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ABSTRACT 

Various optimization problems will be presented here, applications of the 

general methods developed in optimum control theory [Refs. 3,10,11,12] and 

based on the Hamiltonian formulation of variational calculus for structural 

optimization with aeroelastic constraints. 

The problem, common for all the applications, may be stated in a general 

form: given a reference structure (cantilever beam or two-dimensional plate) 

with uniform structural properties and specified aeroelastic requirements (such 

as a given divergence speed or  flutter speed), find the structure with minimal 

weight satisfying the same requirements. 

This report  will be divided into two parts, the first one dealing with static, 

the second one with dynamic aeroelastic problems (and more precisely flutter 

problems), This division is not arbitrary, since two out of the three problems 

of Part A will  be found to have a simple analytical solution confirmed by 

numerical methods, whereas we have to rely on numerical integration mainly in 

Part B, the torsional-flutter case being excepted. A very powerful numerical 

procedure, the transition-matrix algorithm, will be described in detail and 

applied wherever possible. 

flutter are emphasized. 

Its limitations in the more complicated case of panel 

iii 



TABLE O F  CONTENTS 

Page 

NOMENCLATURE.. . - .  . . . . . . . * .  . . . . . . . . e .  V 

PART A. STATIC AEROELASTIC PROBLEMS . e . . e . . . . . . 
1. Optimization of a Rectangular Wing for a Given Torsional Diver- 

gencespeed .  . . . . . , * . . . . . . . . , . . . . . . . * 

1 . 1  Statement of the Problem . . . . . . . . , , . . . , . . , 
1.1.1 Analytical Approach . . . . , . . . . . , . . . . . 
1 . 1 . 2  Numerical Approach: The Transition-Matrix Procedure 

1 . 2  Optimization With a Minimum-Thickness Constraint . . . . . 
1 . 2 . 1  Analytical Solution. . . . . . . . . . . . . . , . . 
1 . 2 . 2  A Transition-Matrix Procedure . . . . . . . . . . . 

Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2. Minimum- Weight Cantilever Wing With a Specified Torsional Fre- 

quency . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2 . 1  Statement of the Problem . . . , . . . , . . . . . . . . . 
2 . 2  Minimum-Thickness Constraint . . . . . . , , . . . . . . 
2 . 3  Structural Mass Hypothesis - No Minimum Thickness Constraint 

2 . 3 . 1  Analytical Solution . . . . . . . . . . . . . . . . 
2 . 3 . 2  A Transition-Matrix Procedure . . . . . . . . . . . 

2 . 4  Structural Mass With a Minimum-Thickness Constraint . . . 
2 . 4 . 1  Analytical Solution . . . . . . . . . . . . . . . . 
2 . 4 . 2  A Transition-Matrix Procedure . . . . . . . . . . . 

Figures . . . . . . . . . . . . . . . . . . . . . . , . . . . . 
3. Optimization of a Plate for Fixed Condition of Chordwise Divergence 

1 

2 
7 
8 

11 
11 
18 

19 

25 

25 

28 

30 
32 
34 

35 
36 
38 

39 

45 

3 . 1  Statement of the Optimization Problem . . . . . . . , . . . 45 

Figures . - .  . . . . . e . .  . . . . . . . . . . . . . . . . . 53 

3 . 2  Numerical Integration . . . . . . . . . . . . , . . . . . 50 

PART B. DYNAMIC AEROELASTIC PROBLEMS. . . e . , . , . . 56 

4. Pure  Torsional Flutter of a Straight Wing. . . . . . . . . . . . 57 

4 . 1  Solution for the Uniform Case . . . . . . , . . . . . . . . 58 

iv 



Page 
4.2 Optimization Process  . . . . . . . . . . . . . . . . . . . .  61 

4.3 Optimization With a Non-Structural Part . . . . . . . . . . .  62 

Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64 

5 . Panel Flutter Optimization . . . . . . . . . . . . . . . . . . . .  67 

5.1 Statement of the Problem . . . . . . . . . . . . . . . . . .  67 

5.2 Necessary Conditions for an Extremum . . . . . . . . . . . .  70  

5.3 Tentative Solution: A Transition-Matrix Procedure . . . . . .  74 

Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77 

6 . Concluding Remarks . . . . . . . . . . . . . . . . . . . . . .  78 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . .  79 



NOMENCLATURE 

a 

a 

A 

0 

A1 

B1 

B 

C 

D 

E 

El 

E1 

GJ 

H 

I 

I 

J 

k 

a! 

kl 

K 

L 

m 

M 

M 

n 

width of two-dimensional panel (flutter case) 

lift-curve slope 

constant of integration 

proportionality constant 

constant of integration 

width of two-dimensional plate (chordwise divergence case) 

dimensional chord 

constant of integration 

constant of integration 

dimensional distance between elastic axis and line of aerodynamic 

centers, positive for a. c. line forward of e. a. 

reduced Young' s modulus for the state of plane strain 

flexural rigidity 

tors ional rigidity 

Hamiltonian 

moment of inertia per unit span 

section-mass moment of inertia about elastic axis 

tors  ion constant 

constant 

constant 

constant I 

dimensional span 

integer 

mass  ratio 

free-stream Mach number 

integer 
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4( ) 

number of iterations 
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pressure 

dynamic pressure 
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auxiliary variable 

dimensionless thickness 

dimensionless thickness constraint 

dimensional thickness 

transition matrix 

non-dimensional deflection 

dimensional deflection 

speed of the air stream 

dimensionless space coordinate 

dimensional space coordinate - 
panel 

state-variables column matrix 

panwis for wing, chordwi for 

half thickness of panel at station X 

half thickness of panel at the root 

proportionality constant 

mean incidence at midchord 

bending slope 

ratio of specific heat at constant pressure to that at constant volume 

for free stream (1.4 for air) 
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multiplicative constant referring to the variation on the initial guess 

in the transition-matrix procedure, chosen (0 < E 6 1) 

Bredt s formula proportionality coefficient 

Lagrange multipliers column matrix 

Lagrange multiplier adjoint to p 

Lagrange multiplier adjoint to q 

Lagrange multiplier adjoint to r 

Lagrange multiplier adjoint to s 

Lagrange multiplier adjoint to w 

Lagrange multiplier adjoint to a! e 

Lagrange multiplier, adjoint to the minimum-thickness constraint 

Poisson's ratio 

density of the free stream 

amplitude of section rotation 

frequency 

torsional frequency 

Subscripts and Superscripts 

( )D 
value of the quantity at which divergence occurs 

quantity for reference system, system with uniform thickness and 

same aeroelastic eigenvalues as optimized system 
( )o 

( )T transposed matrix 

( ) *  

(7 complex quantity 

( 

( ) *  differentiation with respect to (1 - x) 

6( ) 

quantity relative to the structural part of the mass 

differentiation with respect to x 

first variation of a quantity (in the calculus of variations sense) 
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A .  STATIC AEROELASTIC PROBLEMS 

For this kind of problems, time does not appear as an independent 

variable and therefore vibratory inertial forces are eliminated from the equilib- 

rium equations. Aerodynamic forces can be based then upon well-known steady- 

flow results rather than the more complex unsteady flow theory. 

The static aeroelastic instabilities known as torsional divergence and 

supersonic chordwise divergence normally would occur at such high flight speeds 

as not to have a direct influence on structural design! Nevertheless, the speed 

V 

level of a lifting surface that a mass minimization based on holding it constant 

could have practical interest. 

at which divergence occurs is a good enough measure of the general stiffness D 

1 



1. OPTIMIZATION O F  A RECTANGULAR WING FOR A 
GIVEN TORSIONAL DIVERGENCE SPEED 

This example, although dealing with a very simplified problem, will serve 

our purpose to state the problem of optimization in its general analytical form 

and to outline a method of solution. 

ar ise  in more complex optimization problems, and the simplicity of the solution 

here  will illuminate them rather  than hiding them amidst cumbersome eomputa- 

tions. The analytical solution found will be checked against numerical methods 

The problems we will encounter appear also to 

used in modern control theory. 

1.1 Statement of the Problem 

Consider (Fig. 1. l)+a cantilever straight wing with elastic axis perpendicu- 

lar to the free stream. The wing cross-sectional profile, constant along the span, 

is characterized by a lift-coefficient slope ao. The other parameters and 

variables are defined in Fig. 1.1. 

