General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

CR-102631

1

GE-9500-ECS-FR 20 FEBRUARY 1969

FINAL REPORT

in the second

DESIGN ENVIRONMENT CRITERIA

EDITED BY:

D. N. VACHON SPACE PHYSICS LABORATORY

PREPARED FOR:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION G. C. MARSHALL SPACE FLIGHT CENTER HUNTSVILLE, ALABAMA 35812 UNDER MSFC CONTRACT NUMBER NAS8-21420

RE-ENTRY SYSTEMS P. O. Box 8555 • Philadelphia, Penna. 19101

GE-9500-ECS-FR 20 FEBRUARY 1969

FINAL REPORT

•

DESIGN ENVIRONMENT CRITERIA

EDITED BY:

D. N. VACHON SPACE PHYSICS LABORATORY

PREPARED FOR:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION G. C. MARSHALL SPACE FLIGHT CENTER HUNTSVILLE, ALABAMA 35812 UNDER MSFC CONTRACT NUMBER NAS8-21420

RE-ENTRY SYSTEMS P. O. Box 8555 • Philadelphia, Penna. 19101

PRECEDING PAGE BLANK NOT FILMED.

TABLE OF CONTENTS

Section																					Page
1.0	INTRO	DUCTI	on .					•	•			•	•	•	•	•	•	•	•	•	1-1
2.0	METE	OROID	ENVIR	ONME	INT		•	•						•	•	•		•	•	•	2-1
3.0	RADI	ATION	ENVIR	ONME	INT									•	•	•	•			•	3-1
	3.1 3.2 3.3	Cosmi Solar Trapp	c Rad Flar ed Ra	iati es diat	ion ior		•	•	:		•				•	•	:		:	:	3-1 3-1 3-1
4.0	GAS	PROPEF	TIES					•					•			•	•				4-1
5.0	ELEC	TROMAC	NETIC	RAI	DIAT	TOP	1									•			•	•	5-1
	5.1 5.2 5.3	Solar Albed Earth	Radi lo Rad Ther	atio liati mal	on C Lon Rad	Crit Cri iiat	teri Lter Lter	ia ria n	:	:	:	•	•		:	:	:	:	:		5-1 5-1 5-2
6.0	GEOM	AGNETI	C FIE	LD															•	•	6-1

LIST OF ILLUSTRATIONS

Figure			Page
2-1 2-2	Log Cumulative Flux vs. Log Particle Mass and Size (Density 3). Log Cumulative Penetrations vs. Penetration Depth	:	2-2 2-3
3-1	Cosmic Ray Differential Particle Energy Spectrum as a Function		
3-2	Time Veriation of Integral Spectra	•	2 /
3-3	Electron Map AE2 August 1964 Omnidirectional Flux (Elec/cm -sec)	•	5-4
3-4	Energy > 0.5 mev	•	3-6
3-5	Energy > 4.0 mev	•	3-7
5-5	(Protons/cm ² -sec) Energy > 34 mev		3-8
3-6	Proton Map AP3 September 1963 Omnidirectional Flux (Protons/cm ² -sec) Energy > 50 mev		3-9
3-7	Proton Map AP5 Omnidirectional Flux (Protons/cm ² -sec) Energy > 0.4 mev		3-10
5-1 5-2	Solar Electromagnetic Radiation Spectrum	•	5-5
	Atmosphere with Time		5-6
5-3	Mean Latitudinal Distribution of Albedo		5-7
5-4	Mean Latitudinal Distribution of Outgoing Long-Wave Radiation .	•	5-8
6-1	ISO-Contours of Total Magnetic Field Strength, h = 0 KM		6-2
6-2	ISO-Contours of Total Magnetic Field Strength, h = 100 KM	•	6-3
6-3	ISO-Contours of Total Magnetic Field Strength, $h = 200 \text{ KM}$		6-4
6-4	ISO-Contours of Total Magnetic Field Strength, $h = 300 \text{ KM}$		6-5
6-5	ISO-Contours of Total Magnetic Field Strength, $h = 400 \text{ KM}$		6-6
6-6	ISO-Contours of Total Magnetic Field Strength, $h = 500 \text{ KM}$		6-7
6-7	ISO-Contours of Total Magnetic Field Strength, $h = 600 \text{ KM}$	•	6-8

iv

1.0 INTRODUCTION

In order to determine the need for updating, refining and/or amplifying the near-earth environment as defined in NASA-TM 53521, reviews of the present state of knowledge were conducted. These reviews were documented in seven scientific reports and provide the basis for the recommended changes to the criteria guidelines given in this final report.

