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FREQUENCY RESPONSE APPROACH TO
bESIGN OF ADAPTIVE CONTROL SYSTEMS

VIA MODEL OF SPECIFICATIONS

Abstract--This report présents a method of translating
time domain specifications to frequency domain specifica-
tions via specification modeling. This technique is in-
vestigated for use with the "Frequency Responée Approach
to the Sensitivity Problem™ design method presented in

I. M. Horowitz' Synthesis of Feedback Systems, Academic

Press, Inc., New York, N. Y. 1963.

The technique entails finding "model" time functions
which bound the desired time domain specifications, taking
the Laplace transform of the known functions, and then
using these transforms (transfer functions) as boundary
specifications in the frequency domain. The investigation
and results of using this method on a second?order plant

with varying parameters is shown.
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1.1 Advaniage of Frequency Response Approach

The objective of this research is to extend the "Frequency

o Response Approach to the Sensitivity Problem" (Systhesis for

| General Plant Parameter Variations) due to Horowitz {1}, into a
workable design procedure. The advantage of the frequency response
method of synthesis (L(jw) shaping) is the openness of the method.
The designer can fairly simply form minimum magnitude of L{jw)

while taking into account any practical consideration in the

realization of L(s). He can determine the benefits of feedback {2}

und consider any constraints such as stability margins on account

of parumeter variations. He is not limited to any particular order

! or form {3} of cystem.*

1.2 Problem Statement

In most cases, one is concerned, ultimately, with the time

response of # system. Hence, it is only natural that specifications

of desired response are given as time domain specifications. Herein

llies the‘muin disadvantage or problem of the'frequency response

§ approach. There is no simple, exact correlation between the frequency
domuin und the time domuin and, hence, it is difficult to translate
the time domain specification into meaningful frequency response

Cspecifications {f)} .

*Por compurison of Open-loop Frequency Responie Method ve
T(#) Pole-vero Method see refercnce {4} of bibliography.
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1.5 Method. of Approach

In this.research, we investigate the use of a "model" to
transform time domain specifications into a set of frequency domain
speclfications suitsble for use with frequency response synthesis
of adaptive control systems. That is, given a set of time domain
specifications, the designer searches for a set of time functions
which bound the given specifications. Then the transfer functions
of these knoﬁn time functions (i.e. their Laplacé transforms) are
used as the boundary specifications in the freqguency domain.. To
use the frequency response synthesis method {1}, a "model™ transfer
function is selected that lies within the boundary transfer functions
just determined.

The frequency response synthesis method {1} (once the frequency
domuin specificalions are known) is briefly outlined here as back-
ground materinl,. Consider the system in figure 1.1.

The transfer function

R? {1} _,E}A ,r_ﬁoc T(s) = ¢(2)/R(s)
E i
l i

i

G = _Gf
{_,2} 1+G, GoP
Figure 1.1 Two-degree-of- ,
freedom system. _ &P 1
g v (1)

Where L(s) «=. Gy GoP, (2)
P(:) i the plunt transfor funclion, and G(s) and Gy(s) are
compensution blocks nvuiluble Lo the decigner. Now if P(s) = P_(s)

(vome nominul value of P(i)), then (1) and (2) becomes



[P

and G1G2P0 e Lo(s)
Dividing (1) into (3),

G1Pg  1+L _ (Po/P)(1+L) _ (Po/P)+Ly
1+ &P l+L, - l+Lg

Suppose at s = jwy, the plant parameter variations of
Po(jwx)/P(jwyx) map out an area on the complex plane as shown

in figure 1.2.
jw

"Lo(ij)
c=.ud jbQ

Now if -Lgy(jw,) is given by the
complex number @ + jb located
at Q then the ratio To/T is
equal to the ratio of vectors
/@ = [(Po/P) + LoJ/(1 + Lg),
as derived in equation (5).

The range of variation of vector

QV fixes the range of variation

of To/T at s = jwy, and defines

Figure 1.2 T,./T(jw,) = QV
& o/ T(ux) = QU/QN 8 ~Lo(jwy) minimum boundary {1}.

1.4 Notution Convention

The following notation is used throughout this paper.
A, By «.e ¢ different cases of name example.

¢, C(s) : Lupluce transform of systemfoutput.

NN

(3)

(&)

(5)

Gy, Gy(u), H, H(z) : Laplace trunsform of compensation functions.

J : lmaginary number =,/-1

Ly, L{s) : Luplace trunsform of Loop transmission.



L(jw) : L(s) evaluated at s = jw.

P, P(s) : Plant transfer function, assumed known
or given.

R, R(s) : Laplace transform of system input, assume
to be 1/s unless otherwise noted.

8 : Laplace complex variable = o - jw

T, T(s) : Transfer function = C/R

Lower case letters will denoted the corresponding time function,
except for T(t) which is defined as the time response of T(s)

(since t i usually understood to be time), i.e.

T(t) : Inverse Laplace transform of T(s).

w | : A real number defining imaginary part of
Laplace complex variable s; denotes
frequency in radian-per-second.

pA : Damping factor for cecond-order equation;
usually denoted by zeta.

¢ : Phase of appropriate s—domain function.

o : Reul part of Laplace complex variable s.

1.y Outline of Procedure for Frequency Response Design

in order to correlate the results of one exémple with those
of nnother, an outline of the combined (in the sense that steps are
due to Horowitz {1} and to considerations of section 1.3 preceding)
procedure followed in this puper, is licted in reference., Detalls
of* euch step 1o contained in the examples following or as per

design techniques given in reference {1}.



é Given: A plunt, Lthe eange of valuen through which 1t varies, and
the desired Lime domnin apecificutions,

Slep 1) Determine time funclion: which bound the given time domsin

i specifiications; tuke their Laplace trunsforms,

T(s) lower .=. T} and T(s) upper .=. T,; and plot on Bode

plot.

[99}
—
D
=
o
~

Pick a "model" transfer function, T(s) model .=. T, whose
Bode.plét lies between those of Ty and T, (i.e. Ti €T, S T,),
and.culculate the magnitude and phase of the ratiosle/Tu

and Tm/Tl for selected w's .=. wy, throughout the frequency
range .

Note: The following steps are essentially thoce given in reference {1}.
Step 3) Pick & nominal vialue of plant transfer function, Py(s), and

evaluate Po(jwy)/P(jwy) for bounding variations of P(s).

Do this for each of the previously selected wy's. Plot
results on complex plane.

Step 4) Determine loci of -Lg(jwy) minimum boundries on complex plane
plbt of step 3.

Step ) Determine a feusible L,(jw) function from results of step 4
and consideration of magnitude and phase relationships.

Step 6) Determine suitable G; functions for type system chosen.

1.6 Verificution Model

The following two-degree-of-freedom structure is used to
simulote (either by anslop or digital computer) the cystem design for
verificalion purposes. This purticular form is used as it eliminates

the neced for culeuluting the Gi'c shown in figure l.l.



