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NONCONICAL THEORY OF FLOW PAST SLENDER WING-BODIES
WITH LEADING-EDGE SEPARATION

By M. H. Y. Wei, E S. Levinsky, and F. Y. Su
Air Vehicle Corporation

SUMMARY

A theoretical method is presented for calculating the nonlinear lift and
pressure distribution on nonconical slender wing-body combinations exhibiting
leading-edge separation. The theory is based upon the flow model of
Mangler and Smith in which a pair of spiral vortex sheets is assumed to
spring from the wing leading edges and roll up into two vortex cores. A
general solution which depends on conical initial conditions is found for the
pressure continuity equation on the vortex sheet.. The continuity of normal
velocity condition across the vortex sheet is extended to account for the twist
of the vortex sheet along the body axis. The zero-force condition on the vor-
tex core and cut is modeled after Bryson, who developed a nonconical
approach without vortex sheet effects. :

Based on this theory, a computer program was developed which pre-

" dicts lift, pitching moment, and pressure distribution as a.function of axial
station for slender configurations with curved leading edges and curved body
.shapes of circular or elliptical cross section. Variable wing incidence is
‘dlso included in the analysis in order to predict nonlinear longitudinal con-
trol effectiveness.

Sample calculations are presented and compared with wind tunnel test
data. Reasonably good agreement with test data is shown, except for one
configuration (a body with a curved nose, conical afterbody, and 50% curved
strakes) for which numerical errors in the computation became excessively
large toward the base. The change in lift due to wing incidence was found to
be highly nonlinear and increased with increasing angle of attack.




INTRODUCTION

As is well known, the lift curve of slender bodies representative of
reentry vehicle and booster configurations is nonlinear at large angles of
attack (e.g., refs. 1 and 2). The nonlinearity is caused by the formation of a
pair of rolled-up vortices due to flow separation over the leeward body sur-
face at large angles of attack. Even though the body vortices increase the lift
above linear theory values, the lift curve slope and lift-drag ratio of slender
bodies is still too small for making a safe approach and landing maneuver.

In a previous theoretical and experimental investigation (ref. 3) it was
determined that a relatively large improvement in lift could be obtained for
- slender conical bodies by placing sharp-edged wings (strakes) on the body.
The increase in nonlinear lift was due to fixing the separation point at or
close to the strake leading edge, rather than allowing flow separation to oc-
cur naturally over the leeward body surface by viscous effects. The investi-
gation of nonlinear lift conducted in reference 3 was restricted to conical
body-strake configurations only. Cones of circular and elliptical cross sec-
tion and strakes with and without dihedral were considered. Agreement
between theory and test data was satisfactory as long as the strakes were of
sufficient size to move the separation point to the strake leading edge as
assumed in the theory.

The objective of the current investigation is to extend the nonlinear
theory of reference 3 to more general nonconical geometries representative
of practical slender reentry body and hypersonic aircraft configurations,
e.g., strakes or wings with curved leading edges and bodies with curved nose
and afterbody profiles, In addition, wing incidence effects are introduced in-
to the theory in order to calculate control effectiveness, A wind tunnel
program has been carried out at the NASA Ames Research Center to evaluate
the nonconical theory. : .

It is of interest to compare the present generalized theory with the
work of previous investigators. The present theory is based on the flow
models of Mangler and Smith (ref. 1) and Smith (ref. 4), who developed
formulations for conical delta wings. The Mangler and Smith (MS) theory
includes a pair of spiral vortex sheets which originate from the strake lead-
ing edges. Each vortex sheet ends at a cut which is connected to an isolated
vortex core at its center. Boundary conditions are satisfied at discrete
points on the vortex sheets (pressure and normal velocity) and define the
‘sheet shape and strength. The MS theory was extended to a wide class of
conical wing-body configurations in reference 3. In the present paper, the
MS theory and formulation of the voriex sheet boundary conditions are gen-
eralized for nonconical flows.

Much of the previous work on the formulation of a nonconical theory of
vortex lift has been based upon the simpler Brown and Michael (BM) model
(ref. 5), originally developed for conical flow only (flat delta wing). In the
BM model the spiral vortex sheet is neglected, and the isolated vortex cores
are joined directly to the separation point (leading edge) by a cut.

2



Bryson (ref. 2) first applied the BM model to nonconical geometries.
He treated the flow over a pointed body of revolution (ogive cylinder), but
was forced to use empirical values for the separation angle on the leeward
body surface. Schindel (ref. 6) extended the BM model to bodies of elliptical
cross section, and provided additional experimental data on the separation
angle, Jobe (ref. 7) utilized the BM model to obtain the nonlinear lift for
zero-thickness pointed wings with camber, flaps, and nonconical planforms
(including double deltas). Unfortunately, agreement between the BM theory
and test data has been generally unsatisfactory (refs. 4, 5, 7), which is the
motivation for the present more complicated model.

More recently, Sacks, et al. (ref. 8), have approached the same
problem by using a discrete vortex model in which the leading-edge vortex
sheets of the MS model are replaced by freely moving vortex pairs. Even
though the method was applied to nonconical wing-body configurations
(double-delta wings), a semi-empirical technique was required to determine
the vortex shedding rate in order to obtain good agreement with test results.

In the following sections the nonconical slender-body theory is first
presented, with emphasis on the form of the nonconical boundary zonditions
across the vortex sheet. Next, the method of solution is presented, includ-
ing a discussion of the numerical procedure. The additional velocity poten-
" tial due to wing incidence is included in the analysis. Sample calculations
are presented for several nonconical wing-body configurations for which test
results are available, and the convergence and running time of the aalcula-
tions are assessed. Finally, comparisons are given between calculated and
measured lift, pitching moment, and pressure coefficients.
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planform reference area

body radius

lift coefficient based on projected planform area
moment coefficient about the apex

pressure coefficient

distance in the auxiliary plane from the isolated vortex to the
j'th pivotal point of the vortex sheet

force in physical cross-flow plane

angle between the line connecting Z and Z , and the line con-
necting Z* with the orzigin

(-1)1/2

lift

sheet segment number

inward normal to vortex sheet (in physical cross-flow plane)
strength of sink and source distribution

polar radius in physical plane

surface of vortex sheet (S = 0).