The purpose of this final report is therefore restricted to the end results of the study, with the justification for the values recommended being available in the respective scientific reports listed below:

- GE-9500-ECS-SR-1 "The Chemical Kinetics and the Composition of the Earth's Atmosphere", by M. Bortner and R. Kummler, July, 1968.
- GE-9500-ECS-SR-2 "Near-Earth Meteoroid Environment", by R. Soberman and S. Neste, October, 1968.
- GE-9500-ECS-SR-3 "Magnetosphere Environment" by T. Galbraith, November, 1968.
- GE-9500-ECS-SR-4 "Near-Earth Electromagnetic Radiation Environment", by J. Kaplan, December, 1968.
- GE-9500-ECS-SR-5 "A Model of the Geomagnetic Field", by T. Galbraith, December, 1968.

GE-9500-ECS-SR-6 "Solar Flare and Cosmic Ray Environment", by T. Galbraith, December 1968.

GE-9500-ECS-SR-7 "On the Variation of Density at High Altitudes", by D. Vachon, December, 1968.

2.0 METEOROID ENVIRONMENT

The recommended meteoroid flux as a function of mass is given in Figure 2-1 along with an estimate of the uncertainty extremes.

The recommended estimate of the penetration depth as a function of the penetrating particle flux is given in Figure 2-2. It is recommended that a listing of the characteristics of the major meteor streams be included in the design criteria handbook (NASA-TMX-53798). Such a listing is presented in Table 2-I and includes the meteor streams incorporated in the recent criteria handbook NASA-TMX-53798.

owers
S
Meteor
or
Maj
The
2-I.
le
Tab

(1)	(2)	(3)		(4)	(5)	(9)	6	(8)
Shower	Date of peak	Radia Coordi	nt nates	Dates of detectable	Duration of peak,	Approx. local time	Observed velocity	Equivalent visual
	activity	R. A.	Dec.	mereors	uays	or radiant transit	v0 km/sec	rates
Quedrantide	Jon 2	0126	TEUO	1 - 4 Ian	20	0035		E0
Corona Australids	Mar. 16	245	-48	14 - 18 Mar.		0445	:	(2)
Virginids	Mar. 20	190	00	Mar. 5 - Apr. 2	(20)	0050	30	(< 5)
Lyrids	Apr. 21	272	+32	19 - 24 Apr.	6	0410	48	ο,
Eta Aquarids	May 4	336	00	Apr. 21 - May 12	10	0735	64	20
Arietids (D)	June 7	45	+23	May 29 - June 19	20	1000	39	60
Zeta Perseids (D)	June 9	62	+24	1 - 17 June	15	1100	29	40
Ophuichids	June 20	260	-20	17 - 26 June	(10)	2325	I	(20)
Beta Taurids (D)	June 29	87	+20	June 25 – July 5	10	1115	31	20
Capricornids	July 25	315	-15	July 10 - Aug. 5	(20)	0050	١	(20)
Southern Delta Aquarids	July 29	339	-17	July 21 - Aug. 15	15	0210	41	20
Northern Delta Aquarids	July 29	339	00	July 15 - Aug. 18	20	0210	41	10
Pisces Australids	July 30	340	-30	July 15 - Aug. 20	(20)	0210	I	(20)
Alpha Capricornids	Aug. 1	309	-10	July 15 - Aug. 20	(25)	0000	23	5
Southern Iota Aquarids	Aug. 5	338	-15	July 15 - Aug. 25	(25)	0410	35	(01)
Northern Iota Aqaurids	Aug. 5	331	9-	July 15 - Aug. 25	(25)	0110	30	(10)
Perseids	Aug. 12	46	+58	July 25 - Aug. 17	5	0540	60	50
Kappa Cygnids	Aug. 20	290	+55	18 - 22 Aug.	(3)	2125	26	(2)
Orionids	Oct. 21	95	+15	18 - 26 Oct.	5	0420	66	20
Southern Taurids	Nov. 1	52	+14	Sept. 15 - Dec. 15	(45)	0045	29	(2)
Northern Taurids	Nov. 1	54	+21	Oct. 15 - Dec. 1	(30)	0055	30	(< 5)
Leonids	Nov. 16	152	+22	14 - 20 Nov.	4	0026	72	(2)
Phoenicids	Dec. 5	15	-55	(Dec. 5)	(0.5)	2000	(13)	(20)
Geminids	Dec. 13	113	+32	7 - 15 Dec.	9	0205	35	50
Ursids	Dec. 22	217	+80	17 - 24 Dec.	2	0825	34	15
	_							

pra.

1

3.0 RADIATION ENVIRONMENT

3.1 Cosmic Radiation

It is recommended that the cosmic radiation section of the design criteria handbook (TMX-53521) be extended to include an estimate of the cosmic radiation differential energy spectrum given in Figure 2-1.

