VOLUME 1: USER'S MANUAL

A COMPUTER PROGRAM FOR POWER SPECTRAL ANALYSIS OF UNEQUALLY SPACED POINTS
By

Matthew Lybanon

PDN 70-501
January 30, 1970

Reproduced by the

VOLUME 1 USER'S MANUAL

A COMPUTER PROGRAM FOR POWER SPECTRAL ANALYSIS OF UNEQUALLY SPACED POINTS

By
Matthew Lybanon
PDN 70-501
January 30, 1970

ACKNOWLEDGMENT

The work described in this report was performed for the Guidance and Navigation Department of Bellcomm, Inc. under Contract No. 10646 (CUC Contract 3645-220). Special thanks are given to Mr. B. G. Niedfeldt for several helpful discussions and suggestions.

Abstract

A power spectral density computer program with some unique capabilities is described. The special features include 1. The spectrum of unequally spaced data may be calculated. 2. The spectrum can be evaluated at any frequencies. 3. Estımates of the parameters of dominant spectral terms can be improved. 4. Prewhitening can be done with no prior knowledge of the characterıstics of the signal.

First, the mathematical basis of the conventional computer Fourier analysis technıque is discussed, with special attention to the approximations involved. Next, the problem of spectral analysis is consıdered as a least-squares regression problem. Formulas are developed for continuous and discrete equally spaced data. Next, the interpretation of the power spectral estimates is explored, and the possibilıty of evaluating the spectrum at any set of frequencies is discussed. Then, the general formulas for unequally spaced points are derıved.

After the mathematıcal formulation comes a description of the computer program implementing the theory. This includes a discussion of the program and its use, a description of the input cards and of the form of the output, and instructions for execution. Appendices include a flowchart and a sample run.

TABLE OF CONTENTS

Page
Introduction
Conventional Spectral Analysis - The Discrete Fourier Transform 1
Continuous and Equally Spaced Data 8
Derıvation of Formulas 8
Effectiveness of Spectrum Estımates 11
Unequally Spaced Data 18
Computer Program 24
General Information 24
Functions of Programs in System 28
Input Cards 29
Output 32
Executing the Program 35
APPENDIX 1 - Overall Logic FlowchartAPPENDIX 2-Sample Run

INTRODUCTION

This report describes a power spectral density computer program which has several features not commonly found in such programs. Perhaps the most unusual feature is its ability to analyze unequally spaced data. In addition, the spectrum can be evaluated at frequencies other than harmonics of the span of data, the maximum frequency at which the spectrum is evaluated can be chosen to be other than one-half the average data sampling rate, and the inıtial estimates of the frequencies and coefficients of dominant spectral terms can be improved. This last feature in effect permits a reconstruction of the original data as a sum of sinusoidal terms (not a classical Fourier series), which may accurately represent the signal without noise. In addition, it is used for "prewhitening" the spectrum, a procedure recommended by several authors.

The scientist or engineer has an intuitive feeling about what he means by a "spectrum." However, there are certain differences between the Fourier transform and a computer-calculated spectrum. At present, the latter very often is obtained by the fast Fourier transform algorithm [References 1-5], which is an efficient way of calculating the finite or discrete Fourier transform. If $X(\mathrm{j}), \mathrm{J}=0,1, \ldots, \ldots, \mathrm{~N}-1$, is a sequence of N complex numbers, the discrete Fourier transform of $X(J)$ is defined

$$
\begin{equation*}
A(n)=\frac{1}{N} \sum_{\mathrm{J}=0}^{\mathrm{N}-1} \mathrm{X}(\mathrm{~J}) \exp \left(-2 \pi \mathrm{nnj}_{\mathrm{J}} / \mathrm{N}\right) \tag{1}
\end{equation*}
$$

$X(J)$ can be expressed as the inverse finite Fourier transform of $A(n)$

$$
X(j)=\sum_{n=0}^{N-1} A(n) \exp (2 \pi i n j / N)
$$

$A(n)$ and $X(j)$ are a transform pair, as can be seen by substituting (1) into
(2) and using the orthogonality relationship

$$
\underset{\sum_{j=0}^{N-1}}{N} \quad \exp \left(2 \pi n_{j} / N\right) \exp (-2 \pi ı m \jmath / N)=\left\{\begin{array}{c}
N \text { if } n=m \bmod N \tag{3}\\
0 \text { otherwıse }
\end{array}\right.
$$

Let $A(n)$ and $X(j)$ be consıdered to be defined by (1) and (2) for all integers n and j. Then it follows from the definitions that

$$
\left.\begin{array}{l}
X(J)=X(k N+j) \tag{4}\\
A(n)=A(k N+n)
\end{array}\right\} \quad k=0, \pm 1, \pm 2, \ldots
$$

That is, $X(J)$ and $A(n)$ are both periodic, of period N.

Equations (1) and (2) are simply operations performed on sets of numbers, but form (1) is reminiscent of the Fourier integral transform, or of Fourier series coefficients. The discrete Fourier transform possesses an inverse, (2), it involves functions which satisfy an orthogonality relation, (3). The nature of the relationship between the Fourier transform and Fourier series on the one hand, and the discrete Fouriex transform on the other, will now be examined further.

Two pertinent theorems involve the concept of a periodic aliased function. The periodic aliased version $a_{p}(f)$ of a function $a(f)$ is defined to be

$$
\begin{equation*}
a_{p}(f)=\sum_{k=-\infty}^{\infty} a(f+k F) \tag{5}
\end{equation*}
$$

where F is some interval. It is proved in References 2 and 3 that Theorem 1 If $X(t),-\infty<t<\infty$, and $a(f),-\infty<f<\infty$, are a Fourier integral transform pair, then $T X_{p}(j \Delta t)=T \sum_{l=-\infty}^{\infty} X(j \Delta t+1 T), j=0,1, \ldots, N-1$, and $a_{p}(n \Delta f)=\sum_{k=-\infty}^{\infty} a(n \Delta f+k F), n=0,1, \ldots, N-1$, are a finite Fourier transform pair. In these expressions $F=1 / \Delta t=N \Delta f, T=N \Delta t=N / N \Delta f=1 / \Delta t, F T=N$. It is also shown in these references that

Theorem 2 If the periodic function $X(t)$ with period T has the Fourıer series expansion $c(n)$ (i.e. $c(n)$ are the coefficients in the complex form of the

Fourier series, $\left.X(t)=\sum_{n=-\infty}^{\infty} c(n) e^{2 \pi i(n+/ T)}\right)$, then the periodic sequence
$X(j \Delta t)$ of perıod N, where $\Delta t=T / N$, has the finite Fourier transform $c_{p}(n)=\sum_{l=-\infty}^{\infty} c(n+1 N)$.

These two theorems appear to say essentially the same thing。 The resemblance is more than apparent, as the following heuristic argument shows. The usual "derivation" of the Fourier transform, by going to the limit in which the number of terms in the Fourier series increases while the frequency spacing decreases, and replacing the sum by an integral, shows that the Fourier series and integral are indeed very simılar. The basic difference is that the integral transform maps one nondenumerably infinite number of points into another nondenumerably infinite set of numbers, whereas the Fourier series specifies the function by a denumerably infinite set of numbers. (Not all functions have Fourier series representations, only periodic ones.) In a numerical problem, one has a finite number of data points (containing a finite amount of information, hence an incomplete specification of the physical process), which can be completely specified by another equal-sized set of numbèrs. Whether these numbers are regarded as estimates of Fourier series coefficients, or of points on the Fourier transform curve, is largely a matter of taste. (This situation is discussed further in the next section.) At varıous places in the subsequent discussion, whichever supposition is more useful will be used.

The first problem is a consideration of how to apply Theorems 1 and 2 to the calculation of a spectrum when all that one has is a finite-length sample of experimental data, a sıtuation which often arıses in practice. If $X(t)$ actually vanishes outside the interval $0 \leq t<T$, then $X_{p}(j \Delta t)=X(j \Delta t), j=0,1$, ..., N-1. At this point it should be noted that it follows directly from (4) that

$$
\begin{equation*}
A(-n)=A(\mathbb{N}-n) \tag{6}
\end{equation*}
$$

Using this result it can be seen that of the Fourier transform $a(f)$ is nonzero only for $|f|<F / 2$ (recall that $a(f)$ is defined for negative as well as positive f, and $|a(-f)|=|a(f)|$ only if $X(t)$ is real), then $a_{p}(n \Delta f)=a(n \Delta f)$, $n=0,1, \ldots, N-1$. So in this case, Theorem 1 can be restated

If $X(t)$, non-zero only in the range $0 \leq t<T$, and $a(f)$, non-zero over $-F / 2<f<F / 2$, are a Fourier integral transform pair, then $\operatorname{TX}(j \Delta t), j=0,1$, ..., $N-1$, and $a(n \Delta f), n=0,1, \ldots, ., N-1$, are a finıte Fourier transform pair.

For the simple case considered here, the relationshıp between the Fouriex transform and the discrete Fourier transform can easily be found. The Fourier integral transform is

$$
\begin{equation*}
a(f)=\int_{-\infty}^{\infty} X(t) \exp (-2 \pi ı f t) d t \tag{7}
\end{equation*}
$$

For $X(t)$ non-zero only in the range $0 \leq t<T$,

$$
\begin{equation*}
a(f)=\int_{0}^{T} X(t) \exp (-2 \pi 1 f t) d t \tag{8}
\end{equation*}
$$

The integral can be approximated by a sum

$$
\begin{align*}
a(f) & \approx \sum_{j=0}^{N-1} X(j \Delta t) \exp (-2 \pi L f j \Delta t) \Delta t \\
& =\frac{1}{N} \sum_{j=0}^{N-1}(N \Delta t) X(j \Delta t) \exp \left(-2 \pi \perp f_{j} \Delta t\right)
\end{align*}
$$

For $\mathrm{f}=\mathrm{n} \Delta \mathrm{f}, \mathrm{n}=0,1, \ldots, \mathrm{~N}-1$,

$$
a(n \Delta f) \approx \frac{1}{N} \sum_{j=0}^{N-1}(N \Delta t) X(j \Delta t) \exp \left(-2 \pi \ln \Delta f_{j} \Delta t\right)
$$

Using the relations $T=N \Delta t, \Delta f=F / N=1 / N \Delta t$,

$$
\begin{equation*}
a(n \Delta f) \approx \frac{1}{N} \sum_{\jmath=0}^{N-1} T X(\jmath \Delta t) \exp (-2 \pi ı n \jmath / N) \tag{10}
\end{equation*}
$$

But by the modified Theorem 1 stated above, the equality in (10) is exact, that is, at the points $f=n \Delta f, n=0,1, \ldots, N-1$, no error is involved in replacing the integral of equation (8) by the sum of equation (9).

If $X(t)$ does not vanish outside the interval $0 \leq t<T$, equation (8) is the Fourier transform of the product of $X(t)$ and a square pulse of value unty on $0 \leq t<T$, and value zero elsewhere. This transform is the convolution of the transform of $X(t)$ with the transform of the square pulse. The effect of thas is to "smear out" each line in the spectrum of $X(t)$.

This case can be viewed in another way. The equality in (10) is not necessarily exact, as was the case for the previous example, because $X(j \Delta t) \neq X_{p}(j \Delta t)$ (and $a(n \Delta f)$ will not equal $a_{p}(n \Delta f)$ in an arbitrary case). So there will be some error in representing the Fourier transform by the discrete Fourier transform, in general.

In fact there is always an error if $a(f)$ does not vanısh for all $|f|>F / 2$. It is convenient for this demonstration to discuss Fourier serıes (as was stated before, as far as representing them by the discrete Fourier transform is concerned, Fourier series and the Fourier integral are essentially the same thing). The complex form of the Fourier series representation of a function $X(t)$ is

$$
\begin{align*}
& X(t)=\frac{1}{2} \sum_{n=-\infty}^{\infty} C_{n} \exp (2 \pi \operatorname{nt} / T) \\
& \therefore X(j \Delta t)=\frac{1}{2} \sum_{n=-\infty}^{\infty} C_{n} \exp (2 \pi i n j / N), j=0,1, \ldots, N-1 \tag{11}
\end{align*}
$$

Comparison with equation (2), using relation (6), shows that the finıte Fourier transform gives a finite, 1 . e. truncated version of the Fourier series representation of a function, limited to frequencies under F/2. Reference 8 thoroughly discusses the error that this causes. Furthermore, the second of equations (4), $A(n)=A(k N+n), k=0, \pm 1, \pm 2, \ldots$, (and Theorems 1 and 2) implies that if there are frequencies above $F / 2$, the discrete Fouriex transform will show these frequencies as occurring below $F / 2$. This is the well known phenomenon of allasing, the possibility of which always exists when one is dealing with equally spaced data. This result can also be proved in another manner. [7]

At the conclusion of a discussion of alıasing in their important book [9], Blackman and Tukey make the comment ". . . It is not infrequently suggested that there should be a workable scheme of taking discrete data in some definite, but not uniformly spaced pattern, and estımating the power spectrum without aliasing. No such scheme seems so far to have been developed. . ." The subject of this report is a method of estimating a power spectrum from unequally spaced samples, in which case indeed there is no aliasing. However, before getting to a discussion of this technıque, a few more preliminary remarks will be made.

Blackman and Tukey also discuss the obvious possibility that the length of the sampling interval might not be ideally chosen. For instance, a seemingly aperiodic function might be seen to repeat exactly if it were sampled long enough, or a seemingly periodic function mıght stop repeating eventually. Of course, it is impossible to know from examining a data sample what might happen if the function were sampled for a longer time, but another example can be given of a possible difficulty related to the size of the data interval. In Reference 7 the function

$$
\begin{equation*}
y(t)=B \cos \left[\frac{2 \pi\left(k_{0}+1 / 2\right)}{T} t\right], \quad 0 \leq t<T \tag{12}
\end{equation*}
$$

where k_{O} is an integer, is considered. The key fact is that the interval does not contain a whole number of cycles of the cosine. The Fourier series coefficients of this function are

$$
\begin{align*}
& a_{k}=0 \\
& b_{k}=\frac{B}{\pi}\left[\frac{i}{k+\left(k_{\mathrm{O}}+1 / 2\right)}+\frac{1}{k-\left(k_{0}+1 / 2\right)}\right], k=1,2,3, \ldots \tag{13}
\end{align*}
$$

Although the function in closed form is a cosine, the only non-zero Fourier series coefficients are the sine coefficients. But there is no mistake. The (infinite) Fourier series converges to $y(t)$ at every interior point of the interval [10], and if $y(t)$ is sampled at N equally spaced points spanning the interval, the (finıte) dıscrete Fourier transform will specify a trigonometric series passing exactly through the \mathbb{N} points.

