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ABSTRACT
 

A power spectral density computer program with some unique capabilities 

is described. The special features include 

1. 	 The spectrum of unequally spaced data may be calculated. 

2. 	 The spectrum can be evaluated at any frequencies. 

3. 	 Estimates of the parameters of dominant spectral terms 

can be improved. 

4. 	 Prewhitening can be done with no prior knowledge of the 

characteristics of the signal. 

First, the mathematical basis of the conventional computer Fourier analysis 

technique is discussed, with special attention to the approximations involved. 

Next, the problem of spectral analysis is considered as a least-squares 

regression problem. Formulas are developed for continuous and discrete 

equally spaced data. Next, the interpretation of the power spectral estimates 

is explored, and the possibility of evaluating the spectrum at any set of 

frequencies is dis'cussed. Then, the general formulas for unequally spaced 

points are derived. 

After the mathematical formulation comes a description of the computer 

program implementing the theory. This includes a discussion of the program 

and its use, a description of the input cards and of the form of the output, and 

instructions for execution. Appendices include a flowchart and a sample run. 
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INTRODUCTION 

This report describes a power spectral density computer program which 

has several, features not commonly found in such programs. Perhaps the 

most unusual feature is its ability to analyze unequally spaced data. In 

addition, the spectrum can be evaluated at frequencies other than harmonics 

of the span of data, the maximum frequency at which the spectrum is evaluated 

can be chosen to be other than one-half the average data sampling rate, and 

the initial estimates of the frequencies and coefficients of dominant spectral 

terms can be improved. This last feature in effect permits a reconstruction 

of the original data as a sum of sinusoidal terms (not a classical Fourier 

series), which may accurately represent the signal without noise. In addition, 

it is used for "prewhitening" the spectrum, a procedure recommended by 

several authors. 



CONVENTIONAL SPECTRAL ANALYSIS -
THE DISCRETE FOURIER TRANSFORM 

The scientist or engineer has an intuitive feeling about what he means by a 
"spectrum. " However, there are certain differences between the Fourier 

transform and a computer-calculated spectrum. At present, the latter very 

often is obtained by the fast Fourier transform algorithm [References 1-5], 

which is an efficient way of calculating the finite or discrete Fourier 

transform. If X(j), j = 0, 1, . . . , N-i, is a sequence of N complex 

numbers, the discrete Fourier transform of X(j) is defined 

N-1
 
r_ X(j)A(n) = E exp (-2ninj/N) (1)j=C 

X(j) can be expressed as the inverse finite Fourier transform of A(n) 

N-i 
X(j) = Z A(n) exp(2inj/N) (2)

n=0 

A(n) and X(j) are a transform pair, as can be seen by substituting (1) into 

(2) and using the orthogonality relationship 

N-i (2/N rN if n = m mod NE exp (2rij/N) exp (-21imj/N) =0j otherwise (3)
1=0 

Let A(n) and X(j) be considered to be defined by (1) and (2) for all integers 

n and j. Then it follows from the definitions that 

X(j) = X(kN+j) 1 k = 0, ±i, ± 2, (4) 
A(n) = A(kN+n)I 

That is, X(j) and A(n) are both periodic, of period N. 

I-­



Equations (1) and (2) are simply operations performed on sets of numbers, 

but form (1) is reminiscent of the Fourier integral transform, or of Fourier 

series coefficients. The discrete Fourier transform possesses an inverse, 

(2), it involves functions which satisfy an orthogonality relation, (3). The 

nature of the relationship between the Fourier transform and Fourier series 

on the one hand, and the discrete Fourier transform on the other, will now 

be examined further. 

Two pertinent theorems involve the concept of a periodic aliased function. 

The periodic aliased version a p(f) of a function a(f) is defined to be 

a (f) a(f+kF) (5) 

where F is some interval. It is proved in References 2 and 3 that 

Theorem 1 If X(t), -- <t<-, and a(f), -- <f<-, are a Fourier integral 
WO I 

transform pair, then TXp (jAt) = T X(jAt±iT), j=0,1....N-I, and 

a (nA f) = a(nAf+kF), n=0, ,...,N-1, are a finite Fourier transform 
k=-M 

=pair. In these expressions F= l/At NAf, T=NAt =N/NAf = /At, FT=N. 

It is also shown in these references that 

Theorem 2 If the periodic function X(t) with period T has the Fourier series 

expansion c(n) (i. e. c(n) are the coefficients in the complex form of the 

Fourier series, X(t) = X c (n)e 2 (n+/T , then the periodic sequence 

X(jAt) of period N, where At =T/N, has the finite Fourier transform 

c (n) = c(n+iN). 
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These two theorems appear to say essentially the same thing. The 

resemblance is more than apparent, as the following heuristic argument 

shows. The usual "derivation" of the Fourier transform, by going to the 

limit in which the number of terms in the Fourier series increases while the 

frequency spacing decreases, and replacing the sum by an integral, shows 

that the Fourier series and integral are indeed very similar. The basic 

difference is that the integral transform maps one nondenumerably infinite 

number of points into another nondenumerably infinite set of numbers, whereas 

the Fourier series specifies the function by a denumerably infinite set of 

numbers. (Not all functions have Fourier series representations, only 

periodic ones. ) In a numerical problem, one has a finite number of data 

points (containing a finite amount of information, hence an incomplete specifi­

cation of the physical process), which can be completely specified by another 

equal-sized set of numbers. Whether these numbers are regarded as estimates 

of Fourier series cdoefficients, or of points on the Fourier transform curve, 

is largely a matter of taste. (This situation is discussed further in the next 

section. ) At various places in the subsequent discussion, whichever suppo­

sition is more useful will be used. 

The first problem is a consideration of how to apply Theorems I and 2 to 

the calculation of a spectrum when all that one has is a finite-length sample 

of experimental data, a situation which often arises in practice. If X(t) 

actually vanishes outside the interval 0 t<T, then X (jtA) = X(jAt), j=0, 1,p 
.... N-i. At this point it should be noted that it follows directly from (4) 

that 

A(-n) = A(N-n) (6) 

Using this result it can be seen that if the Fourier transform a(f) is non­

zero only for If I< F/2 (recall that a(f) is defined for negative as well as 

positive f, and Ia(-f) I= I a(f) I only if X(t) is real), then a (nAf) = a(nAf),
P 

n=O,1 ... , N-i. So in this case, Theorem 1 can be restated 

-3­



If X(t), non-zero only in the range OEt<T, and a(f), non-zero over 

-F/2<f< F/2, are a Fourier integral transform pair, then TX(jAt), j=0, 1, 

.. ,. N-i, and a(nAf), n=O, 1, , N-i, are a finite Fourier transform 

pair. 

For the simple case considered here, the relationship between the Fourier 

transform and the discrete Fourier transform can easily be found. The 

Fourier integral transform is 

a(f) = fM X(t) exp (-2Trift) dt (7) 

For X(t) non-zero only in the range 0 t< T, 

r Ta(f) = X(t) exp (-2n ift) dt (8) 

The integral can be approximated by a sum 

N-I 
a(f)5 Y X(jAt) exp(-2TrifjA t) At 

j=0 
N-i 

N (NAt)X(JAt) exp (-2TrrfjAt) (9) 
J=O 

For f=nAf, n=0,1,.., N-i, 

N-i 

atn N 2.Z (NAt) X (jAt)exp (-2rrinAfjAt)
J=0 

Using the relations T=NAt, Af = F/N = 1/NAt, 

N-1
 
a(nAf) T X(jAt) exp (-2r injIN) (10) 

J=4
 

-4­



But by the modified Theorem 1 stated above, the equality in (10) is exact, 

that is, at the points f=nAf, n=0, 1, .... N-I, no error is involved in 

replacing the integral of equation (8) by the sum of equation (9). 

If X(t) does not vanish outside the interval 0 t<T, equation (8) is the Fourier
 

transform of the product of X(t) and a square pulse of value unity on 0<t<T,
 

and value zero elsewhere. This transform is the convolution of the trans­

form of X(t) with the transform of the square pulse. The effect of this is to
 
"smear out" each line in the spectrum of X(t).
 

This case can be viewed in another way. The equality in (10) is not necessarily 

exact, as was the case for the previous example, because X(jAt)$X (jMA) 

(and a(nAf) will not equal a (nAf) in an arbitrary case). So there will be some 
p
 

error in representing the Fourier transform by the discrete Fourier trans­

form, in general.
 

In fact there is always an error if a(f) does not vanish for all f[ >F/2. It is 

convenient for this demonstration to discuss Fourier series (as was stated 

before, as far as representing them by the discrete Fourier transform is 

concerned, Fourier series and the Fourier integral are essentially the same 

thing). The complex form of the Fourier series representation of a function 

X(t) is 

X (t) C exp (2nint/T)
 
n
 

n= -. 

2" X(jAt) = ' C exp (2iiinj/N), j=0, 1,.., N-i () 
n--­



Comparison with equation (2), using relation (6), shows that the finite 

Fourier transform gives a finite, i. e. truncated version of the Fourier 

series representation of a function, limited to frequencies under F/2. 

Reference 8 thoroughly discusses the error that this causes. Furthermore, 

the second of equations (4), A(n)=A (IN+n), k=, ±1, ± 2, ... ,(and Theorems 

I and 2) implies that if there are frequencies above F/2, the discrete Fourier 

transform will show these frequencies as occurring below F/2. This is the 

well known phenomenon of aliasing, the possibility of which always exists 

when one is dealing with equally spaced data. This result can also be proved 

in another manner. [7] 

At the conclusion of a discussion of alasing in their important book [9], 

Blackman and Tukey make the c6mment "...It is not infrequently suggested 

that there should be a workable scheme of taking discrete data m some 

definite, but not uniformly spaced pattern, and estimating the power spectrum 

without aliasing. No such scheme seems so far to have been developed... " 

The subject of this report is a method of estimating a power spectrum from 

unequally spaced samples, inwhich case indeed there is no aliasing. 

However, before getting to a discussion of this technique, a few more pre­

lLminary remarks will be made. 

Blackman and Tukey also discuss the'obvious possibility that the length of 

the sampling interval might not be ideally chosen. For instance, a seemingly 

aperLodic function might be seen to repeat exactly if it were sampled long 

enough, or a seemingly periodic function might stop repeating eventually. 

Of course, it is impossible to know from examimng a data sample what 

might happen if the function were sampled for a longer time, but another 

example can be given of a possible difficulty related to the size of the data 

interval. In Reference 7 the function 
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y(t)=B cos [2n(k+1/2) t 0t<T (12) 

where ko is an integer, is considered. The key fact is that the interval does 

not contain a whole number of cycles of the cosine. The Fourier series 

coefficients of this function are 

ak0 
bk 1 1 (13)-B 

7 k+(ko+ 1/2) k-(ko+i21 , k = 1,2,3.... 

Although the function in closed form is a cosine, the only non-zero Fourier 

series coefficients are the sine coefficients. But there is no mistake. The 

(infinite) Fourier series converges to y(t) at every interior point of the 

interval [10], and if y(t) is sampled at N equally spaced points spanning the 

interval, the (finite) discrete Fourier transform will specify a trigonometric 

series passing exactly through the N points. 

The paradox is only apparent. Because the frequency of the cosine in (12) is 

not a harmonic of the basic period T, the Fourier series does not contain any 

terms of that frequency. The function y(t) may continue outside 0t<T. 

However, the Fourier series is periodic with period T, so it does not 

represent y(t) in the interval T t< 2T, for instance. 

The (conventional, or restricted) sampling theorem summarizes some of 

the properties and limitations of conventional spectral analysis4[9] 

References 11 and 12 discuss the generalization of the sampling theorem to 

the case of unequally spaced samples, and applications to the reconstruction 

of signals from non-uniform samples. It is pointed out that a generalized 

sampling theorem was known to Cauchy over a hundred years ago. 

-7­



CONTINUOUS AND EQUALLY SPACED DATA 

Derivation of Formulas 

The Fourier-integral and Fourier series converge at every point to the functions 

they represent in many cases, and in every case they minimize the mean 

square error. Furthermore, the sum of the first M terms of a Fourier series, 

where M is any positive integer, is the best least-squares fit of a trigono­

metric sum of that order (involving those frequencies). [i0] 

The following discussion is presented in greater detail in References 6 and 7. 

Suppose the problem is approached from the opposite direction, as a regression 

problem in which it is desired to approximate a function y(t) in an interval 

O t< T by a trigonometric sum, 

L 
+Yc(t)= 2 (ak cos2T-kft +bk sm2rkft) f=I/T (14) 

k=l 

Applying the requirement that the mean square error on the interval be a 

minimum gives the following formulas for the coefficients 

a 2 y(t)dt 

a = 2 fT y(t)cos2nkft dt
k k=1,2,..., L (15) 

bk I fT y(t) sin 2ukftdt 
k -f 
 0
 

which are the usual expressions for Fourier series coefficients. (The well ­

known orthogonality relationships make it unnecessary to invert a large matrix 

to obtain these formulas. ) 

Suppose we consider only one term of the series in (14), 

Yk (t) = ak cos 21Tkft + bk sin 2rkft (16) 

-8­



Let e (t)=y(t) - yk (t). Then a straightforward calculation gives 

[jT y 2 (t)dt- fT dt= . (a + b ) (17)
0 

If y(t) represents voltage, for instance, then y2(t) is the power dissipated in a 

unit resistance, and e 2(t) is the power not contained in the term of frequency 

kf. Therefore, the left-hand side of (17) is the average power contained in the 

term (16). This analogy is the justification for plotting a + b against k or f 
k k

and calling it the power spectrum of y(t). 