With the use of aerodynamic s t r ip  theory, the problem reduces to the 

eigenvalue problem 

d de *GJ-) +qCEa 8 = 0 d x d x  0 

where 

is the dynamic pressure (p is the density of the free  stream), and with the 

boundary conditions : 

e(o) = 0 ,  

stating that the wing is built-in at the end X = 0, 

no torque applied at X = L. 

is dominated by the contribution from the skin, then from Bredt' s formula (Ref. 4, 

p. 44) the torsion constant J is directly proportional to the thickness T of the 

If we assume that the torsional stiffness of the wing 

+Figures will be found at the end of each chapter. 
2 



skin 

J = KT 

If we introduce the dimensionless quantities 

X 
L 

x = -  

T t = -  
T '  
0 

where T 

cross-section, the problem is rewritten as 

is the (constant) skin thickness of the reference wing with identical 
0 

2 ( te l ) '  + w e = o 
O(0) = 0 

tel  I = o 
x = l  

where ( ) I  denotes the differentiation with respect to x and 

m a o  2 qCEao 
L 

0 
GJ L =  2 =- 

0 
GKT 

J being the torsion constant of the reference wing. 
0 

To' For the uniform chord cantilever wing with uniform thickness 

t = l  

and the amplitude of the section rotation is given by 

e (x )  = A sin ox + B  cos ox. 

With the boundary conditions 

e(0) = 0 e ' ( i )  = 0, 

then: 

B = O  

cos 0 = 0 

A solution thus exists only when 

IT 
o = (2n + 1 ) ~  n =  0,1,2 ,..... 

3 



IT 
The smallest of these values, w = - 

2’ 
torsional-divergence dynamic pressure. The corresponding dynamic pressure is 

corresponds to the significant 

and ( to f )  

2 
G J  IT 

4CEaoL 

0 

qD = 2’ 

= 0. 
x =  1 

and the torsional divergence speed is 

The associated deflection mode at divergence is 

ITX e@) = A sin - 2 

We now are able to state the optimization problem. We want to minimize 

the integral 

0 

0 

subjected to the constraints 

4 



2 s ' = - o  e 
with the boundary conditions 

q o )  = o s(1) = 0 

This is a problem of the calculus of variations, of a kind often encountered in 

optimal control theory (Refs. 3,9,10). Of course, the role of time for continuous 

systems will be played by the spanwise dimensionless coordinate x. 

The general problem may be stated as follows: 

Minimize the scalar performance index 

1 
M =I t(x)dx 

- 
0 

for the system described by the following differential equations, written in matrix 

form 

X being an (m x 1) column matrix; some X. given equal to zero at x = 0, 
N 1 
some others at x = 1 

X.(O) = 0 i =  1 ,....., n 
1 

X.(1) = 0 j = n +1,... .. , m  
J 

The X. are the state variables and t is the control variable, following the 

optimal control theory appellations. We define a scalar function, the Hamiltonian 
1 

bY 

H[X(x) 9 t(x) 9 X I  = t(x) + AT@) * f[X(x), W), XI  
N N N I V  

To find a control function t(x) that produces a stationary value of M, we must 

solve the following differential system constituting the necessary conditions for 

an extremal: 

5 



X' = f[X, t ,x] 
N N N  

N 

where t(x) is determined by the so-called control equation 

the boundary conditions being the previous ones on X - 
Xi(0) = 0 i =  1 ,....., n 

X.(l) = 0 j = n +1,.. . . . ,111, 
J 

to which are added the conditions on the hf s 

h.( l )  = 0 i =  1 ,....., n 
1 

corresponding to the given values of the state variables at x = 0 

h.(O) = 0 j = n + l ,  ....., m 
J 

corresponding to the given values of the state variables at x = 1. (These con- 

ditions are often referred to as transversality conditions. ) For our particular 

problem 0 and s are assimilabd to the state variables. 

For  our particular problem on hand, the Hamiltonian is: 

S 2 H = t + h  - - h W  8 
e t  s 

We have the following system of differential equations: 

2 
s f = - - w  e 

2 h ' = w  h 
0 S 

A S  
- 0  1 --- e 

t2 6 



with the boundary conditions 

'(0) = 0 

s(1) = 0 

h (1) = 0 
0 

hS(O) = 0 

1. 1.1 Analytical Approach 

The solution proceeds very easily by eliminating A and 8, which step 
S 

yields the equations: 

2 
s" +- s = o  t 

0 

2 
A" +-A = 0 0 

e t e  

with the boundary conditions 

s(1) = 0 

A'(1) = 0 

s and h satisfy the same homogeneous differential equation; thus - a solution of 

the problem is such that he and s are proportional: 
0 

S A =-  
e A2 

Therefore 

2 
2 S t = A s = -  ' A 2  

Now from the first equation, = A so that, using the boundary condition 
2 W Z A  2 

'(0) = 0, we find 0 = Ax, s' = - w Ax and, using s(1) = 0, s =--(1 - x ). 2 
It follows that 

7 



s o  2 2  t = - = - - ( l - x )  
A 2  

We now have to go back to the main object of the problem: for a given 

divergence speed, we want to minimize the mass of a wing with given geometrical 

characteristics. If our reference thickness is T the thickness of the wing 

with the same geometrical characteristics and constant thickness which has the 

same divergence speed, then 

0’ 

and 

T I T  2 2  2 x ) = 1.2337(1 - x ) t=-=31- T 
0 

The dimensionless mass  is then 

2 

12 
IT )dx = - = 0.8225, 

0 0 

which corresponds to a mass saving of 17.75%. We recall that T is given, as 

a function of V 
0 

and the geometrical characteristics of the wing, by D 

4qDCEao 2 
L 2 T =  

0 
IT GK 

where the quantities appearing on the right-hand side have been previously defined. 

1.1.2 Numerical Approach: The Transition-Matrix Procedure 

The transition-matrix approach (as named by Bryson and Ho (Ref. 13)) 

to solve the system of optimizing equations has proven very powerful in this 

particular case. The method, developed by Bryson, is described in Section 7.3 

of Ref. 3. 

Let us show how the method applies in this particular case. We have the 

following system of differential equations 

8 



2 h ' = w  h e S 

with the two-point boundary conditions: 

e(o)  = o 
h (0) = 0 

s(1) = 0 

X & l )  = 0 S 

The idea is to integrate the equations on [O, 11 starting from the left, by 

guessing some initial values for s and h The algorithm proceeds as follows: e' 
a. ) 
of s and h at x = 0. 

b. ) 

0 to 1, the last equation giving the value of t, auxiliary 

variable. This gives us values for  s(1) and A e ( l ) .  

c. ) We determine the 2 x 2 transition matrix T. 

We guess the 2 unspecified conditions, i. e. the values 

e 
We now integrate the system of equations above from 

0 which is a measure of the variations of the final values of s and h 

when the initial boundary conditions are perturbed. 

9 



To determine T,  we begin by computing the first variations 

68,6s, 6h 6h of the 4 quantities 8 ,  s, h A using the system of differen- 

tial equations defining them; we then obtain 
8 s  8' s 

If 6s(O) is set equal to unity, all the other components being 

zero, integration of this system together with the initial system on [0,1] 

will  give us values for  6s( l )  and 6h (1) which will be the first column 

of our matrix T, Similarly, the second column of T is obtained by 

integrating this system and the initial one with, as boundary conditions, 

6h (0) set  equal to 1 and all the others equal to zero. The boundary 

conditions for the initial system will  be of course those guessed in 

step a. ) 9  and step b, ) can be skipped as we will integrate two times the 

original system in this step. 

d. ) 
closer to the desired values 0 of s(1) and A8(l) .  We choose 

6 

e 

We now choose 6s( l )  and 6h (1) so  as to bring the next solution e 

6s(l) = - E S ( 1 )  

6h (1) = - € A  (1) O r €  5 1  e 8 

where s(1) and hg (1) have been computed in step b.). 

e. ) 
from step d.) to find bs(0)  and SA (0) by 

We now have to invert T with chosen values of Ss(1) and 61 8 (1) 

8 

10 



Using s(0) = ~ ( 0 ) ~ ~ ~  + 6s(O), new 

= h ( 0 )  +6he(0)  hgtO)new 8 old 

we repeat steps a. ) through e. ) until s( 1) and h (1) have the specified 

values 0 to the desired accuracy. 
e 

The main problem in this specific case is that t appears on the 

denominator of the differential system and therefore cannot go to zero 

on the interval [0,1], except at x = 1, s o  that we must s tar t  the 

algorithm with values of s(0) and h (0) giving a t(0) quite high so 

that the convergence is from the upper side of the actual curve. We 

started with an E equal to 1, and values of s(0) and X (0) equal to 0 . 3  

and 6 respectively. An algorithm was designed to reduce E by one half 

everytime the thickness distribution would reach the value zero some- 

where on [0,1] and start again from the preceding step with this smaller 

E(*). With the use of this process, convergence was very smoothly ob- 

tained from the upper half of the (x, t) plane to the actual thickness 

distribution in 6 iterations, with a relative e r r o r  of 0. 04% and a final 

E of 0.125. This precision may be rendered even better by decreasing 

E and using a few more integrations. The differential equations were 

integrated using a subroutine of the Stanford Computation Center library 

called DFEQS1, making use of a Runge-Kutta method. 

e 

e 

The successive results of the iteration and the actual thickness 

distribution are plotted in Fig. 1.2. 

