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ABSTRACT

The problem of determining the permittivity of a medium from a knowl-
edge of the electromagnetic fields scattered by the medium is considered.
A nonlinear integral equation is derived for the dielectric profile,
which is a function of only one variable. The solution of this equa-
tion by an iterative scheme is investigated. An alternate formulation
of the problem, which leads to a linear integral equation, is also studied.
In both cases, the numerical solutions to these problems are unstable.

That is, they are highly sensitive to small errors. The second method,

however, leads to a uniqueness proof for the inversion process.
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1. INTRODUCTION

The purpose of this study is to develop .a method by which the profile
function of a dielectric can be determined from external measurements.
Such a method would be of great use to engineers and physicists who wish
to study plasmas. Remote probing could provide information about the
properties of a plasma at every point within its volume. Such detailed.
information has not been available on laboratory plasmas becauge of the
type of confinement vessels which are needed and because of the disruptive
effects caused by the presence of a probe in the medium. A remote prob~-
ing method would also prove useful in studying the ionosphere.

Geologists also have need of remote probing techniques. The echoes
caused by seismic blasts hgve been used to determine the presence of
various rock formations and mineral deposits within the earth, but the
methods to date have relied greatly upon matching data to the results
expected for some specific‘cases; This procedure is obviously very .
inefficient and lacks the very desirable quality of uniqueness of the
result.

‘Remote probing might also be used by meteorologists and ecologists
"for studying the atmosphere. Astronomers might even find this technique
applicable to studies of nebulas and other celestial structures.

The remote probing problem for-a general medium is, however, a very
difficult problem‘andulittle has been done .on .it to date. 1In this paper,
the simpler case of a dielectric which:is homogenepus in the y and z
directions and which varies in the x direction is considered. This type
of model is not greatly removed from the applications mentioned since

‘the earth, the atmosphere, or a plasma may often be modeled this way



for the analysis of local phenomena. It will be assumed throughout that
the medium has the permeability of free space, Hg» and that the permittiv-
ity is independent of frequency and is described by k(x) €qs where «(x)

is the relative dielectric constant and €0 is the permittivity of free
space. The methods developed here will require data which can be obtained
from external measurements, and from these data, the profile function

k(x) will be calculated.



2. FORMULATION AS A SCALAR PROBLEM
2.1 The Geometry and Assumptions of the Problem

The geometry of the problem to be considered is shown in- Figure 1.
Note that there are to be no variations with-reépect to the -y direction.
The dielectric is also uniform in the z direction and varies in the x
direction as K(X)EO, where k(x) is real. It .is assumed that a known elec-
tromagnetic wave of a single frequency is incident from the left on the
air-dielectric interface at x = 0 and that the fields at the surface of
the dielectric can be measured for all values .of z. Of course, the actual
measurement could be performed at some plane x = o, o < 0, and then the
fields at the interface could be computed since the propagation in free
space is completely known. To provide a termination in known boundary

conditions, a perfect electric conducting plane is included at x = L.
2.2 Formulation of the Scalar Problem

Maxwell's equations for a source-free, lossless, charge-free region
with constant permeability and varying permittivity e(x) are (using

exp(jwt) time convention)

VxE ='—'jmu0ﬁ (1)
Vx H= jue(x)E (2)
V' D=0 (3)
V.B=0. (4)

Taking the curl of (1) and making use of Equation (2) and the relation
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V(V'E) = V(V - D )
_ _ur Ve(x)-E
we obtain
v2E + wzuoe(x)i+ ( ‘_Va_é’(‘_)x;_ﬁ_ )y = 0. (6)

Similarly, taking the curl of (2) and making use of (1) and (4), we obtain,
2- . 2 - R
VH+ w uos(x)H + jw(Ve(x) x E) = 0. 7

At this point it is advantageous to consider two possible polariza-

tions of the incident field.

Case 1: .Transverse Electric Type-Waves
(E =E_=H =0)

For the transverse electrie type of waves, (6) and (7) can be written

as

VzEy + wzuoe(x)Ey =0 (8)
VZHx + mzuoe(x)Hx = 0 9
2 2 o, de(x)
Y Hz + w uoe(x)Hz + jw v — Ey =0 (10)

where the subscripts denote the particular components of the field. The



form of the solutions for (8) and (9) are the same and (remembering that

3 0) can be written as

dy :
g Ey(x,z) =~ey(x)exp(jkzz) (1)
CH_(x,2) = h_(x)exp(jk, 2) (12)

where kz is' a constant.