The paradox is only apparent. Because the frequency of the cosine in (12) is not a harmonic of the basic period T, the Fourier series does not contain any terms of that frequency. The function $y(t)$ may contınue outside $0 \leq t<T$. However, the Fourier series is periodic with period T, so it does not represent $\mathrm{y}(\mathrm{t})$ in the interval $\mathrm{T} \leqslant \mathrm{t}<2 \mathrm{~T}$, for instance.

The (conventional, or restricted) sampling theorem summarizes some of the properties and limitations of conventional spectral analysisa[9]

References 11 and 12 discuss the generalization of the sampling theorem to the case of unequally spaced samples, and applications to the reconstruction of signals from non-unıform samples. It is pointed out that a generalized sampling theorem was known to Cauchy over a hundred years ago.

Derivation of Formulas

The Fourier'integral and Fourier series converge at every point to the functions they represent in many cases, and in every case they minimize the mean square error. Furthermore, the sum of the first IV terms of a Fourier series, where M_{1} s any positive integer, 1 s the best least-squares fit of a trigonometric sum of that order (involving those frequencies). [10]

The following discussion is presented in greater detail in References 6 and 7. Suppose the problem is approached from the opposite direction, as a regression problem in which it is desired to approximate a function $y(t)$ in an interval $0 \leq t<T$ by a trigonometric sum, ,

$$
\begin{equation*}
y_{c}(t)=\frac{a_{0}}{2}+\sum_{k=1}^{L}\left(a_{k} \cos 2 \pi k f t+b_{k} \sin 2 \pi k f t\right), f=1 / T \tag{14}
\end{equation*}
$$

Applying the requirement that the mean square error on the interval be a minimum gives the following formulas for the coefficients

$$
\left.\begin{array}{l}
a_{o}=\frac{2}{T} \int_{0}^{T} y(t) d t \\
a_{k}=\frac{2}{T} \int_{0}^{T} y(t) \cos 2 \pi k f t d t \\
b_{k}=\frac{2}{T} \int_{0}^{T} y(t) \sin 2 \pi k f t d t \tag{15}
\end{array}\right\} \quad \mathrm{k}=1,2, \ldots, L
$$

which are the usual expressions for Fourier series coefficients. (The wellknown orthogonalıty relatıonshıps make it unnecessary to invert a large matrix to obtain these formulas.)

Suppose we consider only one term of the series in (14),

$$
\begin{equation*}
\mathrm{y}_{\mathrm{k}}(\mathrm{t})=\mathrm{a}_{\mathrm{k}} \cos 2 \pi \mathrm{kft}+\mathrm{b}_{\mathrm{k}} \sin 2 \pi \mathrm{kft} \tag{16}
\end{equation*}
$$

Let $\varepsilon(t)=y(t)-y_{k}(t)$. Then a straıghtforward calculation gives

$$
\begin{equation*}
\frac{1}{T}\left[\int_{0}^{T} y^{2}(t) d t-\int_{0}^{T} \varepsilon^{2} d t\right]=\frac{1}{2}\left(a_{k}^{2}+b_{k}^{2}\right) \tag{17}
\end{equation*}
$$

If $y(t)$ represents voltage, for instance, then $y^{2}(t)$ is the power dissipated in a unit resistance, and $\varepsilon^{2}(t)$ is the power not contained in the term of frequency kf. Therefore, the left-hand side of (17) is the average power contained in the term (16). This analogy is the justification for plotting $a_{k}^{2}+b_{k}^{2}$ against k or f and calling the power spectrum of $y(t)$.

The case of discrete equally spaced data $1 s$ very sımilar. We want to fit a model

$$
\begin{equation*}
乌(n)=\frac{a_{0}}{2}+\sum_{k=1}^{L_{1}}\left(a_{k} \cos 2 \pi k f n+b_{k} \sin 2 \pi k f n\right), f=1 / N \tag{18}
\end{equation*}
$$

to a function $y_{n}=y(n \Delta t)$ which takes on values at $n=1,2, \ldots, N$ (the y_{n} are though of as samples of a function $y(t)$ of a continuous time variable). To do so we make use of identities (orthogonality relations) completely analogous to those for the continuous case,

$$
\begin{align*}
& \sum_{n=1}^{N} \cos (2 \pi \mathrm{kn} / \mathrm{N})=\sum_{n=1}^{N} \sin (2 \pi \mathrm{kn} / \mathrm{N})=0 \\
& \sum_{n=1}^{N} \cos ^{2}(2 \pi \mathrm{kn} / \mathrm{N})=\sum_{n=1}^{N} \sin ^{2}(2 \pi \mathrm{kn} / \mathrm{N})=\mathrm{N} / 2 \\
& \sum_{n=1}^{N} \cos (2 \pi \mathrm{kn} / \mathrm{N}) \cos (2 \pi \mathrm{pn} / \mathrm{N})=0 \text { if } \mathrm{p} \neq \mathrm{k} \tag{19}\\
& \sum_{n=1}^{N} \sin (2 \pi \mathrm{kn} / \mathrm{N}) \sin (2 \pi \mathrm{pn} / \mathrm{N})=0 \text { if } p \neq \mathrm{k} \\
& \sum_{n=1}^{N} \sin 2 \pi \mathrm{kn} / \mathrm{N} \cos 2 \pi \mathrm{pn} / \mathrm{N}=0
\end{align*}
$$

where k and p are integers. Applying these to the problem gives

$$
\left.\begin{array}{l}
a_{0}=\frac{2}{N} \sum_{n=1}^{N} y_{n} \\
a_{k}=\frac{2}{N} \sum_{n=1}^{N} y_{n} \cos (2 \pi k n / N) \tag{20}\\
b_{k}=\frac{2}{N} \sum_{n=1}^{N} y_{n} \sin (2 \pi k n / N)
\end{array}\right\} \begin{aligned}
& k=1, \ldots, L
\end{aligned}
$$

The similarity to (15) should be noted.
At this point it is appropriate to again mention alıasing, which is caused by the fact that $\cos \left[2 \pi\left(\frac{N}{2}+\varepsilon\right) \mathrm{fn}+\phi\right]$ and $\cos \left[2 \pi\left(\frac{N}{2}-\varepsilon\right) \mathrm{fn}-\phi\right]$ are equal for $f=1 / N$ and $n=1,2, \ldots, N$. So there 1 s a frequency $f_{\max }=1 / 2 \Delta t$ such that frequencies above $f_{\max }$ appear to be below $f_{\max }$, possibly with a phase shift. This is often discussed in connection with the sampling theorem, for equally spaced data, it is necessary to sample at a rate of at least twice the highest frequency in the signal to extract all the information. The frequency $f_{\max }=1 / 2 \Delta t$ is known as the Nyquist or folding frequency.

From the point of view of fitting a function to N data points, aliasing is related to the fact that only N independent fit parameters can be found. If N is odd, $(\mathbb{N}-1) / 2$ is the greatest integer not exceeding $N / 2$. If this value is chosen for L in (18), there is one a_{0} coefficient, $(N-1) / 2 a_{k}$ coefficients, and ($N-1$)/2 b_{k} coefficients, making N in all if N is even, $N / 2$ is an integer. It can be seen from (20) that $b_{k}=0$ if $k=N / 2$, so with $L=N / 2$
there is one $a_{0}, N / 2 a_{k}$, and $\left(\frac{N}{2}-1\right) b_{k}$, making N all together.

Proceedıng exactly as was done in obtainıng (17), if $y_{k}(n)=a_{k} \cos 2 \pi k f n+$: $b_{k} \sin 2 \pi k f n$ and $\varepsilon_{n}=y_{n}-y_{k}(n)$, then it is easy to show that

$$
\begin{equation*}
\frac{1}{\bar{N}}\left[\sum_{n=1}^{N} y_{n}^{2}-\sum_{n=1}^{N} \epsilon_{n}^{2}\right]=\frac{1}{2}\left(a_{k}^{2}+b_{k}^{2}\right) \tag{21}
\end{equation*}
$$

There are seen to be great similarities between the continuous case (Fourier series) and the discrete equally spaced case. Hamming [13], in discussing the use of orthogonal functıons, explains that it is often dıffıcult to decide between the two approaches of assuming that one has continuous functions and approximating the integrals giving the coefficients by numerical methods, or using the discrete orthogonal set of functions to fit the discrete samples. But he goes on to point out that in the Fourier series case these two approaches produce exactly the same computations.

Effectiveness of Spectrum Estimates

Before proceeding to the case of unequally spaced discrete data, some additional discussion of the interpretation of the power spectrum will be presented. Equations (17) and (21) are special ways of writing Parseval's theorem. This theorem, in the continuous frequency case (Fourier transform), can be written

$$
\begin{equation*}
\int_{-\infty}^{\infty}[X(t)]^{2} d t=\int_{-\infty}^{\infty}|a(f)|^{2} d f \tag{22}
\end{equation*}
$$

where the notation is that of Theorem $1(X(t)$ is considered real). In the
discrete frequency case (Fourier series),

$$
\begin{equation*}
\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}}[y(t)]^{2} d t=\frac{1}{2}\left[\frac{a_{0}^{2}}{2}+\sum_{k=1}^{\infty}\left(\mathrm{a}_{\mathrm{k}}^{2}+\mathrm{b}_{\mathrm{k}}^{2}\right)\right] \tag{23}
\end{equation*}
$$

In case one is dealing with discrete equally spaced samples of data,

$$
\begin{equation*}
\frac{1}{N} \sum_{n=1}^{N} y_{n}^{2}=\frac{1}{2}\left[\frac{a_{0}^{2}}{2}+\sum_{k=1}^{N}\left(a_{k}^{2}+b_{k}^{2}\right)\right] \tag{24}
\end{equation*}
$$

The discussion concerning equations (14) - (17) shows that obtaining the Fourier transform of a time series is equivalent to fitting a series of independent functions of the form

$$
\begin{equation*}
y_{k}(t)=a_{k} \cos 2 \pi k f t+b_{k} \sin 2 \pi k f t \tag{25}
\end{equation*}
$$

where $f=1 / T, T$ the length of the data interval. It was pointed out that the actual power in the signal might occur at any frequency. The digitized data to be analyzed in a practical case consists of discrete samples of some continuous process sampled over a time T. This time limit T may be imposed by practıcal consıderations having nothing to do with true perıodicities of the signal, the frequencies in the data may not be convenient integral multiples of $1 / T$. It would be wise, therefore, to explore the sensitivaty of discrete spectrum estimates to the continuum of frequencies which can occur in the signal itself.

For simplicity (25) will be rewritten in the equivalent form

$$
\begin{equation*}
y_{k}(t)=A_{k} \sin (2 \pi k f t+\phi) \tag{26}
\end{equation*}
$$

where $A_{k}=\left(a_{k}^{2}+b_{k}^{2}\right)^{\frac{1}{2}}$ and $\phi=\tan ^{-1}\left(a_{k} / b_{k}\right)$. The absolute phase ϕ will not affect the results to be obtained and will be dropped.

From this point on, in anticipation of certain results, it will not be assumed that $f=1 / T$ necessarily. The integral to be minimized in performing the least squares fit is

$$
\begin{equation*}
I=\int_{0}^{T} \epsilon^{2} d t=\int_{0}^{T}\left[y(t)-A_{k} \sin 2 \pi k f t\right]^{2} d t \tag{27}
\end{equation*}
$$

The value of A_{k} which minimizes I is

$$
\begin{equation*}
A_{k}=\frac{\int_{0}^{T} y(t) \sin 2 \pi k f t d t}{\int_{0}^{T} \sin ^{2} 2 \pi k f t d t} \tag{28}
\end{equation*}
$$

It can easily be shown that, if $F=(k+\delta) / T$, where k is an integer and $|\delta|<1$,

$$
\begin{equation*}
J=\int_{0}^{T} \sin ^{2} 2 \pi F t d t=\frac{T}{2}-\frac{T \sin 4 \pi \delta}{8 \pi(k+\delta)}=\frac{T}{2}\left[1-\frac{\sin 4 \pi \delta}{4 \pi(k+\delta)}\right] \tag{29}
\end{equation*}
$$

If $\delta=0$ (or $\pm \frac{1}{4}, \pm \frac{1}{2}, \pm \frac{3}{4}$), $\mathrm{J}=\mathrm{T} / 2$, a result which was used in obtaining equations (15). For arbitrary values of δ, even when k is a fairly small integer, the second term in (29) is much smaller than the first. So J is seldom very different from $T / 2$. Assuming $J=T / 2$, equation (28) becomes

$$
\begin{equation*}
A_{k}=\frac{2}{T} \int_{0}^{T} y(t) \sin 2 \pi k f t d t \tag{30}
\end{equation*}
$$

Substituting the expression (28) for A_{k} into (27), the result is

$$
\begin{align*}
\int_{0}^{T} \varepsilon_{e}^{2} d t & =\int_{0}^{T}\left[y(t)-A_{k} \sin 2 \pi k f t\right]^{2} d t \\
& =\int_{0}^{T} y^{2}(t) d t-\left[\int_{0}^{T} y(t) \sin 2 \pi k f t d t\right]^{2} / J \tag{31}
\end{align*}
$$

Then as the discussion following equation (17) shows, the power associated with $y_{k}(t)$ is

$$
\begin{equation*}
P_{k}=\frac{1}{T}\left[\int_{0}^{T} y^{2}(t) d t-\int_{0}^{T} \varepsilon^{2} d t\right]=\frac{1}{T}\left[\int_{0}^{T} y(t) \sin 2 \pi k f t d t\right]^{2} / J \tag{32}
\end{equation*}
$$

Using the value $J=T / 2$,

$$
\begin{equation*}
P_{k}=\frac{2}{T^{2}}\left[\int_{0}^{T} y(t) \sin 2 \pi k f t d t\right]^{2} \tag{33}
\end{equation*}
$$

