
https://ntrs.nasa.gov/search.jsp?R=19700019315 2020-03-12T02:06:16+00:00Z



Antenna Laboratory Report No, 70-7 

REMOTE PROBING METHODS FOR THE DETERMINATION 
OF THE PROFILE OF INHOMOGENEOUS MEDIA 

by 

D. Schauberb and R. Mittra 

S c i e n t i f i c  Report 15 

May 1970 

Sponsored by 

National Aeronautics and Space Administration 

NGR-14-005-009 

Antenna Laboratory 
Department of Electrical Engineering 

Engineering Experiment S ta t ion  
University of I l l i n o i s  
Urbana, I l l i n o i s  61801 

UILU-ENG- 70- 302 



i 

ABSTRACT 

The problem of determining t h e  pe rmi t t i v i ty  of a medium from a knowl- 

edge of t he  electromagnetic f i e l d s  s c a t t e r e d  by t h e  medium is  considered, 

A nonlinear  i n t e g r a l  equation i s  derived f o r  t he  d i e l e c t r i c  p r o f i l e ,  

which i s  a funci ion of only one va r i ab le ,  

t i on  by an i t e r a t i v e  scheme i s  inves t iga ted ,  

of the  problem, which leads  t o ’ a  l i n e a r  i n t e g r a l  equation, i s  a l s o  s tudied ,  

In  both cases, the  numerical  so lu t ions  t o  these problems are unstable.  

That is ,  they are highly s e n s i t i v e  t o  small e r r o r s .  The second method, 

however, l eads  t o  a uniqueness proof f o r  t h e  inversion process. 

The so lu t ion  of t h i s  equa- 

An alternate formulation 
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1. INTRODUCTION 

The purpose of t h i s  study i s  t o  develop a method by which t h e  p r o f i l e  

funct ion of a d i e l e c t r i c  can be determined from ex te rna l  measurements. 

Such a method would be of g rea t  use t o  engineers and phys ic i s t s  who wish 

t o  study plasmas. 

p rope r t i e s  of a plasma a t  every poin t  wi th in  i t s  volume. Such de ta i l ed  

information has no t  been ava i l ab le  on laboratory plasmas because of t h e  

type of confinement vessels which are needed and because of t h e  d i s rup t ive  

e f f e c t s  caused by the  presence of a probe i n  t h e  medium. 

ing method would a l s o  prove usefu l  i n  studying t h e  ionosphere. 

Remote probing could provide information about t he  

A remote prob- 

Geologists a l s o  have need of remote probing techniques. The echoes 

caused by seismic b l a s t s  hqve been used t o  determine t h e  presence of 

var ious rock formations and mineral  deposi ts  wi th in  t h e  ear th ,  but t he  

methods t o  da t e  have r e l i e d  g rea t ly  upon matching da ta  t o  the r e s u l t s  

expected f o r  some s p e c i f i c  cases. This procedure is  obviously very 

i n e f f i c i e n t  and lacks  t h e  very des i r ab le  qua l i t y  of uniqueness of t he  

r e s u l t .  

Remote-probing might a l s o  be used by meteorologists and eco log i s t s  

f o r  studying the  atmosphere. 

appl icable  t o  s tud ie s  of nebulas and o the r  celestial  s t ruc tu res .  

Astronomers might even f i n d  t h i s  technique 

The remote probing problem f o r  a general  medium is, however, a very 

d i f f i c u l t  problem and l i t t l e  has been done on i t  t o  da te .  

t h e  simpler case of a d i e l e c t r i c  wh ich - i s  homogeneous i n  t h e  y and z 

d i rec t ions  and which va r i e s  i n  the  x d i rec t ion  is  considered. 

of model i s  no t  g rea t ly  removed from t h e  appl ica t ions  mentioned s ince  

t h e  ea r th ,  t he  atmosphere, o r  a-plasma may of ten  be  modeled t h i s  way 

I n  t h i s  paper,  

This type 
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f o r  t he  ana lys i s  of l o c a l  phenomena. 

t he  medium has t h e  permeabili ty of free space, 1.1 , and t h a t  t he  permit t iv-  

i t y  is independent of frequency and i s  described by K(X) E where K(X)  

is  the  r e l a t i v e  d i e l e c t r i c  constant  and E is the  pe rmi t t i v i ty  of free 

space. 

from e x t e r n a l  measurements, and from these  da ta ,  t he  p r o f i l e  funct ion 

K (x) w i l l  be calculated.  

It w i l l  be  assumed throughout t h a t  

0 

0’ 

0 

The methods developed he re  w i l l  r equ i r e  d a t a  which can be  obtained 
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2. FORMULATION AS A SCALAR PROBLEM 

2 . 1  The Geometry and Assumptions of t he  Problem 

The geometry of t h e  problem t o  b e  considered i s  shown-in.-Figure 1, 

Note t h a t  t he re  are t o  be no va r i a t ions  with respect  t o  t h e - y  d i r ec t ion .  

