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NONCONICAL THEORY OF FLOW PAST SLENDER WING-BODIES

WITH LEADING-EDGE SEPARATION

By M. H. Y. Wei, E; S. Levinsky, and F. Y. Su
Air Vehicle Corporation

SUMMARY

A theoretical method is presented for calculating the nonlinear lift and
pressure distribution on nonconical slender wing-body combinations exhibiting
leading-edge separation. The theory is based upon the flow model of
Mangler and Smith in which a pair of spiral vortex sheets is assumed to
spring from the wing leading edges and roll up into two vortex cores. A
general solution which depends on conical initial conditions is found for the
pressure continuity equation on the vortex sheet. The continuity of normal
velocity condition across the vortex sheet is extended to account for the twist
of the vortex sheet along the body axis. The zero-force condition on the vor-
tex core and cut is modeled after Bryson, who developed a nonconical
approach without vortex sheet effects.

Based on this theory, a computer program was developed which pre-
dicts lift, pitching moment, and pressure distribution as a- function of axial
station for slender configurations with curved leading edges and curved body
.shapes of circular or elliptical cross section. Variable wing incidence is
'also included in the'analysis in order to predict nonlinear longitudinal con-
trol effectiveness.

Sample calculations are presented and compared with wind tunnel test
data. Reasonably good agreement with test data is shown, except for one
configuration (a body with a curved nose, conical afterbody, and 50 01c curved
strakes) for which numerical errors in the computation became excessively
large toward the base. The change in lift due to wing incidence was found to
be highly nonlinear and increased with increasing angle of attack.
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"	 INTRODUCTION

As is well known, the lift curve of slender bodies representative of
reentry vehicle and booster configurations is nonlinear at large angles of
attack (e. g., refs. 1 and 2). The nonlinearity is caused by the formation of a
pair of rolled-up vortices due to flow separation over the leeward body sur-
face at large angles of attack. Even though the body vortices increase the lift
above linear theory values, the lift curve slope and lift-drag ratio of slender
bodies is still too small for making a safe approach and landing maneuver.

In a previous theoretical and experimental investigation (ref. 3) it was
determined that a relatively large improvement in lift could be obtained for
slender conical bodies by placing sharp-edged wings (strakes) on the body.
The increase in nonlinear lift was due to fixing the separation point at or
close to the strake leading edge, rather than allowing flow separation to oc-
cur naturally over the leeward body surface by viscous effects. The investi-
gation of nonlinear lift conducted in reference 3 was restricted to conical
body-strake configurations only. Cones of circular and elliptical cross sec-
tion and strakes with and without dihedral were considered. Agreement
between theory and test data was satisfactory as long as the strakes were of
sufficient size to move the separation point to the strake leading edge as
assumed in the theory.

The objective of the current investigation is to extend the nonlinear
theory of reference 3 to more general nonconical geometries representative
of practical slender reentry body and hypersonic aircraft configurations,
e.g., strakes or wings with curved leading edges and bodies with curved nose
and afterbody profiles. In addition, wing incidence effects are introduced in-
to the theory in order to calculate control effectiveness. A wind tunnel
program has been carried out at the NASA Ames Research Center to evaluate
the nonconical theory.

It is of interest to compare the present generalized theory with the
work of previous investigators. The present theory is based on the flow
models of Mangler and Smith (ref. 1) and Smith (ref. 4), who developed
formulations for conical delta wings. The Mangler and Smith (MS) theory
includes a pair of spiral vortex sheets which originate from the strake lead-
ing edges. Each vortex sheet ends at a cut which is connected to an isolated
vortex core at its center. Boundary conditions are satisfied at discrete
points on the vortex sheets (pressure and normal velocity) and define the
sheet shape and strength. The MS theory was extended to a wide class of
conical wing-body configurations in reference 3. In the present paper, the
MS theory and formulation of the vortex sheet boundary conditions are gen-
eralized for nonconical flows.

Much of the previous work on the formulation of a nonconical theory of
vortex lift has been based upon the simpler Brown and Michael (BM) model
(ref. 5), originally developed for conical flow only (flat delta wing). In the
BM model the spiral vortex sheet is neglected, and the isolated vortex cores
are joined directly to the separation point (leading edge) by a cut.

2



Bryson (ref. ' 2) first applied the BM model to nonconical geometries.
He treated the flow over a pointed body of revolution (ogive cylinder), but
was forced to use empirical values for the separation angle on the leeward
body surface. Schindel (ref. b) extended the BM model to bodies of elliptical
cross section, and provided additional experimental data on the separation
angle. Jobe (ref. 7) utilized the BM model to obtain the nonlinear lift for
zero-thickness pointed wings with camber, flaps, and nonconical planforms
(including double deltas). Unfortunately, agreement between the BM theory
and test data has been generally unsatisfactory (refs. 4, 5, 7), which is the
motivation for the present more complicated model.

More recently, Sacks, et al. (ref. 8). have approached the same
problem by using a discrete vortex model in which the leading-edge vortex
sheets of the MS model are replaced by freely moving vortex pairs. Even
though the method was applied to nonconical wing-body configurations
(double-delta wings), a semi-empirical technique was required to determine
the vortex shedding rate in order to obtain good agreement with test results.

In the following sections the nonconical slender-body theory is first
presented, with emphasis on the form of the nonconical boundary vonditions
across the vortex sheet. Next, the method of solution is presented, includ-
ing a discussion of ee numerical procedure. The additional velocity poten-
tial due to wing incidence is included in the analysis. Sample calculations
are presented for several nonconical wring-body configurations for which test
results are available, and the convergence and running time of the calcula-
tions are assessed. Finally, comparisons are given between calculated and
measured lift, pitching moment, and pressure coefficients.

t
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NOTA .v:V

A planform reference area

a body radius

C L lift coefficient based on projected planform area

CM moment coefficient about the apex

C 
pressure coefficient

D. distance in the auxiliary plane from the isolated vortex to the
j'th pivotal point of the vortex sheet

F force in physical cross-flow plane

h. angle between the line connecting Z* and Z*, and the line con -
J necting Zv with the origin	 v

(-1)112i

L lift

N sheet segment number

n inward normal to vortex sheet (in physical cross-flow plane)

q strength of sink and source distribution

r polar radius in physical plane

S surface of vortex sheet 	 (S = 0) .

s semispan of wing-body combination

U component (= V cos a) of stream velocity along x

V free-stream velocity

W complex velocity p-)tential

x, y, z Cartesian coordinates

Z complex variable {= y + i z) in physical cross-flow plane

Z* complex variable (= y* + 1 z* ) in auxiliary cross-flow plane

a angle of attack

P dihedral angle

4
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t vortex strength

Yj-112 vortex strength/unit length along vortex sheet at intermediate
point

b semi-apex angle of body-strake configuration; also,
differential operator

E incidence angle

TI angle defined by equation (35)

71 a parameter defined in equation (4)

8j angular position of radius vector r 

a parameter defined by equation (4)

velocity potential

a velocity potential jump across vortex sheet

qr angle between r and tangent to sheet

P air density

c distance along vortex sheet, measured from leading edge of
strake

Subscripts: Superscripts:

c cut	 complex conjugate

f final station	 in the auxiliary plane

j index

k index

m mean values

n segment number

o initial station

s source

v isolated vortex
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THEORY

Let us consider the flow past a slender body with curved strakes (or
wings) at angle of attack (fig. 1). Due to leading - edge separation, a spiral
vortex sheet emanates from each wing tip, forming a region of rotating
fluid above the wing. No additional separation is assumed to occur on
the leeward body surface.

