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ABSTRACT 
This paper f i r s t  presents  the development qf an empirically based kinetic model 
which describes the synergistic inactivation of dry Bacillus subtilis var .  ' 

spores  by a combined heat and gamma radiation environment. The mechanism 
of this inactivation is investigated by comparing the resulting empirical model 
parameters  with analogous parameters  of a free-radical mediated polymeriza- 
tion reaction. A theoretical chemical kinetic model of bacterial  inactivation is 
then derived assuming a free-radical reaction. This theoretical model demon- 
s t ra tes  the same  fo rm a s  the empirically based model and is capable of predict- 
ing a method fo r  obtaining additional synergistic gain. This predicated method 
was subsequently tried and the predictirlrn was experimentally verified, lending 
additional credence t o  the theoretical kinetic model. 
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A MATHEMATICAL MODEL FOR THE THERMORADIATION 
INACTIVATION OF DRY BACILLUS SUBTILIS VAR. 

NIGER SPORES 

Introduction 

The observation that prolonged dry-heat  steri l ization cycles compromise  c e r -  

tain heat-sensit ive elements of spacecraf t  hardware  has prompted the s e a r c h  for 

s ter i l iza t ion mechanisms which re ly  on lower temperatures  and shor te r  s t e r i l i za -  

tion periods.  One v e r y  promising discovery i s  that of a combined environment of 

d r y  heat  and ionizing gamma radiation f r o m  a source .  The basis  fo r  this 

opt imism i s  re la ted to the fact  that the steri l izing action of radiation within the 

elevated t empera tu re  environment is g r e a t e r  than the sums  of the s ter i l iz ing action 

of radiation in a nonlethal heat environment and of the action of a lethal  t empera tu re  

environment without the p resence  of radiation. The observed phenomenon m a y  be 

c lassed  as  a synerg i sm,  where one agency is defined a s  gamma radiation m a r r i e d  

with a t empera tu re  dependency and the other  agency is  defined a s  lethal  temperature .  

The existence of this synergis t ic  effect when steri l izing d r y  populations of 

Bacillus subtilis v a r .  n iger  spores  in the above-mentioned composite environment 

has been definitely demonstrated.  The cur ren t  bulk of experimental  evidence 

has shown that the inactivation of the spores  in the composite environment follows 

a s t ra ight- l ine  log plot with a slope which inc reases  in absolute value for  inc reases  

in both t empera tu re  and /or  radiation dose ra te .  This inactivation a l so  appears  to 

be  ra the r  insensit ive to changes in the re la t ive  humidity in the range f r o m  2 0  to 

60 percent  when measured  in the ambient condition exter ior  to the heating chamber  

a t  a t empera tu re  of 1 0 5 ' ~ .  

Since the composite gamma radia t ion/dry-heat  environment does exhibit the 

synergis t ic  effect on the  inactivation of the d r y  s p o r e s ,  the possibil i ty of accom-  

plishing some required s ter i l iza t ion p r o g r a m  within an acceptable t ime per iod with 

an  acceptable upper t empera tu re  l imi t  and radiation dose is  entirely feasible.  This 

feasibil i ty has initiated fur ther  studies to elucidate the observed phenomenon with 

the intent of discovering the range of application of the steri l izing environment. 



In an effort to augment the experimental  effort ,  a modeling p rogram has a lso  

been initiated. This p r o g r a m  has a s  its goal the development of a rational mathe- 

mat ical  model which will predic t  the inactivation proper t ies  of a combined heat and 

gamma radiation environment and will reflect  an image of the physical proper t ies  

of the inactivating mechanism within the microenvironment of the spore .  The 

modeling effort i s  a l so  intended to provide a base  for sequential  experimental  de- 

sign, fo r  s torage of understood and /or  postulated physical inactivation proper t ies ,  

and fo r  a projected design of a final steri l ization p r o g r a m  for s o m e  s e t  of spacecraf t  

hardware .  Hopefully, a bas ic  understanding of the complete model and i t s  constit- 

uents will provide an insight into and a confidence in the existence of this synerg i s t i c  

death phenomenon f o r  many and var ied c lasses  of biological s ys tems.  

