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FOREWORD 

This document presents the results of work performed 

by Lockheed Missiles & Space Company, Huntsville Research 

and Engineering C ente r ,  Huntsville, Alabama, under Contract 

NAS7- 743, "Transonic Flow in a Converging-Diverging Nozzle." 

The Contracting Agency is the National Aeronautics and 

Space Administration, Liquid Rocket Research and Technology 

Branch, Washington, D.C. The technical manager is Dr. R. F. 

Guffel of the Jet  Propulsion Laboratory, Pasadena, California. 
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SUMMARY 

This document constitutes the final report  of a study of steep angle 

nozzle inlets performed by Lockheed's Huntsville Research & Engineering 

Center under contract to the National Aeronautics and Space Administration. 

To be delivered with the final report i s  a computer program used to perform 

the calculations describea herein. 

Eight cases  of interest to the National Aeronautics and Space Admini- 

s trat ion J e t  Propulsion Laboratory, were  analyzed and the results a r e  pre-  

sented i n  the main body of this report. These contours had steep inlets (75, 

90 degrees) and very smal l  nozzle wall radius of curvature to throat radius 

ratios (0.5, 0.25). The finite-difference techniques used i n  the analysis per-  

formed very well, particularly when the severity of the contours i s  considered. 

Attached to the main body of this report a r e  three appendixes. Appendix 

A discusses the theoretical approach to the finite difference solution reported 

herein. Appendix B i s  concerned with the computer program portion of the 

study. Appendix C contains the distribution l i s t  for  this study. 

The computer program described in Appendix B is considered to be ex- 

t remely flexible, permitting severa l  modes of operations for  boundary condi- 

tions and grid structures.  Many program control options a r e  available for  

efficient utilization. 
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Greek 

NOMENCLATURE 

Mach number 

Mach number on wall at  minimum area  

radial station identifier 

axial station identifier 

velocity 

gas constant 

temperature 

cylindrical coordinates 

axial and radial velocity components in  cylindric a1 
coordinates system 

defined in text 

ratio of specific heats 

density 

transformed coordinates 

Subscripts and Superscripts 

m radial index 

m~ total number radial stations 

n axial index 

n minimum area  axial station 
S 

total number axial stations 

dimensional quantity 
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Section 1 

INTRODUCTION 

Transonic solutions for  the converging-diverging region (throat) of 

rocket engines have occupied considerable attention i n  the scientific com- 

munity. Contours in this region can greatly influence heat t ransfer  and 

performance of the engines and, therefore, overall  systems design. Analysis 

efforts in  the past have centered around polynomial expansions of the poten- 

tial function in  the throat region. This approach, however, was limited until 

recently by throat radius of curvature to throat radius ratios that a r e  gen- 

eral ly exceeded i n  current  designs. Moreover, these attempts did not con- 

s ider  the influence of inlet geometry for  more than a short distance upstream 

of the physical throat. 

Other attempts to describe these flow fields have utilized asymptotic 

time-dependent solutions to the finite difference equations of motion. 

~ o c k h e e d / ~ u n t s v i l l e  produced a program of this type which also considered 

non-isoenergetic flow. This program a s  well a s  programs produced by other 

organizations we re  plagued by stability problems inherent in the numerical 

analysis technique. 

In an  attempt to resolve the stability problem, Lockheed/~untsville 

developed the E r r o r  Minimization technique. This numerical analysis ap- 

proach has been successfully applied to transonic solutions with and without 

fuel striations. The unusual nozzle configurations of current  interest  to 

NASA/JPL, however, require a redevelopment of the coordinate system and 

the equations of motion in that system. 

This study i s  divided into four tasks a s  follows: 

1. Calculation of relatively steep inlet configurations 
which a r e  within the capability of the existing program 
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2. Redevelopment of the equations of motion to consider 
inlet angles approaching 90 degrees 

3.  Execution of the computer program of Task 2,  and 

4. Documentation of the computer program and user ' s  
manual. 

The f irst  three items a re  discussed in the main body of this report 

and the last item is discussed in Appendix B. 
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Section 2 

TECHNICAL DISCUSSION 

The study effort identified in  the Introduction of this report i s  divided, 

according to the Statement of Work, into three separate and distinct tasks 

(excluding documentation). In the interest of clarity,  these tasks will be 

identified and discussed in chronological order.  

TASK I - Statement 

Utilizing the computer program described in  Ref. 1,  obtain the inviscid 

subsonic-transonic-supersonic flow field for  four axisymmetric nozzle con- 

figurations. These a r e  actually two nozzles each with different inlet con- 

figurations. The two nozzles have a steep convergent half-angle of approxi- 

mately 75 deg. The divergent half angle i s  15 deg and the throat radius is 

0.8 in. One nozzle has a throat radius of curvature to throat radius rat io of 

0.5 and the other 0.25. F o r  each of these two nozzles the inlets will consist  

of: 

0 A conical inlet extending upstream to infinity. 

0 An axial flow inlet from a tube (contraction a r ea  
ratio = 9.766) with transition to the convergent cone 
of the nozzle by means of a gradual turn which has 
a radius of curvature to throat radius ratio of 1.25. 

To compute the flow field, an error-minimization technique i s  used to 

successively reduce the e r r o r s  of the local finite-diffe rence equations a t  the 

nodal points in a stretched Cartesian coordinate system. 

TASK I - Discussion 

The computer program described i n  Ref. 1 was not designed to handle 

the extremely steep inlet geometry which i s  the subject of this study. To 
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provide interim results,  however, this task was defined with a configuration 

of interest  which could possibly be treated with the existing analysis. 

Figure 1 depicts the Task I nozzle configurations. An attempt was 

made to analyze these nozzles with the analysis method of Ref. 1 but the 

computer program was not capable of treating these severe cases.  The in- 

ability of the existing analysis to t rea t  the Task I configurations, however, 

was not a serious setback because these same configurations were  to be 

analyzed using an  improved solution developed under Task 11. 

Task I1 -- Statement 

Reformulate the inviscid flow problem discussed in Task I to adequately 

t rea t  very steep inlet angles (up to and including 90 deg). This may be accom- 

plished by a transformation applied to the conservation equations such that 

grid lines in  the transformed plane map into circular  a r c s  which a r e  normal 

to the centerline and normal to conical walls of the nozzle. This program 

will be written in  ASA standard FORTRAN V language and will be operational 

on a Univac computer. 

Task I1 - Discussion 

Governing Equations: To simplify the subsequent analysis i t  i s  assumed 

that the working gas in  the nozzles to be analyzed i s  an  ideal perfect gas and 

that the flow i s  isoene rgetic, inviscid, adiabatic and isentropic. Under these 

assumptions the conservation equations in  cylindrical coordinates reduce to: 

~ w ' P ' )  + a@'.') + P'V' = 0 (conservation of mass )  ax a r  r 

(condition of irrotationality) 
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Finite-, \ 

Pig. 1 - Task I Nozzle Geometries 



From the above as surnptions we m a y  write 

where 

For  the sake of convenience a change of variables i s  made; 

The above equations become 

Consider the transformation to the coordinate system; 
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Under such a transformation Eqs. (5a) and (5b) become 

where 

Figures 2 gives a schematic of the grid structure in the 6, i/.J plane 

(which i s ,  of course, independent of the transformation). The grid is  always 

centered and orthogonal even though the grid in the physical plane is  not. The 

wall i s  always taken to correspond to + = 1 while the centerline i s  $ = 0. 

Recalling that p = p(u, v) we may rewrite Eq. (6a) 

Using the nomenclature of Fig. 3 and using central differences the finite- 

difference analogs to Eqs. (7) and (6b) a r e  written: 
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n = l  n = n  n = n  S t 

F ig .  %a - Grid Structure in m, x Plane 

Fig .  2b - Grid Structure in f; , $ Plane 

Fig. 3 - Finite Difference Gr id  
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where 

and where 

Equations (8a) and (8b) must be satisfied for every grid point, (at  leas t  

every interior grid point) in the field. 

To complete the solution, equations governing the behavior of the wall, 

centerline, inlet and outlet points a r e  needed. Unfortunately these equations 

a r e  not currently embodied in the steady state theory, and approximate 

relations must be used. 
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The upper wall condition i s  approximated by a linear extrapolation of 

the square of speed from adjacent points; 

and is  used in conjunction with the tangency conditions, 

For  the centerline, use is made of symmetry to yield (second order 

extrapolation) ; 

and the tangency condition i s  given by 

The inlet and outlet grid station will be discussed later. 

Numerical Solution of Governing Equations: The previously derived 

relations must now be satisfied over the entire flow field. It should be noted 

that the governing equations a r e  now nonlinear algebraic equations where 

u, v a r e  independent variables rather than the original partial differential 

equations in which the spatial coordinates were independent. 

The E r r o r  Minimization technique, f i rs t  reported in Ref. 1 i s  used to 

effect the numerical solution. A discussion of this technique with applica- 

tion to this problem may be found in Appendix A ,  while a discussion of the 

computer program generated in this study may be found in Appendix B. 
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Task I11 - Statement 

Utilizing the computer program developed under Task 11, obtain the 

subsonic -transonic -supersonic solutions for  eight nozzle configurations. 