It is clear from Equation (1) that a knowledge of Ey is sufficient
to determinevHX and Hz. However, in Chapter 4 it will be necessary to
describe the fields.in terms of one'of the magnetic field components.
Furthermore, the boundary conditions on this component should not depend
explicitly on e(x).

Consider, then, the x component of (1) with (11) and (12) substi-

tuted.
—jszy'= -quOHx. (13)
That is,
L kz
H =—E. (14)
T

The boundary conditions for the fields are that Ey and Hz must be con-
“tinuous. Continuity of Ey simply implies continuity of HX’ and, ~since

“Hé:isigiven by

z  wyg ax k 9x °?
z
o oH
continuity of‘Hé‘implies continuity of'—sg .

Thus, it is possible to describe the transverse electric type of

waveS'by'the'scalar'quantity'Hk(x,z).



2 2 _
v Hx(x,z) + .0 uoe(x)Hx(x,z) =0 (16)
9H (%,2)
with H (x,z) and —X ____ continuous.
X 9x-

Case 2: Transverse'MagpetinType;Waves

as

2. . 2 =
v Ex + w uoe(x)Ezv+ P ( py e

L
~
|
o

7

2

x —
72 C ety ) =0 (18)

2 -2 .
v Ez + w uos(x)Ez + (

2 2 - de(x) _
v Hy + 0 uos(x)Hy - jw _EET-EZ = 0. (19

de (x)

The presence of the terms involving "complicates these equations to
P g % p

such an extent that it is preferred to exclude transverse magnetic waves
from'consideration.

‘Therefore, the remainder of this paper will assume that transverse
electric waves are incident on the dielectric and that these waves are

completely described by the scalar wave function y(x,z) where

~~v2w(x,z) + wzuoe(X)w(x,Z) =0 (20)

“conductor.



3. AN ITERATION. METHOD
3.1 The Approach toc Be Taken

The approach to be taken in both this chapter and in .Chapter 4 is
to derive an integral equation which the unknown profile k(x) must sat-
igfy. Unfortunately, this equation turns out to be nonlinear-and,; hence,
its solution is not straightforward. In this chapter an iterative method
is employed to linearize the problem, and.in:the next chapter; an asymp-

totic expansion is used to linearize the problem.
3.2 The Integral Equation for the Iterative Method

"Figure 2a shows the geometry of the problem with a y=directed line
" source-located atixi=.x0,.z = 0;'with’ex§(j¢t) variation. The scalar wave

equation for this situation is
g 2 v
v IP(X,XO,Z) + w UOE(X)U’(X!X()’Z) = 6(X—X0)6(Z) (21a)

with boundary conditions

¢(X,XO,Z) is continuous (21b)
aw(x,xo,z) aw(x,xo,z)
— - e = 1 (21c)
X + ox -
X=X X=X
U)(L,X,Z)H = 0 (214d)
w(x,xo,z) is outgoing for x < Xg- (21e)

Figure 2b shows the geometry for a similar problem, the Green's

function problem, where free space exists for the entire region x < L.
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Geometries used for deriving the integral equation.
(a). Geometry of the problem.

(b). Geometry for construction of the Green's function.
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The Green's function source is.a.y-directed line source located at x = Xy
z = 0, with exp(jwt) time variation. ‘The scalar Green's function equation

is
‘Vzg(x,xi,z) + wzubsbg(x,xl,z)/=w§(x~xl)6(z) (223a)

with boundary conditions

g(x,xl,z).is continuous (22b)
Bg(x,xl,z) Bg(x,xl,z)‘ :
3 P e e N (22¢)
*1 %1
g(L,x;,2) =0 (22d)
g(x,xl,z) is outgoing for x < Xq. (22e)

Before proceeding with the derivation, the z dependence is elimi-
nated from (21) and (22) by means of the following Fourier transform

relations:

o

‘ T(x,xo,e) = 'f‘rt(x,xo,z)epjﬁzdz (23a)
fxaz) = 1 T(x.x..8)elB%ds (23b)
Xor®) = gp 1 FEXps st
With this, (21) becomes
2
d' W(X,Xoss) 2 2
—_———_Tf——__'+ (w uoe(x)—B )Y(X,XO,B) = 6(x—xo) (24a)

dx
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with boundary conditions

W(x,xO,B) is .continuous (24b)
B¥(x,%, 8) - 9¥(x,%,,8)
T | x| (24e)
0 X
¥(L,x,,8) = 0 (244)
W(x,xo,B) is outgoing for x < xo (24e)
and (22) becomes =
9 -
d G(X,Xl,B) 2 2
—— ¢ (W ugeg=BT )G (%5 ,8) = 8(x-%;) (25a)
dx
with boundary conditions
G(x,xl,B) is continuous (25b)
26(x,x,,8) 26(x,%;,8)
= |+ wm |t (25¢)
1 EEY
G(L,xl,B) =0 (25d)
G(x,xi,B) is outgoing for x < x;. (25e)

