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ABSTRACT

Functional models capable of performing the aresine

function are investigated for possible application to phase

modulation receivers utilizing product detection. A mathe-

matical model of one of these functional models is devel-

oped, and its performance in terms of output versus input

signal-to-noise ratio is investigated.

Modulation by a single sinusoid is considered for the

case of an additive, white, Gaussian noise process, and

both analytical and computer simulation  techniques are

utilized in determining the performance characteristics of

the model. It.is shown that the analytical results are

valid for only a very limited case.

Results from the computer simulation indicate that

for the model to be of any practical worth, the modulation

index must be small while input s".gnal-to-noise ratio must

be relatively high.
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CHAPTER I

INTRODUCTION

Communications systems employing phase modulation (PM)

have attracted considerable interest in recent years, es-

pecially for application in the aerospace field. Of the

several types of demodulation schemes available for use in

PM receivers, product detectors utilizing, phase-locked loops

are of primary interest due to the relative e ase of imple-

mentation, and because the output versus input signal-to-

noise ratio (SN R) characteristics are essentially linear

throughout the range of usable input signal-to-noise ratios

(i.e., no threshold effects).

The performance of pha ,e-loc"(;ed loop product detect-

ors in PM communications system receivers has been analyzed

in detail by several authors (Teasdale, 1969; Painter and

Hondros, 1966; Viterbi, 1966) with the help of certain

assumptions which reduce the problem to an analysis of a

linear system. A brief discussion of these techniques and

results will serve to illustrate:: the assu:rption and intro-

duce the problem to be considered in this study.

Figure 1 depicts a simplified floc% diagrarr of a

typical product detector, with the input :;ho ,.-:n as a PM

signal, e lp, - A sin [wct + ^ m (t) 1, :.,here :
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we = radian frequency

mm(t) = phase modulation process

The voltage-controlled oscillator (VCO) is assumed to be

free running at a radian frequency of w c , and in phase

quadrature with the input signal e IN . Thus, the output of

the product device is:
A

e2	 A sin Cwct + ^m(t)J - cos(wct + m(t))	 (1)

2 sin [2wct + mm(t) + ^m(t)J
+ 2 sin [0m(t) - Om(t)3

A
where ^m(t) = loop estimate of the PM process.

The low-pass filter (LPF) is assumed to have a pass-

band such that the double frequency term is filtered out

while the difference term is passed. Thus, the'.nput to

the loop filter is:

e 3 = 2 sin CO MM - Om(t))	 (2)
A

and [0m (t) - Om (t)) is defined av the relative phase error.

Now, the output of the loop filter, e 4 , ideally should be a

signal such that the modulation imposed on the VCO is

exactly Om(t), so that the loop would operate with zero

phase error, That is,

e 4 = J 0m(t)dt

since the VCO in a frequency modulation (FYI) device. For

this to be the ca3e, the loop filter would obviously have

to be a non-linear device. However,, if the phase error is

at' all times small compared to 1 radian, a simplifying
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assumption may he made. That is;

e 3 * 2 sin [ #m(t) - mm(t)] = 2 [ #m(t) - 4m(t)]	 (3)

In this case, the loop filter would be a simple integrator,

and the system could be approximated as linear. However,

this assumption places the restriction on the system that

the phase variation be small, or, in other words, that the

modulation index must be small compared to•1 radian. This

is normally the case in practice.

If the use of modulation indices on the order of 1

radian is desired, it is seen that the loop filter must

perform the aresine function plus integration. That !s, for

an input of sin (x(t)), the filter must produce an output

proportional to lx(t)dt. In this case, the overall opera-

tion of the phase-locked loop product detector becomes

linear, and it is possible to produce an output which is

exactly proportional to the input P"•! process.

The purpose of this study is to develop a model which

will perform the aresine function for a single sinusoidal

input signal, and to analyze the performance of this model

when band-limited, white, Gaussian noise is present at the

input. Specifically, it is desired to determine the output

versus input SNR characteristic; of such a model and

special attention is directed to the threshold effects, if

any. For purposes of analysis, th ,, modulating signal will

be assumed as a single sinusoidal jigmal.



In chapter II, a mathematical model is developed

which will perform the aresine function for a single sinu-

soidal input. Chapter III presents an analytical approach

to developing the output SNR characteristics under the as-

sumption of high input MR, and discusses the results.

Inasmuch as the model represents a nonlinear trrnfer

function, no general results could be obtained by analyti-

cal methods, so a digital computer (SDS Sigma 7) was

employed to simulate the model. The assumptions, theory

developments, and techniques necessary for this approach

are contained in Chapter IV. In Chapter V. results of the

study are summarized, and conclusions are drawn concerning

the techniques used to analyze the model, as well as proba-

ble performance of the model when implemented in a phase-

lock loop product detector.
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CHAPTER II