Actually there a r e  four nozzles, each with two different inlets. Two of the 

nozzles a r e  the same a s  described in Task I. The other two differ only by 

the convergent half angle which i s  90 deg instead of 75 deg. With each of 

these four nozzles the inlets described in Task I o r  their  equivalents will be 

used. Figure 4 il lustrates the additional nozzle configurations to be analyzed. 

In general, a s  expected, the dominant parameter  i n  these configurations 

i s  the radius ratio (radius of curvature of the throat/radius of the throat). 

Accordingly the configurations with identical radius ratios a r e  presented to- 

gether. Figure 5 gives the computer program results fo r  the 0.5 radius 

ratio nozzles while Fig. 6 gives the results fo r  the 0.25 radius ratio nozzles. 

Plotted in  these figures a r e  the wall and centerline Mach number distributions. 
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= 0.5 nozzle 

A- t--+ 

- 2" - 1" 0 1" 2l 

Fig. -4 - Task 2 Additional Nozzle Geometr ies  
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Section 3 

RESULTS 

The most striking result i s ,  of course, that the Mach. number distribu- 

tions a r e  virtually identical on the wall for those regions in which the contour 

i s  common to al l  cases on both the 0.5-radius-ratio and 0.25-radius-ratio 

nozzles. Although the scaling o r  weighting techniques described in  Appendix 

A would tend to produce such a result this effect cannot be rationalized solely 

on that basis. 

It can be concluded that the throat i s  indeed the boundary condition and 

that the inlet and outlet do indeed respond to the throat influence but only 

within certain bounds, i.e., a throat distribution which requires an impossible 

inlet distribution i s  prevented. As such the throat i s  not an absolute bound- 

a ry  condition. This conclusion i s  supported by the fact that in an elliptic 

region there is  a mutual interplay o r  exchange of information. 

Figure 7 illustrates the effect of radius ratio and inlet angle on the 

throat flow angle distribution for  the reservoir  inflow cases. The corres-  

ponding axial inflow results a r e  again virtually identical. As can be seen, a 

noticeable alteration of the flow angle distribution occurs due to an inlet angle 

change from 75 deg to 90 deg for  the 0.25- radius- ratio case. This effect is 

barely perceptible on the 0.5- radius - ratio case. 

It also should be noted (Fig. 6 )  that there exists a tendency to produce 

waves at  the juncture of the throat circle and the exit cone. Whether this is 

caused by the large velocity gradients in  this region o r  by the nozzle envelope 

shock wave has not yet been determined. Attempts to introduce smoothing 

utilizing the second derivatives of the velocity components (similar  to pseudo- 

viscous terms in  unsteady asymptotic analyses) have been only moderately 

successful. 
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Throat Flow Angle (in.) 

Fig, 7 - Throat Flow Angle vs Radial Position 
for Reservoir Inflow Cases 



The accuracy of the techniques used in this study have been verified 

for moderate inlet angles and throat radius ratios by Ref. 1. It i s  reason- 

able to expect that the generalization of the grid distribution system will, 

with judicious use enhance rather than detract from the accuracy. It is 

further to be expected that the accuracy of the results will improve with a 

finer grid system than used in the example calculations. The predictions 

presented in this report a r e  consistent and reasonable. The precision of 

the results must be determined by comparison with experimental data. 

Future Work 

It i s  felt that this study has been a demonstration of the power of 

finite-difference techniques. Unfortunately, the science of numerical meth- 

ods is  impe rfect. The conservation equations adequately describe the in- 

terior  of the flow but boundary conditions a r e  ill defined. Studies currently 

in progress at ~ockheed /~un t sv i l l e  inevitably lead to the conclusion that the 

major stumbling block in  finite-difference analysis is the adequate knowledge 

and treatment of boundary conditions. 

F o r  numerical techniques to truly come into their own it  i s  imperative 

that the proper boundary condition relationships be found. It is suggested 

that studies investigating these boundary conditions a r e  a necessary next step 

in the pursuit of numerical solutions to complex flow fields. 

17 
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Appendix A 

THE ERROR MINIMIZATION TECHNIQUES 
AS APPLIED TO TRANSONIC FLOW IN A 

CONVERGING- DIVERGING DUC T 
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NOMENCLATURE 

Greek 

defined in text 

solution meri t  function 

local contribution to total e r r o r  

unit vector 

minimum area  axial station 

velocity 

solution vector 

temperature 

velocity components in cylindrical systems 

cylindrical coordinates 

replace operation 

ratio of specific heats 

step modifier 

E residual o r  e r r o r  

V any independent variable 

5 ,  \cl transformed system coordinates 

r scale function 

Subscripts and Superscripts 

m radial station index 

maximum radial station index 

axial station index 

maximum axial station 
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DISCUSSION 

A. 1 INTERIOR POINTS 

In the main body of this report i s  was shown that the finite-difference 

analogs to the conservation of mass  and the irrotationality condition were: 

whe re 

ht -, 11, 4, X$, 2- %=-%& 

F o r  a n  a rb i t r a ry  initial estimate of the flow conditions equations (1) and (2) 

will be i n  e r r o r  a t  each interior grid point in  the field. If an inter ior  point 

i s  described by subscripts m , n  then the e r r o r s  in  Eqs. (A.l) and (A.2) a r e  

4 h,.. and %--,n , respectively. 
8 - 2  
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The problem reduces to one of driving the e r r o r s  a t  every point in 

the flow field to zero (o r  at  least reducing them substantially). 

Now let 

Obviously a l-,n is positive definite and is zero only when the e r r o r s  a r e  

zero. Further let  

Again i f  ,,., is zero for  every *,n then G is a positive definite function a 
which has an absolute minimum at  the desired solution point. 

From calculus 

where ds i s  an infinitesimal displacement along the unit vector . F o r  

any given displacement d~ , dC is a maximum when 

then 

k c =  V G e O f  ds = \VG/C& 
lvgi 

but the largest  possible change in 6 i s  
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i f  the minimum was found on the next step then 

&=  -5 
Ivc ) 

while 

of course, dc is the change in the independent vector, so that 

The above expression is  a f irst-order multivariable counterpart of the 

familar  Newton-Raphson recursion formula. It i s  quite possible that the 
1 8 4  1 ) 

value of 6 may be greater  than c'". It may be recalled that the step 

length was calculated under the optimistic assumption that the next value of 

@ would be zero. It i s  in fact immaterial to the technique how long a step 
f t , l )  I L )  

is taken a s  long a s  & i s  less than d . A step modifier i s  therefore 

added to the above recursion formula to achieve the final form used in  the 

e r r o r  minimization technique. 

In the computer program discussed in Appendix B the initial value of was 

chosen a s  unity and each time that a new value of 4 was calculated that was 
r 

greate s than the previous value, 3 was se t  to 75% of i t s  previous value. No 

large amount of scientific thought went into this choice, and experimentation 

and investigation of the behavior of b might well significantly reduce the 

computation time. 

A-4 
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Repetitive use of Eqs. (A.l) and (A.2) over the entire flow field allow 

the evaluation of the merit  function G for  the current relaxation step. In 

order  to apply Eq. (A.5), however, to alter the independent vector, the gradient 

of C must be calculated. Now 

Because of the five point influence this reduces to 

In the actual calculation, it  becomes very inefficient to calculate the above 

expression directly. It is however very easy to calculate the following 

terms while at  point W-, r\ 

where (b+~,-  ), ( m -  I ,  *I ), ( m,n ), ( * , > % + I  ), ( -,m- I ) a r e  identified a s  points 

3,4,0, 2, 1 in Eqs.. (A. 1) and (A.2). It also can be seen that ,. 

where 3 is any variable in the system. 

Equations (A.l) and (A.2) may then be differentiated with respect to 

the velocity components. For  simplicity Eq. (A. 1) is rewritten 
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-I i Ae + C b \  

where r, 

. ,. ..(.*-.,,+Ti (2rqvd 
t 

Then; 

(A. 7a) 

d 

9 4 , , ,  - ; O( -I I A B + L ~ )  -?+8 +i+-~,/ A +z5b +('Q-%k] (A. 7b) 

9% A. 70 

a&0) - = at,,,, BIO - 
3l.h a ~0 

(A. 7d) 

(A. 7e) 

(A. 7f) 

(A. 7g) 

(A. 7h) 

(A. 7 c) 
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(A. 7i) 

(A. 7 3  

(A. 7k) 

As a sweep is made through al l  interior points the gradient is construc- 

ted by summing the contributions in the appropriate fashion, i.e+, 

After the sweep of the entire flow field has been completed, the gradient vector 

will have been properly formed. Any confusion concerning this process will 

be clarified by examining subroutine EMT in  Appendix B. 

A.2 BOUNDARY POINTS 

As discussed in the main body of the report, an approximation to the 

wall boundary condition is 

where points 1 , 2 ,  3 correspond to gci , \-A+ , I-244~ respectively. Now 
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so  that the differential of Eq. (A.8) i s  

but 

T 8, u,,, 

and 

A Y ) , ,  k44 du,,, 
so  that 

- ( ~ 3 , n  h 3 ,  ~ ? , ~ d % , n  ) 
It can be seen from Eq. (A.5) that the change in  each independent vari-  

able can be found from the recursion formula. Therefore 

In order to retain the proper tangency relationship 

Similarly, the cente rline conditions yield 

(A. 10) 

(A. 1 1) 

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER 



(A. 12) 

where points 1, 2, 3 correspond to9l.s , b+ , 2 ~ ' # '  respectively. 

