# N ASA CONTRACTOR REPORT

NASA CR-61324

# A STATISTICAL SAMPLING PROCEDURE FOR JIMSPHERE WINDS ALOFT POPULATION

By Charles H. Carlisle

The Boeing Company Aerospace Group, Southeast Division Huntsville, Alabama

February 2, 1970

N70-28659

N70-31-364

(ACCESSION NUMBER)

(PAGES)

(PAGES)

(CODE)

(NASA CR OR TMX OR AD NUMBER)

(CATEGORY)



Prepared for

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER Marshall Space Flight Center, Alabama 35812

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TECHNICAL REPORT STANDARD TITLE PAGE                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. REPORT NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2. GOVERNMENT ACCESSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                    |
| NASA CR-61324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                    |
| 4. TITLE AND SUBTITLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5. REPORT DATE February 2, 1970                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PLING PROCEDURE FOR JIMSPHE<br>OS ALOFT POPULATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6. PERFORMING ORGANIZATION CODE                                                                                                                                                                                                                                                                                                                    |
| 7. AUTHOR(S) Charles H.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Carlisle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8. PERFORMING ORGANIZATION REPORT #                                                                                                                                                                                                                                                                                                                |
| 9. PERFORMING ORGANIZATION NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ME AND ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10. WORK UNIT NO.                                                                                                                                                                                                                                                                                                                                  |
| The Boeing Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                    |
| Aerospace Group, Sout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11. CONTRACT OR GRANT NO. NASS-5608                                                                                                                                                                                                                                                                                                                |
| Huntsville, Alabama                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13 TYPE OF REPORT & PERIOD COVEREI                                                                                                                                                                                                                                                                                                                 |
| 12. SPONSORING AGENCY NAME AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                    |
| NASA-Marshall Space Fl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ight Center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CONTRACTOR REPORT                                                                                                                                                                                                                                                                                                                                  |
| Aero-Astrodynamics Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Center, Alabama, 35812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14. SPONSORING AGENCY CODE                                                                                                                                                                                                                                                                                                                         |
| 15. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                    |
| Contract Monitor: J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . W. Kaufman, Aero-Astrody                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | namics Lab, Aerospace Environment Div.                                                                                                                                                                                                                                                                                                             |
| 16. ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                    |
| This task has been according Jimsphere scalar wind programmer of the Kennedy Space Center, From wave length is well fit mean and square root of functions of wave number intervals are obtained is discussed. It is considered the state of the state of the state of the square of the state of th | omplished for the time aver-<br>profiles. These Jimsphere of the distribution of the variance of this distributions and the rate of convergence oncluded that the time averall wave lengths between 10 of the distributions and the rate of convergence on the distribution of the distributions and the rate of convergence on the distribution of the distr | lytical probabilistic structures.  age power spectral density (PSD) of wind profile data were acquired at the the distribution of PSD at a fixed n (Pearson type III) and that the ribution are essentially exponential on the mean as well as confidence e to normal sampling distributions age PSD has a simple tractable proba- 0 m and 4000 m. |
| Statistics, Gamma Dis Power Spectral Densit bution, Confidence In Scalar Wind Profile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | stribution<br>y, Sampling Distri-<br>ntervals, Jimsphere<br>E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UBLIC RELEASE  D. GEISSLER ector, Aero-Astrodynamics Laboratory                                                                                                                                                                                                                                                                                    |
| 19. SECURITY CLASSIF, (of this repo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                    |

U

52

U

# CONTENTS

| PARAGRAPI                              | ARAGRAPH                                                                                                                                        |                                        |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                                        | CONTENTS LIST OF ILLUSTRATIONS AND TABLES REFERENCES PREFACE SOURCE DATA PAGE                                                                   | iii<br>iv<br>v<br>vi<br>vii            |
|                                        | SECTION 1 - INTRODUCTION                                                                                                                        |                                        |
| 1.0<br>1.1                             | GENERAL GENERAL DESCRIPTION OF ANALYSIS                                                                                                         | 1-1<br>1-1                             |
|                                        | SECTION 2 - POPULATION AND SAMPLING STATISTICS FOR JIMSPHERE WIND PROFILE POWER SPECTRA                                                         |                                        |
| 2.0<br>2.1<br>2.2<br>2.3<br>2.4<br>2.5 | GENERAL DATA DESCRIPTION AND CONDITION DATA PROCESSING PEARSON TYPE III DISTRIBUTIONS PARAMETER ESTIMATION SAMPLING DISTRIBUTIONS               | 2-1<br>2-1<br>2-1<br>2-2<br>2-6<br>2-8 |
|                                        | SECTION 3 - RESULTS AND RECOMMENDATIONS                                                                                                         |                                        |
| 3.0<br>3.1<br>3.2                      | GENERAL RESULTS RECOMMENDATIONS                                                                                                                 | 3-1<br>3-1<br>3-4                      |
|                                        | APPENDIX A - TABLES OF CONFIDENCE INTERVALS ON THE MEAN APPENDIX B - CALCULATION TECHNIQUES APPENDIX C - GLOSSARY OF DEFINITIONS, ABBREVIATIONS | A-1<br>B-1                             |
|                                        | AND SYMBOLS                                                                                                                                     | C-1                                    |

# LIST OF ILLUSTRATIONS AND TABLES

| FIGURE                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PAGE                                                           |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 2-1<br>2-2<br>2-3<br>3-1<br>3-2<br>3-3<br>3-4<br>3-5<br>3-6<br>3-7 | Daily Distribution of Jimsphere Releases Hourly Distribution of Jimsphere Releases Monthly Distribution of Jimsphere Releases Empirical Cumulative PSD Distributions at Wave Number 5 Empirical Cumulative PSD Distributions at Wave Number 10 Empirical Cumulative PSD Distributions at Wave Number 15 Empirical Cumulative PSD Distributions at Wave Number 20 Empirical Cumulative PSD Distributions at Wave Number 25 Empirical Cumulative PSD Distributions at Wave Number 30 Comparison of Numerical and Theoretical Sampling Distributions on the Mean at Wave Number 10 for | 2-12<br>2-13<br>2-13<br>3-5<br>3-5<br>3-6<br>3-6<br>3-7<br>3-7 |
| 3-8                                                                | Sample Size 10<br>Comparison of Numerical and Theoretical Sampling<br>Distributions on the Mean at Wave Number 10 for                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3-8                                                            |
| 3-9                                                                | Sample Size 20<br>Comparison of Numerical and Theoretical Sampling<br>Distributions on the Mean at Wave Number 10 for                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3-9                                                            |
| 3-10                                                               | Sample Size 30<br>Comparison of Numerical and Theoretical Sampling<br>Distributions on the Mean at Wave Number 20 for                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3-10                                                           |
| 3-11                                                               | Sample Size 10<br>Comparison of Numerical and Theoretical Sampling<br>Distributions on the Mean at Wave Number 20 for                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3-11                                                           |
| 3-12                                                               | Sample Size 20 Comparison of Numerical and Theoretical Sampling Distributions on the Mean at Wave Number 20 for                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-12                                                           |
| 3-13                                                               | Sample Size 30 Comparison of Numerical and Theoretical Sampling Distributions on the Mean at Wave Number 30 for                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-14                                                           |
| 3-14                                                               | Sample Size 10 Comparison of Numerical and Theoretical Sampling Distributions on the Mean at Wave Number 30 for Sample Size 20                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3-14                                                           |
| 3-15                                                               | Comparison of Numerical and Theoretical Sampling Distributions on the Mean at Wave Number 30 for Sample Size 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-16                                                           |
| 3-16                                                               | 5, 10, 25, 50, 75, 90, and 95 Percentile PSD Values as a Function of Wave Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3-17                                                           |
|                                                                    | TABLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                |
| TABLE                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                |
| 3-I                                                                | Parameters Obtained from the Different Methods of Fit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3-18                                                           |
| A-I                                                                | Tolerance Values in (m <sup>2</sup> /s <sup>2</sup> )/(cy/4 km) for 50 Percent Confidence Intervals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A-2                                                            |