MATHEMATICAL MOM= FOR THE ARCSINE FUNCTION

In developing a mathematical model, or a system, to

perform the aresine function, one might consider aeveral

different approaches, Inasmuch as the basic requirements

are that the system accept as input a function, x(t),

which is a sinusoid whose argument is some function of time,

x(t) - A sin[0(t))	 (4)

and provide as output, y(t), the argument of the input,

Y(t) R 8(t)	 i5)

the system must obviously lie non-linear for exact results,

However,, 'adequate results may very well be obtained

by a piece -rise linear approximation of the aresine function,

c,:nsisting of two, three, or more segments. This concept

is shown in Figure 2 for three segments. This system could

be implemen4ed relatively easily, using three linear ampli-

fiers with appropriate gains, and a threshold device for

selecting the proper amplifier, dependint; on '.he level of

the input si gnal. Another approximation method which in

theory would be more accurate conuists of' approximating the

aresine function by a truncation of the corresponding

Taylor's series. This series is riven by

aresine (x) _	 1.X3 + 1.3 5 + 1.3;5*X7 	 +..,	 (6)-	 5
and an approximation consistinr~ of the first four terms of
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(6) could be implemented as shown in Figure 3. In practice,

It would probably be difficult to obtain accurate devices

for the cubic and higher terms.

Alternatively, a method utilizing an operational amp-

lifier and a sinusoidal function generator could be used

which would provide excellent accuracy. The connection of

these devices is shown in Figure 4, and the closed loop

equation for system operation:is:

(x(t) - sin [y(t)])K • y(t)	 (7)

Rearrangement of terms leads to:

sin [ y (t)] - Kx... (^: y(t)	 (8)
If the gain of the operational amplifier is very large this

equation reduces to:

sin [y(t)] - x(t)	 (9)

or, solving for y(t),
Y (t) - aresine [ x(t)]	 (10)

and ;r(t) - 0(t)
All of the preceding methods approximate a true aresine;

that is, regardless of the input, the output is the aresine

of the input. This has one potential drawback in that the

input must be amplitude limited to ±1 volt for proper

system operation.

The model developed for further study in this thesis

differs from the other methods in that it performs the arc-

sine function only for sinusoidal inputs. The derivation is

i



x {t) _ ,
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FIGURE 4. Feedback Model for
Aresine Function
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based on the observation that differentiation of the input

sinusoid with respect . to time results in a signal which is

amplitude modulated by the derivative of the PM process.

That is, if the input signal is;

x(t) a A sin [@(t)]

thong

dx(t) . A d8^ (.t) . cos[ g ( t)J	 {11)
dt	 dt

However, conventional AM demodulation schemes could not be

used due to the lack of frequency separation in the modula-

ting signal and the "carrier". Therefore, a division pro-

cess was devised whereby the original input signal is

shifted in phase by 90 degrees and divided into the differ-

entiated signal. Integration of the resulting signal

produces the desired output. A diagram of this mathemati-

cal model is shown in Figure 5, where the 90 degree phase

shift is implemented as a quadrature filter, which has an

impulse response of
fit

An alternative method of implementing this mathemati-

cal model is shown in Fit-ure 6. The closed loop equation

for this system is:

{e'(t)Acos[e(t)] - Z(t)Acos[e(t)3)K - Z(t) 	 (12)

Rearranging terms,

Z(t)[AKcos[e(t)J - 11 n 0 1 (t,AKcos[9(t)3	 (13)
and, for large K, this simplifies to;

Z(t) • e'(t)	 (14)

i
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Therefore, the output is;

'	 y(t) Z(t)dt - e(t) (15)

Returning to the model of Figure 5, and assuming the

input consists of signal, s(t), plus noise, n(t), the out-

put of the divider is seen to be;
a l it )

Z(t) = 	 +nft{t7 {16)

where s' (t)- ds.. M	 8(t} - s(t)*.v1

W( t ). dn( )	 fi(t) - n(t)*l

Since the signal portion of Z(t) is known to be e'(t),

the noise portion of the voltage must be;

ni(t) - Z(t)	 - e'(t) (17)
Substituting for Z(t) from Equation (16);

nl(t) - sS(t) + n' (t) - e l (t) (18)

s'(t)_	 n_+	 '(t)	 - s(t) • e'(t) _- n(t)•8'(t)—	 -
+

Now, since;

s(t) = A sin[e(t)]

8(t) - A cos[e(t)]

s'(t) A[8'(t)]cos[e(t)]

it follows that;

s'{t) - 8(t) • 8' (t) (19)

and, thence;

• &(t) + A(t) (20)

0 is use3 -t5 1931c-Me convo u	 on
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Then, the noise at the output of the system would be;

no(t) m l nl(t)dt	 (21)

However, due to the nonlinear characteristics of

Equation (24), it is impossible to obtain a !general closed

form expression for the output noise, or a quantitative

measure of output noise power as a function of input noise

power by conventional analytical techniquese The remainder

of this manuscript is devoted to methods of approximating

these quantities, and the following chapter presents

analytical results for the special case of high input

signal-to-noise ratio.
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CHAPTER III

ANALYTICAL RESULTS POP SIGNAL-TO-NOISE
RATIO PERFORMANCE

Although it is desirable to obtain general, exact ana-

lytieal results for the signal-to-noise ratio ( SNR) per-

formance characteristics of the aresine device, it is felt

that this is, in general, an impossible task, due to the

inherent nonlinear properties of such a system*

It is important to note that the a resine model pro-

posed for this study is a true aresine only for a single

sinusoidal input, and not for a general, unspecified input.

