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ABSTRACT

Through the introduction of a concept called recall-sensitivicy,
it ie demonstrated that perfect recall (each plaver remembers all of
its past actions and past knowledge of the other player's and nature’s
actions) is a sufficient but not a necessary condition for the exis-
tence of behavior strategy solutions and &-solutions in finite two-
person constant-sum extended games,

A method is presented by which behavior strategies meeting a
necessary condition for solutions of €«golutions may be generated.

Comments are made on the practical implications of the material

presented,



1.0 Introduction

Consider the three basic types of strategies that may be employed
by the plsyers in a finite two-person consta.nt-smn extended game,
specifically, pure strategies, mixed strategies, and behavior strategies.
If we define the solution of such a game to be any set of strategies
such that each player's strategy guarantees it the value of the game,
we can make the following si;.atements regarding these strategy types.

(i) In some games, pure strategy solutions, which are the
simplest to store and implement, will not exist.

(ii) In every game, a mixed strategy solution will exist,
but i‘b may be vastly more complicated to store and
implement than a pure strategy.

{111) In meny games, behavior strategy solutions, which are
only slightly more complicated to store and implement
than pure strategies, will exist.

In reference 1, Kuhn shows that a behavior strategy solution
always exists in any geme of perfect recall; i.e., in any game in
vhich each player remembers al each move all of its past actions, and
its past knowledge of the other player's and nature's actions.

In reference 2,. a method is given for finding behavior strategy
solutions in games of perfect recall.

In this paper, we intend to show that behavior strategy solutioms,
or €-solutions {to be defined), also exist in some games in which the
players do not have perfect recall. Our argument will take the
following form.



(1)

(i1)

(111)

For every finite two-person constant-sum extended game there

is an associeted ZN-person non-cooperative game such that

: any set of equilibrium behavior strategies in the associated

game corresponds to a pair of behavior strategies'in the
original geme, which meets a necessary condition for a
solution X

If a player employs its strategy in & pair of behavior
strategies which meets the sbove necessary condition, the
difference between the expected return it is guaranteed to
receive and the value of the game, is bounded by the sum of
both players' recall-sensitivities about the given pair of
behavior strategies (to be definedf).

The recall-sensitivity of any player haviﬁg perfect recall
is zero about any pair of behavior strategies, but a player
may also have a recall-sensitivity of small or zero value
about a pair of behavior strategieé’evén in cases where it

does not have perfect recall.

In the final sections of the paper, we will give a heuristic

‘algorithm for generating equlilibrium behavior strategies in the
associated game, and we will comment on the practical implications of

the above observations.

We will now give 2 formal description of the type of game that

we are going to consider and establish some definitions and notation.

Roughly, a measure of the influence of the forgotten information on
the expected return. '



1.1 Description of the Class of Games Considered

In reference 1,' the author describes & class of games that he
calls general n-person games. We are interested in a subclass of this
general class, which we shall deliniate by repetition of the general
definition, and statement of several restricting assumptions.

Definition 1K: A game tfee K is a finite tree with a distine

guished vertex 0 which is imbedded in an
oriented plane.

Terminology: The alternatives at a vertex X € K are the edges e
inclident at X and lying in components of K which

do not contain O if we cut K at X. If there are ] slternatives
at X, then they are indexed by the integers 1,..eyJ, cireling X
in the positive sense of the orientation. At the vertex 0, the
first alternative may be assigned arbitrarily. IF one circles
a vertex X # O in the positive sense, the first alternative
follows the unique edge at X which is not an alternative. The
function thus defined which indexes the alternatives in K will
be denoted by v, thus v(i) is the index of alternative i. Those
vertices which possess alternstives will be called moves; the
remaining vertices will be called plays. The name play play will
also be used for the wnique unicursal path from 0 to & play when
no confusion will resuli. The partition of the moves into sets

A3y 3=1;2,.s4, where A; contains all of the moves with j alter-
natives will be called the altermative partition. A tempoval
order on K is defined by X £ Y if X lies on WY the unicursal
path joining O o ¥; it is a partial order. The rank of a
move Y is the number of X such that X < Y as, equivalently, the
number of moves X € Wy.

Definition 2K: A general __n-person geme I' is & game tree K
with the following specifications:

(1) A partition of the moves into m+1l indexed sets Py Pyseees By
which will be called the player partition. The moves in
P, will be called chance moves; the moves in Py will be
called personal moves of player 1 for 1=1,2,... ,n.

(ii) A partition of the moves into sets U which is & refine-
ment of the player and slternative partitions {that is,
each U is conteined in P; A; for same i and j) and such
that no U contains two moves on the same play. This
partition is called the informetion partition and its
sets will be called information sets.




(iii) For each U C P, A @ probebility distribution on the -
integers l,...,a which assigns positive probability to
each. Such information sets are assumed to be one
element sebs.

(1v) An n-tuple of real numbers h(W) = (h, (W), hz(w),‘..,hn(w))
.~ for each play W. The function h w11} be called the payoff
function.

To interpret the above formel scheme, we may imagine a
number of pecple called agents isolated from each other and
each in possession of the rules of the game. There is one
agent for each information set, and they are grouped into
players in the natural manner, an agent belonging to the 1th
player if his information set lies in P;. This seeming plethora
of agents is oceasioned by the possibly complicated state of
informaetion of our players who may be forced by the rules of
the game to forget facts which they knew earlier in a play.

A play begins at the vertex O. Suppose that it has
progressed to the move X, If X is a personal move with J.
alternatives, then the agent whose information set contains
X chooses a positive integer not greazter than j, knowling.only
that he is choosing an alternative at one of the moves in his
information set, If X is a chance move, then an alternative
is chosen in accordance with the probebilities specified by
(1i1) for the information set containing X. In this memmer,
a path with initial point O is constructed. It is unicursal

- and since K 1s finite, leads to & wnique play W. At this
- point, player:i is paid the amount hi (W} for i=l,eesyne.-

The subelass of games that will be considered is defined with
respect to the class of games described sbove, by means of the following

assumptions.