semispan of wing-body comktination

component (= V cos @) of stream velocity along x
free-stream velocity

complex velocity potential

Cartesian coordinates

comi)lex variable (= y + iz) in physical cross-flow plane
complex variable (= y* + i z*) in auxiliary cross-flow plane
angle of attack |

dihedral angle
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Subscripts:

c
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vortex strength

vortex strength/unit length along vortex sheet at intermediate
point

semi-apex angle of body-strake configuration; also,
differential operator

incidence angle

angle defined by equation (35)

a parameter defined in equation (4)

angular position of radius vector rj

a parameter defined by equation (4)
velocity potential

velocity potential jump across vortex sheet
angle between r and tangent to sheet

air density

~

distance along vortex sheet, measured from leading edge of
strake

‘Superscripts:

cut complex conjugate

*
in ihe auxiliary plane

final station
index '
index

mean ;ralues
segment number | ) H
initial station

source

isolated vortex
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THEORY

Let us consider the flow past a slender body with curved strakes (or
wings) at angle of attack (fig. 1). Due to leading-edge separation, a spiral
vortex sheet emanates from each wing tip, forming a region of rotating
fluid above the wing, No additional separation is assumed to occur on
the leeward body surface

. Accordxng to the slender-body theory, the perturbation velocity poten-
tial ¢ is governed by the Laplace equation in the physical cross-flow plane
Z(=y +iz)

byy + byy = 0 (1)

where subscripts y, z denote the partial differentiation with respect to y
and 2z coordinates as shown in figure 2,

The boundary condition at infinity is
¢, = Vsina ' . (2)

with @ the angle of attack and V the free stream velocxty. On the surface
of the body and wing, the normal velocity vanishes. To satisfy these bound-
ary conditions, it is usually more convenient to seek solutions of equation (1)
in an auxiliary plane Z* = z* (Z) in which the body and strakes are collapsed
into a vertical slit along the y-axis (fig. 3) by the use of conformal mapping.

For a flat delta wing, the transformation is

2
z¥ =z%. 42 (3)

where 8 is the wing semispan. For more general wing-body combinations
of arbitrary dihedral angle P and body radius a, the transformation is
“{ref. 3)

2 2
z* =[(Z-.a2/2)-iﬁ] -§2 (4)
where A =(s+ az/s) sin B
and T =(s-a%/s)cosp . :

Velocity Potential in Cross-Flow Plane

Following Smith (ref. 4), the components of perturbed velocity in the
cross-flow plane are given by

aw az*

¢y 1o, "r' = qz* 42 (5)




and, with U = Vcos «,

r -
dw v 1 1 J
—_—x=-ilJtana + -
az* én iLz -z, z'+Z,
max
1 dAad 1 1
o L 4™t db | |2% 2%y 2%+ Z%n)
aw, aw,
+ =+ — 6
az* az* O

where the first term on the right hand side of equation (6é) gives the linear
velocity component due to angle of attack, the second term arises due to the
vortex cores, the third (integral) term is the contribution from the spiral
vortex sheets, and the last two terms are velocity components due to body
cross-sectional area and wing incidence. By integrating equation (6) from
Z2*¥ =0 to 2* = Z* we obtain the complex velocity potential W{¢ = Re(W)].

T, fz -z
W(Z) = -1UZ tana + 3 log
wi l_z +Z0 |-
h

%* %
f 1  4dAd Z ~Z (h
+ . {* T— W]log[—;ﬁ—u]dh + Ws + Wi (7)

Z +Z (h)

where rv is the strength of the isolated vortex, Z: is the position of thé
isolated vortex, - iﬁ;—’- is the streagth of the vortex sheet, and 'Z*(h) is

the vortex sheet position. The bar indicates complex conjugats.

The real part of equation (7) is a solution of equation (1) which satis-
fies the boundary conditions on the surface for any values of 1"v ,
* *
d—d%g, Zv, and Z (h). These unknown sheet and vortex parameters are
functions of the body station x and must be determined by additional bound-
ary conditions on the vortex sheet. We remark that the multiple valued

logarithmic functions in equation (7) yield a jump in velocity potentx.a.l across
the sheet

h
_ mAX 4a0
Ad(h) = rv+ S‘h - ~3n dh (8)



Boundary Conditions on Vortex She

Asg described in references 1, 3, and 4, the spiral vortex sheet is con-
sidered to be composed of an inuer and an outer part, The inner core, which
consists of an infinite number of turns, is represented by an isolated singu-
larity of unknown strength I,. Thus, the length of the outer part of the vortex
sheet 18 finite with the sheet shape and vortex strength yet to be determined.
The boundary conditions formulated in the following sections are used to de-
termine both the strength and position of the isolated vortex and its feeding
sheet,

Continuity of normal velocity. —=We assume that the surface of the vor-
tex sheets may be defined by an expression of the form

S(x, 0, n) =0

where ¢ and n are the arc length and inward-drawn normal along the vortex
sheet in the plane x = constant (fig. 2).

For the vortex sheet to be a stream surface in a steady motion, the

conditicn of tangential flow at the sheet surface requires that the outward
normal to the surface be perpendicular to the flow velocity vector:

VSV (¢+Ux) =0 (9)

When, in accordance with the lincarization assumptions, ¢ _ is neglected in
comparison with U, cquation (9) becomes

’ USx+ ¢°_S°_+¢nsn= 0 : (10)
For any curve in the cross-flow p'lane, we have
9r

Sa,:= G and -5-5 = rcote ' {11)

Here r, 6 are the polar coordinates and ¢ is the angle between the tangent
and the radius vector as shown in figure 2. Thus, equation (11) reduces to

US,_+¢,5, =0 | (12)

Moving along the vortex surface with do = 0, we find

dS=Sxdx+Sndn=0 - (13)

Upon combining equations (12) and (13), we obtain '

dn an :
dn _ 2n =¢ /U (14)
dx 9x o =const a

L



From the geometry in the cross-flow plane (fig. 2), one finds

ao‘ = . -a—n- - = 3 .
Ir Ccos @i ar  ~ne (18)

Converting equation {14) into polar coordinates, we obtain

cnlcn

= ¢ /Using (16)
X g=const. n

The general equation of the sheet surface now becomes

, X . 0
1
r{x, 6) = TJ'S; T e dx + S;r cot p 48 {17

Pressure continuity condition. «~According to slender-body theory, the
pressure coefficient is given by

c, = sina - 24, /U - (o2 + ¢2)/ 0P (18)

Let A denote the difference in value across a vortex sheet. Since
the pressure is continuous across the sheet, we have

ACp =0 (19)
Across the vortex sheet we write
=0 | - EN
A§n - » Aé 8 é
N
4 § ®rm % and Ad, =508
Equation (19) therefore becomes
= - .
LR TTI AR JY (20)

where ¢°_m is the mean tangential velocity along the sheet surface.