Optimization With a Minimum-Thickness Constraint 

1.2.1 Analytical Solution 

In the unconstrained case, t was found to be equal to zero at the tip, 

1.2 

and thus the problem of optimization with a constraint on the value of the thickness 

is of greater practical interest. 

(*)It would seem that the more we approach the actual thickness distribution, the 
closer E should be to unity as then the transition matrix, found by using a linear 
approximation, would be very accurate. This cannot be true here for the reason 
explained above, that t cannot approach 0 on [0,1] and so that the convergence 
has to  be non-oscillatory. 11 



We want to minimize the integral 

0 

subject to the constraints 

S = - 
t 

2 s ' = - w ~  

with the boundary conditions 

e(o)  = o s(1) = 0 

and the inequality constraint 

t 2t l  

where tl is a given real quantity between 0 and 1 

Following Bryson and Ho (Ref. 3), Section 3.8, we define the Hamiltonian 

in this case as 

S 2 H = t + h  -- A w e +p(tl - t) e t  s 

where 

1 

1 

p(x) 2 0 if t = t 

p(x) = 0 if t > t 

The necessary conditions for an extrema1 are expressed by the system of 

equations 

2 h' = o  h e S 

1 - 2 - p = 0  'eS 
t 

12 



together with the boundary conditions 

e(o) = o h ( 0 )  = 0 
S 

s(1) = 0 (1) = 0 e 
A solution of the system is obviously such that 

S h = -  
e a ,  

8 h = - -  
s a' 

where a is a constant, s o  that we only have to solve the simpler system 

with the boundary conditions 

e(o) = o s(1) = 0 

For t > t i. e. p = 0, then the last equation becomes 
1' 

2 2 s  t = -  
a 

which implies that the constant a has to be positive, say, a = A 2 : 

e!  = A  

e = A(X +B) 

and 

2 
S' = - w A(x +B) 

2 s = - w 2 A(% +Bx - 2.) 

and 

13 



2 2 x  t = - 0 ( 2 + Bx - 2 c ) ,  

where B and C are constants of integration. 

If t = t then the first two equations are 1' 

2 s ' = - w  8 

s o  that, with 2 constants of integration D and E 

s = D w  (- s i n x x  W + E c o s x x )  W 

Now the boundary condition O(0) = 0 can be satisfied only in the case p = 0, 

s o  that at the end x = 0 the extremum thickness is larger than t it then in- 

creases as x increases according to the distribution 
1; 

2 
2 

2 
W t = +-,c - x ) 

with 

e = AX 

2 
2 

W s = + 7 A ( C  - x ) 
L 

The optimum thickness 

2 2 x =c--t  
2 1  

W 

t will reach the value t at x = X such that 1 

and will then remain equal to t The constant E is determined by the boundary 

condition s(1) = 0, s o  that on [X, 11 
1' 

1 t = t  

14 



6 =  

Continuity of 6 and 0' at x = X requires that X is a solution of the 

transcendental equation. 

3 = cotan-@ - X) 

and the optimal thickness distribution is 

0 r x  rX o2 2 2 t = t 1 - 2 ( x  - X )  

X r x r l  t = tl 

The non-dimensional mass  is found to be 

2 3  
" X  

0 

The transcendental equation for X may be written as 

and the solution on [0,1] will  be graphically found at the intersection of the curve 

with equation 

and the bissectrix of the first quadrant of the (%J9 plane, Recall that w is constant 

and equal to  - 2' 
TT 

and tl i s  a parameter varying from 1 to 0. 

1 5  



A s  t is decreased, there is only one solution to the equation between 1 
0 and 1, until t reaches the value 0,11111; there are then two solutions for 1 

less than this value, three for tl less than 0. 0400, four for t less than 
tl 1 
0. 020408, five for tl less than 0. 01234508, and so on, 

t = 0 an infinity of solutions (Fig. 1. 3).  

and at the limit for 

1 
It seems then that our hypothesis of the uniqueness of the solution is not 

valid, and that we a r e  going to obtain considerable mass  savings reaching 100%. 

However, a careful analysis shows that the numbers where the demultiplication of 

the roots occur are nothing but the fractions 

1 1 1 1  1 - - _ -  
3 2 9  5 2 9  72' 92''"" Y 2" * e * * 

(2k + 1) 

For t > 0.11111, the non-constant part  of the thickness is very close to the 

solution of the unconstrained case, which is the parabola we found before. A s  

t is decreased, X increases and the nonconstant part gets more important. 1 
For t = 0. 1111 a second solution consisting of a constant thickness with this 1 
value arises. 

1 

For this value of t19 the constrained equation becomes: 

e t 1  2 
- + w  e = o  
9 

and a solution exists 

IT 
3w = (2n + 1)- 

2 

only when 

n =  0,1,2, ..... 

o r  

IT IT 5IT 

6'2' 6 ' " " '  
w = - - -  

IT Tr 
so  that in that case the lowest eigenvalue is no longer - but -, corresponding 

2 6 
to a divergence speed of one-third of the given one. A s  t, is decreased, the 

I 
Tr 

solutions belonging to this family will all correspond to this eigenvalue - For 
-I 6' I t = 0. 04 = - a new constant-thickness solution appears, and the new eigenvalues 

corresponding to this case are 52 
1 

IT 31T IT 71T 
w = - - - -  109 10'2' 10' ' * - - * 

16 



IT The lowest one here is now - 
10’ 

of the desired value. 

corresponding to a divergence speed of one-fifth 

The only solution of interest to us  is thus the solution corresponding to the 
IT 

eigenvalue - which is very similar to the unconstrained case. Some typical 

solutions are plotted (Fig. 1.4). In dotted lines in the figure are two of the spurious 

solutions that appeared when solving the equation for X. 

z 3  

The optimal m a s s  is also plotted versus t (Fig. 1. 5). We still have to 1 
check that p is positive on [X, 11 in order to satisfy the necessary conditions. 

It is found to be 

2 1 T  sin --(1 - x) 
211K 

p = 1 -  21T sin -(1 - X) 2Fl 
A S  (1 - X) <& for every value of t, on [o, 11, 

IT IT 
0 < q q ( 1  - X) 5- 2 

Moreover, on [X, 11, x > X SO that 

Tr Tr 
0 <-(1 - x) 5-(1 - X) 2fll Vl 

I 

Tr 
5- 

2 

and 

IT 

Therefore, 

p 2 0  

and the condition is satisfied. 

A s  we can see, the best saving is obtained in the unconstrained case. 

However, the kind of thickness distribution encountered in the constrained case 

has much more practical interest; between a tl of 0 . 3  and the unconstrained 

case (tl = 0) the difference in mass saving is only 1.28% 

17 



1.2.2 A Transition-Matrix Procedure 

For  a given t the problem is exactly the same as before, except that t 1’ 
is computed from 

t =  

and set equal to tl whenever the above computed value is less than t Another 

difficulty is that s(1) may now take negative values, breaking up the convergence 

process. This may be easily overcome by diminishing the E of the process (say, 

to one half) and starting the algorithm again. Initial values for s and h were 

chosen equal to 0 . 3  and 6 .0  respectively, and E set equal to 0.5. With t = 0.5, 

the actual distribution was obtained after 7 integrations with a relative e r r o r  of 

0.01% and a final E of 0. 03125 (Fig. 1.6). Actually, the third iteration is so  

close to the exact result that the two are indistinguishable on the plot. 