# TABLES (Continued)

| TABLE  |                                                                                                                                                       | PAGE |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| A-II   | Tolerance Values in (m <sup>2</sup> /s <sup>2</sup> )/(cy/4 km) for 75 Percent Confidence Intervals                                                   | A-3  |
| A-III  | Tolerance Values in (m <sup>2</sup> /s <sup>2</sup> )/(cy/4 km) for 90 Percent Confidence Intervals                                                   | A-3  |
| A-IV   | Tolerance Values in (m <sup>2</sup> /s <sup>2</sup> )/(cy/4 km) for 95 Percent Confidence Intervals                                                   | A-5  |
| A-V    | Tolerance Values in (m <sup>2</sup> /s <sup>2</sup> )/(cy/4 km) for 99 Percent Confidence Intervals                                                   | A-6  |
| A-VI   | Tolerance Values in (m <sup>2</sup> /s <sup>2</sup> )/(cy/4 km) for 68.27 Percent Confidence Intervals                                                | A-7  |
| A-VII  | Tolerance Values in (m <sup>2</sup> /s <sup>2</sup> )/(cy/4 km) for 95.45 Percent Confidence Intervals                                                | A-8  |
| A-VIII | Tolerance Values in (m <sup>2</sup> /s <sup>2</sup> )/(cy/4 km) for 99.73 Percent Confidence Intervals                                                | A-9  |
| A-IX   | Error in the Percentage Confidence Obtained from Using the Normal Approximation with Exact Confidence Intervals at Percentages 50, 75, 90, 95, and 99 | A-10 |
| A-X    | Error in the Percentage Confidence Obtained from Using the Normal Approximation with Exact Confidence                                                 | A-10 |
|        | Intervals at 68.27, 95.45, and 99.73.                                                                                                                 | A-11 |

#### REFERENCES

- 1. Scoggins, James R., June 1967: Sphere Behavior and the Measurement of Wind Profiles. NASA TN D-3994, pp. 42-47, National Aeronautics and Space Administration, Washington, D. C.
- 2. Scoggins, James R., May 1963: An Evaluation of Detail Wind Data as Measured by the FPS-16 Radar/Spherical Balloon Technique. NASA TN D-1572, National Aeronautics and Space Administration, Washington, D. C.
- 3. Endlich, J. M., Singleton, R. C., and Kaufman, J. W., 1969: Spectral Analysis of Detailed Vertical Wind Space Profiles. Journal of the Atmospheric Sciences, Vol. 26, pp. 1030-1041.
- 4. Bingham, C., Godfrey, M. D., and Tukey, J. W., 1967: Modern Techniques of Power Spectral Estimation. IEEE Trans. on Audio and Electrocoustics, AU-15, No. 2, pp. 56-66.
- 5. Cooley, J. W. and Tukey, J. W., 1965: An Algorithm for the Machine Calculation of Complex Fourier Series. Mathematics of Computation, Vol. 19, No. 90, pp. 297-301.
- 6. IBM, System 360 Scientific Subroutine Package (360-CM-03X) Version III Programmers Manual, Fourth Edition, 1968, pp. 77. IBM Technical Publications Department, 112 East Post Road, White Plains, N. Y.
- 7. Kendall, M. C. and Stuart, A., 1961, 1963, and 1966: The Advanced Theory of Statistics. Vols. I, II, and III, New York, Hafner Publishing Company.
- Daniels, G. E.: Terrestrial Environment (Climatic) Criteria Guidelines for Use in Space Vehicle Development, 1969 Revision, NASA TM X-53872, pp. 5.184 to 5.189, Marshall Space Flight Center, Huntsville, Alabama.

#### **PREFACE**

This document has been prepared by the Postflight Trajectories Group of The Boeing Company to satisfy Contract NAS8-5608, Schedule II, Section A, Task 8.1.7 (see Exhibit CC, DRL 049, Line Item 171). The task performed was in support of the Aerospace Environment Division, Atmospheric Dynamics Branch (S&E-AERO-YE), Aero-Astrodynamics Laboratory, Marshall Space Flight Center, National Aeronautics and Space Administration. J. W. Kaufman, Chief of the Atmospheric Dynamics Branch, was the technical coordinator.

The author wishes to express his sincere appreciation to W. W. Vaughan, Chief, Aerospace Environment Division, S&E-AERO-Y, Marshall Space Flight Center-NASA, for the initial stimulating discussions defining the problem reported on herein and the need for a solution. The author is very grateful to J. W. Kaufman and D. Camp both of MSFC for their many hours spent in guiding the problem to a fruitful end, both technically and editorially and for their complete support of the author's various, sometimes needless, data requests. Dr. G. H. Fichtl, also of MSFC, has gracefully given much of his time to developing the author's understanding of past PSD calculations on scalar wind and the present state of available information on scalar wind. The author wishes to thank Dr. Fichtl for those many exciting conversations.

The author is very indebted to other members of The Boeing Company. In particular, he wishes to thank J. Williams, R. Simmons, and G. Engels for coding and implementing the large number of computer programs necessary to complete this document. To R. D. McCurdy, supervisor of the Postflight Trajectories, G. Engels, and R. Wheeler, the author is indebted for many hours spent in technical discussions and editorial suggestions. Finally, the author wishes to thank V. V. Moore, supervisor of Operational Flight Analysis Unit, for his valuable editorial comments.