It may be noticed thzt components of the gradient surface a r e  calculated 

at  all interior points plus all  surrounding o r  non-interior points. Equations 

(A.9) through (A.12) ignored o r  destroyed this idormat ion at  the wall and 

, centerline. At the inlet and outlet however use is  made of this information to 

al ter  the variables at  these stations such that the function G is minimized. 

This i s  consistent with the assumption that these surfaces a r e  not boundary 

conditions. 

Equations (A. 1) and (A.2) a r e  not altered i f  they a r e  multiplied by some 

scale factor. In this problem it is advantageous to multiply the equations by 

a scale factor which emphasizes the throat. The scale used was 

where i s  the throat station. The local e r r o r  t e rms  a r e  redefined 

and all pertinent equations a r e  altered appropriately. It is felt that the proper 

formulations currently under investigation should automatically provide this 

type of scaling o r  emphasis of the throat. F o r  the time being the above 

approach is  justifiable from the numerical viewpoint. The scaling tends to 

sacrifice the end regions in order  to improve the throat region. It i s  this 

flow of information away from the throat which implicitly causes the throat 

to act a s  the boundary condition. 
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Using the governing equations and process described above the nozzle 

solution described in Appendix B yields the results shown in Fig. (A. 1) f o r  the 

90 deg inlet, 0.25 radius ratio, reservoir  inflow case. It can be seen that 

the results a r e  wavy in the supersonic region. The reason for this effect is 

not known and i s  certainly not a physical phenomenon. The problem m a y  be 

due to the rapid turning of the flow through the low transonic being suddenly 

restricted to flowing parallel to the conical exit. This recompression effect 

due to the discontinuity in second derivatives is well known and gives r ise  to 

a nozzle shock wave. 

In any event a method has been incorporated into the solution to smooth 

the results. This is a user-selected option and is generally not employed 

until the unsmoothed relaxation equations have approached a final solution. 

In this way i t  i s  possible to calculate the unsmoothed solution a s  well a s  the 

smoothed. The smoothing i s  accomplished by introducing e r r o r  t e rms  based 

on the second derivative; 

(A. 13) 

Driving, o r  attempting to drive, the second derivative to zero implies that 

the functions must be linear, certainly an unsatisfactory situation. The mag- 

nitude of these terms is  kept small, however, so that the smoothing does not 

introduce e r r o r s  in  the differential equation solution. Scaling Eqs. (A. 13) by 

0.03 1 yields the second set  of results on Figs. A. 1 and A.2. 
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A. 3 C ONC LUSION 

The E r r o r  Minimization analysis i s  straightforward, simple and rapid. 

It i s  certainly an attractive technique for  numerical analysis of the partial 

differential equations of motion. The problem areas  of boundary conditions, 

need for  smoothing (pseudo-viscosity?) l ie  with the theory and not with the 

solution technique. Future improvements would seem to depend largely up- 

on developments i n  the theory since the numerical solution seems adequate. 
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Appendix B 

CONVERGING- DIVERGING NOZZLE 
ANALYSIS COMPUTER PROGRAM 
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DISCUSSION 

A computer program has been written to ca r ry  out the calculations dis- 

cussed in the preceding sections of this report. This Appendix is written to 

explain the inner working of this program as  well as  i ts  input-output. 

GENERAL 

The program is written in FORTRAN V language and with suitable 

alteration of dimension statements, can be utilized on machines with 16K (or  

greater) core locations. Input and output during execution is  confined to the 

standard input and "listable" tapes. Conversion from machine to machine 

should therefore be readily accomplished, The program i s  an assembly of 

special o r  restricted purpose subroutines. These subroutines may be con- 

veniently grouped a s  follows: 

Subroutine Purpose 

Drive r 

Input 

Grid preparation 

Flowfield initialization 

E r r o r  minimization control 

Subroutine Name 

MAIN 

INPUT 

SETUP1 

SETUP2 

SETUP3 

SETUP4 

TRANSX 

TRANSR 

TRANS0 

WALL 

START 

LOGIC 
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Gove rning equation analyzers 

Output 

Utility 

EMT 

BOUND 

OUTPUT 

ITSUB 

RHO 

Before proceeding with an explanation of each subroutine i t  may be 

helpful to describe basically the organization of the computer program. The 

code was, as  much as  possible, written such that variable names were de- 

scriptive. This fact should help in  the understanding of the program. 

A main routine i s  written which acts as  a driver for  the entire subse- 

quent calculation. Multiple o r  stacked cases a r e  possible since the main 

program recycles to initiate the input routine. If all cases have been pro- 

cessed this attempt to read will terminate the job. 

The sole function of the input routine i s  to get the necessary informa- 

tion into core and does essentially no processing. Assisting the input rou- 

tine a r e  four setup subroutines which a r e  selected based on the input 

instructions and data required. Each of these routines upon completion of 

their function, returns to the input routine which in turn returns to the main 

program. 

At that point all input requirements a r e  satisfied and the physical grid 

and transformation derivatives have been determined. The next step is to 

make an initial flowfield estimate. Fo r  this estimate, subroutine START is 

called. 

Upon completion of the initialization, the relaxation process i s  begun by 

entering subroutine LOGIC. This routine repetitively employs subroutines 

EMT and BOUND until a terminal condition is  reached. Periodically the out- 

put subroutine is  called. Upon termination of the calculation, control i s  re-  

turned to the main program which reinitiates the input, 
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SUBROUTINE DESCRIPTIONS 

Subroutine: MAIN 

This routine is  an unchanging main program that seldom i f  ever needs 

r e  compiling. 

Subroutine: INPUT 

This subroutine is the basic input routine. The necessary input sequence 

is as  follows: 

Card 1, Format (20A4), header infornlation, appears at  the top of each 
page 

Card 2, Format (1615), options card, controls execution of program 

Field 1, AAAAX, X = number of boundary equations 
Field 2, AAXYZ, X = 1, automated setup (see SETUPI) 

X = 2, input and distribution (see SETUP2) 
X = 3, input all  points (see SETUP3) 
X = 4, input circular a r c s  (see SETUP4) 
Y = 0, tube radial transformation (see TRANSR) 
Y = 1, sine radial transformation (see TRANSR) 
Y 1 (see TRANSR) 
Z = 0 linear axial transformation (see TRANSX) 
Z = 1 tangent axial transformation (see TRANSX) 
Z 1 (see TRANSX) 

Field 3 ,  AAAXX, XX = number $ cuts 

Field 4, AAAXX, XX = number of cuts 

Field 5, AAAXX, XX = number of 5 cuts downstream of throat 

Field 6, XXXXX, XXXXX = number of calculation ~ t e ~ s / ~ r i n t  step 

Field 7 ,  XXXXX, XXXXX = number of calculation steps to termination 

Field 8, AAAAX, X = number of 5 c ~ t s / ~ r i n t e d  page 

F ie ld9 ,  AAAXY, X = O , a l t e r u p s t r e a m b o u n d a r y  
X = 1, do not al ter  upstream boundary 
Y = 0 ,  alt e r downstream boundary 
Y = 1, do not al ter  downstream boundary 

Field 10, XXXXX, number of calculation steps before smoothing 
employed. 

B -4 
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Card  3, Format  (5E10.6), gas reservoi r  conditions 

Field 1-4, chamber pressure ,  temperature,  gas constant, gamma 

* 
C a d s )  4, Format  (11, 9X, 6E10.6), wall equations data 

F i e l d l , X ,  X = l  coniceq.  r = a {  \ I b t c x t d x 2  t e )  

X = 2  poly 4 3 2 r = a x  t b x  t c x  f d x t e  

- bx 
2 

X = 3  expon. r = a ( l +  e ) t c 

Field 2- 7 a ,  b, c, d, e ,  axial l imit  to which equation applies. 

Card  5, Forrnat (5E10.6), l inear  axial stretching factor ,  damping factor 
Card(s)6,  see  subroutines SETUP1, SETUP2, SETUP3, SETUP4 

Subroutine: SETUP 1 

This subroutine calculates the type of grid distribution shown in the 

sketch below. The actual distributions r(E , $), X( 5, 4) a r e  determined by 

TRANSR, and TRANSX, respectively. 

- 
>k 

Input a s  many ca rds  as boundary equations beginning with equation far thes t  
upstream 
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This type of grid distribution involves the least  effort on the par t  of the u s e r  

and should be satisfactory for  many current  rocket engines. Extremely high 

entrance angles should not be attempted with this distribution for  obvious . 

reasons. 

An additional input parameter  must be supplied to be read by this sub- 

routine. This parameter  is AE and fo r  the tangent stretching transformation 

A 6 must be chosen such that the maximum value of 15 1 is  l e s s  than * / 2 .  

Card  6, Format (E10.61, A 5  

Subroutine: SETUP2 

This subroutine gives much the same distribution a s  that above except 

that the u se r  cannot find a convenient transformation X = TRANSX ( 6 ,  $) and 

therefore wishes to input this transformation in a tabular form. Starting 

with the most upstream station input, l i s t  of axial locations fo r  5 data surfaces. 

Cards 6, Format  (8E10.6), (X(N), N = 1, NTOT) 

Subroutine: SETUP3 

This subroutine reads the grid setup i n  i t s  entirety. The wall equations 

need not be input with this option. 