Equation (20) is 2 quasilinear first order partial differentia.'l equation.

The general solution to equation (20), satisfying the initial conical flow condi-
tion, is readily obtained, e.g., reference 9,

Ad = A ”cr g Som dx] (21)

This solution can be’ re'adily ve'riﬁed by substitution into equation (20).



It is of interest to compare the conical limit of equation (21) with the
pressure condition used previously in references 1, 3, and 4. For a conical
vortex sheet, by m and ¢ are both constant along lines of constant 6.

From eqnation (15) we have

x
¢ = rcos¢ and S‘ ¢c'm dx = ¢°_mx (22)
o

Upon combining equations (21) and (22), we recover the conical pressure con-
dition originally given by Mangler and Smith (ref. 1)

9
A% = Aéa_{r cos¢--%&x] (23)

Equation (21) may be regarded as a generalized boundary condition
for determining the vortex sheet strength for nonconical flows.

Zero force condition. —As discus3ed previously, the vortex sheet is
divided into an inner and an outer part at some arbitrarily chosen point along
its length. The inner part of the sheet is assumed to have the same behavior
as an isolated vortex. The outer part of the vortex sheet is terminated ina -
cut which connects to the isolated singularity.

As is well known, the force Fv per unit length acting on the vortex
is

F,=-ipl, AU (23)

‘where AU is the local relative velocity between the flow and the vortex in
the physical cross-flow plane Z, namely, :

AU = Lm '[di}“'z?i _1_]-Uc;11—i-‘-’ (24)
z»z LdZ " Z-Z,

" with W the conjugate of the cgmplex potential W. The force Fc per unit
length on the cut may te written as

. 1 2 | arv

Fc =iz eU )(Zv- z) (Acp) = -ip(Zv- Zn)WU (25)
where Zn is thela locgzﬁon of the end of the outer part of the vor?ex
sheet, and zP U ACp is the pressure difference across the cut
- ar

ac, = - z—a—xl’-/U).

For no overall force on the system of the isolated vortex and its
cut, we obtain

10



ar r

= dZ
U-E-"-(Z-Z)=r§_dw+ y 1 -U-—l} (26)
X v n vigz 2ni Z.7 dx zZ =2
Hy v

Equation (26) is a first order nonlinear ordinary differential equation
which can be numerically solved for given initial conditions.

; Kutta condition. —The Kutta condition requires that the velocity at the
leading edge of the wing be finite, and is used to determine the strength of the
isolated vortex. The leading edge is a singular point of the transformation

* %
Z =2Z (Z), and in the auxiliary Z -plane the Kutta condition becomes

raw _ 31 _,
R A (27)
Ldaz dz Jd *x o

11



METHOD OF SOLUTION

For nonconical flow, the boundary conditions on the vortex sheet and
isolated core [equations (16), (21), (26), and (27)] are no longer algebraic,
as was the case for conical flow, but are given by a set of nonlinear integral
and differential equations. In accordance with the assumptions of slender-
body theory (no upstream influence), the solution to this set of equations may
be found numerically by marching step by step along the x-axis for given
initial conditions. All the configurations to be investigated are assumed to be
conical up to the initial station so that conical methods (e.g., refs. 3 and 4)
can be used to generate the initial data.

Let us consider the velocity potential in the cross-flow plane in
which the vortex sheet igs approximated by a series of n straight-line seg-

ments of strength vy = - ddAhQW at the pivotal sheet points Z? . The com-

. 4j
*
plex potential W(Z ), equation (7), becomes

*
« . ir, 2" t 2 AN
wWi{zZ )=-1iU2 tana-z,ﬂ_ In ~ Z -1)111['7‘_:%':]
2%+ Z - Z +2,
v. j=1 J
- +W_ +W, (28)
s i
where h. is the angle between the line connecting Z: and Z’.k, and the line
connecting Z with the origin (fig. 3). Note that ho =0 and hn+1 =h nt

The source potential for a body of circular cross sectmn is W = Ua gg‘-ln 2.

The additional potent1a1 due to wing incidence - W, (Z ) will be’ denved m
Appendix A.

The unknowns in equation (28) are Ty, Z:, Yj and Z’-k, with
j=1,2, ... n. The total number of unknowns is 2n+2, “and thérefore a like .
number of equations is required. The equations are supphed by the boundary
conditions on the vortex sheet as derived previously. The finite difference
representation of the vortex sheet boundary equations and its numerical solu-
tion procedure will now be presented.

»

Finite Difference Representation

Pressure contmug equation, —For conical initial conditions, equa-
tion (21) becomes

12



%
$ ®rm
AD, = {A [ (x) - dll(x ) - dx]} (29)

where the subscript j-1/2 denotes the middle point of the j'th vortex sheet
segment, The term ¢o'rn(x o) is the initial value of ¢°_m at the starting
station X,e

Using the trapezoidal rule for numerical integration in the cross-flow -
plane, equation (8) becomes

N
- \
A0 12 SR8y 1t ) Abey g, (30)
1 k=j41

=h,- = .[d4A8 ]
where Ah,=h, ~h, and vy, = - [—-— .
i R B3 i-1/2 dh i 1/2

By substituting equations (30) and (15) into equation (29), §ve obtain

N
. 1 N
r +3 Ahj Yj-% + Z Ah, Yk"%

=j+1 )
: ‘ -3 ®rm (x )+§$ %-mdx -S‘r(X)cos dr
1 -{Y To | %m0 o) * | U -r(x ) cos ¢ (x) ) 4 1
° ‘ o "l 3
’ (31)

where, based on the s;lendef body theory approximation (refs. 3 and 4),

az*

: D.-D, ,-24"2 * |
dh = |42 | o [p? g 4[dii-1 =|4Z_ e, 1
do 1 dZ |, 1 j=5 "|h,- b, azZ|. 1/ j-=

j-3 i-3 i 7=l Yi-=3 2
| e = Re[dw az* do'*] - pe (4w az*az¥y

- om = T Z* qo* 4o i L z¥ ae* 192 |J 1.