#### SECTION 1

#### INTRODUCTION

#### 1.0 GENERAL

An understanding of the statistical structure of local wind contributes to both environmental science and the design, development, and launch support of aerospace vehicles. The compilation of empirical statistics as well as the explanation of observed data by applied dynamic meteorology has produced many useful results. However, the analysis of the analytical structure of observed statistics with a view toward obtaining a deeper insight into the probabilistic structure of the wind has in some cases tended to lag behind these other efforts. The purpose of this report is to aid in filling this gap.

This report concentrates on one of the many statistical variables of meteorological interest; namely, the power spectra of the scalar wind (where the scalar wind is viewed as a function of height instead of time). To generate the statistics, scalar wind profiles obtained by use of the FPS-16 Radar/Jimsphere balloon system were analyzed for their power spectral content. This profile data was collected at Kennedy Space Center (KSC), Florida. At each frequency of interest, the PSD values from all profiles were assembled to form a time average statistic. This statistic exhibits a simple probabilistic structure. The wind has no preferred frequencies, the PSD probability distribution at each frequency has the same functional form, and the parameters of the probability distributions at different frequencies are related by a simple exponential function.

#### 1.1 GENERAL DESCRIPTION OF ANALYSIS

The statistical analysis of power spectra was intended to produce both the time average population statistics and the sampling distributions associated with random sampling from the complete set of wind profiles. It was assumed that the population was completely defined by approximately two and one-half years of Jimsphere observations. No effort was made to compensate for time trends or seasonal and diurnal oscillations. It seems plausible, however, to contend that the functional form of the population statistics obtained in this report will be correct for a larger more carefully screened population. If this proves to be the case, only the estimation of those parameters specified in the function need be recalculated from the longer data record. Methods for performing these calculations are given below.

For comprehensive spectral statistics, a multivariate PSD population analysis would be desirable. For example, the power spectral densities used in this report were calculated at each of 256 wave numbers (cycles/4000 meters) for each scalar wind profile. The distribution of power density among the different wave numbers is necessary for an exhaustive analysis. A complete multivariate analysis would require a 256 variate distribution function. However, the labor involved in analyzing such a distribution is extremely prohibitive. For these reasons the sampling distributions are constructed independently at each wave number. Conse-

quently, a single sample which yields "good statistics" (as represented by the population statistics specified below) at one wave number may give poor statistics at another wave number.

It should also be mentioned that the estimation of the parent population probability density function severely affects each sampling density function. For example, one method for estimating the parent population may yield a good sampling distribution on the mean and a biased sampling distribution on the median, whereas a second method for estimating the parent population density function may do just the reverse. Caution must then be exercised in employing estimated parent parameters in sampling distributions.

In this report efforts are concentrated on the sampling distribution of the mean since this is more fully developed in the existing literature. Due to its frequent utility, a discussion of sampling distributions on the medians and other quantiles is presented.

Confidence intervals for the resulting sampling distributions were taken to be tolerance intervals centrally located about the mean value of the sampling distribution. For sufficiently high confidence, half the length of a central confidence interval will exceed the value of the mean. Since PSD is a scalar quantity and thus positive, the left end point of a high confidence interval centered at the mean will lie to the left of zero. Consequently, the left end point will not represent an obtainable PSD value and central confidence intervals on PSD are not defined for sufficiently high confidence. However, central confidence intervals are easy to compare with confidence intervals used in connection with a normal distribution having the same mean and variance as the sample distribution. The limiting formulas for large samples may then be employed with a known error.

#### SECTION 2

POPULATION AND SAMPLING STATISTICS FOR JIMSPHERE WIND PROFILE POWER SPECTRA

#### 2.0 GENERAL

The purpose of this section is to describe and discuss the data and methods used to obtain probability inferences from compiled statistics. The first paragraph gives a brief description of the data and its condition. The second paragraph describes how the data were processed and how the statistics were compiled. This is followed by several paragraphs discussing the methods used to make statistical inferences.

#### 2.1 DATA DESCRIPTION AND CONDITIONS

This investigation was based upon 1,196 FPS-16 radar/Jimsphere scalar wind profiles covering approximately two and one-half years of data from December 1964 to May 1967. Of the 1,196 profiles, 861 had complete data records of wind speed between the altitudes of 4 and 16 kilometers in 25-meter increments. Those profiles with complete data spanned approximately the same time period with no obvious gaps. These 861 profiles were taken as the population sample and all analysis was confined to the 4 to 16 kilometer altitude range.

Scalar wind profiles were obtained from raw FPS-16 data collected every 0.1 second by a preprocessing technique described in detail in References 1 and 2. The preprocessing essentially consisted of a tolerance filter to eliminate spurious points, an RMS interpolation to find the balloon position at every 25-meter height interval, and a finite differencing technique to obtain the velocity. Other authors have commented (Reference 3) that the processing attenuates power in wave numbers above 40 (where the unit of measure is cycles/4000 meters). This effect did not interfere with the statistical analysis developed below since a statistical analysis for wave numbers above 30 was not attempted.

Approximately 65 percent of the sample consisted of Jimsphere profiles taken at 0100 and 1300 GMT. The daily distribution of the data over the two and one-half year period is represented in Figure 2-1. The hourly and monthly distribution of the data are represented in Figures 2-2 and 2-3, respectively. Clearly, the early months of the year were more heavily weighted than the later months. No adjustment has been made to compensate for seasonal or diurnal bias in the data.

#### 2.2 DATA PROCESSING

The power spectra for each of these profiles was constructed by using the fast Fourier transform method (References 4 and 5). In this type of spectral analysis, height replaces time as the independent variable. The fast Fourier transform method generated the spectra for some 861 profiles in less than two hours of computer time.

In the past, MSFC has generated power spectra after first prewhitening the signal with a Scoggins filter. The resulting statistics were compared with the statistics of the raw spectra obtained without prewhitening. No significant change in the statistical structure could be noted. A 41-weight Martin Graham filter was also tested as a prewhitening filter. Here again, there was apparently no significant change in statistics.

Of course, the basic purpose of prewhitening is to produce a white noise spectra so that a symmetric smoothing filter may be employed to estimate the true spectra. No spectral smoothing was employed due to the difficulties involved in analyzing the statistical bias of such a filter. A discussion of the indiscriminate use of symmetrically weighted smoothing filters is given in Section 3.

After the 861 power spectra were obtained, the spectral density values were grouped according to frequency. This resulted in 861 values at each of 256 wave numbers ranging from 0.3125 to 80 cycles per 4000 meters. At each wave number the values were ordered according to magnitude. From these ordered statistics the cumulative distributions on power spectral density were obtained. Ordered statistics were selected in preference to assembling density functions. These statistics allow the application of the distribution free "goodness of fit" tests such as the Kolmogorov test.