Assumptiop 1: » The mmber of_ﬁlayers is two, and the payoff function
B satisfies the relations: (a).hl(w) h,(W) = constant;
(v) hl(W) >0 and (¢} h (W) > 03 for all possible W.
?or‘convenience in what follows, we shall denote player 1 as the
diﬁiayérﬁand player 2 as the f-player. Any functions or variables
associéﬁéd with the Gmplayer, B-player; or neture, will be super=

scripted by % B or T, respectively.



Further, wherever a statement is made regarding the U~player, the
corresponding modification needed to make the statement applicable to
the B-player will be given in sguare brackeis, which will be employed
in the verbal portions of the text only for this purpose.

Assumption 2: If a move of rank k on a play W belongs to the G-player

[g-player], a move of rank k on any other play W’ also
belongs to the O-player [p-player].
With the above assumptions then, we have defined the subclass of
games that we shall consider, In order to beginlour argunent, we shall

also need to establish the following definitions and additionsl notation.

1.2 Preliminary Definitlons and Notation

Definition l: The quality of a given strategy for the C-player

[p-player] is the expectéd payoff fo the player,

W ex hl(w)p(w)’ P =5 hz(W)p(W)] assuming that:
W W

(i) the x~player [B-player] uses the given strategy;
(ii) the p-player [o-player] selects one of the strategies open to

it which minimizes h~ [hF] knowing the O-player's [B-player's]

chosen strategy.

With respect to the above definition, note that the value of the
game is the meximum quality value that any strategy can havé for
either player.

Denoting the value of the game by v, we formally define solution

and €-soclution.

Definition 2: Any pair of behavior strategies such that the 2-player's
strategy and the g-player’s strategy are both of quality

v, will be called a solution.
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Definition 3: Any pair of behavior strategies such that the quality

of the G-player's strategy is in the interval (v-€,v),
and such that the quality of the p-player's strategy is in the interval
(v,w€), will be called an €=solution.

Definition k: TLet W' = {ue Pa} andW? = {ue pB}. A behavior strategy

for the C-player [B-player] is a function 6% [oP1 mapping
1Lq [TLB] into a collection of probability distributions such that for
each U €W [UP], where U c Ay e™(u) [6P(U)] is a probability distri-
bution on the integers 1,.04; Jo

Definition 5: The G-player [B-player] is said to have perfect recall

if for any k and any £ > %, no two plays W and W’ pess
thru a common information set at the O~player's [p-player's] zth move
given that they have been distinguished from each other at the O-player's
{p-player's] K move by virtue of:
(i) different alternative choices at an information set
passed thru by both W and W%, or

(i) passage thru different information sets.
(Wote that perfect recall is not the same thing as perfect information., )

Noting that any play W 1s estasblished as & string of alternative
choices by nature and the two players, we establish the following

notation. For any play W:

(i) denote by om(k), pE(k), or ME(k), the slternative choice
on W that is established by the “-player, B-player, or

nature at its kth move, and

(i1) denote by oI(k), 8I(k), or MI(k), the information set



containing the vertex on W corresponding to the k%h nove
of the CO-player, B-player, or nature.
Further, we assume an arbitrary ordering on the information sets for
each player st each of its moves. Tor example, let Om(k)i denote the
ith-possible information set for the G-player at its ktb moves,

With these definitions and notations we can begin our argument;

whatever else we need we will introduce as we go along.

2.0 Description of the Assoclated Game

In describing the associated game, and explaining the algorithm
that can be employed to "solve" it, we shall find it convenient to
express the expected return to the players in the particular form
developed below.

Proceeding, the expected return to the G-player in the original

game is first written as:

n (W) p() (1)
r

@)

W

where p(W) is the probability distribution defining the probabilities
of .the possible plays W € K.

At this point, we may assume without loss of generality, that
each of the players and nature make an equal number of moves N on

.’»

every play W.' Under this assumption, (1) can be rewritten as:

+If it is not so, we can always imbed the original game in an appro-
priately defined larger game vhich has the desired property.
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H :Z p(oB(1), BE(1), ME(1); i=1,...,N) by (C®(i), pE(1), NE(1);
S

i‘-‘-‘l,ooc,N) (2)

where Cw is the set of all choice seguences which constitute plays in
K. Noting that use of behavior strategies means that the players
and nature each make conditionally independent choices abt every move,

we can apply Bayes rule to (2) to obtain:

H=) p(ME(L}ITE(1)) p(om(1)loz(1)) p(aE(1)[BI(L)) ...
R

p(ME() [N1(¥)) p(aE(w)|az(w}) p(E(W)|BI(N))

h, (ME(1), 2E(1), BE(), » .+, ME(N), BE(N)) (3)

Noting again that there are finitely many choices and finitely many
information sets, we can construct fromAhl(GE(i),ﬁE(i),ﬂE(i); i=l, eees )
a function g(oB(i), c@ (i), pB(1), 8T(i), NE(1), NI(i); i=l,...,N) such that

H can be written in the following form:

)
ar(1) am(i)]oz(i)

5 Y p(E(1)or(1) e ) N

o) om(w)]er()

p(om(w) [oz(v)) ) ) p(eE()[BI(1)) ..

BI(1) pE(1)]pT(1)

L

\:‘ﬂ

-
) )

) ), pteE@ler) () )
BI(N) pE(W)|pI(N) nr(1) me(L)nz(n)



* p(MEL) (L)) e > p(mEm) )

TI(N) EMW)|nT(n)

+ g(MB(1), M(1), aB(1), 01(1), - ., BE(N), BI(V))) (4)

where the notation X means summation over the set of choices x that
x|y
are alternatives in information set y.