T - , -3

;

13



az g z¥14+Z
iz 77 v e v
w I
i 1 1
S - )[ - |
Tiw g, et 27 1-2; z 1+Zpd ®
k=1 =z -z
dw_+ dw,
Y7
az¥J 1 laz*4 1
-—2- J
*  i(6 +h, 1) .rD
dz_ .o Vv z{[h h'l:]-i-iD 1} e;.1
deo j=1 ) 2
2 2 1
r’f l=;‘r* +D* 1 - Zr*D 1 cos (h, 1)
J"z' Vv J"Z" A |
and )
cos g 1 =(r.,-xr. )/h, -h, ,) dZ*‘. l fe., 1
R IS T S B T S -2 lJ"‘z' i3

Equation (31) is to be satisfied at the mid point of each sheet segment and at
each body station x. For a conical geometry, the solution is required at
only a single axial station because of flow similarity,

Kutta condxtxon, —By combining equations (27) and (6), using
finite difference representa.txon (trapezoxda.l rule) for the integral, and
~assuming that the integrand is finite at j=0 and varies linearly with h be-
tween j=0 and j=1, we obtain, including effects of wing incidence,

%x

r, = —* {wu%me_(_z(_mslz;_s.z)]

cos 0 s +a

1 hz2 cos 9 (h cos 9; Y,
2 hZ - hl 3 h h *
*2

Yy €08 ek
Prr1 ~Pe-t) —= ]} (32)
k

+

+
1z
w -
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dw,

1
az* |z* = o
angle € (x) by using equation (A18) of Appendix A.

The incidence term has been expressed in terms of incidence

Equation (32) is used to determine the isolated vortex strength Pv
along the x-axis.

&m&mm —The finite difference representation of
equation (26) is

L,(x + Ax) - T, (x)

-Z)
ax v B x+Ax
. . 1 dW r 1
= T (x+Ax)d{lim [—- -+ - -:—:—]
v z-z* U gz 2701 7 3
v v x+Ax
i Zv(x+Ax) - Zv(x) N 33)
Ax } (
which can be resolved into component forms to determine the isolated vortex
position Zv =(y _+iz_) . .
v Vx+ax

Continuity of normal velocity condition.—~For nonconical flow, the
‘sheet pivotal points will no longer remain at constant values of @ at each ’
axial station, as is the case for conical flow. Thus, if the sheet twists, the
finite difference representatxon for Ti /2 must be adjusted to account for

the change in polar angle 6 wilth =x. Acco;‘dmgly, we write

v 3rJ : 1 [ : or

—_— = ——]|r, (x+Ax, 6+A0) - r, (x,9)(1+——A9)]
[ax j=1/2, =const Ax | 5-Y2 ' j-y2 96

where 9r/0860 is given by equation (11) and A® = Bj_l/z(x+ Ax) 'ej-VZ(x) .

Substituting this result into equation (16), and using equation (11), we
have

($.) - = -Usi {r(x-i-Ax 0+A0) - r(x,6) (1+A86 cotﬂjl
¢n j-l/Z Ssino s J;I/Z

(34)

Equation (34) will in general not be satisfied at a given axiai station.
An iteration procedure, similar to that for conical flow, is used to satisfy
equation (34) at a particular station. Thus, as described in references 3 and
4, each sheet segment must be rotated through an angle L /2 (fig. 3), where
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. r(x + Ax, 8+A8) - r(x, 0)(1 +cote AB)
{¢n+ U sing L A Jj- 1/2}

$

Ny/p =
j-1/2
om (35)

This will change the polar distance D; between the isolated vortex and the
pivotal points, The new D3° have been shown by Smith (ref. 4) to be

D! =D, +A D,, where
J J J

DAD, D.2+D% -ZD.D.lcos(e.-e. )
AD-""JD j-1 DJ-I‘.. eJ J; ; J_j-1 n. 12 (36)
X . . 8in (0, -0, -
] j=1 =1 3 i -l J

Since the position of the vortex is fixed relative to the wing, AD_ must be
zero. Equation (36) then permits AD, AD,,... AD_to be found in turn, and

a new estimate to be made for the sheet geometry.

Lift, Moment, ‘and Pressure Distribution
The lift, moment, and local pressure di tribution may be readily cal-
culated once the solution for the vortex sheet has been found. In accordance
with the slender-body theory, the total lift as already shown in reference 3
( excluding incidence effects) is

L=p Uz{w[gz + az I sin a

s

vz

. —u . .
+ [I‘V(Zv+ Zv)+ 3 yj (hj+1-hj-1) (Zj+ Zj)Jcos a}
1 ,

i

(37)

- In terms of lift coefficient C; based upon the free-streamidynamic
pressure and the projected area A (x) up to station x, we have
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- 2 N -
2cos a n2 2 * Lz
C.= —— w[ﬁ +a }sina+[1"v(zv+zv)

LA UL
30 by p17Ry ) (25 ZJ"]“' "‘} o |
[ — X
where C (x)=2 L (x)/p v2A(x), U=Vcosa, and Afx)= Sz sdx.
(4]

The pitching moment coefficient CM about the apex may also be de-
fined as ' ‘ '

- L ]
ZS‘ xdL
Cub® : A(
| PV xAl) (39)
According to slender-body theory, the local pressure coefficient Cp
is -
.2 2,2 2
Cp- sin a-[2¢x+¢y+¢z]c03 a (40)
with
2 + 2 _dw 2 dZ* 2
L "l l I iz
L
¢ =Fxx [bxy.z-42)+ ¢(x,¥-4y, 2)

- ¢(x,y,2) - ¢(x-Ax, y-Ay, z-Az)]

Equation (40) may be uaed to numerically calculate the pressure distribution

on the wing and body surfaces. Because o’ the multiple valued log z*
appearing in ¢, care must be exercised in the numerical evaluation of ¢

by limiting the imaginary part of log z” between < and .
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The effect of wing incidence angle ¢(x) on the complex velocity
potential and on lift is presented in Appendix A. Due to wing incidence, the
following additional term CL-' linear in ¢, must be added to the lift

1
coefficient given by equation (38):

D) 5 ()] w

Wing incidence also affects the nonlinear lift contribution by chinging
the vortex sheet segment and vortex core locations and strengths through
W (Z ) and AW, /dZ Expressions for W (Z"') and dW, /dZ axe given

by equations (A9) and (Al18) of Appendix‘A;

Y
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NUMERICAL SOLUTION AND COMPUTER PROGRAM

The system of equations (31) through (41) was solved on the CDC 3600
digital computer located at the Univursity of California, San Diego. A com-
plete description of the computer program termed NONCON is contained in
reference 10. A brief review of the numerical procedure and of the basic
characteristics and features of NONCON are presented below,

Numerical Procedure
The body and wing geometry are assumed conical up to the initial sta-
tion X The nonconical geometry for x > x, may be given in terms of arbi-
trary functions of x or in tabular form. All initial data at x = x, are
obtained from the conical procedure described in reference 3.