The population distributions were assumed to be defined by theoretical distributions fitting the ordered statistics. Sampling distributions for the mean and quantiles were then calculated from these theoretical population distributions. The sampling distributions were compared with equivalent numerical sampling distributions obtained from a machine oriented random sampling program (Reference 6), sampling on the 861 PSD values at a selected set of 6 frequencies. The numerical and theoretical sampling distributions agree relatively well. However, the numerical sampling distributions on quantiles are poorly defined with only 861 data values.

Central sampling confidence intervals for the mean for sample sizes ranging from 2 to 40 were calculated. Central intervals were chosen so that the rate of convergence of the sampling distributions to a normal distribution could be presented.

#### 2.3 PEARSON TYPE III DISTRIBUTIONS

This section is offered for those readers who lack a familiarity with the normalized incomplete gamma function and its statistical relevance. Reference 7 contains most of the arguments presented in this section. Information on this distribution is generally available in the literature on statistics.

The incomplete gamma function may be defined by the integral formula

$$\gamma(y) = \int_{0}^{y} z^{\lambda-1} e^{-z} dz \qquad (2.1)$$

where  $\lambda$  is a parameter which must be greater than zero.

The normalized function may be defined as

$$F(y) = \frac{\gamma(y)}{\Gamma(\lambda)}$$

where

$$\Gamma(\lambda) = \int_{0}^{\infty} z^{\lambda-1} e^{-z} dz$$
 (2.2)

Since  $\lim_{y \to \infty} F(y) = 1$ 

F(0) = 0, and F is monotonic increasing, the function F(y) is a cumulative distribution function on the domain  $0 < y < \infty$ . The parameter  $\lambda$  shapes the function F. The density function associated with this distribution is given by

$$\frac{dF}{dy} = f(y) = \frac{1}{\Gamma(\lambda)} y^{\lambda-1} e^{-y}$$
 (2.3)

In fitting such a function to data, one usually extends the definition of the function to include some transformation on the independent variable, such as a linear transformation. In our case, only a scaling factor is required since the minimal value of PSD is zero and a translation on y in the function F(y) would destroy the property F(0) = 0. Thus, we require only

$$x = z/\beta$$
 or  $z = \beta x$ 

where  $\beta$  is a scaling parameter. Employing the transformation for z on equation (2.2) and noting that  $\Gamma(\lambda)$  is a constant, the distribution function becomes

$$F(y) = \int_{0}^{(y/\beta)} \frac{1}{\Gamma(\lambda)} (\beta x)^{\lambda-1} e^{-\beta x} (\beta dx) = F(x)$$
 (2.4)

with density function

$$\frac{dF(x)}{dx} = f(x) = \frac{\beta}{\Gamma(\lambda)} (\beta x)^{\lambda-1} e^{-\beta x}$$
 (2.5)

It is now necessary to fit two parameters to the data: a scaling parameter,  $\beta$ , and shaping parameter  $\lambda$ . To simplify further discussion, define f(x)=0 if x<0.

The moments about the mean of this distribution (mean, variance, etc.) are relatively easy to calculate by employing characteristic functions. Let  $\mu$  denote the mean value and let

$$\phi(t) = \int_{-\infty}^{\infty} e^{it(x-\mu)} f(x) dx \qquad (2.6)$$

denote the characteristic function. Notice that the  $\mbox{ nth }$  derivative of  $\phi(t)$  is given by

$$\frac{d^{n} \phi}{dt^{n}} = \int_{-\infty}^{\infty} \left[ i(x-\mu) \right]^{n} e^{it(x-\mu)} f(x) dx \qquad (2.7)$$

If the nth derivative of  $\phi(t)$  is evaluated at t = 0, one obtains

$$\frac{d^{n}\phi}{dt^{n}}\bigg|_{t=0} = i^{n} \int_{-\infty}^{\infty} (x-\mu)^{n}f(x)dx \qquad (2.8)$$

The right-hand side of equation (2.8) is just the definition of the nth moment about the mean times  $i^n$ .

One may obtain an explicit form for  $\phi(t)$  as follows:

$$\phi(t) = \int_{-\infty}^{\infty} e^{it(x-\mu)} \frac{\beta}{\Gamma(\lambda)} (\beta x)^{\lambda-1} e^{-\beta x} dx$$

$$= e^{-it\mu} \frac{\beta^{\lambda}}{\Gamma(\lambda)} \int_{-\infty}^{\infty} e^{x(it-\beta)} x^{\lambda-1} dx \qquad (2.9)$$

Perform the variable substitution

$$w = -(it - B)x$$

in the integral in (2.9) and obtain

$$\phi(t) = \frac{\beta^{\lambda} e^{-it\mu}}{\Gamma(\lambda)} \int_{-\infty}^{\infty} e^{-w} (\frac{-w}{it-\beta})^{\lambda-1} (\frac{-1}{(it-\beta)}) dw$$

$$= \frac{\beta^{\lambda} e^{-it\mu}}{\Gamma(\lambda)(\beta-it)^{\lambda}} \int_{-\infty}^{\infty} e^{-w} w^{\lambda-1} dw$$

Since  $e^{-W}w^{\lambda-1} = 0$  when w < 0 the above equation may be written as

$$\frac{\beta^{\lambda} e^{-it\mu}}{\Gamma(\lambda)(\beta-it)^{\lambda}} \int_{0}^{\infty} e^{-w} w^{\lambda-1} dw$$

$$= \frac{\beta^{\lambda} e^{-it\mu}}{\Gamma(\lambda)(\beta-it)^{\lambda}} \Gamma(\lambda)$$

$$= e^{-it\mu} (1 - \frac{it}{\beta})^{-\lambda} \qquad (2.10)$$

The first derivative of  $\phi$  evaluated at zero is

$$-i(\mu-\lambda/\beta) \tag{2.11}$$

Since equation (2.11) is  $(-i)^1$  (see eq. 2.8) times the first moment about the mean, and since the mean,  $\mu$ , is the first moment about the mean, one obtains

$$\mu - \lambda/\beta = 0$$

$$\mu = \lambda/\beta \tag{2.12}$$

Substituting in equation (2.10) for  $\mu$ , from (2.12), the second derivative evaluated at t = 0 is

$$(-i)^2 \lambda/\beta^2$$

Thus, the variance, denoted by  $\mu_2$ , is

$$\mu_2 = \lambda/\beta^2 \tag{2.13}$$

The higher moments may be obtained by a similar process but the first two moments are sufficient to determine the distribution. Solving equations (2.12) and (2.13) for the parameters  $\lambda$  and  $\beta$  one obtains

$$\lambda = \frac{\mu^2}{\mu_2}$$

$$\beta = \frac{\mu}{\mu_2}$$

#### 2.4 PARAMETER ESTIMATION

In estimating  $\lambda$  and  $\beta$  from data several techniques were employed. The first technique discussed is called the maximum likelihood method. In this method a function called the likelihood function is maximized with respect to the parameters  $\lambda$  and  $\beta$  and the resulting formulas are called maximum likelihood estimators for  $\lambda$  and  $\beta$ .

