs. (C-3), (C-S), and (C-6), 

sin2 Zd5 - 1 - 1 
(E - 2 sin 2.E) 

Consider the integral in (C-I), 

From Eqs. (C-3), (C-S),  and (C-6), 
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Consider the integral in (C-1), 

sin3 77 d 6  

From Eqs. (C-3), (6-5), and (6-6), 

- - (1 -e2)2 J s i n 3 i d ~  

1 
sin E - sin 3E) ddE 

Consider the integral in (C-1), 

From Eqs. (C-3-6), 

sini7cos 5dii sin cos dE - Z 1 - Fcos E (1 - 2)s - 
-dE= (1-Z2)lh 1 1-T2 1 - F C O S E  / ( I + -  (1 -T2)2 ' /(+ sin 2 8  - *sin E )  dE 

J sin5 cos 5 di7 - - (acos I - 
(1 + Z C O S ? ~ ) ~  ' (1 -72)2 

Consider the integral in (C-I), 

From Eqs. ( C - 3 4 ,  

sin 5 cos 77 05 - sinE COSB-Z (1 -ecosE)2 (1 -2)s - -dE, 
/(1 +FCOST)~ '/(I - k ) x  1 -a2 (1 - ~ ) 2  1 - TCOSE (1 --q3 /(sin E) (cos I -2) ((1 - Zcos E) d~ 

sin5 cos iS d5 1 
- - (1 + 2) cos 2 8  + - e cos 3E 

4 12 - -1 
Finally, consider the integral in (C-1), 
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Since 

then 

for O < Z <  l a n d  

or, with the use of Eqs. (C-5) and (C-8), 

and for Z = 0 , T  = E from Eq. (C-2), and 

so that 

1 - - -, , v (1 - Zcos E)2 - 
1 s 77 sinZdb 2F(1- e ) 2T(l - 2 1 9 5  (I -  sin E ) ]  for 0 < Z< 1 

(1 + Zc0s5)~ Y- 
(C-23) 

s inE-  EcosB I '  fore = 0 
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Appendix D 

Determination of the Function dF'"/d~ 

Consider the determination of the function d T ( ~ ) / d ;  that arises in Eq. (482) in Section V-C-3. The limit of the first 
term in Eq. (482) is zero since the numerator is simply E times a bounded function and the denominator is greater 
than zero as long as a > 0. Thus, dividing the numerator and the denominator of the remaining term in Eq. (482) by 
E (F,Z) where E ( Z Z )  > 0 for r > 0, one obtains 

€71 - - - €  
e, sinE T ( O )  e, sin E 

l - - + 7  E 

The limit of the first term in Eq. (D-1) is zero since the numerator is just E times a constan~and the denominator is 
greater than zero as long as a > 0. Now, E(F,z) > e0 s inE( ,~)  for all a: > 0. Also, E(z,z) > T(O) (Z) for all a: > O since 
E ( z , ~  is an unbounded function of (Z - o, - %), which is a fast-varying argument because of the , and the worst 
!?(o) (q can be is an unbounded function of the slow variable Z. Hence, the denominator of the second term in 
Eq. (D-1) is greater than zero but finite for all a: > 0, so that 

Now, from Ref. 205, pp. 62 and 63, 

where 

It should be noted that '5 and i? are the instantaneous multivariable true anomaly and eccentric anomaly, respectively, 
whereas Ref. 205 deveIops the Fourier series expansion of the true anomaly v in terms of the eccentric anomaly E. 
However, the relationships between 5 and 3 are the same as those between v and E (see Eq. 458 in Section V-C-3) so 
that Eq. (D-3) follows from its counterpart in Ref. 205. 