Multiplying (24a) by G(x,xl,B) and subtracting from it W(x,xO,B)-

times (25a) yields
G(X’Xl’B:) ‘l’"(x,xo,B)—‘I‘(x,xo,B)G"'(x,xl,8)+(w2uoe(x)—wzuoeo)‘P(x,xo,B)G(x,xl,B)

= G(x,xl,8)5(X—xo)—W(x,xo,B)G(x—xl) (26)



12

where the primes denote differentiation with respect to x. Integrating
(26) with respect to x from O to L gives the desired integral equation.

(See Appendix A for the details of this operation.)

L
k2 J
0

[K(X)*ll?(X,XO,B)G(X,O,B)dX-=~—C(B){R(B)+exP[-j/(k2—62)2L]}’(27)
where R(B) is the reflection coefficient evaluated at the interface as a
function of B, k is the free space wave number, k = w/(uoso), and C(B)

is a complex scale constant. Note‘that'since‘W(x,xo,B) depends on k(x),

(27) is a'nonlinear integral equation for k(x).
3.3 The Iterative Method

Since Equation (27) is nonlinear, its solution is not straightforward.
The approach to be discussed here involves solving (24) and (27) alter-
nately in'an iterative scheme. ~Figure 3 shows schematically the procedure.
(i) Assume’a‘profiié KO(X) to start'the'process;
(i1) -Solve (24) over the region 0°< x <L with e(x) = eOKO(x)'to'obtain
¥ (xsxy,8) 3
(iii) Solve (27) with ?(x,xo,e)'='wo(x,xo,6) to obtain Kl(x);
(iv) Repeat steps (ii) and (iii) with the new values of k(x) and
?(x,xo,s).
The questions of convergence and uniqueness are important whenever
an iterative scheme is employed. 'To'date, however, no method has been
found to guarantee either convergence or uniqueness of this process.
Therefore, the only results available on this iterative scheme come from

calculations performed on the digital computer.



13

ol e
Yo (x,%o, B)
‘M (vaOv B’

Kp{x)
WZ(X 1 X0y B )

Kalx)  ——

Kn(x) *

Ko {x) =7

Figure 3. Schematic representation of the iterative process.
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To perform the iterations on the computer, a matrix equation is
formed. Beta is sampled at n points, say By> Bys +o» » B . Equation
(24) is then solved n times, once for each value of 8, to give n dige_
tinct wave functions. Note that the solution of (24) determines the
scale constant C(B). Substituting into (27) then gives n equations of

the form

L
K% 7 [e(0-11¥(x,30,8,)6(x,0,6,) dx
0

= -0(8,) {R(B +exp[-3/(kP~D)2L]} i =1, 2, ... , n. (28)

Two methods for transforming (28) into a matrix equation will be consid-

ered.

Method 1: Point Matching

In the point matching method, the unkhown function, [k(x)-1], and
the kernel function,lW(x,xo,ei)G(x,O,Bi) in this case, are sampled at n
points within the interval 0 < x < L. The integral is then computed by
the rectangular rule, or any of the other numerical forms for computing
integrals. If the intervalfis uniformly subdivided as indicated in Fig-
ure 4, and if the rectangular rule is used to write the integral, then
the matrix equation takes on an especially simple form. The height of
each rectangle in Figure 4 is the value of the integrand of (28) at the

3

corresponding point x°. Therefore, (28) becomes

n . .
1 x,8,)66,0,8) e Gd)-11 = -0 {R(8,)+exp -3/ (k-6 5) 2L))
3=1

i=1, 2, .. , 0. (29)
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Figure 4. Rectangular approximation for point matching method.
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Define the matrix A and the vectors F and B by

A=1Ja,. ] 1=1,2, ... ,n

ij

'5=1,.2, ... , 0 (30)

where

ag, = kPG x0,8,066,0,8 0 m

F = [fj] j =1, 2, +o. 4 n (31)

where

£, = c(xd) -1

B = [bi] i =1, 2, «o. , 0 (32)

where

- s (12 a2
by = -C(8;) {R(B,)+exp[-3V(k =8} 2L]}.