Thus, for a sipgl.e sinusoidal input it is known that the

•	 system output will be the argument of that sinusoidal

input, however, for any other input, the output will not,

in general be the aresine of the input, and therefore, the

transfer function of the system cannot be uniquely speci-

fied, but depends on the nature of the input. This heurts-

tic argument leads to the conclusion that it is not possi-

ble to apply an analytical approximation method to the

general case noise analysis for the purpose of obtaining a

closed form approximate result.

However, for the special case of high input S`JR, it

is possible to obtain approximate resuits for the output

•	 versus input SNR characteristics of the system. It is as-

sumed the aresine device is implemented in a product

f
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detector as depicted in Figure 7, and that the following

general assumptions can be made regarding the system:

(1) The input voltage, e 1 1 is the sum of a phase

modulated sinusoid carrier at wo rad/sec, and

white, Gaussian noise with spectral density No

watts per cycle of frequency.

(2) The input frequency spectrum has*been limited to

a band of wo rad/sec centered about the carrier

frequency, where W C »Wo, and that this band is

sufficiently wide to accomodate all of the input

signal components down to 1% or less relative

magnitude, as shown in Figure 8A.

(3) Modulation of the carrier is by a single sinu-

soid, 4m(t) = Ssinwmt, where 8 is the modulation

index, and wm is the modulating f-requency.

(4) The ratio of input signal potter to average input

noise power is high.

(5) All filters arc ideal.

The input voltage, e l , can then be written as;

e l	A sin(wct + Bsin %t) + n(t) 	 (22)

where n(t) = sample function from the input Gaussian

noise process, and

A = carrier amplitudc

For the narrow-band Gaussian noise process under

consideration here, it has been shown (Davenport and Root,
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FIGURE 8A. Signal Spectrum .
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FIGURE 8B. Noise Spect. um
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1958= Bennett, 1960) that the sample function, n(t), can

be expressed as;

n(t) = x(t)•coswct .. y(t)•sinwct	 (23)

and, furthermore, that x(t) and y(t) are sample functions

of independent Gaussian processes, where;

E{x(t)) • E { y ( t )) = E{n(t)) = 0	 (24)

E{x2 (t))	 E{y2 (t)) = E {n2 (t)) = 02	 (25)

where E ( • ) = expected value of term in brackets.

In addition, if the power spectral densities of n(t), x(t),

and y(t) are Snn(w), S xx (w), and Syy(w), respectively,

then;

Sxx(w) = Syy(w) = Snn ( w+wc) + Snn (w-WC )	 ( 26)

flow, for noise of constant spectral density (or more

simply, "white" noise), it is obvious that the spectrum of

n(t) will be as shown in Figure 8B, and that;

Snn (w) a N o we - 2' .r̀ =w	 we + °2	 (27)

= 0	 otherwise

Therefore, the total average J.nput noise power to the system

of Figure 7 will be;

1P	 JAS (w)dwn	 'n 	 nn

Pn = 2N o fo 	 (28)

and the input signal power will be;

P S z A 2 /2	 (29)

4
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Equations (28) and (29) yield the input signal -to-noise

ratio as;

5NRi - A^^" 3'"	
(30)

` o 0
Equations ( 22) and ;23) may be combined to yield;

e i n Asin(wcv+^sin%t)+x(t).coswct-y(t)•sinwct

• Asinwct • cos(8sinwmt) +Acoswct•sin(Ssinmmt)

+ x(t)•coswct - y(t)•sinwct	 (31)

Factoring results in

el - [Acos (8sinwmt)-y(t))•sinwct

+ [Asin(Ssinwmt)+x(t)] • coswct	 (32)

Thus, e l is the vector sum of two quadrature vectors whose

amplitudes are time varying, as shown in Figure 9, and this

vector sum may be replaced by the appropriate single vector

whose form is;

e l - R(t)•sin[wct + 9(t)]	 (33)

The amplitude, R(t), and phase, @(t), of this resulting

vector will then be;

R(t)	 Acossinwmt)-y(t) 2 + Asin(Osinwmt)+x(t

(34)

g(t) - arctanAsin(B sinwmt) + x(t)]	 (35)

(Acos ( Bsinw,t) - y(t)
Now for the assumed conditions of high input SNR, the

amplitude function, R(t), becomes approximately;

X (t) m v(A2 cos 2 (&sinwmt)+A 2 sin2 (Ssinwmt)	 (36)
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or, R(t) * A	 for A2/2 » E(y2(t))

The Taylor series expansion for a function of two variables

about the point ( 0,0) is;

f(u,v) s f(0 80) + ufu (0 60) + vfv(0,0)

+Z.i. [u2fuu(0 00)+2uvfuv(0,0)+v2 fvv ( 0,0)]+ ...

where fu, fv denote partial derivatives with respect to u,

v, etc. If e(t) is expanded in this mannerAn terms of x(t)
and y ( t), and only the linear terms are retained, the result

X(t)
Asin ( Bsinwmt)	 cos s nwm

8(t)	 arctan	 +

(Acos ( Osinwmt ) ]	
+ 

A2sin2( Bsinwmt )
1 

A2cos2(Bsinwmt)
• y(t)•Asin ( Bsinwmt)

A2cos2(Bsinwmt)

A2sin2 ( Bsinwmt)
1 +

A2cos2 ( Bsinwmt)

Use of trigonometric identities yields;

O(t) = Ssinwmt+ x(---cos(Bsinwmt)—sin(ssinwmt) (37)

Since the assumption of high input SNR requires that;

x.^ ^ ; X « 1

the second order terms which involve x2 (t)/A2 and y2(t)/A2

may be neglected as a good approximation, Therefore, the

input signal to the system in Figure 7 is given, to a good

approximation, by;

el as Asin[wct + e(t)] 9

r^
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where 8(t) is given by Equation (37).