The likelihood function L for the Pearson distribution is the finite product

$$L = \prod_{i=1}^{n} \left[ \frac{\beta}{\Gamma(\lambda)} (\beta x_i)^{\lambda-1} e^{-\beta x_i} \right]$$

$$= \left( \frac{\beta}{\Gamma(\lambda)} \right)^n \left[ \prod_{i=1}^{n} (\beta x_i)^{\lambda-1} e^{-\beta x_i} \right] \qquad (2.14)$$

This function may be maximized with respect to  $\beta$  by maximizing the ln L with respect to  $\beta$ .

$$\ln L = n( \ln \beta - \ln \Gamma(\lambda)) + \sum_{i=1}^{n} [(\lambda-1)(\ln \beta + \ln x_i) - \beta x_i] (2.15)$$

$$\frac{\partial \ln L}{\partial \beta} = n/\beta + \sum_{i=1}^{n} [(\lambda - 1)/\beta - x_i]$$
 (2.16)

Set equation (2.16) to zero and obtain

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 1/\beta + (\lambda - 1)/\beta = \lambda/\beta$$
 (2.17)

Since  $\lambda/\beta$  is the true mean (equation 2.12) of the distribution, equation (2.17) demonstrates that the maximum likelihood estimator of the mean is given by the usual formula for estimating the mean.

But to obtain a formula for the pair of values of  $\lambda$  and  $\beta$  which maximize the likelihood function the value of

$$\frac{9y}{9}$$

must be calculated. Thus, differentiating equation (2.15)

$$\frac{\partial \ln L}{\partial \lambda} = n \frac{\partial (-\ln \Gamma(\lambda))}{\partial \lambda} + \sum_{i=1}^{n} (\ln \beta + \ln x_i)$$

$$= -n(\frac{\Gamma'(\lambda)}{\Gamma(\lambda)}) + n \quad \ln \beta + \sum_{i=1}^{n} \ln x_{i}$$
 (2.18)

where  $\Gamma'(\lambda)$  is the derivative of  $\Gamma$ . Setting equation (2.18) equal to zero, one obtains

$$n(\frac{-\Gamma'(\lambda)}{\Gamma(\lambda)} + \ln \beta) = -\sum_{i=1}^{n} \ln x_i = \ln (\prod_{i=1}^{n} x_i)$$
 (2.19)

Now employ the constraint given by equation (2.17) to remove  $\beta$ , and obtain

$$n(\frac{\Gamma'(\lambda)}{\Gamma(\lambda)} - \ln \frac{\lambda}{\bar{x}}) = \ln (\prod_{i=1}^{n} x_i)$$
 (2.20)

where  $\bar{x}$  is again given by

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Rewriting (2.20)

$$n(\frac{\Gamma'(\lambda)}{\Gamma(\lambda)} - \ln \lambda) = \ln(\frac{n}{n} \frac{x_i}{\bar{x}}))$$
 (2.21)

This equation is easy to solve numerically for  $\lambda$ .

These formulas were used to fit the functions to the data. In Section 3 the results will be compared with other methods of fit. Although it is not obvious from equation (2.21), the results of Section 3 show that the formula for estimating the variance of a normal distribution, namely

$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

is not an adequate estimator of the variance. The values of the variance given by this estimator were calculated from the data for comparison purposes and were used with the values of the mean, given by equation (2.17), to calculate the parameters  $\lambda$  and  $\beta$ . Using these values of  $\lambda$  and  $\beta$  the gamma function had data fit errors in excess of 10 percent.

The second method of estimation employed was a least squares curve fit. The parameters  $\lambda$  and  $\beta$  are estimated by minimizing the sum of the squared deviations of the Pearson distribution from the empirical distribution.

This technique yields an excellent fit to the empirical distribution of data. The resulting parameter estimates were employed in building analytical sampling distributions and central confidence intervals. Of course, these estimates are not necessarily unbiased although they are consistent.

The third method of fit employed was a constrained least squares method. In constructing a fit which would yield an unbiased sampling distribution on the mean, the ratio  $\lambda/\beta$ , was held constant at the true population mean  $\mu$ . The mean square deviation was minimized under this constraint.

An additional method of fit was also studied but was not used in this study. This method is much more promising for future work because it employs more information than is generally available from the distribution functions. An assumption is made that the percentile levels are given as functions of wave number by a function of the form

$$P = P_0 k^{-S}$$

where P is the PSD value for a given percentile level, at wave number k;  $P_0$  and s are parameters. This assumption is well supported by References 3 and 4 and the results given below.

Assuming that the quantiles are reasonably close to normal distributions (with a sufficiently large sample of wind profiles this is quite reasonable) a root mean square estimate of  $P_{\rm O}$  and s may be made by fitting linearly

$$ln P = ln P_0 - s ln k.$$

If this estimate is made at each wave number k, the functional form of s(k) and  $P_{O}(k)$  may be recovered.

In using the data in this report, the noise level in the high frequency range restricts the usable values of k. In fact, the approach just described should definitely be supported by careful data conditioning and spectral smoothing. See section 3 for a further discussion on this subject.

### 2.5 SAMPLING DISTRIBUTIONS

After the distribution functions on the PSD population have been fitted, the sampling distributions on the mean, variance and quantiles can be constructed. For simple random sampling with replacement, the sampling density function for n-random samples is given by the finite product.

$$\prod_{j=1}^{n} \left[ \frac{\beta}{\Gamma(\lambda)} (\beta x_{j})^{\lambda-1} e^{-\beta x_{j}} \right] = L$$
 (2.22)

## 2.5.1 Sampling Distributions on the Mean

The sampling distribution on the mean, m, is then given by

$$F(m) = \underbrace{\int \cdots \int_{n} L \, dx_1 \, dx_2 \dots dx_n}$$
 (2.23)

integrated over the region specified by the set of all  $x_j$ 's such that

$$\frac{1}{n} \sum_{j=1}^{n} x_j \le m \tag{2.24}$$

The moments of the distribution may be found by the use of equation (2.10) which indicates that the characteristic function of

$$\frac{\beta}{\Gamma(\lambda)}(\beta x_{j})^{\lambda-1} e^{-\beta x} j$$

about zero is given by

$$\phi_{j}(t) = (1 - it/\beta)^{-\lambda}$$
 (2.25)