According to the slender-body theory, the perturbation velocity poten-
tial 0 is governed by the Laplace equation in the physical cross -flow plane
Z(= y + i z)

$yy + +zz 
C 0	 (l)

where subscripts y, z denote the partial differentiation with respect to y
and z coordinates as shown in figure 2.

The boundary condition at infinity is

^z	 V sin 	 (2)

with a the angle of attack and V the free stream velocity. On the surface
of the body and wing, the normal velocity vanishes. To satisfy these bound-
ary conditions, it is usually more convenient to seek solutions of equation (1)
in an auxiliary plane Z* = Z * (Z) in which the body and strakes are collapsed
into a vertical slit along the y-axis (fig. 3) by the use of conformal mapping.

For a flat delta wing, the transformation is

Z * = Z2 - s 2	 (3)

where s is the wing semispan. For more general wing-body combinations
of arbitrary dihedral angle P and body radius a, the transformation is
(ref. 3)

Z* 2 = C(Z - a 2̂  Z) - i
ll	 (4)

where	 i = (s+ a2Is) sin P

and	 ( s - a2/5 ) cos P

Velocity Potential in Cross-Flow Plane

Following Smith (ref. 4), the components of perturbed velocity in the
cross-flow plane are given by

y- i¢z =3Z = 
d

4* dZ*	(5)dZ

6
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and, with U = V cos a,

r le"iUtana += 	 1 Z * Z* + Z*v	 v
hmax

+ S_1 d AII

	

	 1	 _	 1

p  C Tir i "^h`] Z * - Z *(h) Z* + Z (h) I d 

dW s d W i

+ d Z* + 
d Zr	 (6)

where the first term on the right hand side of equation (6) gives the linear
velocity component due to angle of attack, the second term arises due to the
vortex cores, the third (integral) term is the contribution from the spiral
vortex sheets, and the last two terms are velocity components due to body
cross - sectional area and wing incidence. By integrating equation ( 6) from
Z* _	 to Z* = Z * we obtain the complex velocity potential W	 Re(W) ].

r	 z* - z*
W(Z) _ - i U Z * tan a+ 2 Ai log

Z +Zv

hmax
+ T=

V
 d log^Z *+ Z ( h} ]dh + W

s +W (?)

where r is the strength of the isolated vortex, Z * is the position of the
isolated vortex, - d= , is the strength of *the vortex sheet, and - Z *(h) is
the vortex sheet position. The bar indicates complex conjugat,!.

The real part of equation (7) is a solution of equation (1) which satis-
fies the boundary conditions on the surface for any values of r^

ddhh , Zv, and Z* (h). These unknown sheet and vortex parameters are
functions of the body station x and must be determined by additional bound-
ary conditions on the vortex sheet. We remark that the multiple valued
logarithmic functions in equation (7) yield a jump in velocity potential across
the sheet

	

YhA 0 (h) = v+ 
	

dd 45 d h	 (8)
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Boundary Conditions on Vortex Sh.:

As described in references 1, 3, and 4, the spiral vortex sheet is con-
sidered to be composed of an inner and an outer part. The inner core, which
consists of an infinite number of turns, is represented by an isolated singu-
larity of unknown strength rv. Thus, the length of the outer part of the vortex
sheet is finite with the sheet shape and vortex strength yet to be determined.
The boundary conditions formulated in the followin g; sections are used to de-
termine both the strength and position of the isolated vortex and its feeding
sheet.

Continuity of normal velocity. —We assume that the surface of the vor-
tex sheets may be defined by an expression of the form

S(x,c,n)=0
where a and n are the arc length and inward -drawn normal along the vortex
sheet in the plane x = constant (fig. 2).

For the vortex sheet to be a stream surface in a steady motion, the
condition of tangential flow at the sheet surface requires that the outward
normal to the surface be perpendicular to the flow velocity vector:

VS • V(4+Ux) =0	 (9)

When, in accordance with the linearization assumptions, #x is neglected in
comparison with U, ^4uation ( 9) becomes

U Sx + $Q SQ + 4n Sn = 0	 (10)

For any curve in the cross - flow plane, we have

S0 = 0	 and -M = r cot op	 (11)

Here r, 8 are the polar coordinates and op is the angle between the tangent
and the radius vector as shown in figure  2. Thus, equation(	 reduces to

U S  + $n Sn = 0	 (12 )

Moving along the vortex surface with d o • = 0, we find	 f
dS = S  dx + Sn do ='0	 (13)

Upon combining equations ( 12) and ( 13), we obtain

do_ 8n	 _ * /U	 (14)
d x 37 a= coast n

8



f

From the geometry in the cross - flow plane (fig. 2), one finds

7 r = cos 9 ;	 TT = - sin v	 (15)

Converting equation ( 14) into polar coordinates, we obtain

8x

	

	 = - on / U sin 9P	 (lbj
8 2 const.

The general equation of the sheet surface now becomes
1 X 

(_ +n)
	 Yr(x,0) _ U Yo sidx+orcottp d6 	(17)

Pressure eontinuitY condition. —According to slender-body theory, the
pressure coefficient is given by

C  = sin a - 2 +x f U - (+6 + On )/U 2 	 (18)

Let A denote the difference in value across a vortex sheet. Since
the pressure is continuous across the sheet, we have

ACp = 0	 (19)

Across the vortex sheet we write

a
a In =0 '	 a+x =8x a+

A i^ 2 ^O-m ^Q	 and	 A = —Cr !^

Equation ( 19) therefore becomes

T; 8
xx A' - ^cm 8 A	 (24)

where ^T m is the mean tangential velocity along the sheet surface.

Equation ( 20) is a quasilinear first order partial differential equation.
she general solution to equation ( 20), satisfying the initial conical flow condi-
tion, is readily obtained, e. g. , reference 9,

x.6
Ali = A^^IP-J U dx^	 (Zi)

o

This solution can be' readily verified by substitution into equation (20).

I
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It is of interest to compare the conical limit of equation (21) with the
pressure condition used previously in references 1, 3, and 4. For a conical
vortex sheet, +vm and qP are both constant along lines of constant 6.
From equation (15) we have 	 x

c = r cos yv and Yo +(rm d  = }(rm x	 (22)

Upon combining equations (21) and (22), we recover the conical pressure con-
dition originally given by Mangler and Smith (ref. 1)

D	 O ^6 rr cos-U x 1	 (23) .
J

Equation (21) may be regarded as a generalized boundary condition
for determining the vortex sheet strength for nonconical flows.

Zero force condition. —As discussed previously, the vortex sheet is
divided into an inner and an outer part at some arbitrarily chosen point along
its length. The inner part of the sheet is assumed to have the same behavior
as an isolated vortex. The outer part of the vortex sheet is terminated in a
cut which connects to the isolated singularity.