As was shown in Chapter is the out put of the low pass

filter following the product device is;

03 • A sin[8(t)]

and, from results given in Chapter II, Equation (15). the

output of the aresine device will be;

e 4 = 8(t) = Ssinwmt + x(t) cos(ss!nwmt)

•Y(t) 	 (38)

Therefore, the noise at this point is;

nl (t)	 os(Bsinwmt) - L11 sin(Bsinwmt) 	(39)

It is important to note that although Equation (37)

gives a good approximation to Equation (35) for high input

SNR, Equation (39) is not necessarily a good approximation

to the noise, since the premise used to obtain this ap-

proximation is that the noise is small compared to the

signal. The potential pitfalls in using Equation (39) will

be discussed lat3r.

The total average power of a stochastic process is

defined as;

Pav g ' 2n 1	 (w)" Suu	 dw s Ruu(0) m E(u 2 (t))	 (40)
.60

where Ruu (0) A autocorrelation function of u(t)

evaluated at zero.

So, the noise pourer at this point is;

Pn l - E([ 1(t) cos(Bsinwmt) - Y(t)51n(Os1nwmt)12)

r
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Pn l • E { x2At) os2(Osinwmt ))+E(^Z)sin2 ( $sinwmt))

-2E(x(t)A (t) )-cos(Ssinwmt) • sin(asin%t)	 (41)

Now, since x(t) and y(t) are independent processes, the

use of Equation (24) yields;

E(x(t)•y(t)) - E(x(t))E(y(t)) • 0	 (42)

Using Equations (25) and (42) in Equation (41) yields;

Pnl E{x))[cos2(Bsinwmt)+sin2(osipwmt)]
A

• E{x2 t)	 (43)
A2

Also, from Equations ( 26) and (27);

Sxx(w) - 2No 	 IWI .I 2	 (44)

= 0	 otherwise

Thus , the noise spectral density at the aresine device

output is;

Snlnl ( w) = 2N olA2	^ wI <.+°	 (45)
2

= 0	 otherwise

Digressing for a moment to the question raised pre-

viously of the accuracy of the approximation to the noise

which was necessary to obtain this result, it is possible

to show one case for which the approximation is accurate.

Again, assume high input SNR, and consider the limit of

Equation ( 35) as 0 approaches zero;
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•	 Aain{8sinw^t) + x{t)
1Sm8(t) * S+

mO 
arctan
	 ;co;(Bsinwmt

arctan {xst)}

A
t for x(t) <1 	 (4b)

Therefore, for the case of no modu4ation and high

SNR;

A2
E{x2( t)

Pn l
}	

(47)

which agrees with Equation ( 43).

For other values of S. Equation (43) may or way not

be valid, and this question is discussed at length in

Chapter V. where results of this chapter are compared to

computer simulation results.

Passing the noise through the output low-pass filter

limits the noise spectrum to a bandwidth of w firad/sec, and

therefore the output noise spectral density is;

Snono (w) - 2No/A2 	Iwf jwm	(48)

• 0	 otherwise

where it is assumed that wm<wo/2

Thus, the noise power at the output of the system is;
2Nofm

P	 s ._.._.__	 ( 49)
no	 A2

The output signal voltage and power are;
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so(t) • Bsinwmt

	

Pao • 02 /2	 (50)

Therefore, the output SNR, from Equations (49) and (50)

Is seen to be;

SNR0 •
"Om

(51)

It has been shown (Batson, 1967) that the.output SNR for

an equivalent system without the aresine device is given by:

J	 8)12(

	

SNR 
A2
2N 2	 (52 )

o m

where J,(8) • first order Bessell function of S.

The following chapter presents the development of a

computer simulation model for the aresine device, which

extends approximate results into the low input SNR region,

and provides some insight into the variation of noise

power as a function of the modulation index, 8.
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CHAPTER IV

DEFINITIOI OF THE MODEL FOR DIGITAL
COMPUTER SIt1JLATItr;J

Since the performance of the aresine model proposed

for this study could not be studied for the .general case

using analytical methods, a digital computer simulation

routine was developed for the purpose of obtaining; samples

of the noise and digitally processin; these samples to

obtain an approximation of the output noise power. The

computer program was written in the Fortran IV language,

and the Scientific Data System.,' Sirria 7 was used to obtain

solutions to the program,

The aresine .nodel used for the simulation is the same

as described previously, with the exception that the output

low-pass filter and the integrator have been interchanged

as shown in Figure 10. Since then-e a^•_ both linear devices,

this has no effect on the model o^it; : Sat. Tdcal devices have

been asrurned in all cases in the aresirie model.