Then (29) can be written simply as

AF = B. (33)

Method 2: "Expansion  of [e(x)-1]

In this method the unknown function, [k(x)-1], is written in the
form

(-]

k(x) = 1= % 1,¢,(x) (34)
j=l j J
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Ty = <k (x)-1, ¢j(x)> = [ [K(X)fl]¢j(X)dx (35)

0

where the {¢j} form a real complete orthonormal set over the range

0 < x < L. If the.summation (34) is.truncated to n terms, (28) takes

the form

n
k jil T ,é, b (x) ¥(x,%),6,)6(x,0,8,)dx = b,

where bi is dcfined by (32). Now define the matrix M and the vector T

by

where

oy <¢j(X), W(x,xb,ei)G(x,O,Bi)>

T = [t,] =1y, 25 eeey D
Then (36) can be written as
MI = B.

3.4 Results of Numerical Calculations

n (37)

(38)

(39)

A program was written to solve Equation (24) using the Runge-Kutta

integration scheme. The results of this computation were then used to

form A or M, depending on the method being used. Next, the square matrix

A (or'M) was inverted so that the unknown k(x) could be found. It was
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at this point that the iterative procedure failed. The reason for the
failure is that the matrix A (or M) is ill-conditioned. That is, the
matrix has eigenvalues which are very nearly zero. (See Appendix C for
more discussion of ill-conditioned matrices.) . Because the matrix is ill-
vconditioned, small errors in the vector B .result in very large errors in
the vector F (or T). In fact, upon .investigating the matrix Aflitbr‘MTl),
it was found that the terms of this matrix were approximately of the
order of 102n when A (or M) was n x n. Since the terms of F were of the
order of 10*1, the accuracy required of B for good results was of the
order of 2n significant figures. Clearly, this makes the method imprac-
tical for use where experimental data are.the input.

The character of the matrices seems to improve very little as the
range of beta is varied. In fact, for the range much less than one or
much greater than ten, the results deteriorate rapidly. Different choices
of expansion functions for the second method likewise failed to improve
the character of  the matrix.

"The ill-conditioned nature of the matrix was observed even when
k(x) was constant so that an analytic expression could be found for
W(x,xO,B), thus avoiding computational errors arising in the solution of
(24). 1It, therefore;'éppears that- this formulation of the 'problem will
‘not work. -Chapter 4 discusses another formulation of the integral equa-

tion for k(x) and its solution.
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4, AN ASYMPTOTIC EXPANSION METHOD
4.1 Formulating the Integral Equation

The geometries to be congidered in this chapter are the same as
those of Chapter 3. (See Figure 2.) Equation (24) again describes the
fields for the problem. Fbr this method, however, the wave function,
¥(x,x.,B8), is to be expanded in a power series of w. It should be empha-
sized that the equation to be derived is exact, even though an asymptotic
expansion is used for the derivation.

The Green's function geometry to be used is again illustrated by
'Figure 2(b). 'This time, however, the static Green's function will be

used. That is, g(x,xl,B) satisfies
2y
v g(x,xl,z) = 6(x—x1)6(z). (40)

Transforming (40) by the relations (23) yields

dza(x,xl,s) 20,
——— -8 G(x,xl,B) = 6(x—x1)- (41a)
dx

The boundary conditions on E(x,xl,s) are

a(x,xl,ﬁ) is continuous (41b)
da(x,xl,s) ‘ da(x,xl,ﬁ)
= - — =1 (41c)
X 4 dx _
x=x; x=x,

G(L,x,,8) = 0 (41d)
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Lim a(x,xl,sf = Q. (41e)

P >l

Multiplying (24a) by E(x,xl,s) and (4la) by T(x,xO,B) and subtracting

as in Chapter 3 gives the analog of (26).

a(x,xl,B)W"(x,xo,B) - W(x,xo,ﬁ)a"(x,xl,ﬁ) + wzuoe(X)W(x,xo»s)a(x,xl,ﬁ)

vy
= G(x,xl,B)é(x~x0) - W(x,xo,s)d(x—xl). (42)
Equation (42) is integrated from -~ to L to yield

L ,
S e(X)W(X,XO,B)E(X,X]_,B)dX

-0

2
Yo

o]

= a(xo,xrﬁ) = ¥(x;,%,),8) - [a(x,xl,B)W'(x,xO,B)-?(X,XO,B)a'(X,Xl,B)]|E .