Carrying out the summations of the term enclosed by parentheses
using the behavior strategies given for nature in the definition of
the game, we can denote the result as d(oB(i),r(i), BE(i), pI{i);

i=1, ..., N) and rewrite H as:

< < 5 5 \ s
H"‘ L [-‘ ¢t e L LJ LY S 7

b fas
or(1) oE(1)foa(y)  or(n) oE(N)|ex(y) pI(N) BE(N){BI(N)
p(aE(1) [a(1)). .. p(oE(N) [or(N)) (a(om(1), az(i), BE(1), BL(1);
i=1,000, 1) p(pE(1)[BI(1)). . «p(BE(N) [pT(N)) (5)

Now, under our assigned orderings to each player's possible infor-

mation sets at each rank k, we define for k=1,..., N, partitioned vectors

Xak, Yﬁk whose zth ccmponents,xj% and.Y?k;are defined below.
f*=mwm)=ﬂm&))maez=j+§lnaaMnais
£ i mk mk T

m=1

the total number of alternatives available in information set OI(k)m.

i-1

Yik = p(pE(k) = j'BI(k)i) vhere 4 = j + mfl nﬁk and nzk is

the total number of alternatives available in information set BI(k)m.
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Denote by D an imner product operation. For example,

) A

o
LLLaiijkAijkzaVBVgVA
i 3 k

N
andlet 1 x> 4y ox®v. . o™,

i=]
Using the sbove notation, we can construct a ZN-dimensional
array D from the function d(oE(i), oI(i), pB(1), BI(1); i=1,4+..,N) such
that equation (5) can be rewritten as:

we (0

o Ny
1X1)V(E,1Y )VD (é)

Note that the set of vectors (XQQ,...,XQN), constitubes a behavior
strategy for the‘ﬂhplayer, with the m#h partition of ng being a
probability distribution on the alternstives available in (aﬁ(k))m.

Denoting the original geme as ", we define the associated game
as follows:

Definition 6: The associated game I'’ for a given game I', is the

2N-person non~-cocperative game defined by considering
each renk k=1l,.s.,2N, to be under the control of a separate and
independent entity whose payoff is identical to that of the player
with which it is associated.
The 18 entity for the x-player [p-player] will be denoted as
the oi-entity [Bi-entity] for i=1,...,N.

Definition 7: A behavior strategy for the Oi-entity [pi-entityl,

i=1l,.00; N, is any collection of probability distribu~-

tions such that:



’

(a) the members of the collection are in one-to-one correspondence
with the information sets under the given entity's control, and
(b) each proba‘bilify distribution is a distribution over the integers
1,000y if the information set U with which it is associated is
such that U C Aj"
Note that the set of all admissible values for the vector Xai [YB i]
corresponds Vto the set of all possible behavior strategles for the

Qi-entity [pi-entity].

 xns
Definition 8: A set of entity behavior strategies (X*al,‘! 31, 1=l s0ey N)

is an entity behavior equilibrium point if:

1 :2,; [xai v ;El x*aé) v ( 3§1 Y*ﬁj) v DJ < ( jgl ij> .
J#i

EEUEAES ( g Y*SJ) ¥ D < min ['Yﬁk v ( g Y*gj> . ( g ij) v D]

IR Lo § - YBk - g;i j=1

for i, k‘—"l, seey .

3 ¥
Definition 9: A pair of behavior strategies (x'.xal, i=1, e0e, M)y (¥ Bi,

i=l, ..., N) is a player behavior equilibrium point if:

N, N . N |
max ( 1 }{a{})v (jgl Y*ﬁﬂ)v,})ﬁ(jgl }(*@‘i)?

Qi

(x =1

,i=L,W) 97

N 8 N %oy N B
Brmee e L e

We complete this section by stating the following theorem and

lemms.
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Theorem l: For any'assoéia£éd game ', there exists at least one
entity behavior equilibrium point. (The proof of this
theorem is given in the appendiit.)
Lemma 1: If a pair of behavior strategies (X*OI,1=1,..¢,N), (Y*si,
i=l, .00, H) is to be of maximum possible guality for both

players, then the corresponding set of entity behavior strategies must
be an entity behavior equilibrium point. (The proof of this lemma
follows directly from definitions 8 and 9.)

We will now define the concept of recall-sensitivity. We will
then use this concept to establish a bound on the difference between
the qualities of behavior strategies which correspond to entity behavior

eguilibriuwm points and the value of the game.

3.0 The Concept of Recall-Sensitivity and the Qualities of Behavior
Strategies Corresponding to Entity Behavior Equilibrium Points

Denoting H( (xm‘,YBk; k=1, e0e, N}|OI(i)) as the expected return to
the G-player as a function of the behavior straﬁegies employed by the
two players, given that a particular information set of(i) has already
been realized, and H((xm‘, Yﬂk; k=1, ..., N){BI(i)) as the expected return
given that BI(i) has been realized, we define the concept of recall-
sensitivity as follows:

Definition 10: The recall sensitivity of the G-player about a given

pair of behavior strategies (X*Oa, J=1, ee ey N, (Y*Bj,

551, .00, N) is B> where:

N
{a) B> = ;{ Bak, and where:
k=2
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{v) (508,,”, a‘m) is the smallest set of real mumbers such that:

: xas
Bai(X*QU;Y BJ,j:l,.,,,%) = Max (2 ( MEX 50 MBX H((X secas

,CZI(i) XO& Xa(lnl)

- . S 4
ai)xmgl+l))a-osxm;g ﬂ']) 3=19°”?N) ?O'I(i}) = min ... min
8 gali-1)