As shown in the flow chart, figure 4, the data at x, + Ax are first

approximated by a linear extrapolation of the initial conical data. Using the
sheet shape, sheet strength, vortex core position, and vortex core strength
from this approximation, equation (31) is then linearized and solved for an
improved set of values for the sheet strengths <. by an iteration procedure.

After convergence is obtained, equation (.}Z) is solved for I‘v. The new
values of the Y and of T, are then used in place of those from the initial

approximation, together with the initial sheet shape and initial core position,
to find a new set LT, v:]. This process is repeated until no one of the

set [T v yj] changes by more than a prescribed tolerance over a cycle of
this first iteration loop. At this stage, the calculation for [I‘v, yj] is re-
garded as tentatively complete, and the values are used for the next stage of
iteration. ' ' '

With the pressure and Kutta conditions satisfied as described above, the
next step is to adjust the isolated vortex core position until the overall force
on the vortex and on the cut [ equation (33)] is reduced below a second pre-
scribed tulerance. This iteration in loop 2 is accomplished by a procedure
similar to that outlined in reference 3 for .onical flow,

Having satisfied the zero-force condition in loop 2, the next step is
to solve equation (35) for the sheet rotation angles A 7. The new trans-
formed coordinates of the vortex sheet D'. are then found from equation(36).
If the value of any (ADD f exceeds a third prescribed tolerance, then the

entire procedure is repeated as loop 3.

In general, the procedure is repeated until all tolerances are satisfied,.
or until the number of iterations exceeds a prescribed limit. In the latter
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case, the tolerances may be successively increased and the iteration con-
tinued, When the tolerances exceed maximum values, the iteration is deerned
to be nonconvergent and the computation stops.

After all three loops have been satisfied within prescribed (or adjusted)
tolerances, the vortex configuration at x o + Ax is assumed determined.

Equations (38), (39), and (41) are then solved for the lift and pitching moment
coefficients up to station x o t ax. The pressure coefficients on the upper and

lower surfaccs are evaluated from equation (40) at specified axial stations.

The calculation procedure for the next axial station x, + 2Ax 1is

accomplished in a similar manner, and the program is stopped when the base
station is reached.

Sample Calculations

A number of calculations were made with Program NONCON in order
to check the convergence and stability of the numerical procedure and to eval-
uate the nonconical theory by comparing with test data. All calculations used
a six-segment vortex sheet, which, based on the previous conical computa-
tions, was found to provide a satisfactory compromise between accuracy and
machine running time (ref. 3). Configuration geometries for the sample cal-
culations are shown in figure 5, The convergence properties and running
times for the sample computations are reviewsd below, and have been sum-
marized for convenience in Tablel. Comparison of the results with experi-
mental data is made in a subsequent section,

A conical delta wing (configuration i) was run in order to check the
stability and convergence of the numerical procedure. As indicated in fig-
ures 6 and 7, the calculated vortex sheet shape, core position, and sheet and
core strength remained conical, at least up to a distance x=1.5x o° No

indication of divergence or instability was noted. The low time per step
(3.51 sec) can be attributed to the conical geometry and to the resulting small
number of iterations required to satisfy boundary conditions.

Calculations for nonconical configurations (ii) and (iii) with faired
double-delta wings also showed no iidication of instabilities or divergence.
This may be seen from figures 8 through 11 in which the vortex sheet geome-
try, vertex core strength T' v(x) , and lift and moment coefficients QL(x)

and CM(x) up to the given station x appear to approach the asymptotic

conical values for large x. The somewhat greater running times per step
(9.8 and 7.7 sec, respectively) were attributed to the increased number of
iterations required for convergence in loops 2 and 3 for steps in the nonconi-
cal region.

20




On the other hand, the calculations for configuration (iv), i.e., a
conical afterbody with a curved nose and 50% curved strakes, were found to

become increasingly inaccurate after approximately 100 eteps. Thus, fig-
ure 12 indicates that CL(x) begins to depart from the conical asymptotic

value when x/x°> 100, An excessively large time per step (approximately

60 sec) was required for this configuration, because of difficulties in satisfy-
ing loops 2 and 3 within the prescribed tolerances. The tolerance limits in
these loops were therefore automatically increased as discussed under
Numerical Procedure. The increased tolerances eventually 2llow the calcu-
lated solution to drift off the proper asymptotic value at large x. Additional
analysis is required to investigate causes for the slow convergence in loops 2
and 3 encountered with this configuration.

A short calculation was made with configuration (v) (cone with 50%
strakes and variable incidence) to check the numerical procedure in the
region of rapidly varying wing incidence. The lift and moment coefficients
varied as shown in figure 13. As indiccted from Table I, satisfactory con-
vergence and ruaning times were obtained. Several conical calculations were
also made for configuration (v) with a constant incidence, ¢= - 2% The coni-
cal calculations were made primarily as a check of the incidence theory and
to obtain asymptotic limits for control effectiveness.

Since the slender-body theory requires that configuration parameters
s(x), a(x), ¢(x), etc. and their derivatives be slowly varying with respect to
x, configurations with discontinuities in wing sweep or wing incidence angle
must be precluded from the analysis. Double-delta configurations (ii) and
(iii) were thercfore calculated with small wing fairings (fillets) as shown in
figure 5. The incidence angle ¢ was varied smoothly rather than abr':tly in
the region 0.49 = x < 0,61 for configuration (v). Effects of wing fillets on
the test data will be reviewed in the following section.

-—
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EVALUATION OCF THEORY AND COMPARISON WITH TEST DATA

A theory and numerical pro :dure have been presented for determining
lift, pitching moment, and pressu.e distribution for slender, nonconical con-
figurations with leading-edge separation. In the present section, the sample
calculations, which were discussed previously with regard to convergence
and running time, are compared with wind tunnel force and pressure data.

Force Data

The double-delta wing [ configuration (ii) of figure 5] is similar in plan-
form to the wing on the model tested in reference 11. A comparison between
these two configurations is given in figure 14. Lift and pitching moment coef-
ficient data frcm reference 11 are compared with the theoretical calculations
in figure 15, The nonlinear theoretical curves are faired between a single
calculation ac @ = 27. 6° and the linear theory at @ = 09. All coefficients are
based on planform area. Pitching moment coefficients are taken about the
wing apex and are based on centerline chord length.