As is well known, the force F  per unit length acting on the vortex
is

Fv - i p Ir &U	 (23)

where AU is the local relative velocity between the flow and the vortex in
the physical cross-flow plane Z. namely,

	

Z`	 d Z
AU = lim	 CdW } 2^ri	 1 ] - U dx	 (24)

>Z-Zv d Z	 Z - Zv

with W the conjugate of the complex potential W. The force F  per unit

length on the cut may be written as

ar
Fc = i (2 p U2 ) (Zv - Zn ) (A Cp ) _ - i p (Z^ - Zn) 

a x U (25)

where Zn is the location of the end of the outer part of the vortex
sheet, and	 2 p U2 A C p 

is the pressure difference across the cut
a 

(ACp - 2 ax /U).
For no overall force on the system of the isolated vortex and its

cut, we obtain

I
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}

_Lv
U dxv (Zv - Zn ) = r i

	
+	 1	 - U 

d v i Z Z
(26)v

L d Z 2ni 
Z - Z	 = 

v	 v

Equation (26) is a first order nonlinear ordinary differential equation
which can be numerically solved for given initial conditions.

Kutta condition. —The Kutta condition requires that the velocity at the
leading edge of the wing be finite, and is used to determine the strength of the
isolated vortex. The leading edge is a singular point of the transformation

Z = Z (Z), and in the auxiliary Z -plane the Kutta condition becomes

F dW	 dWs	 = 0	
(27)

LdZ	 dZ* Z 0

11
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METHOD OF SOLUTION

For nonconical flow, the boundary conditions on the vortex sheet and
isolated core [equations (16), (21), (26), and (27)] are no longer algebraic,
as was the case for conical flow, but are given by a set of nonlinear integral
and differential equations. In accordance with the assumptions of slender -
body theory (no upstream influence), the solution to this set of equations may
be found numerically by marching step by step along the x-axis for given
initial conditions. All the configurations to be investigated are assumed to be
conical up to the initial station so that conical methods (e. g. , refs. 3 and 4)
can be used to generate the initial data.

Let us consider the velocity potential in the cross-flow plane in
which the vortex sheet is approximated by a series of n straight-line seg-
ments of strength y. = - [ A4^1 at the pivotal sheet points Z j . The com-

plex potential W(Z }, equation (7), becomes

	

i ry Z*- Z^	 1 n	 Z*- Z! l
-TIFW (Z*) _ - i UZ* tan a - V In Z +L
	 I yj (h^+1-h.	 Inr z---- * J

	

v	 j=1	 L.

+ W s + Wi	(a)

where h. is the angle between the line connecting Z  and Z^ , and the line
connecting Z v with the origin (fig. 3). Note that ho = 0 and hn+l = hn'
The source potential for a body of circular cross section is W s Ua dx In Z.
The additional potential due to wing incidence . Wi (Z * ) will be derived in
Appendix A.

The unknowns in equation (28) are rv, Z., Y• and Z,, with
j=1, 2, ... n. The total number of unknowns is 2n+ 2, h and the efore a like
number of equations is required. The equations are supplied by the boundary
conditions on the vortex sheet as derived previously. The finite difference
representation of the vortex sheet boundary equations and its numerical solu-
tion procedure will now be presented.

Finite Difference Representation

Pressure continuity equation. --For conical initial conditions, equa-
tion (21) ecomes

12
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x00- M
A ^j-1/2 = ^^ ^ [(r (X) _ x0 __T (xo) - YX 	 dxI 

Ij_l
	 (29)U	

0 

where the subscript j-1/2 denotes the middle point of the j'th vortek sheet
segment. The term 0TM(x0) is the initial value of +o-m at the starting
station xo.

Using the trapezoidal rule for numerical integration in the cross-flow
plane, equation (8) becomes

N

ADj-1/2 = v+ 1/2 Ah3 Vj-1/2 +\ Ahk Yk-1/2	 (30)
k=j+1

where Ah. = hj - hj-1 and Yj_1/2 = -
 [dA6.

h  I .jj - 1f2

By substituting equations ( 30) and ( 15) into equation ( 29), we obtain
N

r  + Z A hj yj - 1 +	 A hk Yk- 1
k=j+1	 2

	

x	 r(x)

y' 
$

d [XO 
T 

(x o) .+ 
YX 

U dx - r(xo ) cos rp (xa -	 cos 9p d r

	

 Yr(xo 	 1_7

'	 (31)

where, based on the slender body theory approximation ( refs. 3 and 4),
1

d h	 _ IdZ*lj 	 2	 D.-D.2 - 7	 * lj]-1	 dZ
d^1j-1	 dZ -1{IJ 2+[h.-h. 1] } 	 dZ	 1/e.

	

= Re dW dZ * dv*	 =	 Ir dW dZ* dZ*
cm	 [d2* dc* dQ ]. 1	 L dZ * do^* I

	
J. 1 ."7	 J-2



[dW ^r
*]. = -JU tan a - tvdZ	 1 Z

	

1	 * -	 1 1	 ]
J-

1 	 z* - v Z-+Zv

	

2	 2

N

	

i '^,	 r	 1	 _	 1	 i
- 4Tr L, (hk+i-hk-1)1Z* 1-Z * Z1+Z JYkk=1	 J-?	 k	 J_ 

2	 k

/	 + CdZ* ^. 1 + CdZ * 1. 1
J- Z	 J'7

**dZ	 i(ov +h. 1j	
+

.. 1

dcr	 L h - hj-1	 J- 2 / J 2

2	 2	 1

r	 1 = [r* + D* 1 - 2r * D. 1 cos (h. 1) 1 , 2J' 7	 v	 J-?	 v J- 2	 J-^ J

and

cos qo:_ 1 = (r. - r. )^(h - h.	 ) dZ*i 1	 e. 1J 2	 J	 J -1 j	 J-1 rZ Ij-2 J-Z

Equation (31) is to be satisfied at tht, mid point of each sheet segment and at
each body station x. For a conical geometry, the solution is required at
only a single axial station: because of flow similarity.

Kutta condition. —By combining equations (27) and (6), using
finite difference representation (trapezoidal rule) for the integral, and
assuming that the integrand is finite at j..0 and varies linearly with h be- 	 F
tween j=0 and , j=1, we obtain, including effects of wing incidence,

rr =	 v * ^rUItana+ E x (22 + cos-12 sv2 1
cos 8 f 	 s+ a )Jv

•
1	 h2	 cos 0 1 Yl	

h

	

(
	 hl h2 cos 8i Y2

+ 2 C\h2- h l ) — + Ci - h-hl ) r
1	 2

N	
Yk cos 8k

+	 (hk+l - hk-1 ) r* '] I (32)
=3	 k
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d W.

	

The incidence term	 1	 has been expressed in terms of incidence

	

d Z * z 	 0
angle a (x) by using equation (A18) of Appendix A.

Equation (32) is used to determine the isolated vortex strength r 

along the x-axis.