The Development of an  Empirical Model 

The  f i r s t  postulate on which this initial phase of the modeling effort was based 

i s  that the inactivation of the s p o r e  proceeds by s o m e  event o r  chain of events which 

have the proper ty( ies)  of a chemical  reaction and, thereby, will obey the theories of 

reaction ra te  kinetics. This general  philosophy has  been shown to be sound and to 

provide an excellent model  base  when the inactivating environment consists  only of 

d r y  heat. 3'  In l ine  with this f i r s t  postulate, the modeling has been facilitated by 

the fact that a l l  survivor  data f o r  d r y  _B. subtilis va r .  n iger  spores  in combined heat, 

radiation environments have been logari thmic in nature ,  a s  shown in Figure  1. 

Time ( t )  

F igure  1. General  fo rm of an inactivation curve for  a 
composite heat and radiation environment 



There fore ,  the expected number  of survivors  ~ [ n ( t ) ]  basically follows a f i r s t - o r d e r  

reaction which is  descr ibed by 

where  n(t)  i s  the population a t  t ime t hours ,  D is the I'D-value" in hours ,  and k is 
- 1 

the reaction r a t e  p a r a m e t e r  in hour . 

The approach to the problem i s ,  then,  to desc r ibe  k in t e r m s  of physical and 

environmental p a r a m e t e r s .  Proceeding in this way, two assumptions can be made  

concerning the nature  of k. F i r s t ,  based on the  experimental  evidence, k i s  a 

function of radiation dose r a t e  r This is to s a y  that not only does the reaction 
d' 

r a t e  inc rease  o r  the llD-value" decrease  if the dose r a t e  i s  increased,  but m o r e -  

over ,  i f  two identical s p o r e  populations a r e  both i r radia ted a t  the s a m e  tempera tu re  

but a t  different radiation dose ra tes ,  the two surviving fractions will be different 

even though both populations a r e  given the s a m e  dose. Secondly, k mus t  equal k T 
when no radiation is  p resen t  (rd = 0). H e r e  kT is  the absolute reaction r a t e  pa ram-  

e t e r  for  dry-heat  inactivation given by 
5 

where  

K = Boltzmannfs constant: 1. 38045 x 10- l6  e rgs  /degree  

h = Planck ' s  constant: 6. 6252 x ergeseconds 

T = t empera tu re  in degrees Kelvin 

AS' = activation entropy for dry-heat  inactivation 

AH? = activation enthalpy for  dry-heat  inactivation 

R = the gas constant: 1. 98726 ca lo r ies /degree -mole  

A gener ic  f o r m  of k which sa t is f ies  the preceding two assumptions is  

where  



The function F ( r d ,  T)  depends on temperature ,  since its magnitude var ies  with tem- 

pera tu re  and since the dose- ra te  dependence i s  observed to va ry  with changes in 

temperature .  1 , 2  

A f o r m  of F ( r d ,  T )  ult imately found to mee t  these stipulations is 

where  r i s  radiation dose r a t e  in ki lorads/second,  T i s  t empera tu re  in degrees  
d 

Kelvin, a ,  P, and Y a r e  constants to be determined, and the unit of k i s  second- l .  
S 

It may  be seen that Eq. (4) i s  satisfied by this formulation and that k roughly r e -  
s 

tains the s t ruc tu re  of a reaction r a t e  equation withY analogous to energy of activation. 