Introducing Eq. (D-3) into Eq. (D-2) yields 

sa 
dI(0) 

2E - 
&- C sin iE 

lim + j=1 €T( ' )  
-- 

E - E 

The only way the limit of the first term can be zero for all a is if 

dT(o) A 
-- 
A- - a constant = 0 
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The constant in Eq. (D-6) can be defined as zero because there are no other conditions on d T c 0 ) / f i ;  that is, the con- 
stant is arbitrary. With the use of Eq. (D-6),  the limit of the second term in Eq. .(D-5) is clearly zero since E(z , z )  > 0 
for a > 0. Thus, Eq. (D-5) becomes 

Although ?(l) (Z) must satisfy Eq. (D-7),  this equation does not sufficiently determine T ( l )  (z). Nevertheless, it appears 
that ?cl) (z) must be either a bounded function of Zor, if unbounded, at most a linear function of a since the unbounded 
part of E(E,z) is a linear function of a (remember T =  Ea and E = (1 + e2 a2 + . . .) a). 
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Appendix E 

Derivation OF the Perturbative Variations 

Consider the perturbative variations of the parameters 
a ,  and ax of Section V-D. It follows from a~ = e cos 0 and 
a~ = e sin 0 that 

a>, = e' cos OI - eo' sin u (E-1) 

and 

a;, = e' sin 0 + em' cos 0 (E-2) 

It follows from Figs. 17 and 20 and the definition 

that 

and 

or, using Eqs. (E-6) and (E-8), 

d o : .  -- 
at 

- 2 )  

and 

and 

Finally, since r' = 0, 

Consequently, from Eq. (E-5) and the concepts in Sec- 
tion 111-A-2, 

since 4 = 0. Taking the perturbative derivative (Section 
111-A-2) of Eq. (E-6) yields 

Furthermore, since the right ascension a is referred to 
a fixed reference direction, 

so that the perturbative derivative of Eq. .(E-5) yields 

From Eqs. (19) and (21) in Section 111-A3 and from 
Eqs. (E-3) and (E-9), 

and 

where the coordinates and parameters are normalized 
as in Section V-A; that is, the normaIization constants 
are given by Eqs. (259) in Section V-A. In this manner, 
the units of the variables in Eqs. (E-12) and (E-13) are 
given by Eqs. (270) in Section V-A. 

From the definition of the total derivative in Section 
111-A-2, 

and 

It follows from Eqs. (265) and (266) in Section V-A 
and from Eqs. (E-10) and (E-11) that 
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where 

.. . 1 
1'-1'02 = - - and rl; + 2;; = 0 

r2 

and, using Eq. (272) in Section V-B-2 and Eqs. (E-lo), 

Introducing Eqs. (E-14) into Eqs. (E-12) and (E-13) yields 

e'=-~(:)~(:sinu) p3/2 and = 5 (:) (: cos 0) 

Introducing Eqs. (E-17) into Eqs. (E-1) and (E-2), using trigonometric formulas, and using Eqs. (E-5), one obtains 

~>=---&(:)~($sina) and a; = s ($)3 (: 120.5 0) 
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Appendix F 

Development of the Secular and Periodic Total Derivatives 

in Terms of,the Reference Parameters 

In order to obtain the required secular, short-period, and long-period terms in Eqs. (556), Section V-D-3, the 
derivatives da,/&, daN/da, and dt/da in Eqs. (547), (548), and (549), respectively (Section V-D-2), must be 
expanded in Taylor's series (assumed to be uniformly convergent in the range 0 .L" a < m) about the point represented 
by EAT (a; E), EN (a; E), and ?(a; E) at right ascension a. Since these derivatives are explicit functions of only a, and aN 
( E  and a are assumed to be fixed) as shown in Eqs. (544), (548), and (549), 

and 

dux da, d t  - + -  
do: dcu da 

where the bar over the partial derivative implies that the partial derivative is evaluated using ii, and in place of 
a, and a,, respectively. From Eqs. (554) in Section V-D-3, 

and 
Aa, = a ,  - Si, = ag)  + a$) + 0 (e3) 

a~ + ax 

Taking the partial derivatives of Eqs. (547), (548), and (549) in Section V-D-2 with respect to a,  and ad* and 
evaluating them using Ex and ZN yields 