(43)

The form of the solution to (41) gives the conditions that a(x,xl,s)
and its derivation vanish at -». (See Appendix B for details.) There-
fore, since W(L,xO,B) = a(L,xl,B) = 0, the last term of (43) vanishes.

Then making use of

e(x) = (44)

(43) becomes

L
2
© uoeo,g K(x)w(x,xo,ﬁ,w)a(x,xl,ﬁ)dx

_ Cn 0 .
= E(XO,Xl,S) - W(xl,xo,s,w) - wzuoeo {w W(x,xc,s,w)a(x,xl,ﬁ)dx. (45)
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The w has been explicitly included as a variable to emphasize that
W(x,xo,B,m) does depend on w but that E(X,XO,B) does not.
Equation (45) is the nonlinear integral equation which is to be

solved for k(x). Note that if x, < 0, then the right~hand side of (45)

1
is known. (Recall that for x < 0, W(x,xO,B,w) can be written in terms
of R(B) and solutions to the wave equation in free space.) The task is
then to linearize (45) by replécing the unknownnw(x,xo,e,w) with an approp-

riate known function. To do this, W(x,xo,B,w) is expanded as a power

series in w.

o]

¥,x58,0) = I a (xyxg,8)” (46)
n=0
where
1 anW(x,xo,B,w)
an(x’xo’e) = ;Q" n' .
dw =0

The details of the development are included in Appendix B. The result-

ing linear equation which k(x) must satisfy is

L , s . 2 2
/ k(x) sinh® [B(x-L)1dx = - = {-E— expl2pL] 2 #(0,0,8,u)
HnE 2
0 070 3w
w=0
¢ -g- sinh® (8L)}. 47

Note that for this method it is necessary to obtain data from which

2
C W(O’O’g’w) can be calculated. This requires more measurements

ow

w=0
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than the iterative scheme discussed in Chapter 3, but the advantage
gained is that no iteration is required. Equation (47) is solved only
once to obtain the result.

It should be noted that the derivation of (47) did not require that

32W(0,0,B,w)

sz

k(x) be real. Therefore, noting that only «(x) and
w=0

can be complex (B is real), Equation (47) can be separated into two
equations, one for Re{k(x)} and one for Im{k(x)}. It is then nécessary
that both the real and imaginary parts of ¥(0,0,8,w) be measured.

It should also be notgd that (47) is wvalid only when W(x,xo,s,w)
is identified with HX. This happens because the derivation of (47)
requires that ao(x,xo,e) = W(x,xo,s,w)|w=o be independent of x(x).
Static magnetic fields are independent of the dielectric constant of

the medium, but static electric fields are not.
4.2 Uniqueness of the Solution

As was indicated in Chapter 3, nothing could be said about the
uniqueness of the solution obtained by iteration. For the asymptotic
method, however, uniqueness can easily be proven. Suppose that Kl(x)
and KZ(X) both satisfy (47). Then, subtracting the equations for the
two solutions gives

L 2

S [Kl(x)—Kz(X)] sinh® [B(x~L)]dx = O. (48)
0

But this can be satisfied for all g only if [Kl(X)—Kz(X)] = 0, There-

fore, Kl(x) = KZ(X) and the solution is unique.
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4.3 Results of Numerical Calculations

Just as for the iterative case, (47) can be converted to a matrix
equation by point matching or by expansion of x(x) in a set of basis
functions. The procedure is analogous to that of Chapter 3 and leads to

an equation of the form
AF = B (49)

where A is an n x n matrix and F and B are n x 1 vectors. Therefore, the
problem has again come down to the inversion of the matrix A. Unfortu-
nately, the matrix obtai@gd by'ékis approach is again ill-conditioned.
The elements of Afl‘are approximately of the order of 102n so that 2n
significant figures are needed to get an accurate solution. Again the
nature of A improves little for different ranges of B or for different
choices of the basis functions in Which'K(X) is expanded.

In spite of the fact that the matrix A is ill-conditioned, the solu-
tion of (49) has been carried out for a few examples in order to test the
method. The data used in these calculations were generated on the com-
puter and, therefore, were accurate to 10 significant figures. With this
extreme accuracy in the data, the solution to (49) gave results which
agreed quite well with the true profile. However, with noise of less than
one percent added, the éolution contained oscillatory components which
were orders of magnitude larger than the désired result.