The d i e l e c t r i c  is  a l s o  uniform i n  t h e  z d i rec t ion  and v a r i e s ' i n  t h e  x 

d i r ec t ion  as K ( x ) E ~ ,  where K(X) is  real. 

tromagnetic wave of a s i n g l e  frequency is inc ident  from the  l e f t  on t h e  

a i r - d i e l e c t r i c  i n t e r f a c e  a t  x = 0 and t h a t  t he  f i e l d s  at the  sur face  of 

t he  d i e l e c t r i c  can be  measured f o r  a l l  values of z .  Of course, t h e  a c t u a l  

measurement could be  performed a t  some plane x = a ,  a < 0, and then t h e  

f i e l d s  a t  the  i n t e r f a c e  could be  computed s ince  t h e  propagation i n  f r e e  

space is completely known. 

condi t ions,  a pe r fec t  electric conducting plane i s  included a t  x = L. 

It is  assumed t h a t  a known elec- 

To provide a terminat ion i n  known boundary 

2.2 Formulation of t he  Scalar Problem 

Maxwell's equations f o r  a source-free,  l o s s l e s s ,  charge-free region 

with constant permeabili ty and varying pe rmi t t i v i ty  E(X) are (using 

exp ( j w t )  t i m e  convent ion) 

- - 
V x E = -jwpoH (1) 

v x E * jWE(x)E (2) 

v * 5 = 0  (3) 

V * B = O .  ( 4 )  
- 

Taking t h e  c u r l  of (1) and making use of-Equat ion (2) and t h e  r e l a t i o n  
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PERFECT 

CONDUCTING 
PLANE 

ELECTRIC 

x =  L 

Figure 1. Geometry to be considered. 
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VE.(X) *E 
E ( X ) ’  

= -V( 

w e  ob ta in  

S imi la r ly ,  taking the  c u r l  of (2) and making use of (1) and ( 4 ) ,  w e  obtain,  

(7) 
2 v2E + w VOE(X)H + jW(VE(X) x E) = 0. 

A t  t h i s  po in t  i t  is  advantageous t o  consider two poss ib le  polar iza-  

t i ons  of the  inc ident  f i e l d .  

Case 1: .Transverse Electric Type Waves 

(Ex = EZ = H = 0) 
Y 

For t h e  transverse e l e c t r i c  type of waves, ( 6 )  and (7) can be wr i t ten  

as 

2 2 V E + w I . (~E(x)E = 0 
Y Y 

2 2 V Hx + w pO~(x)HX = 0 

where t h e  subsc r ip t s  denote the  p a r t i c u l a r  components of t he  f i e l d .  The 
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form of t h e  so lu t ions  f o r  (8) and (9) are t h e  same and (remembering t h a t  

- =  a 0) can be w r i t t e n  as 
a Y  

' Ey(x,z) * e (x)exp(jkZz) (11) Y 

where k is a constant .  
Z 

It is c l e a r  from Equation (1) t h a t  a knowledge of E i s  s u f f i c i e n t  
Y 

t o  determine H and HZ. 

descr ibe t h e  f i e l d s  i n  terms of one of t h e  magnetic f i e l d  components. 

However, i n  Chapter 4 i t  w i l l  be necessary t o  x 

Furthermore, t h e  boundary conditions on t h i s  component should not  depend 

e x p l i c i t l y  on E(x) .  

Consider, then, t h e  x component of (1) with (11) and (12) subs t i -  

tu ted .  

- jk  E = - j w v  Hx. 
Z Y  0 

That is ,  

k 
= -  

The boundary conditions f o r  t he  f i e l d s  are t h a t  E and HZ must be con- 

t inuous.  Continuity of E simply implies cont inui ty  of H and, s ince  

H is given by 

Y 

Y x3 

z 

X 
aH 

cont inui ty  of H implies  cont inui ty  of - . 
z ax 

Thus, i t  is poss ib l e  t o  descr ibe t h e  t ransverse  e l e c t r i c  type of 

waves-by t h e . s c a l a r . q u a n t i t y  H-(x ,z ) .  
X 
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2 2 V Hx(x,z) + w p0&(x)HX(x,~) = 0 

aHx (x, 2) 
with Hx(x,z) and continuous - ax 

Case 2: Transvexse.Magnetic'Type..Waves 

(Ey = Hx = HZ = 0) 

For t h e  t ransverse  magnetic type .of  wavess(6) and (7)  can be w r i t t e n  

as 

The presence of t h e  terms involving dE0 complicates these  equations t o  

such an ex ten t  t h a t  i t  is  prefer red  t o  exclude t ransverse  magnetic waves 

from consideration. 

Therefore, the-remainder of t h i s  paper w i l l  assume t h a t  t ransverse  

dx 

electric waves are inc iden t  on the  d i e l e c t r i c  and t h a t  these  waves are 

completely -descr ibed by t h e  scalar wave funct ion $ (x,z) where 

with Jl(x,z) and . ' . a'(x'z) continuous and $(x,z) = 0 at  t h e  pe r fec t  electric 

condactor. 

ax 
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3. AN ITERATION METHOD 

3.1 The Approach t o  B e  Taken 

The approach t o  be  taken i n  hoth t h i s  chapter  and i n  Chapter 4 i s  

t o  der ive  an i n t e g r a l  equation which t h e  unknown 

i s f y .  Unfortunately,  t h i s  equation turns  out  t o  b e  nonl inear  and; hence, 

i t s  so lu t ion  is  n o t  s t ra ightforward.  I n  t h i s  chapter  an i terative method 

is  employed t o  l i n e a r i z e  t h e  problem, and i n  t h e  next  chapter,  an  asymp- 

t o t i c  expansion i s  used t o  l i n e a r i z e  t h e  problem. 