1’ 

6 

1 
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Fig. 1.1 Unswept cantilever wing with constant chord. 
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Fig. 1 . 2  A transition-matrix procedure - torsional divergence with no mini- 

mal  thickness constraint (N  number of iterations). 
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Fig. 1.4 Optimal thickness distributions. Torsional-divergence case with minimum-thickness constraint for 
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different values of t (the dotted lines a r e  the distributions found for tl < - and tl < - respectively 1 0 2 ,2 
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as described in Section 1.2.1). 
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Fig. 1.6 A transition-matrix procedure for the case of torsional divergence 

with minimum thickness. 
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2. MINIMUM-WEIGHT CANTILEVER WING WITH 
A SPECIFIED TORSIONAL FREQUENCY 

e(o) = o te'  

2.1 Statement of the Problem 

The torsional vibrations are governed by the equation 

= o  
x =  1 

d de 2 
-(GJ-) +Io 6 =  0 dX dX ola 

with the boundary conditions 

e(o) = o dx 
Ix= L 

We assume that I (X) and GJ(X) are determined primarily by the sec- 
a! 

tional skin thickness T(X) and are in fact proportional to it. With the zero sub- 

script  denoting the properties of the reference wing, and with a dimensionless 

spanwise length x = the proportionality assumptions can be written as L' 
IolW = Iolot(x) 

GJ(x) = GJot(x) 

where 

2 
W I  

GJ 

CYCY 
0 2  L 2 

0 =- 

0 

We introduce as usual the state variable 

25 



s = t e ' ,  

and the optimization problem reduces to the following: 

Minimize the 'integral 

1 

M t(x)dx, 

0 

subject to the contraints 

2 
S T  = - w t e  

e(o) = 0 ,  s(1) = 0 

The Hamiltonian is 

s 2  
e t  S 

H = ~ + A  - - - w  h t e  

The equations of the problem are 

S = - 
t 

2 s '  = - w t e  

'eS 2 
I - - - w  A e = o  

,2 S 
L 

with the boundary conditions 

e(o) = o h ( 0 )  = 0 
S 

h (1) = 0 e s(l) = 0 

Obviously, a solution is such that, a! being an arbitrary constant, 
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S h = -  
e a  

e h = - -  
s o !  

Also t, 0 and s a r e  determined by the system 

2 
S' = - w te  

0 is thus a solution of the differential equation 

e ' = €  IF--- W O  + a  

Integrating and introducing an integration constant xo gives 

The boundary condition e(0)  = 0 shows that a has to be positive and has the 

value 

-2EWX 
0 

a = e  

8 is thus found to be 

-E wx 
0 sinh(wx) E 

0 
0 = -e 

and s and t are then 

K 
S =  cosh wx 

E WX 
0 e t = E K  

K being another integration constant. 
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The boundary condition s(1) = 0 cannot be satisfied except for the trivial 

case K = 0, corresponding to a zero thickness distribution. This case appears 

to be similar to the case of the longitudinal vibrations of a bar investigated by 

Turner (Ref. 7)$ where the optimal thickness was found to vanish for a bar  without 

a tip mass. 

2.2 Minimum-Thickness Constraint 

To overcome this difficulty, we introduce a minimum-thickness constraint 

by requiring t to  be always greater than o r  equal to a constant thickness 5’ 
0 < tl < 1. 

Our augmented Hamiltonian is then 

s 2  
e t  S 

H = t + A  -- w A te +p( t l  - t) 

where 

p = O  if t > t l  

1 p 2 0  if t = t  

The equations of the problem a re  

h 
hf = - -  

S t 
e 

A s  noted before, there are very simple relations between 0 ,  s and their adjoints, 

namely 
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S h = -  
e a  

e h = - -  
s a  

and t, 8 ,  s a re  solutions of the system 

s2 U2e2 1-- + - - p = o  
2 a  

at 

with boundary conditions O(0) = 0, s(1) = 0. Along the portions of the x interval 

for which t will  be larger than tl,p I 0 and the solution will  be exactly the one 

we found in the unconstrained case, This solution cannot satisfy the s(1) = 0 

requirement, so that it will be valid over a portion [ O , X ]  of the x axis: 

-E wx 
E 0 

w 
e = - e  sinh(wx) 

K 
c o sh( a) s =  

EOXo 
e 

2 cosh (wx) 
t = EK 

For X 5 x 5 1, t will be equal to tl and 

2 s' = - 0  t le  

so that 

2 
e r r  + W  e = o 

and 
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8 = A cos wx + B  sin wx 

s = w t  (B cos wx - A sin ax) 1 

from the boundary condition s(1) = 0 

B = A tan w 

and 

A e = -COS ~ ( i  - X)  cos w 

so  that 

wAtl 
s = -  sin o(l - x) cos w 

Continuity of 8 and 8' at x = X results in the two conditions 

cos o(l - X) 
A -E wx 

E 0 

w cos a -e sinh(wX) = - 

-E ox 
0 A w  
Cosh(wX) = - sin w(1 - x) E e  cos w 

so  that X is found to satisfy the transcendental equation 

tanh wX = cot w(l - X) 

For the reference bar of 

7T Tr 
tanh -X = tan -X 2 2 

Tr 
uniform thickness, w = - and the above equation reads 2 

This equation has only one solution on [0,1], 

x = o  
which is of no interest to us as this corresponds to the bar  of uniform thickness 

di sir ibution. 

In this case, the minimum-thickness constraint does not lead to a solution, 

and in order to solve the problem we have to introduce further hypotheses on the 

structure. 

2 . 3  Structural Mass Hypothesis - No Minimum Thickness Constraint 

One way to overcome the foregoing difficulty is, following Turner (Ref. 7), 
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to make the assumption that the mass is made up of two parts: a constant frac- 

tion 6 being nonstructural, the remaining part being allowed to vary, The 

thickness may be expressed as 

1 

2 

(2.3.1) 2 
t(x) = 6 t*(x) +€ l  

Under this hypothesis, the running G J  and I are expressed in function of the 

corresponding referred quantities as 
a 

GJ(x) = GJot*(x) 

I (x) = I (6,t*(x) + 6  ) a! a! 2 
0 

6 and 6 being two positive constants satisfying 1 2 
6 + 6  = 1  

1 2  

The inertial radii of gyration of the two portions of the mass distribution a re  

seen to be assumed equal. The equation of the problem is now 

(2 .3 .2)  
2 (t*er) + o (6 t *  + 6  )e  = o 1 2 

and we may set up the variational problem for our intermediate variable t*, 

A s  before, after we introduce the variable s = t * O ' ,  the problem reduces 

to the system of equations 

2 
0 s 1  

h' = w h (6 t" +b2) 

h 
A' = - -  
s t*  

e 

2 1 - - - w 6  Oh = o  
2 1 s  

t* 
with the boundary conditions 
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e(o) = o 

s(1) = 0 

h ( 0 )  = 0 

h (1) = 0 

S 

e 
2 . 3 . 1  Analytical Solution 

A solution is again such that 

S A = -  
e a  

e A = - -  
S CY 

a! being an arbi t rary constant, and the problem is simplified into 

( E =  t 1 )  
t* = qCY* 
e(o) = o s(1) = 0 

The twist amplitude 8 satisfies the differential equation 

0' 
Therefore, upon introducing an integration constant x 

The condition e(0)  = 0 is expressed as 
P 

a = e  

so  that 

-E X 
0 € e  

e = TSi* 
Now s satisfies the linear first-order differential equation 
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X 
0 

s '  + s +  

The general solution is 

( 5 -  
2 s =€-e 

261 

C being determined by the condition s(1) = 0. Therefore, 

- cash( 
62 - 
2s1 

S =€---e 

and the optimal thickness distribution is given by 

The actual thickness distribution turns out to be 

The corresponding non-dimensional mass  is found as 

Tr 
For a uniform bar of thickness t = 1, we have o = -. 2 

When 61 increases from 0 to 1, this mass  decreases from 1 to 0. The 

relation between M and 61 is plotted in Fig. 2.1. 

A t  the limit 61 = 1, where all the mass is structural and allowed to vary, 

we have the case already investigated in Section 2.1. 