From section 1.3, equations (3) and (4)

To(u) o=e =2
o(v) Lol (3)
and, Lo(s) .=« G1GoP, (4)

then if T,(s) .= Ty

R Gy = Tp(1+Lg)/Po (6)
M: and, Gp = Lo/G1Py = Lo/Tpm(1+L,) (7)
é but from equation (2), ’

L = GyGP (2)

= [T,(14L,)/Po) P [Lo/Tp(14Lo)] = PLo/P,

[Sa——

and from equation (%),

- To _ (Po/P)+Lg

SO0 g MOT/ O )
.j T l+Lg <5;
i but To o=e Tm, therefore,
: P/Po
T=7T(1+L,)—————— = Tp(1l+L,) ————— 9
Tnll+bo )5 i n(l+lo) 1+PLo/Pq (9)

and the férm shown in figure 1.3, is derived

Ro— [T (k) | O /R 0

Lo

Figure 1.3 Verification Model.
In examples 2 through 4G, eighteen different parameter varia-
Lion reaponse curves (k= 1, 2, 10; W, = 1, 2, %; Zp = 0.2, 0.6)
were run'totvorlly the ronulis of euch design., However, in order

Lo show Lhe recultis on one figure, for escy comparicon and analysis,
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only Limiting coses (woximum, minimum, worst, ete.) are shown,
For tho first example, @ simple plont and model will be used

Lo elearly illasteale Lhe clepn involved,



CHAPTER 11

SIMPLE FIRST-ORDER MODEL

2.1 Example 1, First-order Model

Given: Plant transfer-function, P(s) = K, 1 €K< 10, and
desired time domain specifications as follows:

Rise time, O to 90% : 0.55 to 1.15 seconds

Settling time, %1% : 1.15 to 2.30 seconds
Overshoot limit : 0%
Step 1) The desired system configuration is to be a two-degree-
of-freedom syustem, with G = Tp(l+Ly)/Py and H = Lo/Tp(1l+L,) (see
slep 6). From initial value theorem of Laplace transform theory {6},

lim

Lim sP(s) = b Ot £(t) = £(O*). Or, for the step response of a

S O

transfer function, we desire ilnzc F(s) = £(0*) =2 0 (no initial
[y

condition), i.e. we desire compensation blocks which do not respond
instantaneously. Therefore, for g(t) (inverse transform of G(s))

to Be zero at t = 0, requires that G(s) have at least one more pole
then zeros. But G = Tm(1+Lo)/Po and (l+L,) has no excess poles,
hence’Tm must have at least one more excess pole then P,. Similarly,
for h(t) =0 at t = 0, requires L, to have at least one more excess
pole then Ty. Now, since the form of Ty (T(s)‘lower) determines the
form of Ty (see step 2), the requirements on Ty ere also requirements
of Ty, or Tl muct have at least one more pole in excess of its zeros
then Py huc. In this example, a4 first-order response satisfies the
requirement thot the excess poles over zeros of Ty(ep = 1) be at
lenst one mere thin the exceus poles over zeros of Po(ep = 0).

Similar considerntlions apply for other system configurations.
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i By reference to u Y"catulog of time response curves"* cr by

Lriul and error, find time response curves that just satisfy the

it

given time domain specifications. . In this example, the assumed first-
iy order response was investigated to see if it would "fit" the given

specification. It was found that the time response of the iransfer

function Ty = 2/(s+2) satisfies the requirements rise time = 1.15

seconds, settling time = 2.30 seconds, and 0% overshoot. See

(S

figure 2.1. If a first order response could not éatisfy the time
specifications, higher order transfer functions and/or pole-zero
type trunafer functlions could be investigated.

'E In choosing Ty (T(z) upper), it is descirable to pick a reluaxed

high frequency requirement (i.e., after a certain level is reached,

e.g. —-18 to -26 db, the magnitude remains constant) type transfer
function. Thic gives a greater variation in ITm/Tul, which allows
the ~Ly,(jw) phase crossover to occur at a lower frequency then the
5 excess pole type of transfer function (see step 2). In this example,
| the form Ty = b(s+a)/a(s+b) was investigated to see if it's time
| response would "fit" the given specifications. - It was found that the
time response of the transfer function T, = 4(s+32)/32(s+lt) satisfies
the requirements rise time = 0.5 seconds, settling time = 1.15

i seconds, and 0% overshoot. SBee figure 2.1.

*10 thin method of desipn is to be used for @ large series of design
problems with different declred specifications, it would be helpful
Lo develop or mnintain o enbalop of time responses for incremental

‘ changes in 0 cingle purumeter of u trunsfer function. For example,

! ree {73
e {ffe



Py

ification Response

1 GSpec

2.
Curves for Example 1.
2
s+2
4

igure

F

= 8+52
s+l 32

Tl =
Tu

0%
: 0.55-1

Overshoot

- : Rise Time

| : Settling Time

s

g

S

ety




s

SRS |

(GBI

Ly st

11

If an wunalog computer is available, the investigation of transfer
functions to see i thelr time recponce fits the time specifications
cin be pimplified by using Beck's method {8} to mechanize the
trunsfer function.

Plot Ty and T,, on Bode plot. See figure 2.2.

Step 2) Select a "model" transfer function, T, whose Bode plot
lies between those of Ty and T,;. Within these boundaries, the choice
is pretty much arbitrary at this point. If il is later found that a
conflict exist, then location of T, can be shifted and/or the model
and béundary transfer functions could be re-selected (see step 2,
example 2, section 3.2). The problem seems to be partly in the match-
ing of ﬁhe "model" response to the response of the nominal plant. If,
for example, the model 1is chosen such that its response is the
minimum allowable and the nominal plant is chosen such that its
response is the maximum possible, then, a change in plant parameter,
(whiqh must be a decrease in plant response) must cause an increase
in system response in order for the system response to stay within
specification. That is, the directions of change in plant response
and system response are contrary. If this is the situation, then it
can be expééted that some difficulties (if not impossibilities) will

be encountéred in trying to form a Ly(s) that follows the minimum
boundaries on the complex plane specified by the paggicular choice of
Typ #vnd Py. For this example the model transfer function was chosen
equil Lo the lower boundury trunsfer function, i.e.; Ty = Ty = 2/(s+2),
as thio satlcfles the dbove consliderstion and sinmplifies the

calceulations (see tuble 2.1, iTm/Tli column). Thic was plotted on
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Ligure 2.2 and the following calculations made;
If magnitude of Tp .=. X , 20 log xp .=. ypdb

and magnitude of Tj .=. X3 , 20 log x; .=. y;db

1}

then 20 log xp - 20 log x4 20 log (xp/xi)
= (¥m - yi)db

or log (xg4/x;) = Wy, - ¥4)/20]db

T,/ T4 |

antilog of [(yp - ¥;)/20] db

it

and  Xp/X;

therefore at:

P ra/my T OE = T/l # ITy/T) 6 ) = g T F
j0.8  =13° ~,0237db 0.947 " 1.0 0 db o
j1.0 -15° -,0353db 0.922 n 1.0 0 db Qo
j2.0 -23° ~,100 db 0.794 " 1.0 0 db 0°
4.0 =259 -,195 db 0.638 " 1.0 G db 0°
8.0 =26° ~.255 db 0.556 " 1.0 0 db Q°
j20  =38° ~.3495db 0.447 " 1.0 0 db 0°
j4o  -v1° -.510 db  0.309 " 1.0 0 db Qo
jBO  -68° ~.740 db 0.182 " 1.0 0 db 0°
j200 ~1.125db 0.07Y " 1.0 0 db

Table 2.1 Magnitude and Phacse Ratios
for Example 1
For high frequencies the -L, minimum bounduries due to T, (left
side) must eventually lie in the lst quadrant so that the L,(s) to
be formed can cross the 160° phese line (positive real axis due to

negutive sign before Ly). Therefore, the selected wy's should
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gvenbundly hoe lorpge cnouph Lo hove Lhie condilions  Doo Jw, = JioO0
minimum boundary in figure 2.3.