As shown in figure 15, reasonable agreement between theory and test
data is found for lift, except at the largest values of @, The theoretical aero-
dynamic center is shown to be approximately 8% of the centerline chord length
behind the expenmental value. The rearward aerodynamic center is beheved
due to neglect in the theory of nonslender trailing edge effects.

A similar comparison is given in figure 16 for a conical body and
double-delta wing [conﬁguratlon (iii) of figure 5]. The experimental data for
this and the remaining configurations are from a supporting wind tunnel pro-
gram carried out by NASA in\ ~stigators and described in Appendix B. The
wind tunnel models were tested with and without smali fillets as shown in
figure 23 of Appendix B, but no significant difference in overall force or
© moment was measured due to the fillets. The theoretical nonlinear lift and
moment curves are faired between a single calculated point at @ = 24° and
the linear theoryat a = 0°. In accordance with slenderness requirements,
the calculation assumed a smootk transxtxon in wing sweep angle approximat-
ing that obtained on the model for 6° < § < 18°, Good-agreement between
theory and experiment is shown. The experimental aerodynamic center is
shown to be within 2% of the centerline chord from the theoretical value, pos-
sibly because the wing is more slender than for configuration (ii).

The nonconical computation for configuratioa (iv) of figure 5 became in-
creasingly inaccurate over the conical afterbody, as discussed previously.
Reierence to figure 12 indicates that the nonconical lift coefficients could be
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approximated by conical asymptotic values at the base of the configuration.
The wind tunnel lift data for configuration (iv) has therefore been compared
with a curve which passes through the asymptotic conical Cp at a= 24°

and the linear theoryat a = 0° (fig. 17). The theoretical stability curve
in figure 17 was based on linear theory values only,

The wind tunnel models tested for wing incidence effects had an abrupt
change from zero incidence to a constant negative incidence at the axial sta-
tion x/xf = 0.55 (see fig. 23 of Appendix B), The sample calculation for -

configuration (v), which had a smooth transition in wing incidence because
of slenderness limitations (see fig. 5), was terminated too early to make
comparison with test data meaningful, as noted previously in connection with
figure 13. The wind tunnel test data have therefore been compared with
conical calculations for a configuration similar to (v), except that the nega-
tive incidence was constant over the entire length., This should provide, at
least, the proper conical asymptotic limit for the wind tunnel data with
incidence.

As shown in figure 15, both theory and test data indicate that control
effectiveness is markedly increased at larger values of @. The nonlinear
control effectiveness is apparently due to the influence of the local strake
incidence angle on the vortex strength. The linear change in lift coefficient
with incidence angle, as given by equation (41), is relatively small in com-
parison to the nonlinear contribution, especially at large angles of attack.
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Pressure Data

The theoretical pressure distributions are compared with experimental
pressure data in figures 19 to 21. The experimental data are from the NASA
wind tunnel test program described in Appendix B. Inthe test program the
static pressure ports were concentrated over the upper body surface in order
to accurately measure the maximum suction peaks due to the vortex cores.
Only limited pressure data were obtained on the lower surface (model at
negative angle of attack), since a previous investigation showed tha.‘t‘lower
surface pressures were relatively insensitive to the vortex core-position or
strength and in fact agreed well with theory (ref. 3).

The comparison in figure 19 at a = 24° is for a 4° half-angle cone
and 50% strakes (6 = 6°), such as comprises the conical forebody portion of
configuration (iii).

The experimental data were taken at two axial stations (60% and 80% of
the conical body length), and indicate that the pressure distribution was
nearly conical. The calculated pressure distribution over the upper body
surface agreed well with the measurements. The theoretical pressures over
the strakes were, however, considerably larger than the measured values.
This is in agreement with previous measurements (see ref. 3), and has been
attributed to the formation of additional vortices over the strakes and at the
body-strake intersection. T -

. Figure 20 shows experimental and theoretical pressures at a = 24°
for the rear nonconical portion (6 =~ 189) of the double-delta configuration (iii),
viz., stations x/xf =0.60 and 0.80. The wing semi-apex angle & varied

smoothly from 6 = 6° at x/x; = 0.48 to & = 18° at x/x; = 0,64 inthe cal-

culation. Excellent agreement is shown between theory and test data for the
wing with fillets (flagged symbols), which approximated the theoretical varia-
tion of 6. The unflagged symbols show the effect of removing the wing fillets
and are for a wing with a discontinuity in sweep (6 = 6°—+18°) at x/x£=0. 55.

At the station just behind the discontinuity, the suction peak due to the vortex
is seen to be nearly eliminated. The vortex suction peak appears to be much
less affected further downstream from the discontinuity.

The comparison for configuration (iv) is shown in figure 21, The
theory predicts somewhat larger suction peaks than were observed experi-
mentally at station x/ x; = 0.43. The departure of the theory from the

expérimental data at x/xf = 0.71 is much more marked, and is due to J

excessive tolerances in the theoretical calculaﬁon, as discussed previously,
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CONCLUSIONS AND RECOMMENDATIONS

The Mangler-Smith conical vortex sheet model has been generalized for
nonconical configurations. Based upon this theory, a computer program has
been developed for the subsonic flow over slender nonconical wing bodies with
leading-edge separation. The theory predicts the lift, pitching moment, and
pressure distribution as a function of axial station and is applicable to slender
configurations with curved wing leading edges and curved body shapes of cir-
cular or elliptical cross section. Effects of variable wing incidence angle
are also contained in the analysis and permit nonlinear longitudinal control
effectiveness to be determined.

Several numerical calculations weve made for configurations for which
wind tunnel test data were available. Reasonably good agreement with test
data (lift, pitching moment, and pressures) was obtained, except for one case
(a body with a curved nose, conical afterbody, and 50% strakes), for which
numerical errors became excessively large toward the base. A limited .
investigation of wing incidence effects showed that the change in lift and pitch-
ing moment due to incidence was highly nonlinear and increased with increas-
ing angle of attack. : '

It is recognized that only a limited comparison of the theory with test
data has been carried out under the current study. ' Additional comparisons
are required to determine the limits of validity of the slender-body theory
and to assess the magnitude of nonslender effects due to breaks in wing

‘sweep (double-delta) and to the trailing edge.

Additional numerical analysis is aiso required to reduce computing time -
and to prevent error buildup in the numerical procedure.

.