Suppose $y(t)$ contains a component of frequency θ, with relative phase α, so that the contribution of this term to the total signal is

$$
\begin{equation*}
\mathrm{y}(\theta, \alpha)=\mathrm{C} \sin (2 \pi \theta t+\alpha) \tag{34}
\end{equation*}
$$

The contribution that this term makes to P_{k} is

$$
\begin{equation*}
P_{k}(\theta, \alpha)=\frac{C^{2}}{T J}\left[\int_{0}^{T} \sin 2 \pi k f t \sin (2 \pi \theta t+\alpha) d t\right]^{2} \tag{35}
\end{equation*}
$$

The expression in brackets gives the functional dependence on θ and α

$$
\begin{align*}
{\left[\int_{0}^{T}\right.} & \sin 2 \pi k f t \sin (2 \pi \theta t+\alpha) d t]^{2} \\
& =\frac{1}{4}\left\{\int_{0}^{T} \cos [2 \pi(k f-\theta) t-\alpha] d t-\int_{0}^{T} \cos [2 \pi(k f+\theta) t+\alpha] d t\right\}^{2} \\
& =\frac{1}{4}\left\{\frac{\sin [2 \pi(k f-\theta) T-\alpha]+\sin \alpha}{2 \pi(k f-\theta)}-\frac{\sin [2 \pi(k f+\theta) T+\alpha]-\sin \alpha}{2 \pi(k f+\theta)}\right\}^{2} \tag{36}
\end{align*}
$$

$P_{k}(\theta, \alpha)$ is a weighting function in a sum or integral over θ, to give the power estımate at frequency $k f$ due to contributions from all possible frequencies θ. (A sum over α is also implied.) Unless $k f 1 s$ small, this weightıng function will be relatıvely insignıfıcant except for values of θ near kf. For such values of θ the second term is much smaller than the first. If the second term is dropped,

$$
\begin{align*}
& P_{k}(\theta, \alpha)= \frac{C^{2}}{4 T J}\left\{\frac{\sin [2 \pi(k f-\theta) T-\alpha]+\sin \alpha}{2 \pi(k f-\theta)}\right\}^{2} \\
&\{\sin [2 \pi(k-\theta) T-\alpha]+\sin \alpha\}^{2} \\
&=\{\sin [2 \pi(k f-\theta) T] \cos \alpha-\cos [2 \pi(k f-\theta) T] \sin \alpha+\sin \alpha\}^{2} \\
&=\{2 \sin [2 \pi(k f-\theta) T / 2] \cos [2 \pi(k f-\theta) T / 2] \cos \alpha \\
&\left.+2 \sin ^{2}[2 \pi(k f-\theta) T / 2] \sin \alpha\right\}^{2} \\
&= 4 \sin ^{2}[2 \pi(k f-\theta) T / 2]\{\cos [2 \pi(k f-\theta) T / 2] \cos \alpha \\
&\left.\quad \sin ^{2}[2 \pi(k f-\theta) T / 2] \sin \alpha\right\}^{2} \\
&= 4 \sin ^{2}[2 \pi(k f-\theta) T / 2] \cos { }^{2}[2 \pi(k f-\theta) T / 2-\alpha] \\
& P_{k}(\theta, \alpha)= C^{2} \sin ^{2}[2 \pi(k f-\theta) T / 2] \cos ^{2}[2 \pi(k f-\theta) T / 2-\alpha] /[2 \pi(k f-\theta)]^{2} \tag{37}
\end{align*}
$$

Examination of the exact expression (36) shows that for kf a multiple of $1 / T, P_{k}(\theta, \alpha)$ vanishes when θ is also a multiple of $1 / T$. This is a manifestation of the orthogonality of the terms in a Fourier series. Equation (37) shows that this property is more general, $P_{k}(\theta, \alpha)$ vanishes whenever $\mathrm{kf}-\theta$ is any integral multıple of $1 / \mathrm{T}$, regardless of the values of kf and θ (unless kf is small and (37) doesn't hold).

The detailed behavior of $P_{k}(\theta, \alpha)$ depends on α. For instance, if $\alpha=0$ equation (37) has zeros when kf- θ_{1} any multiple of $1 / 2 T$, twice as often as in the general case. For certain values of α (depending on θ and T) $P_{k}(\theta, \alpha)$ is identically zero. But for an arbitrary signal the contribution at frequency θ may have any phase, so an expression independent of α would be useful. A reasonable estimate for the effect of the contribution at θ on the power estimate at kf is the expected value $\mathrm{P}_{\mathrm{k}}(\theta)=\mathrm{E}_{\alpha}\left[P_{\mathrm{k}}(\theta, \alpha)\right]$, where the
subscrıpt α denotes that the average is over α. Assumıng all values of α are equally likely, this involves

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\{\cos [2 \pi(k f-\theta) \mathrm{T} / 2] \cos \alpha+\sin [2 \pi(k f-\theta) \mathrm{T} / 2] \sin \alpha\}^{2} \mathrm{~d} \alpha=\frac{1}{2} \tag{38}
\end{equation*}
$$

Therefore, the expected value of the contribution which a component of amplitude c, frequency θ, and arbitrary phase makes to the power estimate at frequency kf is

$$
\begin{equation*}
P_{k}(\theta)=\frac{T_{\mathrm{C}}^{2}}{8 J}\left[\frac{\sin 2 \pi(k f-\theta) T / 2}{2 \pi(k f-\theta) T / 2}\right]^{2} \tag{39}
\end{equation*}
$$

The gain factor is actually independent of T, since J is proportional to $T / 2$.

Equation (39) can be written in a useful form by defining δ,

$$
\begin{equation*}
k f-\theta=\delta / T \tag{40}
\end{equation*}
$$

and using the (very good) approxımation that $J=T / 2$. Then

$$
\begin{equation*}
P_{k}(\theta)=\frac{c^{2}}{4}\left[\frac{\sin \pi \delta}{\pi \delta}\right]^{2} \tag{41}
\end{equation*}
$$

The foregoing shows that the mathematical method of power spectrum analysis gives essentially the same result as filtering the signal through a bank of filters, each with frequency response given by (41), centered at the frequencies $\mathrm{kf}, \mathrm{k}=1,2, \ldots$ The power estımate at kf is the power at theoutput of the filter centered at kf . The shape (in particular, the width) of the filter is independent of the center frequency. This process of filtering is precisely the analog technıque of spectral analysis. $[9,14]$

An examination of the function $\left(\frac{\sin \pi \delta}{\pi \delta}\right)^{2}$ shows that the estimate of power at the frequency kf includes most of the power at frequencies close to kf . The power at frequencies $\pm 1 / \mathrm{T}$ away is completely filtered out, and frequencies
farther away than this make very little contribution. (An extremely large component occurring near the peak of one of the closest side lobes may cause an erroneously high power estimate at kf.) A "worst-case" example is $f=1 / T$, and a component of the signal at $(k+1 / 2) / T$. For this case, about 41% of the component's power would be seen at k / T and the same amount at ($\mathrm{k}+1$)/T.

The analysis from the paragraph following equation (25) to this point has shown that one need not be restricted to making power estimates only at the frequencies $\mathrm{k} / \mathrm{T}, \mathrm{k}=1,2, \ldots$ If estımates are made at frequencies closer together than this the neighboring estimates will be correlated, but finer resolution of the spectrum will be obtained. If the spectrum varıes slowly with frequency, computer time can be saved by making estımates further apart than $1 / T$, the correlation between estimates will be slight, if not zero. If there 1 s some advance knowledge of the spectrum (perhaps based on the properties of the physical system producing the signal), f can be chosen equal to a fundamental frequency, possibly far from $1 / T$. In the case considered in equations (12) and (13) f (or $\mathrm{kf}, \mathrm{k}=2,3 \ldots$) could be chosen equal to $\left(\mathrm{k}_{0}+1 / 2\right) / \mathrm{T}$, with results more appealing to intuition.

The approximations used in obtaining equations (37), (39), and (41) are good, except for values of k and f such that $k f 1 s$ of the order of or smaller than 1/T, particularly for $\theta<\mathrm{f}$ 。 Physically, this is connected with the fact that a very low frequency must be observed for a very long time to be accurately estımated. Therefore, a constant (bıas', d.c. component) may "contaminate" low frequency power estimates and should be subtracted off before spectral analysıs.

UNEQUALLY SPACED DATA

The mathematical problem for the unequally spaced case is almost the same as for points equally spaced in time. Formulas will be obtained proceeding by analogy with the equally spaced case, keeping in mind the results of the previous section.

A set of points 1 s given at times t_{1} with values $y_{1}=y\left(t_{1}\right), 1=1,2, \ldots, N$, sampled during an interval T. The model to be fit is

$$
\begin{equation*}
\frac{\Lambda}{y}\left(t_{1}\right)=\frac{a_{0}}{2}+\sum_{k=1}^{L_{1}}\left(a_{k} \cos 2 \pi k f t_{1}+b_{k} \sin 2 \pi k f t_{1}\right) \tag{42}
\end{equation*}
$$

where, keeping in mind the discussion of the previous section, no restrictions have been placed on the value of f.

The least squares equatıons can be formed as was done in obtaining (20). However, in the general unequally spaced case there are no orthogonality relationshıps like (19), that is,

$$
\begin{aligned}
& \sum_{i=1}^{N} \cos 2 \pi k f t_{1} \neq 0 \quad \sum_{1=1}^{N} \sin 2 \pi k f t_{1} \neq 0 \\
& \sum_{1=1}^{N} \cos ^{2} 2 \pi k f_{1} \neq N / 2 \sum_{1=1}^{N} \sin ^{2} 2 \pi \operatorname{kft}_{1} \neq N / 2 \\
& \sum_{1=1}^{N} \cos 2 \pi k f t_{1} \cos 2 \pi p f t_{1} \neq 0 \quad \text { if } p \neq k \\
& \sum_{1=1}^{N} \sin 2 \pi k f t_{1} \sin 2 \pi \mathrm{pft}_{\mathrm{L}} \neq 0 \quad \text { if } \mathrm{p} \neq \mathrm{k} \\
& \sum_{i=1}^{N} \sin 2 \pi k f t_{i} \cos 2 \pi \mathrm{pft}_{1} \neq 0
\end{aligned}
$$

even for $f=1 / T$. In other words, the estimates of a_{k}, b_{k} are not independent of a_{j}, b_{j} for $j \neq k$, and a_{k} is not independent of b_{k}.

At this point, it appears that it is necessary to invert a large matrix in order to fit (42) to the data. However, makıng use of the filter concept of the previous section, it will be assumed that frequencies $1 / T$ apart do not not interfere with one another. (The same assumptions as before concerning changing the frequency spacing will also be made.) Therefore, the problem considered is that of fitting a series of (assumed) independent functions of the form

$$
\begin{equation*}
y_{k}\left(t_{1}\right)=a_{k} \cos 2 \pi k f t_{1}+b_{k} \sin 2 \pi k f t_{1} \tag{44}
\end{equation*}
$$

The least squares normal equations are (dropping subscripts on a and b)
wath solutions

$$
\begin{align*}
& a=\frac{\sum_{i} \sin ^{2} 2 \pi k f t_{1} \sum_{1}^{\prime} y_{1}^{\prime} \cos 2 \pi k f t_{1}-\sum_{1} \sin 2 \pi k f t_{1} \cos 2 \pi k f t_{l} \sum_{1} y_{l} y_{1} \sin 2 \pi k f t_{1}}{\sum_{1} \cos ^{2} 2 \pi k f t_{1} \sum_{1} \sin ^{2} 2 \pi k f t_{1}-\left(\sum_{1} \sin 2 \pi k f t_{1} \cos 2 \pi k f t_{1}\right)^{2}} \tag{46}\\
& \mathrm{~b}=\frac{\sum_{1} \cos ^{2} 2 \pi \mathrm{kft}{ }_{1} \sum_{1} \mathrm{y}_{1} \sin 2 \pi \mathrm{kft}_{1}-\sum_{1} \sin 2 \pi \mathrm{kft}_{1} \cos 2 \pi \mathrm{kft}_{1} \sum_{1} \mathrm{y}_{1} \cos 2 \pi \mathrm{kft}_{1}}{\sum \cos ^{2} 2 \pi \mathrm{kft}{ }_{1} \sum \sin ^{2} 2 \pi \mathrm{kft}{ }_{1}-\left(\begin{array}{c}
\sum \\
1 \\
\sin 2 \pi \mathrm{kft}_{1} \cos 2 \pi k f t_{1}
\end{array}\right)^{2}} \tag{47}
\end{align*}
$$

These are the estimates of the coefficients at a given frequency. To go with them we need an expression for the power at that frequency (in the sense discussed in the previous section). Since spectral analysis is being considered as a least-squares regression problem, the natural measure of the power at frequency kf is the varsance $\left[E\left(y^{2}\right)-E\left(\epsilon^{2}\right)\right]$, where $\epsilon_{1}=y\left(t_{1}\right)-y_{k}\left(t_{1}\right)$, and $y_{k}\left(t_{1}\right)$ is defined by equation (44). It is shown in Reference 6 that this definition makes possible meaningful estimates of the significance of contributions from specıfic frequencies. Furthermore, it will be shown that this definition leads to results consistent with equations (17) and (21), which express power as might be expected from an engineering point of view.

Before workıng out the expression for power, it is convenient to express a and b in slightly different forms

$$
\begin{align*}
& \sum \mathrm{y}_{\mathrm{L}} \cos 2 \pi k f t_{1}-\delta \sum \mathrm{y}_{\mathrm{L}} \sin 2 \pi \mathrm{kft}{ }_{1} \\
& a=\frac{1}{\sum_{1} \cos ^{2} 2 \pi k f t_{1}-\delta \sum_{1} \sin 2 \pi k f t_{1} \cos 2 \pi k f t_{1}} \tag{48a}\\
& 11 \\
& \oint=\frac{\sum_{1} \sin 2 \pi k f t_{1} \cos 2 \pi k f t_{1}}{\sum_{1} \sin ^{2} 2 \pi k f t_{1}} \tag{48b}\\
& \sum \mathrm{y}_{1} \sin 2 \pi \mathrm{kft}_{1}-\Delta \sum \mathrm{y}_{1} \cos 2 \pi \mathrm{kft}_{\mathrm{L}} \\
& b=\frac{1}{\sum_{1} \sin ^{2} 2 \pi k f t_{1}-\Delta \sum_{1} \sin 2 \pi k f t_{1} \cos 2 \pi k f t_{1}} \tag{49a}\\
& \sum_{i} \sin 2 \pi k f t_{i} \cos 2 \pi k f t_{1} \\
& \Delta=\frac{1}{\sum \cos ^{2} 2 \pi k t_{1}} \tag{49b}
\end{align*}
$$

It should be noted that, for equally spaced data and $f=1 / T, \delta=\Delta=0$ and equations (48a) and (49a) reduce exactly to equations (20).