The excess pole type transfer function T! = 4.1/(s+4.1)
approximately satisfies the upper specifications. If it was used
(instend of Ty = A4(s+32)/32(s+4)) the ratio |T, /T}| would be approxi-
mately 0.5 (yy-y, ¥ —-6db) for all w = 15 rps, and it would take =
much larger bandwidth to reach the phase crossover of Lo(jﬁ). See
discuscion of step 1.

Step 3) Pick some value of the plant, within it's area of
variation, to be the nominal value, P (s). Usually it is that
combinution of plunt parameter vulues which corresponds to minimum
P {9}. Then P,/P = 1.0, which facilitates the complex plane
gruphicalvprocedure. However, if this particular choice of P, (and
Tps see step 2) later leads to difficult or impossible conditions
on Ly(jw), it will be necessary to change the Py, T, combination by
either re-selecting Py or Ty, or both. In this example Py, = 1.0 was
picked. Then 0.1 £ P/P £ 1.0 for all w's. Resulting plot is shown
on figufe 2.%, and resulting L,(jw) on figure 2.4,

Step 4) Determining loci of -L,(jwy) minimum boundaries. See
reference {1} for details.

See figure 2.53. Observe that loci of -L,(jw,) due to T, (left
side) must lie in 2nd and/or 1st quadrants of complex plane for low
frequencies. Sometimes u particular choice of Tp will cause the -L,
minimun boundury to llie in the Srd quadrant, which implies a phase
lend & low frequencies and hence posucible difficulties (see step 2,

seetion 5.2).
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If this is the cuse, it is necessary to re-select T and repeat steb 2
(see discussion of steps 2 and 3).

Step 5) Determining a feasible Lo(jw) function. See reference {1}
for details.

Note thaut in order to huave zero steady-state error it is
necessary to hauve a pole at s = O, which means -L, must be asymptotic
with the positive jw axis (-90°, since phase lag measured in clock-
wice direction from negative real axis) for very low frequencies.

See figures 2.3 and 2.4,

For this example, L,(s) = (3.2)(27)(60)(s+4)/45(s+27)(s+60)
was chosens |

Step 6) If desired syétem configuration is two-degree-of-

freedom system shown in figure 2.5, then,

T = C/R = GP/(1+L) (1)
. Ro—-fr(1~-wd G P < Q .
”1 where L = GPH, (2)
— H P is the plant transfer
Fipure 2.5 Two-degree-of- function, and G and H are

freedom system.
compensation blocks

availuble to the designer. Now if P = P, (some nominal value of P),

then (1) and (2) becomes

T
GP,/(1+¢L,) .=« T, =T, or G= -1;‘-‘1 (1+Lg) (3)
[o]
L L 1
nnd  GPoH .=. Lg or H= 2= 2 x (4)

PoG Ty 1+l
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Therefore T = GP/{1+4GPH)
Ty (14L, )P/P, - Tp(1leLg)P
g = :
1+ -2 (1+L0).p._"~29__. P, +PLy
P, Tm(1+Ly)

2 .s5+8732+2916s+5184 Kk
042 35+8752+16208

1 + 1296k(s44)/(s2+8782416205)

H

= 2. k(”?i§1§?329163+3184)
ce2 (8948752416200) + 1296k(seh)

2.2 pnulysis

The system time response results are shown on figure 2.6, For
k=5 ana 10 (curves 3 and 4), there is a slight amount of overshoot
(0.%34% for k = 10), however it is within the settling time limits
(¥1%) and, hence, was considered within specification. With the gbove
slight exception, the design procedure seems to work excee@ingly »
well, at least for the simple system chosen. The available time

domuin specification space (boundaries shown us T; and T in

fipure 2.6) iz completely used and the response is of the nature

specified by Tp,. Because the specification space is totally used,

it is suspected that the design approachs an optimum in terms of being
most economicual in gain and bandwidth requirements. In the later
multiple case exumples (examples 3 and 4), these points will be

discussed in more detail.
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: CHAPTER L

SECOND-ORDER MODEL

5.1 Purposc _of Decond-order Model

é In chapter 2, a simple first-order model was investigated to
oy sce if the "modeling' technique would work. For that purpose, a
ulmplé guin chunging plant weo ascumed, und the resulils were very
; encouraging. 1In this chapter, s more complex and realistic second-

order plant with varying gain, frequency, and damping factor is

‘ﬁ asosumed. All plant parameters are permitted to vary in an arbitrary
oy manner, within the limits specified. However, rate of variation is
assumed to be slow when compared to system response time so that time
dependence at the parameters is not a fector. A second-order model
(first without overshoot, then with some overshoo£ allowed by the
specificution) will be investiguted to see if a successful design

cun be accompllished.

5.2 Exumple 2, Second-order Model Without Overshoot

N Given: Plant trensfer-function P(s) = kwpz/(sz+22pwps+wp2)

with parameter variations: 1 € k £ 10

1w, 3
™ -
: 0,6 = zZp = 0.2

and desired time domain specifications as follows:
Rise time, O to 90% : 1.1% to 3.9% seconds
7 Settling time, *#1% : 2.25 to 7.90 seconds
| Overshoot limit : 0%
Step 1) Finding time specification boundaries.
The desired system configurution iz to be the verification

model two-degree-of-freedom system (see section 1.6), hence, T and L
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must only hnve nn excess of poles over teros (see step 1, example 1,
section 2.1). Therefore, auming a gecond-order model o second-
order Tlﬂis permissible.

By trial and error, it was found that the time response of the
transfer function Ty = 1/(s+1)2 sutisfies the requirements rise
time = 3.9 seconds, settling time = 7.90 seconds, and 0% overshoot.
Similarly it wne found that the time recponse of transfer function

i T, = 9(s+12)2/14h(s+3)@ satisfies the requirements rise time = 1.15
seconds, settling time = 2.25 seconds, and 0% overshoot. See
figure 3.2.