p r o f i l e  R(X)  must sat- 

3.2 The I n t e g r a l  Equation f o r  t h e  Iterative Method 

Figure 2a shows t h e  geometry of t h e  problem with a y-direct,ed l ine  

source- located a t  x = xo, z = 0; with exp(jwt) va r i a t ion .  

equation f o r  t h i s  s i t u a t i o n  is  

The scalar wave 

with boundary condi t ions 

$(x,xo,e) i s  continuous 

2 I C  

$(x,xo,z) i s  outgoing f o r  x < x 0’ ( 2 1 4  

Figure 2b shows t h e  geometry for a similar problem, the  Green’s 

funct ion problem, where free space e x i s t s  f o r  t h e  e n t i r e  region x < L. 
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PERFECT 
ELECTRIC 
CONWCTlNO 
PLANE - : Q  a 

aY 

- 
Y x = x, 

€0 x e o  

K(X)€o Orxs L 

x = x, Y - b x  

CONDUCTING 

Figure 2. Geometries used for deriving the integral equation. 
(a). Geometry of the problem. 
(b). Geometry for construction of the Green's function. 
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x1 The Green's func t ion  souice i s  a, y-directed l i n e  source loca ted  at  x = 

z = 0, with exp(jwt) t i m e  va r i a t ion .  

is 

The scalar Green's func t ion  equation 

with boundary conditions 

g(x,x ,z) is continuous 1 

= 1  axL 1 - T 

x=x, axA I + 
x=x, 

is outgoing f o r  x < xl. ( 2 2 4  

Before proceeding with the  der iva t ion ,  t h e  z dependence i s  e l i m i -  

nated from (21) and (22) by means of t h e  following Fourier  transform 

r e l a t i o n s :  

m 

T (X ,xo , f3) = I t (x , xo , z )  erj "dz 
-m 

With t h i s ,  (21) becomes 
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aG(x, xl, B) 
ax 

with boundary condi t ions 

a G (x ,xl, 6) 
- = 1  + ax 

Y(x,x ,B) i s  continuous 0 

Y(L,xo,B) = 0 

0 Y(x,x ,B)  is outgoing f o r  x < x 0 

and (22) becomes ?a 

with boundary condi t ions 

G(X,X ,B) is continuous 1 

G ( L , x ~ , B )  = 0 

1' G(x,x ,B)  is  outgoing f o r  x < x 1 

Multiplying (24a) by G(x,xl,B) and sub t r ac t ing  from i t  Y(x,xo,B) 
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where the primes denote differentiation with respect to x. Integrating 

(26) with respect to x from 0 to L gives the desired integral equation. 

(See Appendix A for the details of this operation.) 

where R((3) is the reflection coefficient evaluated at the interface as a 

function of (3, k is the free space wave number, k = w ~ ( ~ ~ E ~ ) ,  and C ( 6 )  

is a complex scale constant. 

(27) is a nonlinear-integral equation for K(x). 

Note that since Y(x,xo,B) depends on K(x), 

3 .3  The,Iterative Method 

Since Equation (27) is nonliaear, its so.lution is not.straightforward. 

The approach to.be discussed here involves solving (24) and (27) alter- 

nately in an iterative scheme. .Figure 3 shows schematically-the procedure. 

(i) Assume a profile K (x) to start the process; 0 

(ii) Solve ( 2 4 )  over the region 0 - -  < x < L with E ( X )  = E ~ K ~ ( x )  to obtain 

Yo(x’xo,B); 

(iii) Solve (27) with Y(x,x0,6) Yo(xyxo,6) to obtain K~(x); 

(iv) Repeat steps (ii) and (iii) with the new values of K(X) and 

NX,X0’B) 

The questions of convergence and uniqueness are important whenever 

an iterative.scheme is employed.. To date, however, no method-has been 

found to guarantee’either convergence or~uniqueness of this,process. 

Therefore, the only results available on this iterative scheme come from 

calculations.performed on the digital computer. 
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(27) +--- ---- 
-c--- 

4- 

0 

0 

Figure 3. Schematic representation of the iterative process. 
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To perform the iterations on the computer, a matrix equation is 

formed. Equation 

(24) is then solved n times, once for each value of (3, to give n dis- 

tinct wave functions. Note that the solution of (24)  determines the 

Beta is sampled at n points, say B1, B2, ? . .  , B,. 

scale constant C(B) .  Substituting into (27) then gives n equations of 

the form 

(28) 2 2  
= -C(Bi){R(Bi)+exp[-jJ(k -Bi)2L]l i = 1, 2,  ... , n. 

Two methods for transforming (28) into a matrix equation will be consid- 

ered. 