The case of discrete equally spaced data is very similar. We want to fit a 

model 
L

A ao0 a
 
y (n) = + (ak cos2lkfn+bk sin 2Trkfn , f=IN (18) 

k=l 

to a function yn = y(nAt) which takes on values at n=l, 2,,.., N (theyn are 

though of as samples of a function y(t) of a continuous time variable). To do 

so we make use of identities (orthogonality relations) completely analogous to 

those for the continuous case, 
N
 

cos(2rrknIN) = sin (2nrkn/N) = 0
 
n=l rl=l
 

N N 

x cos 2 (2Trkn/N) = x sin 2 (2rrkn/N) = N/2 
n=1 n=1
 
N 

Z cos(2Ttkn/N) cos(2rpn/N) = 0 if p /k (19) 

n=1
 

sin(2rkn/N) sin(2r pn/N)= 0 if p/ k
 
n~l
 

N 

;l sin2nkn/Ncos 2npn/N = 0 

-9­



where k and p 	are integers. Applying these to the problem gives 

2 na 0 X Yn 
n=l
 

N -

a = " X y cos (2rrkn/N) (20) 
n=1 

Nk ;1 ... . L 

bk N sn (2rrkn/N) 

bk 2T 
n=1 

yn (rnN 

The similarity 	to (15) should be noted. 

At this point itis appropriate to again mention aliasing, which is caused by 

the fact that cos 2Tr(+ e fn + and cos LrN- - fn - are equal 

for f= I/iN and 	n=1, 2, ... , N. So there is a frequency fmax = 1/2At such 

that frequencies above fmax appear to be below fmax I possibly with a 

phase shift. This is often discussed in connection with the sampling theorem, 

for equally spaced data, it is necessary to sample at a rate of at least 

twice the highest frequency in the signal to extract all the information. 

The frequency 	fmax = 1/2At is known as the Nyquist or folding frequency. 

From the point of view of fitting a function to N data points, aliasing is 

related to the fact that only N independent fit parameters can be found. 

If N is odd, (N-I)/2 is the greatest integer not exceeding N/2. If this value 

is chosen for L in (18), there is one a 0 coefficient, (N-1)/2 ak coefficients, 

and (N-I)12 bk 	 coefficients, making N in all If N is even, N/2 is an 

integer. It can be seen from (20) that bk = 0 if k = N/2, so with L = N/2 

-10­



there is one a0 , N/2 ak , and ( - 1 b makingN all together. 

Proceeding exactly as was done in obtaining (17), if yk (n) = ak cos 2nkfn + 

bk sin 2Trkfn and en = Yn - Yk (n), then it is easy to show that 

2 1 2 
n n. 2ak ke=J (21) 

There are seen to be great similarities between the continuous case (Fourier 

series) and the discrete equally spaced case. Hamming [13], in discussing 

the use of orthogonal functions, explains that it is often difficult to decide 

between the two approaches of assuming that one has continuous functions 

and approximating the integrals giving the coefficients by numerical methods, 

or using the discrete orthogonal set of functions to fit the discrete samples. 

But he goes on to point out that in the Fourier series case these two 

approaches produce exactly the same computations. 

Effectiveness of Spectrum Estimates 

Before proceeding to the case of unequally spaced discrete data, some 

additional discussion of the interpretation of the power spectrum will be 

presented. Equations (17) and (21) are special ways of writing Parseval's 

theorem. This theorem, in the continuous frequency case (Fourier trans­

form), can be written 

2 

X(tj dt Ia(f) 1I d (22) 

where the notation is that of Theorem 1 ( X(t) is considered real). In the 
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discrete 	frequency case (Fourier series), 

I fT LYi2t = 1 4-z (ak b2 (23)
T 0 2 k k(3 

ly k=l 

In case 	one is dealing with discrete equally spaced samples of data, 

1 1N 2 IPaZ + 22+b2ao 	 N 

N - +Z (ak k 	 (24) 

The discussion concerning equations (14) - (17) shows that obtaining the 

Fourier transform of a time series is equivalent to fitting a series of 

independent functions of the form 

=Yk t) 	 ak cos 2rrkft + bk sin 2rkft (25) 

where 	f = lI/T, T the length of the data interval. It was pointed out that the 

actual power m the signal might occur at any frequency. The digitized data 

to be analyzed in a practical case consists of discrete samples of some 

continuous process sampled over a time T. This time limit T may be 

imposed by practical considerations having nothing to do with true periodicL­

ties of the signal, the frequencies in the data may not be convenient integral 

multiples of I/T. It would be wise, therefore, to explore the sensitivity of 

discrete spectrum estimates to the continuum of frequencies which can occur 

in the signal itself. 

For simplicity (25) will be rewritten in the equivalent form 

=Yk t) 	 Ak sin (2rkft + ) (26) 

where Ak (a 1 
2 +bk2 )2 and = tan- (ak/bk). The absolute phase 0 

will not affect the results to be obtained and will be dropped. 
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From this point on, in anticipation 6f certain results, it will not be assumed 

that f = I/T necessarily. The integral to be minimized in performing the 

least squares fit is 

Ml? 2 dt = eTd2[y(t) -AkSi2rrkft] (27) 

0 0 

The value of Ak which minimizes I is 

rT
Ak = y(t) sin 2nkft dt 

A = 0I sin 2 2Tkft dt 

It can easily be shown that, if F = (k+6)/T, where k is an integer and 11, 

S sin 2TFt dt = T Tsin 4n8 T 1- n4rTr6 (29) 

If 6= 0 (or ±I ,-, ±), J=T/2, a result which was used in obtaining equations 

(15). For arbitrary values of 6, even when k is a fairly small integer, the 

second term in (29) is much smaller than the first. So J is seldom very 

different from T/2. Assuming J=T/2, equation (28) becomes 
I 

Ak OT y(t)sin2t kft dt (30) 

Substituting the expression (28) for Ak into (27), the result is 

fT 
0 

e 2 dt = T 
0 

[y(t)- Aksin2TTkft 2dt 

f T y 2 (t)dt 

0 

0[fT 

0j 
y(t)sin2nkft dtj (31) 

Then as the discussion following equation (17) shows, the power associated 

with yk(t) is 

-13­



-k ,[ - T 2t2 1T dt 
2/ 

(T y 22 (t) dt f 1sn2kfd 

Using the value J=T/2, 

Pk T2 y(t) sm 2Trkft d (33) 

Suppose y(t) contains a component of frequency 0, with relative phase a, 

so that the contribution of this term to the total signal is 

y(0,a) = C sin (2rOt+a) (34) 

The contribution that this term makes to Pk is 

pC (9, T) sin21Tkftsin(2r0t+) dt] (35) 

The expression in brackets gives the functional dependence on 0 and a 

[fT sin 2rrkft sin(2T 0 t +Y) dt]2 
T 2t 

fT 

=z({0 cos[2TT(kf-0)t-!]dt fT cos[2(kf+E)t+] dt} 

= rsn[2Tr (kf-)T-a]+sin sin[2Tr (kf+0)T +a]- sina}( ) ns n ang (36) 

Pk (e, a) is a weightig function in a sum or integral over 9, to give the 

power estimate at frequency k f due to contributions from all possible 

frequencies 9. (A sum over a is also implied. ) Unless k f is small, this 

weighting function will be relatively insignificant except for values of a near 

kf. For such values of Othe second term is much smaller than the first. 

If the second term is dropped, 
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2 
C2 = sin[2r(kf- 6)T-a!]+sinca 2
 

k ' 4TJ 2r(kf-0 )J
 

{sln[2Tr(k-G)T - a] +sm} 2 

{sin [2n(kf-6)T ] cos a - cos [2rr(kf-8)T] sina+sina}2 

= {2 sin [2r(kf-e) T/2] cos [2r(kf-e)T/2] cosa 

} 2
+2 sin 2 [2r(kf-e)T/2] sin 

4sn 2 [21(kf-e) T/2] {cos [2r(kf-e) T/2 ] cosa 

+sin [21T(kf-e)T/2] sma} 2 

= 4sin 2[21T(kf-)T/2]cos 2 [21T(kf-O)T/2 -a?] 

Pk (, a)=-2 sin2 [2(kf- )T/2]cos2[2 (kf- )T/2-a]/[2r(kf-8)]2 

(37) 

Examination of the exact expression (36) shows that for kf a multiple of 

I/T, Pk (0,a) vanishes when 8 is also a multiple of I/T. This is a 

manifestation of the orthogonality of the terms in a Fourier series. Equation 

(37) shows that this property is more general, Pk (e, a) vanishes whenever 

kf-8 is any integral multiple of lI/T, regardless of the values of kf and 8 

(unless kf is small and (37) doesn't hold). 

=
The detailed behavior of Pk (8, a) depends on a. For instance, if a 0 equation 

(37) has zeros when kf-Sis any multiple of 1/2T, twice as often as in the 

general case. For certain values of c (depending on 8 and T) Pk (8,a) is 

identically zero. But for an arbitrary signal the contribution at frequency 

8 may have any phase, so an expression independent of awould be useful. A 

reasonable estimate for the effect of the contribution at 8 on the power 

estimate at kf is the expected value Pk E=Ba [Pk (80a] , where the 
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1 

subscript a denotes that the average is over a. Assuming all values of a 

are equally likely, this involves 

2fT {os [2Tr(kf-)T/2]cosa+sin[21T(kf-O)T/2]sina da (38)
2rr 0 

Therefore, the expected value of the contribution which a component of 

amplitude c, frequency 0, and arbitrary phase makes to the power estimate 

at frequency kf is 

Tc 2(a) = sin 2n(kf-0)T/2Pk 8J L 2T(kf-G) T/2 I 22 

The gain factor is actually independent of T, since J is proportional to T/2, 

Equation (39) can be written in a useful form by defining 6, 

kf - 0 = 6IT (40) 

and using the (very good) approximation that J=T/2. Then 

Pk (a)=-c2 [sinn6T 2 

The foregoing shows that the mathematical method of power spectrum analysis 

gives essentially the same result as filtering the signal through a bank of 

filters, each with frequency response given by (41), centered at the frequencies 

kf, k=l, 2 .... The power estimate at kf is the power at theoutput of the filter 

centered at kf. The shape (in particular, the width) of the filter is independent 

of the center frequency. This process of filtering is precisely the analog 

technique of spectral analysis. [9, 14] 

/sinu 6 )2 
An examination of the function ) shows that the estimate of power at 

the frequency kf includes most of the power at frequencies close to kf. The 

power at frequencies ±1I/T away is completely filtered out, and frequencies 
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farther away than this make very little contribution. (An extremely large 

component occurring near the peak of one of the closest side lobes may 

cause an erroneously high power estimate at kf. ) A "worst-case" example 

is f=1/T, and a component of the signal at (k+1/2)/T. For this case, about 

41% of the component's power would be seen at kiT and the same amount at 

(k+l)/T. 

The analysis from the paragraph following equation (25) to this point has shown 

that one need not be restricted to making power estimates only at the fre­

quencies k/T, k=l, 2 ... If estimates are made at frequencies closer together 

than this the neighboring estimates will be correlated, but finer resolution of 

the spectrum will be obtained. If the spectrum varies slowly with frequency, 

computer time can be saved by making estimates further apart than lI/T, the 

correlation between estimates will be slight, if not zero. If there is some 

advance knowledge of the spectrum (perhaps based on the properties of the 

physical system producing the signal), f can be chosen equal to a fundamental 

frequency, possibly far from I/T. In the case considered in equations (12) 

and (13) f (or kf, k=2, 3... )could be chosen equal to (k0 + 1/2)/T, with 

results more appealing to intuition. 

The approximations used in obtaining equations (37), (39), and (41) are good, 

except for values of k and f such that kf is of the order of or smaller than 

l/T, particularly for e < f. Physically, this Ls connected with the fact that 

a very low frequency must be observed for a very long time to be accurately 

estimated. Therefore, a constant (bias, d. c. component) may "contaminate" 

low frequency power estimates and should be subtracted off before spectral 

analysis. 
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UNEQUALLY SPACED DATA
 

The mathematical problem for the unequally spaced case is almost the same 

as for points equally spaced in time. Formulas will be obtained proceeding 

by analogy with the equally spaced case, keeping in mind the results of the 

previous section. 