Zero force condition._ – The finite difference representation of
equation (26) is

ry (x + AX) - ry (x)

Ax	
(Zv - Zn)

x+ Ax

= r(x+&x}
fZ
lim C1 dW + r	 1 1

v	 -•Zv U d z ZWU ]' z -Zv x+nx

Zv (x+ px) - Zv(x)
Ax	 (33)

which can be resolved into component forms to determine the isolated vortex
position Z = (y + i z v)v v 	 x+©x

Continuity of normal velocity condition .—For nonconical flow, the
sheet pivotal points will no longer remain at constant values of 0 at each
axial station, as is the case for conical flow. Thus, if the sheet twists, the
finite difference representation for rj _ 1 f2 must be adjusted to account for
the change in polar angle 0 wi:h x. Accordingly, we write

FS
x	 _ - •px ['rj-,/,(x+&x, 0+A - rj- 1^2 (x ' 0)(l+Be p@)

	

^1-1/2, 0-const	 J

where Or/80  is given by equation (11) and ' A0 = 0j-1`2 (x+AX) - of-V2(x) .

Substituting this result into equation (16), and using equation (11), we
have

(¢n)	 = -U sin^a rr(x+tex t 0 +A8) Qxr (x, 0) ( 1 +D0 cot 0) ^ -

1- 1/

2
	t	 J 1/2

(34)

Equation (34) will in general not be satisfied at a given axial station.
An iteration procedure, similar to that for conical flow, is used to satisfy
equation (34) at a particular station. Thus, as described in references 3 and
4, each sheet segment must be rotated through an angle q _ 1/? (fig. 3), where
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^n + U sin g ^r(x + Ax. 8 +A8) - r(x, 8)(1 +cot qo B®)
	 1/2

	

_ 1/2 
	

vm
	

(35)

This will change the polar distance Di between the isolated vortex and the
pivotal points. The new Des have been shown by Smith (ref. 4) to be

D^ = D. +& Dj ., where

D.A D.	 D2 + DL - 2 D. D. cos (8. 	
J

- 8.	 )

	

D.= J	 J - 1 _ J	 J - 1	 J J - 1	 J	 - 1 	 36)
J	 D.	 D.	 sin (8 - A, }	 11j - 1/ 2

J-1	 J-1	 -	 J	 J-1

Since the position of the- vortex is fixed relative to the wing, LSD must be
zero. Equation (36) then permits &D 1 , AD2 1 ... ADn to be found in turn, and
a new estimate to be made for the sheet geometry.

Lift, Moment, and Pressure Distribution

The lift, moment, and local pressure d , tribution may be readily cal-
culated once the solution for the vortex sheet has been found. In accordance
with the slender-body theory, the total lift as already shown in reference 3
( excluding incidence effects) is

L=pU2 jff[0%2 +a2 ^sina
l	 J

N

+ f r (Zv + Zv)+ 2 y. (h.+1 -h. 1 ) (Z.+ Z.) cos a
t^	 J	 J	 J-	 J	 J

j=l	 (37)

In terms of lift coefficient C L based upon the free- streamdynamic
pressure and the projected area A (x) up to station x, we have
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C 2 coo a	 2 + a 
2 sin a +	 (Z* + z

L	 A(x) f 7r	 Iry 
v	 v

+ Ŷj
h
j+l 

_h
j- 1 Hz

i
 +Z )]Cosa	 (38)

x

where CL(x)  2 L (x)/p A(x).	 Uz V cos a, and A(x)z 
1 
2 a d x
0

The pitching moment coefficient CM
 
about the apex may also be do-

fined as

L

?.,S, x d L

C W 0
M	

p V 
2 
xA(x) 	

(39)

According to slander-body theory, he'local pressure coefficient C
is	

y	 P

C 
p 
z sin2a - 

1

2+x + ^2 
+ ¢Z  I cos

t
 
a	 (40)y

with

22	 d	
2	 2

+y'+ +. z I dZ, I ` dZ, I

+1x = x 1,0 (x , Y, z- Az) + ^ (x, y - Ay, Z)

^(X,Y,Z) +(x-&x, Y-AY, Z-Az)]

Equation (40) may be used to numerically calculate the pressure distribution

on the wing and body surfaces. Because of the multiple valued log Z *
appearing in +, care must be exercised in the numerical evaluation of +

by limiting the imaginary part of log Z 
* 

between ; w and v.

17



I	 i

/

The effect of wing incidence angle i(x) on the complex velocity
potential and on lift is presented in Appendix A. Due to wing incidence, the
following additional term C L , linear in !, must be addC d to the lift

i

coefficient given by equation (38):
G

E

= 2e cos 3a	 ^2 + 2a 2 cos -1	 2 a sC

	

L,	 A(x)	 C^'	 l	 2	 2	i 	 J	 [s +a

+ I `a + 2 2 -	 +2&2)  J 	 C a 2 a

/	 2	 /	 2
+ (s-aC

i 
( s -a -4s^	 (41)

k'

Wing incidence also affects the nonlinear lift contribution by c2ia 'tnging
the vortex sheet segment and vortex core locations and strengths through
Wi (Z*) and d Wi/dZ*. Expressions for Wi (Z*) and dWi f dZ* age given
by equations (A9) and (A18) of Appendix'A.

E
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NUMERICAL SOLUTION AND COMPUTER PROGRAM

The system of equations (31) through (41) was solved on the CDC 3600
digital computer located at the University of California, San Diego. A com-
plete description of the computer program termed NONCON is contained in
reference 10. A brief review of the numerical procedure and of the basic
characteristics and features of NONCON are presented below.

Numerical Procedure

The body and wing geometry are assumed conical up to the initial sta-
tion x6 The nonconical geometry for x > x  may be given in terms of arbi-
trary functions of x or in tabular form.. All initial data at x = x  are
obtained from the conical procedure described in reference 3.

As shown in the flow chart, figure 4, the data at x  + Ax are first
approximated by a linear extrapoLation of the initial conical data. Using the
sheet shape, sheet strength, vortex core position, and vortex core strength
from this approximation, equation (31) is then linearized and solved for an
improved set of values for the sheet strengths ;j by an iteration procedure.
After convergence is obtained, equation (32) is solved for rv. The new
values of the y  and of r  are then used in place of those from the initial
approximation, toether with the initial sheet shape and initial core position,
to find a new set rrv, yj ] . This process is repeated until no one of the
set [r V. yj] changes by more than a prescribed tolerance over a cycle of
this first iteration loop. At this stage, the calculation for [r', yj ] is re-
garded as tentatively complete, and the values are used for the next stage of
iteration.

With the pressure and Kutta conditions satisfied as described above, the
next step is to adjust the isolated vortex core position until the overall force
on the vortex and on the cut [ equation (33)] is reduced below a second pre-
scribed tolerance. This iteration in loop 2 is accomplished by a procedure
similar to that outlined in reference 3 for ;onical flow.

Having satisfied the zero-force condition in loop 2. the next step is
to solve equation (35) for the sheet rotation angles A qj . The new.trans-
formed coordinates of the vortex sheet D!. are . then found from equation (36).
If the value of any DD j exce eds a third prescribed tolerance, then the
entire procedure ,is repeated as loop 3.