Method 1: Point Matching 

In the point matching method, the unknown function, [IC(X)-~], and 

the kernel function, Y(x,xo,Bi)G(x,O,B.) in this case, are sampled at n 
1 

points within the interval 0 - -  x c L. The integral is then computed by 

the rectangular rule, or any of the other numerical forms for computing 

integrals. If the interval is uniformly subdivided as indicated in Fig- 

ure 4 ,  and if the rectangular rule is used to write the integral, then 

the matrix equation takes on an especially simple form. The height of 

each rectangle in Figure 4 is the value of the integrand of (28) at the 

corresponding point x 3 . Therefore, (28) becomes 



15 

I I 

Figure 4 .  Rectangular approximation for point matching method. 
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Define the matrix A and the vectors F and B by 

A = [a..] i - 1, 2, *.. , n 
1 3  

j = 1, 2, ... , n 

where 

where 

B = [bil 'i = 1, 2, ... , n 
where 

Then (29) can be written simply as 

AF = B. (33) 

Method 2: Expansion- of [R (x)-l] 

In this,method the unknown-function,.[K(x)-l], is written in the 

f o m  

m 

K(X) - 1 = It @ (X) 
j -1 j j  

( 3 4 )  
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(35) 

where t h e  {$  1 form a real complete orthonormal set over t h e  range 

0 - -  < x < L. I f  t h e  summation ( 3 4 )  is. t runcated to n terms, (28) takes  
j 

the  form 

where bi i s  rlcfined by (32). Now de f ine  t h e  matr ix  M and the  vec tor  T 

by 

M = [mijl i = I, 2, ... , n 

j = 1, 2 ,  ... , n 

where 

m = <$.(XI, Y(x,xo,Bi)G(x,O,Bi)> 
i j  J 

T = j =1, 2 ,  ..., n.  

Then (36) can be w r i t t e n  as 

MT = B. 

(37) 

(39) 

3.4 Resul ts  of Nmerical Calculat ions 

A program was w r i t t e n  t o  so lve  Equation (24) using t h e  Runge-Kutta 

i n t eg ra t ion  scheme. 

form A o r  M, depending on the  method being used. Next, t h e  square matrix 

A (o r  M) w a s  inver ted  SO t h a t  t h e  unknown K(X) could be found. 

The r e s u l t s  of t h i s  computation were then used t o  

It w a s  
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a t  t h i s  po in t  t h a t  t h e  iterative procedure f a i l e d .  

f a i l u r e  i s  t h a t  t h e  matrix A ( o r  M) is  i l l -condi t ioned.  T h a t - i s ,  t he  

matrix has  eigenvalues which are very near ly  zero. 

more discussion of i l l -condi t ioned  matrices.) Because t h e  matrix is  ill- 

conditioned, s m a l l  e r r o r s  i n  t h e  vec tor  B r e s u l t  i n  very l a rge  errors i n  

the  vec tor  F (or  T). I n  fac t ,  upon inves t iga t ing  t h e  matrix A 

i t  w a s  found t h a t  t he  terms of t h i s  matr ix  were approximately of t h e  

order  of when A (o r  M) was n x n. Since t h e  terms of F were of t h e  

order of lo+', t h e  accuracy required of B f o r  good r e s u l t s  w a s  of the  

order  of 2n s i g n i f i c a n t  f igures .  

t i ca l  f o r  use where experimental da t a  are t h e  input .  

The reason f o r  t he  

(See Appendix C f o r  

-1 ( o r  M-l), 

Clear ly ,  t h i s  makes t h e  method imprac- 

The charac te r  of t h e  matrices seems t o  improve very l i t t l e  as the  

I n  f a c t ,  f o r  t he  range much less than one o r  range of b e t a  is  var ied.  

much g rea t e r  than ten,  t h e  r e s u l t s  d e t e r i o r a t e  rapidly.  Di f fe ren t  choices 

of expansion funct ions f o r  t he  second method l ikewise  f a i l e d  t o  improve 

t h e  charac te r  of the-macrix.  

The i l l -condi t ioned  na ture 'o f  t he  matrix w a s  observed even when 

K(X) w a s  constant so  t h a t  an a n a l y t i c  expression could be found f o r  

Y(x,x ,@), thus avoiding computational e r r o r s  a r i s i n g  i n  t h e  so lu t ion  of 0 

( 2 4 ) .  It,  therefore ,  appears t h a t  t h i s  formulation of t h e  problem w i l l  

n o t  work. 

t i on  f o r  K(X)  and i ts  so lu t ion .  

Chapter 4 discusses  another fozmulation of the  i n t e g r a l  equa- 
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4. AN ASYMPTOTIC EXPANSION METHOD 

4 . 1  Formulating t h e  I n t e g r a l  Equation 

The geometries t o  be  considered i n  t h i s  chapter  are t h e  same as 

those  of Chapter 3 .  (See Figure 2 . )  Equation ( 2 4 )  again descr ibes  t h e  

f i e l d s  f o r  t he  problem. 

Y(x,x0,B), i s  t o  be  expanded i n  a power series of w. It should be empha- 

s i zed  t h a t  t he  equation t o  be derived is  exact ,  even though an asymptotic 

For t h i s  method, however, t h e  wave funct ion,  

expansion is used f o r  t h e  der iva t ion .  

The Green's func t ion  geometry t o  be used i s  again i l l u s t r a t e d  by 

Figure 2(b).  'This  t i m e ,  however, t h e  stacic Green's funct ion w i l l  be 

used. That is, g(x,xl,B) s a t i s f i e s  
2, 

(40)  
17 2% g(x,xl,z) = 6(x-x1)6(z). 

Transforming ( 4 0 )  by t h e  r e l a t i o n s  (23) y i e l d s  

The boundary condi t ions on z(x,xl,B) are 

% G(X,X ,B) i s  continuous 1 

I X'Xl I x=xl 
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% 
L i m  G(x,xl,B) = 0. 

X-t-00 

Multiplying (24a) by 8(x,x1, B) and (41a) by Y (x,xo, B) and sub t r ac t ing  

as i n  Chapter 3 gives  t h e  analog of (26) .  