The f o r m  of F ( r d ,  T)  given in Eq. (5)  was chosen over  s e v e r a l  other generic fo rms  

a f te r  an extensive numerical  investigation into its capabil i t ies for  fitting the estab- 

l ished data. I t  was the only gener ic  f o r m  found which would fit the res t r ic t ion of 

Eq. (4) and the general  f o r m  of a reaction ra te  equation, and which would provide a 

consistent  fit over  the range of available data. Hence, the final f o r m  for the react ion 

ra te  p a r a m e t e r  k i s  

The determination of p a r a m e t e r  values for Eq. (6 )  proceeded in the following 

manner  using data obtained in the previously mentioned experimental  work. F i r s t ,  

f + values for  A S  and AH w e r e  obtained f rom the reaction r a t e  p a r a m e t e r s ,  kT, p ro-  

duced when the inactivating mechanism was d r y  heat alone. These values a r e  

and 

Next, values for a ,  p, andY w e r e  determined by a fitting technique using two experi-  

mentally determined values of k a t  2 3 ' ~  and different dose r a t e s ,  and one experi-  

mentally determined value of k a t  1 0 5 ' ~  with a defined dose ra te .  The values obtained 



for  these constants a r e  cu = 218'K, P = 6. 15, and Y = 5. 46 kilocalories/mole.  The 

derived fo rm of the reaction r a t e  equation i s  then 

If rd is expressed in ki lorads/hour  ra the r  than in kilorads/second and i f  the other  
- 1 - 1 

two t e r m s  of the equation a r e  multiplied by 3600 to convert  f r o m  s e c  to hour , 
then the equation m a y  be m o r e  conveniently writ ten a s  

This model provides a good fit of a l l  experimental  data obtained to date. These  

data have been taken in the ranges where  T was between 23' and 1 2 5 ' ~  and r d  var ied 

between 0 and 62. 5 k i lorads/hour .  F igure  2 shows the agreement  along with s o m e  

r d  - Dose  r a t e  ( k i l o r a d s l h o i i r )  

F igure  2. Reaction r a t e  of Bacillus subtilis va r .  niger s p o r e  inacti- 
vation as a function of t empera tu re  and radiation dose ra te  



other predictions of k a s  a function of t empera tu re  and dose  ra te .  The solid lines 

of F igure  2 represen t  model predictions,  and tr iangles represen t  reaction ra te  

values for the experimental  data reported s o  fa r .  As Figure  2 demonstra tes ,  

the correspondence between model predictions and experimental  data i s  v e r y  good 

for a number of radiation dose ra tes  other than the one used  for obtaining param-  

e te r s  a t  1 0 5 ' ~  and the one reported dose ra te  a t  1 2 5 ' ~ .  

Several  proper t ies  may  be observed by an  investigation of Eqs. ( 9 )  and (10). 

F i r s t ,  k is a monotonically increasing function of both T and rd. Second, the con- 

stant  V in k which i s  analogous to energy of activation i s  v e r y  low. Values of this 

p a r a m e t e r  for ordinary chemical  reactions a r e  typically a t  l eas t  an o r d e r  of mag- 

nitude l a r g e r  than the 5. 46-kilocalories/mole value which was obtained. Finally, 

the dependence on dose  ra te  i s  that of a fractional power fo r  temperatures  above 

218°K o r  -55°C. At 2 1 8 O ~  the power of the dose- ra te  factor  of k is  1;  therefore ,  
S 

the p rocess  is  no longer dose- ra te  dependent in the s e n s e  that different dose ra tes  

but equal doses a t  - 5 5 ' ~  provide equal inactivated fractions.  In this connection, a n  

ambient temperature  of 2 3 ' ~  o r  296°K provides 

Here  the power of r i s  close enough to 1. 0 that variat ions in dose ra te  may  not 
d 

provide easily recognizable differences in the inactivated fractions when the total 

dose is  held constant by corresponding variat ions in the t ime  of irradiation.  This 

may account for  some previous fai lures to recognize a dose- ra te  dependence in 

bacter ia l  inactivation. 

The proper t ies  evidenced by the empir ical  model of Eqs.  (1) and (10) have not  

only the intrinsic in te res t  associated with thei r  ve ry  na tu re ,  but they a lso  suggest  a 

convenient analogy between s p o r e  inactivation and polymerization. This analogy i s  

presented in the following section. 