Figure 5 shows the results of solving (49) for «(x) = exp(2x),

0 <x < 1. In Figure 5a are shown the results obtained using thrée,
N

five, and seven terms of the expansion k(x) = 3 Tixi, Note that the
=0

set {xi} is not orthogonal as was stated in the derivation of the matrix
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Figure 5. Calculated profiles for k(x) = exp[2x].

(a) Power series expansion
(b) Cosine series expansion.
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equation in Chapter 3, but the set is complete so that k (x) can be
expanded as a power series of x. The only change which is required

in the deri%ations of Chapter 3 is to replace Equation (35) for T4 with
a more complicated expression{ Figure 5b shows the results obtained for

cos (inx). The result

N
five and seven terms of the series k(x) = iz T

for three terms was essentially the same as for five terms. As might.
be expected, the power series gives a better representation of the expo-
nential function than the cosine series.

Figure 6 shows the results of using the same two series to expand
the profile K(X)l= 1 + x sin 27x, 0 < x < 1. The results for three,
five, and seven terms are again shown.‘ This time the profile is oscil~-
lating and so is more difficult to synthesize with only a few terms.

The range of beta for both Figures 5 and 6 was from 0.2 to l.4. One

of the most significant features of both Figure 5 and Figure 6 is that
all of the receonstructions were worse for the region near the conducting
plane thén for the region near the interface. Indeed, this was the case
for every profile which was tried and for every methed of forming the
matrix equation from the integral equation. The explanation of th;s
phenomenon seems to be that the fields in the vicinity of the perfect
electric conductor are masked by the fields closer te the surface. That
is, because the fields near the conductor are very small and because of
the relatively large distance between the back of the dielectric and

the surface where the fields are measured, the effect of moderate changes

in the dielectric constant is not seen.
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5. CONCLUSIONS

The purpose of this study was to develop methods for recomstruct—
ing the profile function of a dielectric medium from external measuréd-
ments. Two such methods were derived here. Both of these, however,
led to ill-conditioned equations. Because of this, neither of these
methods could be applied‘directly to experimental data.

The regularization method discussed in Appendix C was applied to
Equations (33), (39), and (49), but the results were not satisfactory.
The current .literature contains other regularization schemes which might -
yield better results for this problem, but the investigation of these
techniques has only been started and results are not yet available.
Another approach which should be considered is parameter optimization.
This technique has proven uséful for solving nonlinear problems, and
may also prove useful for solving ill-conditioned problems.

It is important to note that the equations derived here are ill-
conditioned because of the problem which is being solved and not because
of the method used to solve it. Indeed, many authors hgve found that
problems involving indirect probing are ill-conditioned.

The important contribution of this work is to show that a unique
solution can be obtainediwithout the knowledge of the fields for all

frequencies. 1In fact, as few as three frequencies might be used to cal-
2
3 W(x,xo,B,w)

3w2

culate and from this a unique profile function can be

w=0

obtained.



Future work will be directed toward methods of solving the ill-
conditioned equations derived here in the hope that useful solutions

can be obtained in the presence of experimental uncertainties.

28
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APPENDIX A. OBTAINING THE INTEGRAL EQUATION FOR THE ITERATIVE METHOD

To carry out the steps linking Equations (26) and (27) of Chapter 3,
it is necessafy to consider the form of the solutions to Equations (24)
and (25).

Considering Figure 2a, let R(B) be the reflection coefficient eval-

uvated at the interface as a function of B. That is,

R(B) = —= A.1)
‘l’lnc(O,xO,B)
where ¥ ¢ ig the incident field and WrEf is the reflected field. Then,

the form of'W(x,xo,B) for,xO < x §_O+ is

¥(x,x4,8) = C(B){exp[-jyx]+R(B)exp[jvx]} (A.2)
where
v = V(-7
and
C(R) is a complex scale. constant
av (x,%,,8)
¥ (x,%,8) = ——5 —— = ~§vC(B) {exp[-Iyx]-R(B)exp[jyx]}. (A.3)

The solution for Equation (25) is

3% lexpl-3v (e ) J-exp [y Gy =211} x> %)

G(xsxlsS) = (A.4)

5‘3- {eXP[jY(X’-Xl)]"eXP L3y (xtx-2L]1} X < %
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3 Texp[=3y (emxp) Meexp Ly Gobey ~2L1) x> %
G' (x,%,,8) = (A.5)