Equation (42) i s  in t eg ra t ed  from -m t o  L t o  y i e l d  

% The form of the  so lu t ion  t o  (41) gives t h e  condi t ions t h a t  G(x,xl,@) 

and i t s  der iva t ion  vanish a t  -00. 

fore ,  s i n c e  Y(L,xo,B) = G(L,xl,B) = 0, t h e  last term of (43) vanishes. 

Then making use of 

(See Appendix B for d e t a i l s . )  There- 
% 

IC (XI Eo O < X < L  - -  
E(X) = i (44) 

I 
(43) becomes 

x < o  



21 

2 
a w  

The w has been e x p l i c i t l y  included as a va r i ab le  t o  emphasize t h a t  

Y(x,xo,B,w) does depend on w but  t h a t  z(x,x0,B) does not.  

Equation (45) is t h e  nonl inear  i n t e g r a l  equation which is  t o  be 

solved f o r  K(x).  

is  known. (Recal l  t h a t  f o r  x < 0 ,  Y(x,x ,B,w) can be wr i t t en  i n  terms 

Note t h a t  i f  x1 - < 0 ,  then the  right-hand s i d e  of ( 4 5 )  

0 - 

W=O 

of R(B) and so lu t ions  t o  the  wave equation i n  f r e e  space.)  The t a sk  is  

then t o  l i n e a r i z e  ( 4 5 )  by replacing t h e  unknown Y(x,xo,,B,w) wi th  an approp- 

r iate known funct ion.  To do t h i s ,  Y(x,x , @ ¶ w )  is expanded as a power 

series i n  w .  

0 

m 

where 

The d e t a i l s  of t h e  development are included i n  Appendix B. 

i ng  l i n e a r  equation which K(X) must s a t i s f y  is  

The result- 

a2y(o,o,B,w) 
2 eqp l’ K(X) s i n h  [B(x-L) lax = .- - c- 2 1 B2 L 

0 VOEO a w  

+ 1 s inh2  (BL) 1. 
13 (47) 

Note t h a t  f o r  t h i s  method i t  i s  necessary t o  obta in  da t a  from which 
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than the  iterative scheme discussed i n  Chapter 3, but  the  advantage 

gained i s  t h a t  no i t e r a t i o n  is  required.  Equation (47) i s  solved only 

once t o  obta in  t h e  r e s u l t .  

It should be noted t h a t  t he  der iva t ion  of (47) d id  not  r equ i r e  t h a t  

a2y(o ,03~,w)  

a w  2 K (x) be real. Therefore, not ing t h a t  only K (x) and 

W = O  

can be complex (6 i s  r e a l ) ,  Equation (47) can be separated i n t o  two 

equations,  one f o r  Re{K(x)) and one f o r  Iin{~(x)) .  

t h a t  both the  real and imaginary p a r t s  of Y(O,O,B,w) be measured. 

It is then necessary 

It should a l s o  be noted t h a t  (47) i s  v a l i d  only when Y(x,xo3f3,~) 

i s  i d e n t i f i e d  with H . This happens because the  der iva t ion  of (47) 

requi res  t h a t  aO(x,xO,B) = Y(x,xo,f3,w) Iw=o be independent of K(X)  e 

Stae fc  m?gmtic  f i e l d s  are independent of t h e  d i e l e c t r i c  constant of 

X 

t he  medium, but static e l e c t r i c  f i e l d s  are not .  

4.2 Uniqueness of t h e  Solut ion 

As w a s  ind ica ted  i n  Chapter 3, nothing could be s a i d  about t h e  

uniqueness of t h e  so lu t ion  obtained by i t e r a t i o n o  For the  asymptotic 

method, however, uniqueness can e a s i l y  be proven. 

and K,(x) both s a t i s f y  (47). 

Suppose t h a t  K ~ ( x )  

Then, subt rac t ing  the  equations f o r  t he  

two so lu t ions  gives  

2 L 
s [K1(X)-K2(X)] s inh  [@(x-L)]dx 0, 
0 

But t h i s  can be s a t i s f i e d  f o r  a l l  f3 only i f  [ K ~ ( x ) - K ~ ( x ) ]  =: 0. There- 

fore ,  K (x) = K ~ ( x )  and t h e  so lu t ion  is unique. 1 
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4 . 3  R e s u l t s  of Numerical Calculations 

J u s t  as f o r  t h e  i terative case,  ( 4 7 )  can be converted t o  a matrix 

equation by poin t  matching o r  by expansion of K(X)  i n  a set of bas i s  

funct ions.  The procedure is analogous t o  t h a t  of Chapter 3 and l eads  t o  

an equation of t he  form 

A F = B  ( 4 9 )  

where A is  an n x n matrix and F and B are n x 1 vectors .  Therefore, t h e  

problem has again come down t o  t h e  inversion of t h e  matrix A. 

na te ly ,  t h e  matr ix  obtain*ed by* t h i s  approach is again i l l -condi t ioned.  

The elements of AB' are approximately of t h e  order  of 

s i g n i f i c a n t  f i gu res  are needed t o  get  an accura te  so lu t ion .  