X

a((x>, ..., x%, *a(i*’l),m,xm;y*ﬁj,j-.-l,...,N)tax(i))] ]

izg, s lQ’N‘

Similarly, the recall-sensitivity of the g-player sbout (X*Q%,
B

3
le,oae,N); (Y Bj;jzl, eoa,ﬂ) is R™ where:

(a) RP - jz &P , and wheres

(v) (832,..3,53H) is the smallest set of real mumbers such that:

sPL (™R 521, ...,0) = Maau [2 mAX ve. mex  H(X
131(1 Yﬁl B(l-l)

*(+1) |y B 167(1)) - min ...

yBt

. 1 i
J=l,.-.,N; YB youngﬁ 2 ¥

min H((x ,;;-1,,..,1%- YBl,m,xBi,Y*B(i*l),...,Y*Bm)tax(i))]]
¢B(i-1)

i=2, 00.,Nc

We can examine the sbove definition as follows,
The Q-player's expected reburn, given that it has realized a particu-

lar information set oI(i), is dependent upon the functions (X ,3~l,aﬁ,,1 1),



el

to the extent that these functions establish a probability distribution
on the actions and measurements it knew in the past but cannot recall.
If we denote the forgotten information as GIF(i), we can see this fact

by expressing H{{x J,YQJ, =1, 4.0, N|0L{i)) e&s follows:

o 4 . o
B((x ™, ¥, 5=1,...,8]00(2),

m((x%, vPd, J=1y eaes M) [2L(1)) = E;

ogr(i)

orr(1)) ploxr(i)or(i))

In section 4.0 below, we shall show that H((X'S,YP3, 3=1,...,m)|ox(i),
oIF(i)) is not dependent upon any of the functions (Xaj, J=lyeeeyi=l)s
Further, by causality, p(oZF(i}]or(i)) is not dependent upon any of the
functions (x°9,¥P9, 3=i,...,N). In the light of these facts, we cen
see that under either ome of the following conditions, the loss of
information oIF(i) will have little effect on the recall-sensitivity
of the C-player sbout behavior strategies (ij, =1, en0, N, (Y*Bj,
=l e0es M)
(1) B XM, 5oL, veny Ny ¥ PE, kel eee, N)|OI(1), OTF(1))
is not strongly dependent upon OIF{i), for any given Xai
and oI(i), or,
(2) p{oxr(i)]ox(i)) is not strongly dependent upon the functions
(3, 521, 000,110
Using definition 10, we state the Ffollowing theorem.
Theorem 2: If the pair of behavior strategies (Xm, k=1, e00sN),
(Y*B k, k=1, ..., N} corresponds to an enbity behavior

equilibrium point, then:
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(a) the quality of (X#Ok; k=1, .0.,N) lies in the interval (Q,ﬁuRﬁ),
(b) the quality of'(Y*Bk, k=1, .0.,N) lies in the intervel (3+r%g),
vhere ¢ = g *Qﬁ) v ( g Y*ﬁl) v
=1 =1
Tﬁe'pr&éf of this theorenm is.given in the éﬁpendix. The following
corollary follows from theorem 2 as a direct consequence of the fact
fhainwé are dealing with a constant sum game, |
Corollary 1: If the pﬁir of behaviér strategies (X&Q*;‘ksl,..,,ﬂ),
| (Yﬁﬁk, =1y 000, N) correspﬁﬁds to an entity béhaviqr
equilibriwm polnt, thus, .‘
(a) the quality of (X %, kel,...,N) lies in the interval
\ (v, V'-RO‘-.-RB )
(b) the quality of (Y °%, k=1,...,N) lies in the interval
‘ .(v3§%Rq&RB)s
By corcllary 1, ﬁe see that any pair of behavior strategiés ig an
Ae-solﬁtion ifs
b(i) it ééfresponds to an entity behavior equilibrium point, and
(ii§ the recall-sensitivities of both players about the givén
| pair of behavior strategies sum to no more then €.
.Thé fbiicwing coréllary follows directly from theorem 1 and
corollary l. |
Corcllary 2: If the & and B players both have recall-sensitivity of
) value zero, (Rg = &P = 0) about eny pair of behévior

strategies;, then a behavior strategy solution exists.
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In the following section we will give a lemma and an example which
together demonstrate that perfect recall for a player is a sufficlent
but not & necessary condition for that player to have a behavior strategy

solution or €-sclution.

L,0 The Relationship Between .Recallv-Sensi'tivity and Perfect Recall

'l'he folluwing lemma ig proven in the appendix
Lemme Z2: If a player has perfect recall, then it has recall-sensitivi‘by
of value zerc sbout any pair of behavior strategles.
As a direct consequence of Corcllary 1 and Lemms 2 sbove, we can
state the following theorem.
Theorem 3: A behavior strategy sclution exists in any géme_of perfect
| recall. (Any set of behavior strategles corresponding to
an entity behavior equilibrium set is a solution.)
This theorem is very similar to Xuhn's theorem (reference 1) on
the equivalence of mixed and behavior strategies. B
To see that perfect recsll is not necessary for the existence of
behavior strategy solutions or €-solutions, we need only show that
games exist in which the players do not both havel perfeet recall, but
‘do heve recall-éensitivities of smell or zero value about a pair of
behavior strategles corresponding to sn entity behavior strategy
equili'briwn point.
The following example describes such a game.
Example: In figure 1 we show a game in which the 8-playEr maves a:b
| rank 2, and the O-player moves at ranks 1 and 3. The

informetion sets for the players are eppropriately indicated, and the
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payoffs te the CG-player for each play W are indiceted at the end of
that pley. Nobte that the O-player has forgotten at rank 3, its slter-
native choice at rank 1.