Air Vehicle Corporation
San Diego, California
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APPENDIX A

EFFECT OF WING INCIDENCE

In the present section we consider the effect of wing incidence angle
«(x) with respect to the body axis. Let us consider the flow past a wing-body
combination as shown in figure 1, where the wings are assumed to be deflect-
ed at angle ¢(x) with respect to the body axis X. In the cross-flow plane
Z(=y + iz), the wing may be viewed as having a rclative velocity of - ¢U
with respect to the body [fig. 22(a)].

Complex Veloc‘:ity Potential

I W, denotes the complex velocity potential due to wing incidence,
the boundary conditions on Wi are ‘

aw, ie
3z =0 on i =ae (A1)

dW: -iUe on =z

dZ

1t
(=]

~

and la]s lyls ls‘ (A2}

and W.=0 as Z*-v @ (A3)

for a wing on a body of circular cross section of radius a.

We consider the auxiliary plane 'Z* = Z* (Z)

2 2 2 25172 :
* [ a® “ a
R A2 (A1)
in which the body and wings are collapsed into a vertical slit along the
% : .
Z -axis [fig.22(b)]. The boundary condition in the z¥ -plane leads to a
combination of a sink and source distribution along the' Z'-axis between
" :
zZ . =t(s- -:- ) [fig. 22(b)]. The complex velocity potential per source
and sink distribution of strength dq located at Z:‘ is " !
' * *
. z -iz’: dq(z)) (a5)
aw, (z )=-vlog[ ][ ]
e z* 41zt 1L 2™

, To satisfy boundary conditions given by equations (Al) and (A2), the
strength of the sink and source distribution dq(z'.:) is taken to be
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dq(z}) = 2¢U dy, 2% < s-2a%/s (A6)

Integrating equation (A5), and making use of equation (Ab)and express-
ing dy interms of dZ~ through the transformation, we obtain

h * 2*-iz¥ *
Z, log E———} dZ.
- eU i Z*4iz¥ i

*
Wiz = — AT (A7)
-— o+
510
o
which satisfies equation (A3).
In order to perform the integration, we define
aZ
Yl =y{l +7] ~(A8_)
y .
Equation (A7) reduces to
2 2\2+1/2
s+ 2= Z*-[ylz-<s+a— J
¥ _ -eU 8 ] 8
Wiz =33 g\ = 72 1/2
2a Z +[y1 ~<s+—s— ]
1+ 4 d
ﬁ
( > . 2) /2 1
Y- 4a
(A9)
We denote
2
R R AL
s Z - yy -3+

and
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2
s+-a;- Z*- 2 _ s+3-2-2 1/2
Y1 8 Yy dy1
= lo - {All)

I g
2 2.\2+1/2 1/¢
2a Z*+ [yf- <8+Es-> :] [y?- 432]

Integrating equation (A10) by parts and using standard integration

tables,
. z*2+ ey 1/2 1 2az*-i(s_af_)[z*2+é+_z_2>z]1/z
i [ (s )] og * ){z*2+<8+%i>2]l/2

2
' * . a ) :
yA -1(5-——
+ iZZ* cos-l 2a -2a log 5 : (A12)

To integrate equation (All),it is more convenient to use 2 new independent
coordinate Y, such that '

~

‘2 a2 2

Integration by parts then gives

> dy, (Al4)
To simplify the above integral, we let »

2a(-2Y -, } R

Equation {Al4) thereby becomes
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a
8%
dy
* 3
I.,=-22
) T
3 s _}
2
&
8 s .
2 2\2 y
+22% (2" *("%‘)] 2 ) Z

| ik
- -n'{z*- [z*z+< é)z]w' .(Ais)

The complex velocity potential w, is now

¥ -U
LA ‘:11‘“12]

-2alo > ‘ ! _ (Al6).

*
On the surface of the body, Z =1 z* we find
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¢ (%) = Re (W,)

2 2 22q1/2
22 1/2 Zaz*+<s-§;->{:z* +<s+a?- ]
'-‘—%- [(84-%-)-2*1 In
Zaz*-’;-a'—z z*z-i- s+§iz 1/2
\ s s
*'*'3‘?"2‘ Al7)
+z¥| 7+ 2 cos'l(zaz) - 2alog 5 ' ( '
| a L a
s+;— (8 = ==

which agrees with the known result given by Adams (ref. 12),

The velocity components, as obtained by differentiation of equa-
tion (Al6), are

dW, *
L S S ¢ 4
¥=U -1V =5 T za1/Z -
dZ [Z* A )]
8 4=
8
2\r 2 2\q1/2
2az*+i(;-§_> z* +G+a——>]
In s s -4 _ieU -1f 2a
. 2 ) 2\1/2 - 2z
. a * a a
2a 2 -1(8-7)[2 +<3+—8->] B+—s-

The velocity components in the physical plane are-
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2 2
a a
aw, AW, dWi<Z"Z'><1+ ZZ)
s U . -} . -l VE conee oo &
VA (etal)Y 1(¢1)z i izt 9Z dz*‘.z_a_z ) -932 172
L Z 8
(A19)

It is noted that the transformation equation (Al4) is singular at Z = s,
To ensure a finite velocity at the wing tips, the effect of wing incidence must
be included in the Kutta condition as formulated in equation (32). ,

Lift Due to Wing Incidence

The lift due to incidence, in accordance with slender-body theory, is

r § = '
L. = -ReipUcosa QW, dZ (A20)
i <P i qz% :

Applying the theory of residues to equation (A20), and defining

~

x
;CL. =2 Li /vazy s dx we obtain
. 1 o]
C, =2ecosa |Tp2 , 2 1] _2as
L, TAG £§"+2a |cos _sz+az

e ()] e [

+<,_%-’;>[%(g;>4a] (a2
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APPEN.IX B
WIND TUNNEL PROGRAM

A supporting wind tunnel program was carried out by NASA investiga-
tors in the 7 X 10 ft low speed wind tunnel at the Ames Research Center to
provide additional test data for evaluating the nonconical theory developed
herein.