Unfortu- 

:' so t h a t  2n 
, 

Again the  

na ture  of A improves l i t t l e  f o r  d i f f e r e n t  ranges of 8 of f o r  d i f f e r e n t  

choices of the  b a s i s  funct ions i n  which K(X)  i s  expanded, 

In  s p i t e  of the f a c t  t h a t  t he  matr ix  A i s  i l l -condi t ioned,  t he  solu- 

t i o n  of ( 4 9 )  has been ca r r i ed  out f o r  a few examples i n  order  t o  test the  

method. The d a t a  used i n  these  ca lcu la t ions  were generated on the  com- 

puter  and, therefore ,  were accurate  t o  10 s i g n i f i c a n t  f igures .  With t h i s  

extreme accuracy i n  t h e  da ta ,  t he  so lu t ion  t o  ( 4 9 )  gave r e s u l t s  which 

agreed q u i t e  w e l l  wi th  t h e  t r u e  p r o f i l e '  However, wi th  noise  of less than 

one percent  added,the s a l u t i o n  contained o s c i l l a t o r y  components which 

were orders  of magnitude l a r g e r  than the  des i red  resu l t .  

Figure 5 shows the  r e s u l t s  of solving ( 4 9 )  f o r  K(X)  = exp(2x), 

0 - -  < x < 1. 

f i v e ,  and seven terms of the  expansion K(X) = T T ~ X  e Note t h a t  t h e  

set (x  1 i s  not  orthogonal as w a s  s t a t e d  i n  the  der iva t ion  of t h e  matr ix  

In  Figure Sa are shown t h e  r e s u l t s  obtained using th ree ,  

i N 

fS.0 
i 
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Figure 5. Calculated profiles for K(X) = exp[2x]. 
(a) Power series expansion 
(b) Cosine series expansion. 
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equation i n  Chapter 3, but t he  set i s  complete s o  t h a t  K(X) can be 

expanded as a power series of x. 

i n  t he  der iva t ions  of Chapter 3 i s  t o  replace Equation (35) f o r  T~ with 

a more complicated expression. 

f i v e  and seven terms of the  series K ( X )  = C T cos ( inx ) ,  The r e s u l t  

f o r  t h ree  terms w a s  e s s e n t i a l l y  the  same as f o r  five terms. As might 

The only change which i s  required 

Figure 5b shows t h e  results obtained f o r  
N 

i = O  i 

be expected, t h e  power series gives a b e t t e r  representa t ion  of the  expo- 

n e n t i a l  funct ion than the -  cosine series. 

Figure 6 shows t h e  results of using t h e  same two series t o  expand 

t h e  p r o f i l e  K(X)  = 1 + x s i n  27rx, 0 3 -  < x < 1. 

f i v e ,  and seven terms are again shown. 

l a t i n g  and s o  i s  more d i f f i c u l t  t o  synthes ize  with only a few terms. 

The range of b e t a  f o r  both Figures 5 and 6 w a s  from 0.2 t o  1.4,  One 

of t he  most s i g n i f i c a n t  f ea tu re s  of both Figure 5 and Figure 6 i s  t h a t  

a l l  of t h e  reconstruct ions were worse f o r  t he  region near  t he  conducting 

plane than f o r  the  region near the  in t e r f ace .  Indeed, t h i s  w a s  t he  case 

f o r  every p r o f i l e  which w a s  t r i e d  and f o r  every method of forming t h e  

matrix equation from the  i n t e g r a l  equation. 

phenomenon seems t o  be t h a t  t h e  f i e l d s  i n  t h e  v i c i n i t y  of t he  pe r fec t  

electric conductor are masked by the  f i e l d s  c lose r  t o  the  surface., That 

is, because the  f i e l d s  near t h e  conductor are very s m a l l  and because of 

t he  r e l a t i v e l y  l a r g e  d is tance  between the  back of t h e  d i e l e c t r i c  and 

the  sur face  where t h e  f i e l d s  are measured, t he  effect of moderate changes 

i n  the  d i e l e c t r i c  constant  i s  not  seen. 

The r e s u l t s  f o r  th ree ,  

This t i m e  t he  p r o f i l e  i s  osc i l -  

The explanation of thLs 
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Figure 6, Calculated profi les  for K ( X )  = 1 + x sin ~ T X .  

(a) Power series expansion 
(b) Cosine series expansion. 
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5 .  CONCLUSIONS 

The purpose of t h i s  study w a s  t o  develop methods f o r  reconstruct-  

i ng  the p r o f i l e  func t ion  of a d i e l e c t r i c  medium from ex te rna l  mealurd- 

ments. Two such methods were derived here.  Both'of these ,  however, 

l e d  t o  i l l -condi t ioned  equations.  Because of t h i s ,  n e i t h e r  of these  

methods could be appl ied d i r e c t l y  t o  experimental data.  

The r egu la r i za t ion  method discussed i n  Appendix C w a s  appl ied t o  

Equations (33), (39) ,  and ( 4 9 ) ,  but t h e  r e s u l t s  were not  s a t i s f a c t o r y .  

The cur ren t  literature contains  o the r  r egu la r i za t ion  schemes which might 

y i e l d  b e t t e r  results f o r  t h i s  problem, but  the  inves t iga t ion  of these  

techniques has only been s t a r t e d  and results are not  ye t  ava i l ab le ,  

Another approach which should be considered i s  parameter optimization. 