Since the B-player has perfect recall, its recall-sensitivity
has value zero sbout any pair of behavior strategies. To examine the
recall-gsensitivity of the CG-player, we look at its expected retum
given that it has realized informztion set OI(2). This can be expressed

as;:

ol o2 Bl < ol o2 AL . 5

cl{e b SR ST LCH ST NS (¢ G ST o IR D S

La PV,

¢, lex(2) CWZIC&(B)

(49

vhere cwiam(z) indicates sumation over all plays W containing a vertex
which is a member of information set oI(2), and Cyy Jox(2) indicates

2
sumation over the set of all partial plays leading from O to a vertex
in informetion set oI(2).

We can expand equation (7) to obtain:
H(x™ %%, 3" Jan(2)) = plzlex(1)) [p(ijox(1))p(a]ar(z)in,
+ p(1]oz(1))p(2[on(2))n, + p(2lox(1))p(1]ox(2))n, + p(2]ox(1))

* p(z]en(2))ng | + [p(1]or(1))n(2[81(2)) + (2 |am(1))p(2]6T(1)) ]
(8)

If we exemine equation (8), we see that if h, = Iy and h3 = hS’

3
then B((x™, %%, vPhy jar(2)) will not depend on X at all., In this
case the O-player will heve a recall-sensitivity of value zerc about

any pair of behavior strategies. In this situation then, both plsyers



Rank | a-Player

a- Player

FIGURE | AN EXAMPLE IMPERFECT RECALL GAME.
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have recall-sensitivities of value zero and thus by Corollary 1, a
behavior strategy solution exists even though this is not a game of
perfect recell.

If, however, h2 = hh + él and h3 = h5 + 62 where él and 52 are
both small numbers, then it is easy to show that the recall sensitivity
of the Gplayer is bounded by ¢ = maﬁ(eiféz) around any pair of
behavior strategies. In this solution, a behavior strategy "c-solution"
must therefore exist.

Lemma 2 and the above example thus imply (by Corollary 1) that
the condition of perfect recall for the players is sufficient but not
necessary Tor the existence of a behavior strategy solution or £€-

* golution.

In the following sections we will describe a heuristic algorithm

for generation of entity behavior equilibrium points, and we will

comment on the practical implications of ocur observations.

5.0 Construction of Entity Behavior Equilibriwm Points

The following algorithm hes been employed by the suthors o
generate entity behavior equilibrium points in several assoclated
games.  We call this algorithm the "extended fictitious play" algo-
rithm because of its similarity bo the Brown-Robinson rictitious play
algoritim for the solution in miwed strategies of games in normal form
(references 3 and L),

We will describe the algorithm by first esteblishing some
notation, and then defining the sequence of entity Behavior strategies

it is to generatbe,
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Denovte by maxvy ng e vector partitioned in the seme manner as

Xdk and having all zero components except for a single 1.0 entry in
each partition in a position corresponding to & maximum element of
Ciig +

X in that partition.

Correspondingly, dencte by minv ng a vector partitioned in the
same manner as YBK and having sll zero components except for a single
1.0 entry in each partition in & position corresponding to a minimum
element of Y in that pertition.

Definition 11t The set of vector sequences (Vak(;}),xw(j),QBk(j),

vP5(3), k=1, N and §=0,1,..) will be called an entity

behavior strategy sequence for the associated game I'’ which ig defined

by array D if:

R Y A -7 PN T B
(1) V) (ﬁ;ﬁlx (j))v(i_glff (3)) 9D
K

" 1) \
(1) @)y = (1 X)) v ( 1 PH)vo
4= f;li

(118) x (1) =[5 x¥) + may vV | (50
() ¥(0) = [5 Y9 + miov )] (55)

for k=1, and J=0,1s;+00, where (}(Ok{c), P k(D), kél,lﬁ) are arbitrary

initisl entity behavieor strategies.

?In the case of seversl meximum elements in a glven pertition, the

choice of vwhich one is to correspond to the 1.0 entry iz arbitrary.
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We have generated entliiy behavior sitrotegy seguences for o nuuber
of gemes. In each cage studizd, comvergence in the feilowing sense was
ebserved.?

For € = 0,05, and some reasonsbly small iuntegur 3@, an integer
€ < J, could be found such thet for {x%(ig)ﬂgk(g}, Kely esoy ), the
following expressions sre velid,

. H i
() max x™ v (1 o)) v (1 ) v o< (re) B(D)

£ Y g=d #=1
i

. N . . , ®
() min ¥y {: i .;z’:“"@(g}) v{ 1 Y¥in)vo » (1-€) glg)
P i=1 A=1 ‘
i
: N N
for 1=lyeee, N s2d wheve g{2) = [ 1 e ( It ‘Yﬁf‘(g)) 7 D
\ f=1 / =1

To give some ldsa of the sort of performance obiained using the
extended fictitious play algorithm, in the most involved case that we
have comsidered, an cnbity vehavior stratzsgy seguerce was gonorated
for a lh-entity associsted geme. In this associasted game, the mumber
of informetion sebs combrolled by an entity renged from 1 for the
simplest entity, to 102k for ithe most complex, and the mwber of
alternetbives wes 2 for wvery informesion sev. In thils exemple, cone-
ditions (a) and (b) were satisfied for an & « g = 200.

We turn now 4o comgideretion of the practical implications of

the observations we hove made i1 szobions 2.0-5.0.

7

?Sha ley (reference 7} has mivei a ~lass of gomes for which fictiticus
E - o

play will nob converce, bub this cizgs cmmet be transformaed into a

class of games of the tywe we arg considering.




6.0 Practical Implications

First, we have shown thel thers are games of imperfect recall in
which entity behavior equilibrium points exist which correspond to
behavior strategy solutions or €-solubions, and we have described s
technigue by which such eguilibrivm Qointa may bhe genersbed. As far
as we know, no other technigues have yet been developed for determina-
tion of behavior shratezy solutions and €-solubions in imperfect recall
games of sufficient camplexity to represent real life situstions.