- % {exp[Jy (x-x,) 1-exp[Jy (x+x,-2L]} X < %

Consider again Figure 2a. ' The expression [wzuoe(x)—wzpoeo] becomes

) ) 12 [k (x)-1] 0<x<L
W uoe(x) - WHgEg = (A.6)
0 x <0
where
-2 . 2
k™ = w HoEg®

Equation (26) can then be written (for 0 .< x < L)

'k2[K(X)-lTW(X,XO,B)G(X,%PB)’= W(xsxosB)G"(x,xl’B) -:G(szl,B)Y"(X,XO,B)

+ G(x,xl,B)G(x—xo) - W(x,xo,B)G(x—x (A.7)

1)'

Next, (A.7) is to be integrated with respect to x from O to L. After
integration, it is necessary that the right hand side be a known quantity.

and x. are both less

Carrying out this integration for the case where Xy 1

than zero gives

L

K 1 [e()-D¥(x,x0,8)6 (x, %, ,8) dx
0

L

= [W(XQXOQB)G'(xﬁxlss)_G(xsxlgs)W'(xsxosS)] 0

= G(O,xl,B)W'(?,xO,B) - W(O,xO,B)G'(O,xl,B) (A.8)
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since W(L,XO,B) = G(L,xl,B)'= 0. Note that .the form of G(x,xl,e) to .be
used in (A.8) is that corresponding to x > Xy Substituting (A.2), (A.3),

(A.4), and (A.5) into the Eqﬁation (A.8) gives

L
K [e@-11¥0x,%),8)6(x,x, ,8)dx
0

=‘% C(8) [1-R(B) 1 {exp [Jyx, I-exp[jv(x;~21) 1}

- 3 C(B) [1+R(8) Mexp liyx, I+exp [y (x,~21) 1}

= -C(8) (R(B)exp Livx, Iexp iy (x,-21) 1} (4.9)

Since X is the source point for the Green's function, which was
introduced in a purely analytic manner, it can be taken as 0 with no

loss of generality. Then (A.S) simplifies to

L ,
2 s [K(X)-l]W(x,xO,B)G(x,O—,B)dx = -C(B){R(B)+exp[-j2yL]}. (A.10)
0

The minus superscript on the zero can actually be removed as can be
seen by integrating (A.7) with Xy < 0 and x) = 0", Then
2 L +
k™ f [K(X)—ll‘l’(X,KO,B)G(X,O sB)dx :
0.

= —¥(0",x5,8) + 6(0,07,8)¥" (0,%),8) - ¥(0,x,,8)G' (0,07,8)
= -C(8) [1+R(8) ] + 3 C() [1-R(p) 1{1-exp[-32yL] -

+ 3 C(8) [1+R(B) 1{1-exp[-§2vL]}

= -C(R){R(B)+exp[-j2vyL]}. (A.11)



32

Therefore, since G(x,xl,B)‘is continuous, the final result becomes

L
K S Te(0)-11¥(x,%,,8)6 (x,0,8)dx = ~C(B) {R(B)+exp[-3/(k*~6%)2L1}. (A.12)
! ,
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APPENDIX B. OBTAINING THE INTEGRAL EQUATION FOR THE
ASYMPTOTIC EXPANSION METHOD

In order to simplify Equation (43) of Chapter 4, it is necessary

to consider the form of a(x,xl,s); The solution of (41) is
, . .

ET%T {exp[2}6|(kl—i)]—l}exp[]5|(x¥xl)] X < %) < L
Clx,x),8) = ¢ (8.1)

ET;T {exp[-2|g|Llexp[|8] (et ) ]-exp[-[8] (x-x,) 1}

\

X, < x < L.

1

If only positive B are considered, the absolute value bars can be dropped
from (B.1). Also, since the Green's function is a mathematical tool
which was introduced only for analytic pufposes, the source‘point,xl

can be taken at any convenient point. It turns out that X = 0 is a

convenient choice. Then (B.1l) becomes

- %-exp[B(x—L)]sinh BL x <0
&(x,0,8) = . (B.2)
%—exp[—BL]sinh B(x-L) 0<x <L

From (B.2) it is clear that a(x,O,B) and its derivative both vanish as

x -+ =, Utilizing this result and the fact that E(L,O,B) = W(L,XO,B,w) =0,
the last term of (45) vanishes. Then, using (44),(43) gives (45) directly.
To linearize (45), W(x,xO,B,w)~is expanded in a power series of w as given
by (46). Note that it is sufficient to consider only n > 0 in (46) since
the wave function must be finite for zero frequency.: Substituting (46)

into "(45) and interchanging the order of summation and integration, which
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can always be done in a neighborhood of w = 0, gives

o L
o
wzu e. T WS k(x)o_ (XsX~,B)G(x,x,,R)dx
070 n 0 1
n=0 0
v ® n 2 ® n 0 v .
= G(xo,xl,B) - X an(xl,xo,e)w - WU E w S an(x,XO,B)G(x;xl,B)dx.
n=0 - - n=0 -
(B-B)
Matching like powers of w gives the following equations:
n
0= G(xo,xl,B) - ao(xl,x@,s) (B.4)
0 = a'l(xlsxo’s) (B'S)