Now the characteristic function,  $\Phi(t)$ , of F(nm) is given by

$$\Phi(t) = \int_{0}^{\infty} \int_{0}^{\infty} \dots \int_{0}^{\infty} e^{itm} L dx_{1} dx_{2} \dots dx_{n}$$

$$= \prod_{j=1}^{n} \left[ \int_{0}^{\infty} e^{itx_{j}} \frac{\beta}{\Gamma(\lambda)} (\beta x_{j})^{\lambda-1} e^{-\beta x_{j}} dx_{j} \right] = \prod_{j=1}^{n} \phi_{j}$$
(2.26)

Using the result of (2.25) in the final expression of (2.26) one obtains

$$\Phi(t) = (1 - it/\beta)^{-n\lambda}$$
 (2.27)

According to equations (2.10) and (2.25) equation (2.27) is the characteristic function of the density function

$$\frac{\beta}{\Gamma(n\lambda)}(\beta x)^{n\lambda-1} e^{-\beta x}$$
 (2.28)

another gamma density function. Thus

$$F(nm) = \int_{0}^{nm} \frac{\beta}{\Gamma(n\lambda)} (\beta x)^{n\lambda-1} e^{\beta x} dx \qquad (2.29)$$

or by the variable substitution x = nx

$$F(m) = \int_{0}^{m} \frac{n\beta}{\Gamma(n\lambda)} (n\beta x)^{n\lambda-1} e^{-n\beta x} dx \qquad (2.30)$$

In this example,  $\lambda$  is replaced by  $n\lambda$  and  $\beta$  is replaced by  $n\beta$ . According to equations (2.12) and (2.13), the mean and variance of the sampling distribution on the mean are then given by

$$mean = \mu_{S} = \frac{n\lambda}{n\beta} = \frac{\lambda}{\beta} = \mu$$
 (2.31)

var. = 
$$\mu_{2s} = \frac{n\lambda}{(n\beta)^2} = \frac{\lambda}{n\beta^2} = \frac{1}{n} \mu_2$$
 (2.32)

where  $\mu$  and  $\mu_2$  are the mean and variance from the parent population.

Comparison of equation (2.32) for the variance of the sampling distribution with the formula for sampling from a normal distribution

$$var = \frac{1}{n} \sigma^2 \tag{2.33}$$

shows that the true variance, equation (2.32), is identical to the usual formula employed for sampling from a normal distribution. The rate of convergence of the gamma function sampling distribution to the normal sampling distribution centered at the mean,  $\mu$ , with standard deviation

$$\sigma \equiv \sqrt{\frac{\mu_2}{n}} \tag{2.34}$$

as a function of n is presented in Section 3.

## 2.5.2 Sampling Distribution on the Variance

The sampling distribution on the variance, v, is given by

$$F(v) = \iiint_{n \text{ times}} L dx_1 \dots dx_n$$
 (2.35)

integrated over the values of the  $x_i$ 's satisfying

$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 \le m, \qquad (2.36)$$

Once again,  $\mu$  denotes the population mean. If the reader wishes to pursue the structure of this function, Reference 7 offers several usable techniques.

## 2.5.3 Sampling Distribution on the Quantiles

The sampling distributions on the quantiles (percentage levels) are of some utility due to the fact that the power spectra are usually presented in the form of exceedance envelopes. In order to treat the theory easily a simplifying assumption will be made. If the sample size is n, only those percentage levels of the form

where r is a positive integer, will be discussed. Thus, if the sample size is 10, the sampling distribution for the 50 percent level cannot be obtained exactly (under the above assumption) since there is no integer r such that (r-1)/9 - 0.5.

Let F denote the population distribution (in our case F is given by equation 2.4) and f the density function of the variable in question. Then the sampling density function on the r-1 percentile value is (Reference 7):

$$f_r(x) = \frac{n!}{(r-1)!(n-r)!} (F^{r-1}(x))(1-F(x))^{n-r} f(x)$$
 (2.37)

The distribution function associated with  $f_r(x)$  is easily obtained by expanding the right hand side of (2.37) and integrating term by term.

$$\int_{0}^{y} f_{r}(x) = \int_{j=0}^{n-r} (-1)^{j} \frac{n!}{(r-1)!(n-r)!} {n-r \choose j} {n-r \choose j} F^{r+j}(y)$$
 (2.38)

Confidence intervals may be easily calculated numerically since

$$\int_{y_1}^{y_2} f_r(x) dx = \int_{j=0}^{n-r} (-1)^j \frac{n!}{(r-1)!(n-r)!} {n-r \choose j} (\frac{1}{r+j-1}) (F^{r+j}(y_2) - F^{r+j}(y_1))$$
(2.39)

Appendix B contains a further discussion of quantile sampling.



FIGURE 2-1. DAILY DISTRIBUTION OF JIMSPHERE RELEASES



FIGURE 2-2. HOURLY DISTRIBUTION OF JIMSPHERE RELEASES



FIGURE 2-3. MONTHLY DISTRIBUTION OF JIMSPHERE RELEASES

THIS PAGE INTENTIONALLY LEFT BLANK

#### SECTION 3

#### RESULTS AND RECOMMENDATIONS

#### 3.0 GENERAL

In this section the results of applying the fitting techniques of Section 2 and the subsequent implications are discussed. Recommendations for future work on PSD are also presented.

#### 3.1 RESULTS

The cumulative distributions illustrated in Figures 3-1 through 3-6 are easily fitted by the gamma distribution. Each of the three methods of fit considered, least squares, constrained least squares, and maximum likelihood was designed to meet some specific criteria.

Consider first the least squares fit. Using this method of fit alone, it was possible to conclude that the empirical distributions illustrated in Figures 3-1 through 3-6 were almost certainly gamma distributions. The maximum deviation of the fitted function from the empirical distribution was always less than 0.025 with an RMS deviation of less than 0.015.

Now the Kolmogorov test (Reference 7) places confidence intervals on distribution functions and this least squares fit falls well within the 95 percent confidence level on a distribution function constructed from 861 values for most cases and never falls outside the 99% level. If the test was applicable, one could almost certainly conclude that the true PSD distribution is a gamma distribution with parameters given by the least squares fit. The difficulty comes from attempting to demonstrate that the test is applicable. First, it assumes that the ordered statistical distribution is constructed from 861 randomly selected samples which in this case may not be true. Secondly, the test places symmetric confidence intervals about the distribution function ordinates which almost never occur in practice but do happen to be closely approximated by the least squares fits obtained in this report. In any case, the test is not conclusive for the methods of fit employed in this report.