Spore l nactivation Compared with Synthetic 
Polymers Under Gamma Radiation 

In the previous section,  the examination of the empi r ica l  r a te  function, 
k s '  

brought out two points which f o r m  s o m e  very  interesting and informative analogies 

when compared with the proper t ies  of synthetic polymers  synthesized by exposure 

to gamma radiation. F i r s t  of a l l ,  the k t e r m  of Eq. ( l o ) ,  which i s  the dominant 
s 

t e r m  for temperatures  below 100~.C,  i s  dependent upon a fractional power of radi-  

ation dose r a t e  o r  radiation intensity. This power i s  approximately 0. 737 a t  2 3 ' ~  



and 0. 548 a t  125'~. The second point drawn f r o m  the k t e r m  i s  that the apparent 
S 

activation energy (Y = 5.46 ki localor ies /mole)  i s  much s m a l l e r  than that of ordinary 

chemical  reactions.  A conclusion which may be drawn f r o m  the dose- ra te  depen- 

dence of the reaction ra te  of spore  inactivation is  that the dominant inactivating 

mechanism does not consist  totally of a breakage phenomenon. This i s  t rue  s ince  

breakage i s  usually associated with a single hit of a photon of ionizing radiation; 

therefore ,  the total accumulated damage is only dependent upon the absorbed dose.  

Since a sole  dose dependence has not been observed,  then s o m e  other type of in- 

activating mechanism mus t  be present .  

In looking for  different mechan isms ,  i t  has been found that the ra te  of f o r m a -  

tion of polymers  a t  ambient t empera tu re  conditions i s  approximately proportional 

to the s q u a r e  root of radiation dose ra te .  6' More  exactly, the dose- ra te  dependence 

has been found to va ry  between the 0.25 power and the 0 .95 power of dose  r a t e  de- 

pending upon the type of polymer being formed. Also, activation energies  of approx- 

imately 4. 25  kilocalories /mole  a r e  noticed for methyl methacryla te  and 6. 7 

kilocalories /mole  a r e  noticed for polystyrene when exposed to gamma i r radia t ion.  
6 

Severa l  other prominent s imi la r i t i e s  have been observed between radiation 

initiated polymerization and radiation inactivated biological sys tems .  Many biolog- 

ica l  sys tems  show an increased sensit ivity to radiation when the concentration of 

oxygen presen t  i s  increased.  Polymer  formation a l so  exhibits this increased 

sensit ivity.  Similarly,  if a d r y  population of 8. subtilis var .  niger spores  i s  

i r r ad ia ted  with gamma radiation a t  room tempera tu re  ( 2 3 ' ~ )  and is  subsequently 

heated a t  an elevated t empera tu re  (105' to 1 2 5 ° ~ ) ,  the initial r a t e  of inactivation 

is  much g r e a t e r  than i t  would be  without the pre i r radia t ion.  However, the r a t e  tends 

to slow down and approach the inactivation r a t e  of the elevated temperature  alone 

a f t e r  the p rocess  has operated fo r  s o m e  time. Polymers  a l s o  exhibit this f ea tu re  

in that the r a t e  of polymerization of a pre i r radia ted monomer i s  f as te r  a t  the begin- 

ning of the polymerization p rocess  than i t  i s  somet ime la ter .  9 

Since these  ve ry  compatible s imi la r i t i e s  do exist  between synthetic polymeri -  

zation and d r y  spore  inactivation under  an  environment of gamma radiation, i t  i s  

not unreasonable  to think of these  a s  being analogous p rocesses  mediated by the s a m e  

type of react ion mechanism. It has been well documented that the formation of many 
6 

synthetic polymers  (polystyrene,  methyl methacryla te ,  etc. ) proceeds basically by 

a f r e e - r a d i c a l  mechanism at  t empera tu res  above 2 0 ' ~ .  Herein  l ies  the s t rong sug- 

gestion that a l a r g e  portion of the bacter ia l  spore  inactivation due to gamma radiation 

may  be a t t r ibuted to ei ther a f ree - rad ica l  mechanism o r  a t  l e a s t  something behaving 

v e r y  s i m i l a r  to a f ree -  radical  mechanism.  



There  have recently been other s t rong indications that radiation damage in 

biological macromolecules  might a lso  proceed by a f ree - rad ica l  mechanism. 