A set of points is given at times t with values y=y(t), i=, 2,..., N, 

sampled during an interval T. The model to be fit is 

L 
(ti) =, -- + ak cos 2kft +b sin2Tr kft (42) 

y 2 k
k=l
 

where, keeping in mind the discussion of the previous section, no restrictions 

have been placed on the value of f. 

The least squares equations can be formed as was done in obtaining (20). 

However, in the general unequally spaced case there are no orthogonality 

relationships like (19), that is, 

N N


3 cos 2rkft1 0 3 sin2Trkft1 / 0
 

N N 

cos 2 2rrkft #N/2 sin2 2Trkft #N/2

i=1 i=1
 

N 

V cos 2TTkft I cos 2 pft # 0 if p/k (43) 

N 

Z sin2Trkft I sin2TTpft 0 if p k 
i=i 

N 

sin2rrkft cos21pft / 0 
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even for f=I/T. In other words, the estimates of ak , bk are not independent 

of a , b for j k, and ak is not independent of bk 

At this point, it appears that it is necessary to invert a large matrix in order 

to fit (42) to the data. However, making use of the filter concept of the 

previous section, it will be assumed that frequencies I/T apart do not not 

interfere with one another. (The same assumptions as before concerning 

changing the frequency spacing will also be made. ) Therefore, the problem 

considered is that of fitting a series of (assumed) Independent functions of the 

form 

Yk (t1 ) ak c os 2Trkft, + bk sin2rkft, (44) 

The least squares normal equations are (dropping subscripts on a and b) 

Xcos2 2rkft sin2nrkft Icos2Trkft a ~y cos2Tkft1 . 

sIn 21Tkft cos2rrkft i 222nkft b y sin2rrkft 

(45) 

with solutions 

sin2 2Tkft 3y cos 2rrkft, 3 sin2nTkft cos2n-kft 3= y sin2rrkft,
iI- I F

23COS2 2rrkft 3sin1 2n~kft1 (P si'n2rrkft1 cos2i-rkftl)f.-

1 l(46) 

3cos2 2nkft, 3y, sin2i-rkft, - 3 si~~f cos2lTkft, 3 csTkt
b 1 i I 

) 2 
cos 2 2 kft 3in2 21Tkft sin2Tkft, cos2ikft

-( 

I I 
(47) 
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These are the estimates of the coefficients at a given frequency. To go with 

them we need an expression for the power at that frequency (in the sense 

discussed in the previous section). Since spectral analysis is being considered 

as a least-squares regression problem, the natural measure of the power at 

frequency kf is the variance [E (y 2 )-E (e2) ], where e1 =y (tl)-yk(tl), and 

Yk (t) is defined by equation (44). It is shown in Reference 6 that this definition 

makes possible meaningful estimates of the significance of contributions from 

specific frequencies. Furthermore, it will be shown that this definition leads 

to results consistent with equations (17) and (21), which express power as 

might be expected from an engineering point of view. 

Before working out the expression for power, it is convenient to express a and 

b in slightly different forms 

I cos2rkft - I sin2Trkft 
I 1 (48a) 

a7cos 2 2iT kft 61 sin2Trkft cos2rrkft(4a 

sin 2trit cos 2 

os 22kft 

y sin2rrkft A y cos 2rkft 
I i 

i L (49a) 

3sin 2 2i-Tkft -A 3sin 2T-rkft cos2rrkft 

sin 2rkft cos2rkft 

A 
..... -20­ (49b) 

Cos 22 kft 
i20 



It should be noted that, for equally spaced data and f=1/T, 8=A=0 and 

equations (48a) and (49a) reduce exactly to equations (20). 

Let t be considered a random variable satisfying a uniform distribution. 
Ij 

Using some trigonometric identities 

sin2rrkft cos2rrkft s sinO~ in2(2kf)t 

i i_ - - (50) 

sin2 2rkft 1 [l-cos2r(2kf)tj I (l-cose 1 )1 

I i I 

where now 0 = 2TT(2kf)t is regarded as a random variable. The sum I sine 

ia N times an estimate of the expected value of sinO. Likewise, I cos6l -

NE (cose). Therefore, 

6 = E (sinO)/[1-E(cosO)] (51) 

If the interval contains any whole number of cycles, E(sin) = E (cosO) = 0.
 

If the interval is not an integral number of periods in length, E(sin0) and
 

E(cose) differ from zero by an amount of the order of I/N or less. Therefore,
 

(unless N is a small number) 6 is a quantity of order 1/N. Likewise A is of
 

the same magnitude.
 

Returning now to the expression for power, letting w= 2Trkf for conciseness. 

Y2- X e 2 = Z y 2 (y -acoswt -bsinwt 

I i i 

= 2a y cos wt +sit 2Wt 

2-2abZ sint coswt -b sin2 wt (52) 

i 1 
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Substituting (48a) - (50), 

y - e = 2a y coswt + 2b y1 siwt - 2ab sinwt coswt 
11 1 1 I 

3 Y,coswt t - 63 ysinwt, 

2
3 cos ut -6 3 sinwt coswt C 2 

1 . 
IL 

3 yIsn(Jt -X I cosyt
 
-b 1 1 si wt
 

3sin wt A3X sinwt cs
 

1 1
 

2a 3y cos wt + 2b/ y s inwt 3sinwt-2ab coswt 

I sI Aostsnn1 

= 2alcost - Ab3ycst a mm o1 
1-2
t 8
3y s - J,&s~

-b 1
 

-- 22
 



• 	1- 2 C = a coswt 1 +b Z s t + a6 sinwt
 
I
SI 


+bA y Coswt- 2ab sinwt coswt 

£1 

sinwt coswt 
=a y coswt +bI ys inwt 2abZ 

+a [ snwt coswt)(f y sinnt) jt 
sin w 

Z Snwt coswt) (z yCOswt 

e+b ( 

y eoswt +b3 2yiwtCsinwt
 
I
 

%.osw1 	 3 

the entire lastAfter further manipulation, neglecting terms of order 8 A, 
i11term vanishes, leaving

2 = 

y I c s + b y , - 2a b ( 54 )y l.v t a 

with f=l/T, (54) becomes identical with (21).
For equally spaced data, 
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COMPUTER PROGRAM 

General Information 

The logical structure of the computer program implementing the mathematical 

method described in the previous sections has three main parts 

1. 	 The power spectrum of the data is calculated. 

2. 	 Improved estimates of the coefficients and frequencies of 

dominant spectral terms are obtained. 

3. 	 The dominant terms are subtracted from the data (this is a form 

of prewhitening) and the spectrum of the residuals is calculated. 

The user may control the calculations, and specify the form of the output, by 

means of parameters on input cards. Appendix 1 is a diagram showing the 

overall logic of the program. --

The second step in the above list is done by searching the spectrum ("coarse 

spectrum") for relative maxima whose powers exceed a certain level and using 

the coefficients and frequencies of the maxima as initial estimates in a simul­

taneous least squares solution for the dominant terms. Specifically, the 

function is represented by 

MS(a sin2 rrfkt+b cos 2 7f ) 	 ( 
i= 1 

in a 	least squares fit to the data, in which ak , bk , and fk k=1, ., Mare 

allowed to vary. Here M 1 i0is the number of relative maxima found in 

searching the coarse spectrum. Peaks are chosen in order of size, the largest 

first. It should be noted that in equation (55) ak is the coefficient of the sine 

term and bk that of the cosine term. This convention, which is opposite to 

that followed up to now in this report, is the one generally used in the program. 

Up to ten terms (the number is an input parameter) may be solved for simul­

taneously. The threshold which must be exceeded for a peak to be selected 
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("removal tolerance") may either be specified as input or computed by the 

program. 

Parts 2 and 3 in the above list are done in a cyclic fashion until no more peaks 

can be found which exceed the removal tolerance. Then the removal tolerance 

is cut in half (once) and the process is continued until no more relative maxima 

can be found. The process is also terminated in the event that the number of 

terms removed exceeds 20% of the number of terms in the coarse spectrum. 

This search-and-removal process is actually a method of prewhitening, a 

technique which is recommended for increasing the accuracy of power spectral 

density analysis. [9, 14] Prewhitening means filtering the data prior to analy­

sis to remove spectral peaks and obtain as smooth a power spectrum as possible. 

One way to prewhiten data is to filter the signal as it is measured. To do this, 

of course, one must have some foreknowledge of the frequency content. In this 

program, the "preprocessimg" is done in the course of the computations, and 

no advance knowledge of the properties of the signal is required. The terms 

removed, plus the spectrum of the prewhitened signal ("final spectrum"), give 

the most accurate representation of the frequency content of the signal 

The subroutine which improves the estimates of dominant spectral terms 

uses an iterative linearized least squares formulation, employing Newton's 

method, to find the coefficients and frequencies of up to ten terms simultaneously 

There are several conditions besides convergence which will cause a return to 

the main program­

1. 	 If the frequency corrections to one or more terms are more than 

one-half of the frequency spacing of the coarse spectrum, those 

terms are tagged as false peaks. Upon return to the main program, 

the spectrum is searched for the ten largest relative maxima - not 

including those which are tagged - whose powers exceed the removal 

tolerance. 
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2. 	 After the first two iterations the least squares process is checked 

for convergence (by observing the change in variance). If there is 

divergence on the nth iteratLon, the values for the (n-1) st iteration 

are chosen for the coefficients and frequencies. 

3. 	 If the convergence test is not satisfied after 50 iterations, an error 

message is printed and execution is terminated. The convergence 

criterion is that the relative change in Ay must be less than 10-8 

(and Ay must decrease), where Ay is the sum of squares of residuals. 

The error message includes a list of the old and new values of the 

fit parameters and Ay. 

Reference 6 shows how significance testing can be applied to the spectral 

powers computed by formula (54). On the program's graphical output, a dotted 

line appears approximately at a 95% significance level. 

Let T (1), ... , T (N) be the times (for simplicity the independent variable will 

henceforth be called time) associated with the N values of the observed quantity. 

The program calculates T(N) - T(1) as the duration of the signal. However, in 

order that the statement following equation (49b) be true, that the general 

formulas for the coefficients reduce to equations (20) in the case of equally 

spaced data and f=i/T, [NI(N-I)]x duration must be used for T. This is equiva­

lent to regarding the observations as forming a histogram. 

A t - . .. TIME-tI ]At-- •.T.M
 

For 	equally spaced times the time axis is divided into N intervals, each of 

width At (the sampling increment), with the sampling points at the midpoint of 

each 	interval. Thus, T must include portions before T(l) and after T(N). 'The 

basic frequency f is given in the program by (regardless of the time spacing) 

-26­



f = (56) 

S N)--1 [T(N)-T(1)] 

where S is a'factor which allows f to be different from lI/T. The spectrum is 

evaluated at kf, k=1, ... , kmax , where 

k = RSN/2 (57)max 

Here R is a factor which determines the maximum frequency at which the 

spectrum is evaluated, the range factor. When R=l this maximum is the 

Nyquist frequency. Because of its role in determining frequency spacing, S 

is called the spacing factor. When S=1 the frequencies are harmonics of the 

fundamental period T. 

A few comments on the use of unequally spaced data are appropriate. When 

the times are randomly spaced there is no alasing. Therefore, components 

above the Nyquist frequency can be detected. When the times are in some 

regular pattern (but not equally spaced) there may be some misleading effects. 

For example, if the times are equally spaced except for regularly occurring 

gaps of a fixed size, there is an effect something like modulation by a square 

wave. 

Often in using the program, changing one or more of the quantities S, R, the 

limit on the number of terms in the simultaneous solution (MTERMS), and the 

removal tolerance and rerunning will yield better results. Using a very large 

value of S may reveal several peaks so close together that they prevent proper 

operation of the removal feature with a spacing factor near unity. Setting 

MTERMS = 1 may help in this instance. A smaller removal tolerance may 

lead to the discovery of further underlying structure in the signal. It is 

recommended that the user make several runs with known data to gain famil­

iarity with the operation of the program. 

-27­



An option is available to smooth the spectrum estimates with low-pass 

convolution filters of up to 13 points. This feature is not currently activated, 

but the FORTRAN statements are in the program as comments. To activate 

this feature the "C" in column I should be removed. 

The following sections contain a description of the system of programs and its 

use. Appendix 1 contains a flowchart showing the overall logic of the program. 

Appendix 2 is a sample run. A listing of the program which generated the 

(unequally spaced) data is given, along with the output. All of the output options 

are exercised. Values of S and R different from 1. 0 are used. Removal is 

done, with the program calculating the removal tolerance. 

For more information on the program the user is referred to Volume 2 of this 

report, the Maintenance Manual. 

Functions of Programs in System 

CUCPSA (main program) 
Reads program control cards 
Reads data cards (or calls tape read subroutine) 
Calculates mean and a. c. power of total signal 
Calculates coefficients, power, and percent power of spectral terms. 
Prints power spectrum 
Calls two subroutines (GRAPH and RPLOT) to plot power spectrum 
Searches "coarse" spectrum for peaks. 
Calls subroutine to solve for coefficients and frequencies of dominant terms. 
Removes dominant spectral terms. 