The major problem in the sirmilat .on is developing a

ccnvenient and accurate rrethel of dcs.^r4binr the input

noise voltaf,e to the system. 1: random number enerator

with normal distribution was con ::i,:crt_c. I but on further

inspection it was found that th l .; ac ;ul : n,qu ire a pro-

hibitively :rig:h number of caloulat;.onn. Thr rothod u ►ed in
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the program (Kant,

Gaussian noise as

evenly throughout

e^Ar
nit) •

k•1

Dck, 1961) approximates white, bandlimited,

a series of sinusoids spaced closely and

the bandwidth*

en • sinE (2k' l) wt]	 (53)

where B • input bandwidth in Hz

Af Aw/2v • frequency spacing between adjacent

to rms in It a

An • amplitude of each term

The power contained in n(t) is;

Pn ' 
A^ 2 • 

Af	
(54)

The average power of white Gaussian noise with two-sided

spectral density, % watts/Hz, in a band of B Hz is;

Pn a 2NOB	 (55)

Equating these two to obtain. An yields,

(An) 2 * 4NOAf

An n 2 N^	 {56}

The input to the aresine model is assumed as noise,

n(t) defined as above, and signal, s(t); where;

a(t) • A sin [sm(t)]	 (57)

fm(t ) ' B s inwmt

From Chapter II, Equation ( 20), the input noise to the low-

pass filter is;

^^_rr
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ne(t) a	
m

s(t) + n(t)	
t58)

where ^' m(t) • opm eos%t

t(t) - Acos (8sinamt)

8 of	
(2k-1)n(t) -	 2 of coa [..- 2 -- emt ! , and

k-1

n' (t) 
s B of 24'0'67• (2k-1)Aw/2•cos[-(-2^+k^-- SAWku 1

Equation (58) is very adaptive to iterative computation,

and thus samples of n l(t) may be easily obtained as a

function of time.

As is well known, the output of a linear filter for a

given input time function is simply the convolution of the

Impulse response, h(t),. of the filter with the time function,

and this process is defined as,

e
f(t)*h(t) = 1 f(t- T )h(T)dT

The sampling theorem states that if a band-limited signal

is sampled at a rate greater than twice the highest'fre-

queney, and the resultant samples are passed through an

appropriate low-pass filter, the output will be an exact

reproduction of the original time signal. Since the in-

terest here is only in that portion of the noise which lies

4<
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within the bandwidth of the output low -pass filter, this

same filter may be used to process noise voltage samples

and reproduce that noise which is within the band of

interest.

Thus, if samples of n l ( t) are obtained using Equation

(58), then n l(t) may be written as;

nl(t)^
	

Akd(t-kT) 	 (59)
k-. 

where T is the reciprocal of the sampling frequency,

Ak is the noise voltage sample taken at t•kT, and

6(t-kT) is the Dirac delta function at t•kT

Since the impulse response of an ideal low-pass fil-

ter with bandwidth of cam rad/sec is given by;

T sinwmt
hl(t) • '—"-'	 (60)

where T is the gain of the LPF as stated by the sampling

theorem, the low-pass filter output is;

	

..	 sinwmT
g(t) - nl(t) Oh l (t)	 T	 Akd(t-kT-T)._..N,	 dT

-. k•-m

Tp	 sinwm(t-kT)

n E	 Ak 	 (t-kT)	 (61)
ks-•

Now, the impulse response of an ideal integrator is given

by;

h2 (t)	 U(t)	 (62)

4
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where U(t) is a unit step function.

Therefore, the system noise output is

no (t) a g(t)shz(t)

a	 M	 sinwm(T-kT)
n (t) T_	 A	 U(t-T) -	 AT
°	 1 k--.. k -..	 T-kT

Letting wm(t-kT) - a

so that	 dT - do/mm

T - a/wm++kT

T ••
	 wm(t-kT) sina

no(t } ^ ^ ^ A j	 ----- do	 (63)
	k- k	 a

since U(t-a/wm kT) - 1 for a<wm(t-kT)

- 0 for a>wm(t-kT)

Clearly, 'it is impossible to calculate no{t) from

Equation (63) as long as the summation is unbounded, unless

the summation converges for both negative and positive k.

Suppose that the summation is truncated to M Equation

(63) then becomes;

s T N A wm(t-kT)sina'do

om kW-N k -m	 a

	

wm(t+NT)	 m(t+NT-T)

	

= T_ A-N `	 si o do + A-N+l	 Siva do +
m	 ^..	 a	 m	 a

w t

	

+ T	 (m s^ do + ......

	

Ap 
to	 a

i
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NT+T)Oyq(t-	 %(t-NT )

+_lt si da + z 
j + 

sins 	 (64)

For some' t, and a suitably large integer N(NT»t),

the integral in the last term $n Equation (64) will ap-

proach zero, and therefore inclusion of additional terms,

AN+1 ! AN+2 0@ * O * s 
would have no significaht effect on the

final value of no (t). similarly, the first integral in

the first term of Equation (64) approaches w. since;

sinnx_ dx - w

Thus, if the Ak are periodic with index I, and have

•	 zero mean, addition of another I terms to the summation

would have no gffect, since all these terms are multiplied

by the constant n.