Step 2) Initially T, was chosen equal to T; to simplify

b e

calculations as in example 1. However, for the P, chosen (see step 3)
this caused the -Ly(jwy) loei, for jwy = jO.4 rps, and lower

frequencies, to lie in the third quadrant of the complex plane.

‘See figure 3.1, for jwy = jO.4.

Jjw
é
| P -210 3 3 . i’ 1.,0
. T )
:; Lo (50.4) - = - \ _
**‘”‘”‘”"”“/—1 ¢ _P__O_(JO-L*)
P(jO.4)

Figure 3.1 Exumple of Phase Lead.

This would require Lg(s) to have a phase lead of about 100°'s or

more {aince 1. da +n have 1 nnle ot the aricin) whirh misht ha
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difficult to renlive., AL Lthic point it is necesscary to change Ty
or Py. Il wue decided Lo chunge Tp to the mlddlo_df the allowable
are: belween T) and T,, i.e. T = 4/(s+2)2. See figure 3.3. The
~Lo(jwyx) loci for low frequencies then lies in the second quadrant
as desired. See figure 3.4. The following calculation were made

from Bode plot, figure 3.3 (see step 2, example 1, section 2.1 for

method).
Flo/fy [T/l weree ITw/M] T/l
~11,280 <955 0.4 1.109 20.96°
~21.36° .891 0.8 1.396 33,600
~-25,80° .861 1.0 1.567 36.81°
41 ,54° .708 2.0 2.512 36.86°
—57.460 .501 4.0 3,388 ok, 44°
-78.80° «309 8.0 3.802 14.45°
—90;580 2455 10.0 3,890 11.16°
-123.7-° .1035 20.0 3.890 5.740
~143,46° L0343 40.0 3.981 2.86°
-164,29° .0093% 80.0 3,981 1.44°
~167.96° 00625 100.0 3.981 1.14°
-173%.70° L0024 200.0 3.981 «54°

Table 3.1 Magnitude and Phase Ratios
for Example 2.
Step %) Again, as in step 3 of example 1 (section 2.1), the
minimum vialue of P(g) wus picked to be nominal value, PO(S), i.e.

Po(s) = 1/(s“+1.20#1). The required calculations were performed

25
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(o vePopanee LEE Por datai b nnd nppondiz A Por Loble of
Po(jwy)/P(jwy) duta) and the results are shown on complex plane
plot, figure 3.4.

Steps 4 and 5) Determining -Lo,(jwy) minimum boundaries loci
and feasible Ly(jw) function as per design procedure given in
reference’{l}. For this example, Ly(s) = (2.5)(25)/s(s+25) and is
plotted in figure 3%.5.

Step 6) System configuration is the verification model (see

gection 1.6), so that

T = E@.(I+Lo)f.
Po+PLg
4 524255462.5 kw?
a 2 2 2 2
_ (s+2) _ir¢25s 85422, W S+,
1 . kw? . _62.5
32+1.2s+1 52+Zzpwps+wp2 s2+25s
4 (524255+62.5) kw2(s24+1.25+1)

(s+2)2 (32+25s)(32+22pwps+wp2) + 62.5kw2(s2+l.23+1)

5.3 Analysis of Example 2, Second-order Model Without Overshoot

The system time response results are shown on figure 3.6. For
K=1, Wy = 1, 2= 0.2 (curve 2 of figure 3.6), the system response
hus a slight undershoot (flattens out) whick may be undsirable
although =till within specification. This is probably caused by
the system poles, due to the plant, being too far away from the
compensution.zeros, Po(s) to provide effective cancellation, and the
pole from the origin not moving out far enough (only'reached
¢ = 1.4). tee pole-uero plot of trunsfer function (for system

reiponse shown in figure 5.6), figure %.7.
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P

For K =1, ' = Py, (response 1) sclusl cuncellntion occurs und the .
system response i that of the selected "model". For responses

3 and 4, the pole from the origin combines with a far-off pole and
become a complex pair of far-off poles. If the undershoot is
undesiruble, then moving the compensation zeros (P,(s)) toward the
location of the complex poles for response 2 could be attempted.
However, if undershoot restriction is not part of the specifications
then the system response is within specification and the design is

successful.

el Exomple %, Second-order Model With 10% Allowable Overshoot

Given: Plant transfer function, P(s)

]

kwpz/(s2+2zpwps+wp2),

i

with parameter variations: 1 € k £ 10,

I

1 Wy € 3,

= =
0.6 zp * 0.2,
and desired time domain specifications as follows:

Rise time, O to 90% : 0.90 to 3.95 seconds,

Settling time, #1%

2.95 to 7.50 seconds.
Overshoot limit : 10%

Step 1) Firdirg tinme specification boundaries.

[\®)

The desired system configuration will be the same as example
(section 3.2). Also, since the lower specifications are the same as
exumple 2, the some Ty = 1/(s+1)2 is used for the lower boundary.

By investlguting time responses of transfer functions of the
nature T, = b(s+c)2/c?(s2eas+b), it was found that
T, = 4(5+8)2/64 (522, bawlt) approximately satisfies the requirements
rise Lime = 0,90 seconds and settling time = 2.9% seconds with 10%

N

overshool.  See figure 3.8,
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Step 2) Choosing T+ The same Ty as example 2 (step 2,
nection 3.2) was choven, T = L/(s+2)2, as it still lies approxiﬁately
in middle of area between Tj and Ty of this example. See figure 3.9.

The following calculations were than made from figure 5.9.

F T/ Tu | T/ Ty | Wy Tps | T/ | FTn/T)

-14.33° «953 0.4 1.101 20,96°
-25.28° 793 0.8 1.396 33,60
~28.72° 7245 1.0 1.567 36.81°
-30.47° 543 2.0 2.512 56.860
~36.,659 .596 4.0 3.388 ok 440
-79.04° JA62 8.0 3.802 14.45°
-9%.90° « 380 10.0 3.890 11.16°
~1%5.29° .129 20.0 3,890 5,740
-15%.10° .0359 40,0 3.981 2.86°
-167.41° .00933 80.0 5.981 l.44°

Table 5.2 Magnitude and Phase Ratios
for Example 3.

Step 3) Choosing Po(s). The same P, used in example 2 (step 3,
section %.2) was chosen. See reference {1} for details of method,
uppendix A for P,(jwy)/P(jwy) data, and figure 3.10 for resulting
plot.

Steps ‘4 und ) Determining loci of -L,(jwy) minimum boundaries
and feusible Lgo(jw) function. Oee design details given in

reference {1}.
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For this example, two different Lo's were formed,

Loa = (4.4)(202)(s+7)/75(5+20)2 and,

Log = (1.2)(2.7)(12.5)(8+0.8)/0.8s(s+2.7 ) (s+12.5).
See figure 5.l11. 7 A

The first, LoA’ was an initial attempt; The second, LoB’
was a result of irying to forﬁ a better design and use more of the
allowable specification space.