For  the case 6 = 0.25, 6 = 0.75 where 75% of the mass is labeled 
1 2 

lTnon-structurallT and remains fixed, the optimal thickness distribution is as 

represented on Fig. 2 . 2  by a solid line. The other curve (dashed line) is the t* 

distribution corresponding to this case. The mass ratio is then equal to 0.9244 

corresponding to an optimal saving of 7.56%. This saving, not considerable here, 
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increases with 6 An identical case with different values of 6 and 6 will 

be treated in Section 3 ,  as we will  see later. 
1' 1 2 

2 . 3 . 2  A Transition-Matrix Procedure 

Numerically, we will look fo r  t *  solution of the system (2 .3 ,3) .  This 

procedure is very similar to the one already used. We begin by numerically 

integrating the system of differential equations 

2 A' = w  h (6 t * + 6  ) e s 1  2 

h 
h' = - -  
s t*  

e 

where 

on [0,1],  with the initial boundary conditions 

Two given O(0) = h (0) = 0 

Two guessed s(0) = 0.5, h (0) = 5 
S 

e 
IT 

w is equal to - and 61 and 6 were taken equal to 0,25 and 0.75 ,  respectively. 2, 2 
The first column of the 2 x 2 transition matrix is given by the values at 

x = 1 of 6s and 6h These are in turn solutions to the system of differential 

equations 
e' 

(6s)' = - 2 6e(61t* +62) - w 2 6 p t *  

2 2 
(6hg)' = w 6h (6 t *  + 6  ) +a 6 h 6t* 

s 1  2 I s  
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6t + A  - " e  
(6hs ) f  = - - t *  

et*2 

where 

2 2  t*(w 61t* +1) 
6t* = 2hes (he6s + & A e )  

satisfying the initial conditions 

6 S ( O )  = 1 6h (0) = 0 6 (0) = 0 6h (0) = 0 e e S 

e Similarly, the second column is made of the values at 1 of 6s and 6h 

satisfying the same system but with the initial conditions 

6 ~ ( 0 )  = 0 6h (0) = 1 66(0) = 0 6hs(0) = 0 

A s  previously, the integration stops whenever t* i s  found to be equal to 

e 

zero, so that we have to force convergence from above, The initial E ,  taken 

equal to 1, was decreased by half every time the integration was stopped, and 

the analytical solution was found with a precision of 0.4% after eight iterations. 

A precision of 0.004% was obtained after 13 iterations, with a final E of 0.0625 

(Fig. 3.3) .  

2.4 Structural Mass  With a Minimum-Thickness Constraint 

We require t *  to be always greater than or equal to a constant thickness 

t;, such that 0 < t; < 1. This case has some practical interest as the G J  at 

the extremity x = 1 was found equal to zero in the unconstrained case, due to 

the vanishing of the structural mass  there. The augmented Hamiltonian reads 

s 2  H = t * + A - - w  h (6 t * + 6  ) O + p ( t q - t * )  et* s 1  2 

where 

p = 0 if t* > tT 

p 2 0 if t* = t *  1 

The equations of the problem are 
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2 hf = w (6 t* + 6  )h  e 1 2 s  

e 2 
2 1 s  

i - - - - W  6 A e - p o  
t *  

with the boundary conditions 

e(o) = o hs(0) = 0 

h (1) = 0 e s(1) = 0 

2.4.1 Analytical Solution 

A solution is seen, as previously, to be such that, 

s h = -  e aq 
e h = - -  

s a  

Q! being a constant. The problem is rewritten as 

e(o) = o 
s(1) = 0 

A s  in the previous cases encountered, we will s tar t  at  x = 0 with a 

thickness greater than t so that until x reaches the value X 1, 
p = o  

P 
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The thickness t* decreases and reaches the value t*  for x = X. Then it re- 

mains constant and equal to t*l on [X, 11, s o  that 
1 

A 
O =  

S =  

Continuity of 8 and 0' at x = X requires that x be a solution of the 

transcendental equation 

(Note that in the limit 

for 6 = 0 the same as in Section 2.2. ) 

61 = 0 we get the same equation as in Section 1.2, and 

2 
When X is found from this equation, the t* distribution is given by 

0 P x  5 X :  

62 

261 
t* = - 

cos h2wG1 x 
t 

c o sh2wG1x 

1 t-2-t*) 61 - I 
s2 
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The optimal thickness distribution is as follows: 

0 s x  rx  

62 t = -  
2 

i 
61 

62 
2+ *) + l  

X l x l l :  

t = 6  t * + 6  
11 2 

The optimal mass  ratio is found to be 

M =  + 1 -  x) 

For fixed values of 6 and 6 chosen as 0.25 and 0.75, respectively, 
1 2 

the thickness distribution corresponding to some typical values of t 

in  Fig. 2.4. 

is plotted 1 

The variation of the optimal mass  ratio with minimal thickness t,  is 

represented in Fig. 2.5; as in the case of Chapter 1, the mass saving is maxi- 

mum for t = 0, corresponding to the unconstrained case, 1 
2.4.2 A Transition-Matrix Procedure 

This is exactly the same procedure as described in Section 1.2. With 

initial values of s and h of 0 . 3  and 6 respectively, for the case 6 = 0.25, 

6 = 0.75 and a chosen minimal thickness of 0.5, the t* distribution was obtained 

after 9 iterations with a relative e r r o r  (in excess) of 0. 01%. 

was taken equal to 0.5, and the final E was 0. 03125. 

e 1 

2 
The starting E 
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Fig. 2.1 Variation of the mass ratio with 6 fraction of total mass  allowed 1’ 
to  vary - fixed torsional frequency case. 
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Fig. 2.2 Optimal thickness distribution - fixed torsional frequency. 
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Fig. 2.3 A transition-matrix procedure - fixed torsional frequency. 
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Fig. 2 .4  Optimization for a fixed torsional frequency with minimum-thickness 

constraint on t*. 
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Fig. 2 . 6  A transition-matrix procedure for fixed torsional frequency with 

minimum-thickness constraint. 
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3. OPTIMIZATION OF A PLATE FOR FIXED 
CONDITION O F  CHORDWISE DIVERGENCE 

3.1 Statement of the Optimization Problem 

The different quantities are defined in Fig. 3.1,  approximating the cross 

section of the forward half of an airfoil undergoing chordwise bending in a two- 

dimensional supersonic airstream. 

A s  shown in Ref. 6,  Section ?-4(a), the area moment of inertia per unit 

span for solid sections is  

2 3  
3 t  

I = -z 

For a thin-face-sheet sandwich with no contribution of the core to bending stiff- 

ness, the corresponding formula would be 

2 
t I =  2 2  T,  

where T is the thickness of one face sheet. The governing differential equation 

for the bending slope a =- dW reads 
e - ax 

da  
-[E I-] e = - [ 1 + 544 (-ae t a0), 
d2 

dX2 

a! 

being approximated by piston theory. 

being the mean incidence at midchord, and the aerodynamic loading Ap (X) 
0 a 

In the first case above, the complete dimensionless problem reads, 
X introducing the dimensionless length x = - 

B; 

where 

6q 

E I C l  
k =  
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is the effective Young’s modulus, q the dynamic pressure,  Here E =y 
1 

and M the $I;gh number. The quantity kl is  actually a constant when the plate 

i s  a uniformly tapered wedge s o  that 

E 

-- - x  Zt 

tR 
Z 

In this case, the differential equation reads 

Boundary conditions for  the free edge at x = a and clamped midchord 
1 

line at x = 1 read 

= o  
dol 3 e  
dx 

1 x = a  dx ae(l) = x  - 
1 x = a  

The last differential equation above i s  equidimensional, and a complete solution 

(due to Biot) is given in the Ref. 6. These results are very complicated and 

cannot form the basis of a simple optimization problem (results could be obtained 

by numerical integration). Since the objective is to find situations with a 

probability of exact analytic solutions, we shall here  seek out the simplest pos- 

sible case which might be regarded as meaningful. 

- 

The case we will investigate here  is that of a uniform-depth honeycomb 

with face-sheet thickness varied to seek minimum mass at fixed q D’ MD* Since 

we can set a = 0, neglect any aerodynamic effects of the finite then Z = Z 

leading-edge bluntness, and write the dimensionless problem as 
1 tR’ 

where 

-& [tl>] + k2cve=- k a !  
2 0  

dx2 
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2 
2q k =  2 

D 

The reference case, with uniform thickness t is a characteristic- 
0' 

value problem expressed by the equation 

3 d a  

together with the boundary conditions 

ae(l) = d ( 0 )  = ak'(0) = 0 

with 

This is solved, by analogy with the swept-forward-wing bending divergence 

problem, by 

r x  3 r x  
2 

r x  a = A l e  1 +AZe +A3e  
e 

where rl, r2, r3 are the roots of the algebraic equation 

3 r + k = O  

Hence 

The transcendental equation resulting from the three boundary conditions 

reads 
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It reduces on substitution to 

- 3 3  

= o  2 e 

This has a fundamental root 

k = k  = 6 . 3 3  D 

from which T can be related to q and other dimensions. 
0 D 

Now it appears that the optimum thickness distribution might be directly 

compared by keeping kD the same. That is, with k 

that minimizes total face-sheet weight in 

= 6.33 ,  we seek to find t 
D 

r "+b = o  
(tole) e 

with the boundary conditions 

Q! (1) = ta' = (talk)' = o  
e 

Here t =- so  that k retains the value 6.33. After we introduce the auxiliary 

variables 
T '  
0 

s = (tol')' , e 

the optimization problem reads as follows. 