In general, the procedure is repeated until all tolerances are satisfied,.
or until the number of iterations exceeds a prescribed limit. In the latter

I
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case, the tolerances may be successively increased and the iteration con-
tinued. When the tolerances exceed maximum values, the iteration is deemed
to be nonconvergent and the computation stops.

After all three loops have been satisfied within prescribed (or adjusted)
tolerances, the vortex configuration at x  + Ax is assumed determined.
Equations (38), (39), and (41) are then solved for the lift and pitching moment
coefficients up to station x  +fix. The pressure coefficients on the upper and
lower surfaces are evaluated from equation (40) at specified axial stations.

The calculation procedure for the next axial station x o + 2 Ax is
accomplished in a similar manner, and the program is stopped when the base
station is reached.

Sample Calculations

A number of calculations were made with Program NONCON in order
to check the convergence and stability of the numerical procedure and to eval-
uate the nonconical theory by comparing with test data. All calculations used
a six-segment vortex sheet, which, based on the previous conical computa-
tions, was found to provide a satisfactory compromise between accuracy and
machine running time (ref. 3). Configuration geometries for the sample cal-
culations are shown in figure 5. The convergence properties and running
times for the sample computations are reviewed below, and have been sum-
marized for convenience in Table I. Comparison of the results with experi-
mental data is made in a subsequent section.

A conical delta wing (configuration i) was run in order to check the
stability and convergence of the numerical procedure. As indicated in fig-
ures b and 7, the calculated vortex sheet shape, core position, and sheet and f.
core strength remained conical, at least up to a distance x a 1.5 xo. No
indication of divergence or instability was noted. The lovv time per step
(3.51 sec) can be attributed to the conical geometry and to the resulting small
number of iterations required to satisfy boundary conditions.

Calculations for nont.onical configurations (ii) and (iii) with faired
double-delta wings also showed no i:.dication of instabilities or divergence.
This may be seen from figures 8 through 11 in which the vortex sheet geome-
try, vertex core strength r v(x) , and lift and moment coefficients CL(x)
and CM(x) up to the given station x appear to approach the 'asymptotic
conicsl values for large x. The somewhat greater running times per step
(9.8 and 7.7 sec, respectively) were attributed to the increased number of
iterations required for convergence in loops 2 and 3 for steps in the nonconi-
cal region.
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On the other hand, the calculations for configuration (iv), i. e. , a
conical afterbody with a curved nose and 50% curved strakes, were found to
become increasingly inaccurate after approximately 100 steps. Thus, fig-
ure 12 indicates that C L(x) begins to depart from the conical asymptotic
value when x/x0 > 100. An excessively large time per step (approximately
60 sec) was required for this configuration, because of difficulties in satisfy-
ing loops 2 and 3 within the prescribod tolerances. The tolerance limits in
these loops were therefore automatically increased as discussed under
Numerical Procedure. The increased tolerances eventually allow the calcu-
lated solution to drift off the proper asymptotic value at large x. Additional
analysis is required to investigate causes for the slow convergence in loops 2
and 3 encountered with this configuration.

A short calculation was made with configuration (v) (cone with 50176
strakes and variable incidence) to check the numerical procedure in the
region of rapidly varying wing incidence. The lift and moment coefficients
varied as shown in figure 13. As indicated from Table I, satisfactory con-
vergence and running times were obtained. Several conical calculations were
also made for configuration (v) with a constant incidence, E _ - 20. The coni-
cal calculations were made primarily as a check of the incidence theory and
to obtain asymptotic limits for control effectiveness.

Since the slender-body theory requires -that configuration parameters
s(x), a(x), t(x), etc. and their derivatives be slowly varying with respect to
x, configurations vAth discontinuities in wing sweep or wing incidence angle
must be precluded from the analysis. Double-delta configurations (ii) and
(iii) were therefore calculated with small wing fairings (fillets) as shown in
figure S. The incidence angle t was varied smoothly rather than abr- qtly in
the region 0.49 s x 5 0.61 for configuration (v). Effects of wing fillets on
the test data will be reviewed in the following section.

V
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EVALUATION OF THEORY AND COMPARISON WITH TEST DATA

A theory and numerical pro ;dare have been presented for determining
lift, pitching moment, and pressu_ a distribution for slender, nonconical con-
figurations with leading-edge separation. In the present section, the sample
calculations, which were discussed previously with regard to convergence
and running time, are compared with wind tunnel force and pressure data.

Force Data

The double-delta wing [ configuration (ii) of figure 5] is similar in plan-
form to the wing on the model tested in reference I.I. A comparison between
these two configurations is given in figure 14. Lift and pitching moment coef-
ficient data frcm reference 11 are compared with the theoretical calculations
in figure 15. The nonlinear theoretical curves are faired between a single
calculation ac a = 27. 60 and the linear theory at a = 00 . All coefficients are
based on planform area. Pitching moment coefficients are taken about the
wing apex and are based on centerline chord length.

As shown in figure 15, reasonable agreement between theory and test
data is found for lift, except at the largest values of a. The theoretical aero-
dynamic center is shown to be approximately 80/6 of the centerline chord length
behind the experimental value. The rearward aerodynamic center is believed
due to neglect in the theory of nonslender trailing edge effects.

A similar comparison is given in figure 16 for a conical body and
double-delta wing [ configuration (iii) of figure 5] . The experimental data for
this and the remaining configurations are from a supporting wind tunnel pro-
gram carried out by NASA ins ^stigators and described in Appendix B. The
wind tunnel models were testeJ with and without small fillets as shown in
figure 23 of Appendix B, but no significant difference in overall force or
moment was measured due to the fillets. The theoretical nonlinear lift and
moment curves are faired between a single calculated point at a = 24 0 and
the linear theory at a = 00 . In accordance with slenderness requirements,
the calculation assumed a smooth: transition in wing sweep angle approximat-
ing that obtained on the model for 60 <_ 6 < 180. G'roo& agreement between
theory and experiment is shown. The experimental aerodynamic center is
shown to be within 2% of the centerline chord from the theoretical value, pos-
sib?y because the wing is more slender than for configuration (ii).

The nonconical computation for configuration (iv) of figure 5 became in-
creasingly inaccurate over the conical afterbody, as discussed previously.
Rf.ierence to figure 12 indicates that the nonconical lift coefficients could be
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approximated by conical asymptotic values at the base of the configuration.
The wind tunnel lift data for configuration (iv) has therefore been compared
with a curve which passes through the asymptotic conical C L at a = 240

and the linear theory at a = 0 0 (fig. 17).	 The theoretical stability curve
in figure 17 was based on linear theory values only.

The wind tunnel models tested for wing incidence effects had an abrupt
change from zero incidence to a constant negative incidence at the axial sta-
tion x/xf = 0.55 (see fig. 23 of Appendix B). The sample calculation for

configuration (v), which had a smooth transition in wing incidence because
of slenderness limitations (see fig. 5), was terminated too early to make
comparison with test data meaningful, as noted previously in connection with
figure 13. The wind tunnel test data have therefore been compared with
conical calculations for a configuration similar to (v), except that the nega-
tive incidence was constant over the entire length. This should provide, at
least, the proper conical asymptotic limit for the wind tunnel data with
incidence.