This technique has  proven usdful  f o r  solving nonl inear  problems, and 

may a l s o  prove usefu l  f o r  solving i l l -condi t ioned  problems, 

It is  important t o  note  t h a t  t h e  equations der ived here  are ill- 

conditioned because of t he  problem which i s  being solved and not  because 

of t he  method used t o  so lve  it. Indeed, many authors  have found t h a t  

problems involving i n d i r e c t  probing are i l l -condi t ioned,  

The important cont r ibu t ion  of t h i s  work is t o  show t h a t  a unique 

a 2 Y ( x , x ~ , B , ~  
cu la t e  

2 aw 

obtained. 

so lu t ion  can be obtained without t h e  knowledge of t he  f i e l d s  f o r  a l l  

freqpencies.  In  fact, as few as th ree  frequencies  might be used t o  cal- 

and from t h i s  a unique p r o f i l e  funct ion can be 

O=O 
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Future work w i l l  be d i r ec t ed  toward methods of solving the  ill- 

conditioned equations derived here  i n  t h e  hope t h a t  usefu l  so lu t ions  . 

can be obtained i n  t h e  presence of experimental unce r t a in t i e s .  
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APPENDIX A. OBTAINING THE INTEGRAL EQUATION FOR THE ITERATIVE METHOD 

To car ry  out t he  s t e p s  l i nk ing  Equations (26) and (27) of Chapter 3, 

i t  is  necessary t o  consider  t h e  form of t h e  so lu t ions  t o  Equations ('24) 

and (25). 

Considering Figure 2a, l e t  R(6)  be t h e  r e f l ec t ion  coe f f i c i en t  eval- 

uated at  the  i n t e r f a c e  as a funct ion of 8. That i s ,  

r e f  is where Yinc is t h e  inc ident  f i e l d  and Y 

t he  form of Y(x,xo,6) f o r  xo < x - 0' i s  

(A- 1) 

t h e  r e f l e c t e d  f i e l d .  Then, 

where 

and 

c(6) is  a complex scale. constant  

The so lu t ion  f o r  Equation (25) is  
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2 2 Consider again Figure 2a. The e q a e s s i o n  [a 1-1 E(X)-O 1.1 E ] becomes 0 0 0  

where 

k2 , 2 
= l-IOEO" 

Equation (26) can then be wr i t t en  ( f o r  0 x 5 L) 

Next, (A.7) is  t o  be in t eg ra t ed  with respect  t o  x from 0 t o  L. Af te r  

i n t e g r a t i o n , i t  i s  necessary t h a t  t he  r i g h t  hand s i d e  be a known quant i ty .  

Carrying out t h i s  i n t eg ra t ion  f o r  t h e  case where x and x are both less 

than zero gives 

0 1 
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s ince  Y(L,xO,B) = G(L,xl,B) = 0. 

used i n  (A.8)  is t h a t  corresponding t o  x > x Subs t i tu t ing  (A.2) , (A. 3) 

Note t h a t  t h e  form of G(x,xl,B) t o  be 

1' 
( A . 4 )  and (A.5)  i n t o  t h e  Equation (A,8) gives 

1 - - 2 C ( 8 )  [1+R(B)]{exp[jyxl]+exp[jy(x1-2L)]} 

Since x is  t h e  source poin t  f o r  the  Green's funct ion,  which was 

introduced i n  a purely a n a l y t i c  manner, i t  can be taken as 0- with no 

l o s s  of generality.. Then ( A . 9 )  s impl i f i e s  t o  

1 

(A. 10) 

The minus supe r sc r ip t  on t h e  zero can a c t u a l l y  be removed as can be 

seen by in t eg ra t ing  (A .7 )  with x < 0 and x1 = 0'. Then 0 

(A. 11) 
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Therefore, since G(x,x ,B) i s  continuous, the f inal  result becomes 1 
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APPENDIX B e  OBTAINING THE INTEGRAL EQUATION FOR THE 
ASYMPTOTIC EXPANSION METHOD 

In  order  t o  s impl i fy  Equation (43) of Chapter 4, i t  is  necessary 

t o  consider t he  form of 8(x,x ,@). The so lu t ion  of (41) i s  1 

(SXP [2  t B I (xl-L) I - l k x p  I F! I (x-xl) 1 x < x l < L  

1 
x1 < x - < L. 

If only p o s i t i v e  B are considered, t h e  absolute  value ba r s  cqn be dropped 

from (B.1). Also, s ince  the  Green’s funct ion i s  a mathematical t o o l  

1 

It turns  out  t h a t  x1 = 0 is  a 

which w a s  introduced only f o r  a n a l y t i c  purposes, t h e  source po in t  x 

can be taken at any convenient point .  

convenient choice. Then (B.1) becomes 

x < o  1 ( - exp[B(x-L)]sinh BL 
‘L 
GCx,O,B) = I: - exp [-BLIsinh B (x-L) 

. (B.2) 

O < X < L  - 

Fronl (B.2) i t  is c l e a r  t h a t  Z(x,O,B) and i t s  de r iva t ive  both vanish as 

x -t - 0 0 .  U t i l i z i n g  t h i s  r e s u l t  and t h e  fact t h a t  G(L,O,B) = Y(L,xo,B,w) = 0, 

the last term of (43) v k i s h e s ,  Then, using (44),(43) gives  ,(45) d i r e c t l y .  

To l i n e a r i z e  (45), Y(x,xo,B,w) is  expanded i n  a power series of w as given 

by (46). Note t h a t  i t  i s  s u f f i c i e n t  t o  consider only n > 0 i n  (46) s ince  

the  wave funct ion must be f i n i t e  f o r  zero frequency. 