GRAPH 
Lists power and plots (on printer) percent power vs. frequency, 

53-58- points/page. A dotted line is drawn approximately at a 95% 
significance level. 

RPLOT 
Plots the spectrum on one page, with a significance indicator. 

READ 

Reads data from tape. 
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CAROL3 
Performs simultaneous least squares fit of up to ten sinusoidal functions, 
solving for coefficients and frequencies. 

BIORTH 
Matrix inversion routine called by CAROL3. 

Input Cards 

There are two types of input cards program control cards and data cards. 

The latter may be replaced by a tape. 

A description of the input cards follows. Everything pertaining to the spectrum 

smoothing feature is given in brackets. It should be noted that if the smoothing 

feature is not activated, card 4 is not used and there are four program control 

cards per case. 

Card 1. Format Card 

1 80 

(13A6, A 2) 

Observation card format. This is a FORTRAN FORMAT statement without 

the statement label and the word "FORMAT. " It includes the beginning and 

ending parentheses. It must specify 3 double precision fields. This card 

should be left blank if the data are to be read from tape. 

Card 2. Observation Definition Card 

1 56 10 11 15 16 25 26 35 

(15) (15) (15) 1 (F1O.5) (F10 

Field Field Field Time units Computational 
number number number per compu- units per day 
foj obser- for timeva ion for day tational unit (CPD)
(IT) (IT) (ID) (TPC) 

NOTE "Field" means fields on observation cards as given on the Format Card. 
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t = T/TPC + (D-D o ) CPD 

where t - time used in program 

T- time on observation card
 

TPC-time scale factor
 

D- day on observation card
 

D - day on Ist observation card
 

CPD-day scale factor
 

For example, if the program is to compute in minutes and the times on the 

observation cards are in seconds and whole days, then TPC=60 and CPD = 1440 

If the data are on tape rather than cards there is no "day" variable. ID and 

CPD are ignored by the program. Subroutine READ assumes that the tape 

contains a file consisting of N (the number of points) records, each containing 

7 (or more) single-precision words. The tape should be binary (unformatted). 

IT tells which of the 7 words is time, 1Y identifies the observed quantity. 

Time is calculated by tzT/TPC. 

Card 3. Program Option Card 

1 18 19 23 24 33 34 43 44 45 46 55 56 
I - I I I I I I I 

(3A6) (IS) (F10. 5) (F10.5) (I1) (11) (F10.5) (II) 

Data set Spacing Plot Removal 

name factor flag tolerance 

(NAME) (S) (JPO) (TOL) 

Number Range Removal Print 
of obser- factor flag flag 
vations (R) (JF) (iS) 

(N) 
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NAME identifies data 

N is number of observations (limited to 2000) 

S is spacing factor in equation (56) 

R is range factor in equation (57) 

JPO = 0 - program plots rough [and smooth] power spectrum 

= 1 - plots rough power spectrum only 

= 2 - [plots smooth power spectrum only] 

= 3 - no plots 

JF = 0 - program removes terms whose percent powers exceed TOL 

= 1 - no removal 

TOL is calculated by program if not inputted 

JS = 0 - program prints power spectrum 

= 1 - program does not print spectrum 

NOTES 	 The default value of TOL is the same as the 95% significance level 

(shown on the graphs by a dotted line). However, in this context 

it should not be regarded as a 95% significance level. 

Combinations of N, S, and R which would produce more than 1000 

spectral terms are not allowed. In such a case, the program will 

compute the first 1000 terms. 

TOL is a fraction which is used to compute a power level, that 

fraction of the total power of the signal. After removal of terms 

that level is not re-evaluated as a fraction of the remaining power, 

except for being halved once as described previously. 

[Card 4. 	 Spectrum Smoothing Filter Card 

5 6--­

'I 
(15) (7F 10. 5) 

Number of filter 
factors on card 
(LEND) 

Filter factors beginning with the center factor 
and proceeding to the last factor. The filter 
used by the program will be symmetrical, with 
2xLEND-1 points. 
(FILTER) 
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This card cannot be used unless the smoothing statements are activated and
 

S / 1. If S=1 the values 1/4, 1/2, 1/4 ("Hanning") will be used for the filter.]
 

Card 5. Simultaneous Removal Card
 

1 5 
(IS) 

i5) 

Maximum number NOTE MTERMS may not 
of terms solved exceed 10. 
for simultaneously 
in fine fit (MTERMS) 

These cards are followed by N observation cards, in the format specified on 
the Format Card, unless the data are on tape. Any number of sets of data 

may be analyzed sequentially by stacking the input cards to form one large 

data deck. After the last case, two more cards are needed to terminate 

execution The first may be blank. The second should have -999 punched in 

columns 2-5. 

Output 

The first page of output for each case gives a list of input quantities. The first 
group on this page lists, in order, NAME, N, S, R, JPO, JF, TOL, JS, and 

MTERMS, one per line. [If the spectrum smoothing feature is activated, the 

next group is a list of the filter factors. ] The final group consists of FMT, 

IY, IT, ID, TPC, CPD, and DUR=T(N)-T(1), also one per line. 

On the next page the title 
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INITIAL DATA SPECTRUM FOR SET {NAME} (TOTAL POWER ={YYBAR2}) 

"
is printed. Here {X} means "the value of the quantity X. YYBAR2 is the 

total power, the sum of squares of the observations (after subtracting the mean) 

divided by N/2. This normalization for power is somewhat arbitrary, it amounts 

to a choice of the unit of power. The same normalization is used for the terms 

in the power spectrum, equation (54) is divided by N/2. 

If the print option is used (JS=0), this is followed by a tabulation of the spectrum, 

50-52 lines per page. The quantity C given at the top of each page is the mean 

of the observations. The first of the seven columns lists the frequency index k, 

which goes from 1 to k (equation (57) ). The second column gives themax 

period, the reciprocal of the frequency of the kth term. The third column is 

w, 2 nrx frequency. The fourth and fifth columns list ak , the coefficient of the 

sine term (called b in equation (47)), and bk . the coefficient of the cosine 

term (equation (45) ). Once again attention is called to the reversal of the 

usual naming convention for the coefficients. The next column lists the regres­

sion power of each term, equation (52) divided by N/2. The last column gives 

percent (really fractional) power, the preceding quantity divided by the total 

power YYBAR2. 

Depending on whether the spectrum smoothing feature is activated, and on 

what plot option is specified, plots (on the printer) may be made of the raw 

spectrum, the smoothed spectrum, both, or neither. If plots of both the raw 

and smoothed spectrum are requested, the former appear first. Plots are 

made in pairs The first is on a single page, power vs. k. The second may 

occupy several pages, with the first 53 points on the first page and 58 on each 

succeeding page. The expanded plot shows percent power vs. k, with the k 

axis running down the page. To the left of the plot are two columns of figures 

,giving the regression power and frequency corresponding to each value of k. 
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Automatic scale selection is done for each plot, and on both plots a dotted 

line shows an approximate 95% significance level. 

After plotting the spectrum, the program may be finished with that case. 

However, if the search-and-removal option is specified the title 

REMOVAL TABLE FOR SET {NAME} , 

column headings, and the first line of the removal table are printed This first 

line consists only of YYBAR2, the total power, under the heading "REMAINING 

TOTAL POWER. " 

The remainder of the removal table lists the results, if any, of the simultaneous 

least squares solution for dominant terms. The first five columns, in order, 

list the period, frequency, angular frequency (2 x frequency), and the sine and 

cosine coefficients of the terms in the solution. The column headed "SPECTRUM 

POWER" gives the regression power of each term. On the last line of a group 

of terms solved for simultaneously, the column headed "REMAINING TOTAL 

POWER" gives the power of the residuals after subtracting the solution terms 

from the original data. On every line of this group, the column headed "C" 

lists the mean of these residuals. There may be several such groups of terms. 

After each subtraction the residuals are treated as data, the spectrum is cal­

culated and searched for peaks as before. When no more valid peaks 

exceeding the removal tolerance can be found, TOL is cut in half and the 

message "SEARCH WILL NOW BE MADE WITH SMALLER TOL" is printed 

Then the search-and-removal procedure continues until no more peaks are 

found, and the values found are printed in the removal table. 

If at least one term is found and removed from the data, the spectrum of the 

residuals is printed and/or plotted according to the output options specified 

The form of this output is just the same as for the spectrum of the original 
t data, except that the heading of the tabulation specifies that it is the "FINAL 

DATA SPECTRUM, " 
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Executing the Program 

The program is on the FASTRAND file LSQFIT*MLTSAN. The name of the 

absolute element is LSQFIT*MLTSAN. APSD. If input is from tape rather 

than cards, the tape is considered to be on logical unit 3. If it is necessary 

to reMAP the program for some reason, the MAP source element 

LSQFIT*MLTSAN. PSAMAP may be used. 
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APPENDIX 1
 

Overall Logic Flowchart
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APPENDIX 2
 

Sample Run
 



g
 

@Q
oQ

00(DO 

00mam
 

fa@
 
192

fama
 

0@ 

00 fag1
 

9 RUN MXL,.DOI,1SPANALp10.50 
9 HOG GENEME ANDOMLY SPPCED DATA FOR SPFCTRUM PROGPAM 
0 FOR,IS RANI1SD,RANDSD 

C * PRRAM TO GENERATE KN~OWN DATA FOP SPECTRAL ANALYSTS PROGRAM 

C** Y =YBAR + SLOPE*T + SIM(A(I)*SINCP*PT*F(I)*T)
 

C *
 

C *
 

DIMENSION A(lf),B(10),FCiO)PX(10),PANDNO(1000)
 
C -**
 
C ** TIMES ARE RANOOMLY SPACED OVER (TodDO 4
 
C **THE PSEUDO - NYGUIST FREOLIENCY IS (N - 1) / 2 CPS.
 
C
 
1000 FORMAT (1H1,21X12/7PH Y = YRAR + SLOPF*T + qIMtAtI)*,,TN(P*PT*F(T) 

**T) + B(I)*COS(2*PI*F(Il) T))/22Y?31TI1//iOX,7HYBAR = ff6.i,tlVX8HSLO5F 
,E=F6.3//8XIHF,IflX1HA,t0X1HR/(9(5XF6.3)/))
 

t001 rORfA-T (5XF5.2,t5XE13.S)
 
1002 FORMAT (3E20.S)
 
1004 FORMAT (I..9
 
109FORMAT (IS)
 
1006-FORMAT 'SX1HT,I3X1HY)
 

REAO '5P1002) YBARSLOPE
 
READ t5.1005) M n NUMBER OF FRPE IFNCIEq
 
READ (5,1002) (F(I),.MT),.f(T) ,Tz1,M)
 
WRITE (6,1000) M,Y3ARSLOPE, (F(Y) ,A(I) ,R(T) ,I=I,M)
 

- WRT-TE (6,1006) 
C *
 
C *TA _IS THE INITTAL TIME.
 
C ** N TS THE NUMBER OF POINTS,.
 

READ (5,10041 T0.N
 
RANDNO(1) =6.2831853076
 
NM2 =N - 2 
CALL RkANDU (RANONO,NM2) Q GENERATP ARPAY Off RANDOM NUMRERS. 
T zTO 
NM 0
 
GO TO 30
 

10 CONTINUE
 
- NM NM±+1
 

T =TO + RANDNO(NM)
 
GO TO 30
 

20 COINTINU E
 
NM _NM + I
 
r TOo+ 10
 

30 CONTINUE
 



BIAS=YBAR+SLOPE*T
 
Y=RIAS
 
DO 50 J:1pM
 
X(J)z6.2831853076*F(J)*T
 

50 	Y=Y+A(J)*SIN(X(J))+B(J)*COS(X(J))
 
PRINT 1O01,T#Y
 
PUNCH IO02pTY
 
IF 	(NM - NM2) iOP2flP40
 

40 	CONTINUE
 
STOP
 
END
 
XQT
 

5
 
5. 	 0.
 

36. 3. 5o
 
158., q. 6.
 

0. 
250, 0. 5. 

281, 7-, 2. 

220. 	 3. 