As shown in figure 15, both theory and test data indicate that control
effectiveness is markedly increased at larger values of a. The nonlinear
control effectiveness is apparently due io the influence of the local strake
incidence angle on the vortex strength. The linear change in lift coefficient
with incidence angle, as given by equation (41), is relatively small in com-
parison to the nonlinear contribution, especially at large angles of attack.
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Pressure Data

The theoretical pressure distributions are compared with experimental
pressure data in figures 19 to 21. The experimental data are from the NASA
wind tunnel test program described in Appendix B. In the test program the
static pressure ports were concentrated over the upper body surface in order
to accurately measure the maximum suction peaks due to the vortex cores.
Only limited pressure data were obtained on the lower surface (model at
negative angle of attack), since a previous investigation showed that lower
surface pressures were relatively insensitive to the vortex core. -position or
strength and in fact agreed well with theory (ref. .3).

The comparison in figure 19 at a = 24 0 is for a 40 half-angle cone
and 50% strakes (6 = 60), such as comprises the conical forebody portion of
configuration (iii).

The experimental data were taken at two axial stations (60% and 80% of
the conical body length), and indicate that the pressure distribution was
nearly conical. The calculated pressure distribution over the upper body
surface agreed well with the measurements. The theoretical pressures over
the strakes were, however, considerably larger than the measured values.
This is in agreement with previous measurements (see ref. 3), and has been
attributed to the formation of additional vortices over the strakes and at the
body-strake intersection.

Figure 20 shows experimental and theoretical pressures at a = 240
for the rear nonconical portion (6 a, 18 0) of the double-delta configuration (iii),
viz., stations x/xf = 0. 60 and 0.80. The wing semi-apex angle 6 varied
smoothly from 6 = 60 at xf xf = 0.48 to 6 = 180 at xf xf = 0. 64 in the cal-
culation. Excellent agreement is shown between theory and test data for the
wing with fillets (flagged symbols), which approximated the theoretical varia-
tion of 6. The unflagged symbols show the effect of removing the wing fillets
and are for a wing with a discontinuity in sweep (6 = 60 180) at xJxf=0.55.
At the station just behind the discontinuity, the suction peak due to the vortex 	 j
is seen to be nearly eliminated. The vortex suction peak appears to be much
less affected further downstream from the discontinuity.

The comparison for configuration (iv) is shown in figure 21. The
theory predicts somewhat larger suction peaks than were observed experi-
mentally at station x/xf = 0.43. The departure of the theory from the
experimental data at x/xf = 0. 71 is much more marked, and is due to
excessive tolerances in the theoretical calculation, as discussed previously.

f

24



25

CONCLUSIONS AND RECOMMENDATIONS

The Mangler-Smith conical vortex sheet model has been generalized for
nonconical configurations. Based upon this theory, a computer program has
been developed for the subsonic flow over slender nonconical wing bodies with
leading-edge separation. The theory predicts the lift, pitching moment, and
pressure distribution as a function of axial station and is applicable to slender
configurations with curved wing leading edges and curved body shapes of cir-
cular or elliptical cross section. Effects of variable wing incidence angle
are also contained in the analysis and permit nonlinear longitudinal control
effectiveness to be determined.

Several numerical calculations were made for configurations for which
wind tunnel test data were available. Reasonably good agreement with test
data (lift, pitching moment, and pressures) was obtained, except for one case
(a body with a curved nose, conical afterbody, and 50% strakes), for which
numerical errors became excessively large toward the base. A limited
investigation of wing incidence effects showed that the change in lift and pitch-
ing moment due to incidence was highly nonlinear and increased with increas-
ing angle of attack.

It is recognized that only a limited comparison of the theory with test
data has been carried out under the curreAt study. • Additional comparisons
are required to determine the limits of validity of the slender-body theory
and to assess the magnitude of nonslender effects due to breaks in wing
sweep (double-delta) and to the trailing edge.

Additional numerical analysis is also required to reduce computing time
and to prevent error buildup in the numerical procedure.

Air Vehicle Corporation
San Diego, California

July 6, 1969

I

1;



APPENDIX A

EFFECT OF WING INCIDENCE

In the present section we consider the effect of wing incidence angle
s(x) with respect to the body axis. Let us consider the flow past a wing-body
combination as shown in figure 1, where the wings are assumed to be deflect-
ed at angle E(x) with respect to the body axis x. In the cross-flow plane
Z (= y + i z) , the wing may be viewed as having a relative velocity of - e U
with respect to the body [fig. 22(a)] .

Complex Velocity Potential

if W  denotes the complex velocity potential due to wing incidence,
the boundary conditions on W  are

dW
dZi =0	 on	 Z =aeie	 (A1)

d W 
i = iUE	 on	 z = 0	 and jai5 jyI<_ Isl	 (AZ)

dZ

and	 Wi -► 0	 as	 Z*-► co	 (A3)

for a wing on a body of circular cross section of radius a.

We consider the auxiliary plane Z * = Z* (Z)

	

a2 . 2	 a2 2 - 1/2Z* = L(Z - Z ) -( s - $ j	 (A4)

,in which the body and wings are collapsed into a vertical slit along the
Z *- axis [ fig. 22 (b)] . The boundary condition in the Z * ?lane leads to a	

4

combination of a sink and source distribution along the- 2 -axis between
2

Z* _ ± (s - s ) [ fig. 22(b)] . The complex velocity potential per source
and sink distribution of strength d q located at Z. is

*	 Z*- i L#	 d q (Z1)
d W  (Z ). _ -- log LL *

Z + iZi1 L —2 7r"7r	
J	

(A5)
L

To satisfy boundary conditions given by ectuations (A1) and (A2), the
strength of the sink and source distribution dq(Z i ) is taken to be
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t

dq(Z) = 2E U dy e 	( Z * 1 < s - a 2/s	 (A6)

Integrating equation (A5), and making use of equation (A6) and express-
ing d y in terms of d Z * through the transformation, we obtain

h *	 rZ*-iz*

*

	

_GU 	 Z1 log Z*+ i Z!`^ d Zi

	

Wi (Z ) - n	 2	 JA7)

CY	 aC 1 +0	 y 	 y
which satisfies equation (A3).

In order to perform the integration, we define

2
y l =yC1+ y	 (A8)

L	 Y

Equation (A7) reduces to

a2	 *	
2a2 2 1/2

s+s Z -Cy1-^s+8^1

	

 -eU	 L	 / J
Wi ( Z*)  - 2	 S	 log	 *	 2	 a2 Z 1/2

	

2a	 Z + ^yl -^s+ s

1+	 Yl	 /2 d y1

(
Y2 -4 a2
	

(Ag)
We denote

	

2	 /

	

s+ s7	 Z*	
2_(3+a21211 2

- LY1	
s / J	 dy	 (A10)

	

I1 = S	 log 	 [Y2 / 	2 1 
22a	Z*+ 	 -(s+ 8 l J

and
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r

•a2	 [Y2
1

2 2112
s+8Z *

-	 - (s+a a )Jyl dyl
I 	 log  

	 (All)
2	

2a	 Z+ 	 " 
C
s + s J	 [y1 - 4a211lyl	 J

Integrating equation (A10) by parts and using standard integration
tables,

	

/	 2 1 r 2	 2 \ 2 1/2
r * 2	 a2 2 1^2	 ZaZ- ifs s- 1( Z + (s+ s 

J
i t = 

L
Z + Cs+ s J	

log	 \/ 	/ L 2 \\	 \2 1\\	 J	 2aZ +i 8- $ ^j^Z* +(s+ $ i 1

	

\	 L	 \2

+ i 2 Z * cos-1

	

	

JJJ J

Z - i s - a

	

2 a	 _ l a log	 s	 (Al2)

	

s+ a s	Z + i(s - s 1

To integrate equation (A11),it is more convenient to use a new independent
coordinate y2 such that	 I

/	 2 2

	

Y2 = yl -I	 s + s J.	 (A13)

Integration by parts then gives
2 2 - 1/2 .