Let t_{1} be considered a random variable satisfying a uniform distribution. Using some trigonometric identities

$$
\begin{equation*}
\delta=\frac{\sum_{1} \sin 2 \pi k f t_{i} \cos 2 \pi k t_{1}}{\sum_{1} \sin ^{2} 2 \pi k_{1}}=\frac{\frac{1}{2} \sum_{i} \sin 2 \pi(2 k f) t_{1}}{\frac{1}{2} \sum_{1}\left[1-\cos 2 \pi(2 k f) t_{1}\right]}=\frac{\sum_{1} \sin \theta_{1}}{\sum_{1}\left(1-\cos \theta_{1}\right)} \tag{50}
\end{equation*}
$$

where now $\theta_{1}=2 \pi(2 \mathrm{kf}) \mathrm{t}_{1}$ is regarded as a random varıable. The sum $\sum_{1} \sin \theta_{1}$ ia N times an estimate of the expected value of $\sin \theta$. Likewise, $\sum_{1} \cos \theta_{1}=$ $\mathrm{NE}(\cos \theta)$. Therefore,

$$
\begin{equation*}
\hat{\delta}=\mathrm{E}(\sin \theta) /[1-\mathrm{E}(\cos \theta)] \tag{51}
\end{equation*}
$$

If the interval contans any whole number of cycles, $E(\sin \theta)=E(\cos \theta)=0$. If the interval is not an integral number of periods in length, $E(\sin \theta)$ and $E(\cos \theta)$ differ from zero by an amount of the order of $1 / \mathrm{N}$ or less. Therefore, (unless N is a small number) δ is a quantity of order $1 / N$. Likewise Δ is of the same magnıtude.

Returning now to the expression for power, letting $\omega=2 \pi \mathrm{kf}$ for conciseness. $\sum_{1} y_{1}^{2}-\sum_{1} \varepsilon_{1}^{2}=\sum_{1} y_{1}^{2}-\sum_{1}\left(y_{1}-a \cos \omega t_{1}-b \sin \omega t_{1}\right)^{2}$

$$
\begin{align*}
& =2 a \sum_{1} y_{1} \cos \omega t_{1}+2 b \sum_{1} y_{1} \sin \omega t_{1}-a^{2} \sum_{1} \cos ^{2} \omega t_{1} \\
& -2 a b \sum_{1} \sin \omega t_{1} \cos \omega t_{1}-b^{2} \sum_{1} \sin ^{2} \omega t_{1} \tag{52}
\end{align*}
$$

Substituting (48a)-(50),

$$
\begin{aligned}
& \sum_{1} y_{1}^{2}-\sum_{1} e_{i}^{2}=2 a \sum_{1} y_{1} \cos \omega t_{1}+2 b \sum_{1} y_{1} \sin \omega t_{1}-2 a b \sum_{1} \sin \omega t_{1} \cos \omega t_{1} \\
& -a\left[\frac{\sum_{1}^{1} y_{1} \cos \omega t_{1}-\delta \sum_{1} y_{1} \sin \omega t_{1}}{\sum_{1} \cos ^{2} \omega t_{1}-\delta \sum_{1}{\sin \omega t_{1}}^{\cos \omega t_{1}}}\right] \quad \sum_{1} \cos ^{2} \omega t_{1} \\
& -\mathrm{b}\left[\frac{\sum_{1} \mathrm{y}_{1} \sin \omega t_{1}-\Delta \sum_{1} \mathrm{y}_{1} \cos \omega t_{1}}{\left.\sum_{1} \sin ^{2} \omega_{1}-\Delta \sum_{1}{\sin \omega t_{1}}^{\cos \omega t_{1}}\right]}\right]_{1} \sum_{1} \sin ^{2} \omega t_{1} \\
& =2 a \sum_{1} y_{1} \cos \omega t_{1}+2 b \sum_{1} y_{1} \sin \omega t_{1}-2 a b \sum_{1} \sin \omega t_{1} \cos \omega t_{1} \\
& -a^{\prime}\left[\frac{\sum_{1} y_{1} \cos \omega t_{1}-\delta \sum_{1} y_{1} \sin \omega t_{1}}{1-\delta \Delta}\right] \\
& -b\left[\frac{\sum_{1} y_{I} \sin \omega t_{1}-\Delta \sum_{1} y_{1} \cos \omega t_{1}}{1-\delta \Delta}\right]
\end{aligned}
$$

Since both δ and Δ were found to be small quantities, terms of order $\dot{\delta} \Delta$ will be neglected.
$: \sum_{1} y_{1}{ }^{2}-\sum y_{1}{ }^{2} \varepsilon_{1}^{2}=a \sum_{1} \cos \omega t_{1}+b \sum_{1} y_{1} \sin \omega t_{1}+a \delta \sum_{1} y_{1} \sin \omega t_{1}$
$+b \Delta \sum_{1} y_{1} \cos \omega t_{1}-2 a b \sum_{1} \sin \omega t_{1} \cos \omega t_{1}$
$=a \sum_{1} y_{1} \cos \omega t_{1}+b \sum_{1} y_{1} \sin \omega t_{1}-2 a b \sum_{1} \sin \omega t_{1} \cos \omega t_{1}$
$+a\left[\frac{\left(\sum_{1} \sin \omega t_{1} \cos \omega t_{1}\right)\left(\sum_{1}^{y_{1}} \mathrm{y}_{1} \sin \omega t_{1}\right)}{\sum_{1} \sin ^{2} \omega t_{1}}\right]$
$+b\left[\frac{\left(\begin{array}{c}\sum_{1} \sin \omega t_{1} \cos \omega t_{1}\end{array}\right)\left(\begin{array}{c}\left.\sum_{1} y_{1} \cos \omega t_{1}\right) \\ \sum_{1} \cos ^{2} \omega t_{1}\end{array}\right], ~}{-}\right]$
$=a \sum_{1} y_{1} \cos \omega t_{1}+b \sum_{1} y_{1} \sin \omega t_{1}$

$$
\begin{equation*}
+\sum_{1}{\sin \omega t_{1}}_{\cos \omega t_{1}}\left[\frac{\sum_{1} y_{1} \sin \omega t_{1}}{\sum_{1} \sin ^{2} \omega t_{1}}+b \frac{\sum_{1} y_{1} \cos \omega t_{1}}{\sum_{1} \cos ^{2} \omega t_{L}}-2 a b\right] \tag{5}
\end{equation*}
$$

After further manipulation, neglecting terms of order $\delta \Delta$, the entire last term vanishes, leaving

$$
\begin{equation*}
\sum_{1} y_{1}^{2}-\sum_{1} \epsilon_{1}^{2}=a \sum_{1} y_{1} \cos \omega t_{1}+b \sum_{1} y_{1} \sin \omega t_{1} \tag{54}
\end{equation*}
$$

For equally spaced data, with $f=1 / T$, (54) becomes identical with (21).

COMPUTER PROGRAM

General Information

The logical structure of the computer program implementing the mathematical method described in the previous sections has three main parts

1. The power spectrum of the data 1 s calculated.
2. Improved estımates of the coeffıcients and frequencies of domınant spectral terms are obtaned.
3. The dominant terms are subtracted from the data (this is a form of prewhitening) and the spectrum of the resıduals is calculated.

The user may control the calculations, and specıfy the form of the output, by means of parameters on input cards. Appendix 1 is a diagram showing the overall logic of the program.

The second step in the above list is done by searching the spectrum ("coarse spectrum ${ }^{\text {") for relatıve maxıma whose powers exceed a certaın level and using }}$ the coefficients and frequencies of the maxima as initial estimates in a simultaneous least squares solution for the domınant terms. Specıfically, the function is represented by

$$
\begin{equation*}
\frac{A}{y}(t)=\sum_{i=1}^{\mathbb{M}}\left(a_{k} \sin 2 \pi f_{k} t+b_{k} \cos 2 \pi f_{k} t\right) \tag{55}
\end{equation*}
$$

in a least squares f_{1} to the data, in which a_{k}, b_{k}, and $f_{k}, k=1, \ldots, M$ are allowed to vary. Here $M \leq 10$ is the number of relative maxima found in searching the coarse spectrum. Peaks are chosen in order of size, the largest first. It should be noted that in equation (55) a_{k} is the coefficient of the sine term and b_{k} that of the cosine term. This convention, which is opposite to that followed up to now in this report, is the one generally used in the program. Up to ten terms (the number is an input parameter) may be solved for simultaneously. The threshold which must be exceeded for a peak to be selected
("removal tolerance") may eather be specafied as input or computed by the program.

Parts 2 and 3 in the above list are done in a cyclic fashion until no more peaks can be found which exceed the removal tolerance. Then the removal tolerance is cut in half (once) and the process is continued until no more relative maxima can be found. The process is also terminated in the event that the number of terms removed exceeds 20% of the number of terms in the coarse spectrum.

This search-and-removal process is actually a method of prewhitening, a technique which is recommended for increasing the accuracy of power spectral density analysis. [9, 14] Prewhitening means filtering the data prior to analysus to remove spectral peaks and obtain as smooth a power spectrum as possible. One way to prewhiten data is to filter the signal as it is measured. To do this, of course, one must have some foreknowledge of the frequency content. In this program, the "preprocessing" is done in the course of the computations, and no advance knowledge of the properties of the signal is required. The terms removed, plus the spectrum of the prewhitened signal ("fmal spectrum"), give the most accurate representation of the frequency content of the signal

The subroutine which improves the estimates of dominant spectral terms uses an iterative linearızed least squares formulation, employing Newton's method, to find the coefficients and frequencies of up to ten terms sumultaneously There are several conditions besides convergence which will cause a return to the main program.

1. If the frequency corrections to one or more terms are more than one-half of the frequency spacing of the coarse spectrum, those terms are tagged as false peaks. Upon return to the main program, the spectrum is searched for the ten largest relative maxima - not including those which are tagged - whose powers exceed the removal tolerance.
2. After the first two iterations the least squares process is checked for convergence (by observing the change in variance). If there is divergence on the nth iteration, the values for the ($n-1$) st iteration are chosen for the coefficients and frequencies.
3. If the convergence test is not satisfied after 50 iterations, an error message is printed and execution is terminated. The convergence criterion is that the relative change in Δy must be less than 10^{-8} (and Δy must decrease), where Δy is the sum of squares of residuals. The error message includes a list of the old and new values of the $f_{i t}$ parameters and Δy.

Reference 6 shows how significance testing can be applied to the spectral powers computed by formula (54). On the program's graphical output, a dotted line appears approximately at a 95% significance level.

Let $T(1), \ldots, T(\mathbb{N})$ be the times (for simplicity the independent variable will henceforth be called time) associated with the N values of the observed quantity. The program calculates $T(N)-T(1)$ as the duration of the signal. However, in order that the statement following equation (49b) be true, that the general formulas for the coefficients reduce to equations (20) in the case of equally spaced data and $f=1 / T,[\mathbb{N} /(N-1)] x$ duration must be used for T. This is equivalent to regarding the observations as forming a histogram.

For equally spaced times the time axis is divided into N intervals, each of width Δt (the sampling increment), with the sampling points at the midpoint of each interval. Thus, T must include portions before $T(1)$ and after $T(N)$. The basic frequency f is given in the program by (regardless of the time spacing)

$$
\begin{equation*}
f=\frac{1}{S\left(\frac{N}{N-1}\right)[T(N)-T(1)]} \tag{56}
\end{equation*}
$$

where S is a factor which allows f to be different from $1 / T$. The spectrum is evaluated at $\mathrm{kf}, \mathrm{k}=1, \ldots, \mathrm{k}_{\text {max }}$, where

$$
\begin{equation*}
\mathrm{k}_{\max }=\operatorname{RSN} / 2 \tag{57}
\end{equation*}
$$

Here R is a factor which determines the maximum frequency at which the spectrum is evaluated, the range factor. When $R=1$ this maximum is the Nyquist frequency. Because of its role in determining frequency spacing, S is called the spacing factor. When $S=1$ the frequencies are harmonics of the fundamental perıod T.

A few comments on the use of unequally spaced data are appropriate. When the times are randomly spaced there is no aliasing. Therefore, components above the Nyquist frequency can be detected. When the times are in some regular pattern (but not equally spaced) there may be some misleading effects. For example, if the times are equally spaced except for regularly occurring gaps of a fixed size, there is an effect something like modulation by a square wave.

Often in using the program, changing one or more of the quantities S, R, the limit on the number of terms in the simultaneous solution (MTERMS), and the removal tolerance and rerunning will yield better results. Using a very large value of S may reveal several peaks so close together that they prevent proper operation of the removal feature with a spacing factor near unity. Setting MTERMS = 1 may help in this instance. A smaller removal tolerance may lead to the discovery of further underlying structure in the signal. It is recommended that the user make several runs with known data to gain famıllarity with the operation of the program.

An option is available to smooth the spectrum estimates with low-pass convolution filters of up to 13 points. This feature is not currently activated, but the FORTRAN statements are in the program as comments. To activate this feature the " C " in column 1 should be removed.

The following sections contain a description of the system of programs and its use. Appendix 1 contains a flowchart showing the overall logic of the program. Appendix 2 is a sample run. A listing of the program which generated the (unequally spaced) data 1 s given, along with the output. All of the output options are exercised. Values of S and R different from 1.0 are used. Removal is done, with the program calculating the removal tolerance.

For more information on the program the user is referred to Volume 2 of this report, the Maıntenance Manual.