Model Geometry

o The basic model consisted of a circular cone, 4 ft in length, and of
4" semi-apex angle. As shown in fig. 23, the cone could be fitted with a
series of conical strakes of exposed semispans ranging from 2-1/2% to 50%
of the body radius. The cone and 50% strake (6 = 6°) were split into forward
and rear sections at body station 26.4. Additional rear strake sections and -
fillets were provided for testing double-delta configurations (with and without
fillets) and of rear semi-apex an%les § = 129, 189, 240, and 309. The rear
section of the cone was made in 2" wedge sections permitting incidence angles
€=0, + 29, £+4°, and ¢ 6°. The forward cone section could be replaced by a
curved body with either a pointed or blunt nose and with curved 50% strakes.
The cone and selected strakes (6 = 6°, 182, and 30°9) were instrumented for
static pressures at several axial stations,

V ‘fest Procedure and Conditions

The angle of attack was varied from approximately -8° to 32° for the
force and pressure runs. The model was supported from the rear by an 8"
sting which was attached to a vertical strut mount (see fig. 10 of ref. 3).
The tests were conducted at a nominal free-stream dynamic pressure of
50 psf. '

Data Reduction and Corrections

Six-component force and moment data were measured with a mechani-
cal scale system. The pressure data were obtained by scaling manometer
board photographs, Only lift, pitching moment, and pressure data for those
configurations for which numerical calculations were made (Table 1) are
presented herein, For ease in comparing with theory, all coefficients have
been based on planform area and root chord, whereas pitching moments were
taken about the apex or nose station.

No wind tunnel wall corrections were made to the data. Lift and pitch-
ing moment coefficients were corrected jor buoyancy effects (due to support
strut interference) in the manner shown in reference 3.
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Nonconical
.. .Strake '
- with incidence ¢

Isolated
vortex core

Feeding
vortex sheet :
Figure 1. -Typical nonconical slender body configuration with vortex sheet.
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Top of body

;Fig'ure 3. -Six-segment vortex sheet model, transformed plane. !~
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| initial
- input
. |from

PROGRA
SMITH

(BT A HEER t-. ca

Nonconical shape pc
Tolerances (E,E,E_.,

L ers8,

Initial guess at x= x +ax:
Vortex position

Ze)

Obtain I'v‘ from Eq.(32)

[teration limits, etc,, > Sheet shape . (Dj)-.
(see ref. 10) Vortex strength (I)
Sheet strength  (7])
3
Pressure continuity: £
Satisfy Eg.(31) to lggg’ in
obtain i-s2 geometric
parameters
a(x),six), €lx)
Kutta condition: f
A No

LOOP |
No .
» ‘ W
I? o _
» . Satisfy 11
[by Eq.(28) | force balance:
in ref.3] | Eq.(33)
LOOP 2 Xom X - ¥
Xz X+aX
Continuity of I
" | normal velocity: (35) :
. FindAD; from Eq.
LOOP 3 /\
AD; Calculation
Set | Ne g g Yes  of G cyf
Dj "Dj"ADj W and cp
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" (ii) Faired double-deita wing

Foar:nqw

i W S
48__ 64

{iii)} Faired double-delta wing,conical body .
’ . —t4‘ e.

33

(iv) Curved nose, conical uftefpody with 50% st.mkesij

-

_(v) Conical body and delta wing with incidence

Figgre 5.a Config\_z'ra.rt_ions for sample calculations. -
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Configuration (iv) from fig. 5, ¢ =24°

intitial conical value

/_s 20°

0.6 - Z |
- o symptotic value

3=26°
04
9.2
X, =0.06 :
. L i — i o
‘ 0 02 04 06 08 10

Axial distance, x

F1gure 12, -Configuration {iv), {curved nose, comcal after vody,

and curved 50% strakes): nonconical lift.coefficient up to station x.
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Configuration {v) from fig. 5
' al=10°

-4 ~ e(x), deg

O i i / 1

—_-/\’0.40 0.4% 6.50 - 0.55
Axial distance, x

20
C,_(x)

—

ASF

C_(x) and C {x) are based on lift, moment,
.10F andarea up tc station x.

.05 - !
x,=0.49
\ ; - AC,ix)
_Jlr 1 . A/ -
0 '040 045 055 055

Axial distance, x

Fl"igrg_‘r»e» _@},h;rgépﬁguration (v}, {cone with 50% s;trakes and variable incidence):,
- lift and moment coefficient up to station x.
' . 47
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1.0~ Test data for model similar to configuration (v)
' of fig.5 with ¢ =-2°

0.8 |- x Calculated asymptotic . ©.

conical vaiues

NASA test data per
| Appendix B :
O€F o0e=0° @

O € s-2°

» | Faired curve
0.4 - o Faired,

Faired curve
e =-2°

-

0.2+ : ’a”
-
- Linear theovy
"/ €s 00

g F1gure 18 -Effect of wing incidence on lift coeffzment
and companson mth test data. -
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Cone with 509% strakes
NASA test data per Appendix B

© x/x;=0.6

: 10} X/Xf = 0.8
-20r

a, = 24°

8 = 6°

R ——] e Steghe >
© 20 40 60 80 100

Percent local semispan

~ 4

_Figure 19, -Cone with 50% strakes:
comparison of conical theory with pressure data
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Configuration(iii) of fig.o5, o = 24°
NASA test data per Appendix B
© Nofillet, double-delta wing

&  With fillet, curved lecding edge

'
w
-

X /X4 =0.6

0 20 40 60 .80 . 100
Percent local semispan

-3 x/x, =0.8
AP ‘
q

-2t '
-l

- § Body -+ -Strake ~>

0 . '20 40 60 80 100

. Percent local semispan’

Fxgure 20 -Confzguratmn (111), (cone, double-delta wmg. and fillet):

54!



Configuration(iv) of fiq.ls, o 8 24°
' NASA test data per Appendix B

-"'-\q—- . x,/x,=0.43

o}
. GQO,OBody —pf———~Strake =
o) 20 40 60 - 80. 100
Percent local semispan

. -3 i .
AP %o/ X¢® O.71
q i
-2 '
-] 00
©:%Y0}¢; ‘QQ a l H
Body —me—Sirgke

0 ' 20 40 60 80 100
.Percent local semispan -

F1gu;e Zl -Confzguratmn (w). (curved nose, comca.l a.fterbody. .
and curved 50% strakes) comparison of nonconical

o theory with ‘pressure daﬁaj.“f '
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a.) Physical plane

Figﬁre 22, =Source and sink distribution due to wing incidence;

-

- R - - e .- - e A i g e o ..t . iR b
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»n’

50% stroke

/—-25%
—10%
—] 5%,2.5%

also tested

<-Circular
e 26.4 —- . ~Cone body

1Y — Incidence angle ¢
. ‘ e

-4°
A

30

24
18°

l2e
6°

Fillet typicul—\

-

Figure 2%, -NASA wind tunnel models.
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