3.2 Solar Flares

It is recommended that the solar flare section of both the TMX-53521 and TMX-53798 handbooks be extended to provide a representation of the time variations of the integral spectra giver in Figure 3-2.

3.3 Trapped Radiation

From the viewpoint of design criteria the radiation environment depiction of widest appeal appears to be the R- λ mapping. Since the radiation environment has a very pronounced time-space variation, it is difficult to provide a meaningful presentation for designers. For example, the radiation dose encountered by two satellites with the same perigée and apogee, but different inclinations, can differ by a substantial amount.

In general, the maximum particle flux is encountered over the geomagnetic equator and quite often the design is based on assuming the

maximum flux throughout the orbit. For preliminary design evaluations this is perhaps a most acceptable procedure, and for such usage the values given in Table 3-I should suffice. It is noted that the values given for the electron flux are for a time period of December 1968, which is a period of high solar activity and thus reflect a high intensity of electrons in the outer zone. For more general design usage, the R- λ maps given as Figures 3-3 through 3-7 provide sufficient definition of the vertical variation of the flux to enable bracketing the optimum altitude region for flight. Once the satellite orbital characteristics are bracketed, the integrated particle flux can be defined using the computerized version of the information provided in the NASA-SP3024 reports.

PARTICLES / M² SEC STR MEV

Figure 3-1. Cosmic Ray Differential Particle Energy Spectrum as a Function of Z Number Categories

TABLE 3-I

PARTICLE INTENSITY FOR CIRCULAR ORBITAL ALTITUDE,

 $INCLINATION = 0^{\circ}$

CIRCULAR ORBITAL ALTITUDE n.m.	PROTONS E > 4 MeV protons/cm ² day	PROTONS E >30 Mey protons/cm [°] day	ELECTRONS E >0.5 Mey electrons/cm day (1968)	ELECTRONS E > 5 MeV electrons/cm ² day (1968)
150	< 10 ⁵		< 10 ⁵	< 1
300	4.57×10^4	2.88×10^4	2.67×10^{5}	8.4 × 10 ⁰
450	2.49×10^{7}	1.01 x 10 ⁷	4.91×10^8	1.19 x 10 ⁵
600	2.43 x 10^8	6.85 x 10 ⁷	2.51×10^{10}	1.73 × 10 ⁷
800	1.73×10^9	3.16×10^8	2.17×10^{11}	3.03×10^8
1000	5.8 x 10 ⁹	7.35×10^{8}	8.22×10^{11}	1.60×10^9
1250	1.61×10^{10}	1.22 x 10 ⁹	1.49×10^{13}	6.65 x 10 ⁹
1500	3.64×10^{10}	1.49 x 10 ⁹	3.57×10^{12}	1.31×10^{10}
1750	7.65×10^{10}	1.65 x 10 ⁹	3.03×10^{12}	1.41×10^{10}
2000	1.40×10^{11}	1.83 x 10 ⁹	1.17×10^{12}	5.47 x 10 ⁹
2500	2.5×10^{11}	1.49 x 10 ⁹	1.79×10^{11}	8.80 x 10^8
3000	2.61×10^{11}	8.26 x 10 ⁹	8.31×10^{10}	4.04×10^8
4000	1.03×10^{11}	6.08 x 10 ⁹	1.07×10^{11}	4.34×10^8
5000	3.55×10^{10}	4.39×10^7	3.59×10^{11}	5.19 x 10 ⁸

3-5

x

1

Figure 3-5. Proton Map API Before September 23, 1963 Omnidirectional Flux (Protons/cm²-sec) Energy > 34 mev

4.0 GAS PROPERTIES

The static diffusion model of the upper atmosphere contained in NASA-TMX-53798 is preferred to the model used in NASA-TMX-53521. Although the preferred model is seriously handicapped by the use of an invariant boundary at 120 kilometers, the model is generally quite acceptable above 250 kilometers and below 1,000 kilometers. It is recommended that the model presented in NASA-TMX-53798 be accepted for use as a design criteria pending future studies directed at extending the model to include self-consistent variable boundary conditions.

For preliminary design purposes, such as evaluating the influence of atmospheric density on particular systems, the range of variation of density likely to be experienced as a function of time is quite useful. The range of variation of density can be obtained through use of the conditions associated with the maximum and minimum of solar activity (Tables 4-I and 4-II).