Functions of Programs in System
CUCPSA (main program)
Reads program control cards
Reads data cards (or calls tape read subroutine)
Calculates mean and a.c. power of total signal
Calculates coefficients, power, and percent power of spectral terms.
Prints power spectrum
Calls two subroutines (GRAPH and RPLOT) to plot power spectrum Searches "coarse" spectrum for peaks.
Calls subroutine to solve for coefficients and frequencies of dominant terms. Removes dominant spectral terms.

GRAPH

Lists power and plots (on printer) percent power vs. frequency, 53-58 pounts/page. A dotted line is drawn approxımately at a 95% signuficance level.

RPLOT

Plots the spectrum on one page, with a significance indicator.
READ
Reads data from tape.

CAROL3

Performs sımultaneous least squares fit of up to ten sinusoidal functions, solving for coefficients and frequencies.

BIORTH
Matrix inversion routine called by CAROL3.

Input Cards

There are two types of input cards program control cards and data cards. The latter may be replaced by a tape.

A description of the input cards follows. Everything pertaining to the spectrum smoothing feature is given in brackets. It should be noted that if the smoothing feature is not activated, card 4 is not used and there are four program control cards per case.

Card 1. Format Card

Observation card format. This is a FORTRAN FORINAT statement without the statement label and the word "FORMAT." It includes the beginning and ending parentheses. It must specify 3 double precision fields. This card should be left blank of the data are to be read from tape.

Card 2. Observation Definition Card

NOTE "Field" means fields on observation cards as given on the Format Card.

$$
\begin{equation*}
t=T / T P C+\left(D-D_{0}\right) \tag{CPD}
\end{equation*}
$$

where t-time used in program
T-tıme on observation card
TPC-tıme scale factor
D- day on observation card
D_{o}-day on 1st observation card
CPD-day scale factor

For example, if the program is to compute in minutes and the times on the observation cards are in seconds and whole days, then $T P C=60$ and $C P D=1440$

If the data are on tape rather than cards there is no "day" variable. ID and CPD are ignored by the program. Subroutine READ assumes that the tape contains a file consisting of N (the number of points) records, each contanning 7 (or more) single-precision words. The tape should be binary (unformatted). IT tells which of the 7 words is time, IY identifies the observed quantity. Time is calculated by $\mathrm{t}=\mathrm{T} / \mathrm{TPC}$.

Card 3. Program Option Card

NAME identıfies data
$\mathrm{N} \quad 1 \mathrm{~s}$ number of observations (limited to 2000)
$S \quad$ is spacing factor in equation (56)
$\mathrm{R} \quad$ is range factor in equation (57)
$J P O=0-$ program plots rough [and smooth] power spectrum
$=1-$ plots rough power spectrum only
$=2-[$ plots smooth power spectrum only]
= 3-no plots
$J F=0$ - program removes terms whose percent powers exceed TOL
= 1 - no removal
TOL \quad is calculated by program if not inputted
$J S=0-$ program prints power spectrum
$=1-$ program does not print spectrum

NOTES The default value of TOL is the same as the 95% significance level (shown on the graphs by a dotted line). However, in this context it should not be regarded as a 95% signıfıcance level. Combinations of N, S, and R which would produce more than 1000 spectral terms are not allowed. In such a case, the program will compute the first 1000 terms.

TOL is a fraction which is used to compute a power level, that fraction of the total power of the signal. After removal of terms that level is not re-evaluated as a fraction of the remaining power, except for being halved once as described previously.
[Card 4. Spectrum Smoothing Filter Card

This card cannot be used unless the smoothing statements are activated and $S \neq 1$. If $S=1$ the values $1 / 4,1 / 2,1 / 4$ ("Hanning") will be used for the filter.]

Card 5. Simultaneous Removal Card

Maximum number of terms solved for sumultaneously
in fine fit (MTERMS)

NOTE MTERIMS may not exceed 10 。

These cards are followed by N observation cards, in the format specified on the Format Card, unless the data are on tape. Any number of sets of data may be analyzed sequentially by stacking the input cards to form one large data deck. After the last case, two more cards are needed to terminate execution The first may be blank. The second should have -999 punched in columns 2-5.

Output

The first page of output for each case gives a 1ist of input quantıties. The first group on this page lists, in order, NAME, N, S, R, JPO, JF, TOL, JS, and MTERMS, one per line. [If the spectrum smoothing feature is activated, the next group is a list of the filter factors.] The final group consists of FMT, IY, IT, ID, TPC, CPD, and $D U R=T(N)-T(1)$, also one per line.

On the next page the title

INITIAL DATA SPECTRUM FOR SET $\{$ NAME $\}($ TOTAL POWER $=\{$ YYBAR 2$\})$ 1s printed. Here $\{X\}$ means "the value of the quantıty X." YYBAR2 is the total power, the sum of squares of the observations (after subtracting the mean) divided by $\mathbb{N} / 2$. This normalization for power is somewhat arbitrary, it amounts to a choice of the unit of power. The same normalization is used for the terms in the power spectrum, equation (54) is divided by $N / 2$.

If the print option is used ($J S=0$), this $1 s$ followed by a tabulation of the spectrum, 50-52 lines per page. The quantity C given at the top of each page is the mean of the observations. The first of the seven columns lists the frequency index k, which goes from 1 to $\mathrm{k}_{\text {max }}$ (equation (57)). The second column gives the period, the reciprocal of the frequency of the kth term. The third column is $\omega, 2 \pi x$ frequency. The fourth and fifth columns list a_{k}, the coefficient of the sine term (called b in equation (47)), and b_{k}, the coefficient of the cosine term (equation (46)). Once agaın attention is called to the reversal of the usual naming convention for the coefficients. The next column 1ists the regression power of each term, equation (52) divided by $N / 2$. The last column gives percent (really fractıonal) power, the preceding quantity divided by the total power YYBAR2.

Depending on whether the spectrum smoothing feature is activated, and on what plot option is specified, plots (on the printer) may be made of the raw spectrum, the smoothed spectrum, both, or nether. If plots of both the raw and smoothed spectrum are requested, the former appear first. Plots are made in pairs The first is on a single page, power vs. k. The second may occupy several pages, with the first 53 pounts on the first page and 58 on each succeeding page. The expanded plot shows percent power vs. k, with the k axis running down the page. To the left of the plot are two columns of figures giving the regression power and frequency corresponding to each value of k.

Automatic scale selection is done for each plot, and on both plots a dotted line shows an approxımate 95% sıgnıfıcance level.

After plotting the spectrum, the program may be finıshed with that case. However, if the search-and-removal option is specıfıed the title

$$
\text { REMOVAL TABLE FOR SET }\{\text { NAME }\}
$$

column headings, and the first line of the removal table are printed This first line consists only of YYBAR2, the total power, under the heading "REMAINING TOTAL POWER."

The remainder of the removal table lists the results, if any, of the simultaneous least squares solution for dominant terms. The first five columns, in order, list the period, frequency, angular frequency (2 x frequency), and the sine and cosine coefficients of the terms in the solution. The column headed "SPECTRUM POWER" gives the regression power of each term. On the last line of a group of terms solved for sumultaneously, the column headed "REMAINING TOTAL POWER" gives the power of the residuals after subtracting the solution terms from the original data. On every line of this group, the column headed "C" lists the mean of these residuals. There may be several such groups of terms. After each subtraction the residuals are treated as data, the spectrum is calculated and searched for peaks as before. When no more valid peaks exceeding the removal tolerance can be found, TOL is cut in half and the message "SEARCH WILL NOW BE MADE WITH SMALLER TOL" is printed Then the search-and-removal procedure continues until no more peaks are found, and the values found are printed in the removal table.

If at least one term is found and removed from the data, the spectrum of the residuals is printed and/or plotted according to the output options specified The form of this output is just the same as for the spectrum of the original 'data, except that the heading of the tabulation specifies that it is the "FINAL DATA SPECTRUM. "

The program is on the FASTRAND file LSQFIT*MLTSAN. The name of the absolute element is LSQFIT*MLTSAN. APSD. If input is from tape rather than cards, the tape is considered to be on logical unit 3. If it is necessary to reMAP the program for some reason, the MAP source element LSQFIT*MLTSAN. PSAMAP may be used.

1. Cooley, J.W., and Tukey, J.W., "An Algorithm For the Machine Calculation of Complex Fourier Series, " Mathematics of Computation 19, 297-301 (April, 1965).
2. IEEE Transactions on Audio and Electroacoustics, AU-15 No. 2 (June, 1967) - entire issue.
3. Cooley, J.W., Lewıs, P.A.W., and Welch, P.D , "The Fast Fourıer Transform Algorithm and Its Applıcations, "IBM Research Paper RC 1743, February 9, 1967.
4. Gentleman, W.M., and Sande, G., "Fast Fourier Transforms - For Fun and Profıt," Proceedings - Fall Joint Computer Conference, 1966, Pp. 563-578.
5. Brigham, E.O., and Morrow, R.E., "The Fast Fourier Transform," IEEE Spectrum 4, 63-70 (December, 1967).
6. Fritz, E.L., "Power Spectrum Analysis For Unequally Spaced Data Points, " CUC Report, June 1, 1968.
7. Lybanon, M., "A New Method of Spectrum Analysis On Discrete Data," CUC Report, July 1, 1968.
8. Guıllemin, E.A., Theory of Linear Physıcal Systems, John W. Wıley and Sons, 1963.
9. Blackman, R.B., and Tukey, J.W., Thé Measurement of Power Spectra, Dover Publıcations, Inc., 1959.
10. Jackson, D. Fourier Sexies and Orthogonal Polynomıals, The Carus Mathematical Monographs, Number Six, The Mathematical Association of America, 1961
11. Yen, J. L., "On Nonunıform Samplıng of Bandwidth-Lımited Sıgnals," IRE Transactions on Circuit Theory CT-3, 251-257 (1956).
12. Beutler, F.J., "Error-Free Recovery of Signals From Irregularly Spaced Samples, " SIAM Review 8, 328-335, 1966.
13. Hamming, R.W., Numerıcal Methods For Scientists and Engineers, McGraw-Hıll Book Company, Inc., 1962.
14. Bendat, J.S., and Piersol, A.G., Measurement and Analysis of Random Data, John Wiley and Sons, Inc., 1966.

APPENDIX 1

Overall Logıc Flowchart

APPENDIX 2

Sample Run

```
\squareดก
Q(
010
O2
F10
00
OM
00
0日
\otimesด
0日
@O
ค, %
0@
0R
10
02
ตล
OQ RUN MXL.DO1,SPANAL.10.50
    HDG GENERAIE MANDOMLY SPACED DATA FOR SPFCTRUM PROGPAM
        FOR,IS RANDSD,RANDSD
    ** PROGRAM TO GENERATE KNOWN DATA FOP SPECTRAL ANALYSIS PROGRAM
    &**
    C ** M
    C_** Y = YAAR + SLOPE*T + SUMM(A(I)*SIN(?*PI*F(I)*T)
        + B(J)*COS(2*PI*F(I)*T))
    OIMENSION A(10),B(10),F(10),X(10),RANDNO(1000)
    C_**
    C-** TIMES ARE RANDOMLY SPACED OVE\overline{R}}\mathrm{ (Tn,TO + 1.0%).
    C ** _ THE PSEUDO - NYQUIST FREQUENCY IS (N - 1) / 2 EPS.
    c**
    1000 FORMAT (1H1, 21X.I2/TOH Y = YRAR + SLOPF*T + GIMMASI)*STNI\*PI*F(T)
```



```
        E E = FF6.3//8\times1HF,10X1HA,10\times1HP/ (3(5XF6.3)/1)
    I001 FORMAT (5XF5,2,5XE13.8)
    1002 FORMAT (3E20.8)
    1004 FORMAT (F10.0.I5)
    1005 FORMAT (I5)
    1006 FORMAT (8X1HT, 13X1HY)
            READ (5,1002) YBAR,SLOPE
            READ (5,10055) M NOMMER OF FRFOUIFNEIES
            READ (5,1002) (F(I),A(T),B(I),T=1,M)
            WRITE (6,1000) M,YBAR,SLOPE, (F(I),A(I),R(I),I=1,M)
            WRITE (6,1006)
c"**
C_** TO IS THE INITIAL TIME.
    N IS THE NUMBER OF POINT5.
    READ (5,1004) T0,N
            RANDNO(1) =6.2831853076
            NM2 = N-2
            CALLL RANDU (RANONO,NM2) Gl GENERATF ARRAY OF RANDOM NUMBERRS.
            T = T0
            NM 三0
            GO TO 30
        10 CONTINUE
            NM = NM + 1
            T = TO + RANDNO(NM)
            GO TO 30
        20 CONTINUE'
            NM 三 NM + 1
            T= T0 +- 2.0
        30 CONTINUE
```

```
        RIAS=YBAR+SLOPE*T
        Y=RIAS
        DU 50 J=1,M
        X(J)=6.2831853076*F(J)*T
    50 Y=Y+A(J)*SIN(X(J))+B(J)*COS(X(J))
        PRINT 1001,T,Y
        PUNCH 1002,T,Y
        IF (NM - NM2) 10,20,40
    40 CONTINUE
        STOP
    END
(a) XQT
    5 36.
        36. 3.
        158., 9.
        220. 3.
        250. 0.
        281. 7.
        0. 500
    0 FIN
~1n
010
```


SAMPLE SPEGTRUM PROGRAM RUN - UNEQUALLY SRACE GATA

```
SET NAME = RANDOM TIME 310568
NO-POINTS-5% 500
SPACING =.500000000
PANGE . }=1.3000000
PLOT FLAG = 0
```



```
TOLERANCE = .02000
PRINT FLAG= 
MTERMS = 10
ORMAT =(3020.0)
YFIELO - % - 
TFIELD = 1
QAY FIELD - = 子
TIME SCALE = 1,00000000 TIME UNITS PER COMPUTATIONAL UNIT
BAY SCALE = -000000000 COMPUTATIONAL UNTTS PER OAF
OURATION = 1.0000 GOMPUTATIONAL UNITS
```

SAMPLE SPECTRUM PROGRAM RUN - UNEQUALLY -SPACET-DATA
INIFIAL QATA SPEEFFHA FOR SEF RANDOM TIME- 310500 (TOTAL POHEH $=-\quad 24051+034$