Step 6) System configuration is the verification model (see
section 1.6), so that

T (1+Lg )P
P0+PL0

H

or T, Tm[(s5+4052+65l.435+1760) kw2(s2+1.2541)] +

Ks5+4032+4005)(82+2zpwps+w

2
p°) +

251, 43kwe(s+7) (2414 25+1)]

and Ty Tm[(35+15.232+86.485+42.l9) kw2(s241.25+1)] +

Ks5+l5.232+55.75s)(sz+2ipwps+wp2) +
52.75kwe(s40.8) (5241, 25+1)] '

where T = 4/(s+2)2

3.5 Analysis of Example 3, Second-order Model With 10% Allowable

Overshoot

The system time response results are shown on figure 3.12 a & b.

Observe that in case A, figure 3.12a, the response curves are closely

grouped together and does not effectively utilize the allowable
specification space. Referring to the complex plane, figure 3.10,

it can be seen that LOA is conservative in that the actual location



i
i
¢
1

4
i
!
3
i

(s)

(¢}

igure 3.11 Bode Plot of L

z/_,
L1
2. ,
Bl
o
SRR
&

g T
Q e
SR




7
[

[

of Ly, (dotn obloined from Pipure 5.11), al the w, frequencies
selected, is well above the minimum -Lg(jw,) boundaries. Also, in
this cuse the phuse restriction of wy = 2 rps is observed.

The ineffective use of allowable specificaﬁion space suggest
thot a moré economical design may be possible. This is attempted in
cuse B. Observe that in cuse B, figure 3.12b, the response curves
more effectively utilize the specification space. Referring to
Pigure 3%.10, it is seen that the actual location of LoB’ at the W
frequencies selected, is fairly close to the minimum —Lo(ij)
boundaries due to T, (left side), and that phase restrictions are
ignored after w = 1. The design is more economical in terms of
lower crossover and drop-off frequencies, i.e. in reduced bandwidth,
un cuan be seen in figure 3.11.

Both désign results are within the given specifications¥,
however, agnin, 2s in example 2, for minimum plant parameters the
system response shows undershoot, response curve 2, figure 3.12b.
This indicates o dominute third-order type system, see figure 3.7
and section 5.3 of example 2. 1t was thought that using a third-
order model which more closely "models" the actual response might
help eliminate this undershoot. This leads té egample 4, in the
nexl chapter.

Another reason u third-order model might be desired is that the

P(1/P,) block in the verificution model (section 1.6) might be

*Note Lhat althouph curves 4 und Y of figure %,12b lie outside of
the time rosponse of T, shown fur refercnce, that they still
suticfy the three (gross) cpecificutions given.:
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difficult to connlruct. If the two-degree-of-freedom system of
cromple 1 (slop 6, section 2.1) in desired, Lhen g(L) ot 4 = 0
cunuidergtlonu require Ty to huve at leust one more excess pole than
Pys or for the P, being used (second-order) T, must be at least

third-order (see discuscsion of step 1, example 1, section 2.1).



CHAPTER IV

THIRD-ORDER MODEL

4.1 Introduction

In thé following example, the design shall attempt to control
the underihoot type response for minimum plant parsmeters while
mecling the cawme specification of example 5. It also illustrates
Lhe chunge in model requirements for a differenﬁ choice of desired
cystem configuration.

In example %, the effects of over-design (conservative) was
noted. In the following example, under-design shall be investigated

to cee if the system response then exceeds specifications.

4.2 FExumple 4, Third-order Model With 10% Allowable Overshoot

Given: Plant transfer function, P(s) kwg/(52+22pwps+wp2)

with parameter variastions: 1 € k £ 10,

IN

1 W < 3,

62 7 3 0.2.
0.6 Z5 2

and desired time domain specifications as follows:

Rise time, O to 90% : 0.90 to 3.9% seconds

Settling time, *1%

2.95 to 7.50 seconds
Overchoot limit : 10%

Step 1) Finding time specification boundaries.

The desired system configuration will be the two—degree—of—
freedom system of example 1, (see section 2.1, stép 1). Therefore
Ty must be at least u third-order transfer function. By investigat-
ing time recponse of transfer functions of the form

Ty = 1b?/ (o1 ) (5+4b)2, il wio found thut T, = 20/(s+l)2(s+20),



aabiolies Lhe requirements rice tine = 3.99 nocohds, settling
Lime = /.UU secondir, nnd 04 overshoot, Dimilorly, by Invesligaling
time responses of transfer function of the form

Ty = ac(n+d)(s+e)?/de2(s+a)(s24bs+c),
1L was found that

T, = (5) (%) (5+6.25) (s+8)2/(6.25) (64) (545 ) (s2+2. bs+h),
approximately catisfies the requirements, rise time‘= 0.90 éeconds,
seltling time = 2.9Y seconds, and 10% overshoot. (The actual rise
time of T, is 0.9 seconds, or 0.05 seconds more then that specified
ni the minimum rise time, 0.90 seconds). The time response of these
boundsry transfer functions along with thoze of example three (for
comparison) are shown in figure 4.1.

'Steg 2) Choosing Tp.

Careful examinution of the system response curves of example 3B,
figure 3.12b, shows that part of the reason for the undesirable
response (undershoot) of curve 2 may be due to the relatively large
rise and Qettling time allowed between the model transfer function
time reuponse curve T, and the lower specificatipn boundary transfer
function time response curve Tl' Figure 3.12b shows the allowable
rise lime between response curves T, and T (measured along 90% line)
1r 1,05 seconds whereasn between T (t) and T;(t) is 2.00 seconds,
and the ullowible settling time between response curves T, and Tp
(mensured along *1% of 1.0 limits) is 0.39 seconds whereas between
rosponse curvos Tp und Ty is 4.20 seconds.

Note, however, thut for approximately the first two seconds the

recponte curves of the syctem lie between recponse curves Ty and Tg.
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Thnt iu, the systom initially responds between Ty(t) and T (t) but
tends to‘reuch stendy-state between Tp(t) and Tl(t). It was felt
that this could be contributing or allowing the poor system response.
If the Syétem could be made to react between response curves T, and
Ty» @ more reasonable response might be obtained., This was attempted
by choosing Tm closer to T; on the Bode plot, rather than near the
center of the allowable area. This, at least,.decreases thé time
between Tp(t) and Ty(t). T, was not chosen equg; to Ty due to
considerutions mentioned in step 1, example 2 (section 3.2).

From the ubove considerations, the following model was picked.,

Tm = (1.25)2(25)/(5+1.25)2(s425). See figure 4.2.

Fin/lu /Tl Mg e T/l FTw/My
~27.2° Q12 0.4 1.072
~L70 .676 0.8 1.161
~53° 5755 1.0 1.25
54,59 .3527 2.0 1.413
-78.84 . 205 4.0 1.531

214 8.0 1.585
.162 10.0 1.585
L0513 20.0 1.778
.00912 40,0 1.820
.001994 80.0 1.905
L0007 244 100.0 1.995
00094 . 200.0 1.995

Table 4.1 Mupnitude und Phuse Ratios
for Example 4.
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Step 3) Choosing Po(s). The same P, used in example 2 was
chosen. ©Sce reference {1} for details of method, appendix A for
Po(jwy,)/P(jwy) dotu, und fipure 4.3 for resulting plot.