0. 500
 
FlpIN
 



SAMPLE SPECWRUM PRR RUN UNSQUA-LL SP*CE3 eA
a 


SET NAME RANDOM TIME 310568
 
-NO-,--PO-I-N-TS6-


SPACING .50000o000 
RAN6E- -yooo 

PLOT FLAG = 0 
REmevAk 6-
TOLERANCE = .02000 
PRINT F6- 0-
MTERMS = 10 

FORMAT
Y4-I=-L 

= 
-

(3D20.0)
-2 

T FIELD 1 

TIME SCALE 1,00000000 TIME UNITS PER CnMpUTATIONAL UNIT 

-DAY SA6EOOoeoo -.OMPUTATIONAL N-tT- PER DA-O 

DURATION -00-0 COMP-TATINA' UN-ITS
 



SAMPLE SPECTRUM PROGRAM RUN - UNEQUALLY-SPACEnI)DT+
 

MlT-1-AL BATA SPEGThU?4 FO- SET R4ANOM TIME M--be TOT POWER ya44-90 

REGRESSION PERCENT 
K PERiOO OMEGA A Z POWER POWER- C = .44449+ft­

1 .5010 12.541238 .58427+00 .19315-01 .149625 .000622 
2 .2505 25.082476 .13933+00 .78377+00 .635199 .002641 
3 .l670 37.623714 .38234+00 -.194a5+00 .181005 .000753 
4 .1 53 50.164951 .22804+00 -.10337+01 1.15615 .004807 
5- n-o 2 62-,706189- -1-4735+00 .b490b+O-D- c33728 .001346 
6 .083b 75.247427 .71437+00 -.49764-01 .531742 .002211 
7 .071o 87.788665 .86443+00 .b5185+00- 1.16105 .004827 
8 .0626 100.329903 .51587+00 .o 7 216 +00 .702510 .002921 
9 .0557 112.871141 .26782+00 -.34871+00 .185700 .000772 

10 .0501 125.412379 .54781+00 -.26621+00 .364523 .001516 
t-1 5 1­-57-.9& 3 6 t-7 .­ 06ai+0 c,a&62 i&& .457869 .001904 
12 .0416 150.494854 .24629+00 .57047+00 .3808d4 .001584 
13 .0138b 163.036092 .12736+00 b59258+00 .504103 .002096 
14 .0358 175.577330 .29731+00 .14428+00 .109238 .000454 
15 .0334 188.1185b8 -.49089+00 .13375+00 .248718 .001034 
16 .0313 200.659806 .35153+00 .25307+00 .185071 .000769 
17- .0296 213i201044 i80349t00 .57537-+6O- .98445t .004093 
18 .0278 225.742282 .12964+01 .56823+01 33.9198 .141031 
19 .0264 238.283520 -.49421+00 -.86820+00 .960870 .003995 
20 .0251 250.824757 -.14717+00 -.39713+00 .175213 .000728 
21 .0239 263.365995 .79963+00 -.10048+01 1.69353 .007041 
22 .0226 275.907233 -.10662+01 .17452+00 1.20290 .009001 
23 .0218 -288.448471 31171+00 -.3196-2+00 -196311 0008 6 
24 .0209 300.989709 .21072+00 -.26426+00 .lblb .000483 
25 .o200 313.560947 -.14969+01 -. 17975+00 2.31140 .009610 
26 .019a 326.072185 -.54436+00 -.10201+01 1.34717 .005601 
27 .018o 338.613423 -.41555+00 -.78994-03 .171249 .000712 
28 .0179 3 5 1.154 6 o 0 .68447+00 .15912+01 2.95500 .012286 
29 .0173 Z64.695898- .37035+00 -.25410+00 .202315 .oooa i 
30 .01b7 376.237136 .38030+00 .b1740+00 .5292b2 .002201 
31 .0162 388.778374 -.11352+01 .15919+00 1.23824 .005148 
32 .0157 401.319612 .25589+00 -.95412-01 .758469-01 .000315 
33 .0152 413.860850 -.91126+00 .75881+00 1.38307 .005751 
34 .0147 426.402088 .73870+00 .77695+00 1.16997 .004864 
35 
,36 

.0146 

.0169 
438.943326 
451.4845b3 

-.47313+00 
.1014J+01 

-.10268+01 
-.62577-01 

1.27766 
1.01 9 z6 

.005312 

.004238 
57 .0153 464.025801 .1653u+0l -.o4477+00 3.04091 .012643 
38 
09 

.014 
0128 

47o.567039 
489.108277 

.52506-01 
-.29884+00 

. 0513+00 
-.47652+00 

.257q90 

.30 8 9 00 
.001073 
.001285 

40 .012t 501.649515 -.83427+00 -.10728+01 1.85894 .007729 
41 .012 514.190753 .76261+00 .20013-01 .600436 .002496 
42 .0119 526.731991 -.12241-00 .65674+00 .432352 .001798 
43 .0117 539.2732 9 .35417+00 -.28731+00 .205242 *000853 

44 .0114 551.814466 -.12447+01 .22179+00 1.7?498 .007172 
45 .0111 564.355704 -.40730+00 .38661F00 .299123 .001244 
46 .0109 57b.896942 -.38045+00 -.65127+00 .759659 .003158 
47 .0107 589.438180 .67 71o+00 -.b60q5+0 1.00642 .004184 
48 .OI4 601.979418 -. 5103+00 .877n4400 1.49809 .006229 
49 .0102 514.5 0656 -.o6880+D0O ;6267+00 .571532 .00237b 
50 .0100 627.061894 .22249+00 -.78249+00 .645464 .002684 



SAMPLE SPECTRN PRObRAM RUN - UNEQUALLY SPACED DATA 

REGRESSION PERCENT 
K PERIO) OMEGA A R POWER POWER C = .44449+01 

51 .0096 639.603132 -.94956-01 .10066+01 1.021b8 .004248 
52 .009U 652.1443o9 .26399+00 .93334+00 .941328 .003914 
53 .009b 664.6856o7 -.b6910+00 .o6005+00 .796572 .003312 
:)4 .095 b77.226845 -.11276+01 .113o9+01 2.55085 .010523 
bb .0091 b89.7o8063 -.10431+01 .54313+00 1.47515 ,006133 
56 .00Q89 702.309321 -.95657+00 .27778+00 .977725 .004065 
.7 .0088 714.6505bg .42312+00 -,62821+00 .575362 .002392 
58 .008o 727.391797 .45594+00 .b4626+U0 .504476 .002097 
59 .0085 739.933035 -.85177+00 .25604+00 .784240 .003261 
o0( .0084 752.474272 -.9802b+00 .45258+00 1.11401 .004632 
61 .0d2 765.015510 .47677+00 .18912+00 .267772 .001113 
62 .0081 777.556748 .26826+00 -.42422+00 .251261 .001045 
63 .00b0 790.097986 .10300+01 .o6934+00 1.48658 .006181 
E4 .0078 802.b39224 .51498+00 .89129-01 .266735 .001109 
65 .0077 815.1804b2 -.22314+00 -.21640+00 .952897-01 .000396 
66 .007o 827r72110O -,6738S+00 .926-10-,8 1-.21919 .00506­
67 .0075 840.262938 .56949+00 .45505+00 .542610 .002256 
68 .0074 852.804175 *43582+00 -.74372+00 .744540 .003096 
69 .0073 86b.345413 .15415+00 .40925-01 .252330-01 .000105 
70 .0072 87 7.8866b -.83827+00 .21704+00 .767279 .003190 
71 .0071 890.427889 -.33299+00 .19359+00 .148060 .000616 
72 .0U70 902.969127 .11271+01 -.28067+00 1-.41627 -.005889 
73 .0059 915.510365 .48744+00 .38295+00 .387168 .001610 
74 .0068 928.051603 -.15094+01 .55817-01 2.31363 .009620 
75 .0Gb7 940.592841 -.46897+00 .31220+00 .309903 .001289 
76 
77 

.OObo 

.00b5 
953.134078 
965.675316 

.97677+00 
-.66324+00 

.14951+01 

.06 178 +00 
3.08130 
.883476 

.012811 

.003673 
78 .0061 978.216554- .43452-01- .404-78+01- 1.11218 .004624 
79 .0061 990.757792 -.44950+00 .92348+01 80.8693 .336237 
80 .006 1003.299030 -.52987+00 -.16084+01 3.006o3 .012500 
81 .0062 1015.640268 -.14327+00 -.62794+00 .422924 .001758 
82 .0061 1028.581506 .85875+00 -.10720+01 1.95762 .008139 
83 .0060 1040.922744 -.77599+00 .79756+00 1.20470 .005009 
84 .0060 1053.463981 -.377-93+00 .11232+00 .150910 .000627 
85 .0059 1066.005219 -.70092+00 -.13981+00 .518351 .002155 
88 .0058 1078.546457 .50951+00 -.43698+00 .439145 .001826 
87 .0058 1091.087695 .57415-02 .72225+00 .555543 .002310 
88 .0057 1103.628933 -.39169+00 -.11261+00 .17-3927 .000723 
89 .005o 1116.170171 .89217+00 -.14781+00 .840841 .003496 
90 -0056- -112B.-1409 -, 687-3+00- -a..5$326-01 -.401949 0016-1 
91 .0055 1141.252647 -.53876+00 -.35865+00 .402116 .001672 
92 -.0054 1153.793884 .43258+00 - .19874+01 4.23148 .017594 
93 .0054 1166.335122 -.35796+00 -.97009+00 1.09472 .004552 
94 -.0053 1178.676360 .71831-01 -.21185-02 .524018-02- 000022 
95 .0053 

.J- 50415a 
1191.417598 
14-2-958&36 

-.14378-01 
--­,.8674+-U 

.35002+00 
=.988-56+00 

.119684 
-1-1-5680- -

.000498 

.004810 
97 .0052 1216.500074 .82687+00 -.45741+00 .865888 .003600 
98 .0051- 1229.041312 --.86982+0a r.17566+00 .809704 .003367 
99 .0051 1241.582550 -.34946-01 -.27344+00 .776204-01 .000323 
100 .0050- 4254.1237-&7- ,4B395+00 -.10364+01 1.37539- .005719 
101 .0050 1266.665025 -.88731+00 -.26013+00 .910934 .003787 
£02 -.. 40A& L27.9906263- -s !a9+ .74a95,00 .6696?'- 0 2787a4 



SAMPLE SPECTRtjM -PROGRAM--RUN---UNEQUALt-Y--SPACED DATA­

-REGa4ss-0N -PERXENT-
K PERIOD OMEGA A POWER POWER C .44449+01 

103 .0049 1291.747501 -.24400+00 .84841+00 .767720 .003192 
104 .0046 1304.288739 -.24012+00 .13456+01 1.88536 007839 
105 
106 

.0048 

.0047 
1316.829977 
1329r-712-1-5-

-.29756+00 
-r5 9 4&S+& 

.92211+00 
-.-­3-- 4-

.946866 
r3 45 3- 6 

.003937 
001435 

107 .0047 1341.912453 .73795-01 .75390+00 .563381 .002342 
108 .0046 1354.453690 .33153+00 -.74528+00 -,638448 .002655 
109 .0046 1366.994928 -.14302+00 .13249+01 1.77845 .007394 
110 .0040 1379.5361o6 .51714+00 .31820+01 9.88808 .041112 
111 .0045 1392.077404 -.40759+00 -.19174+01 3.97349 .016521 
112 -0045 1404c&18642 -.41-3-19+00 ,28124-01 ,1671-3 .000695­
113 .0044 1417.159880 .59903+00 .73706+00 .924658 .003845 
114 .0044 1429.701118 .27838-01 .12339+01 1.57934 .006567 
115 .0044 1442.242356 .31064+00 .40138+00 .261149 .001086 
116 .0043 1454.783593 -.83642+00 -.55767+00 .982655 .004086 
117 
1-1-8 

.0043 
-­ 04-2-

1467.324831 
-­4-99r866069 

-.17756+00 
-.65&6U+0 

-.61605+00 
-k-81-91-&01-

.426968 
111-i-a-2 

.001775 
-00570--­

119 .0042 1492.407307 -.71873+00 .10616+01 1.757b4 .007307 
120- .0042 1504.948545 -.46421+00 41844+00 .240911 .001002 
121 .0041 1517.489783 .13792+00 .12885+01 1.72020 .007152 
122 .0041 1530.031021 -.79100+00 -.27901+00 .686745 .002855 
123 .0041 1542.572258 .50355+00 -.47417+00 .469223 .001951 
124 -.004- 1S55-.11349& -r78053+00 .o30043+9 -.662731- .002755 
125 .0040 1567.654734 -.27506+01 .72037+00 8.01840 .033339 
126 .0040 1580.195972 .15665+01 -.65317+00 3.01800 .012548 
127 .0039 1592.737210 .22456+00 .13651401 1.92079 .007986 
128 .0039 1605.278448- .31494+00 .o 5 5 64 +00 .542729 .002257 
129 .0039 1617.819686 -.65080+00 -.53412-01 .415851 001729 
-130 
131 

g039 
.0036 

1630,360924 
1642.90 2 1o1 

.38081+00 
-.67699+00 

-.29434+00 
-.80907+00 

.240958 
1.09074 

.001002 

.004535 
132 .0038 1655.443399 .51012+00 .27073+00 .353060 .001468 
133 .00.6 1667.984637 .15230+01 *b9721+00 3.06986 .012764 
134 .0037 1680.525875 -.15742+00 .30219+00 .114383 000476 
135 .0037 1693.0b7113 -.22318+00 .89068+00 .832057 .003460 
136 .0037 -17-05.60835-1 .14442 4 .29624+00 .875075-91 oo-00364 
137 .0037 1718.149589 .67503+00 -.16723+00 .492132 .002046 
138 .003o 1730.690827 .10075+01 .19629+01 5.05962 .021037 
139 .0036 17 4 3.23 2 0 o 4 -.76118+00 ,692o0+00 1.07396 .004465 
140 .0036 1755.773302 .38359-01 .15876+01 2.52726 .010508 
141 .003 1758.314540 .19750+01 -.48866+01 26.8603 .111679 
142 .0035 17808855778- .81933+041 -,%l.42+00 1.52042 r006322 
143 .0031 1793.397016 -.74823+00 .85166-01 .593278 .002467 
144 .0U35 1805.938254 -.26801+00 -.45227400 .279174 .001161 
145 ,00.D 1618.479492 .83221+00 .17848+00 .719649 .002992 
146 ,OOo4 1631.020730 .66772+00 -.28876+00 .526707 .002190 
147 .U034 1643.561967 -.95728+00 -.56962+00 1.18280 .004918 
148 .0034 1856.103205 .53216+00 .23699+00 .326861 .091559 
149 .0034 18b8.644443 .13840+01 .74113-01 1.8b596 .007758 
150 .0031 1881.185661 -.85560+00 .b1725+00 .971919 .001041 
151 .0031 1893.726919 -.43287+00 .89613+00 .981018 .004079 
152 .0035 190o.2b8157 .49291+00 -.11639+01 1.60112 .006657 
153 .005 1918.609395 -.11164+00 -. 11084+00 .243027-01 .000101 
154 .0033 1931.350633 -.3045o+00 -.23951+00 .147113 .000612 