K	PERIOL	CMEGA	A	च	REGRESSION Püber	PERCENT POWER	$\mathrm{c}=$. $44449+04$
1	. 5010	12.541238	. $38427+00$.19315-01	. 149625	. 000622		
2	. 2505	25.082476	. $13933+00$. $78377+00$. 635199	. 002641		
3	. 1670	37.623714	. $38234+00$	-. $19485+00$.181005	. 000753		
4	.1253	50.164951	-22804+00	-. $10337+01$	1.15615	. 004807		
5	-1002	62.706189-	- . $-14735+00$. $54906+00$	- 323728	. 001346		
6	. 0835	75.247427	. $71437+00$	-. $49764-01$. 531742	. 002211		
7	. 0710	87.788665	. $86443+00$	$.05185+00-$	1.16105	. 004827		
8	. 0626	100.329903	. $51587+00$. $07216+00$. 702510	. 002921		
9	.0557	112.871141	. $26782+00$	-. $34871+00$. 185700	. 000772		
10	. 0501	125.412379	. $54781+00$	-. $26621+00$. 364523	. 001516		
11	. 0455	137.953617	. $60620+00$	- $28622+00$. 457869	.001904		
12	. 0418	150.494854	. $24629+00$	- $57047+00$. 380804	. 001584		
13	.038	163.036092	-12730+00	. $69258+00$. 504103	. 002096		
14	. 0358	175.577330	. 29731+00	. $14428+00$. 109238	. 000454		
15	. 0334	188.118508	-. $49089+00$. $13375+00$. 248718	. 001034		
16	. 0313	200.659806	. $35153+00$	- $25307+00$. 185071	. 000769		
17	. 0295	213:201044	- $80349+00$. $57537+60$. 984454	. 004093	-	
18	. 0278	225.742282	. $12964+01$. $56823+01$	33.9198	. 141031		
19	. 0264	238.283520	-. $49421+00$	-. $86820+00$. 960870	. 003995		
20	. 0251	250.6247b7	-. $14717+00$	-. $39713+00$. 175213	. 000728		
21	. 0239	263.365995	$.79963+00$	$\cdots, 10048+01$	1.69353	. 007041		
22	. 0228	275.907233	-. $10662+01$. $17452+00$	1.20290	. 005001		
23	. 0218	-288.448471	. $31171+00$	-. $31962+00$	-196311	. 000846		
24	. 0209	300.989709	. $21072+00$	-. $26426+00$. 116106	. 000483		
25	. 0200	313.530947	-. $14969+01$	$-.17975+00$	2.31140	. 009610		
26	.0190	326.072185	-. 5443 á+00	-. 10201+01	1.34717	. 005601		
27	. 0180	338.613423	-. $41553+00$	-.78994-03	. 171249	. 000712		
28	.0179	351.154600	. 68447+00	. $15912+01$	2.95500	. 012286		
29	. 0173	363.695898.	- $37035+00$	$=.25410+00$	- 202355	. 000841		
30	. 0167	376.237136	. $38030+00$	$.61740+00$	-5292b2	. 002201		
31	. 0162	388.778374	-. $11352+01$. $15919+00$	1.23824	. 005148		
32	. 0157	401.319612	. $25589+00$	-. $95412-01$. 758469 -01	. 000315		
33	. 0152	413.860850	-. $91126+00$	-75881+00	1.38307	. 005751		
34	. 0147	426.402088	. $73870+00$. $77695+00$	1.16997	. 004864		
35	. 0143	438.943326	-. $47313+00$	-. 10268 +01	1.27766	. 005312		
36	. 0159	451.484563	$.10143+01$	-.82577-01	1.01926	. 004238		
37	. 0130	464.025801	$.16530+01$	-.04477+00	3.04091	. 012643		
38	. 0132	470.567039	. 52508-01	-. $20513+00$. 257990	. 001073		
$د 9$. 0123	489.108277	-. $29884+00$	-. $47652+00$. 308900	. 001285		
40	.012s	501.649515	-. $83427+00$	-. $10728+01$	1.85894	. 007729		
41	. 0122	514.1907う3	. $76261+00$. $20013-01$	-6́0u436	. 002496		
42	. 0119	526.731991	-. $12241+00$. $65674+00$. 432352	. 001798		
43	. 0117	539.273229	. $35417+$ +0	$-.28731+00$. 205242	. 000853		
44	. 0114	551.814466	-. $12447+01$	- $22179+00$	1.72498	. 007172		
45	. 0111	564.355704	-. $40730+00$. $38661+00$. $2991 \angle 3$. 001244		
46	.0109	576.896942	-. $58045+00$	-. $65127+00$. 759659	. 003158		
47	. 0107	589.438180	. $37710+00$	-. $56075+00$	1.00642	. 004184		
48	. 0104	601.979418	-. $85103+00$	$.87704+00$	1.49809	. 006229		
49	. 0102	614.520656	-. $068880+00$	- $36257+00$. 5715.32	. 002370		
50	.0100	627.061894	$.22249+00$	-. $78249+00$. 645434	. 002684		

K	PERION	GMEGA	A	A	REGRESSIOIN POWER	PERCENT POWER	$c=$. $44449+01$
51	. 0093	639.603132	-.9495001	-10066+01	1.02168	. 004248		
52	. 0090	652.144309	. $26399+00$. $93334+00$. 941328	. 003914		
53	.009	664.685607	-. $56910+00$	-06005+00	. 796572	. 003312		
34	.0093	677.226845	-. $11276+01$	-11309+01	2.53085	. 010523		
b	.0091	689.7080d3	-. $10431+01$. $54313+00$	1.47515	. 006133		
56	. 0089	702.309321	-. $95657+00$. $27778+00$. 977725	. 004065		
57	. 0088	$714.8505 b 9$. $42312+00$	- $62821+00$. 575362	. 002392		
58	. 0080	727.391797	. $45594+00$	- $54623+40$. 504476	. 002097		
59	. 0085	739.933035	-. $85177+00$. $25604+00$. 784240	. 003261		
ou	. 0084	752.474272	-. $98026+60$. $45258+00$	1.11401	. 004632		
61	. 0002	765.015510	. $47677+00$. $18912+00$. 267772	. 001113		
62	. 0081	777.556748	. $26826+00$	-. $42422+00$. 251261	. 001045		
63	. 0080	790.097986	. $10300+01$.06934+00	1.48658	. 006181		
64	. 0078	802.639224	. $51498+00$. 89129-01	. 266735	. 001109		
65	. 0077	815.180402	-. $22314+00$	-. $21640+00$. 952897-01	. 000396		
66	. 0070	827.721700	-. $57385+00$	- $92601+00$	1-21919	. 005069		
67	. 0075	840.262938	. $56949+00$	$.45505+00$. 542610	. 002256		
68	. 0074	852.804175	. $43582+00$	-. $74372+00$. 744540	. 003096		
69	. 0073	86b. 345413	. $15415+00$. 40925-01	.252330-01	. 000105		
70	.0072	877.886651	-.83827+00	. $21704+00$. 767279	. 003190		
71	. 0071	890.427889	-. $33299+00$. 19359+00	. 148060	. 000616		
72	.0470	902.969127	-11274+01	-. $28067+00$	1.44627	-. 005889		
73	.0059	915.510365	. $48744+00$. $38295+00$. 387168	. 001610		
74	. 00068	928.051603	-. $15094+01$. 55817-01	2.31363	. 009620		
75	.0067	940.592841	-. $46897+00$. $51220+00$. 309903	. 001289		
76	. 0000	953.134078	$.97677+00$	- $14951+01$	3.08130	. 012811		
77	. 0065	965.675316	-. $66324+00$. $06178+00$. 883476	. 003673		
78	. 0064	978.216554	-43452-01-	- $10478+01$.	1-11218	. 004624		
79	. 0063	990.757792	-. $44950+00$	-92348+01	80.8693	. 336237		
80	. 0063	1003.299030	-. $52987+00$	-. 16084+01	3.00633	. 012500		
81	. 0062	1015.840268	-. $14327+00$	-. $62794+00$. 422924	. 001758		
82	. 0061	1028.381506	$.85875+00$	$-.10720+01$	1.95762	. 008139		
83	. 0060	1040.922744	-. $77599+00$	$.79756+00$	1.20470	. 005009		
84	. 0060	1053.463981	-. $377.93+00$	- $11232+00$. 150910	. 000627		
85	. 0059	1066.005219	-. $70092+00$	-. $13981+00$. 518351	. 002155		
86	. 0058	1078.546457	. $50951+00$	-. $43658+00$. 439145	. 001826		
87	. 0056	1091.087695	. 57415-02	. $72225+00$. 555543	. 002310		
88	. 0057	1103.628933	-. $39169+00$	-. $11261+00$. 17.3927	. 000723		
89	. 0050	1116.170171	$.89217+00$	-. 14781+00	. 840841	. 003496		
90	$\rightarrow 0056$	-1128.711499	- $63873+00$	-.53326-01	- 401949	-001671		
91	. 0055	1141.252647	-. $53876+00$	-. $35865+00$. 402116	. 001672		
92	-. 0054	1153.793884	$.43258+00$	-. 19874+01	4.23148	. 017594		
93	. 0054	1166.335122	-.35796+00	-. $97009+00$	1.09472	. 004552		
94	..0053	1178.876360	. 71831 -01	-.21185-02	. 524018-02-	. 000022		
95	. 0053	1191.417598	-. 14378-01	. $35002+00$. 119684	. 000498		
96.	. 00.052	1203.958836	$-.38674+00$	$=-98856+00$	-1.15680-	. 004810		
97	. 0052	1216.500074	. $82687+00$	-. $45741+00$. 865888	. 003600		
98	. 0051	1229.041312	$-.86982+00$	$=.17566+00$. 809704	.003367		
99	. 0051	1241.582550	-. 34940-01	-. $27344+00$. 776204-01	. 000323		
100	. 0050	1254.1237.87	$=.48395+00$	-. $10364+01$	1.37539.	. 005719		
101	. 0050	1266.665025	-. $88731+00$	-. 26013+00	. 910934	. 003787		
102	. 004	1279.206263	$-.34879+00$.74295+00	. 6696.74	.002784		

SAMPLE SPECTRIMM-PROGRAM-RUN--UNEQUALL-Y-SPACED EATA-

k	PERIOU	OMEGA	A	3	REGRESSION POWER	PERCENT POWER		. $44449+01$
103	. 0049	1291.747501	-. $24400+00$. $84841+00$. 767720	. 003192		
104	. 0048	1304.288739	-. $24012+00$	-13456+01	1.88536	. 007839		
105	. 0048	1316.829977	-. $29756+00$	- $92211+00$. 946866	. 003937		
106	. 0047	1329.3712-15	. $59488+00-$	--35720-01	r.345136	. 001435		
107	. 0047	1341.912453	. 73795-01	$.75390+00$. 563381	. 002342		
108	. 0040	1354.453690	. 33153+00	-. $74528+00$	-638448	. 002655		
109	. 0046	1366.994928	-. $14302+00$	-13249+01	1.77845	. 007394		
110	. 0040	1379.536106	. $51714+00$	- 31820+01	9.88808	. 041112		
111	. 0045	1392.077404	-. $40759+00$	-. $19174+01$	3.97349	. 016521		
112	.0045	1404 c618642	-. $41.34 .9+00$	-28.124-01	,167113-	.000695-		
113	. 0044	1417.159880	. $59903+00$	-73706+00	. 924658	. 003845		
114	. 0044	1429.701118	.27838-01	-12339+01	1.57934	. 006567		
115	. 0044	1442.242356	. $31064+00$. $40138+00$. 261149	. 001086		
116	. 0043	1454.783593	-. $83642+00$	-. $55767+00$. 982655	. 004086		
117	. 0043	1467.324831	-. $17758+00$	-. $61605+00$. 426968	. 001775		
118	-0042	1479.-866069	- $85080+00$	--81191\%00-	1.37112	.005701		
119	. 0042	1492.407307	-. $71873+00$. $10616+01$	1.75754	. 007307		
$120-$. 0042	1504.948545	-. $46421+00$	- $18446+00$	- 240911	. 001002		
121	. 0041	1517.489783	. 13792+00	- $12885+01$	1.72020	. 007152		
122	. 0041	1530.031021	-.79100+00	-. $27901+00$. 686745	. 002855		
123	. 0041	1542.572258	. $50355+00$	$-.47417+00$. 469223	. 001951		
124	. 0040	1555.-113496	-. $78053+00$. $30043+90$	-662731	. 002755		
125	. 0040	1567.654734	-. $27506+01$	- $72037+00$	8.01840	. 033339		
126	. 0040	1580.195972	. $15665+01$	-. $65317+00$	3.01800	. 012548		
127	. 0039	1592.737210	. $22458+00$	-13651+01	1.92079	. 007986		
128	. 0039	1605.278448-	. $31494+00$. $05564+00$. 542729	. 002257		
129	. 0039	1617.819686	-. $65080+00$	-.53412-01	- 415851	. 001729		
-130	-0039	$1630 \cdot 360924$	$.38081+00$	$-.29434+00$. 240958	. 001002		
131	.0038	1642.902101	$-.67699+00$	-.80907+00	1.09074	. 004535		
132	. 0433	1655.443399	. $51012+00$. $27073+00$. 353060	. 001468		
133	. 0038	1667.984637	. $1523 \mathrm{v}+01$. $69721+00$	3.06986	. 012764		
134	. 0037	1680.525875	$-.15742+00$. $30219+00$. 114383	. 000476		
135	. 0037	1693.067113	-. $22318+00$. $89068+00$. 832057	. 003460		
136	. 0037	-1705.608351	. $14442=0.1$	$=.29624+00$. $875075=01$.000364		
137	. 0037	1718.149589	. $67508+00$	-. $16723+00$. 492132	. 002046		
138	. 0036	1730.690827	$.10075+01$	-19629+01	5.05962	. 021037		
139	. 003 á	1743.232004	-. $76118+00$	-69200+00	1.07396	. 004465		
140	. 0036	1755.773302	. 38359-01	-15876+01	2.52726	. 010508		
141	.0030	1768.314540	. $19750+01$	-. $48866+01$	26.8603	. 111679		
142	. 0035	1780.8557-78-	- $81933+00$	- $-91042+00$	1.52042	.006322		
143	. 003	1793.397016	-. $74823+00$. 85166-01	. 593278	. 002467		
144	. 0035	1805.938254	-. $26801+00$	-. $45227+00$. 279174	. 001161		
145	.0030	1818.479492	. $83221+00$	$.17848+00$. 719649	. 002992		
146	. 0003	1831.020730	. $66772+00$	-. $28876+00$. 526707	. 002190		
147	.0034	1843.561967	-. $95728+00$	-. $56962+00$	1.18280	. 004918		
148	. 0034	1856.103205	. $53216+00$. $23699+00$	- 326881	. 001359		
149	. 0034	1868.644443	. $13840+01$. $74113-01$	1.80596	. 007758		
150	. 0033	1881.185681	-. $85560+00$	- $31725+00$. 971919	. 004041		
151	. 0035	1893.726919	-. $43287+00$. $29613+00$. 981018	. 004079		
152	.0033	1900.268157	. $49291+00$	-. 11639+01	1.60112	. 006657		
153	. 0033	1918.809395	-. $11164+00$	-. $11084+00$	-243027-01	. 000101		
154	. 0033	1931.350633	-. $30450+00$	-. $23951+00$. 147113	. 000612		