Steps 4 and ) Determining loci of -Lgy(jw,) minimum boundaries
and feusible Lg(jw) function. See design detaiis given in
reference {1}.

For this example, three different Lo's were formed,

Loy = (2)(20)(5002)/5(s+20) (s+500)2,
Lop = (1.5)(15)(450) (740)/5(s+15) (s+450) (a+740), and
Lyg = (0.28)(20.5)(400)(650)(s40.15)/
0.155(s+1) (85+20.5) (54400) (s+650)
Sce figure 4.4
Note that the excess poles over zeros of the Ly's (ep = 4) are
one more then that of Ty (eq = 3) as required to have h(t) = 0

at L = 0, (see discussion of step 1, example 1, section 2.1).

The fi}st loop transmission, Ly, was an initial attempt. The
second loop transmission, Lgp, is to determine the effects of under-
desigrn. The third loop transmission, L sy is an attempt at a more
economical decign.

Step 6) System configuration is the two-degree-of-freedom
eystem of exumple 1 (step 6, section 2.1), so that

lll

GP/(1+GPH) = Tp(1+L,)P/ (P +PL,)

i

or T, =T, [(34+102035+2.7x10932+bx1063+107) kw2(52+1.23+1)]+
[(ﬂ4+lu2035+2.7x10532+5x1063)(52;2zpwps+wpz) +

10 kw2 (5241, 2541)]
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Ty o= T, [(4 1200034 3508500: 2449950004 7492000) kw2 (52+1.2041)] +
[(n4+120935+5908b032+49990003)(32+22pwps+wp2) +
7492500k w2 (5241, 2541 )] '

Tg = Ty [(s5+1o71.5s4+282595;5s5+5611525s2+15279555.55s+1492400)
kw2 (s241.2841)] + [(89+1071.5544262595.55345611525524
5.35%10% ) (524 225wy 54w, 2)#9949353. 33kw2( 540, 15) (521 2541)]

where T, = (39.0625) s (85427.552+64.06255+439.0625)

4.3 Analysis of Exemple 4, Thiyd-order Model With 10% Allowable
Overshoot
Cuse A. After druwing the magnitude and phase on the Bode plot,

Ligure 4.4, the dutu for the design frequencies, w

x» Were transferred

to figure 4.3, for a check. It was found that the data pcints of
Lo(s) for w less than two lie below their boundaries. However, the
system response curves, figure 4.5a, show tkat tkis choice of Lg(s)
iv within specification except when the plant is neer K =1, w=1,
7 = 0.2, where the rise time itc just outside cof specifications (by
0.0% seconds or less). The response for minimum plant paremeters
still hes a slight flattening oul effect. Note that the design is
conserviative irn thel a large amcunt of the allowsble time response
space (particularly the allowable overshoot) is not used.

Case B. In thic cuce, the effect of under-design is sought.
Lop> lies just below Ly, (from 2.5 to 5 db). This roughly amounts
to o lowering of the croscover frequency by one-half cor a gdin
decrense of about 29%. See fipure 4.4. Plotling the magnitude and

phase dolo on figure 4.%, shown Lop lies below the minimum —Lo(jw)



boundaries for all wy's used in the design. The system response-
curvei, figure 4.Hb, show the rise time is exceeded for K = 1,
w=1t 3, z=0.2, by 0.13 to 0.64 seconds. Hence, ignoring the
~Ly,(jw) mihimum bounderies does lead to a system response which
excecdn the given specificutions,

Cuse Co In Cuue A, the decipn did not fully utilize the
illownble cpecificution spuce (us shown by the time respohsé curves,
figure 4.%a), particularly with respect to overshoot. This case
attempts to correct that and in so doing obtain a more economical
decign.

Note from Bode Plot figure 3.3, example 2 (no overshoot)
(section 3.2) and figure 4.2 of this example, that the significant
difference in Tu's, due to overshoot, occurs for approximately
one-half to twice the overshool corner frequency, or for this case
from w =1 to 4 rpc. Therefore, it seems reasonable that to fill the
specificotion vpuce, the design Ly(s) should be ss close as possible
to the minimum -L,(jw) boundaries due to T,, over this range. In
trying to pick sﬁch an Ly(s), it was found that the minimum boundary
for wy =‘O.4 rps, in figure 4.3, could not be met. The relatively
high gain required at wy = O.4 rps (12 to 16 db) means a pole must be
int}oduced shortly thereufter to bring the maugnitude down to the
luvél required cround wy = 1 rps. But a pole introduces more phase
log, were leus phose lag is needed (i.e. phase lead from -90° is
required in the runge wy = O.4 to 2 rps) which shifts the choice of
Lo(:) buck to the right und awey from the -L,(jw) boundaries due to

Ty. Therefore the guin requirement ut wy = O.4 rps must be ignored
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if it is derired to fit the Lo(s) curve to the minimum boundaries due
to Ty in the region of wy = 0.8 to & rps. From the final value
theorem of Luplace trqnsform theory, it is suspected that the setiling
time und/or overshoot mey be out of specification due to Lo(jw) being
go far from the -Ly(jO.4) boundary.

The attempt to fill the specification space while ignoring the
minimum levels for wy = 0.4 rps, 0.2 rps, etc., (see figuré L,3)
led to a system response which exceeds specifications, see figure
4.bc. In order to correct this, again either T, and/or P, could be
chonged and a new design calculated. Observe, or figure 4.5c, that
for the first couple of seconds the response is within specifica-
tion, which could be roughly predicted by Laplace transform theory
irvitial value theorem, although the specific change over from the
domain of initlal value theorem to the domain of final value theorem
cannot be explicitely stated.

A comparison of response curves 2 of example 4 case C, figure
4.,5%¢, with that of example 3 case B, figure 3.12b, shows that the
undershoot, was significantly reduced. This might tend to indicate
that a dominant third-order model helped reduce the undershoot,
except it was noticed that T, is really not a dominant third-order
transfer function, i.e. the pole is far-off (s = -25) and not close,
ap s necespsury for a dominant type system. However, the improvement
might be attributed to moving Ty closer to T, and thereby attaining
« better P,, T, match. The design was terminated at this point, in

order to investigute the dominunt pole-zero design approeach,
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Figure 4.5c¢

System Response Curves

for Example 4, Case C.
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CHAPTER V

DOMINANT POLE-ZERO DELLIGN

s
.
ot

Purpose of Investigating a Dominunt Pole-Zero Design

A dominant pole-zero design, using the specifications and plant
. of example 4, section 4.2, shall be performed in order to compare
the results and see if any useful information can Be gained with
regard to eliminating the undershoot type response.