L n
Moo é K(x)ao(x,xo,B)G(x,xl,B)dx = -az(xl,xo,s)

= Hogo ff uo(x,xo,B)akx,xl,B)dx. (B.6)
Consider (B.4) and note that
oy (%5%5B) = \P(xl,xo,’s,w)‘ .
= G(x;%sB) (8.7)

This is easily verified by noting that (24) becomes identical to (41)
when w = 0. Therefore, (B.4) states that the Green's function is sym-
metric in its two vériables. Since the operator of (41) is self-adjoint,
so this relation could be predicted from the theory of operators.
Considering (B.5), note that W(x,xo,ﬁ,w) is an even function of w.

2

This occurs because w only appears in ¥ through k2 (which equals 95-).
c



35

Thus the expansion of W(x,xo,e,w) must be an even function of w which
implies that all of the coefficients of the odd powers of w must be zero.
Equation (B.6) is the linear equation which x(x) must satisfy. For

the case of x, = 0, the integral on the right hand side becomes

1

0
! G(x,O,B)G(x,xo,B)dx

-0

= "_l§ sinh BL{exp[ZB(xO—L)]sinh B(Xb‘L)
28

+-% exp[—3BL]exp[on][l—exp(Zon)] + onexp[B(XO-L)]}. (B.8)

For the purpose of simplifying the expressions, choose Xy = 0. Then

(B.6) becomes

M EQ L 2
3 exp[-28L] /- «(x)sinh” B(x-L)dx
B 0
1 9%v(0,0,8,0) Mo%0 2
=-3 ’2’ 2 - 3 exp[—-28L]: sinh“ BL. (B.9)
ow 28
w=0

This is the linear integral equation which k(x) must satisfy.
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APPENDIX C. A BRIEF DISCUSSION OF ILL~CONDITIONED
MATRICES AND THEIR SOLUTION
For the purposes of this paper, it is sufficient to consider the
square matrix A to be ill-conditioned whenever it has an eigenvalue which
is "nearly" zero. This somewhat ambiguous statement means that whenever
the magnitude of the eigenvalue is comparablé to the magnitude of the
uncertainties in the problem, the matrix is ill-conditioned.

Twomey(l>

provides an excellent discussion of ill-conditioned matrices
and their role in physical problems. He also provides the following cri-
terion for determining when a problem is ill-conditioned. Consider the

matrix equation
Af = g + ¢ (c.1)

where A is an n x n matrix, f is an n x 1 unknown vector, g is an n x 1

given vector, and € is an n x 1 error vector. The problem is well posed

only if
- N 2
CAyp > I € (C.2)
i=1
% *
where Amin is the minimum eigenvalue of A-A (A is the transpose of A)
n

and C is an upper bound for I fi. If (C.2) is not satisfied, then

i=1
(C.1) is ill-conditioned.

(2)

Ivanov has presented one method for obtaining a solution to an
ill~conditioned problem. His method of regularizing the problem involves
restricting the solution to lie within a ball of radius R in the space

of possible solutions. Applying his ideas to the matrix equation
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Ax = b (C.B)

means that the immer product <Ax-b, Ax-b> is to be minimized under the
constraint that <x, x> < R2. For an ill-conditioned problem, the mini-
mum will occur on the boundary so that the equaiity will hold. Using

Lagrange multipliers, the variance of the expression
% % * % * * % 9
xAAx - xAb-bAx+DbDb+ Ax xR
is set to zero. This gives the equation
% *
A Ax + Ax = A b. (C.4)

The presence of the term Ax can be thought of as a way of limiting the
size of the vector x which satisfies the equation. The value of ) is
determined by solving (C.4) for several values of )\ and choosing tﬁe
smallest one which gives reasonable results. If A is too large, the
solution will be too tightly'éonstrained and will not be a good repre-
sentation of the true solution. On the other hand, if A is too small,

the solution will contain large oscillatory components,
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