"(2): - 2p3/. COS a 

sax (1 + iia cos a + Zini sin a)3 

2p3I2 sin a 
(1 + Zip cos a + EN sin a)" 
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3p312 (1 + cos 2a) E($) a ~ i ,  = (1 + iiNcosa + gs ina)4  

3p3I2 (i - cos 2a) (2) - (1 + ms a + sin aa; 

a2 3p312 sin 2a -($) aa, aa, = (1 + ~ c o s a  + h s i n a ) 4  

and so forth. Now, introducing Eqs. (547), (548), and (549) in Section V-D-2 evaluated using ti, and tiM, and Eqs. (F-2-6) 
into Eq. (F-l)., introducing 

and 

and equating terms of like powers of E (assuming the reference parameters are of order one) yields 

and so forth, 

1 1 
- - ?ixiix cos 301 + - (Z; - E;) sin 3a 2 4 I 

1 1 + - (Z$ - 3;) cos 3a + - CA1\tidI sin 3LY 
4 2 I (F-11) 
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+ UP) (Zx cos a + i i A i  sin a + 2 sin 2a - & cos 3a: + EN sin 3a)] (F-12) 

and so forth, and 

dt  '0) dt  (0) dt  '0) dt '0) P" (z) = (z) + (z),, + (z),, = (1 + ii, cos a + I ,  sin 

dt  (1) d t  (1) d t  (1) dt  (1) 
- 2pw (x) =(z), ( )  ( )  = ( 1 + & ~ o s a + & s i n a ) ~  (a?) cos a + a:) sin 0) 

(F-14) 

dt  ( 2 )  dt ( 2 )  dt  (2)  

(z) =(2):+(z),p +(z)jP 
- - - 2p35 

(a?) cos a + ag) sin a) 
(1 + ZN cos a: + & sin a)3 

Y + {[(up))' + (a$))2] + - cos 2a + 2ag)a$) sin2a) 
(1 + iiN cos a + & sin a)" 

(F-15) 

and so forth. 

If the functional dependence of the parameters EAT, &, ag),a:), . . . upon a were known, the secular, short-period, 
and long-period terms of various orders required in Eqs. (556), Section V-D-3, could be determined from Eqs. (F-7-15). 
The functional dependence of these parameters is determined in Section V-D-3. 
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Appendix G 

Plots of Satellite Coordinates and Parameters Vs Revolution Number 
(Figs. 6-1 Through 6-140) 
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REVOLUTION NUMBER 

Fig. G - I .  Time error in revolution 1, general perturbations solutions 
le, = 0.002665, q, = 3578 km, v, = 0 deg) 
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0.5 

REVOLUTION NUMBER 

Fig. G-2. Radius distance error in revolution 'I, general perturbations solutions 
(eo = 0.002665, qo = 3578 km, vo = 0 deg) 
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Fig. G-3. Radial speed error in revolution 1, general perturbations solutions 
(e, = 0.002665, q, = 3578 km, v,  = 0 deg) 
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REVOLUTION NUMBER 

Fig. G-4. Angular speed error in revolution I ,  general perturbations solutions 
(e, = 0.002665, q, = 3578 km, v, = 0 deg) 
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Fig. G-5. Total speed error in revolution 1, general perturbations solutions 
(eo = Q.002665, qo = 3578 km, vo = 0 deg) 
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0.5 

EVOLUTION NUIJINR 

Fig. G-6. Semimajor axis error in revolution 1, general perturbations solutions 
(e, = 0.002645, qo = 3578 km,  vo = 0 deg) 
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Fig. G-7.  Eccentricity error in revolution I ,  general perturbations solutions 

(e,  = 0.002665, q, = 3578 krn, v ,  = 0 deg) 
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0 0.5 1 .O 

REVOLUTION NUMBER 

Fig. G-8. Argument of perifocus error in revolution I ,  general perturbations 
solutions (e, = 0.002665, q, = 3578 krn, v,  = 0 deg) 
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0 0.5 1 .O 