The design procedure is a recently improved technique‘developed
by Horowitz {10}. The following results are shown so that the work
can be checked, however, for details of the method see

reference {10},

Ye2 A Dominant Pole-Zero Design

oy Step 1) Determining the range of variation of plant on complex
plane. For the given plant,

P= kwe/(s2+22pwps+wp2),

1 €K4 10, 1% w, €3 0,63 z,20,2

different values of the parameters where substituted into the
equation and the resulting equation solved for s. For example,
for w=1, z = 0.6, P/k = 1/(521.28+41) = 1/(5+0.6430.8)(540.6=30.8).
The vualues of s were then plotted on the complex plane and the
boundary determined, see figure 5.l area ABCD.

Step 2) Determining the range of variation of acceptabie
response on the complex plane. Calculations similar to those of
step 1, were performed for T, and T, of example 4 (step 1, section 4.2).
See figure 5.1 area MNQR. It must be noted that over damped solutions‘

of higher frequencies will satisfy the actual given time specifications

and hence increase the area of acceptable variations, particularly
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nlong Lhe nepative reul-axis. Thus the design that is accomplished
here is pfobubly not the best possible from the method. However,
the purpose here, is to gain information for correcting the design
method of this research and so condition as similar to those
previouslybuSed were attempted.

Also observe in figure 5.1, that the acceptable region of
voriation is tungent to the plant region of variation. Again, it
just happened that this is so. The desigh procedure of Horowitz {10}
is such as to allow the regions to overlap and hence this design is
probably overly restrictive.

Step 3) Mepping acceptable region MNQR into X, Y plane.
Several rough calculations were made to determine a ¥, It seemed
that a & of twelve would be sufficient so detailed calculations
were performed on a desk calculator, using the following equations.
(#%/P,) + (P, - ¥2/P,2) and,

sr(x-sr) + /(X - S,)

Y

Y

where Pr and 8

r tre defined by,

T4(s) = Pope/(s2+8,5+P ) (s+ps),
pp is closest fur-off pole and subscript d denote dominant part.

The range of variation of 5, and P, were that of the acceptable

r r

region of 1 £ P, 29, 1.2% 5, £ 6. The results are plotted on

Pigure 5.2 and labeled MNQR.
Step 4) Mopping plant varistion region ABCD into X, Y plane.

Mopping, is accompliched by letting X = Sp and Y = Pp’ where

0y

Sp and Pp are defined by
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Figure 5.2 Mapping of Allowable

Specification Space.
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P o k/m(sz+u3p+Pp); 0.4 = 5p € 3.6, 12P, 29
and mapping the region of (52+sSp+Pp). The results are plotted on
figure H.% and labeled A'B'C'D'.

Step ) Fitting A'B'C'D' into M'N'Q'R' and calculating dominant
loocp transmission.

A'B'C'D' was fitted into M'N'Q'R' as shown on figure 5.2.
The points X = 11.62, Y = 17.93, §, = 1.45, P, = 4.83 were used
as check points. Then (see {10})

X ='sp + kK = 1.45 + kK = 11.62 => kK = 10.17

P, = ¥/kK = 12/10.17 = 1.18

Y = Py o+ kK5, = 4.8 + 10,175, = 17.95 => 8§, = 1.267

and Lg(s) = kK,(sz+Sos+Po)/s(32+Sps+Pp)
= 10.1(52+1.29s+l.18)/s(sz+SPs+PP)
kKP ¥
Now pg = S 2 = - 80 (Pf)min = 0/(Pplpax = 12/1.44 = 8.3
r r

(\/F;, max = 1.2 obtained from figure 5el)

Step 6) Check of ¥ and determining far-off poles of L(s).
The Area A'B'C'D' of figure 5.2 was plotted onto figure 5.1 to
check the angle of departure of the zeros of system dominant
characteristic equation. A lag corner frequency at w = 8 was
assumed, then the angle of departures checked for the A'B'C!D'

boundary on figure ».l, und found satisfactory.

It

Therefore, starting with L = kK/s and pp = &, an average
-9db/octuve slope was assumed between Woq and Weo and L(s) formed

on the Bode plot, figure “.k4. W., was chosen ss the point where
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L(s) crossed the 20 log 90 = 39.1db line (kw2max of example 4,
sectionv4.2, is 90). The result is

L(s) = [12kw2(52+1.29s+1.18)/1.185(32+22pwps+wpz)]x

1(8) (160) (800) (2000) (8+32) /32(5+8) (5+160) (54800 ) (5+2000))

step 7) System.Configuratién:

The two-degree-of-freedom system of example 4 {step 6, section
2.1) is desired. From {10},

6(s) = v(s)/ap(s)

and H(s) K(52+séo+Po)nf/d'(s)f(s)

it

It

where 7 (s) can be dominant fixed polés and zeros to sa£isfy
specifications other than response in acceptable region
(not used)
d%(s) is the far-off poles added to L to simplify G,
ap(s)

ne(s) is the far-off zeros of L

e
)

the far-off poles of L, and

or G=1, H=1L

-
N

Results of Dominant Pole-Zero Design

De2

The system response, figure 5.5, shows & closely grouped set
of responses (only limiting cases were shown) pretty much centered
in the ullowoble specification space. No undershoot was noted.
Needless to suy, the cpecifications are satisfied.

A 160k at the dominant pole-zero pattern of the transfer
function, figure .6, shows a very simple pattern. The only notable
foulure is Lhat the polc from the origin (of L) has moved past
the nero at s = =8, That is, there is no pole between the complex

puir of poles und the firut zero of the transfer function.
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Hlowever, thin was previous noted (section 3.%) ss the probable cause
of the undershool. Therefore, this design investigitlon was of
limited value in trying to determine trouble spots of the frequency

method.



CHAPTER V1

CONCLUSION

6.1 Final Analysis

Comparison of the gain crossover frequencies of the final
design of examples 3 and 4 figures 3.11 and 4.2, shows that the
higher order model (example 4, section 4.1) resulted in a lower gain
crossover Trequency of approximstely one half the previous value,

It is suspected that higher order models will result in a'léwer

gain crossover frequency with a resultant increase in the complexity
of the system. It is also suspected that a point of diminishing
returns.will be reached either in terms of increased complexity
(Compare transfer functions of step 6, sections 3.4 and 4.2) or in
terms of significant decrease in gain crossover frequency.

In each of the multiple design examples (examples 3 and 4) it
was found that the most economical design, in terms of lower cross-
over and drop off frequencies, was the one that most fully utilized
the allowable specification space. That is, for a given —Lo(jw)
minimum boundaries map, a best design exists, but at present it seems
a matter of trial and error to find it. However, by keeping in mind
the points brought out by the previous investigation, such as having
Lo(é) intersect the boundaries due to T, and following the minimum
levels as closely as possible in the regions of significant change
(due to change in requirements, such as allowing overshoot) in the
Bode plot, 2 reasonable design may be obtain.