Table 4-I. Atmospheric Properties Associated with High Solar Activity (from Jacchia, 1965)

SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS

VOL. 8

TABLE 1.—Detailed atmospheric data as a function of height and exospheric temperature EXOSPHERIC TEMPERATURE = 2100 CEGREES

HEIGHT	TEMP	LOG N(C2)	LCG N(D)	LCG N(N2)	LOG NIHE .	LOG N(H)	MEAN	CALE	DENSIT	LOG DEN
KM	DEG K	/CM3	/CM3	/CM3	/CM ?	/CM3	MOL NT	HT KM	CHICNS	GH/CH3
								100		0.4 0. 7
120.0	355.0	10.8751	10.9808	11.6021	7.5315		26.90	11.62	0.2461E-10	-10.609
130.0	573.0	12.3227	13.5007	11.0926	7.3555		26.33	19.21	0.77156-11	-11.113
140.0	763.7	9.9618	10.2579	10.7611	7.2526		25.86	26.13	0.36516-11	-11.479
150.0	933.6	9.6908	10.0794	12.5132	7.1742		25.49	32.43	0.20946-11	-11 470
	,,,,,,						2	,2.4,	0.20902-11	-11.0/4
160.0	1076 7	9.4719	2.3383	10.3176	7.1174		25.14	10 14	0.10446-11	-11 671
170.0	12:14 5	0.7866	3,9213	13.1454	7.070		24 91	43.30	0.13466-11	-11.8/1
140.0	1214.5	9.1749	3 7212	6 9990	7 0300		24.61	43.34	J. 9290E-12	-12.552
100.0	1010.4	9.1249	9 43 34	0.04940	1.09022		24.51	48.10	0.67482-12	-12.171
190.0	1414.5	8.9805	9.0334	9.0000	6.9973		24.22	52.52	0.5048E-12	-12.293
200.0	1499.9	8.8491	4.7549	9.1504	c. 9083		23.94	56.53	0.39476-12	-12.404
			0 4037	0 4417						
210.0	15/4.9	0.1219	9.4037	9.0417	0.9420		23.00	60.71	0.31321-12	-12.504
220.0	1040.5	8.0148	4.4103	9.5405	c. 919/		23.40	03.02	0.2530E-12	-12.597
20	1697.9	8.5082	9.3576	9.4453	6.8950		23.15	65.77	0.2074E-12	-12.693
240.0	1748.1	8.4071	9.3037	9. 3552	6.8811		22.90	69.71	0.1721E-12	-12.764
250.0	1792.1	8.3105	9.2470	9.2693	6.3626		22.65	72.45	0.1443E-12	-12.841
	1010 6	0 3176	0.1050	0.1040						
260.0	1830-5	8.2176	4.1424	9.1009	6.8405		22.41	15.03	0.12216-12	-12.913
270.0	1864.2	8.1280	9.14/1	9.1074	6.8313		22.18	17.45	0.1040E-12	-12.983
280.0	1893.6	8.3410	9.1003	9.0304	6.8171		21.95	79.73	0.8924E-13	-13.049
290.0	1919.4	7.9564	9.3553	8.9556	6.8036		21.72	1.90	0.7700E-13	-13.114
300.0	1942.0	7.8738	9.1112	8.8826	6.7937		21.50	83.97	0.5677E-13	-13.175
320 .)	1979 3	7 7134	4 9773	9 7414	4 7444		21 00		0 50805-13	
320.0	2017.3	7 6 6 9 0	3.9215	8.061	6.7000		21. 38	01.05	0.50646-13	-13.293
340. 3	2037.5	7.5569	0.0400	8.0051	0. /442		20.01	91.34	0.39368-13	-13.405
360.0	2029.0	7.4085	8.1089	8.4/2/	6.7231		23.28	94.72	0.30HIE-13	-13.511
380.0	2045.1	7.2511	4.6935	8.3434	6.7029		19.91	97.06	0.2438E-13	-13.613
400.0	2058.4	7.1166	8.6149	8.2166	6.6835		19.55	100.84	0.1946E-13	-13.711
420.0	2058.1	6.9743	8.5478	8.0918	4.6647		19.22	123.68	0.15456-13	-13,805
440.0	2075.6	6.8339	9.4769	7.9487	6.6463		19.01	1 36 . 61	0.12685-13	-12 997
460.0	2081.3	6.6957	8.4068	7.8471	4 4764		19 41	100.05	0 10345-13	-13 005
480.0	2085 7	4 5570	0 3377	7 7347	4 4107		10.01	111 60	0.04705-14	-1 3. 985
500.0	2089.7	6 6 3 1 9	9 34 93	7 4075	6.6107	3 94 64	10.33	111.54	0.04/92-14	-14.0/2
500.0	2004.0	5.4210	0.2073	1.0015	0.3334	2.9434	18.07	114.05	0.03846-14	-14.156
520.0	2091.6	6.2868	8.2016	7.4893	6.5762	2.9406	17.82	116. +5	0.5789E-14	-14.237
540.0	2093.6	6.1530	8.1344	7.3720	6.5593	2.9360	17.59	118.78	0.4816E-14	-14-317
560.0	2095.1	6.0201	8.0678	7.2556	6.5425	2.9315	17.37	121.06	0.40225-14	-14.396
580.0	2076.2	5.8881	8.0017	7.1401	6.5258	2.9271	17.17	123.29	0.3373E-14	-14.472
600.0	2097.1	5.7570	7.9361	7.0252	6.5093	2.9228	16.97	125.49	0.2838E-14	-14.547
620.0	2097.8	5.6267	7.8709	6.9112	6.4930	2.9185	16.78	127 65	0.2396E-14	-14.621
646.0	2098.3	5.4972	7.3551	6.7979	6.4767	2.9144	16.60	129.80	0.2028E-14	-14.693
660.0	2098.7	. 3686	7.7417	6.6852	6.4606	2.9102	16.43	131.94	0.1723E-14	-14.764
680.0	2099.0	5.2407	7.6777	6.5732	6.4446	2.9061	16.26	134.09	0.1467E-14	-14.834
700.0	2099.2	5.1135	7-6141	6.4619	6.4286	2.9021	16.10	136.23	0.1252E-14	-14.902
										141102
750.0	2099.6	4.7989	7.4568	6.1864	6.3892	2.8921	15.70	141.75	0.85166-15	-15.070
800.0	2099.8	4.4888	7.3017	5.9149	6.3504	2.8823	15.29	147.63	0.5869E-15	-15.231
850.0	2099.9	4.1830	7.1488	5.6472	6.3121	2.8726	14.85	154.07	0.4093E-15	-15.388
900.0	2099.9	3.8814	6.9980	5.3832	6.2744	2.8631	14.38	161.33	0.2886E-15	-15.540
950.0	2100.0	3.5839	6.8493	5.1228	6.2372	2.8538	13=87	169.66	0.2056E-15	-15.687
1000.0	2100.0	3.2906	6.7026	4.8659	6.2005	2.8445	13.30	79.35	0.1480E-15	-15.830