Consider secondly the constrained least squares fit. In contrast to the least squares fit, the constrained least squares fit maintains the expected value of PSD computed from the gamma functions at the mean value computed from the data. The resulting fit to the empirical distributions illustrated in Figures 3-1 through 3-6 is relatively poor. It roughly has a maximum error of +0.06 and a minimum error of -0.04. Since these deviations are not symmetric, the fit cannot be easily rejected by using the Kolmogorov test. Of course, this type of fit was employed to guarantee that the sampling distributions on the mean would be unbiased when compared with the data. The error in the maximum likelihood method of fit is approximately equal to the error from the constrained least squares method of fit.

These errors in fit are reflected in the mean value sampling density function presented in Figures 3-7 through 3-15. From a cursory examination of these curves, it appears that the least squares fit is, so to say, "too

good"; i.e., errors in the data values are worked into the fitting process and these errors appear in the sampling distribution. On the other hand, the maximum likelihood fit relies too heavily on the data distribution so that errors, such as an incorrect variance, strongly affect its shape. Consequently, it is a more realistic fit in the sense of being unbiased but is somewhat poorly shaped. The only solution to this inconsistency is to iterate towards the correct answer. A re-examination of the construction of the statistics is required.

In figure 3-16, selected percentile levels are plotted as a function of wave number. The peculiar rise in the higher percentage levels towards the high frequency range is due to balloon tracking noise. Elimination or filtering of those profiles containing tracking noise would increase the number of wave numbers for which distributions could be obtained. The functional dependence of the parameters on wave number might then be investigated. For example, a preliminary investigation indicates that the mean and square root of the variance have the same functional form as the median. Removal of the noise will also improve the estimation of the quantile levels. The principle question of interest here is whether or not these quantile lines are parallel. The drop in these curves around wave number 80 is probably due to power attenuation by data preprocessing. This could be resolved by reanalyzing the raw FPS-16 data but is probably not necessary.

A significant refinement of the distribution shape might occur by employing a more accurate spectral estimate than that obtained from the raw power spectra. This is usually a delicate operation, but in the case of wind spectra, it appears that there are many saving graces.

Most methods of spectral estimation, such as filter smoothing, reduce the resolution. However, all of the evidence indicates that there are no preferred frequencies (Reference 3) in the spectra of wind profiles. Thus, with nothing to resolve, resolution is not too important and a significant trade of resolution for accurate estimation could be made.

A second error usually employed in power spectral smoothing could also be avoided. Often times a symmetrically weighted narrow band filter is used as a smoothing filter. This is a correct procedure to apply to a white noise signal; i.e., one where the power viewed as a function of wave length is constant. Since an a priori knowledge of the rough structure of the spectra is necessary to properly prewhiten the signal, application of symmetrically weighted filters is often times incorrectly used.

In the case of wind spectra, an a priori knowledge of the general shape of the spectra is available (Reference 3) and a properly whitened signal could be constructed. Alternatively, if the direct transform method is preferred, a more correct nonsymmetrically weighted smoothing filter can be employed. Thus, it should be possible to obtain an excellent estimate of the true spectra. The statistics which result may indeed clarify the discrepancies in methods of distribution

function fit and allow one to be much more conclusive about the probabilistic structure of the wind.

Finally, some change in the distributions might be obtained by deleting the more obvious biases in the time distribution of the data. But the effect of such an effort is not at all clear and may indeed be negligible.

The values of the parameters  $\lambda$  and  $\beta$  obtained by the different methods of fit at six selected wave numbers are presented and compared in Table 3-I. In summary, the population statistics for PSD values at all wave numbers between 5 cy/4km and 25 cy/4km are tentatively given by Pearson Type III distributions with shaping parameter,  $\lambda$ , equal to approximately 9/10. The parameter  $\beta$  is not constant but the logarithm of  $\beta$  is a linear function of the logarithm of the wave number, k. Since  $\lambda$  is approximately constant, the log of the mean  $\lambda/\beta$ , and the log of the square root of the variance  $\sqrt{\lambda/\beta^2}$ , are also linear functions of the logarithm of k.

The resulting mean value sampling distributions together with the machine oriented random sampling distributions are shown in Figures 3-7 through 3-15 for three selected wave numbers and three selected sample sizes. The tables in the Appendix show the tolerance limits on central confidence intervals together with a comparison of the normal approximation. The central limit theorem is well illustrated by the rate of convergence of these tolerance levels as sample size increases. Clearly, good approximations may be obtained by using the Gaussian normal confidence intervals.

As a final speculation, it is very attractive to consider the possibility that  $\lambda$  is actually 1 instead of 9/10, since the distribution function then reduces to a  $\chi^2$  function for two degrees of freedom. Such a situation could possibly be explained by considering the Fourier coefficients  $a_k$  and  $b_k$  in the Fourier expansion of the wind profile as normally distributed variables with zero mean and equal variance. Since the power at wave number k is given by

$$P_k = \frac{1}{2}(a_k^2 + b_k^2)$$

normality in  $a_k$  and  $b_k$  would imply the  $\chi^2$  with two degrees of freedom as the appropriate distribution for power. Attempts to fit the  $\chi^2$  function to the PSD distributions were unsuccessful. But, to this author at least, there is no apparent reason why the bivariate distribution of the pairs  $(a_k, b_k)$  should not have zero mean. Otherwise there is some preferred pairing of sine and cosines in the expansion. Furthermore, it is not obvious why the variance on  $a_k$  should be different from the variance on  $b_k$  or why the correlation coefficient should not be zero.

In fact, it seems much more likely that the bivariate distribution is not normal, either because of the structure of the wind or because of contamination from sources not presently understood. In any case, it is clear that the bivariate statistics of the Fourier coefficients is more fundamental

than the PSD statistics. For obviously the wind profile may be recovered from a knowledge of the expansion coefficients where a knowledge of the PSD values do not allow for the recovery of this information.

#### 3.2 RECOMMENDATIONS

If the probabilistic structure of power spectra is to be pursued further, the data should be screened to eliminate noisy profiles. An accurate filter should be developed and applied and the method of fit given at the end of paragraph 2.4 should be attempted. Of course, the data set should be expanded if feasible and some study of the effect of daily data bias undertaken.

As regards fitting the gamma function in future work, the most convenient method of estimating these parameters for enlarged data sets is the maximum likelihood method. These formulas are convenient since they do not require the construction of a distribution function. Also, a continual update of the parameter estimates is easily obtained. The sampling distributions on the mean which result from the maximum likelihood method are unbiased.

As mentioned at the end of the last subsection, the bivariate distribution of the Fourier coefficients is more closely related to the wind profile. Since these coefficients are available when PSD are obtained with the direct transform method, their statistics should be compiled and analyzed. An increase in the data set would be necessary to obtain accurate results.