2

	

o	
IY2 

*

+(s - s
I r 2 Z f	 2	

\\	 d y2	(A 14)J 

To simplify the above integral, we let

22 2Y	 s+^s a-	 2
y3

]Equation (A14) thereby becomes



E

c	 ^

I

a2s--
*	

s	
d Y3

I2=-2Z J	 2

o [Y3 - Cs s

a2
s s

*
+ 2 Z	

*2	 2 2
rZ + Cs - a 1	

\	 r	 3	 1/ZL	 \ s	 rya - s - s J 1 2 
L
-y3 +Z* + ^8 - 82^

0 C	 /^	

dY	

\

	

2	 2 2 1/2
i n Z* - C Z* +^ - s / J	

(A 15)

The complex velocity potential W i is now

W  ( Z* ) _ = ^E [I1 + 121

*  2 2 1/2a	 * 2	 a
*2	

")
 2 1^2	 2aZ +i f ŜZ +8+ 8 j

=Tn LZ +
C+
$^	 to 2	 1

ZaZ* - i^ - s ^Z* 
+ C+ to- J

+ i W rZ* 2
+s _ 8212 1/2_ 

i Z * ra+ 2 cos -1	l
l]	 L	 a J

s

* //Z + i ► s - 
at

s 
1

- 2 a to	 \ 	 (A 16)

\\ s

On the surface of the body, Z* = i z* we find
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1 (z* ) = Re (Wi)

e ^ a2 

/ 

* 2
+ I$ a

2 2 1/2
a2 2 * 1/2	 lax+(s s ) Lz	 + a J

s E U r( +	 - z	 In	 ///
2n L	 s)	 2	 22 2 1/2

2az -^ s Xz* +(+ s

2
*+ (g- a  

+z* 7r+ 2 cos-1 2a2 _ 2alog	 s
	 (A17)

which agrees with the known result given by Adams (ref. 12).

The velocity components, as obtained by differentiation of equa-
tion (A16), are

d Wi	 *	 * EU	 Z** S U -iv =	 22 2 1/2dZ	 1Z* +j+ s)^

* /
/ 2)[Z

 	 \

* 2 / a2 1/2

2aZ +i{s- s 	 + f + sl^
In	 \	 /	 _ i E U cos "1 2a

*	 a	 * 2 / a 1/2	 a2
2aZ -i^-^ . ) CZ +( + 	 s±s

_ LSE1 _	 Z2*

Z* + s • s ^2

(A18)

The velocity components in the physical plane are

i
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d W.	 d W 

i	

d W. CZ 	 + z

=Z a U (0i) - i(40i)- 
iV dZ dZ dZ l 	a	

Z a

	

^	 _	 ^	 2	 2Z

	

y	 L(Z- Zl-^e- 8
(A 19)

It is noted that the transformation equation (A14) is singular at Z = s.
To ensure a finite velocity at the wing tips, the effect of wing incidence must
be included in the Kutta condition as formulated in equation (32).

Lift Due to Wing Incidence

The lift due to incidence, in accordance with slender-body theory, is

1	
P	 W. d Z d Z	 (A20)L. = - Re r U cos « W.

L	 dZ.

Applying the theory of residues to equation (A20), and defining

x

CL. = 2 Li 2 p V2 s dx	 we obtain
i

0

CL. = 2
E cos3«	

2	 2
A	

+ 2a]	 -1cos	
aZ a Z

	

i ^) 	 L	 J	 Ls +  .!

[(s

2\2 (
g-2	

-
F
22

Zas

	

 + 8 } - 	 + 2 a 211 tan 1 L s^

2	 2
+ C- s JJi8- a -4a^	 (A21)
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APPEi\.JiX B

WIND TUNNEL PROGRAM

A supporting wind tunnel program was carried out by NASA investiga-
tors in the 7 X 10 ft low speed wind tunnel at the Ames Research Center to
provide additional test data for evaluating the nonconical theory developed
herein.

Model Geometry

The basic model consisted of a circular cone, 4 ft in length, and of
4° semi-apex angle. As shown in fig. 23, the cone could be fitted with a
series of conical strakes of exposed semispans ranging from 2-1/2016 to 50%
of the body radius. The cone and 50% strake (b = 6) were split into forward
and rear sections at body station 26.4. Additional rear strake sections and
fillets were provided for testing double-delta configurations (w-.:h and without
fillets) and of rear semi-apex angees 6 = 120, 180 , 24 0 , and 300. The rear
section of the cone was made in 2 wedge sections permitting incidence angles
E = 0, f 20, t 40 , and t 60 . The forward cone section could be replaced by a
curved body with either a pointed or blunt nose and with curved 50616 strakes.
The cone and selected strakes (6 = 6 0 , 1810 , and 3. 00 ) were instrumented for
static pressures at several axial stations.

Test Procedure and Conditions

The angle of attack was varied from approximately -8 0 to 326 for the
force and pressure runs. The model was supported from the rear by an 8"
sting which was attached to a vertical strut mount (see fig. 10 of ref. 3).
The tests were conducted at a nominal free-stream dynamic pressure of
50 psf.

Data Reduction and Corrections

Six-component force and moment data were measured with a mechani-
cal scale system. The pressure data were obtained by scaling manometer
board photographs. Only lift, pitching moment, and pressure data -for those
configurations for which numerical calculations were made (Table 1)' are
presented herein. For ease in comparing with theory, all coefficients have
been based on planform area and root chord, whereas pitching moments were
taken about the apex or nose station.

No wind tunnel wall corrections were made to the data. Lift and pitch-
ing moment coefficients were corrected for buoyancy effects (due to support
strut interference)" in the manner shown in reference 3.
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Figure 1. -Typical nonconical slender body configuration with vortex sheet.
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2.9 •

( i) Conical delta

(ii ) Faired double-__.__

Fairing

4*

(iii) Faired double-delta wing,conical body

4• 6•

.J3

(iv) Curved nose, conical afterbody with 50% strokes

f	 e smoothly varying	 a a-6•
E =o•

(v) Conicai body and delta wing with incidence

Figure S. - Configurations for sample calculations.
_	 39



I

E

r^

E	 •c
p-

•3	
c

cd

o	 c

E

o Zi

0 0 wL

w u
G OCO
U

•	 L

t0
O

3

E

•	 i

p
•

^,	 F
.N

Oyy

WI

W w

X14

-	 V
.0

G
14

•'1

W

p	 t"i

R C^a
r	 1° •^

3
w

i o6 M

tt^
o :0^ ^

= ---n
ti

cli
o 01 $4	 }

k7 tC V (. >

t^

s	 ^

^t	 N p
O	 O•

Z `OOUD4SIp IDO!4JOA



I

do

0
x

B
ca

"c

O

•	 ^ to

W
F
O

O

tko

u ^j^
o x .^ 

Ix t^

O ^
c ^^ ro

u

O

x
i

Ndo

x

t
OC

d' ,c
sA

j
x
Q

O 0)bo
O,^

G

p0^3

F	 ^^ o o N t; ' c .