~ i r n r n e r  l o  has found that the breakage of DNA molecules in phage when exposed to 

ionizing radiation accounts fo r  only 20 to 40 percent  of the apparent inactivation, 

and that the energies  of activation a t  t empera tu res  above O " C  a r e  only severa l  

kilocalories p e r  mole.  Also, electron spin resonance studies demonstrated the 

p resence  of f r e e  radicals in a l l  constituents of d r y  phage when exposed to ionizing 

radiation. ~ u r z i n g e r l '  has explained how diffusible hydrogen radicals can damage 

intact molecules within the biological sys tem by hydrogen abstraction.  He has 

found a l so  that the inactivation r a t e  of T1 phage i s  proportional to the 0. 8 2  power 

of dose r a t e  a t  ambient temperature .  

On the bas is  of the preceding evidence, the assumption is  made that f ree -  

radical  mechanisms have an important pa r t  in the p rocess  of inactivation of d r y  

bacter ia l  spores .  Since the ra te  of inactivation of s p o r e s  and the ra te  of formation 

of polymers is  proportional to a fractional power of radiation dose ra te ,  the impli- 

cation that the concentration of f r e e  radicals  p resen t  i s  proportional to the s a m e  

fractional power of dose  r a t e  i s  established. There fore ,  in view of the resul ts  of 

the modeling effort just presented and the experimental  evidence which has been 

cited, i t  s e e m s  reasonable  to investigate a f ree -  radical  inactivation mechanism 

f r o m  "f i rs t  principles.  ' I  An expansion of this complete rat ionale is  provided by a 

s imple  chemical  kinetic model in the next section. 

Chemical Kinet ic  Modeling 
of FreeRadica l l nact ivat i on  

Assume that a population of d r y  bacter ia l  spores  i s  exposed to a composite 

environment of le thal  t empera tu re ,  T ,  and gamma radiation a t  a dose ra te ,  r 
d' 

Also, a s s u m e  that each bacter ium contains a c r i t i ca l  subs t ra te  A which i s  inacti- 

vated a t  a r a t e  k due to the elevated t empera tu re  and a t  a r a te  k l  due to f ree -  
T 

radical  in terference.  The descriptive reaction equations a r e  

and 



where R is  the normalized f ree - rad ica l  concentration a s  a function of time. D and 

X represent  inactivated s ta tes  of the c r i t i ca l  subst ra te  A and infer death of the bac- 

ter ium.  Let  R( t )  be represented by the equation 

where CR(rd,  T)  represents  an  equil ibrium concentration of f r e e  radicals for  a con- 

s tant  rd  and T and where C ( r  T) represents  a "pool" o r  bulk of f r e e  radicals  2 d' 
formed by a pre i r radia t ion t reatment ;  that i s ,  they a r e  formed p r i o r  to the in t ro-  

duction of the spores  to the elevated temperature .  Each of the k .  ( i  = 1 , .  . . , 3) i s  
1 

assumed  to be of the f o r m  of an absolute reaction ra te  equation which is  a function 

of absolute t empera tu re  a s  in Eq. (2). The description of R(t)  in Eq. (14) has the 

general  f o r m  of a "birth and death" p rocess  with the exception of k2 and k3 being 

different f r o m  one another.  To simplify the formulation here  k will be assumed  3 
to be v e r y  large;  that i s  to say  that the introduction of the p re i r rad ia ted  samples  

into the composite environment ve ry  quickly establishes the equilibrium concentra- 

tion of f r e e  radicals .  This allows R(t )  to be approximated by 

Here  k is the r a t e  a t  which the f ree - rad ica l  concentration due to pre i r radia t ion is  2 
uti l ized.  

The differential equation which descr ibes  the schemat ics  of Eqs.  (12) and (13) 

i s  

Substituting R(t)  f r o m  Eq. (1 5) gives 

The  solution to this f i r s t -o rder  equation is:  



where 

Recalling the assumed  one-to-one correspondence between subs t ra te  A and bacter ia l  

cell ,  Eq. (18) may  be written 

where E[n(t)] i s  the expected population as  a function of t ime, and n(0) i s  the initial 

population at t ime  t = 0. The reference s tar t ing point t = 0 i s  located just af ter  the 

pre i r radia t ion period and just before the beginning of the composite lethal  environment. 