Second, in many gemes, compubtation of the value of the game is
too complicated to carry out. In such games it may be possible to
establish bounds on the value of the game by:

(i) generating an entity behavior equilibrium point,
(ii) establishing bounds on the recall-sensitivities of the
players sbout this equilibrium poinit, and

(iii) spplying appropristely theorem 2 and corollary 1.

Third, there are gumes in which intuition suggests that & player
should possess s behavior strategy gusranteeing an expected return
close to the value of the corregponding perfect recall game, using an
information partition considerably simpler than thabt reguired for
perfect recall. For exsmmple, in a finite pursvit-evasion game, we
might expect that a player cen gusrentee itself an expected reburn
close to the value of the corresponding perfect recall game, using a
simplified informstion partitiong i.e., one which corresponds to recall
of only “sufficlently recent” informstion. Such & simplification is of

interest because it implies that less memory will be required to store
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and implement the corresponding behavior strategy solution or €-solution,
but presently no technigues are available to investigate such possibile
ities.

The shove problem is composed of two separate questions. When
en information partition is proposed which simplifies the recall require-
ment of one of the players, a new game is defined. Denoting the value
of the new game as w, and the value of the original perfect recall game
as vbr, we note that a behavior strategy pair in the new game is an
€-solution in the perfect recall game only if:

{i) the behavior strategy pair is an €,-solution in the new

game, and

(i1} €l+€2'5 & where QZ = vPr—w,

A technigue for generation of €-golutions in imperfect recall
games is obviously a prerequisite for any search for s simplified
infcrﬁgtioﬁ partition. An approasch to such a problsm can be made by
employing the extended fictitious pley techniqué to generate entity
behavior equilibrium points for the cases where:

{i) both players have perfect recall, and where

(i1} the player of interest has imperfect recall while its

opponent has perfect recall,

By theorem 2, we see that in each case @ is the quality of the
generated strategy for the player of interest, and thus if the two
values of @ are “close enough” to each other, the tested imperfect
recall information partition and covrespondingly the behavior strategy

genersted for the player of interest, is "good enough."
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In reference 5, this technique is smployed to find a2 simplified
behavior gtrategy €-solution in a rather involved 5-stage "doctor-
patient medical geme." A behavior strategy was found for the.doctor
which guarantees 92 percent of the valus of the perfect recall game
but requires storage of instructions for only 57 imformation sets,
vhereas perfect recall for the doctor would require storage of instruc-

tions for 681 information sets.
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APPENDIX

PROOFS

A. Proof of Theorem 1

In order to prove thecorem 1, we shall establizh the following
’dﬁfiniticns and notation.

Definition 1l: Any entity behavior strategy x* {Yﬁi] which consists

of only zeros and & single 1.0 in each information

set partition will be called sn entity pure strategy, and will be

dencted as xF [yPPYy,

Since thers are finitely many information sebe and alternative
choices, there sre finitely many entity pure strategies. We shall
assign an arbitrary ordering to the pure strategles for esach entity,
and dencte for the Cl-entity [pi-entityl, i=1,c..,N:

{a) the kth entity pure strategy as Xgai {Yﬁgi}

(b) the total mumber of entity pure strategies as Eai [zﬁi]

(e¢) the set of all entity pure strategies as P [Cpsi}.

Definition 12: For any entity oi [B8i], i=l,...,H, any probability

aistribution over FF [¢PPL] will ve called an

entity mized strategy and will be denoted as o : {Ymﬁl}o

We shall denote the probability assigned under i [Ymgi] to

the entity pure strategy Xgﬁﬁ Eyigl} as xiai [Ymﬁi}c
We shall state definitions 13, 1k and 15 Ffor the ci-entities

only. The corresponding definitions for the pl-entities are analogous.



Definition 13: For any entity mixed strategy 'S , the associated

entity behevior strategy is the entity behavior strategy

defined by:
gdi
=i ¥ of , L poi
X "Z.)XE X (1)
Ie=1

Definition 1k: For any entity behavior strategy Xa&, the assocliated

entity mixed strategy is the entity mixed strategy

defined by:

=moi 0
all components J
1|3 such that

("'ﬁai)i;fl’g

vhere the i}j component of X% {or Xﬁai) is the component corresponding
to the ith alternative in the partition corresponding to the jth infor-
mation set.

As a direct consequence of definition 11-14, an entity behavior
strategy generates under equetlon 2 an entity mixed strebegy which in
turn generates uvmder equation 1 the original entity behavior strategy.

Definition 15: A set of entity mixed strategies (X v, y W81

i=l, 000, N) is called an entity mixed strategx

equilibrivm point if it is true that:

o A— \ .
wax H(xm jx Y*Eﬂﬁ;} H s Y%Biﬁ ifdy i=lyeee, N) <« H(X*mala "‘mﬁl’

!

i=1,e..,N) S min H(X
o

for all j,k = l, saa;ﬁu

dmOk _mBk %ol _%mi L, .
, YK AL HIBL e, 21, ee., N)
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We now proceed with the proof of theorem 1, by steting and
proving the following two lemmas.
Lemma 3: The expected rebturns under any given set of enbity mixed
strategies (Xmﬂi,Ymgi,i:E,,,.,m) and the corresponding set
of associated entity behavior strategies (iﬁa,fﬁi,iﬁl,.,s,N) are equal.
Proof: Under the given set of entity mixed strategies, the expected

return is given by:

(0 S S T [(}i‘z“ padyfo (@2 ) T ees ¥

. Do 1, PRl BN . ,pBN
()C‘;:“ xkﬁ)v(y’;i Yi’i)v...v(yzﬂ YPB)VD] (3)

where C is the set of all possible integer sequences (kiékz’;"’kif

z 122, oooy.zN) such that 1 ( ki < 2,11 and 1 5 J%i;d_ ,eai for i:l; b.#’ﬂ'