SAMPLE SPECTtwM PROGRAM RUN - UNEQUALLy SPACED DATA 

-REGRESSION PERCENT 

K PERIOD OMEGA A R POWER POWER C .44449+01 

155 0u32 1943.891870 .86105-01 -.43136+00 .188547 .000784 
156 r-032 195o.433108 -,87079-01 .9746+00 .166493 .000692 
157 .0032 1968.974346 .69862+00 -.12843+01 2.24692 .009342 

-4-5& -98i.6554 .58080+00- - aI4-3i-+0 .&82052 s0O1588 
159 .0034 1994.056822 -.17789+00 .17584+00 .6344b0-01 .000264 
160 .0031 2006.598060 -.39421--00 -. 14294+00 .175356 -.000729 
161 .0031 2019.139298 .10091+00 -.22574+00 .583952-01 .000243 

-462- 103o-34 - -606 .45036-01 -,46554+00 .214520 .000892 



S1\ LAP I,(, PRUoI , dill - rILQJALLY SPnCE ) fATs 

R(AN,0" TIM. 3105oo P VS K 

79.3 1 
71.c 
?o.ii 

II 
74.4 1 
?)..b I 

5b.2
tI.9 
to.) 

I 
II 

o4.7 I 

bbat I 
bi.5ol.b II 
q9.b I 
4b.2 
bo.b 

1
I 

S. I 

4u.1 I 

3o.b I 

40.7 1 

w , 
7 I 

22.6 1 
'49.1 1 
L1.0 I 
27,524.4
3U.? 

1
I 

29.1 I 

25.9 I 

214.3 
17.822.6 I 
9I.0 I 

16.9 
11.3 

I 
I 

9.70 1 
8.119 I 

6.47 1 * 
4.5 I... ...... ................. . . ......... ............... .. ............................ 

3.23 I * * 

1.62 1 * * ** * * 

V V V V V V V V V V V V 

13.5 27.0 40.b 54 0 67.5 81.0 94 5 108.0 121.5 135.0 148.5 162.0 
K 



SAO LI SH tA UI PRO6AM (IN - UPLOUALLY SPACE. rATA 

,ANDUl 11L Olubt.b P VS K PLRLC.,T Pu JER 

0 2 4 6 b 10 12 14 i" 18 20 22 24 't 25 30 3p 34 36 38 40 
PUWJ FL6ULhCY K V V V V V V V V v V V V V V V V V % v V V 

I------------------------------------------------------------------- -----------­
.149o24b 1.99600 1 I * 
.ob5196) ..99c00 2 1 * 
.1310053 a.96t00 3 1 * 
1.161o 1.98400 4 I . 
.3237J 9.VoiO 5 1 * 
,b317422 11.976U0 6 I * 
1.1610b4 16.9720 7 I 
*(0b25104 I5.9680 8 1 * 
.1657o00 17.9u40 Q I * 
.O045d43 19.9600 10 1 * 
*4578o8b 21.9560 11 I * 
'0808o6 
*oO4 12o 

23.9b20 
!t.948U 

12 1 * 
13 I * 

.IU92364 7.9440 14 1 * 
*24(716o 49.9400 1" I * 
.1850710 31.9360 16 I * 
*9644b4o 35.920 17 1 
36.9197o 
. 9o08o 9 9 

jb.9c8u 
47.9 440 

16 I 
19 1 4 

.175213i 09.9400 20 1 * 
1.o93b26 '41.9160 21 * 
1.2O9 Oa 
.1963107 

q6.9120 
4o.9080 

22 
23 

I 
I * 

.1lbluob 47.9040 24 1 * 
2.31169b 49.9000 25 I 
I.34711 b.89bO0 26 1 
,1712490 b.0920 27 1 * 
2.9b4997 ob.8b8[I 28 1 
.2(23b5b .7.8 40 29 1 * 
.b292624 i9.bbOu 30 1 * 
1,28,37 
. 7 654 -6 9-01 

ol.8760 
o.6.7 2 0 

31 
32 

I 
1 

* 
* 

1.36.071 
1.16997u 

ob.8(80 
ot. 8 b4 0 

33 1 
34 I 

1.277obb 09.8b00 35 1 
1.019c51 11.8b6o 36 1 * 
3.040913 7a.6Sb20 17 1 * 
.e57990U 15.8480 38 I * 
.6089u03 77.6440 39 I * 
lob893b 19.6400 40 I * 
.o0043b7 U1.86b0 41I * 
.43b235 83.8320 42 1 * 
.ub2419 db.3280 43 I * 
1.724981 81.8240 44 1 * 
.2991233 J9.8.00 45 I * 
.759ob89 91.8160 46 I * 
1.0064 4 93.8120 47 I 
1.498066 )b.a800 418 I 
.b715616 91.8640 49 1 * 
.0454344 99.6000 80 I * 
1.U21061 lu.796 51 I 
.941347b lui.192 52 I 
.7965723 Iu.788 53 1 * 



SAMPLE - SPEC-TRUPROGRAM-RUN-UNEQUALL-Y-SRAGEn-DAT 

Q2-b5oas54 47r7 a4 54 4 * r 
1.475148 109.780 55 I 
.9777251 1-11,776 56 1 * 
,5753624 113.772 57 I * 
.5044759 1Ib.768 -58 I * 
.7842400 117,764 59 I * 
1-r1-40& 41%-9-s 60 1 
.2677717 121.756 61 1 
v25 12610 12-r752 62 -1 
1.486583 125.748 63 1 
;2667346 1t77741 64 -1 
.9528975-01 129.740 65 I * 

-1.-24-9*96 17-.7k-mf 66 1 r 
.5426096 133.732 67 1 * 
-i4-?-S98 
.2523301-01 

-1-56,728 
137.724 

68 -I 
69 * 

-­76-7-2-794 I39 720 70 I 
.1480595 141.716 71 1 
t.44-626* +4dr:Ffl -- 1 
.3871678 145.708 73 1 * 

7 0 4  2-0--1-62-7 1-4 r - 74 1 
.,g099029 149.700 75 1 * 
-3,81-O 05 1-51-.696 76 1 
.8834761 153.692 77 1 
i.112179 i5.686 7-81 
80.86932 157.684 79 
3.006326 19.680 so I 
.4229238 161.676 81 

-1-,-9576-19- 16-3,672 432 1 -

1.204703 165.668 83 r 
. IO9101 1 6 7, 6 6 4  841* 

.5183510 169,660 85 1 
4391449 17-1-65u 8& I-*­
.5555428 173.652 87 1 
.1739272 1-7-5 648 88 1 ** 
.8408406 177.644 89 * 

-I-9S~~1 -79 644 9 -
.4021158 181.636 91 1 
4.231475 1683,632 92 I1 -. 

1.094715 185.628 93 1 
.5240179-02 187,624- 9W 1 * 
.1196840 189.b20 95 1 
1 .1-56:798S ~ . 6i6 4& 16­
.8658885 193.612 97 * 
.8097044 195,608 98 1 
.7762041-01 197.604 99 1 
1.375393 499.600 100 1 
*910933b 201.5915 101 1 
,.6696741 Zti4,602. 40-O2 1It 
.7677196 205.588 103 * 
1.885356 207-584 t0I I -, 
.9468658 209.50 105 1* 
;,45-4364 2-1-1,576 106 1 
.5633812 213.572 107 * 

-.-b38448$A -2--4 403 1* r 
1.778452 
9.888076 

217,5642 -19 y--0 
109 1 
-1-9 1­

* 

3.973488 221,556 111 1 



SAMPLE SPECTRUN PROGRAM RUN - UNEQUALLY SPACEn DATA 

.1671130 


.9246n81 

1.579335b 

.2611486 

.982654u 

.426937o 

1.371117 

1.757539 

.2409107 

1.720197 

.b867451 

.4692231 

.6627310 

8.018402 

3.017999 

1.920786 

.b427287 

.4158510 

.2409580 

1.090745 

.3530597 

3.069857 

.1143833 

.832056b 

,8750748-01 

.4921323 

5.059622 

1.07395o 

2.52725b 

26.86028 

1.520425 

*5932779 

.2791740 

.719b486 

.5267068 

1.182803 

,3268812 

1.865957 

.9719191 

.9810183 

1.601124 

.24302o7-01 

.14-71134-

.1885470 

.1664936 

2.24691b 

*6820518 

.b344597-01 

.1753564 

,5839b24-01 

.2145198 


226.552 

22b.548 

227.544 

229.540 

261.536 

233.532 

23D.328 

a67.524 

239.520 

241.516 

24365--2 

2b.508 

247.504 

249.b00 

851.496 

253.492 

23.D488 

251.484 

259,480 

2b1.476 

26J.472 

265.468 

?u7.464 

269.460 

71.456 


273.452 

275.448 

277.444 

279.440 

281.43b 

28S,432 

285.428 

287.424 

269.420 

94.416 


293.412 

29b.406 

297.404 

299.400 

301.396 

303.392 

305.388 

-347,.384 
309.380 

511.376 

313.372 

615.368 

617.364 

519.36a 


35
 321. o 

326.652 


112 I *
 
113 I *
 
114 I *
 
115 I *
 
116 1 *
 

117 I *
 
118 *
 
119 I *
 
120 I *
 
1211 *
 
422 I *
 
123 I *
 
124 I *
 
125 I *
 
126 I *
 
127 I *
 
128 I *
 
129 I *
 
1-30 -1 *
 
1311 *
 
132 I *
 
133 I *
 
134 I *
 
135 1 *
 
136 I *
 
137 I *
 
138 1
 
139 I *
 
140 I *
 
141 1
 
142 1
 
143 I *
 
144 I *
 
145 I *
 
146 I *
 
147 I *
 
148 I *
 
149 I *
 
150 I *
 
1511 *
 
152 I *
 
153 I *
 
4154 -1 *
 
155 I *
 
156 I *
 
157 I *
 
158 I *
 
159 I *
 
160 I *
 
161 I *
 
162 I ­



-SAMP6E SPEcTRUM PROGRAM RIN - UNEQUALY SPAE 

REN4VAL TABLE FOfR .E 

-PE- - 1-REQ e - -GME* -A 

.0063 158.000090 992.743847 .89995+01 

.027 55.9933 U6.19044 .347g

.0036 280,997330 **.*** ** .69338+01 
-0*45 aaev.-ta695 *44*,4* 2 7  0 
.0040 250.001495 .57892-01.**** 

SEARCH WILL NOW BE MADE WITH SMALLER TOL.
 