REVOLUTION NUMBER 

Fig. G-9. Perifocal distance error in revolution I ,  general perturbations solutions 
( e ,  = 0.002665, q,  = 3578 km, v, = 0 deg) 
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Fig. G-10. Time error in revolution 5000, general perturbations solutions 
(e, = 0.002665, q,  = 3578 km, v, = 0 deg) 
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4999.5 

REVOLUTION NUMBER 

Fig. G-11. Radius distance error in revolution 5000, general perturbations 
solutions (e, =0.002665, q, = 3578 km, v, = 0 deg) 
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4944.5 
ROlOtUTlON NUMBER 

Fig. (3-12. Radial speed error in revolution 5000, generai perturbations solutions 
(e, = 0.002665, q ,  = 3578 km, v,  = 0 deg) 
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4999.5 

REVOLUTION NUMBER 

Fig. G-13. Angular speed error in revolution 5000, general perturbations 
solutions ( e ,  = 0,002665, qn = 3578 km, v,  = 0 deg) 
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Fig. G-14. Total speed error in revolution 5000, general perturbations solutions 

(e, = 0.002665, cq ,  = 3578 km, v,  = Q deg) 
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Fig. G-15. Semimajor axis error in revolution 5000, general perturbations 

solutions (e,, = Q.QQ2665, q,, = 3578 km, v, = 0 deg) 
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m . 5  
REVOLUTION NUMBER 

Fig. G-16. Eccentricity error in revolution 5000, general perturbations solutions 
(e, = 0.002665, q, = 3578 km, v, = 0 deg) 
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REVOLUTION NUMBER 

Fig. G-17. Argument of perifocus error in revolution 5660, general perturbations 
solutions (e,, = 0.002665, q,, = 3578 km, v, = 6 deg) 
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4999.5 
REVOLUTION NUMBER 

Fig. G-18. Perifocal distance error in revolution 5000, generai perturbations 
solutions (e, = 0.002665, q ,  = 3578 km, v, = 0 deg) 
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Fig. 6-1 9. Time error in revolution 10,000, general perturbations solutions 
(e,  = 0.002665, q, = 3578 km, v,, = 0 deg) 
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NO-VARIMLE EXPANSIONS 

I 

9999.5 

EVOLUTION NUMER 

Fig. G-20. Radius distance error in revolutisn 10,000, general perturbations 
solutions (e,  = 0.002665, q, = 3578 krn, v,  = 0 deg) 
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9999.5 

REVOLUTION NUMBER 

Fig. G-2'1. Radial speed error in revolution 10,000, general perturbations 
solutions (e, = 0.002665, q, = 3578 km, v,  = 0 deg) 
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9999.5 

REVOLUTION NUMBER 

Fig. G-22. Angular speed error in revolufion 10,000, general perturbations 
solutions (e, = 0.002665, q, = 3578 krn, v,  = 0 deg) 
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Fig. G-23. Total speed error in revolution 10,000, general perturbations solutions 

(e, = 0.002665, q, = 3578 km, v, = 0 deg) 
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Fig. G-24. Semimajor axis error in revolution '10,000, general perturbations 
solutions (e, = 0.002665, q, = 3578 km, v, = 0 deg) 
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REVOLUTION NUMBER 

Fig. 6-25.  Eeeentrieity error in revolution 10,000, general perturbations solutions 
(e, = 0.002665, q ,  = 3578 km, v, = 0 deg) 
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REVOLUTION NUMBER 

Fig. G-26. Argument of perifocus error in revolution 18,000, general perturbations 
solutions (eo = 8.082665, q, = 3578 km, vo = 8 deg) 
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9999.5 

REVOLUTION NUMBER 

Fig. G-27. Perifocal distance error in revolution 10,000, general perturbations 

solutions (e, = 0.002665, q, = 3578 km, v, = 0 deg) 
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Fig. G-28. Time error in revolution 10,000, general perturbations solutions 
(e, = 0, q ,  = 3578 km, v, = 180 deg) 
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9999.5 