SAMPLE SPECTRtM PROGRAM RUN - UNEQUALLY SPACED DATA

K	PERIOD	OMEGA	A	A	REGRESSION POWER	PERCENT POWER	$C=$	$.44449+01$
155	.0032	1943.891870	.86103-01	$-.43136+00$.188547	.000784		
156	-0032	1950.433108	-.87079-01	- $39746+00$.166493	. 000692		
157	.0032	1968.974346	$.69862+00$	-. 12843+01	2.24692	. 009342		
- 158	-0432	-1981.515584	. $58080+00$	$-21431+00$	-382052	-001588		
159	. 0036	1994.056822	$-.17789+00$. $17584+00$	- $034460-01$. 000264		
160	-0031	2006.598060	$-.39421+00$	-.14294+00	. 175356	-. 000729		
161	. 0031	2019.139298	$.10091+00$	$-.22574+00$	- 583952-01	. 000243		
-162	- $0+731$	- 203-6889536	. 45036-01	$-46554+00$. 214520	.000892		

RANiOM TIWC 3IU500 P VS K

SAAPLL SHELYRU! HROGKAM aUN - UNEQUALLYY SPACEG TATA

SAMPLE-SPEC-TRUNT-PROGRAM-RUN---UNEQUAL-T-Y-SPAEETI-DATA

2.630853	107-784	54	\pm	*	-
1.475148	109.780	55	1	*	-
. 9777251	1-11.776	56	I	*	T
. 5753624	113.772	57	I	*	-
. 5044759	115.768	-58	I	*	-
. 7842400	117.764	59	I	*	-
士. 1.4008	119.760	60	I	*	-
. 2677717	121.756	61	I	*	.
-2512610	12-5,752	62	I	*	-
1.486583	125.748	63	I	*	-
-2667346	127.744	64	-I	*	-
-9528975-01	129.740	65	I	*	-
-1.249490	± 31.736	66	I	*	T
. 5426096	133.732	67	I	*	.
-7445398	-135.728	68	I	*	τ
. 2523301-01	137.724	69	I	*	-
--767-2794	1397.720	70	I	*	\cdots
. 1480595	141.716	71	I	*	-
$\pm .416267$	14-6.712	72	I	*	-
. 3871678	145.708	73	I	*	-
2-31-3627	1-47.7.04	74	I	*	-
. 5099029	149.700	75	I	*	-
$3.081-305$	151-696	76	1	*	-
. 8834761	153,692	77	I	*	
-1.1-12.79	155.684	78	I	*	
80.86932	157.684	79	I		-
3.006326	159.680	80	I	-*	
. 4229238	161.676	81	I	*	
-1.957619	163.672	-82	1	-*	-
1.204703	165.668	83	I	*	-
. 1509702	+67.664	84	I	*	T
. 5183510	169.660	85	1	*	.
. 4391449	17-1.656	86	I	*-	-
. 5555428	173.652	87	I	*	-
. 1739272	1-7.5.648	88	I	*	-
. 8408406	177.644	89	I	*	-
+4019491	1.79 .640	80	I	*	\checkmark
. 4021158	181.636	91	I	*	-
4.231475	183.632	92	I		**
1.094715	185.628	93	I	*	-
. 5240179-02	187.624	94	I	*	\checkmark
. 1196840	189.620	95	1	*	-
1.1567-98	191.616	95	I	*	τ
. 8658885	193.612	97	I	*	-
. 8097044	195,608	98	I	*	\cdots
. 7762041-01	197.604	99	I	*	-
1.375393	-199.600	100	I	*	--
. 9109530	201.596	101	I	*	-
- 6696741	20.5 .592	102	I	*	*
. 7677196	205.588	103	I	*	-
1.885356	207-584	104	I	*	-
. 9468658	209.580	105	I	*	.
:345.1364	21-1.576	106	I	*	\cdots
. 5633812	213,572	107	I	*	-
-6384485	215.568	108	I	*	$\%$
1.778452	217.564	109	I	*	-
9.888076	21.9.560	-1.10	I		-
3.973488	221.556	111			*

SAMPLE SPECTRUN PROGRAM KUN - UNEQUALLY SPACE~ DATA

. 1671130	223.552	112 I	*	
. 9246581	223.548	113	*	
1.579333	227.544	114	*	
. 2611486	229.540	115	*	
. 9826546	231.536	116	*	
. 4269070	230.532	117	*	
1.371117	235.528	118	*	
1.757539	237.524	119	*	
. 2409107	239.520	120	*	
1.720197	241.516	121	*	
. 0867451	243.512	-122	*	
. 4692231	243.508	123	*	
. 6627310	247.504	124	*	
8.018402	249.500	125		
3.017999	251.496	126	I	
1.920786	253.492	127	I	
. 5427287	250.488	128	I	
. 4158510	257.484	129	I *	
.2409580	259.480	130	*	
1.090745	201.476	131	I *	
. 3530597	265.472	132	I *	
3.069857	265.468	133	I	.
. 1143833	207.464	134	I *	-
. 8320566	269.460	135	I *	
. $8750748-01$	271.456	136	I *	-
. 4921323	273.452	137	I *	-
5.059622	275.448	138	I	*
1.073950	277.444	139	I *	-
2.527255	279.440	140	I	-
26.86028	281.430	141	I	
1.520425	283.432	142	I *	
. 5932779	285.428	143	I *	
. 2791740	287.424	144	I *	
. 7196486	289.420	145	*	
. 5267068	291.416	146	*	-
1.182803	293.412	147	I *	
. 3268814	295.408	148	*	
1.865957	297.404	149	I *	
. 9719191	299.400	150	I *	-
. 9810183	301.396	151	1	
1.601124	303.392	152	I	
.2430207-01	305.388	153	I *	-
. 1471134	307.384	154	I *	-
. 1885470	307.380	155	I *	-
. 1664933	311.376	156	I *-	*
2.246910	313.372	157	I *	
. 3820518	315.368	158	I *	
.6344597-01	317.364	159	I *	-
. 1753564	319.360	160	I *	-
.5839324-01	321.350	161	I *	-
.2145198	325.352	162	*	-

SAMPLE SPECTRUM PROGRAM RUN \rightarrow UNEQUALLY SPAEE OATA

SAMPLE SPECTRUM PROGRAM RUN - UNEQUALLY SPACE- DATA
FINAL DATA SHECTRUM FOR SEF RANDOM TIME S1046R (TOTAL POWER =

K	PERIOU	CMEGA	A	9	REGRESSION POWER	PERCENT POWER	$c=$	$.53828+00$
1	. 5010	12.541238	. 36604-02	. 55947-05	. 135935-04	. 000753		
2	. 2500	25.082476	-.31807-02	. 33627-02	. 220645-04	. 001223		
3	.1070	37.623714	.43095-03	.09240-02	-482600-04	. 002675		
4	. 1253	50.164951	. 11154-01	-. 39911-03	. 124620-03	. 006907		
5	. 1002	62.706189	.12462-02	. 90598-03	. 234729-0b	. 000130		
6	. 0830	75.247427	. 44771 -03	-6́1719-02	.368800-04	. 002044		
7	. 0710	87.788665	-. $44042-03$.16946-02	-293500-05	. 000163		
8	.00<0	100.329903	.14194-02	-. 17993-02	. 540352-00	. 000299		
9	.0557	112.871141	. 43593-03	-. 15018-01	- 220702-03	. 012565		
10	. 0501	125.412379	-. 35427-02	-.49189-02	. 368973-04	. 002045		
11	. 0455	137.953617	. 16881-02	.81117-03	. 357102-05	. 000198		
12	.0413	150.494854	. 17947-02	. 19678-02	.706216-05	. 000391		
13	. 0585	163.036092	-.23749-02	-.76750-02	.660643-04	. 003662		
14	.03b8	175.577330	-.11793-01	-. 18792-02	.140186-03	. 007770		
15	. 0334	188.118568	-.38260-02	-. $75570-02$. 743427-04	. 004121		
16	.0313	200.659806	-. 10638-02	-. $55307-02$. $307016-04$. 001702		
17	. 0293	213.201044	.22748-02	-.80740-02	.720281-04	. 003992		
18	. 0278	225.742282	-. 44742-01	-.80156-02	. 204634-02	. 113429		
19	. 0264	238.283520	-.91116-03	-09261-03	.166606-05	. 000092		
20	. 0251	250.824757	.67349-02	. $58709-02$. 9112 21-04	. 005050		
21	. 0239	263.365995	.21716-02	-. 30738-02	. 145042-04	. 000804		
22	. 0228	275.907233	-.58120-02	-26491-02	. 414267-04	. 002296		
23	- 0218	288.448471	. 49607-02	. $50234-02$. 505900-04	. 002804		
24	. 0209	300.989709	. 34975 -02	*.37464-02	. 264944-04	. 001468		
25	. 0200	313.530947	. 14611-02	-.94732-03	.297257-0b	. 000165		
26	. 0195	326.072185	. $58990-04$	-. $49394-02$. 240527-04	. 001333		
27	. 0180	338.613423	-.08323-02	. $79889-02$. 105308-03	. 005837		
28	. 0179	351.154660	. $98155-02$. $43504-02$. 110993-03	. 006152		
29	.017s	363.695898	-.11121-02	-.42481-02	.189510-04	. 001050		
30	. 0167	376.237136	.22107-02	. 55350 -02	. 354877-04	.001967		
31	. 0162	388.778374	-. $48751-02$.10269-01	.134366-03	. 007447		
32	. 0157	401.319612	. 25084-02	-. 41371-02	. 229554-04	. 001272		
33	. 0152	413.860850	.62061-02	-.11953-02	-.082463-04	. 002120		
34	.0147	420.402088	. 53587-02	-.96269-02	-122139-03	. 006770		
35	. 0143	438.943326	-. 14145-01	-. 46597-02	-213411-03	. 01.1828		
36	. 0109	451.484563	. 11613-02	. $31665-02$.112551-04	.000624		
37	. 0130	464.025801	. $10160-01$	-.77149m02	. 158153-03	. 008766		
38	. 0132	476.507039	-10003-01	-.21881-02	. 105096-03-	. 005825		
39	. 0128	489.108277	. $13542-02$	-. 46820-02	.224732-04	. 001246		
40	. 0125	501.649515	-. 3814 -02	-. 35364-02	.273796-04	. 001518		
. 41	. 0122	514.190753	.83210-02	. 10634-01	.181522-03	. 010061		
42	. 0119	526.731991	-. 50989-02	. 79273-02	. 852024-04	. 004722		
43	. 0117	539.273229	. 99858 -03	-. $46805-0$?	-213173-04	. 001182		
44	. 0114	551.814406	-. 3172b-02	-. 58790-02	.420758-04	. 002332		
45	. 0111	564.555704	$\rightarrow .82422-03$. $65512-02$.449862-04	. 002493		
46	. 01019	576.896942	-.32568-02	-. 29220-02	. 191217-04	.001060		
47	. 0107	589.438180	. 39541-03	-. 55276-02	.313596-04	. 001738		
48	. 0104	001.979418	. 38372-02	.45657-02	. 356193-04	. 001974		
49	. 0102	614.520656	-.20494-02	. 13936-02	.611097-05	. 000339		
50	. 010 U	627.061894	. 18480-03	-.39966-02	. 154631-04	. 000857		