Now consider the case  for which no prei r radia t ion is  used.  This situation r e -  

quires that C2(rd ,  T )  = 0 and is the c a s e  for  which a l l  of the data of Figure  2 applies. 

With C2( rd ,  T )  = 0 

~ ( t )  = bT t c R ( r d , ~ ) -  kl]t = k t .  

Therefore ,  comparison with Eq. (9 )  o r  (10) provides 

Drawing f r o m  the fact  that f ree -  radical  concentration in polymers  is  a function of a 

fractional power of radiation dose r a t e  and once again comparing k of Eq. (22) with 
S 

k of Eq. (10) provides 

where  [ i s  an undetermined proportionality constant. Continuing the comparison 

gives 



which i s  intuitively pleasing s ince  kl  has the general  fo rm of an Arrhenius equation 

and is only a function of temperature .  The resulting requirement  on the constants 

which were  used is 

If the sample is p re i r rad ia ted  and then heated without any simultaneous radi-  

at ion,  then C ( r  T )  of Eq. (19) i s  zero ,  
R d' 

and the ra te  of the p rocess  i s  

Inspection of Eq. (27) shows that the inactivation proceeds fas te r  a t  the initiation of 

the heating cycle than would the inactivation without pre i r radia t ion.  Also the r a t e  

of the p re i r rad ia ted  sample  inactivation approaches that of the unir radia ted sample  

a f t e r  a sufficient period of time. Investigation of Eqs. (20) and (26) fo r  t >> l / k Z  

provides 

and shows that the additional inactivated fraction when prei r radia t ion is u s e d  i s  

This is consistent  with the experimental  data for bacter ia l  spore  death and with 

radiation-initiated polymerization. 

If the s p o r e  sample  is  p re i r rad ia ted  and then exposed to a composite environ- 

ment ,  then both CR and C2 a r e  nonzero. F o r  this c a s e ,  the increased ra te  of the 



re:.ction is  given by the quantity in b races  in Eq. (17). Also, the inactivated f r a c -  

t i ~ n  is  l e s s  than that provided solely by lethal temperature  by the factor 

and is  l e s s  than that provided by the composite environment by the factor 

for  any t ime t. 

To verify the preceding kinetic model prediction,  a population of d r y  - B. subtilis 

va r .  niger spores  was pre i r radia ted a t  a dose r a t e  of approximately 12 kilorads /minute 

for 3 minutes.  Immediately following the pre i r radia t ion,  the spores  were  subjected 

to a composite environment of 19  ki lorads/hour  and 1 0 5 ' ~ .  The results1' a r e  shown 

in Figure  3 .  Time,  t = 0, again re fe r s  to the beginning of the composite cycle. Notice 

that the pre i r radia t ion did provide an increased initial r a t e  of death and a l a r g e r  

inactivated fraction a t  a l l  t imes.  Therefore ,  the generalized assumptions upon 

which the model was based do s e e m  to be  substantiated. The single s e t  of data 

does not provide enough information to ca lc~ l la te  values for k l ,  k2,  CR, and C2 a t  

1 0 5 " ~ ,  but good initial approximations f o r  k and k2 a t  1 0 5 " ~  on this basis a r e  
- 1 

1 
k = 2. 05 hour- '  and k = 2.40 hour . 

1 2 

The rational kinetic model derived in this section mus t  be regarded a s  being 

a t  l eas t  a s  valid a s  the e a r l i e r  empir ical  model,  since the two have precise ly  the 

s a m e  f o r m  when C2(rd ,  T )  = 0. In other words,  when the re  is  no pre i r radia t ion,  

both models provide the s a m e  prediction. On the other hand, the rat ional kinetic 

model has a capability fo r  predicting the resul ts  when prei r radia t ion i s  used in 

addition to the combination environment, and the experimental  verification of this 

prediction in a situation where data had not previously been taken lends additional 

support  fo r  the model ' s  validity. 