REVOLUTION NUMBER 

Fig. C-29. Radius distance error in revolution 10,000, general perlurbations 
solutions (e, = 0, qo = 3578 km, vo = 180 deg) 
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REVOLUTION NUMBER 

Fig. 6-30. Radial speed error in revolution 10,000, general perturbations 
solutions (eo = 0, q, = 3578 km, vo = 180 deg) 
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9989.5 

MVOLUTtON NUMMR 

Fig. G-32. Total speed error in revolution 10,000, general perturbations 
solutions (e, = 0, q, = 3578 km, v, = 180 deg) 
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m . 5  

REVOLUTION NUMBER 

Fig. G-33. Semimajor axis error in revolution 10,000, general perturbations 
solutions (e, = 0, q, = 3578 km, v, = 180 deg) 
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REVOLUTION NUMDER 

Fig. G-35. Argument of perifocus error in revolution 10,000, general perturbations 
solutions (e, = 0, q, = 3578 km, v, = 180 deg) 
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EXACT SOLUTION , o a t 4  

-eeice 
l l 4 1 1  

MO-VARIABLE EXPANSIONS I j j j ; 

REVOLUTION NUMBER 

Fig. C-37. Variation of time in revolution 10,000, exact solution and two-variable 
asymptotic expansions solution (eo = 0, q,  = 3578 km, v, = 180 deg) 



REVOLUTION NUMBER 

Fig. G-38. Variation of radius distance in revolution 10,000, exact solution and two-variable asymptotic 
expansions solution (eo = 0, qo = 3578 km, vo = 180 deg) 
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REVOLUTION NUMBER 

Fig. G-39. Variation of radial speed in revolution 10,000, exact solution and two-variable asymptotic 
expansions solution (eo = 0, qo = 3578 km, v, = 180 deg) 

JPL TECHMlCAL REPORT 32-1267 255 



.57 

4 . a . .  . . . *  . . . . .  .... 

.54 
9599.0 W99.5 10000.0 

REVOLUTION NUMBER 

Fig. G-40. Variation of angular speed in revolution 10,000, exact solution and two-variable asymptotic 
expansions solution (e, = 0, q, = 3578 km, v,  = 180 deg) 
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Fig. 6-41. Variation of total speed in revolution 10,000, exact soiution and two-variable asymptotic 
expansions solution (e, = 0, qo = 3578 km, vo = 180 deg) 
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REVOLUTION NUMBER 

Fig. G-42. Variation of semimaior axis in revolution 10,000, exact solution and two-variable asymptotic 

expansions solution (e, = 0, qo = 3578 km, v, = 180 deg) 
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Fig. G-43. Variation of eccentricity in revolution 10,000, exact solution and two-variable asymptotic 
expansions solution (e, = 0, q,  = 3578 km, v, = 180 deg) 
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Fig. 6-44. Variation sf argument sf perifscus in revolution 10,000, exact solution and two-variable asymptotic 
expansions solution (e, = 0, qo = 3578 km, v, = 180 deg) 
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Fig. 6-45. Variation of true anomaly in revolution P0,000, exact solution and two-variable asymptotic 
expansions solution (e, = 0, qo = 3578 km, vo = 180 deg) 
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Fig. G-46. Variation of perifocal distance in revolution 10,88g, exact solution and two-variable asymptotic 
expansions solution (en = 0, q, = 3578 km, v, = 180 deg) 
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REVOLUTION NUMBER 

Fig. G-47. Time error in revolution 10,000, general perturbations solutions 
(eo = 0.5, q, = 3578 km, vo = 0 deg) 
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Fig. G-48. Radius distanee error in revolution 10,000, general pedurbations 
solutions (e, = 0.5, qo = 3578 km, vo = 0 deg) 
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9999.5 

REVOLUTION NUMBER 

Fig. G-49. Radiai speed error in revolution 10,000, general perturbations 
solutions (e, = 0.5, q, = 3578 km, v, = 0 deg) 
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Fig. G-51. Total speed error in revolution 10,0QQ, general perturbations solutions 
(e, = 0.5, q ,  = 3578 km, v, = 0  deg) 
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REVOLUTION NUMBER 