Minimize the definite integral 

0 

subject to the constraints 

r 
Q!' = -  

e t  

with the boundary conditions 

ae(l) = r(0) = s(0) = 0 
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The Hamiltonian is 

H = t + h  - - t h  r S -  kha! 
a t  r s s' e 

and the Lagrange multipliers satisfy the necessary conditions fo r  an optimum: 

h 

- - A  A' = - - -  aH 
S as r 

The control equation turns out to be 

h r  
e c! 

- I--- - 0  - - -  
t2 at 

The transversality conditions give 

h ( 0 )  = h (1) = (1) = 0 a r S e 

We have therefore to solve the system of six equations with six unknowns 

r' = s 

s'  = -h 

h' = kh 

e 

a! S e 

where 

t = h  r a e 

( 3 . 1 )  

The boundary conditions read 
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r(0) = s(0) = h (0) = 0 
a! e 

ae(l) = hr(l) = hs(l) = 0 

3.2 Numerical Integration 

No analytical solution can be easily found in this case; the proportionality 

between the variables and their adjoints does not hold any more (it worked for a 

system of 4 equations, where a variable was propnrtional to the adjoint of the 

other), In order to .find a solution we have to use numerical integration. 

Once again, the transition-matrix algorithm was proved very powerful. 

It has to be changed slightly here, as t is zero a t  the end x = 0. In order to 

integrate the system on [O, 11, we will assume values at the end x = 1 for the 

variables r, s and ha! and integrate backwards from 1 to 0. 
e 

The transition matrix T is a 3 x 3 square matrix such that 

T is formed as follows: we adjoin to the given system the system of equations 

satisfied by the first variations of the variables: 

6r1 = 6s 

6s' = - kQ1 
e 

6h' =k6A 
a! S e 

bhl = - 6h 
S r 

The f i rs t  column of T will be composed of the values at x = 0 of 6r,  6s  and 
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6ha . These are solutions of the above system with all the functions but 6 r  
e 

being set equal to zero at x = 1, 6 r ( l )  being set equal to unity. In a similar 

fashion, we obtain the second and third columns, respectively, with 6s(l) = 1, 

then 6ha (1) = 1 being the only non-zero conditions at x = 1. Of course, the 

systems (3.1) and (3.2) have to be solved simultaneously, as the first variations . 

are functions of the variables CY , r, s and their adjoints. 

e 

e 
We now invert T and 

-1 
= - ET 

compute the increments 

Here the column on the right-hand side is formed of the values at x = 0 of 

r, s, A 

or equal to unity, taken equal to unity to start with. 

using our initial assumptions, and E is a positive number smaller than 
OCe 

We now start the integration again, with the new values for  r(l), s( l ) ,  h (1) 
CY e '(')NEW - - '(')OLD + b(l) 

A s  the integration will  stop whenever 

examples), it will be necessary in the 

smoother changes in the initial values 

We chose the values 1, 1 ,6  for 

t is found equal to zero (cf. previous 

course of the process to reduce E to have 

at the end x = 1. 

r,s and h respectively at x = 1. The 
a,  

thickness distribution corresponding to this guess is labeled under N = 1 on 

Fig. 3.2 (N 3 number of iterations). The second iteration brings us closer to 

the solution, and the optimal thickness distribution is attained for N = 6 with a 

relative e r r o r  of less than 1% (judged on how close t(0) is from its actual value 

zero) and an E of 0.125. 

E is equal to 0.015625. 

For N = 11 the relative e r r o r  is less than 0. 2%, and 

The area under the curve is equal to 0.690: this optimal solution repre- 

sents a mass saving of 31.0%. 
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The case of the sandwich section with a minimum-thickness constraint 

t has even more practical interest. The transition-matrix algorithm applies 

to this example with slight modifications; for t = 0.2 and with initial values 

l,l, 6 for r, s and , respectively, and a starting E of 0.5, the sequence of 

curves represented in Fig. 3 . 3  was found. The optimal thickness distribution 

obtained for  N = 7 with a relative e r r o r  smaller than 0.2% is plotted in solid 

lines, 

represents a mass saving of 29.6%. 

1 

1 

e 

The optimal mass  ratio is then equal to 0.704, s o  that this solution 
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Fig. 3 . 1  Cross-section of forward half of a plate undergoing chordwise bending in a two-dimensional 

supersonic airstream. 
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Fig. 3 . 2  Optimum thickness distribution - plate for fixed condition of chord- 

wise divergence. 
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Fig. 3 . 3  Optimal thickness distribution for fixed condition of chordwise 

divergence with minimum thickness t = 0.2. 1 

55 



B. DYNAMIC AEROELASTIC PROBLEMS 

The assumption of simple harmonic motion will  reduce the partial dif- 

ferential equations of these dynamic cases to ordinary differential equations in 

complex dependent variables. However the following problems will be converted 

to a real form, and the optimization process will  be similar to what has been 

already encountered. 

56 



4. PURE TORSIONAL FLUTTER OF A STRAIGHT U~ING 

We consider, as before, a rectangular wing planform, When we make 

use of aerodynamic s t r ip  theory, the equation of motion reads 
0 

a'je a ae 
I, 2 ax a x  a7 
- - -[GJ---J = n/r&(X,~) (4.1) 

with boundary conditions 

e (o ,q  = o 
ae 
ax GJ-(b,T) = 0 

and T denoting the time. 

We will  adopt the standard procedure used in flutter problems, by assuming 

separation of variables for 8; introducing the dimensionless length x = - we look 

for 8 in the form 
b' 

O(X,-r) = Re {z(x)eiwT) 

where T(x) is a complex function of the real variable x. 

A reference wing is characterized by the zero subscript, with the same 

proportionality assumptions as in Chapter 2, . 
EIa(x) = EI, t(x) 

GJ(x) = GJot(x) 

0 

where 

To t(x) = 
0 

T 

If aerodynamic strip theory is adopted, the complex running moment n/r 
N 

is known to depend linearly on the complex amplitude s, the proportionality 
a b  factor being a function of the elastic-axis location, the reduced frequency k = - v '  

and the flight Mach number M. For incompressible flow, and with the notations 

used in AFTR 4798, 
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2-1 -  - -  1 - 
M (x) = rpb4w2 [M - (;z +a)(La +Mh) +(;z +a) Lh O(x) 

a! a - -  
(La, $, Mq9Gh are dimensionless complex functions of the reduced frequency k, 

tabulated in the report). 

We introduce the dimensionless quantities 

m p=- 
2 

0 
G J  

w =  

I l2 TPb 
e 

a! 
0 

I 
a! 
0 - 
2 r =  

mb a 

and the two parameters 

2 
w 

a! = (r) 
e 

(a real and complex). Thus we reduce the problem, in complex form, to the 

equation 

(tS' )I  +(at +p)B = 0 (4 .1 '  ) 

with the two boundary conditions 
- 
e ( o )  = o 
- 

t e' = o  
x = l  

where the primes denote differentiation with respect to x. 

4 . 1  Solution for t = 1 

A uniform-wing reference flutter case must be constructed to provide 

numerical coefficients for starting the computation. A key reference is Smilg' s 

paper (Ref. 5), in which it is indicated that - must be very large and that the 

elastic axis must be ahead of the quarter-chordline (a < -?) before single-degree- 

of-freedom insthibdity can occur. For t = 1, the equation reduces to 

p b 4  1 
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with the boundary conditions 
- 
6(0) = 0 
- 
0' (1) = 0 

The corresponding characteristic equation is 
- 2 

s + ( a + P ) = O  

let a + ib and -(a + ib) be the two square roots of the complex number -(a +p); 
the general solution of (4.1') is then 

- (a +ib)x -(a +ib)x 6(x) = A e  +Be 9 

A and B being two complex constants. 