From Equation (58), it can be shown that n l(t) is

periodic with radian frequency Aw/2, provided that wm is

chosen as an integer multiple of Aw/2. If each term in

Equation (58) can be shown to be periodic for some TP , then

n l (t) must also be periodic with Tp . That is, if

n 1 (t) - n'(t+Tp),

V m (t) • n(t) - v m(t+Tp)•n(t+Tp),

S(t) - s(t+Tp ), and

n(t) - n(t+Tp),

then

f

s
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n l(t) • n l (t+Tp )	 (65)

•	 The terms n 1 (t) and n(t) are obviously periodic with radian

frequency of -Aw/2, since they consist of the sum of a

series of cosines, the lowest frequency of which is Aw/2.

Therefore,

n 1 (t) n n'(t+4x/Aw)

n(t) • n(t+4n/Aw)

Now,

#' m(t) " Owmcoswmt

and ^'m(t+4R/Aw) = Awm cos [wr,(t+4w/Aw)

n Bwm cos (wmt+2ni)

Since % is an integer

Similarly,

s(t) = A cos [Bsinwmt]

s(t+4w/Aw) i Acos [Ssin {wm(t+4w/Aw)))

= Acos [Ssin(wmt+2nu)1

Therefore,,

41 m(t)	 fm(t+4n/Aw)

'S'(t)	 8'*(t+4n/Aw),

and Equation (65) is proved for

Tp = 4n/Aw	 (66)

It should be pointed out that this is a sufficient,

but not necessary condition for the periodicity of nl(t).
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in other words, it may be possible to find a smaller number

for T  which satisfies Equation (65). However, using T  as

given by Equation (66) provides assurance that at least one

full cycle of n l(t) is considered in any calculations.

Clearly, the A  will also be periodic, as will the

output noise, no(t). Since no(t) is periodic, the average

output noise power can be calculated from;

PAVO " T I T p n2o (t)dt	 (67)
p o

where T  is the period of n o(t), as given by

Equation (66).

For computational convenience, however, Equation (64) is

used to calculate samples of n o(t) at t - 0, T, 2T, ... MP,

where MP is equal to Tp . Then, these samples are squared

to provide samples of n o(t), and integration is performed

using the trapezoidal to obtain output power.

In order to keep computational time at a minimum, the

numbers chosen for the parameters of frequency were kept

small,but this causes no loss in Generality of the results.

The modulating frequency, wm, and maximum modulation index,

S. were chosen to be;

wm • 20n rad/sec	 (68)

s=1.5

These two parameters are necessary to obtain the input

{
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bandwidth requirements, which was determined from a plot of

bandwidth versus modulation index for angle modulation sys-

tems (Hancook,1961) , and is;

B a 75 Hz	 (69)

Next, the input noise to the aresine device was quantized

into sample functions in the manner of Equation (53) with

a frequency spacing of 5 Hz. Sampling was done at a rate

of four times the input bandwidth, and since the smallest

frequency was 2.5 Hz, a sufficient number of samples had to

be taken to cover one full cycle of the noise. Thus;

T = 1 = l.. 1 x 10-2 sec	 (70)
4g 300 3

MT M 1
2.5

M = 120

Then, the Ak can be obtained from Equation (58) for

t k = 0 0 1 0 too M

`-°	 To obtain convergence in Equation (64), k was made to

range from -600 to +600, and it is a simple matter to ob-

tain the Ak for all values of k, as the A  are periodic

with an index of M. Thus, samrl::z of the output noise volt-

age were obtained from;
T 600	 wmT(m-k)

no(mT) _

	

	 I A k	sina da	 (71)
kl--600 - .71" a

m - 0 1 1, 2 6	120

yam-



An alternate method of obtaining samples of no(t) is

to obtain samples of the voltage at the output of the low

pass filter and then to integrate using the trapezoidal

rule. Both methods were implemented in the computer program

as a check to assure that the program logic was correct, A

listing of the computer program used for . the solution of the

problem appears at the end of the text in Appendix Ap and

a discussion of the results and conclusions reached follows

in the next chapter.
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CHAPTER V

RESULTS AND CONCLUSIONS

In order to test the computer program, the input to

the aresine model was assumed as signal only, that is;

ein ' A sin(Osinmmt)	 (72)

In this case, the output power is known to be;

Pout ' 62/2	 (73)

and the value calculated by the program could be compared

to that calculated by Equation (73). It was found that the

results agreed to within approximately 5%,

When noise was introduced at the input to the aresine

model, it was found, for input signal-to-noise (SNR) ratios

of about 30db or less, that the mean of the noise at the

input to the integrator (refer to Figure 10) was sib ifi-

cantly different from zero, and as the SNR was decreased,

this effect became more pronounced. For higher values of

input SNR, this value was negligible. Therefore, it was

assumed that a DC filter could be added to the system with

the sole effect of removing the average value from the

noise voltage at the Input to the integrator. This filter

would prevent the integrator output from increasing without

bound. Since the second method of simulation described in

Chapter TV requires calculation of noise voltage samples at

this point, the mean value could be easily calculated and
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subtracted out, resulting in a not of noise voltage samples

with zero mean.

In Figure. 11, the output versus the input 3NR is

plotted for the case of modulation index, S. equal to 1.5,

both from results obtained from the computer simulation

model, and, for the applicable region, from theoretical

results obtained using Equation (51). There is a large

discrepancy of almost 30 db between these Lao methods.

Figure 12 gives the same plot for the case of B • 0.3, and

here there is a discrepancy of about b db in the other

direction. In both cases, note the pronounced threshold

effect beginning at the input SHR value of about 20 db, and

below which the curve is non-linear.