OATA 

RANDM TIME -3 

-B-


.59415 01 


.-&0081I4 


.20961+01 

- .?!-298-t01 
.50101+01 


066 

c-

.53828+00 


.Z33Z8400 


.53828+00 


.5iiO*OO 


.53828+00 


SPECTRUM REMAINING
 
PoWER- -TOTt POWER 

.114821+03
 

.340945 192
 

.539825+02
 
i!t94906t02
 
.250682+02 .180425-01
 



SAMPLE SPECTRUM PROGRAM RUN - UNEQUALLY SPACE- DATA
 

FINAL DArA SFECTRUM FOR-SE4 RANDOM -TIME 310.6a (TOTAL POWER = .18044-01) 

REGRESSION PERCENT 
K PERIOu (MEGA A POWER POWER C .53A28+00 

1 .5010 12.541238 .36604-02 .55947-05 .135935-04 .000753 
2 .2503 25.082476 -.31807-02 .33627-02 220645-04 .001223 
3 .lo7L 37.623714 .43095-03 .o9240-02 .482660-04 .002675 
4 .1251 50.164951 .11154-01 -.59911-03 .124620-05 .006907 
5 .1002 62.706189 .12462-02 .90598-03 .234729-0b .000130 
6 .083o 75.247427 .44771-03 .61719-02 .368800-04 .002044 
7 .071o 87.788665 -.44042-03 .16946-02 .293500-05 .000163 
8 .Oodo 100.329903 .14194-02 -.17993-02 .540332-0b .000299 
9 .0557 112.871141 .43596-03 -.15018-01 .226702-03 .012565 

10 
11 

.0501 

.045b 
125.412379 
157.963617 

-.55427-02 
.16881-02 

-.49189-02 
.81117-03 

.368973-04 

.357 lo2 -05 
.002045 
.000198 

12 .041, 150.494854 .17947-02 .19678-02 .706216-0b .000391 
13 .085 lb3.036092 -.23749-02 -.76750-02 .660643-04 .003662 
14 .03b8 175.577330 -.11793-01 -.18792-02 .140186-03 .007770 
15 .0634 188.118568 -.38260-02 -. 75570-02 .74.547-04 .004121 
1t .0515 400.659806 -.10636-02 -.55307-02 .307016-04 .001702 
17 .029s 213.201044 .22746-02 -.b0740-02 .720281-04 .003992 
18 .0276 22b.742282 -.44742-01 -.80156-02 .204634-0 .113429 
19 .02b4 238.283520 -.91116-03 .69261-03 .166606-05 .000092 

20 
21 

.0251 

.0239 
250.824757 
253.365995 

.67349-02 

.21716-02 
.6870g-02 

-.30738-02 
.9112e1-04 
.145042-04 

.005050 

.000804 
22 .0226 27b.907263 -.58120-02 .264q1-02 .414257-04 .002296 
23 .0216 288.448471 .49607-02 .50234-02 .505930-04 .002804 
24 .029 300.989709 .34976-02 -.57464-02 .264944-04 .001468 
25 .020U 313.530947 .14611-02 -.94732-03 .297267-0b .000165 
26 
27 

.0191 

.018U 
326.072185 
638.613423 

.58990-04 
-.o 832 3-02 

-.49394-02 
.79889-02 

.240527-04 

.105308-03 
.001633 
.005837 

28 .0179 551.154660 .98155-02 .43504-02 .110993-03 .006152 
29 .0174 563.b95898 -.11121-02 -.42481-02 .189510-04 .001050 
30 .Oib7 37b.2371356 .22107-02 .55350-02 .354877-04 .001967 
31 .01b2 388.778374 -.48751-02 .10269-01 .134366-06 .007447 
32 .0157 401.319612 .25084-02 -.41371-02 .229554-04 .001272 
33 .015 413.860850 .62061-02 -.11953-02 .a824b3-04 .002120 
34 .0147 42b.402088 .53587-02 -.96269-02 .122139-06 .006770 
-35 .014,5 458,94336 r1W14501 -.46597-02 .24--311"03 -.011828 
36 .0139 451.484563 .11613-02 .31665-02 .112551-04 .000624 
37 .0133 464.625801 .1016o-0l -.77149-02 .1581b3-03 .008766 
38 .0132 476.5o7 039 .10008-01 -.21881-02 .105096-03- .005825 
39 .0128 489.108277 .13542-02 -.46820-02 .224732-04 .001246 

40 
4 

.0125 

.0122 
501.b49515 
514.1907b3 

-.38146-02 
.8321o-0 2 

-.35364-02 
.10634-01 

.273796-04 

.181522-03 
.001518 
.010061 

42 .0119 526.731991 -.50989-02 .79273-02 .852024-04 .004722 
43 .0117 539.273229 .99858-03 -.46805-02 .213173-04 .001182 
44 .0114 551.8144o6 -.3172b-02 -.58790-02 .420738-04 .002332 
45 .0111 564.355704 -.82422-03 .b5512-02 .449862-04 .002493 
46 .0109 576.896942 -.32568-02 -.29220-02 .191217-04 .001060 
47 .0107 589.438180 .39541-03 -.55276-02 -313596-04 .001738 
48 .0104 Ol.9794 18 .38372-02 .45657-02 .356193-04 .001974 

49 .OIU2 614.520656 -.20494-02 .13936-02 .611097-05 .000339 
50 Olou 627.061894 .184380-03 -.39966-02 .154631-04 .000857 



z
 

SAMPLE SPECTRiaM PROGkAM RUN - UNEQUALLY SPACED DATA 

REGRESSION PERCENT 
K PLRIOJ OMEGA A r3 POWER POWER C .53P28+0n 

51 .0096 639ab03132 .48871-03 -.64025-02 .411603-04 .002281 
52 
53 

.009o 

.009t 
b52.1443u9 
664.685607 

-.4884 -02 
. 5 024 o-02 

-,19121-02 
.60103-02 

.281386-04 

.591330-04 
.001560 
.003277 

b4 .009a 677.c26845 .87 000-02 .22884-02 68414Ub-04 .004663 
55 .0091 689.768063 -.88014-03 -.39134-02 .150495-04 .000834 
56 .00b9 702.309321 .55371-02 -.42472-02 .479847-04 .002660 
67 .0088 714.550559 .10833-01 -.21317-02 .126403-03 .007006 
58 .00bo 727.391797 .62955-02 .74291-02 .648317-04 .003593 
59 .0U0b 739.933035 -.84419-04 -.36654-02 .133760-04 .0007pi 

-60 .0064 752-.+74272 -.57576-02 -. 82593-03 . 31952-04 .001840 
.l.0082 765.015510 .79837-03 -.19190-02 .424344-05 .000235 

62 .0081 777.556748 .11519-01 .99014-02 .232015-03 .012859 
63 .0080 790,097986 .32564-02 .o 8476-0 2 .550246-04 .003050 
64 .007d 802,639224 -.41836-02 .11970-02 .1780u6-04 .000987 
65 .0077 815.180462 .18188-02 b578q1-0a .373420-04 .002070 
66 .007t 827.721700 -.67736-02 -.b7007-02 .776867-04 .004306 
67 .uo75 840,262938 .40491-02 -.733't3-02 .688730-04 .003817 
68 .0074 852.804175 -.66944-02 .15856-03 .4513u3-04 .002502 
69 ,U075 86b.345413 -.51923-03 .36359-03 ,oQ9017-06 .000022 
70 .0072 877.686651 -.11343-01 .7396b-02 .1885b0-03 .010301 
71 .0071 890.427889 .11900-02 -.54398-03 .169553-05 .000094 
72 .0070 902.9691 7 .31620-02 -.40154-02 .261932-04 .001452 
73 .0069 91.510.O5 .56108-02 -.70879-02 .811013-04 .004495 
74 .0066 928,051603 -.10674-01 .10740-02 #116529-03 .006459 
75 .0067 940.592841 -.10961-01 .14366-01 *j212b7-03 .017806 
76 .006t 953.134078 .10699-02 -­29179-02 .998185-05 .000553 
77 .006z 965.675316 .97568-03 .13988-01 .19b9ut-0o .010917 
78 .004 978.216554 -.58344-02 -.48183-02 .570979-04 .003165 
79 .0063 990.757792 -.37681-01 .303q5-01 .231805-02 .128477 
80 .0066 1003.299030 .96033-02 -.80374-02 .149520-03 .008287 
81 .ooa 1015.b402b8 .36703-02 -.10891-01 .138322-06 .007666 
82 .00s1 1028.381506 -.44279-02 -.74204-03 .197587-04 .001095 
83 .0060 1040.922744 -.89354-02 -.34567-02 .866859-04 .004805 
84 .00b0 1053.463981 -.5b6bb-02 .18566-02 .346264-04 .001903 
85 .0059 1066.005219 -.37236-02 -.56623-02 .444317-04 .002463 
86 .0055 1078.546457 .49218-02 -.70035-02 .733271-04 .004064 
87 .0056 1091.087695 .37566-02 -.25572-02 .1998ob-04 .001108 
88 .0057 1103.b28933 .28263-02 -.70363-03 .673306-05 .000484 
89 .005o 1116.170171 .50517-02 -.17119-01 .313193-0o .017359 
90 .OObo 1128.7114U9 .34614-02 .10629-02 .127867-04 .000709 
91 .0Ub 1141.252647 .13235-01 -.27572-02 .172708-06 .009572 
92 .Ub4 1153.793884 -.72534-03 .10669-02 .1700o3-0b .000094 
93 .U0b4 i16.3351?2 -.25732-03 -.10827-01 .122059-06 .006765 
94 .Oobj 117d.6763u0 .20658-04 -.1095o-02 .118266-05 .000066 
95 
96 

.005) 

.002 
1191.417598 
1203.9b8836 

-.2882a-02 
.25479-02 

.93771-02 
-.5772b-02 

.927000-04 

.4103e2-04 
.005138 
.002274 

97 .00b 121b.500074 .60530-02 .92479-02 .12bq74-0j .007008 
98 .0051 1229.041312 -.b3317-02 -.46559-02 .507892-04 .002815 
99 .0051 1241.b82bz0 -. 18470-02 -.61031-02 .130678-04 .000724 
100 .uOb 1254.123767 -.b8454-02 .10646-02 .326368-04 .001809 
101 U00bU 126b.6650e5 -.o832o-02 -.76766-04 .491394-04 .002724 
102 .00U9 1279.2062b3 .S3029-02 .j0732-02 .515329-0 .002656 



SAMPLE SPECTr t PROGkAM RUN - UNEQJALLY SPACED gATA 

REGRESSION PERCE'IT 

K PERIOL) OMEGA A POWER POWER C .53RS+OO 

103 .0049 1291.747501 ,b850o-03 .91611-02 .6318U3-04 .004610 

104 .04d 1304.288739 -.71659-02 .10223-01 .1620o8-06 .00g984 

±05 .JU4J 131o.829977 .i0627-02 .bO9n7-02 .6627o0-4 .003673 
lob .0047 1329.371215 .16429-01 .66941-03 .2651o4-0 .014u98 
107 .0J47 1341.9124t3 .85170-02 .16b82-02 .162674-04 .004227 

lob .004 1354.4n3690 -.501D7-02 -.28433-02 .3462V8-04 .001919 

lop 
110 

.004o 

.004o 
1366.994928 
179.b361o6 

-.61829-02 
.44983-01 

-.22550-02 
.b04AI-01 

.433206-04 

.4478 b4-02 
.002401 
.248238 

ill .i04o 1692.c77404 -. 10.52-02 .32456-02 .121941-04 .000676 

112 
113 
114 
115 

.Odqo 

.0044 

.0044 

.0044 

1404.618642 
1417.159860 
1429.701118 
1442.242356 

-.21453-01 
.77047-03 
.4861b-02 

.42651-02 

.83114-02 
-.98852-03 
.242q6-02 

-.53164-02 

.507071-05 

.1544a7-0. 

.298742-04 

.469464-04 

.028104 

.000086 

.001656 

.002602 

115 .004J 1454.783593 .26351-02 -.14178-01 ,207840-06 .011519 

117 .0043 1467.324861 .50405-02 -.45674-02 .441526-04 .002447 

11B 
119 
120 

.0042 

.0042 

.U042 

1479.866069 
1492.407307 
1b04.948545 

.14937-02 

.40518-02 
-.29658-02 

.10385-01 
-.47298-02 
-.11802-02 

.110834-03 

.414913-04 

.100096-04 

.006143 

.002300 

.000555 

121 
±22 

.0041 

.0041 
1517.489783 
1530.031021 

-.88015-02 
-.59101-02 

.81503-02 
-.90406-03 

.148297-03 

.355013-04 
.008219 
.001968 

123 
124 

.O41 

.0040 
1542.b72258 
1555.113496 

.27946-03 
-.35095-02 

-.97102-02 
.25970-02 

.891132-04 

.184626-04 
.004939 
.001023 

125 .0040 1567.654734 -.95547-02 -.11981-01 .241806-03 .013402 

126 .0040 1580.195972 .45377-03 .10188-01 .102334-06 .005672 

127 .0039 1592.737210 .41888-02 .14526-01 .229546-03 .012722 

128 .039 1605.278448 .24240-02 -.50797-02 .301005-04 .001668 

129 
130 
131 

.0039 1617.619686 
,0059 1630.3t0924 

.0O36 164 2 . 90 2 1ol 

.51747-03 
-.15773-0,3 
-.32202-02 

.48330-02 

.70792-02 

.57156-02 

.239555-04 

.489368-04 

.41724b-04 

.001328 

.002712 

.002313 

132 .0038 1655.443399 .57049-02 -.90465-02 .107981-05 .005985 

103 .0038 1667.984637 .48570-02 .53843-02 .55875b-04 .003097 

134 .0037 1680.525875 -.28200-03 .38799-02 .142918-04 .000792 
135 .0037 1b93.067113 .78115-03 .15002-04 .617366-06 .000034 