Time (hours)  

F igure  3. Effect of pre i r radia t ion on inactivation kinetics 12 

Desiderata 

Additional experimental  work i s  now being performed which will be u s e d  to 

e i ther  verify the empir ical  reaction r a t e  model a t  other temperatures  and radiation 

dose  ra tes  o r  to suggest  changes which will improve i ts  reflection of the t rue  phys- 

ica l  process .  Also,  additional effort will be  directed toward the improvement of 

the chemical  kinetic model and the understanding of i ts  p a r a m e t e r s .  A m o r e  thorough 

experimental  investigation will accurate ly  project  the life t ime of the f ree - rad ica l  

population and will provide information for a descriptive r a t e  equation for k2 and k l .  



The kinetic model a lso  suggests that a pulsed radiation source  may  be m o r e  effi- 

cient than a constant source  in the sense  of m o r e  death pe r  kilorad. This possibility 

should a l so  be investigated. 

In the formulation of the kinetic model, i t  was assumed that the s a m e  cr i t ica l  

subs t ra te  was acted upon by both the lethal  t empera tu re  and by the f ree - rad ica l  in- 

tervention. This was done only to simplify the presentation,  since two independent 

c r i t i ca l  subs t ra tes  would give the s a m e  f o r m s  for Eqs. (19) and (20)  based on a 

probability argument.  Fur the r  experimentation m a y  point out which of these  is  

t ru ly  cor rec t .  

Continued efforts in these  directions will hopefully lead to a bet ter  understand- 

ing of inactivation mechanisms and fu r the r  gains in steri l ization efficiency. 

Summary and Conclusions 

This paper has presented the development of an  empir ical  model which de- 

sc r ibes  the inactivation of d r y  spores  by a combined heat and gamma radiation 

environment. The result ing paramete r  values and proper t ies  of this empir ical  

model  a r e  compared with analogous values and proper t ies  of the polymerization of 

nonbiological organic mate r ia l s  under the influence of gamma radiation. The values 

of these p a r a m e t e r s  a r e  found to be in excellent agreement  and thereby lead one to 

specula te  that the f o r m s  of the chemical  reactions in the two situations a r e  v e r y  

s imi la r .  Since polymerization proceeds by a f ree - rad ica l  mediated chemical  r e -  

action and s ince  the l i t e ra tu re  has cited f ree - rad ica l  effects in the inactivation of 

biological s y s t e m s  when exposed to gamma radiation, the logical s t ep  of investi- 

gating f ree - rad ica l  inactivation of d ry  s p o r e s  when exposed to the radiation environ- 

ment  is taken. 

With this supporting rationale, a theoret ica l  chemical  kinetic model based on 

the f ree - rad ica l  inactivation of a c r i t i ca l  subs t ra te  i s  developed. Although indepen- 

dently der ived f r o m  f i r s t  principles,  the f o r m  of the theoretical  kinetic model i s  

identical to that of the semiempir ical  model  fo r  the  data situations upon which the 

l a t t e r  was founded. Also, an  extension in the rat ionale of the theoretical  model 

does suggest  a g r e a t e r  synergist ic effect by pre i r radia t ion of samples  to then be 

heated and i r rad ia ted  simultaneously--a situation which had not been investigated 

experimentally.  This additional synerg i sm was subsequently demonstrated exper i -  

mentally,  lending credence to the validity of the rat ional kinetic model. 



The rational kinetic model which has evolved f r o m  this effort has proved to be 

ve ry  accurate  in predictions of exposed B. subtilis va r .  niger spore  inactivation 

ra tes  for temperatures  between 23" and 1 2 5 ' ~  and radiation ra tes  between 0 and 

62. 5 lcilorads /hour.  

It i s  hoped that fu r the r  improvements can be made  upon the work presented 

h e r e ,  that the combination experimental  r esea rch /mode l  effort will continue to 

augment one another,  and that a c l e a r e r  physical p ic ture  of the death of biological 

sys tems  when exposed to lethal  heat and radiation environments will emerge.  
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