It appears, then, that the results of Chapter II are

not valid for all 6 9 a hypothesis which becomes clear upon

examination of Equation (20), the general expression for

noise at the input to the integrator.
nl(t) , n'(t)-n(t) • $wmcosw,t	 (74)

A cos 8sinwmt +n t

For the case of high input SNR, the term :3(t) may be

neglected, and the expression for average noise power

becomes:

n'(t)-n(t)•Sw cosw t 2
E{n2 1(t)}	 g	 m	 m	

(75)
A cos(Ssin%t)
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Expansion of Equation ( 75) yields:

•	 E(n2l(M = E	 n' (t)	 2
A cos(Bsinmmt)

n(t) • Bmmcosmmt 2
+ E

A cos Bsinwmt

n (t)•n(t)•Ow cosW t

A co82(BsinWmt)

In order to obtain the same results given in Chapter III by

Equation (43), this must reduce to:

E(n2l (t)) - E ^n-- A. = 2

a condition satisfied when 8 - 0,

•

	

	 As 8 is increased from zero, two things happen to

Equation (76):

(1) The average effect of the denominator of the

terms is no longer division by A. but division

by some value less than A. This tends to

increase each of the terms,

(2) The latter two terms have a significant effect

on the noise power,

Thus, the noise power for small 8 may actually be less than

the value for 8 - 0, while for large 8 the noise power will

be significantly more than for the case of 0 - 0. so that

1!
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the curves of Figures 11 and 12 are not at all surprising.

The variation of output noise power with 8 is clearly

shown in Figure 13, where the difference between theoreti-

cal output noise power and output noise power derived from

the computer simulation is plotted against B for an input

SHR of 100 db. From this curve it can be ascertained that

the practical operating region is for 0 less than 0,4*

In summary, a mathematical model which perforns the

aresine function for sinusoidal i. 	 'unctions has been

derived, and its performances in tt ..us of input versus out-

put signal-to-noise ratio has h • .-!.	 sstigated. When the

device is employed in a PM phas , y {;e.i loop receiver it

has been shown that overall system performance is enhanced,

provided the input SMR is maintained at a large value, and

the modulation index is less than 0.4. Due to the apparent

threshold effects and limitations on modulation index, the

device would be of little, if any, practical utility in

most communications systems.

FURTHER RESEARCH

Since the basic problem of devising a practical de-

tection scheme which linearizes the overall PM product

detector input/output characteristics has not been solved

by this work, several avenues of further research are sug-

{

gested.	 '
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Further investigation, and possibly improvement, of

•	 the particular model developed here should be a worthwhile

task. Since the noise behavior could not be studied in

depth due to the digital simulation technique, it is sug-

gested that an analog simulation model be constructed.

When used in conjunction with a white noise generator,

performance of the model could be investigated for various

input signals in the presence of noise, and threshold ex-

tension and other performance improvement techniques could

be tested. While construction of such a model would be

relatively easy, obtaining devices to accurately measure

the performance of the model would be more difficult, and

would depend to large extent on the performance criteria

chosen. For instance, output SNR is not really a meaning-

ful measure of system performance in cases where the output

noise is non-white. This is because the signal might occupy

only a portion of the output bandwidth where the noise

spectral density is comparatively low. In the model dis-

cussed here, output noise is almost certainly non-white,

and thus, factors such as this would have to be considered

in any performance evaluation.

A second approach might he to investigate other

methods of realizing, or approximating the aresine function,

as discussed in Chapter II. This is the preferred approach,

f



47

due to the somewhat discouraging results obtained for the

model discussed in this thesis. This investigation might

take the form of a digital or an analog simulation, although

the latter is suggested, due to the problems of digitally

simulating the noise.

Lastly, and most importantly, would be the develop-

ment of techniques to obtain a closed form general analyt!

cal result for a problem such as this. Although some

techniques are available for finding the output autocor-

relation and spectral density for random processes l when

nonlinear transformations are involved, these are in

general, very limired. Thus, at present, the possibilities

of determining the output noise autoeorrelation and

spectral density for the model presented here appear dim,

although for other models, where the transfer function is

unique, this approach may be workable.

1See, for example Deutsch, P.. , Nonlinear .Transformation of
Random Processes, Prentice Fall, 1552.

-.
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DIMENSIO N X(1250).,R(1350)oi'(250)#WORD(10)
_	 READ(5i1C2)
l0	 FORMAT (jQA4 )

READ (5P100) No go 8`TA, ACS DELw1 MM• T

	

100	 F OR M AT (R'I5,2F8* 0/3EI3•6)
READ (5,101) XNat

	

lot	 FORMAT(E13t6)
E3E TA =0.3
SUM Goo
DO 1G i • i,ti	 _....