Cards  6 ,  Format  (8E10.6), (X(M, N), R(M, N), M =  1, MTOT) 

Subroutine: SETUP4 

Referring to the sketch on the following page i t  can be seen that the 

grid distribution is determined along circular  arcs .  Gene rally these a r c s  

a r e  normal to the wall and center line. Occasionally this is  not possible nor 

practical,  particularly in the case of the axial inflow. It is for  this reason 

that the wall angle i s  also input along with the basic information needed to  

determine the grid. 
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All 5 stations a r e  input in order  starting f rom the left. F o r  all  stations but 

the throat station a card  containing the following information i s  supplied 

Cards 6, Format (8E10.6), rS, xS, BS, €Iw 

where xs i s  the center of the circular  a rc ,  r s is the radius of the a rc ,  Bs is 

the included angle (degrees) of the a r c  and Bw i s  the wall angle (degrees) at 

a r c  wall intersection. The throat i s  a special case and requires a ca rd  

with the throat radius in field one with the remaining fields blank. 

It is not necessary to input the wall boundary conditions with this setup 

option. 

Function TRANSX 

This function provides one of two selectable transformations on call. 

They a r e  

where C (axial stretching factor) was input 
(see Subroutines INPUT) 
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The function i s  designed such that other transformations niay be easily added. 

Function TRANSR 

This function provides one of two selectable transformations on call. 

They a r e  

r = Rw (XI 4 where R (x)  i s  the wall radius determined 
W 

7~ from the boundary equations 
r = Rw(x) sin (7 4) 

This function i s  designed such that other transformations may easily be added. 

Subroutine TRANSD 

The purpose of this calculation is to provide the derivatives of the trans-  

formations that have been supplied. These derivatives a r e  taken numerically. 

Using centered differences 

B-8 
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The information which is  actually retained for  subsequent use i s  

As i t  stands, this subroutine could be removed with an  attendant savings i n  

core  since block common GRIDD contains information which can easily be 

recomputed a s  necessary. 

Subroutine WALL 

This subroutine calculates Rw(x) using one of the three input equations 

described in Subroutine INPUT. Other functions could be included easily if 

desired. 

Subroutine START 

It i s  necessary to initialize the flow components to some reasonable 

values before beginning the relaxation process.  The better the initial guess 

the fas te r  one can expect an acceptable final solution. It i s  necessary to 

use some variation of one dimensional flow theory i n  o rder  to make this  

initial approximation to the solution. With the grid distributions described 

i n  SETUP1, SETUP2, SETUP3 the constant 6 surface is initialized to have 

a constant Mach number, which if the flow were axial, would conserve the 

one - dimensional value of the choking mass  flow. 

With SETUP4, however, i t  is possible to make a better initial guess 

since the circular  a r c s  (for 0 = ew) correspond to constant Mach number s 
surfaces for  source o r  sink flow. 

B-9  
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Subroutine LOGIC 

The d e s c e ~ t  process described in  Appendix A is implemented by this 

subroutine. 'l'his subroutine also prints a message each time the descent 

process is unsuccessful. 

Subroutine EMT 

This subroutine utilizes the equations derived in  the main body of the 

report and the derivative equations found i n  Appendix A to calculate the e r r o r  

function and i t s  derivatives for  the entirety of the interior flow field points. 

Subroutine BOUND 

This subroutine utilizes the equations derived in  the main body of the 

report and the derivatives equations found i n  Appendix A to calculate the 

derivative of the e r r o r  function for  the boundary points. If desired this sub- 

routine can prevent either the inlet o r  the outlet o r  both surfaces f rom 

changing during the relaxation process.  This i s  done by zeroing out the 

e r r o r  function derivatives corresponding to these surfaces (see Field 9 of 

Card 2). 

Subroutine OUTPUT 

Pe  riodically (determined by input) the OUTPUT subroutine i s  called. 

Its function i s  to output current  values of flow variables over the ent ire  flow 

field. The magnitude of the e r r o r  function (6) as  well a s  the descent s tep 

length (DELTA) a r e  printed fo r  this output relaxation step. The velocity 

components a r e  given in  ft/sec while the flow angle i s  given in  degrees. The 

axial and radial position a r e  output in the same units (any consistent units) 

which were input. The Mach number, and pressure  and temperature ratios 

a r e ,  of course,  dimensionless. 

The mass  flux through each surface and the wall thrust integral (initia- 

lized to zero  a t  the leftmost station) a r e  also calculated. The mass  flow is  

divided by the one-dimensional value and i s  output a s  the mass  flow coefficient. 

The thrust increment i s  divided by the chamber pressure  and the throat a r e a  

and i s  therefore also output a s  a dimensional quantity. 
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It is  possibie (see Subroutine INPUT)  to  control the number of I surfaces  

output per page so  that an unnecessary amount of paper i s  not generated. 

See Subroutine LOGIC for an additional print message. 

Subroutine ITSUB 

This general purpose routine is  used to perform the iterative solution 

to  a function of one variable, i.e., determine x such that f(x) = 0 

. - - - - - - - 

Function RHO 

This function calculates the density a s  a function of the velocity com- 

ponents. 

Sample Input 

The infinite reservoir ,  0.25 radius of curvature, 90-deg inlet case 

discussed in the main body of the report i s  given below as  a sample of the 

input required. 

JPL 90 D T G  I N L E T  9 e 25 HC r R k 5 C H V G I  H I K F L C X  
1 4Q:i 1 1  1 0 R / LO@ 2000 2 G O  1 6 P d  

! + 1  + ( J 4 +  1 + 0 4 +  1 7 6 8  +04+ 1 4  +o 1 

B- 11 
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J P L  75 OEG I N L E T  9 - 2 5  RC 9 R E S E R V Q I I R  INFLBk 

R E L A X A T I e N  S T E P  539 G =  L687E-34 DELTA= 3 .  l v ~ 2 E - ~ j 1  

5i 
x R X U V IH THETA 

M A S S  FLPlW CJEFFICIENT= \?.9683E '2.2 THRLST I N C R E W E & l =  - C . 7 8 ? Y E  e l  



C M A I N  ' 
1 0 0  CALL INPUT 

CALL START 
CALL LOGIC 
GO TO 1 0 0  
END 

SUBROUTINE SETUP1 
C O M M O N / O P T ~ O N / K O P T ( ~ ~ )  
C0MM0~/GRID/X(11*21)~~(11*21) 

1 0  FORMAf (E10 .6 )  
MTOT=KOPT(3 )  
NTOT=KOPT( 4 ) 
ND=KOPT(S)  
R E A 0 ( 5 * 1 0 ) D X I  
X1=-FLOAT(NTOT-ND)*DXI  
D P S I = ~ O / F L O A T ~ M T O T - ~ ~  
DO 1 0 0  N= 1 eNTOT 
X I = X I + D X I  
P S I = I o + D P S I  
DO 1 0 0  M = f + M T O T  
P S I t P S I - D P S I  
X ( M * N ) = T R A N S X ( X f  + P S I )  
R ( M $ N ) = T R A N S R ( X f r P S f l  

1 0 0  CONTINUE 
RETURN 
END 
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S U ~ W B U T I N E   SETUP^ 
COMMON/OPT I ON/KOPT ( 16 ) 
COMM0N/GRID/X(llr2l)*~(llr21) 
DIMENSION XIN(21) 

10 FORMAT(8ElOe5) 
MTOTSKOPT(3) 
NTOT=KOPT(4) 
R E A D ( ~ * ~ O ) ( X I N ( N ) ~ N = ~ ~ N T O T )  
DPS f = 1. /FLOAT (MTOT-1 ) 
DO 100 N=lrNfOT 
Xt=XIN(N) 
PSI=l.+DPSf 
DO 100 M=lrMTOT 
PSI=PSI-DPSI 
X(M*N)=TRANSX(XIrPSI) 
R(MeN)rTRANSR(XIePSl) 

100 CONTINUE 
RETURN 
END 

SUBROUTINE SETUP3 
COMMON/OPT~ON/KOPT(16) 
COMMON/GRID/X(11*21)*R(llr21) 

I0 FORMATfBEIO.6) 
MTOTtKOPT(3) 
N ~ O T = K O P T ( ~ )  
DO 100 N=l*NTOT 
R E A D ( S r l O ) ( X ( M r N ) r R ( M I N ] r M = l r M T O T j  

100 CONTINUE 
RETURN 
END 
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S U B R O U T ~ N E S E T U P ~  
COMMON/OPT ICY /#OPT( l t 5 )  
CO~MON/GRfD/X(11r21)*R~11~21) 
COMMON/SOURCE/RS(21)exS(21)eTHETAS(21)eTHETWA(21)  
D A T A P f 0 2 / 1 0 5 7 0 7 9 6 3 /  

1 0  FORMAT(BE10.6)  
M T O T = K O P f ( 3 )  
N T O T = K O P T ( ~ )  
N D z K O P T ( 5 )  
NSsNTOT-ND 
D P S  1 = f  /FLOAT ( MTOT- 1 
0 0 1 0 0 N = l  r N T O T  
R E A D ( ~ ~ ~ O ) R S ( N ~ ~ X S ( N ) ~ T H E T A S ( N ) * T H E T W A ( N )  
T H E T A S t N )  =THETAS (N)/57,3 
T H E T W A ( N ) = T H E T W A ( N ) / ~ ~ ~ ~  
P S I = l . + D P S I  
D O l O O M = l e M T O T  
P S f = P S I - D P S I  
R(MIN)=RS(N)+S~N(ABS(~HETAS(N)))*SIN(PIO~*PSI) 
~F(N.EQ.NS)R(M~N)~RS(N)*SIN(P~O~*PSI) 
F = l e  