3.

7

1

Table 4-II. Atmospheric Properties Associated with Low Solar Activities (from Jacchia, 1965)

STATIC DIFFUSION MODELS OF THE UPPER ATMOSPHERE

TABLE 1.—Detailed atmospheric data as a function of height and exospheric temperature—Continued EXOSPHERIC TEMPERATURE = 650 CEGREES

NO. 9

HEIGHT	TEMP	LOG N(02)	LOG N(O)	LUG NIN2)	LOG N(HE)	LOG N(H)	MEAN	SCALE	DENSITY	LOG DEN
KM	DEG K	/CM3	/CM3	/ CM 3	/CM3	/CM3	MOL WT	HT KM	GM/CM3	GH/CM3
120.0	355.0	10.8751	10.8808	11.6021	7.5315		26.90	11.62	0.2461E-10	-10.609
130.0	428.2	10.3916	10.5984	11.1687	7.4307		26.23	14.42	0.9222E-11	-11.035
140.0	483.3	9.9948	10.3737	10.8147	7.3550		25.53	16.76	0.4189E-11	-11.378
150.0	524.7	9.6486	10.1828	10.5072	7.2941		24.82	18.78	0.2137E-11	-11.670
160.0	555.8	9.3348	10.0133	10.2293	7.2424		24.08	20.56	0.1178E-11	-11.929
170.0	579.2	9.0426	9.8583	9.9714	7.1970		23.34	22.18	0.6859E-12	-12.164
180.0	596.7	8.7658	9.7134	9.7273	7.1559		22.60	23.67	0.4167E-12	-12.380
190.0	610.0	8.4998	9.5757	9.4923	7.1180		21.87	25.08	0.2617E-12	-12.582
200.0	619.9	8.2420	9.4432	9.2667	7.0822		21.16	26.42	0.1690E-12	-12.772
210.0	627.4	7.9902	9.3147	9 0456	7.0481		20.49	27.70	0.1118E-12	-12.952
220.0	633.0	7.7430	9.1892	8.8287	7.0153		19.87	28.91	0.7543E-13	-13.122
230.0	637.2	7.4994	9.0659	8.6151	6.9834		19.29	30.07	0.5184E-13	-13.285
240.0	640.4	7.2586	8.9445	8.4040	6.9522		18.77	31.16	0.3620E-13	-13.441
250.0	642.8	7.0201	8.8244	8.1951	6.9215		18.29	32.19	0.2563E-13	-13.591
260.0	644.6	6.7935	8.7055	7.9878	6.8913		17.87	33.14	0.1838E-13	-13.736
270.0	645.9	6.5485	8.5876	7.7819	6.9615		17.49	34.04	0.1333E-13	-13.875
280.0	646.9	6.3149	8.4704	7.5773	6.8319		17.14	34.88	0.9761E-14	-14.011
290.0	647.7	6.0824	8.3539	7.3737	6.8026		16.83	35.68	0.7209E-14	-14.142
300.0	648.3	5.8510	8.2380	7.1711	6.7734		16.54	36.45	0.5364E-14	-14.271
320.0	649.0	5,3910	8.0078	6.7683	6.7156		15.99	37.97	0.3026E-14	-14-519
340.0	649.4	4.9344	7.7793	6.3685	6.6584		15.44	39.58	0-1743E-14	-14.759
360.0	649.7	4-4908	7.5524	5.9714	6.6015		14.83	41.47	0-1021E-14	-14.991
380.0	649.8	4-0301	7.3271	5.5768	6.5451		14.10	43.90	0.6069E-15	-15.217
400.0	649.9	3.5823	7.1031	5.1847	6.4850		13.20	47.15	0.3660E-15	-15.437
420.0	649.9	3,1371	6.8805	4.7950	6.4323		12.13	51.62	0.2240E-15	-15.650
440.0	650.0	2.6946	6.6592	4.4076	6. 3779		10.91	57.75	0.1395E-15	-15.855
460.0	650.0	2.2547	6.4393	4.0224	6.3229		9.60	66.04	0.8870E-16	-16.052
480.0	650.0	1.8173	6.2206	3.6396	6.2682		8.29	76.92	0.5782E-16	-16.238
503.0	650.0	1.3826	6.0032	3.2589	6.2138	5.8199	7.07	90.63	0.3883E-16	-16.411
520 O	450 0	0 9503	5.7871	2.8805	6.1597	5,8063	6.02	107.07	0.2698E-16	-16.569
540.0	650.0	3.5206	5.5722	2.5043	6.1059	5.7927	5.16	125.67	0.1946E-16	-16.711
540.0	650.0	0.0936	5.3586	2.1303	6.0525	5.7793	6.68	145.50	0.1458E-16	-16.836
580.0	650.0	-0.3314	5.1462	1.7584	5.9993	5.7659	3.97	165.49	0-1134E-16	-16.946
600.0	650.0	-0.7537	4.9351	1.3867	5.9465	5.7526	3.57	184.70	0.9113E-17	-17.040
		1 1724	4 7251	1 0 2 1 1	6 9030	5 7304	3 30	202 54	0 76375-13	-17 122
620.0	650.0	-1.1730	4.7251	1.0211	5.8959	5.7344	3.28	292.50	0.13312-11	-17.125
640.0	650.0	-1.5911	4.3104	0.0000	5 7907	5 71 31	3.03	210.05	0.03010-17	-17 250
660.0	650.0	-2.0005	4.3005	0.2921	5 7301	5 7001	2.01	255.05	0.69136-17	-17 219
880.0	650.0	-2.4190	3 8073	-0.6396	5 4947	5 4972	2.13	247.21	0.40150-17	-17 371
100.0	030.0	-2.0295	3.0912	-0.4250	2.0007	5.0012	2.01	237.02	V.42302-17	-11.5/1
750.0	650.0	-3.8454	3.3892	-1.3180	5.5596	5.6552	2.38	289.07	0.32335-17	-17.490
800.0	650.0	-4.8472	2.8883	-2.1950	5.4343	5.6236	2.20	317.51	0.2531E-17	-17.597
850.0	650.0	-5.8351	2.3944	-3.0599	5.3107	5.5925	2.04	346.84	0.2021E-17	-17.694
900.0	650.0	-6.8093	1.9073	-3.9128	5.1888	5.5618	1.90	377.64	0.1639E-17	-17.785
950.0	650.0	-7.7702	1.4268	-4.7541	5.0686	5.5315	1.78	409.90	0.1348E-17	-17.870
1000.0	650.0	-8.7181	0.9529	-5.5839	4.9500	5.5017	1.67	443.29	0.1124E-17	-17.949

4-3

253

5.0 ELECTROMAGNETIC RADIATION

5.1 Solar Radiation Criteria

The solar electromagnetic radiation spectrum shown in Figure 5-1 should be used for the thermal design of space vehicles. Because of the importance of the optical region, the spectral irradiance for th_t region is tabulated in Table 5-I. The recommended solar constant for the various system conditions is shown in Table 5-II. The tolerance associated with the solar constant is primarily due to the uncertainty as to its absolute magnitude and is not a time variational effect. The time variation of the integrated solar irradiance is shown in Figure 5-2.