136 .0037 1705.608351 .59086-02 -.59709-02 .6652o8-04 .003687 

147 .0057 1718.149589 .14447-01 -.43797-02 .232524-06 .012888 

138 .003o 1730.690827 -.13349-02 .79498-02 .b63906-04 .003680 

139 .0066 1743.232Oo4 .21768-02 .67415-02 .512524-04 .002841 

140 .0036 1755.773302 .75124-02 .14790-01 .2797b8-03 .015506 

141 .0036 1768.314540 -.14647-01 -.59307-01 .3545b1-0e .196525 

142 o.0035 1780.855778 -­ 11935-01 --.12597-01 .299257-O .016586 

143 .003b 1793.397016 .89901-02 .61263-02 .117195-0a .006495 

144 .0035 1805.938254 -.17016-02 -.85949-03 .360934-05 .000200 

145 .0035 1818.479492 -.90808-03 .41100-02 .178370-04 .000989 

146 
147 

.0034 

.0034 
IB31.020730 
1B43.561967 

.18815-02 
-.48 90o-0 2 

-.35125-02 
.58768-02 

.154321-04 

.604962-04 
.000855 
.003353 

148 .-0034 1856.103205 -.97464-02 -.49 &9-02 .1-15755-03 .006416 

149 .0034 1868.644443 .25549-02 -.68544-02 .568220-04 .003149 
150 .0033 1881.185681 -.73747-02 -.88659-02 .136162-03 .007547 

151 .0066 1893.726919 -.59506-02 -.1752b-02 .390510-04 .002164 

152 .0033 190o.2 6 8 157 .25820-02 -.13871-01 .195199-03 .010819 

153 .0033 1918.809395 .17045-04 .85616-03 .767063-0o .000043 

154 .ou-3 1931.350633 .­10149-01 26119-02 O O--74- .05990 



SAMPLE SPECTRM PROGRAM RUN - UNEQUALLY- SPACED DATA 

REGRES1044 PERCENT 
K PERIOD OMEGA A POWER POWER C = .53P28+00 

155 .U032 1943.891870 .39724-02 -.24817-02 .225792-04 .001251 
156 .0032 1956.433108 .53312-02 -.32057-02 .379312-04 .002102 
157 .00a2 1968.974346 . 8 6 14 o-02 -. 18288-02 .802928-04 .004450 
158 .002 1981-515 564 i10552-01 -­vt3961-02 .140244-03 .007-773 
1b9 .0052 1994.056822 -.99427-02 .z2826-02 .131549-0 .007291 
lo0 .0031 2006.598060 -.14332-02 -.13484-02 .39b745-Ob .000219 
161 .00O1 2019.139298 .16569-02 *b8240-02 .500789-04 .002776 
162 .0031 2031.680566 .89621-02 -.35528-03 .8131b6-04 .004507 



SAOLE aP I,M., P[WJAM hUN - Jr LOJALL') SPMCl ) "lAT,, 

P V,Er' 
*448-u2 

459-U2 
4'U-u2, 
S-21-02 

I 
I 
I 
I 

,A )1' TI tc. 10Jo.8 P VS 

694-02 I 
.6b-,2 I 
,.7 -02 1 
.0o7-d I 

b8-02 I 
.*o'9-u2 I 
.640-u2 I 
*031-u2 I 

.314-u2 

.oOs-ue 

.e qb-U2

.eB7-u 
-2 

I 
I 
1
I 

.dlb-U2 
.,c9-ud I 

.bl-u2 I 

.266-u? 

.224-02 
!15-0d 
,Ob-02 
.±97-02 
*lob-u?
*± 19-uA 
.179-02I1/U-Je 
.1oP-U2 

I 
1 
I 
I 
I 
1
I 
1I 
I 

Ib2-u2 
143-ue

.J54-t2
.1.5-u2 

1 
I
I
1 

1 ib-U2 
.107-od 
9,3b-u.5
096-U3 
006-03 

1 
1 
I 
1 
1 

.717-0-
U.7-03 
.,47-03 

I 
1 
I 

4458-Ul6t)8-06 I... 

.*26-3 I* 

.179-0UI 

* I1.,..... .. 

* 

.. ,....... 

* 

.. , .... .. 

* 

......, 

* 

... . .. 

* 
* 

.. .. ...... . . . ... 

** * 

. . 
*. 

. . .. 

* 

. . . 

V 
13.b 

V 
d7.0 

V 
40.5 54 

V 
o 

V 
67.b 

K 
81.0 

V 
914.5 

V 
108.0 

V 
121.5 

V 
135.0 

V 
148.5 

V 
162.0 



SAiAPLE SPECINUM PROGRAM RUN - UNEQUALLY SPACED DATA 

kANDvM TIM& 51j568 P VS K -PERCFN4T PuWER 

0 2 4 6 8 10 12 14 io 18 20 22 24 26 28 30 32 34 36 38 40 
PU4LR FREOUENCY K V V V V v V V V v V V V V V 1V V v v V V V 

I - - - - - - - - - - - - - ---- - - - - - - - - - - - - - - - - - - --- - - - -- - ---- - - - - -­

.1359651-04 1.99b00 I I * 

.220644--04 ,.99400 2 1 * 

.482600o-04 b.98600 3 1 

.1246200-03 7.98400 4 * 

.23472db-05 9.9000 5 ' 

.5688001-04 11.9760 6 * 

.2934997-05 13.9720 7 1 

.5403.519-05 1b.9680 a * 

.2267025-03 17.9640 9 1 

.6689729-04 19.9b00 10 1 * 
*3b71624-05 21.9560 11 1 * 
.706217-0b 2J.9b20 12 1 * 
.o606427-04 25.9480 13 I * 
.1401dO-06 27.9440 14i 
*/434bo6-0 4 29.9400 15 1 * 
.307015b-04 51.9360 16 1 * 
.720281U-04 33.9320 17 1 * 
.4U4654a-02 b.9 80 18 I 
*1o66058-05 37.9e40 19 1 ' 
.911220b-04 69.9200 20 1 * 
.1450422-04 41.9160 21 1 * 
*4142o7d-04 4J.9120 22 1 * 
.5059003-04 45.9080 23 1 * 
*2b4944b-04 47.9U40 24 1 * 
.29726u9-05 49.9000 25 I * 
.e4052b8-04 bi.6960 26 1 * 
.10S3u8-03 o5. 290 27 1 * 
.110992o-03 b.b80 28 1 * 
.1895104-04 57.8840 29 1 * 
.5548767-04 D9.8600 30 1 * 
.13436b7-03 61.8760 31 * 
.2295z6-04 o3.8720 32 1 * 
.3624cI-04 5b.8680 33 1 * 
.1221693-03 b7.8b40 34 1 * 
.213410o-03 o9.8600 35 * 
.1125b10-04 ?1.8b60 56 1 
.IB152b-03 75.8520 37 1 
.105098-03 7b.8480 38 1 * 
.4?47521-04 
.27379b9-04 

77.8q4O0 
79.8400 

39 1 * 
40 1 * 

.1615210-U3 d,8360 41 * 

.8520237-01 d.83820 42 1 * 

.2131729-04 db.6&80 43 1 * 

.4 07.iod-04 87.8240 44 1 * 
.4498o19-04 89.620U 45 1 * 
.1912169-04 91.8160 46 1 * 
.313595s-04 9o.6120 47 1 * 
.656193u-04 95.8080 48 1 * 
.6110971-05 97.6040 49 I * 
.1546609-04 99.8000 10 I * 
.4116UU-04 101.796 51 1 * 
.481365a-04 I03.792 52 1 * 
.b91329o-04 101.786 53 * 



SAMPLE SPECTRUM PROGRAM RUN - UNEQUALLY SPACE DATA 

.8414059-04 107.784 54 I
 
*150495 o-04 109.780 55 1
 
.4798471-04 111-.776 56 1
 
.1264U30-03 113.772 57 I
 
.648316-0- 115.768 58 I
 
.1337595-04 117.764 59 I
 
.33195 4-04 11-9 760 60 1 *
 

5
.4243437-05 121.7 o 61 I
 
.2320152-03 123,752 62 I
 
.b502456-04 125.748 63 I
 
.1780065-01 12?-7? 4 64 1*
 
.3734200-04 129.740 65 I *
 
.7768667-04 131.736 66
 
*b887502-04 163.732 67 I *
 
.4513628-04 135.728 68 I
 
.3990174-06 137.724 69 I
 
.1858499-03 139.720 70 1 *
 
.1695533-05 141.716 71 1
 
,26193---04 144,742 72D
 
.8110125-04 145.708 73 I
 
-.1165286-03 147704 74 I *
 
.3212b73-03 149.700 75 I
 
.9981852-05 151-.696 76 I *
 
.1969o52-03 153.692 77 I * 
,57S-90-04 * 6-88 78 1 * r
 
.2Z18050-02 157.684 79 I
 
el495202-03 lb9680 80 I
 
.1383a24-03 161.676 81 I
 
c19 7 -58 7-5-04 b-372 82 1
 
.866888S-04 165.668 83 I *
 
-. 1132642--4 1&7.-664 84 1 *
 
.4443169-04 169.b60 85 I *
 
,7332715-04 1-71.b56 86 I
 
*1998ob4-04 173.652 87 I
 
.8733064-05 1-75.648 88
 
.313192b-03 177.b44 89 I
 
,.12-7"B373m.01 149.640 -90. 1
 
.1727077-03 181.636 91 I
 
,1700632-05 183.632 92 t *
 
.1220587-03 185.628 93 I *
 
41182b5-05 187.624 94 I
 
.9270005-04 189.620 95 I *
 
,.4W"32240O 191-646 96;1. ­
.1264471-03 194.612 97 I
 
.5078920-04 19a.608 98 1
 
.1606782-04 197.604 99 I *
 
.3263881-04 199.600 100 - *
 
.4913939-04 201.596 101 I
 
,.51532-94,04I "3-.-4Z 14-2- 1- *
 

.831803J-04 205.588 103 1 * 

.1620679-03 207.584 -104 1 * ­

,6627601-04 209.b80 105 I *
 
,2651641-03 2-,576 106 1 ­

.7626746-04 213.572 107 I *
 
-. 34b2-985-04 Z±1-S.568 14a- -r
 
.4352060-04 217.564 109 I *
 
.4478839-02 219.560 110 I
 
.1219407-04 221.556 111 1
 

http:12-7"B373m.01


SAIPLE SPE-RhUh P:OiR-AMtR*1N -UNEU*LLy-SPAeE, DATA 

.5070707-03 *aj g5 1402- - - .­

,1544667-05 225.548 113 1 *
 
' 
-1-298742 -04 -227-544 -14- 1-* 

.4694641-04 229.540 115 I * 

.4415257-04 233.532 117 1 *
 

.1103337 03 255.528 +- 1*
 

.4149130-04 237.524 119 1
 
-
-+-0"959 + 2a - -f
39.20 20-


.1482972-03 241.516 121 1
 
.5550-1-55304- 't-54-2 It- I
 
.8911321-04 245.508 123 T *
 
.18'1C203 01 247.6b4 +24 E-*­
.2418063-03 249.500 125 1 *
 
-- 36-o- 7-51--96- 4+2& 1
 

.2295457-03 253.492 127 I *
 
-3 01009-04 -Z55-.488- 128 I *
 
.2395549-04 257.484 129 I *
 
.'1893581 01 -259-.480t i-30- I
 
.4172458-04 261.476 131 1 *
 

-r07988 -326-3r-47Z 1-3-2 I1 
.5587557-04 265.468 133 I *
 

- 267.464 134 T '
 

.6173660-06 269.460 135 1 *
 
rI-2 9 18 3 0 4 


.-- 1-3& *
b65268'4-04,-7.-456- f 


.2-325240-03 273.452 137 I *
 

.6639060-04 Z75.448- 13& 1 *
 

.5125242-04 277.444 139 I *
 
2 7 9 76 7 6 "0 3
w - - - 279-.440- -140 1
 
.3545810-02 281.436 141 I
 
.~292572-O3Z a8---42 -4a-I
 
.1171946-03 285,428 143 I *
 
-3609345-05 287--424- - -144 *
 
.1783697-04 289,420 145 I *
 
r154328-04- 291,4-16 146 I *
 
.6049625-04 293.412 147 I
 
.11575W-03~295.4-0& 448 *
 

.5682200-04 a97.404 149 I
 
-.-36-1-6"-03- 2-99-j4 0-- +50 I
 
.3905103-04 601.396 151 I *
 
,1454-993-03 30492 1-52 1 ­

.7670826-06 505.388 153 I *
 
r1069738034 A07-.3911 454 1 ­

.2257922-04 309.380 155 I *
 
,391-44-04- 3--6 456- I­
.8029276-04 313.372 157 1 *
 
-;402-1444=" 3"-.Zr68 45-I- ­

.1315485-03 317.364 159 1 *
 
07391-Soaq5 319,6 160 L *
 

.5007891-04 521.556 161 1
 
-~&7--432-,35,A A-62- -I­