OD C.J

i	
0

11 it
^ .

7

WU O OQ

N
i

O OD	 t4	 ct	 N
O

41



r

E

O

O

t
E^'

A

^' wC	 11

ti >K /
M

a•,,o^ O ^° V
V W i	 >v O• to C^yyI Y j

•

CL
0

c .^
O U ^^

C*jO b0

v w

w
c0
t^

M	 —	 O6	 0
z'9au04s±p 103108A

42



4ES

cli OD 0	 0
%

.x
9!
0

Cd

..o t
OD

lic

t t

4 31C i
4) z 0)0

al e

o-

w i t

o

r 110-
E
5%,F 2 0 •

31C

000
>

0 In 0 4.0

do

a

sc O
0 0
tko	 >
—1

._fi x Eo ^	 ! ;o

7

43



a

^ v

0
N_

V	 •N

0
O at? .DE •- w.o

p N ii •^

C ;' ^^.r	 ~Q X N ^
tl

s^
♦^ p

^ 3

^ ^i a` ' •ti o
i i	 C

^ C a ao

In ^taassasss a^ p ^ 'fl ^ O

CA
{d

Sim

i''E ^.wN QQ # a

°
v p o. o ..,U,

Nv 14! V
a is~

C ^

IC) O
E. U

o
p	 co ',

m K	 ii
co

^ 0fl p
z `DOUD42.Ip ID31.08A



w

E
O
E
ai
U

Or-
C
O
'v
a^

	w p O	 1

A i p

	

v	 x	 x ^	 °
•-	 x >do1!

c" V 
v 

U 
U r a '^

o o	 ^c
v

ao V wv r-
0 .
	

o	
(^

C"
;.... N x c
O ^^ J

V ^ U

,e

I

N	 ap

Q

^i

K

m

R ^

(D

O o
m

.	 .•,.	 ,
^_ 3

CL
v E

'c ^,, oo
ow

aU v ^V..

OD 0

O
o
1;

x

Z C

OD .y	 w

v 0

° tf! y _ 
00

7

414

ac c _k

CY
All

O i

45



Configuration (iv) from fig. 5, aC= 2 4°

CL (X)

1.2 rir.i4irtl rnner •n! vnl^^as

4/symptotic value

8=6°

o.s

0.6

1.0

0.4

I

	

7.2	 .

_	
xo =0.06

0	 0.2	 0.4 0.6	 0.8	 1.0

_-	 Axial distance, x	 -

Figure 12.-Configuration (iv), (curved nose, conical after Jody,
and curved 500/6 strakes): nonconical lift. coefficient up to station x.
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Configuration (v) from fig, 5
(X= 100

	

-4	 e(x), deg

0
0.40	 0.45	 0.50	 :0.55

Axial distance, x
4

.20

CL (x)

.15

C (x) and C x) are based on lift, moment,

	

. ! 0	 •L
and area up to station x.

.05

• X0 0.49

ACMW

	

0	 0.40	 0.45	 0.55	 0.55
Axial distance, x

Figure 23. -Configuration (v), (cone with 5016 strakes and variable incidence):,
lift and moment coefficient up to station x.
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1 û(
e	 I

W

^

aU+

N	 t ,.
t ^

ot _

O i

O

3 C 7 ,	 .

C IO . t 4;

a U

O V	 I to	 -	 1

O	 t ^

• O t	 t

CL

v	 ^

3

48



r

_	
E	 N
O_

-	 w _	 t•

v
c i	 /^

i	 Q	 Q	 W
f  

0	 0	 0 3j

1	 w ;4
O	 aCd

.0

i	
O	 y to

F	 J	 •p	 '

O

o '^

ebo G

_	 o!
0	 \	

N	 u jo
.V ^,
	 •,4

C0 	 ^`(
O	 'O O	 u i s

..	 p...	 O `'	 \♦ 	 Q	 no;v
Z	 LLB. u	 ;	 W

CY	 OD

	

J	 O	 O

	

C.1	 •

49



I

tR	
lqt	 N

O O	 p

m
x

w c

Ora
=	 Q Q

o Zoo.

Co

c 7^
O 'Q o"

as y^

}-
	 V CP

c 'C a^

UUv^

J
U

\	 c

\	 aUd c

z	
.. >

N	 p	 OD

U

5o f

OD

C

U 'd

d, pp ^ b

O Q^^,.^ 
3 y

.A,

N v!f^

O

O
s.

°'

O
Ov

0

^ U

O

Oa

O
N

o
V'^:

^ c

O
w

OD



N
N

.

.O N m
QZ X

..T Co E c dpC p y
a O ' M.. d Q (D

i° _^

t-

t O

0

N
r D a  ̂ 	 d	 ,

^	 O

Oo
t. to	 C^

tr

V
"'

C
J

may,'

° O p1 ;;	 0
p	 3 y, i	 b

>.v m O 0!o
gyp♦ ♦ 1̂ CU U 0

y
V

O i p
- v^	 ,

M

O

w

^
"'J

U T O v

v̀ v
td
Z

o U N N

}̀ Iz:^p p ^^,
w `

o s
to	 v

C E 3 ^L V `
w A

A O td--
.o

c >
\

N O m	 t0 N OO	 O O O
J

U

51



•

i

I

1

i .0 	 Test data for model similar to configuration tv?

CL
	 of fig. 5 with , e z-20

0.8 x Calculated asymptotic
conical values

NASA test data per 3

Appendix 8
0.6	 o e = Oo

o E = -2° O

0.4	 Faired curve
o	 E =0

4

Faired curvee-2Q
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0.2
it Linear theory,.

e =0°,-2°
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Figure 18. -Effect of wing incidence on lift coefficient
and comparison with test data.
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Cone with 50% strokes

NASA test data per Appendix B

O x /x f = 0.6
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Figure 19. -Cone with 50016 strakes:
comparison of conical theory with pressure data



I

Conf i guratio n U i 0 of fig. 6, ct = 24°

EE
NASA test data per Appendix B

o	 No fillet ,	 double -delta wing

Cf	 With fillet,	 curved leading edge
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Figure 20. -Configuration (iii), (cone, double -delta wing, and fillet):
comparison of nonconical theory with pressure data,
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NASA test data per Appendix B
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Figure 21. -Configuration (iv), (curved nose, conical afterbody.
and curved 50016 stra.kes): comparison of nonconical

theory with pressure data.
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