5.2 Albedo Radiation Criteria

Using the available data, a mean latitudinal distribution has been constructed and is shown in Figure 5-3. The recommended thermal design criteria is given in Table 5-III. In general, near-Earth orbiting vehicles experience albedo effects for periods of 0.6 to 3 hours (albedo flux considerations become much less significant with greater orbit periods). For systems with a thermal constant between .3 and 3 hours, the suggested tolerance includes the extreme "effective albedos" (as determined by system thermal response) the system may see during a

particular orbit. Systems with small thermal time constants (<20 min.) will respond quickly to variations in the albedo radiation. For this case, the "effective albedo " approaches the measured albedo values, and the tolerance approaches the extreme values of Figure 5-3. For systems with thermal constants <3 hours, global and hemispherical values are of prime importance. The tolerance includes data inaccuracies and a small seasonal variation.

5.3 Earth Thermal Radiation

Assuming the earth-atmosphere system is in near radiative equilibrium and a global albedo of 30%, the equivalent blackbody temperature of the earth-atmosphere system is 254° K, corresponding to an outward long-wave radiation flux of 0.34 cal cm⁻²min⁻¹. A mean latitudinal distribution is given in Figure 5-4. There are no seasonal variations of the global or hemispheric averages of the outgoing long-wave earth radiation. No statistically significant seasonal variations at particular latitudes have been established either. The design values are given in Table 5-IV. The discussion of the tolerances for the albedo apply here as well. The small suggested tolerances (percentage-wise) reflect the relatively small impact of the thermal radiation upon the thermal state of orbiting systems.

TABLE 5-I

Solar Spectral Irradiance (Based on Measurements on Board NASA 711 "Galilec" at 38,000 feet) λ --wavelength in microns; P_{λ} -Solar Spectral Irradiance averaged over small bandwidth centered at λ , in watts cm⁻²micron⁻¹; D_{λ} --percentage of the Solar Constant associated with wavelengths shorter than wavelength λ . Solar Constant 0.13510 watt cm⁻² (From NASA GSFC 1968).

λ	\mathbf{P}_{λ}	D_{λ}	λ	Ρ _λ	D	λ	Γ_{λ}	D _A	λ	P	D,
0.140	0.0000048	0.00050	0.395	0.1191	8.189	0.630	0.1542	39.26	3.8	0.00111	98.902
2.150	0.0000176	0.00059	0.400	0.1433	8.675	0.640	0.1517	40.39	3.9	0.00103	98.982
0.160	0.000059	0.00087	0.405	0.1651	9.245	0.650	0.1487	41.50	4.0	0.00095	99.055
0.170	0.00015	0.00164	0.410	0.1759	9.876	0.660	0.1468	42.00	4.1	0.00087	99.122
0.180	0.00035	0.00349	0.415	0.1783	10.53	0.670	0.1443	43.67	4.2	0.00078	99.182
0.190	0.00076	0.00760	0.420	0.1758	11.19	0.680	0.1418	44.73	4.3	0.00071	99.238