IF(THEfAS(N).LT.O.)F=-1. 
X(M~N)=XS(N)+F*SQRT(RS(N)**~-R(M~N)**~) 
IF(N.EQ.NS ) X ( M I N ) = O ~  

1 0 0  C O N T I N U E  
RETURN 
END 

F U N C T I O N  T R A N S X ( X I e P S 1 )  
C O ~ M O N / O P T ~ O N / K O P T ( l 6 )  
COMMON/MISG/XSCALE~DAMP 

D A T A P I 0 2 / 1 e 5 7 0 7 9 6 3 /  
I = K O P T ( 2 ) - 1 0  * ( K O P T ( 2 ) / 1 0  ) 

I F ( I e N E e O 1 G O  T O  i 0 0  
T R A N S X ~ X S C A L E Y X I  
GOTO f  000 

1 0 0  I F ( I e N E o 1 ) G O  TO 200 
TRANSX=XSCALE+SIN(PIO~*XI~/COS(PIOZ*X~) 
GOTO loo0 

200 C O N T I N U E  
~ O O O  RETURN 

END 
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FUNCTION TRANSR!XlcPS!! 
COMMON/OPT~ON/KOPT( 16) 
DATAPI02/le5707963/ 
I=KOPT(2)/10-10*(KOPT(2)/100) 
IF(IeNEo0) GO TO 100 
X=TRANSX(XIrPSI) 
CALL WALL (RSCALEqX 
TRANSR=RSCALEUPSI 
GO TO 1000 

100 IF(1aNEeI)GO TO 200 
X=TRANSX(XIvPSI) 
CALL WALL (RSCALEeX) 
TRANSR=RSCALE*SIN(PI02+PSI) 
GO TO 1000 

200 CONTINUE 
1000 RETURN 

END 

SUBROUTfNE TRANS0 
C O M M O N / G R I D D / D X D X I ( l 1 ~ 2 1 ~ ~ D X D P S I ~ 1 1 ~ 2 1 ~ ~ D R D X I ~ l l * 2 l ~ ~ D ~ D P ~ ~ ~ l 1 * 2 l ~  
C O M M O N / G R I D / X ( ~ ~ ~ ~ ~ ) O R ( ~ ~ ~ ~ ~ )  
COMMON/OPTION/KOPT(~~) 
MTOT=KOPT(~) 
NTOT=KOPY(4) 
DO 1000 N=lqNTOT 
NMl=N-1 
NPl=N+l 
IF(N.EQ.~)NM~=N 
IF(NoEQeNT0T)NPltN 
DO 1000 M= 1 rMTOT 
MM1-M-1 
MPI=M+I 
IF(MeEQe 1 )MM1=M 
IF( MeEQeMTOT)MPI=M 
DXDXI(MIN)=Y(MVNPI)-x(~vNM1) 
DXDPSI(M*N)=X(MM~VN)-X(MP~+N) 
DRDXI(M*N)=R(MeNPl)-R(MoNMi) 
D R D P S X ( M I N ) = R ( M M ~ ~ N ) - R ~ M P ~ V N )  

1000 CONTINUE 
RETURN 
END 
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SUBROUTINE W A L L ~ R I X )  
COMMON/WALLFO/IWALL(1O~~WALLCO(lO~6) 
c O M M O N / O P T I O N / K O P T ( ~ ~ )  
D I M E N S f O N  A ( 5 )  
NBOUNO=KOPTt l )  
DO 1 0 0  N= l rNBOUND 
I F ( W A L L C O ( N * 6 ) e G T o X ) m  TO 200 

1 0 0  CONTINUE 
N=NBOUND 

200 DO 300 J = l r S  
300 A ( J ) = W A L L C O ( N a J )  

IW=IWALL(N)  
GO TO ( 4 0 0 , 5 0 0 e 6 0 0 ) r t ~  

4 0 0  R = A ( ~ ) * ( S Q R T ( A ( ~ ) + A ( ~ ) * X + A ( ~ ) * X * X ) + A ( ~ ) )  
GO TO 700 

500 R = ( ( ( A ( ~ ~ * X + A ( ~ ) ) * X + A ( ~ ) ) * X + A ( ~ ) ) * X + A ( ~ )  
GO TO 700 

600 E = E X P ( - A ( 2 ) * X * X )  
R = A (  I )*( 1. -E)+A(31 
GO TO 700 

'700 RETURN 
END 

F U N C T I O N  R H O ( U * V )  
cOMMON/REST/PCITCIRCIGAMMACPRHOC~AC 
GMl=GAMMAC-1 e 

RHO=(1.-.5*GMl*(U*U+V*V~ ) * * ( l e / G M l )  
RETURN 
END 
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S U B R O U T I N E  I T S U B  ( F O F Y * Y ~ S A V E ~ C O N V I N T I M E S )  
C S U B R O U T I N E  FOR R E G U L I  FALSI ITERATION CONTROL 
C  
C 

D I MENS I ONSAVE ( 8 
N l z S A V E ( 3 )  + a 1  
F O F X C K s S A V E ( 8 )  
FOFX=FOFY 
X=Y 
I F ( A B S  ( F O F X ) - C O N V ~ L E ~ Q ~ ) G O T O ~ ~ O  
I T I M E = S A V E ( 1 ) + 6 1  
~ O T O ( ~ O V ~ O ~ ~ O ~ ~ ~ ) ~ ~ T ~ M E  

10 N1= l  
I T  I M E = 2  
F O F X C K t F O F X  
S A V E ( 8 ) = F O F X C K  
I F ( F 0 F X e L T ~ O a ) G O T O S O  

30 I F ( F O F X e L T e O e ) G O T 0 7 0  
IF (FOFXCKeGEeFOFX)GOTO35  
S A V E ( 2 ) = - l r * S A V E ( 2 )  
X = X = 2 a * S A V E ( 2 )  
G O T 0 9 0  

35 S A V E ( 4 ) = X  
S A V E  ( 5 =FOFX 
X = X - S A V E ( 2 )  
G O T 0 9 0  

50 I T I M E = 3  
I F ( F O F X ~ G T ~ O .  ) G O T O ~ O  
I F ( F O F X C K e L E b F O F X ) G O T 0 5 5  
S A V E ( 2 ) = - 1 4 * S A V E ( E )  
X = X + 2 a + S A V E ( 2 )  
G O T 0 9 0  

55 S A V E ( 6 ) = X  
s A V E ( 7 ) = F O F X  
X = X + S A V E ( 2 )  
G O T 0 9 0  

70 1 T I M E = 4  
N I = S A V E ( 3 )  
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I F ( F O F X ~ L T ~ O . ) G O T O ~ S  
S A V E ( 4 ) = X  
SAVE 15 =FOFX 
G O T 0 8 0  

75 S A V € ( 6 ) = X  
SAVE ( 7 ) =FOFX 

80 X = S A V E ( ~ ) - S A V E ( S ) * ( ~ S A V E ( ~ ) - S A V E ( ~ ) ) / C S A V E ( ? ) - S A V E ( ~ ) ) )  
90 f F ( N i ~ G E e N f l M E S ) G O f O 1 0 0  

Nl=Nl+I 
sAVE(3 )= l \ J i  
GOTO 1 2 0  

1 0 0  I T I M E = 6  
GOT 0 1 2 0  

1 1 0  I T I M E = 5  
S A V E ( 4 j = X  
S A V E ( S I = F O F X  
S A V E ( 6 ) = X  
S A V E ( 7 ) = F O F X  

120 S A V E (  I ) = F L O A T  ( I T I M E ) + d  
y=x 
RETURN 
END 
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SUBROUTINE OUTPUT~L) 
cOMMON/OPTION /KOPT(l6) 
COMMON/GRID/X(11~2l~*R~11*21) 
COMMON/FLOW/U(llr21)tV~11*21~ 
cOMMON/REST/PC~TCIRC~GAMMAC~RHOC~AC 
COMMON/HEADER/HEAD(20) 
COMMON/MISCD/G~GM~~DEL 
COMMON/GRIDD~DXDX1(1l~2l~*DXDPSI~l1*2l)~DRDXI~ll*2l~tDRDPSI~ll*2l~ 
DATAPt/3e14159/ 

10 FORMAT( 1H1 t20A4) 
20 FORMAT(17HORELAXATION STEP rI5t3H G=*E1204*7H DELTA=tE12.4) 
30 F O R M A T ( l H O t l l X ~ 1 H R ~ 1 1 X ~ l H X ~ 1 l X e 1 H U ~ l 1 X ~ 1 H V * l l X ~ l H M ~ ? X ~ 5 H T H E T A  

I~~X*~HP/PCIBX*~HT/TCI 
40 F O R M A T ( ~ H O I ~ E ~ ~ * ~ )  
50 FORMAT( lHO*22HMASS FLOW COEFFICIENT=*El2.4rl8H THRUST INCREMENT=* 