This expression, however, cen be written as:

P P
gyl s o = () 9. P @, yP02) o
(k;lx;’él ) (2;; o )
O pal
T . ¢TBL , ¢PRL) o
v (k{ 3{? x%:f)v (gﬁl b Yﬁl)v v
P
Y gmeN , gpEN) o ()
(ﬁ;}i ‘ﬁm £N>

By definition 13, however, each of the strastegy terms in parentheses

above is the associsted entity behavior strategy for the given entity

tiote xia& iz a scalar, while Xﬁgﬁ is & vector.
1 1
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mixed strategy which corresponds to it. So we can rewrite (4) as:
2, v, 121, .., 1) ( n %) v ( n Ysl) v D

e a)
= 5@, 1, ..., W) (5)

Qa Es D.

Lemma 4: If any set of emtity mixed strategies is an entity mixed

strategy equilibrium point, then the corresponding set of

agsoclated entity behavior strategies ls an equilibrium point in entity

behavior strategies.

Proofs Suppose (X*mcn Y*mal, i=l;..0,11) is an entity mixed strategy

egquilibrium point. By definition 15 then, for any Jik=l;ees, N
it is truve thatb:

max  H(™H, Yﬁmﬂj 20, YL, 545, 4=1, .00, T) < H(X*mm’yml

e’

121y vee, H) < min H(X K, yRBRytIOL Y*mﬂl, ik, i=1,...,8) (6)

ek
Now, suppose there exists an XC““I such that:

i = 2 HOY ¥R . =¥0l ¥
S, PRI FBL sty a1, eee, W) > HEE L, P a1, L0, W) (T)

where (ﬁwﬁ,,*‘fﬁﬁly 1=1;0..,N) i8 the set of associated entity behavior
strategies for the given entity mixed strategy eguilibrium point.
Applying lemma 3 and definition 1L, we can write from equation

(7) ebove, thabs

H(imaj# Y*mBJ ;X ‘xmﬁl i-}éj: i=ly000, 8 ) H(Xaj’ ?*B;} ;im’ ff*Bi’

e¥0l o Fmorl i,
i.:lgonapﬁ) - H(K ,Y*ﬁiyizl, neﬁ,}g) = H(X » *mslflzl, oaa,ﬂ) (8)
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This, however, comtradicts expression (6), so no such entity behavior

strategy can exist, and we can write

aj o =HCr] B . =%l =%A1
X j,Y%g'j ;}{ ’Y*ﬁ 3 iﬁé;}} j.m}.., w:e,N) ﬁ H(X ,Y*ﬁ I i=l, @ oo,N)
(9)

14
Y

Similar arguments will establish that:

H(x*w,if*ﬁl, i=1, 000, N) € min (im,x‘sk;im,ﬁ*ﬁi, i=1l,..., N} (10)
Bl
¥
and the arguments can be carried out to obtain equations (9) or (10)

for any Jskeli e He
Qe E-Ds

To complete the proof of theoram 1, we now note that the 2N-
entity geme in entity mixed strstegies is an "n-person non-cooperative
finite game" as defined by Nash in reference 6. For such games, Nash
gives the following theorem.

Theorem (Nash): Every finite (n-person non-cooperative) game has an

equilibrivm point (in mixed strategies).
The proof of our theorem 1 now follows trivially from Nash's

theorem and lemma 4 above.

B. Proof of Theorem 2

The proof of theorem Z proceeds as follows.
*
If the pair of behavior strategies (X %, kel ..., N), (¥ °5,
k=1, 000, N) corresponds to an entity behavior strategy equilibrium

point, then taking the G-player's part we can write:

»



PG

maze BT PPN G ¥BL e e, N1) = max Z a( %, ¢ PN,

N ¥ oz (m)

X0,y PL 4el, 00, N-1) Jom () Yo (om (™, T PN, ¢ P,
i1, 000, 0-1)) € 16 St S T TR (1)

where p(ox(W(x™, P, 1=1,...,M)) is the probability that informstion
set oT(N) occurs, as a function of the behavior strategies employed by
the O and 8 players.

By our definition of recsll-sensitivity we can write:

mex ..o max  H(GEOL TP, =1, ..., N)oZ(N)) - H(K L, ...,
e Xcz(m~1)
(12)

X*Q(H.l); X(mﬂ'*gly =1, v, N) JoX () < ch, for all oI(N) and Xcm

o is a function

Combining (11) and (12), and noting that since X
on 0Z(N), the summetion and meximizstion operations can be inter-
changed, we obtain:

[ max .. max B(OL, YL, is1,...,N) JoZ(N) )p(a(n);

@I(ﬁ) 7

- #8234 i
(L, RHE-L) ol e ,,.,m))] < B R, ¢

321, .00, ) + 80/2 (13)

Now H(Xmlg‘l*ﬁi, i=ly .0, H) can also be expressed as a sum over OI(W),

and by ceusality, p(or(i)s (Xm{, Yﬁk, k=1, ...;8)) is not dependent upon

(Xaa,}{ﬁa, J=i, 00, N); s0 we can rewrite (13) as:
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z rmax sos MAX H((x&i,'y*ﬁi, i=l, .00, N) joX(W)) - H((Xm,
ar(y) % x™ (14)

TP a1, o0, m) Jor(w)) | plaa (™, v, =1, .00, 541)) € 872

How p(aI(K){..}) takes its values in [0, 1}, and since the bracketed

function is non-negstive, we can write from egquation (14) thatb:

* d
MEX oes» WMAX ﬁ((X&i,Y B

XGG_ X@E

, d=ly .., W) JOZ(H)) - HOX LY P,

1=1y .00, N) Joa(W)) < 87 /2 (15)