% 

- 
Subs t i t u t ing  (46) 

into’(45)  and int,erchanging the  order  of summation and in tegra t ion ,which  
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can always be done i n  a neighborhood of (AI = 0, g ives  

Matching l i k e  powers of w gives the  following equations: 

Conkider (B.4)  and note  t h a t  

This i s  e a s i l y  v e r i f i e d  by not ing t h a t  ( 2 4 )  becomes i d e n t i c a l  t o  (41) 

when w = 0. Therefore, (B.4)  @rates t h a t  t h e  Green's funct ion i s  sym- 

metric i n  i t s  two var iab les .  S ince - the  operator  of(41)  i s  se l f - ad jo in t ,  

so t h i s  r e l a t i o n  could be predicted from the  theory of operators .  

Considering (B.5) ,  no te  t h a t  Y(x,x ,@,w) i s  an even funct ion of w. 
2 0 

2 w This occurs because w only appears i n  Y through k (which equals 7 ). 
C 
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Thus the  expansion of Y(x,xo,B,w) must be an even function of w which 

implies t h a t  a l l  of t h e  coe f f i c i en t s  of t he  odd powers of w must be zero. 

Equation (B.6)  i s  t h e  l i n e a r  equation which K(X)  must s a t i s f y .  For 

the  case of x = 0, t h e  i n t e g r a l  on t h e  r i g h t  hand s i d e  becomes 1 

= - -  I s i n h  BL(exp [ 26 (xo-L) ] s inh  B (xo-L) 
2~~ 

For t h e  purpose of simplifying the  expressions, choose x = 0. Then 

(B. 6) becomes 

0 

2 L 
exp [-2BL] S K (x) s inh  B (x-L) dx VQ 

B 2  0 

2 '  - -  exp[-2BL]. s inh  BL. 
l J E  

2B3 
w=O 

This i s  t h e  l i n e a r  i n t e g r a l  equation which K(X)  must s a t i s f y .  
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APPENDIX C. A BRIEF DISCUSSION OF ILL-CONDITIONED 
MATRICES AND THEIR SOLUTION 

For t h e  purposes of t h i s  paper, i t  is  s u f f i c i e n t  t o  consider t he  

square matrix A t o  be i l l -condi t ioned  whenever i t  has  an eigenvalue which 

i s  "nearly" zero e This wmewhat ambiguous statement means t h a t  whenever 

the  magnitude of t h e  eigenvalue i s  comparable t o  the  magnitude of  t he  

unce r t a in t i e s  i n  t h e  problem, t h e  matrix i s  i l l -condi t ioned.  

Twomey(l) provides an exce l len t  discussion of i l l -condi t ioned  matrices 

and t h e i r  r o l e  i n  physical  problems. He a l s o  provides t h e  following cri- 

t e r i o n  f o r  determining when a problem i s  i l l -condi t ioned ,  Consider t h e  

matr ix  equation 

where A is  an n x n matrix,  f i s  an n x 1 unknown vec tor ,  g is  an n x 1 

given vec tor ,  and E is an n x 1 e r r o r  vec tor ,  

only i f  

The problem i s  w e l l  posed 

>> c 
i=l 'min 

where hmin i s  t h e  m i n i m u m  eigenvalue of 

n 2  and C i s  an upper bgund f o r  C f ie  I f  
i-1 

(C.l) is i l l -condi t ioned.  

Ivanov(2) has presented one method 

i l l -condi t ioned  problem. H i s  method of 

2 
i E 

* * 
A . A  (A- i s  t h e  transpose of A) 

(C.2) is  not  s a t i s f i e d ,  then 

f o r  obtaining a so lu t ion  t o  an 

regular iz ing  the  problem involves 

r e s t r i c t i n g  the  so lu t ion  t o  l i e  within a b a l l  of radius  R i n  t h e  space 

of poss ib le  so lu t ions .  Applying h i s  ideas  t o  t h e  matrix equation 
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means t h a t  t h e  inner product XAx-b, Ax-b> i s  t o  be minimized under t h e  

cons t r a in t  t h a t  <x, x> R . For an i l l-conditioned problem, t h e  mini- 

mum w i l l  occur on t h e  boundary s o  t h a t  t he  equa l i ty  w i l l  hold. 

2 

Using 

Lagrange m u l t i p l i e r s ,  t h e  variance of t he  expression 

* *  * *  * * * 2  
x A A x  - X A  b - b AX + b b + A ( x  X -R)  

is  set t o  zero. This gives t h e  equation 

* * 
A Ax + Ax = A b. ( C . 4 )  

The presence of t h e  term Ax can be thought af  as a way of l i m i t i n g  t h e  

s i z e  of the  vec tor  xwhich  s a t i s f i e s  t h e  equation. The value of A is 

determined by so lv ing  (C.4) f o r  several values of A and choosing the  

smallest one which gives reasonable r e s u l t s .  I f  A i s  too l a rge ,  t h e  

so lu t ion  w i l l  be too t i g h t l y  constrained and w i l l  not be a good repre- 

sen ta t ion  of t he  t r u e  so lu t ion .  On t h e  o ther  hand, i f  A is  too small, 

t he  so lu t ion  w i l l  contain l a r g e  o s c i l l a t o r y  components. 
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