1E12.4) 
MTOT=KOPT(3) 
NTOT-KOPT(41 
NPAGE=KOPT(~) 
NS=NTOT*KOPT(~) 
AS=PI*R(1*NS)*R(1*NS) 
US=SQRT(2e/(GAMMAC+l.)) 
RHOS=RHO(USIO~) 
WONED=RHOS*US*AS 
GOGMI=GAMMAC/(GAMMAC-1.1 
P ~ N T E G = O ~  
00 2000 N=ltNTOT 
IF(N-NPAGE*(N/NPAGE).EQ*~)WR~TE~~*~O)HEAD 
WRITE(6*20)L*G*DEL 
WRITE(6*30) 
W=O. 
lF(NeEQel)GOT0500 
P2=(1e-(GAMMAC-le)+e5*(U(l*N)**2+V(l~N)**2))**GOGMl 
P l = ( l . - ( G A M M A C - l e ) * e 5 * ( U ( l ~ N - 1 * * 2  **COGMI 
P I N T E G = P ~ N ~ E G + ( P ~ + P ~ ~ S C ~ ~ * P I * ~ R ~ ~ * N ) * * ~ - R ~ ~ ~ N - ~ ~ * * ~ ~ / A S  

500 DO 1000 MzlaMTOT 
UP=U(MeN)*AC 
VP=V(MoN)*AC 
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QSQsUP*UPSVP*VP 
TtTC-(GAMMAC-le)*e5*QSQ/(GAMMAC*RC) 
EMP*SQRT(QSQ/(GAMMAC*RC*T)) 
THETA=57.3*ATAN(VP/UP)  
TOTC=T/TC 
POPC=tTOTC)**(GAMMAC/(GAMMAC-10) 
WRITE~~~~O)R(MIN)IX(M*N)*UP*VP*EMPITHETA*POPC~TOTC 
RHOP=POPC/TCTC 
MMlsM-1 
M P i = M + l  
I F ( M a E Q o 1 ) M M l ~ M  
IF (MeEQoMTOT)MPl=MTQT 
D A = P I * ( R ( M M i r N ) + R ( M P l * N ) ] + . 5  
w = w + D A + R H o P ~ ( u ( M ~ N ) * D R D P S I ( M I N ) W D X D P S I ~ M ~ N ~ ~  

1 000 CON1 I NUE 
WRAT=W/WONED 
W R I T E ( ~ * ~ O ) W R A T * P I N T E G  

2000 CONTINUE 
RETURN 
END 
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SUBROUTINE  I N P U T  
COMMON/HEADER/HEA0(20)  
COMMON/OPTION/KOPT( 16) 
COMMON/REST/PC*TC*RC*GAMMAC*RHOC*AC 
COMMON/WALLFO/IWALL( 1 0 ) * W A L L C o (  ] I O * 6 )  
COMMON/MISCG/XSCALE*DAMP 

1 0  F O R M A T ( E O A 4 )  
20 FORMAT ( 1 6 1 5 )  
30 F O R M A t ( 5 E 1 0 . 6 )  
40 FORMAT( I l * 9 X * 6 E l O o 6 )  
50 FORMAT( 1Hl e 2 0 A 4 )  
60 F O R M A T ( 5 H  O P T ( * I 2 * 2 H ) t *  1 5 )  
70 F O R M A T ( 4 H  P C = * E ~ ~ . ~ * ~ H T C E * E ~ ~ ~ ~ * ~ H R C = * E ~ ~ ~ ~ * ~ H G A M M A C = * E ~ ~ ~ ~ )  
80 F O ~ M A T ( ~ H ~ I W A L L * ~ ~ X * ~ H A * ~ ~ X * ~ H B * ~ ~ X * ~ H C * ~ ~ X ~ ~ H D * ~ ~ X * ~ H E ~ ~ X * ~ H M A X ~  
90 F O R M A T t I H  * 4 X * I l * 6 E 1 2 * 4 )  

R E A D ( S * l O ) H E A D  
W R I T E ( 6 r 5 0 ) H E A D  
R E A D ( 5 a 2 0 ) K O P T  
DO 1 0 0  I t l r l O  
W R I T E ( 6 * 6 0 ) 1 * K O P T ( I )  

1 0 0  C O N T I N U E  
READ(S.30)PC*TC*RC*GAMMAC 
W R I T E ( ~ * ? O ) P C * T C * R C * G A M M A C  
RHOC=PC/ (RCwTC)  
AC=SQRT(GAMMAC+RC*TC) 
IB=KOPT(I) 
I F ( I B e E Q e O ) G O T 0 2 0 0  
R E A D ( ~ * ~ ~ ) ( I W A L L ( I ) * ~ W A L L C O ~ I ~ J ~ ~ J ~ ~ ~ ~ ~ * I ~ ~ ~ I ~ ~  
W R I T E ( 6 r B O )  
WRITE~6*90)(IWALL(I)*~WALLCO(I*J)*J~1*6)*I=l*IB) 

200 R E A D ( S r 3 0 ) X S C A L E * D A M P  
I = K O P T ( 2 ) / 1 0 0  
I F ( I o E Q ~ ~ ) C A L L  SETUPI 
I F ( f o E Q e 2 ) C A L L  SETUP2 
IF (  I e E Q o 3 ) C A L L  S E T U P 3  
I F ( I ~ E Q ~ ~ ) C A L L S E T U P ~  
C A L L  TRANSD 
RETURN 

END 
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SUBROUTINE  S T A R T  
COMMON/GRID/X(ll*21)*R(11*21) 
c O M M O N / F L O W / U ( ~ ~ ~ ~ ~ ) * V ~ ~ ~ * ~ ~ )  
cOMMON/REST/PCVTC~RC~GAMMACORHOCVAC 
COMMON/OPT ION/KOPT(16 )  
COMMON/GRIDD/DXDXI(11~21~~DXDPSI(ll~2l)rDRDXI~ll*2l~~DRDPSI~~l*2l~ 
COMMON/ENDC/ULEND(11)~VLEND(ll)*UREND( 11 ) * V R E N D (  11) 
C O M M O N / S O U R C E / R S S ( ~ ~ ) ~ X S S ( ~ ~ ) ~ T H E T A S ( ~ ~ ) * T H E T W A ( ~ ~ )  
D I M E N S I O N  S A V E ( 8 )  
D A T A P 1 / 3 0 1 4 1 5 9 /  
M T O T n K O P T ( 3 )  
N T O T n K O P T ( 4 )  
ND=KOPT(IS)  
NS=NPOT-ND 
U S = S Q R T ( 2 e / ( G A M M A C + l o  1 )  
RHOS=RHO(USIO~) 
WONED~PI*RHOS*US+R(~*NS)*R(~ONS) 
U( 1 r N S ) x U S  
NSM 1 INS- 1 
~ F ( K O P T ( ~ ) / ~ ~ ~ ~ E Q ~ ~ ) G O T O ~ ~ ~ O  
I F ( N S M l . E Q o O ) G O T 0 1 0 5 0  
u w = u s * e 9  
D O  1000 1x1  eYSM1 
S A V E ( l ) = l o  
S A V E ( 2 ) = e 0 0 4 9 + U W  
N s N S -  I 
RW=R( 1 e N )  
A'PI*RW*RW 

1 0 0  CALL f T S U ~ ( R H O ( U W ~ O ~ ) + U W * A - W O N E D ~ ~ W ~ s A V E ~ e O O l * W O N E D * ~ ~ ~  
I F ( U W a G T a U S ) U W n U S  
I B R - S A V E ( 1 )  
GOTO (1000100~i00~100.200~200~0I~3R 

200 U ( l * N ) " U W  
1  000 CONT I NUE 
1 0 5 0  UW=US+ 1  e 1  

DO 2000 I n l e N D  
S A V E ( l ) = l a  
S A V E ( 2 ) = . 0 4 9 * U S  
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N f N S +  I 
RW=R( 1 t N )  
A=PIWRW*RW 

1100 C A L L  ITSUB(RHO(UW~0e)+UW~A-WONEO*UWnSAVEeeOOl*WONED*99~ 
IF(UW.LT.US)UW=US 
IBR=SAVE ( 1 ) 
60 TO ( 1 1 O O ~ 1 1 0 ~ ~ 1 1 ~ 0 ~ 1 1 0 0 ~ 1 2 0 0 ~ 1 2 0 ~ ~ * ~ 6 R  

1 2 0 0  U(l*N)=UW 
2000 CONTINUE 

DO 3000 N z l r N T Q T  
Q=U( i QN) 
DO 3000 M" 1 QMTOT 
DS=SQRT(DXOXI(M~N)**2+DRDXI(M*N)**2) 
U ( M r N ) = Q * D X D X I ( M * N ) / D S  
V (MQN)=Q+DRDXI  ( M Q N ) / D s  

3000 CONTINUE 
N=NTOT 
TANTW=DRDXI(l~N)/DXDXI(lrN) 
THETAW= ATAN(  TANT W )  
I F ( T H E T A W ~ L T ~ ~ O S ) G O T ~ ~ ~ ~ ~  
RW=R( 1 *N) 
XSn-RW0TANTW 
0 0 3 5 0 0 M r l t M T O T  
RPmR(MeN1 
RSaSQRT(XS*XS+RP+RP) 
THETA=ATAN(RPUTANTW/RW) 
A~2.*PI*RS+RS*(lr-COS(THETAWl)/COS(THETA) 
TANTP=SIN(THETA)JCOS(THETA) 
SAVE(  1 ) = l e a  