Fig. 6 -52 .  Semimajor axis error in revolution 10,000, general perturbations 
solutions (e, = 0.5, qo = 3578 km, vo = 0 deg) 
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Fig. G-53. Eccentricity error in revolution '10,000, general perturbations solutions 
(eo = 0.5, q, = 3578 km, vo = 0 deg) 
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REVOLUTION NUMBER 

Fig. G-54. Argument of perifocus error in revolution 10,000, general perturbations 
solutions (e, = 0.5, qo = 3578 km, vo = 0 deg) 
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Fig. 6-57. Variation of radius distance in revolution 10,000, exact solution and two-variable asymptotic 
expansions solution (e, = 0.5, q, = 3578 km, v, = 0 deg) 
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Fig. G-58. Variation of radial speed in revolution 10,000, exact solution and two-variable asymptotic 
expansions solution (e, = 0.5, q, = 3578 km, v,  = 0 degl 
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REVOLUTION NWYJI)ER 

Fig. G-59. Variation of angular speed in revolution 10,000, exact solution and two-variable asymptotic 
expansions solution (e, = 0.5, q, = 3578 km, v, = 0 deg) 
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9999.5 
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Fig. G-60. Variation of total speed in revolution 10,000, exact solution and two-variable asymptotic 
expansions solution (e, = 0.5, q, = 3578 km, V, = 0 deg) 
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REVOLUTION NWMR 

Fig. G-61. Variation of semimajor axis in revolution 10,000, exact solution and two-variable asymptotic 

expansions solution (eo = 0.5, qo = 3578 km, vo = 0 deg) 
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REVOLUTION NUMBER 

Fig. G-62. Variation of eccentricity in revolution 10,000, exact solution and two-variable asymptotic 
expansions solution (e, = 0.5, q, = 3578 krn, v,  = 0 deg) 
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Fig. G-64. Variation of true anomaly in revolut.ion 10,000, exact solution and two-variable asymptotic 
expansions solution (e, = 0.5, q, = 3578 km, v,  = 0 deg) 
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Fig. G-65. Variation of perifocal distance in revolution 90,888, exact solution and two-variable asymptotic 
expansions solution (eo = 0.5, qo = 3578 kin, v, = 0 deg) 
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Fig. G-66. Time error in revolution 10,000, general perturbations solutions 
(e, = 0.95, q,  = 3578 km, vo = 0 deg) 
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Fig. G-67. Radius distance error in revolution 10,000, general perturbations 
solutions (e, = 0.95, q, = 3578 km, v, = 0 deg) 
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m . 5  