0.200	0.00130	0.0152	0.425	0.1705	11.83	0.690	0.1398	45.78	4.4	0.00065	99.289
0.205	0.00167	0.0207	0.430	0.1651	12.45	C.70C	0.1369	46.80	4.5	0.00039	99.235
6.210	0.00269	0.0288	0.435	0.1675	13.06	0.719	0.1344	47.80	4.6	0.00055	59.5.6
0.215	0.00445	0.0420	0.440	0.1823	13.71	0.720	0.1314	48.79	4.7	0.00048	99.414
0.220	0.00575	0.0609	0.445	0.1936	14.41	0.730	0.1290	49.75	4.8	0.00045	99.448
0.225	0.00649	0.0835	0.450	0.2020	15.14	0.740	0.1260	50.69	4.9	0.00041	99.480
0.230	0.00667	0.1079	0.455	0.2070	15.90	0.750	0.1235	51.62	5.0	0.000383	99.500
0.235	0.00593	0.1312	0.460	0.2080	16.66	0.800	0.1107	55.95	6.0	0.000173	03.716
0.240	0.00630	0.1554	0.465	0.2060	17.43	0.850	0.0988	59.83	7.0	0.000099	99.317
0.245	0.00723	0.1788	0.470	0.2045	18.19	0.900	0.0889	63.30	8.0	0.000060	99.376
0.250	0.00704	0.2053	0.475	0,2055	18.95	0.950	0.0835	66.49	9.0	0.000038	99.912
0.255	0.0104	0.2375	0.480	0.2085	19.72	1.000	0.0746	69.42	10.0	0.000025	99.935
0.260	0.0130	0.2808	0.485	0.1936	20,47	1.1	0.0592	74.37	11.0	0.0000170	09.951
0.265	0.0185	0.3391	0.490	0.1959	21.20	1.2	0.0484	78.35	12.0	0.0000120	99,962
0.270	0.0232	0.4163	0.495	0.1966	21.92	1.3	0.0396	81.61	13.0	0.0000037	99.969
0.275	0.0204	0.4960	0.500	0.1946	22.65	1.4	0.0336	84.32	14.0	0.00000055	99.575
0.280	0.0222	0.5758	0.505	0.1922	23.36	1.5	0.0287	86.62	15.0	0.0000045	00.9733
0.285	0.0315	0.6752	0.510	0.1882.	24.07	1.6	0.0244	\$8.59	15.0	0.000038	99.9717
0.290	0.0482	0.8225	0.515	0.1833	24.76	1.7	0.0202	90.24	17.0	0.0000031	\$3,9843
0.295	0.0584	1.020	0.520	0.1833	25.43	1.8	0.0159	91.58	18.0	0.0000024	90.9863
0.300	0.0514	1.223	0.525	0.1852	26.12	1,9	0.0126	92.63	19.0	0.0000020	99.9379
0.305	0.0602	1.430	0.530	0.1842	26.80	_2.0	0.0103	93.48	20.0	0.0000016	99.9393
0.310	0.0686	1.668	0.535	0.1918	27.48	2.1	0.0090	94.19	×.		106.0
0.315	0.0757	1.935	0.540	0.1783	28.14	2.2	0.0079	94.82			
0.320	0.0819	2.227	0.545	0.1754	28.80	2.3	0.0008	95.36			
0.325	0.0958	2.555	0.550	0.1725	29.44	2.4	0.0064	95.85			
0.330	0.1037	2,00=	0.555	0.1720	30.08	2.5	0.0054	96.287			1
0.335	0.1057	3.312	0.560	0.1695	36.71	2.6	0.0048	96.664			
0_340	0.1050	3.702	0.565	0.1700	31.34	2.7	0.0043	97.001			
0.345	0.1047	4.090	0.570	0.1705	31,97	2.8	0.0039	97.305 .			
0.350	0.1074	-1.483	0.575	0.1710	32.60	2.9	0.0035	97.579			
0.355	0.1067	4.879	0.580	0.1705	33.23	3.0	0.0031	97.823			
0.360	0.1055	5.271	0.533	0.1700	33.86	3.1	0.0026	98.034			
0.365	0.1122	5.674	0,590	0.1685	34.49	3.2	0.00226	98.214			
0.370	0.1173	6.099	0.595	0.1605	35.11	3.3	0.00192	98.368			
U.375	0.1152	6.529	0.600	0.1646	35.72	3.4	0.00166	98.501			1
0.380	0.1117	6.919	0.605	0.1626	36.33	3.5	0.00146	98.616			
0.385	0.1097	7.359	0.610	0.1611	36.93	3.6	0.00135	98.720			
0.390	0.1099	7.765	0.620	0.1376	38.11	3.7	0.00123	95.810			