S A V E  ( 2 = 0 OS*UW 
3100 VW=UW*TANTP 

C ~ L ~ ~ T S U ~ ( R ~ O ( U W ~ V W ) ~ U W * A - W O ~ ~ E O ~ U ~ ~ ~ A ~ E ~ ~ ~ ~ ~ * W O N E D * ~ ~ ~  
I B R = S A V E ( l )  
~ 0 T 0 ( 3 ~ 0 0 n 3 1 0 0 * 3 1 0 0 * 3 ~ 0 ~ * 3 2 0 ~ * 3 2 ~ 0 ~ ~ 1 6 R  

3200 U(MnN)=UW 
V ( M * N ) = V W  

3500 CONTINUE 
4 0 0 0  CONTINUE 
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D O 5 ~ 0 B M = l r M T 3 T  
U L E N D ( M ) = U ( M * l )  
V L E N D ( M ) = V ( M o l )  
UREND(M)PU(M~NTOT) 
V R E N D ( M ) s V ( M * N T O T )  

5000 CONT I NUE 
G O T 0 7 0 0 0  

6000 D 0 6 1 0 O M = l * M T O T  
U(MINS)=US 

6 1 0 0  v(MINs)=O. 
Q=. 9 * U S  
D O d E O O I ~ l r N S M l  
IP(Q.GT.e9*US)Q=.9*US 
N=NS- I 
A=~~*PI*RSS(N)*RSS(N)*~~~-COS(THETAS(N))) 
S A V E ( 1 ) = 1 .  
S A V E (  2 ) r e O S * U S  

6050 C A L L I T S U B ( R H O ( Q ~ O ~ ) * Q ~ A - W O N E Q ~ Q ~ S A ~ E ~ . ~ O ~ * W O N E D ~ ~ Q ~  
I F ( Q e G T e U S ) Q s U S  
I B R = S A V E ( 1 )  
GOT0(60BQ*6050*6050*6050*6150~6150~~IBR 

6150 D 0 6 2 0 0 M = l * M T O T  
T A N T = R ( M * N ) / ( X ( M * N ) - X s S ( N ) )  
THET=ATAN(TANT)*THETWA(N)/THETAS(NI 
U ( M * N ) n Q Y C O S ( T H E T )  
V(MIN)=Q*SIN(THET) 

6200 C O N T I N U E  
Q z 1  e  1*US 
D O 6 4 0 0  11 1  r N D  
l F ( Q e L T e l e l * U S ) Q ~ l e l * ~ S  
N=NS+ 1 
A~~~*PI*RSS(N)*RSS(N)U(~~*COS(THETAS(N))) 
S A V E ( 1 ) " l e  
S A V E ( 2 ) = e O S * U S  

6250 CALLITSUB(RHO(Q*Oe)*Q*A-WONEQ*Q*SAVE*eOOl*WONED*99) 
IF(QILT.US )Q=US 
I B R = S A V E (  1 )  
GOT0(6250*6250*6250*6250*6300*63OO)~IBR 

6300 D 0 6 4 0 0 M = l e M T O T  
T A N T = R ( M I N ) / ( X ( M * N ) - X s S ( N ) )  
THET=ATAN(TANT)*THETWA(N)/THETAS(N) 
U(M*N)  =Q+COS(THET) 
V ( M e N ) = Q * S l N t T H E T )  

6400 C O N T I N U E  
7000 CONT INUE 

RETURN 
END 
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SUBROUTINE BOUND 
c O M M O N / F L O W / U ( ~ ~ ~ ~ ~  ) * v (  1 1 9 2 1 )  
COMMOO\I/DECENT/DGDU( 1 1 0 2 1 ) v D G D V (  1 1 - 2 1 )  
C O M M O N / G R I D D / D X D X I ( ~ ~ ~ ~ ~ ~ * O X D P S I ~ ~ ~ ~ D R D X I ~ ~ ~ ~ ~ ~ ~ ~ D R D P S I ~ ~ ~ ~ ~ ~ ~  
COMMON/OPTION/KOPT(l6)  
cOMMON/MISCD/G-GM~*DEL 
COMMON/ENDC/ULEND(I~)*VLEND( ~ ~ ) * U R E N D ( ~ ~ ) O V R E N D (  1 1 )  
COMMON/GRID~X(11-21~*R~11*21) 
M T O T r K O P f ( 3 )  
NTOTzKOPT ( 4 
NTOTM 1  =NTOT-1 
D 0 3 0 0 N * 2 r N T O T M l  
DXmDXDXI ( 1  * N )  
DRzDRDXI  ( 1  r N 1  
R H S ~ 2 e + ( U ( 2 r N ) * D G D U ( 2 ~ N ) + V ( 2 r N ) ) - ( U ( 3 * N ) * D G D U ( 3 * N ) + V ( 3 * N l  

l ) * D G D V ( 3 r N ) )  
SF(ABS(DX)~CT.ABS(DR))GOTO~OO 
DGDV(lrN)~RHS/~V(laN)*(le+DX*DX/(DR*DR))) 
DGDU(lrN)=DGDV(l*N)*DX/DR 
G O T 0 2 0 0  

1 0 0  DGDU(leN)nRHS/(U(leN)*(le+DR*DR/(Dx*DX))) 
D G D V ( ~ ~ N ) ~ D G D U ( ~ ~ N ) * D R / D X  

200 DGDW(MTOf-N)~(4e*DGDU(MTOT-1*N)-DGDU(MTOT-2*N))/3e 
D G D v ( M T O T + N ) = O ~  

300 CONTINUE 
I F ( K O P T ( ~ ) / ~ ~ ~ E Q ~ O ) G O T O ~ O ~  
0 0 4 0 0 M = l + M T O T  
DGDU(M*I)=O. 

4 0 0  D G D V ( M * ~ ) P O ~  
500 XF(KOPT(9)-1O*(KOPT(9)/1O~eEQeO~GOTO700 

D 0 6 0 0 M o  1  r MTOT 
DGDU(MINTOT)=O~ 

600 D G D V ( M , N T O T ) = O ~  
700 CONTINUE 

RETURN 
END 
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SUBROUTINE  L O G I C  
COMMON/DECENT/DGDU( 1 1 e 2 1 ) * B G D V (  11021) 
C O M M O N / L A S T E P / D G D U ~ ( ~ ~ ~ ~ ~ ~ * D G D V ~ ~ ~ ~ Q ~ ~ ~  
C 0 ~ M 0 N / F L Q W / U ( 1 1 ~ 2 1 ) ~ ~ ~ 1 1 * 2 1 )  
C O M M O N / O P T I O N / K O P T ( ~ ~ )  
COMMON/MISCD/G*GMl*BEL 
COMMON/MISG/XSCALEODAMP 
COMMON/ SMOOTH/SMULT 

1 0  FORMAT( 1H v3E1204) 
L=- 1 
MTOT=KOPT 3 
N T O T z K O P T  ( 4 ) 
N T O T M ~  ~ N T O T - 1  
MTOTMl  =MTOT-1 
S M U L T - 0 0  
ISM=KOPT(IO) 
G M l = l e E + 1 6  
DELn 1. 

1 0 0  GRAD=Oo 
GPO e 

DO 200 N t l e N T O T  
DO 200 M = l r M T O T  
DGDU(MIN)SOO 

200 O G D V ( M O N ) = ~ O  
C A L L  EMT 
C A L L  BOUND 
I F ( G e G E e G M 1 ) G O  T O  1000 
C M l = G  
L=L+ 1 
DO 300 N - l r N T O T  
DO 300 M = l r M T O T  

300 GRAD=GRAD+DGDU(M*N)*DGDU(M.N)+DGDV{M*N) 
XF(LOEQ~KOPT(~)*(L/KOPT(~)))CALL O U T P U T ( L 1  
I F ( L o E Q o I S M ) G O T 0 6 0 0  
IF(L~GEoKOPT(~))GOTO~OOO 

400 SCALE=G/GRAD 
450 C O N T I N U E  

DO 500 N = l q N T O T  
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DO 500 MxlrMTOT 
DGDUl(M*N)=DCDU(M*N) 
DGDVI(M~JN)=DGDV(MIN) 
U(NrN)=U(M*N)-SCALE*DEL*DGDU(McN) 
v(M.N)=v(M*N)-SCALE*DEL*DGDV(M*N) 

500 CONTINUE 
GO TO 100 

600 SMULT-DAMP 
GMl=leE+16 
GOT0 100 

1000 IF(DELeLTeelE-B)GOTO1500 
WRITE(6rlO)G*GMl*DEL 
DO 1100 NxleNTOT 
DO 1100 MtlrYTOT 
DGDU(MIN)=DGDU~(MQN) 
DGDV(M*NI=DGDVl(M*N) 
U(M.N)=U(M*N)+SCALE*DEL*DGDU(MIN) 