EVOLUTION NUMBER 

Fig. G-68. Radial speed error in revolution 10,000, general perturbations 
solutions (e, = 0.95, q,  = 3578 km, v, = 0 deg) 
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Fig. G-69. Angular speed error in revolution 10,000, general perturbations 
solutions (en = 0.95, q, = 3578 km, v, = 0 degl 
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9999.5 
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Fig. G-70. Total speed error in revolution 10,000, general perturbations 
solutions (eo = 0.95, q, = 3578 km, v, = 0 deg) 
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Fig. G-75. Variation of time in revolution 10,000, exact solution and two-variable 
asymptotic expansions solution (e, = 0.95, qo = 3578 km, v, = 0 deg) 
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Fig. G-76. Variation sf radius distance in revolution 10,000, exact solution and two-variable asymptotic 
expansions solution (e, = 0.95, q ,  = 3578 km, v, = 0 deg) 
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Fig. G-77. Variation of radial speed in revolution '10,000, exact solution and two-variable asymptotic 
expansions solution (e, = 0.95, q, = 3578 km, v,, = 0 deg) 
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Fig. G-78. Variation of angular speed in revolution 10,000, exact solution and two-variable asymptotic 
expansions solution (e, = 0.95, q, = 3578 km, v,  = 0 deg) 
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Fig. G-79. Variation of total speed in revolution 90,000, exact solution and two-variable asymptotic 
expansions solution (e, = 0.95, q, = 3578 km, v,  = 0 deg) 
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Fig. 6-80.  Variation of semimajor axis in revsluiion 10,000, exaet solution and two-variable asymptotic 
expansions solution (e,  = 0.95, q, = 3578 km, v, = 0 deg) 
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Fig. @-81. Variation of eccentricity in revolution 10,000, exact. solution and two-variable asymptotic 
expansions solution (eo = 0.95, q, = 3578 km, vo = 0 deg) 
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Fig. G-82. Variation of argument of perifocus in revolution 10,000, exact solution and two-variable asymptotic 
expansions solution (e, = 0.95, q, = 3578 km, v ,  = 0 deg) 
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Fig. G-83. Variation of true anomaly in revolution 10,000, exaet solution ernd two-variable asyrnptotie 
expansions solution (e, = 0.95, q, = 3578 km, v, = 0 deg) 
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Fig. G-84. Variation of perifocal distance in revolution 10,000, exact solution and two-variable asymptotic 
expansions solution (e, = 0.95, q ,  = 3578 km, v, = 0 deg) 
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Fig. G-86. Radius distance error in revolution PO,000, general perturbations 
solutions (eo = 0.5, q, = 8300 km, v,  = 0 deg) 
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Fig. G-87. Radial speed error in revolution 10,000, general perturbations 
solutions (e, = 0.5, q ,  = 8300 km, v,  = 0 deg) 
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Fig. G-88. Angular speed error in revolution 10,000, general perturbations 
solutions (eo = 0.5, qo = 8300 km, v, = 0 deg) 
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Fig. G-89. Total speed error in revolution 10,000, general perturbations 
solutions lea = 0.5, q, = 8300 km, v, = 0 deg) 
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Fig. (2-90. Semimajor axis error in revolution 10,000, general perturbations 
solutions (eo = 0.5, q, = 8300 km, v, = 0 deg) 
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Fig. G-91. Eccentricity error in revolution 10,000, general perturbations 
solutions (eo = 0.5, qo = 8300 km, vo = 0 deg) 
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Fig. G-92. Argument of perifocus error in revolution 10,000, general perturbations 
solutions (e,, = 0.5, q, = 8300 km, v,, = 0 ,deg) 
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Fig. G-93. Perifocal distance error in revolution 10,000, general perturbations 
solutions (eo = 0.5, qo = 8300 km, v, = 0 deg) 
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Fig. G-94. Variation of time in revolution 10,000, exact solution and two-variable 
asymptotic expansions solution (eo = 0.5, qo = 8300 km, vo = 0 deg) 
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Fig. G-95. Variation of radius distance in revolution 10,000, exact solution and two-variable asymptotic 
expansions solution (e, = 0.5, q, = 8300 km, v, = 0 deg) 
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Fig. G-96. Variation of radial speed in revolution 10,000, exact solution and two-variable asymptotic 
expansions solution (e, = 0.5, q, = 8300 km, v, = 0 deg) 
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Fig. G-97. Variation of angular speed in revolution 10,000, exact solution and two-variable asymptotic 
expansions solution (e, = 0.5, q, = 8300 km, v, = 0 deg) 
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Fig. G-98. Variation of total speed in revolution 10,000, exact solution and two-variable asymptotic 
expansions solution (e, = 0.5, q, = 8300 km, v, = 0 deg) 
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Fig. G-100. Variation of eccentricity in revolution 10,000, exact solution and two-variable asymptotic 
expansions solution (eo = 0.5, qo = 8300 km, v, = 0 deg) 
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Fig . G-101. Variation of argument of perifocus in revolution 10,000, exact solution and two-variable asymptotic 
expansions solution (en = 0.5, q, = 8300 km, v,  = 0 deg) 
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Fig. G-103. Variation of perifocal distance in revolution 10,000, exact solution and two-variable asymptotic 
expansions solution (e, = 0.5, q, = 8300 km, v, = 0 deg) 
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Fig. G-105. Radius distance error in revolution 10,000, general perturbations 
solutions (eo = 0.5, qo = 13,393 km, vo = 0 deg) 