Table 5-II. Design Criteria For Solar Constant

System Conditions	F	Recommended Criteria							
	cal cm ⁻² min. ⁻¹	watts m ⁻²	BTU ft ⁻² hr ⁻¹						
20 min < system thermal time constant > 3 hrs.	1.95 <u>+</u> .03	135 9 <u>+</u> 21	431 <u>+</u> 6.7						
System thermal time constant < 20 min.	1.95 <u>+</u> .03	1359 <u>+</u> 21	431 <u>+</u> 6.7						
System thermal time constant > 3 hrs.	1.95 <u>+</u> .03	1359 <u>+</u> 21	4 31 <u>+</u> 6.7						

Table 5-III. Design Criteria For Albedo

Systems Conditions	Recommended Criteria
	(%)
20 min < system thermal time constant > 3 hrs.	30 <u>+</u> 10
System thermal time constant < 20 min.	30 + 30 - 15
System thermal time constant > 3 hrs.	30 + 5

Table 5-IV. Design Criteria For Earth-Atmosphere Thermal Radiation

System Conditions	Recommended Criteria			
	cal cm ⁻² min ⁻¹	watts m ⁻²	BTU ft ⁻² hr ⁻¹	
0 min < system thermal time constant > 3 hrs.	.34 +.02	235 ⁺¹⁴ -48	76 +4.6 -16	
system thermal time constant < 20 min.	.34 +.04 14	235 +28 -97	76 +9.2 -32	
system thermal time constant > 3 hrs.	.34 ±.03	235 ±21	76 ±6.7	

5-4

i.

6.0 GEOMAGNETIC FIELD

The total field strength at selected altitudes is presented in Figure 6-1 through to 6-7 and was obtained using the NASA-GSFC coefficients published in May 1968. For those instances where additional information is required, such as the component variations, dip angles, etc., it is recommended that use be made of the computerized version of the geomagnetic field contained in: "NASA-GSFC - Data Users Note -NSSDC 68-11, May, 1968".

,

1

i,