1100 V(M*N)=V(M*N)+SCALE*DEL*DGDV(M~N)  
D&L=.~~*DEL 
G=GM 1 
GOT0450 

1500 CALLOUTPUT(L) 
2000 RETURN 

END 
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SUBROUTINE EMT 
C O M M O N / G R I D D ~ D X D X I ( ~ ~ ~ ~ ~ ~ O D X D ~ S I ~ ~ ~ * ~ ~ ~ O D R D X I ~ ~ ~ ~ ~ ~ ~ ~ D R D P S I ~ ~ ~ ~ ~ ~ ~  
COMMON/DECENT/DGDU( 11*21)*DCDV( 11-21) 
C O ~ M O N / F L O W / U ( ~ ~ ~ ~ ~ ) ~ V ~ ~ ~ * ~ ~ )  
COMMON/MISCD/G*GMI*DEL 
COMMON/OPTION/KOPT(l6) 
COMMON/REST/PC*TC*RC*GAMMAC*RHOC*AC 
COMMON/GRIDIX( 1 1 9 2 1 )  *R( 11-21) 
COMMON/SMOOTH/SMULT 
MTOT=KOPT(~) 
NTOTrKOPT ( 4 
MTOTM1 =MTOT- 1 
NTOTM1 =NTOT-I 
NSzNTOT-KOPT(5) 
GAMMlaGAMMAC-1. 
DO 1000 N=EtNTOTMl 
FNEXP=ABS(FLOAT(N-NS)) 
FNEXP=SQRT(FNEXP) 
S=1 e/EXP(FNEXPl 
DO 1000 M=2rMTOTMl 
NMl IN-1 
NPl=N+l 
M M I = M ~ I  
MPl=M+l 
UO=U(MIN) 
VO=V(MIN) 
RHOO=RHO(UO*VO) 
Ul=U(M*NMl9 
Vl=V(M*NMl) 
UZ=U(M*NPl) 
V E = V (  MoNPI) 
U4=U(MMlrN) 
V4=V(MMlrN) 
U3xU(MPleN) 
V3=V(MPl*N) 
RPSI=R(MMlrN)-R(MP1,N) 
RXI=R(M-NPI)-R(MINM~) 
XPSf=XtMMlrN)-XtMPlrN) 
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2-E3MN*2e-E5MN*2r 
DGDV(M~N)=DGDV(M~N)-EIMN*( -ALPHA/RO+GAMM~*VO*T~*ORHO$Q 
l+TRHO*(-XPSI*T3+T2*(V2-Vl)+XXI*T5+T4*(V4-V3))) 
2-E4MN*20-€6MN*2e 
DU2=ElMN*(RPSI-TRHO*T2*UO)+E2MN*XPSl 
DV~=EIMN*(-XPSI-TRHO*T~*VO)~E~MN*RPSI 
DU4=ElMN*(-RX1-VRHO*T4*UO)-E4:2NN*XXI 
D V ~ = E ~ M N * ( X X I - T R H O * T ~ S I - V O ) - E ~ ~ * R X I ~  
DGDU(MeNP1 )=DGDU(MvNP1 I+C-U2 

1 +E3MN 
DGDV(M*NPl)=DGDV(MvNPl)+DV2 

1 +E4MN 
DGDU(MINMII=DGDU(MINM~)-DU~ 

1 +E3MN 
DGDV(M*NMl)=DGDV(MeNMl)-DV2 

1 +E4MN 
DGDU(MMl*N)=DGDU(MMl*N)+DU4 

1 +E5MN 
DGDV(MM1 * N ) = D G D V ( M M l * N ) + D V 4  

1 +E6MN 
DCDU(MPI*N)=DGDU(MPl*N)-DU4 

16E5MN 
DGDV(MPlrN)uDGDV(MPlvN)-0V4 

I +E6MN 
1 000 CONT I NUE 

RETURN 
END 
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Appendix C 

DISTRIBUTION LIST FOR CONTRACT NAS7-743 
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C O P I E S  

CONTRACT NAS7.-743 - - - . - - -- - - . - - - - - 

.... -- ....... -- ............. 

D E S I G N E E  

- --- - -  - 
NASA HEADQUARTERS 
WASHINGTON, D ~ C L  20546 - - - .  - . - -  . - - - -  - - 

1 C O N T R A C T I N G  O F F I C E R  ( X I  
- _ - - L P A T E N T  OFF I C F  I X I  

-.- N A S A  LElri1.S RESEAW_LEbLTER ..... - -  
2 1 0 0 0  BROOKPARK RD. 

....................... .. . . . . . . . .  . C L E V E L A N D  9 OH1 0 441.35 
1 O F F I C E  O F  T E C H N I C A L  INFORMAT I O N  ( X I  
1 C O N T R A C T I N G  O F F I C E R  1 x 1  

N4.S .MANNED .S.PA_CE__RA_FI..-CENLER_ _. 

HOUSTON, T E X A S  77001 
- . -1 . . .  OE+ I CE .OF .... 1 E L H K I C A L I b l F Q R M A S ~ - .  - I X L  

1 C O N T R A C T I N G  O F F I C E R  ( X I  
2 P A T E N T  O F F I C F  I X  1 

- N A S L M A R S H A C L  LP-4CE_-FlI-GM-_fEMIER--- - _ -  -- - - - -  .- - _  - ___ 
H U N T S V I L L E ,  A L A B A M A  3 5 8 1 2  

-- 2 QF F LLE -_OF . T E C H N I C A L I N F O R M A T I O N . X - L E L  IXI _ - 
1 P U R C H A S I N G  O F F I C E ,  PR-EC ( X I  
1 P A T E N T  O F F I C E ,  M - P A T  I X )  . 

1 TECHNOLOGY U T I L I Z A T I O N  O F F I C E *  M S - T  ( X I  
- .... . . .  .......... - . ............... ....... ... 

N A S A  P A S A D E N A  O F F I C E  
-- -..........- .-.a. ~O. -~O.YRIBIVL.  

PASADENA,  C A L I F O R N I A  91103 
1 PATFNTS AND C n M R A C T S  M A W G F M F N T  1 x 1  

3 C O N T R A C T I N G  O F F I C E R ,  F e  A B B O T T  ( X I  
- - - - - -- - -- - - - -- - -- -- - -- - 

JET PROPULSIN LABORATORY 
- - -48QO OAF- G R Q V L D R L -  _ - -- - _ - - - - - -- 

P A S A D E N A  9 C A L I F .  91103 
- 30 R e  F e  CUFFFL ( X )  

-. -- 3 - _ - C H % E F L _ L K Q U I D  E X P E R I M E N T A L  ENG I N E E R  IN!+ RPI _ -  - [ X )  
O F F I C E  O F  ADVANCED RESEARCH A N 0  T E r H N O L O C Y  



. - -  - - - - -- - - - - - -- - - - - - - -- - - - - - - 
LMSC/HREC D l  62177 

. - - -- - -- - - - - - - -- - - - - - - - - 
NASA HEADQUARTERS 
WASHINGTONP DeCoe 2 0 5 4 6  

1 D l  RECTOR? TECHNOLOGY U L I L - I Z A Z I - ! .  I I I Y I S L Q N  -- - -- . 1x1. - -  - - - 
O F F I C E  OF TECHNOLOGY U T I L I Z A T I O N  
NASA HEADQUARTERS 
WASHINGTON9 DoCe 20546 

- 
L? L- NASA S C I E N T I F I C  AND TECHNICAL INFORMATION F A C I L I T Y  ( X )  

P e O .  BOX 3 3  . . . - - -. - - - - - - -- . - .- 

COL LEGF PARK , MARYLAYD 2 0 7 4 P  
- 

1 PIRECTOR p LAUNCH V E H I C L E S  A Y D  PROPULSION s~ sv ( X I  
C F F I C E  QF SPACF SCIENCE AND 4 P P L I C A T l O N S  -- - -- - 
NASA HFAOQrJARTERS 
WASHINGTON De C c  2 0 5 4 6  - - - - - - - - - -- - - -. - 

1 DIRECTOR, ADVANCED MANNED MISS-IONS MT - -  -- - . - ( X I .  . - - 
O F F I C E  O F  MANNED SPACE FL IGHT 

-- NASA HEADQUARTERS 
WASHINGTON , De Ce 2 0 5 4 6  

- - - - . - - - - 

1 M I S S I O N  A N A L Y S I S  D I V I S I O N  ( X  1 
NASA AMES RESE-ARCH CENTE_R - - --- - - - . - 

MOFFETT F I E L D ,  C A L I F O R N I A  2 4 0 3 5  

2 AMES RESEARCH CENTER HANS M a  MARK 
MOFFETT F I E L D ,  C A L I F O R N I A  9 4 0 3 5  

1 GODPARD SPACE FL IGHT CENTER MFRLAND L. MOSFSON 
GREENBFLT, MARYLAND 2 0 7 7 1  CODE 620 

7 J F T  PROPUL5-1ON I ARORATORY HFNRY BU&JJGFI J R  
C A L I F O R N I A  I N S T I T U T E  OF TECHY3LOGY PROPULSION D I V .  38 
4 8 0 0  OAK GROVE D R I V E  
PASADENA, C A L I F O R N I A  9 1 1 0 3  

2 LANGLEY RESEARCH CENTER ED CORTWRIGHT 
LANGLEY STAT-ION L R F C T O R  
HAMPTON, V I R G I N I A  2 3 3 6 5  

2 L F W I S  RESFARCH CENTER 
21000 BROOKPARK ROAD 
CLEVELAND, O H I O  4 4 1 3 5  

P R c  b 9 F  S I L V F R S T F I N  
DIRECTOR 

2 MARSHALL SPACE F L I G H T  CENTER 
HUNTSVILLE,  ALABAMA 3 5 8 1 2  

HANS G e  PAtIL 
CODE R?P+VED 
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