Multiplying (15) by ?(%(E}g{ﬁcﬁ,'ﬁ‘*ﬂl, {21, eee,N-1)}) and swming over

oI(N), we obtaing

e
Y max .e. max B(GTLYPY 101,000, W) Jox(m)pea(mx, Y Bl

alm) ¥+ ™

i=1, 000, 8-1)) € z (x>, 1P, i=1y 000, N) JaZ (W) )p(aX(N)3
oz (N)
(Xai,y*ﬁi? i,‘-’-‘l;stag ﬁ"'}.) + 8mq/2 (16)

Wow, reversing the meximization and suwmetion operstions in (16) either
has no effect on the inequality or strengthens it. Further, by our

recall-sensitivity definition we have:

111((}{%,‘!*3":, i=1, e 0e, N) fOT(H)) - ﬂ((xm“,,,.,xam“l),xm;

TP 521, vee, W) fox(W)) | < 552 (17)

Comibining (16) and (17), we can therefore write:
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O Mea
MOX ... max H{X m %81, i=l, 000, W) € H(Xal,"a,_x (w l),}{m;‘
}(al Xﬂéﬁ
}‘:*3’“,‘ imlysea, M) + s (18)

Starting with the equation corresponding to equation {11), but

o{m-1)

for maximizatim over X » we cay repeat the steps of equations

(12) thru (18) to obbain:

MEX oes WAX 'H(Xm, os ”Xa(ﬁ«l), XM;Y*M
xa‘l xa(ﬁul)

9 i’i‘-igoove’ﬁ) 5

cz(m-z}, xm(mul}’ X*azq) + 5«::(1%.«1}

ax®, ..., x (19)

By similar reasoning, we can write for f=2,...,N that:

MEK eoe MAX H(X j‘a«egx ’ﬁa(ﬂ‘*‘l) H,Xm;Y%i, i=l;c‘a;N) 5
I
n(x®, ..., x08=1) y¥Ob R KBL gy e, H) + 82 (20)

Now, combining the equation corresponding to equation (11), but for
maximization over Xal, with equation (20) for f=2, we can write:

Cﬂ*ﬂ&

max max BHXL, X5, X000, veey X Oy B 501,000, W) < H(X

XQQ. X@

o“,Xm; %ﬁig iwlgnoo;gf) 4"8@ ‘K: max }{(Xal m, aoa;XW;

x

k3
TP, gel, 00, W) € H(K 5 Y P, 51, .00, N) + 87 (21)

Applying (21) in the right-hand side of (20} for =3, we obtain:
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mmmﬂ(m‘ QE 33 m,“m,}{%

Xal X Xm3

e
;Y gi; 5.21,.“,2@') :S

L4
A v Bl 5., H) + 82 4 5B (22)

Combining for f=h, ..., N, we finally obtain:

MEX oo max HES, Y PL, el eeesl) € HK O5Y PL, 1al,.e.,N) +

r i

), & (23)

i=2

But, by definition:

*Cti i i #*si

H{X *ﬁ y i=lyees, W) € WAX oo. MAX H(Xal,‘f B s 1=l 0ees,H) =
o, of
X X

quality of (Y%i, 10 S ) (2k)

From (23) and (2b) then, the quality of (¥ PL, i=1,...,N) must lie in

o .
the intervel (#,#+R"), and similar arguments show thet the quality of

ol

(X 421, 00.,N) must lie in the interval (4-8F,#).

Qo Bs Do

C. Proof of Lemaw 2:

The proof of lemms 2 proceeds as follows,
Proof: Suppose for example that the Q-player has perfect recall.

Using expression (3) of sectlon 2.0 of the text, we can
write:



R0, sed,eee,mfon@) = [ ) (000 [7200))p(cE() |

G loa()
or(e))p(BE(K) [61())sk=L, e, ) | | ) [m(MECE) InECE)) ¢
¢, loz(i)
i
p(ag (k) [or(e))p(pE(x) | 81(k))5 w51, -1) ] | (25)

where Cw!m:(i) indicates swmation over all plays W under which or(i)
oceurs, and %igcﬁ(i) indicates sumsation over all partial plays to
the renk of the O-player's ith move, under which 0I{i) occurs.

Now, if the O-player has perfect recall, oI{i) covers the domain
of definition of each of the functions defining p(e®(1)]cX(1))s..

p{oE(i-1)|ox(i-1}}), so these terms can be factored in (25) to cbtain:

11
n((x™, v, 121y o 0o, W) [0T(1)) = { [kil pm(“)f‘ﬂ(k))]

[ pCnE() 12() Yo (BECK) [BI(K) )5 k=yaee, o1 | (p(MECK)]
G loa(i)

i-1
ME(k)) p(oE(k) |ox(k)) p(BER) [BL(K))5 =i, eous W] | 4] [b ~

plog()]ar(x))] - ) [p(V0s) Imx(e) p(pr(e) [T (x));
G, 1o (1)
kml,w.,,,iml] } (26}

Hoting thet all terms defined by (}i sesogk (i-l)) cancel oub, we
can write:
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o1 af{i-1} Lol on .
H{(X 5 eves X (1 },x sesayk ;:{m‘, k=1, 0o, HY|OI(1)) -

101w (¢
H((le',a-m?}{ {1 l),X igetayxw; Yﬁk’ ksl; ovapﬁ)!m{i)) = 0

for sny oX{i), and any values for (XO@, O@i, gak’ k=1, eeoyimly

3
X j;pyﬁéy agl’Dﬁi,E')
o
By definition then ’éxlraﬂ, end similar erguments can be carried out

for sP' if the B-player has perfect recall, for i=l,.e.,N.
Qe E.De