The boundary condition at zero lead 

A + B = O  

so  that 

1 (a +ib)x -(a +ib)x - e  

to the ondition 

The eigenvalues for flutter are determined from the remaining boundary condition - 
0'(l) = 0 

which gives 

(a +ib) [ e a + i b  +e-(a +ib) ] = o  
The quantity Q! +! is different from zero, so that a +ib  is also different from 

zero, and this reduces to 

a + ib  -(a +ib) e + e  = o  
o r  

2ila +ib)  + 1 = 0 e 

or ,  equating real and imaginary par ts ,  

2a e COS 2 b =  -1 

e2asin 2b = 0 

from the second equation, 
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2 b = k ~  k = 09-1,22, + *... 
0 0 

s o  that 

0 
k 

COS 2b = (-1) 

and 

k +1 2a 0 e = (-1) 

This implies 

k = 2 k + 1  (ko odd) 0 

a = O  
+ IT 

so that the two roots of -(a +p) are - (2k + 1)-i, k = 0, 1 ,2 , .  . . . This, in turn, 

implies that a +? is real and equal to (2k + 1) -(k=0,1,2,. . .), This result 

means that 

- 

22TT2 
4 

has to be real o r  that 

Im I ? }  = o (4.2) 

The problem therefore reduces to a real one. Equation (4.2) is identical 

with Smilg' s equation (3) for vanishing of the imaginary part of the moments, s o  

that the necessary conditions for neutral stability are obtainable from the solid 

curves in Smilg's Figs. 1 and 2. 

We choose the smallest eigenvalue, 

a + p = - = 2 . 4 7  
2 

4 
IT 

Therefore, given Smilg' s charts, a reference eigenvalue can be estimated. 

Careful study of the problem shows that 

elastic axis at the leading edge; k is taken equal to 0. 027. 

corresponds to 

it is more  convenient to choose the 

From Fig. 2A this 

whence flutter for a uniform 

= 595, 
I 
01 
0 wing with - 21 - 1500 would occur at 4 

V b  

60 



2 
e w 

2.47(-) = 0.603 w 

o r  

0 
o 2: 2.810 

It follows that 

a = 4.08 

P = - 1.61 
4.2 Optimization Process  

The problem is to minimize the definite integral 

1 

M = j  t(x)dx 

0 

subject to the constraints 

s' = - e@t+ P) 
with the boundary conditions 

e(o) = o 
s(1) = 0 

This is identical with the problem statement encountered in Section (2,3) 

for which an analytical solution was found. We introduce the new parameters 

4 62 = T U ,  4 6 =--B 
1 2  Tr I T  

such that 6 t 6 = 1. 
1 2  

The sum of the two parameters is still equal to 1, but the main difference 

i s  that now 6 

in Section (2.3)), the optimal thickness appears to be negative, since 6 2 
in it as a multiplicative factor. A s  in the stability domain Q is always positive and 

p always negative, 62 will  always be negative and the problem stated under this 

form will have no realistic solution. 

i s  negative; from the integration of the above equations (referenced 2 
appears 
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4.3 Optimization With a Nonstructual Part 

One way to overcome the foregoing difficulty is as we already did in 

Chapter 2 ,  to label a portion of the mass as "nonstructural" and to allow the rest 

to vary, the latter part only contributing to the structural properties (stiffness). 

Under this assumption, we may force the part of the 8 coefficient which is 

independent of t to be positive. 

Introducing a parameter h, 0 < A < 1, we set 

t = h +(1 - h)t* 

and the equation of motion is rewritten as 

2 
(t*w + Z p * t *  + 6*)e = o 

4 1  2 

where 

6*  = tjl(l - h) 1 

6 * = 6  h + 6  
2 1 2  

In order that 6*  be positive, A has to be chosen such that 2 

With our values of 6 and 629 1 
h > 0,393 

If we choose h = 0.5, i. e. if we allow 50% of the mass to vary, thus 

6" = 0.826 

6*  = 0.174 

1 

2 

The optimal thickness distribution is therefore given by 

and the true thickness distribution by 
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t = h +(I - A)- - 1  

The optimal mass  ratio is 

- I 1  
M = h + ( l - h ) -  

The thickness distribution corresponding to the above data is represented 

in Fig. 4.1; the corresponding mass saving is found equal to 39.3%. 

A s  the stiffness at the end x = 1 is zero, it may be interesting to apply 

a minimum-thickness constraint on t*, looking for  the optimum satisfying the 

inequality. 

t* 2 t; 

The problem is then the same as in Section (2.4). Some typical thickness profiles 

are represented in Fig. (4.2), and the variation of the optimal mass  percentage 

with this minimal constraint t* is plotted in Fig. (4.3). A s  usual, the maximum 

saving is obtained for  the unconstrained case. 
1 
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Fig. 4.1 Optimal thickness distribution for torsional flutter case, 50% of mass 

allowed to vary, a = 4. 08, p = -1.. 61. 
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Fig. 4.2 Optimal thickness configuration for torsional flutter case with minimum- 

thickness constraint, a! = 4. 08, p = -1.61, 50% of mass nonstructural. 
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Fig. 4 . 3  Optimal mass ratio vs. minimum thickness t* (case of Fig. 4.2).  
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5. PANEL FLUTTER OPTIMIZATION 

5 . 1 Statement of the Problem 
W(XY t) For a two-dimensional panel of length a with deflection w(xy t) = a 

and extending from x = - = 0 to x = 1 the dimensionless partial differential 

equation reads: (cf. Ref. 6 ,  Section 8-5(a), pp. 419-423) 

X 
a 

m a4 2 a2w aw ~ ' - 2 a a w  0 a w 
4 + R ~ ~  ax 2 - 1  u at D at2 

4 
-I A-+A -- +--=o a w  

ax ax 
- 

Here we have defined the dimensionless parameters 

( 0 )  N a  xx 
( O )  E in-plane tensile force) 

(N;yx 
R = - -  

xx D 

where 

For  a simply-supported panel the boundary conditions read 

w(0) = w"(0) = 0 

w(1) = w"(1) = 0 

w(x, t) = w*(x)eiwt 

If we assume simple harmonic motion 

(5.1) reduces to 

W *(Iv) +R w*" + Aw*T - kw* = 0 
X X  

with boundary conditions: w*(O) = w*"(O) = 0 

w*(1) = w*"(l) = 0 

where k is an eigenvalue of the form 

(5.2) 
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4 
0 2  M 2 - 2 a  

m a  
k = - - - - - o  - i h  W 

D M2 - 1 U 

2 
4 0  . 4  0 

= 7 T  (r) - 1Tr go 
0 0 0  

Here 

2 D 
4 

w = T r  
0 

m a  
0 

is the first natural frequency for  a semi-infinite simply supported flat panel and 
9 

- MY - 2  pU 
3/2 m 

0 0  
go - 

o (M2 - 1) 

is the damping coefficient based on w 
0' 

Solutions due to Houbolt, Hedgepeth and others are discussed in the cited 

reference. It appears that the most productive case to work on first would be the 

one where in-plane stress and aerodynamic damping a re  neglected (essentially 

4 

and simple support is assumed. 

mental mode at 

Uniform-panel flutter then occurs in the funda- 

4 

4 

A =  3 . 5 2 ~  g 3 4 3  

k = (1.9~) 

For purposes of optimization, consider a panel that flutters at the same 

&o. 
neglect the - term, and allow m(x) and D(x) to vary. The equation of the 

problem is 

It will be interesting to see if w can be allowed to  vary. Let Rxx = 0, 
aw 
at 

4 
2 

m a  
(io) w* = 0 

dw* ;m(x)  o 
d x m D  
- 

0 0  
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with boundary conditions 

w"(0) = DW*rr = o  

~ " ( 1 )  = Dw*" = o  
jx= 0 

j x =  1 

Now suppose t(x) and w are allowed to vary in search of an optimum. 