JPL TECHNICAL REPORT 32- 1267 32 1 





I 

I 
9999.0 9999.5 10000.0 

REVOLUTION NUMBER 

Fig. G-107. Angular speed error in revolution 10,000, general perturbations 
solutions (e,, = 0.5, q, = 13,393 km, v, = 0 deg) 
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Fig. G-109. Semimajor axis error in revolution 10,000, general perturbations 
solutions (e, = 0.5, q, = 13,393 km, v, = 0 deg) 
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Fig. G-114. Variation of radius distance in revolution 10,000, exact solution and two-variable asymptotic 
expansions solution (e, = 0.5, q, = 13,393 km, v,  = 0 deg) 
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Fig. 6-1 16. Variation of angular speed in revolution 10,000, exact solution and two-variable asymptotic 
expansions solution (e, = 0.5, q ,  = 13,393 km, v, = 0 deg) 
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Fig. (3-117. Variation of total speed in revolution 10,000, exact solution and two-variable asymptotic 
expansions solution (e, = 0.5, q ,  = 13,393 km, v, = 0 deg) 
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Fig. G-118. Variation of.semimajor axis in revolution 10,000, exact solution and two-variable asymptotic 
expansions solution (e, = 0.5, q, = 13,393 km, v, = 0 deg) 
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Fig. @ - I  19. Variation of eccentricity in revolution 10,000, exact solution and two-variable asymptotic 
expansions solution (eo = 0.5, qo = 13,393 km, vo = 0 deg) 
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Fig. G-920. Variation of argument of perifocus in revolution 10,000, exact solution and two-variable asymptotic 
expansions solution (e, = 0.5, q, = 13,393 km, v, = 0 deg) 
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Fig. G-121. Variation of true anomaly in revolution 10,000, exact solution and two-variable asymptotic 
expansions solution (e, = 0.5, q, = 13,393 km, vo = 0 deg) 
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Fig. 6-122. Variation of perifocal distance in revolution 10,000, exact solution and two-variable asymptotic 
expansions solution (e, = 0.5, q, = 13,393 km, v, = 0 deg) 
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Fig. G-123. Time error in revolufion 1, special perturbations solution 
(e, = 0.002665, q, = 3578 km, v, = 0 deg) 
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Fig. G-'125. Radial speed error in revolution 1, special perturbations solution 
(eo = 0.002665, qo = 3578 km, vo = 0 deg) 
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Fig. G-126. Angular speed error in revolution 1, special perturbations solution 
(e, = 0.002665, q,, = 3578 km, v,, = 0 deg) 
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Fig. G-129. Eccentricity error in revolution I, special perturbations solution 
(e, = 0.002665, q, = 3578 km, vo = 0 deg) 
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Fig. G-131. Perifocal distance error in revolution 1, special perturbations 
solution (en = 0.002665, q, = 3578 km, v,  = 0 deg) 
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Fig. G-132. Time error in revolution 1, special perturbations solution 
(e, = 0.95, q, = 3578 km, v, = 0 deg) 
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Fig. G-133. Radius distance error in revolution 1, special perturbations solution 
(e, = 0.95, q, = 3578 km, v, = 0 deg) 
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Fig. G-134. Radial speed error in revolution I, special perturbations solution 
(eo = 0.95, qo = 3578 km, vo = 0 deg) 

JPL TECHNICAL REPORT 32- 1267 



Fig. G-135. Angular speed error in revolution I, special perturbations solution 
(e, = 0.95, q, = 3578 km, v, = 0 deg) 
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Fig. 6-137.  Semirnajor axis error in revolution 1, special perturbations solution 
(e, = 0.95, q, = 3578 km, v, = 0 deg) 
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Fig. G-139. Argument of perifocus error in revolution 1, special perturb'ations 
solution (e, = 0.95, q, = 3578 km, v, = 0 deg) 
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