D41 -1
AT qD*T
DPHI*SLTA*„M*COS(WM.AT )

SHAT=Al'*rOS(. E.Y^ ►.' S. Niwr+ ±^hT.1.^ -------- _._.___----.__.__..._
Cil 8000

62!10.0
00 5 Js1iK

G0sCOS((2.*p-lo)*DEL4*AT*•b)
G1:G1+G0

-_...5_._..... 
G2=GZ+GO^t^.*L-i^)4DEl.NIa•
XHAT=2•	 (XNDT*51 )
XPR;+ =2• *G2*S:;nT ( X N 8 T *5• )
X( I ) = (XP^ ,M.DPH 1 * X N A T ) / (S•iAT + XHA1 . )	 _ .._...	 _..._ ..._

	

10	 5;JvsSv%I+x ( I )

	

.._.__._..._. AMEA^+ m (;3:^y ^X_t 1_c 1).)/12C• --	 __	 - -
IF(A^S(A m--LA ).GT•C•C^1) ,► KIT ^6i202) ' tnJ }<01I 1 i I`1i1G)

	

202	 F8RMAT(iM0,1GA4)
00 S 121.1031

	8	 X(1+12G)=X(iS	 _ _ .._....__..	 ..	
MM•65.9735

DO 1 1=11431

ATtD*T*•G5

SV,*, 0•Q
DO 2 J=1f.201
DT. J - b%1 _.___	 _^	 ------	 -- _

..6TiDTOT
IF(AT • Li1• ST) G9 T8 3	 -
SUNsSU!I+X(J)*SIN(WM* (AT-GT))*T/(3.14153•(AT-3T))

GO T8

is
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3 SUMsSUm4X(J)•Tl3+14159

AMLANBAME:AN+SUM
1 R( I ) •SUM

bMEANv (AME4N-iR(4E1) )l480t
*RITE	 (61A71)	 H ME:AN	 -......_	 _.

201 FORMAT	 (1H01 1 ACT UA I	 MLAN 5	 I#E1396)
Ott	 4	 I!1#481#4	 _ -.	 _....

4 WR ITL(6#200)	 R(I)
-t00 FORMAT	 ( iH AOE13t4 )..-._._...^.__-----.^^..___._...___.^__..

DO	 30	 I•i#481
30 R(I)=R (i) -3NEAN 	-	 _.._	 .._	 _.......	 _....._	 ..w_.

WRITE	 (6#203)
^ (1)=Ot0
AT04

_.	 ..._.. _ i+ R 11L..  ( 6p 200 _ AT! XA 1 ? # F..t
SUMV000
00 50 I =2# 121
L=4.I-7
KPL+3

.Zvmscoa
.	 __-_ _.Gtt	 6 J ;L, K--6_..._

ZUN=zU-+(R(J+1)+R(j))#T**125
F(I) =F(I.1)+ZUM..--
CsI^1.

sumas0 +F t I ) .__..-
CALL CALC(F#T#SU"l)
CAt.L	 SIyI.4T(TjWMsR).
WRITL	 (6j233)

203 FORMAT - (iH3#9Xi , TlfL+r.14X#'INF14T' # 14x#+3uTPUTI.L..

Od	 25	 I s 1.12,E1
_..25^..__ . x t I )'x t I) - ^ ►rtE:AN_____._ -_^_..	 -- —

SU4=0•C

DO 20	 I . 1& 121

L'Et	 9	 J=1# 1201---
K8121 -1 +J

----9

AT=T•C
20 ^RI7L	 (6#2J4)	 AT#X(I)#F(I)

CALL CALC( F#T#SUM)
STOP	 _

END



52

SURROUT I NE S I V I N T ( To WMs R

DINENSIe ti R(.1350)
READ ( 5.100) Alt A2*A3oA4pA5r A6tA7iA8tg 1.82083t ©4#85t86i87jea

FORMAT ,..14E134)__,.-
R(721)*1.5708
DO 20 1@722s734 . -
C.t.721
X*6599735aCar

Auto
WM AX ..	 _._...._...	 --	 --- -	 _.........._....-	 - ....W__..... _..._

Yux

E)*A *tA^i+)
Y ayY*X o x* (A- 8t l/(A*E).- 
SJN*SUm+Y
IF(A3S(Y) • l.E•0900001) GS TO 10
69 TO 5

Ja1442 -1
20	 R (J) a 1.5703+SUM

DO 3C I * 73 ;x,1321
C a l-121	 -	 -
X•65+9735*C*T
i'X=( X,ag+A1*Xw*6+AZ*X**4+A3*X*X+A4) !(Xr(X**$+g^ *X**6+8^ *X**4^

G b3•X*X +i14))
GX:( X**a4A5*X**6+A6*X**4+A7*X*k+A$)/(Xs(X*98 +()5* X * *6+86*X*a4+

C 57 *X*X+Bb))
R(1)*fX•48:i(X)+GX*SIN(X)

_	 _ _ _ k(J) • 3.1a,1^9-FX*CnSt?( 1tGX^!St^!tx.?	 ._.	 ._.._-----
30
w

	CONTINVE
DO 25 I a 1,#12v^	 .-

25	 R(l)a3.141'9
kETURy
END
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SUBROUT I %E CALC ( F i T, SUaM)
DIMENSION F1121)_
UUr' •F (1) n F(1)+F'(121i"F1121)_
KUM^C • 4	 _	 _ .....
Do 12 I:2sJ20

	

12	 RUM:FkUV4 (I)IF(1)029
PO EKsi•c^b#T*(HU-m4DUM)
TMEA^ = t51,'1 . i'(121))ll? p ,	 ..	 ---._....^....

	201	 F8RpAT t1N.Di 6tiP© WER=PE13•bf5X*SHME:Ah*,E13.b)
RETURN
LND
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