Then, using subscript o to identify properties of the uniform panel of solid 

metal with the same q, , we have 
D 

m x  
m a= t(x) 
0 

Therefore the problem reduces to the equation (dropping the asterisk superscript 

for w as no confusion will now be possible) 

2 
w 

0 

(t3w11)11 + A  w' - k t(-) w = 0 
0 o w  

subject to the boundary conditions 

w(0) = t w = o  

w(1) = t w = o  

where 

A =  dE = constant 
0 

0 

(5.3) 

4 
m a  

0 2  
o D o  k = w = constant 

0 
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In the search for an optimum, the first step is to hold w constant, to solve the 

simplified problem, and then to minimize algebraically with respect to this 

parameter afterward, 

We define the auxiliary variables 

p = w' 

3 q = t w" 

3 r = (t w")' 

and let 

2 
0 

0 

k = k  (-) 
O W  

5.2 Necessary Conditions for an Extremum 

The problem is to minimize the definite 

subject to the constraints 

w' = p  

q' = r  

r '  = ktw - 

with boundary conditions 

w(0) = q(0) = 0 

w(1) = q(1) = 0 

The Hamiltonian is constructed as follows: 

H = t + h  p + h  9 + h r + h ( k t w - h p )  
w Pt3 4 r 0 

integral 

The necessary conditions for an extrema1 read 
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hf = - - = -  aH h 
r 8r q 

The control equation is 

3 hpq 

t4 
1 -- + k h w = O  r 

The transversality conditions give 

hP(O) = hr(0) = 0 

h (1) = h (1) = 0 
P r 

Therefore, the whole problem reads 

w' = p  

q p' = -  
t3 

qf = r  

r' = ktw - 

A' = - A  + A  h 
P w o r  

h 
P hf = - -  
3 q t  

34hp 

t4 
1 -- +kwh = o  r 

(i) 

(ii) 

(vii) 

(viii) 

(5.4) 

7 1  



w(0) = q(0) = h (0) = x (0) = 0 

w(1) = q( l )  = h (1) = h (1) = 0 

P r 

P r 

From (ii) and (vii) 

2 -- qhP - - t p' h' 
t4 q 

2 and from (i) and (viii) this is also equal to t wT1h" so that the control equation r' 
(ix) may be rewritten as 

2 1 - 3t ~ " h "  +kwh = 0 r r 

We recall that t and w satisfy 

3 (t w")" + A  W' - ktw = 0 
0 

3 = +(t  h y '  - h A' 
o r  

Thus t and hr satisfy 

3 (t h")" - h h' - kth = 0 r o r  r 

Therefore, h w, and t satisfy the system r* 

(t3w1')T1 + h w' - ktw = 0 
0 

from (vi) 

from (vii) and (viii) 

(5. 5) 

3 (t A")" - h A' - kth = 0 
o r  r 

with boundary conditions 

w(0) = w(1) = h (0) = (1) = 0 r r 
Now, following a suggestion of Turner (Ref, 131, let us change x into 

1 - x; if ( ) denotes the differentiation with respect to 1 - x, we get the system 
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2 1 - 3t (1 - x)ii7(1 - x)Xr(1 - X) +kw(l - x)hr(l - X) = 0 

3 (t (1 - x)%(l - x))" - A C(1 - x) - kt(1 - x)w(l - x) = 0 
0 

3 ( t  (1 - x)xr(l - x))" - A 3, (1 - x) - kt(1 - x)w(l - x) = 
o r  

If we adopt the notation 
- 

t(1 - x) = t(x) 

w(1 - x) = W(X) 

A r ( l  - x) = h (x) r 

this system can be written as 

with boundary conditions 

- 
w(0) = $1) = x (0) = h (1) = 0 r r 

0 

( 5 . 6 )  

A comparison of (5.5) and (5.6) shows that a possible solution of the 

problem is such that 

t(x) =-i(x) 

h,(x) = aG(x) 

1- 
olr 

(or  w(x) = -1 (x)) 

(here Q! is a constant), 

t(x) = t[l - x) 

Ar(x) = aw(1 - x) 

1 
a r  (or w(x) = -A (1 

o r  that 

- x)) 

This shows us that t, the optimal thickness distribution, has to be sym- 

metrical  with respect to the straight line x = 1/2. This result is true if the 
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solution of the system is unique; if it is not, it still indicates that one of the 

optimal solutions has to be symmetrical (note that this symmetrical solution may 

correspond to a minimum o r  a maximum), 

5.3 Tentative Solution: A Transition-Matrix Procedure 

No analytical solution for system (5.4) has been found to date. A transition- 

matrix procedure seems indicated here,  The algorithm has to be slightly modified, 

however, as the values of p, r, h h are unknown at both ends. Also, the fact 

that q = t w" is zero at both ends seems to indicate that t also has to vanish at 

both ends (as found previously for one end). This means that the equations will be 

numerically integrable on [0,1] in the case of a minimum-thickness constraint 

w' q 3 

only 9 

t > tl 

The procedure is then as follows: 

We guess four initial values for p, r, h h and integrate ( 5 . 4 )  from 
w' q 

x = 0 to x = 1, recording the values at x = 1 of the variables w, q, hp, hr. The 

4 x 4 transition matrix, connecting the first variations of w, q, h 

with the first variations of p, r ,  h h at x = 0 through 

h at x = 1 
P' 

w9 4 

The first column will be composed of the values at 1 of 6w, 6q, 6 1  , 6h . 
P r  

These are solutions to the differential system (5.4) to which we adjoin the system 

satisfied by the first variations of the variables: 

(dw)' = 6p 

6q * 
t t4 

(6p)' = y- - 

(6q)f = 6 r  
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(6r) '  = k(t6w +wdt) - ho6p 

(6h ) '  = - k(t6A + A  bt) 
W r r  

(6hp)' = - 6h + A  6h w o r  

@Ar)' = - (6%)' 

where 

For the first column of the transition matrix, the initial conditions for this system 

of 16 equations with 16 unknowns will be the previous ones for w, q, h , h , p, r, h 

and 0, 0, 0, 0, 1, 0, 0,O for their first variations, in that order. 
P r  w' 4 

The second column will  be composed of the same values of the same 

variables solutions of the same system, 6p(O) being now zero and 6r(0) 

being set to unity; for the third column only 6h (0) is unity, the other variations 

being all zero, and for the fourth 6h (0) will be the only non-zero variation. 
4 

W 

Choosing an E(O < E < l), ' 

-1 =-a 

we now compute Ap( 0), Ar( 0), Ahw( 0) , Ah (0) by 
I- 7 4 

where the column on the right-hand side is made up of the values at x = 1 of 

w,q, hp7 Art  which are in turn solutions of (5.4) with the guessed boundary condi- 

tions. We start the procedure again with the new critical values 
- P(O)NEW - P(O)OLD + @(') 

'(')NEW - - '(')OLD + m(o) 

'w(Of,EmT - - Aw(O)0LD + Ahw(') 

' ~ ( O ) N E W  = h q (0) OLD + Akq(O) 
75 



No solution has been calculated to date. The problem, in view of the 

complexity of the system and the large values of the coefficients k and h 
0’ 

is to guess the four initial boundary conditions such that the system may be 

numerically integrated on [0,1]. It appears that some values become too large 

o r  too small during the process of integration, and that it stops before the end 

x = 1 is reached, even with a minimal thickness constraint. 

To achieve the desired solution, it seems that we may have to make some 

more assumptions to simplify the system of differential equation (5.4). A clue 

can be derived from the fact that some coefficients are very big and some very 

small. 

Another numerical method of the kind used in optimal control theory does 

not have to be used until the transition-matrix approach is proven to fail, and the 

main problem is as we said before to find a good start for the iterations. 

Another problem of the same kind is that of a sandwich panel; the equations 

are then rather simpler (Ref. 2). However no solution had been found by numerical 

integration at the time of writing. The only known solution is that of Turner 

(Ref. 13) who uses a finite-element approach. Hi s  results do, in fact, confirm 

that the thickness distribution is symmetrical with respect to x = 1/2. 
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Fig. 5.1 Panel (plate-column) of infinite span, showing notation used for optimization with constant flutter 

eigenvalues. 



6. CONCLUDING REMARKS 

Despite the simplicity of the problems chosen here,  the solutions require 

a great deal of numerical computation. In one case, no solution has been found 

to date (January 1970), the main difficulty being the complexity of the system of 

differential equations involved. The structures we considered were one-dimensional, 

so  that we only had to deal with ordinary differential equations. However, for the 

more ambitious goal of optimizing plates o r  shells, the problem involves partial 

differential equations, and even for the simplest problems (square plate) a 

numerical solution of the optimizing equations seems very unlikely to be found in 

a way not involving excessive computations (an analytical solution seems sor t  of 

a Utopia in two-dimensional cases). 

airplane configurations, of course, it seems that then one has to turn to a more 

direct approach to the optimization problem by means of a finite-element discretiza- 

tion and more classical parameter optimization techniques (such as the gradient 

method). However, the techniques described in this report have not yet been widely 

used, and still present a lot of new openings. More work has to be completed in 

this area before a universal optimizing technique - if one exists! - can be 

devised, and until we exhaust the possibilities of the present methods. 

For complex structures, such as actual 
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