If a particular -Ly(jw) minimum boundaries map leads to
particularly difficult or impossible requirements on Lo(s), the

system transfer function model, T, and/or nominal plant, Py» can be
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reloecabed or chinped Lo yield o better map, Note that when the plant
i ol ito pominol volue, the system response 1o thatl of T.m' In this
paper, the nominal plant, P, was picked as the smallest value of the
plant, so that any plant varistions was above or from the nominal
value. Therefore, in the examples the different system responses due
to plant parameter variations, at least initially, was from Tm(t}
towards T,(t). If the nominal plant value is picked so that variation
are around it rather than just above it, then it is suspected that the

system response would be about Tm(t). This was not tried in this

P

puper dus to the difficulty in arriving at a satisfactory scale for
- the complex plane -Ly(jwy) minimum boundaries map.

It must.be stressed that computer (either anulog or digital)
verification of the resﬁlts seems to be an intergal part of this
desigg method, #s nothing wae noted that would predict the nature of
the response. For example, the response might be damped oscillations
within the time specification boundaries. When properly executed,
this procedure does predict a design which satisfies at least the
three parameters checked, l.e. rise time, settling time, and over-
shoot, and (at least in the examples) tends to follow the response
of the model.

The preceeding investigation shows that time domain specifica-

tionz can be translated to frequency domain specifications via
syecifiéation modeling, at least for the "Frequency Response Approach
to the Sensitivity Problem" design method presented in reference 71}.
; The procedﬁre entuails picking models which bound the time domain

specifications and transfer these specifications to the frequency
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domain. - Then picking a model of the desired nominal system response.
And finally, forming a nominal loop transmission, which initially
miy seem to be more art than technique, but with practice becomes
readily apparent.

From this investigator's viewpoint, it seems that the modeling
technique should work whenever it is desired to translate from the
time domain to the frequency domain, however much investigation is

yet to be done in this area.
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APPENDLY A

Po(ij)/P(ij) DATA FOR SECOND-ORDER PLANT

Determining PO/P area of variation on complex plane for

Po(jwy) _ 32+22Pwps+wp2
P(jwy) kwp2(32+l.25+1) a=juy
Wy rps W, rps Zp kP,/P
0.4 1.0 0.2 0.8359 - j0.2872
0.6 1.0000 -~ j0.0000
1.2 0.2 0.8661 - j0.3362
0.6 0.0028 -~ 30,0969
1.b 0.2 0.8883 ~ j0.3863
0.6 09977 - j0.1892
2.0 0.2 0.9026 - jO.420%
0.6 0.96846 ~ 30,2769
3.0 C.2 0.9088 — jO.4558
0.6 0.9635 - 3j0.3601
0.8 1.0 0.2 0.415% - j0.2192
‘ 0.6 1.0000 - j0.,0000
1.2 0.2 0.4338 < jO.4160
0.6 0.9208 - jO.2334
1.5 0.2 0.4399 ~ j0.H805
0.6 0.8295 - jO.4343
2.0 0.2 0.4338 - jO.7123
0.6 0.7260 - j0.6027
3.0 0.2 0.4155 - j0.8118
0.6 0.6104 - jO.7387
1.0 1.0 0.2 0.33%33 - j0.000C
0.6 1.0000 - 3j0.0000
1.2 0.2 0.2778 - jO.2546
0.6 0.8333 ~ j0.2546
1.5 0.2 0.2222 - jO.4629
0.6 0.6667 ~ j0.4629
2.0 0.2 0.1667 - j0.6296
0.6 0.5000 - j0.6296
3.0 0.2 0.1111 - jo.7407
0.6 0.3%33 -~ jO.7407



Wy DS Wy Tps Zp kP,/P
2.0 1.0 0.2 0.7398 + j0.3252
i 0.6 1.0000 - j0.0000
i 1.2 0.2 0.4695 + j0.1537
o 0.6 0.6875 - j0.1175
. 1.5 0.2 0.2445 4 j0.0181
| 0.6 0.4185 - j0.1987
i 2.0 0.2 0.0651 - j0.0813
0.6 0.1953 ~ jO.2444
i 3.0 0.2 ~0.,0709 - jO.1445
! 0.6 0.0172 - j0.2529
- 4.0 1.0 0.2 0.9%380 + j0.193%
I 0.6 1.0000 - 30,0000
‘ 1.2 0.2 0.6410 4+ j0.1150
0.6 0.7200 - jO.0462
1.5 0.2 043910 + j0.0538
0.6 0.4320 -~ 3j0.0753
2.0 0.2 0.1970 + j0.0097
0.6 0.2240 - j0.0871
| 3.0 0.2 0.0574 -~ j0.0172
0.6 0.0780. -~ j0.0817
8.0 1.0 0.2 0.9849 &+ j0.099%
0.6 1.0000 - j0.0000
1.2 0.2 0.6802 + j0.0613
; 0.6 0.6929 -~ j0.0189
f 1.5 0.2 0.4307 + j0.0318
0.6 0.4409 - j0.0344
; 2,0 0.2 0.2365 + j0.0106
% 0.6 0.2440 - 30.0390
- 3.0 0.2 €.0975 - jO.0021
0.6 0.1024 - j0.0352
20.0 1.0 0.2 0.9976 + 30.0400
' 0.6 1.0000 - 30.0000
¢ 1.2 0.2 0.6922 + j0.0249
o 0.6 0.6942 - j0.0084
""" 1.5 0.2 0.4423 4 j0.0132
0.6 0.4439 - j0.013%4
2.0 0.2 0.2478 + j0.0049
0.6 0.2490 -~ j0.0150
3.0 0.2 0.1089 - j0.0001
0.6 0.1097 - j0.0135



o

W, Tps W, rps 3 kP /P

e

i

!
|

~4‘0”. 0 0. 99&4

0.2 + j0.0200
0.6 1.0000 - 30.0000

1.2 0.2 0.6939 + jO.0125

0.6 0.6944 - j0.0042

1.5 0.2 0.4439 + jO.0067

0.6 0.4443 — 30,0067

2.0 C.2 0.2495 + j0.0025

0.6 0.2498 - j0.0075

3.0 0.2 0.1106 - j0.0000

0.6 0.1108 - j0.0067

80.0 1.0 0.2 0.9998 + j0.0100
0.6 1.0000 - 30,0000

1.2 0.2 0.694% + j0.0063

0.6 0.6944 ~ 30,0021

1.5 0.2 0.4443 &+ 30.0033

0.6 O.4444 - 50.0033

2.0 0.2 0.2499 + j0.0012

0.6 0.2499 - j0.0038

3.0 0.2 0.1110 - j0.0000

0.6 0.1110 - j0.0033%

200.0 1.0 0.2 0.9999 + j0.0040
0.6 1.0000 - 30.0000

1.2 0.2 0.6944 + j0.0025

0.6 0.6944 ~ 30.0008

1.5 0.2 O.4444 4 30.0013

0.6 0.4444 . — 30,0013

2.0 0.2 0.2500 + j0.0005

0.6 0.2500 - j0.0015

3.0 0.2 0.1111 - jO.0000

0.6 0.1111 - j0.0013