SATMPLE SPECTRIM PROGKAM RUN - UNEQUALLY SPACED DATA

K	PERIOJ	OMEGA	A	13	REGRESSION PUWER	PERCENT POWER	$c=$	$.53828+08$
51	. 0098	639:603132	.48871-03	-. 64025-02	. 411603-04	. 002281		
52	. 0090	652.144309	-.48842-02	-.19121-02	. 281386-04	. 001560		
53	. 0093	664.685607	. 50240-02	.60103-02	. 591330-04	.003277		
54	.0090	677. 266845	.8700u-02	-22884-02	. $841406-04$. 004663		
55	. 0091	689.768083	-.88014-03	-. 39134-02	. 150495-04	. 000834		
56	. 0089	702.309321	. 55371-02	-. $42472-02$. 479847-04	. 002660		
57	. 0088	714.650559	. 10833-01	-. 21317-02	-126403-03	. 007006		
58	. 0000	727.391797	. $32955-02$. 74291-02	. 648317-04	. 003593		
59	. 0085	739.933035	-.84419-04	-. $36654-02$. $133760-04$. 000741		
-60-	-0084	752,474272	-. 57578-02	-.82593-03	- 331952-04	. 001840		
61	. 0082	765.015510	. 79837-03	-. 19190-02	. $424344-05$. 000235		
62	. 0081	777.556748	. 11519-01	. 99014-02	. 232015-03	. 012859		
63	. 0080	790.097986	. 32564-02	. 08476-02	. 550246-04	. 003050		
64	. 0078	802.639224	-. 41830 -02	. 11970-02	. 178006-04	. 000987		
65	.0077	815.180462	.18188-02	- $57891-02$. $373420-04$. 002070		
66	.0070	827.721700	-. $67738-02$	-. $57007-02$. 776867-04	. 004306		
67	. 0075	840.262938	. 40491-02	-. 73343-02	. 688730-04	. 003817		
68	. 0074	852.804175	-. $66944-02$. 15856-03	. $451303-04$. 002502		
69	.0073	865.345413	-.51923m03	- 36359.03	. $099017-06$. 000022		
70	. 0072	877.886651	-.11343-01	. $73963-02$. 185850-05	. 010301		
71	. 0071	890.427839	. 11900-02	-.54398-03	. 169553-05	. 000094		
72	. 0070	902.969127	. 31620-02	-. $40154-02$. 261932-04	. 001452		
73	. 0009	915.510305	. 56108-02	-.70879-02	. 811013-04	. 004495		
74	. 00.60	928.0516U3	-. 10674-01	-10740-02	-116529-03	. 006459		
75	. 0067	940.592841	-. 10961-01	.14366-01	- 321257-03	. 017806		
76	. 0066	953.134078	.10699-02	-. 29179 -02	-998185-03	. 000553		
77	. 0060	965.675316	. 97568-03	-13988-01	. 196905-03	. 010917		
78	.0004	978.216554	-.58344-02	-.48183-02	. $570979-04$. 003165		
79	. 0063	990.757792	-.37681-01	-30395-01	. $231805-02$. 128477		
80	. 0065	1003.299030	.96033-02	-.80374-02	-149520-03	. 008287		
81	. 0002	1015.840208	. 36703-02	-. 10891-01	-138322-03	. 007666		
82	. 0001	1028.381506	-. 44279 -02	-. 74204-03	. 197587-04	. 001095		
83	. 0060	1040.922744	-.89354-02	-.34567-02	.866889-04	. 004805		
84	. 0000	1053.463981	-. $36546-02$. 18568 -02	- 343264-04	. 001903		
85	. 0059	1066.005219	-. 37230-02	-. 56623-02	. 444317-04	. 002463		
36	. 0u58	1078.546457	. 49218-02	-. 70035-02	. 733271-04	. 004064		
87	. 0003	1091.087695	. 5756 ¢゙-02	-. 25572-02	. 199806-04	. 001108		
88	. 0057	1103.628933	.28263-02	-. 70363-03	.873306-05	. 000484		
89	. 0ubo	1116.170171	.50517-02	-. 17119-01	. 313193-00	. 017359		
90	.0050	1128.7114U9	. $34614-02$. 10629-02	-127837-04	. 000709		
91	.00bs	1141.252647	. $13235-01$	-. 27572-02	. 172708-03	. 009572		
92	- Uub4	1153.793884	-. $72534-03$. 10669-02	.170003-05	. 000094		
93	. 0054	1100.335122	-. 25732-03	-. 10827-01	-122059-03	. 006765		
94	. UuSs	1170.876300	. 20585-04	-. 10950-02	-118266-05	.00006́a		
95	.0053	1191.417598	-. 2882-02	. $93771-02$	-927000-04	. 005138		
96	- 0u32	1203.958836	. $25479-02$	-.57725-02	. $4103<2-04$. 002274		
97	. Uube	1216.500074	.60530-02	-.92479-0?	-120447-02	. 007008		
98	. Uubi	1229.041312	-.33317-02	-. $46559-02$	-507892-04	. 002815		
99	. 0051	1241.582500	-. $18470-02$	-. 31031-02	. $130678-04$. 000724		
100	- UuSu	1254.123737	-. $58454-02$. 10648-02	. 320308-04	. 001809		
101	. Uubu	$1260.6650<5$	-.08320-02	-. 76763-04	. 491394-04	. 002724		
102	. 0049	1279.206203	. 53029 -02	. 0073 c-0?	.513329-04	. 002856		

SAMPLE SPECTKI I PROGKAM RUN - UNEQJALLY SPACED EATA

K	PERIOU	OMEGA	A	7	REGRESSION POWER	PERCEIT POWER	$\mathrm{c}=$	$.53928+01$
103	.004y	1291.747501	. 5850.003	. 91631-02	.0318u3-04	. 004610		
104	. 0340	1304.288739	-. 71659-02	. 10223-01	. 162008-03	. 008984		
105	. 3045	1310.829977	. 10627-02	. 609 n7-02	-062700-04	. 003673		
106	.0047	1329.371215	-16429-01	. $06941-03$. 265104-03	. 014098		
107	.0J47	1341.912453	.85170-02	. 16582-02	. $762674-04$. 004227		
106	. 0.346	1354.453690	-.50107-32	-. 28433-02	-346298-04	. 001919		
109	. 0	1366.994928	-.61829-02	-. 22530-02	. 433206-04	. 002401		
110	. 0040	1579.506106	. 44983-01	. 5045101	. 447804 -02	. 248238		
111	. 3040	1392.677404	-. 10320-02	- 32456-02	.121941-04	. 000676		
112	. 0042	1404.618642	-. 2145j-01	. $83114-02$	-507071-03	. 028104		
113	. 0044	1417.159830	. $77047-03$	-.98852-03	-154407-05	. 000086		
114	. 0044	1429.701118	-48615-02	. 24293-02	. 298742-04	. 001656		
115	. 0044	1442.242356	.42651-02	-.531.54-02	. 469464-04	. 002602		
116	. 0043	1454.783593	. 26351-02	-.14178-01	. 207840-05	. 011519		
117	. 0045	1467.324831	. 50405-02	-. $45674-02$.441526-04	. 002447		
118	. 0042	1479.866069	. 14937-02	. 10385-01	. 110834-03	. 006143		
119	.0042	1492.407307	.40518-02	-.47298-02	. $414913-04$. 002300		
120	.0042	1504.948545	-. 29658-02	-.11802-02	. 100096-04	. 000555		
121	. 0041	1517.489783	-.88015-02	. 81503-02	.148297-03	. 008219		
122	. 0041	1530.031021	-. 59101-02	-.90406-03	-355013-04	. 001968		
123	.0041	1542.572258	.27940-03	-.97102-02	. 891132-04	. 004939		
124	. 0040	1555.113496	-.35095-02	. 25970-02	-184626-04	. 001023		
125	.0040	1567.654734	-.95547-02	--11981-01	- 2418u6-03	. 013402		
126	. 0040	1580.195972	. 45377-03	. 1018801	-102334-03	. 005672		
127	. 0033	1592.737210	.41888-02	. 14526-01	-229546-03	. 012722		
128	.0039	1605.278448	. 24240-02	-. 50797-02	-301005-04	. 001668		
129	. 0039	1617.819686	. $51747-03$. 48330-02	. 239555-04	. 001328		
130	.0039	1630.360924	-. 15773-03	-70792-02	. 489358 -04	. 002712		
131	. Uu30	1642.902101	-.32202-02	. $57156-02$. 417246 -04	. 002313		
132	. 0038	1655.443399	. $57049-02$	-. 90465-02	-107981-03	. 005985		
103	. 0053	1667.984637	. $4857 \mathrm{u}-02$. 53843-02	. 558756-04	. 003097		
134	. 0037	1680.525875	-. 28200-03	. 38799-02	. 142918-04	. 000792		
135	. 0037	1693.067113	. $78113-03$	-15002-04	.617366-06	. 000034		
136	. 0037	1705.608351	. $59086-02$	-. 59709-02	. 665208-04	. 003687		
137	. 0037	1718.149589	. 14447-01	-.43797-02	-232524-03	. 012888		
138	. 0030	1730.690827	-. 13349-02	. 79498-02	. 663906-04	. 003680		
139	. 0035	1743.232004	. 21768-02	. $67415-02$. 512524-04	. 002841		
140	. 0036	1755.773302	. 75124-02	. 14790-01	.279768-03	. 015506		
141	. 0036	1768.314540	-. 14647-01	-. 59307-01	. $354581-02$. 196525		
142	. 0035	1780.855778	-. 11935 m 01	- 12597-01	-299257-00	. 016586		
143	. 0035	1793.397016	. 89901-02	.61263-02	.117195-03	. 006495		
144	. 0035	1805.938254	-. 17010002	-.85949-03	. $360934-05$. 000200		
145	. 0035	1818.479492	-.90803-03	. $41100-02$.178370-04	. 000989		
146	. 0034	1831.020730	. 18815-02	-. $35125-02$	-154321-04	. 000855		
147	. 0034	1843.561967	-. $48900-02$. 58768-02	. $604962-04$. 003353		
148	. .0034	1856.103205	-. $97464-02$	=. $49469-02$	-1-15755-03	. 006416		
149	. 0034	1868.644443	.25549-02	-.68544-02	-568220-04	. 003149		
150	. 0033	1881.185681	-. 73747-02	-.88659-02	-136162-03	. 007547		
151	. 0033	1893.726919	-. 59506-02	-. 17528-02	-390510-04	. 002164		
152	. 0033	1900. 268157	.25820-02	-. 13871-01	-195199-03	. 010819		
153	. 0033	1918.809395	. 17045-04	.85616-03	.767083-00	. 000043		
154	.0033	1931.350633	-10149-01	$\rightarrow 26119-02$	-108074-02	. 005990		

K	PERIOU	OMEGA	A	3	REGRESSIOH POWER	PERCENT POWER	$c=$	$.53828+00$
155	.0032	1943.891870	. 39724-02	-. 24817-02	- 225792-04	. 001251		
156	. 0032	1956.433148	. 53312-02	-. 32057-02	. 379312-04	. 002102		
157	-0us2	1968.974346	. $86140-02$	-. 18288-02	-802928-04	. 004450		
158	. 0052	1981-515584	-10552-01	--3961-02	.140244-03	. 007773		
159	. 0052	1994.056822	-.99427-02	. 52826-02	. 131549-03	. 007291		
100	.0031	2006.598060	-.14332-02	-. $13484-02$. 395745-05	. 000219		
161	. 0031	2019.139298	.16569-02	.68240-02	. 500789-04	. 002776		
162	. 0031	2031.680536	.89621-02	-. 35528-03	.813186-04	. 004507		

SAMPLE SPECTRUM PROGGAM RUN - UNEGUALLY SPACEG DATA

.8414059-0.04	107.784	54	*
.1504950-04	109.780	55	*
. $4798471-04$	111.776	56	*
. 1264030-03	113.772	57 I	*
.6483166-04	115.768	58	*
.1337595-04	117.764	59	*
.3319524-04	11.9 .760	60	,
.4243437-05	121.750	61	*
.232015c-03	123.752	62	*
.5502456-04	125.748	63	*
.1780065-04	127.744	64	*
. 3734200-04	129.740	65	*
. 7768667-04	131.736	66	*
.6887302-04	133.732	67	*
. 4513628-04	135.728	68	*
.3990174-06	137.724	69	*
.1858499-03	139.720	70	*
.1695533-05	141.716	71	*
.2619319m4	143.712	72	*
.8110125-04	145.708	73	*
.1165286-03	147.704	74	*
.3212573-03	149.700	75	
-9981852-05	$15 \pm .696$	76	*
.1969052-03	153.692	77	*
-5709790-04	155.688	78	*
.2318050-02	157.684	79	
-1495202-03	159.680	80	-
.1383224-03	161.676	81	*
-1975875-04	163.672	82	*
.8668885-04	165.668	83	*
. $3432642=04$	167.664	84	*
. 4443169704	169.060	85	*
.7332715-04	471.656	86	*
.1998004-04	173.652	87	*
.8733064-05	175.648	88	*
.3131926-03	177.644	89	
-127.8373=04	179.640	90.	*
.1727077-03	181.636	91	*
-1700632-05	183.632	92	*
. 1220587-03	185.628	93 I	*
.1182650-05	187.624	94	*
.9270005-04	189.620	95	*
T4103220004	191.616	96	*
.1264471-03	193.612	97	*
.5078920-04	190.608	98	*
.1306782-04	197.604	99	*
. $3263881-04$	199.600	100	*
.4913939-04	201.596	101	*
-.51532-94=04	203.592	102	*
.8318035-04	205.588	103	*
. 1620879-03	207.584	-104	
.6627601-04	209.580	105	*
.2651841-03	21-1.576	106	*
.7626743-04	213.572	107	*
. $3462985=04$	215.568	108	*
.4332060-04	217.564	109	*
.4478839-02	219.560	110	
.1219407-04	221.556	111	*

SAMPLEE SPEGTRUAT PROGRAM RUA - UNEQUALLY SPACETI DATA

-5070707-03	2223.552	112 I	
.1544367-05	225.548	113 I *	
-2987420-04	-227.544	144 I-	
. $4694641-04$	229.540	115 I *	
-2078403-03	231.536	146	
.4415257-04	233.532	117 I *	
.1108337-03	235.528	+18	-
.4149130-04	237.524	119 I *	
.1000959-04	239.520	120 F*-	
.1482972-03	241.516	121 I *	
-3550133-04	243.512	122 ${ }^{\text { }}$ *	-
.8911321-04	245.508	123 T *	
.1846263-04	247.504	124 E*	¢
. 2418063-03	249.500	125 I	
-1023336-03	251.496	126 I **	
. 2295457-03	253.492	127 I	
-3010049-04	255.488	128 I *	
.2395549-04	257.484	129 I *	
-4893581-84	-259.480	130 (*-	
. $4172458-04$	261.476	131 I	
-1079808-03	-26-3.472	132 I *	
. 5587557-04	265.468	133 I *	
-1429183-04	267.464	134 [
.6173660-06	269.460	135	
.6652684-04	271.456	136 E *	-
. $2325240-03$	273.452	137 I	*
-6639060-04	275.448 -	138 土 *	
. 5125242-04	277.444	139 I *	-
-2797676-03	279.440	140 I	-
.3545810-02	281.436	141 I	.
2992572-03	283.432	442 F	*
.1171946-03	285.428	143 I	
-3609345-05	287-424	-144 1 *	-
.1783697-04	289.420	145 I	
-1543208-04-	291.416	146 I. *	
.6049625-04	293.412	147 I *	
-1157547-03	295.408	148 I *	
.5682200-04	297.404	149 I *	
-1361618=03	299.400	150 I *	-
.3905103-04	301.396	151 I *	
-1951993-03	303.392	152 I	
.7670826-06	305.388	153 I	
. $1080738=03$	307.384	454 王	
.2257922-04	309.380	155 I *	
-3793119-04	314.376	-156 I *	
.8029276-04	313.372	157 I *	
* $1402444=03$	315.368	158. I **	*
.1315485-03	317.364	159 I *	
. $3957450=05$	319.360	160 I	
. 5007891-04	321.356	161 I *	
.8131857-04	.323.352	162 I	