FIGURE 3-1. EMPIRICAL CUMULATIVE PSD DISTRIBUTIONS AT WAVE NUMBER 5



FIGURE 3-2. EMPIRICAL CUMULATIVE PSD DISTRIBUTIONS AT WAVE NUMBER 10



FIGURE 3-3. EMPIRICAL CUMULATIVE PSD DISTRIBUTIONS AT WAVE NUMBER 15



FIGURE 3-4. EMPIRICAL CUMULATIVE PSD DISTRIBUTIONS AT WAVE NUMBER 20



FIGURE 3-5. EMPIRICAL CUMULATIVE PSD DISTRIBUTIONS AT WAVE NUMBER 25



FIGURE 3-6. EMPIRICAL CUMULATIVE PSD DISTRIBUTIONS AT WAVE NUMBER 30



COMPARISON OF NUMERICAL AND THEORETICAL SAMPLING DISTRIBUTIONS ON THE MEAN AT WAVE NUMBER 10 FOR SAMPLE SIZE 10 FIGURE 3-7.





COMPARISON OF NUMERICAL AND THEORETICAL SAMPLING DISTRIBUTIONS ON THE MEAN AT WAVE NUMBER 10 FOR SAMPLE SIZE 30 FIGURE 3-9.





COMPARISON OF NUMERICAL AND THEORETICAL SAMPLING DISTRIBUTIONS ON THE MEAN AT WAVE NUMBER 20 FOR SAMPLE SIZE 20 FIGURE 3-11.



COMPARISON OF NUMERICAL AND THEORETICAL SAMPLING DISTRIBUTIONS ON THE MEAN AT WAVE NUMBER 20 FOR SAMPLE SIZE 30 FIGURE 3-12.



COMPARISON OF NUMERICAL AND THEORETICAL SAMPLING DISTRIBUTIONS ON THE MEAN AT WAVE NUMBER 30 FOR SAMPLE SIZE 10 FIGURE 3-13.



COMPARISON OF NUMERICAL AND THEORETICAL SAMPLING DISTRIBUTIONS ON THE MEAN AT WAVE NUMBER 30 FOR SAMPLE SIZE 20 FIGURE 3-14.

PROBABILITY DENSITY



COMPARISON OF NUMERICAL AND THEORETICAL SAMPLING DISTRIBUTIONS ON THE MEAN AT WAVE NUMBER 30 FOR SAMPLE SIZE 30 FIGURE 3-15.



FIGURE 3-16. 5, 10, 25, 50, 75, 90, AND 95 PERCENTILE PSD VALUES PLOTTED AS A FUNCTION OF WAVE NUMBER

| WAVE | NO. $\lambda$ | β                | λ/β                | λ/β <sup>2</sup> |
|------|---------------|------------------|--------------------|------------------|
|      |               | LEAST SQUAR      | ES ESTIMATORS      |                  |
| 5    | 0.865179      | 14.7415          | 0.0586905          | 0.00398134       |
| 10   | 0.927396      | 116.492          | 0.00796103         | 0.0000683397     |
| 15   | 0.929622      | 329.636          | 0.00282282         | 0.00000855534    |
| 20   | 0.916526      | 657.703          | 0.00139353         | 0.00000211878    |
| 25   | 0.902129      | 1162.06          | 0.000776321        | 0.000000668056   |
| 30   | 0.909847      | 1868.19          | 0.000487021        | 0.000000260691   |
|      |               | MAXIMUM LIKEL    | IHOOD ESTIMATORS   |                  |
| 5    | 0.903647      | 15.1393          | 0.0596888          | 0.00394262       |
| 10   | 0.945772      | 115.771          | 0.00816933         | 0.0000705646     |
| 15   | 0.905528      | 306.794          | 0.00295158         | 0.00000962071    |
| 20   | 0.890628      | 611.172          | 0.00145725         | 0.00000238435    |
| 25   | 0.800717      | 880.540          | 0.000909348        | 0.00000103272    |
| 30   | 0.812664      | 1429.96          | 0.000568312        | 0.000000397432   |
|      | C             | ONSTRAINED LEAST | SQUARES ESTIMATORS |                  |
| 5    | 0.865032      | 14.4930          | 0.05968606         | 0.00411825       |
| 10   | 0.925964      | 113.350          | 0.00816907         | 0.0000720694     |
| 15   | 0.927418      | 314.224          | 0.00295146         | 0.00000939284    |
| 20   | 0.915363      | 628.166          | 0.00145720         | 0.00000231977    |
| 25   | 0.881433      | 969.302          | 0.000909348        | 0.000000938147   |
| 30   | 0.893350      | 1571.94          | 0.000568310        | 0.000000361534   |
|      |               | NORMAL PARAM     | METER ESTIMATORS   |                  |
| 5    | 0.786545      | 13,1780          | 0.0596860          | 0.00452920       |
| 10   | 0.903435      | 110.592          | 0.00816909         | 0.0000783670     |
| 15   | 0.816986      | 276.807          | 0.00295146         | 0.0000106625     |
| 20   | 0.753781      | 517.281          | 0.00145720         | 0.00000281704    |
| 25   | 0.429262      | 472.063          | 0.000909331        | 0.00000192629    |
| 30   | 0.395605      | 696.125          | 0.000568296        | 0.000000816371   |
|      |               |                  |                    |                  |

TABLE 3-I. PARAMETERS OBTAINED FROM THE DIFFERENT METHODS OF FIT

#### APPENDIX A

## TABLES OF CONFIDENCE INTERVALS ON THE MEAN

In this appendix the tables of confidence intervals together with the errors associated with assuming a normal distribution are presented. The tolerance intervals are grouped according to confidence level. Thus the first table, Table A-I, lists the tolerance value for the 50 percent confidence intervals for sample sizes 2, 4, etc. for selected wave numbers. Referring to Table A-I, and assuming the maximum likelihood method of fit is employed, a sample of 16 wind profiles selected at random will give the true PSD mean at wave number 10 with an error of  $\pm$  1.412 x  $10^{-3}$  (m²/s²)/(cy/4km), 50 percent of the time. Referring to the table in Figure A-V the PSD mean at wave number 10, calculated from a random sample of size 16, will be correct to within  $\pm$  5.678 x  $10^{-3}$  (m²/s²)/(cy/4km) 99 percent of the time.

The difference between the several methods of fit, least squares (L.S.), maximum likelihood (M.L.) and constrained least squares (C.L.S.) is in part a measure of the relative accuracy of these methods. Disregarding the higher wave numbers, which were increasingly contaminated by balloon tracking error, the difference between the several methods of fit is negligible.

If confidence intervals at other wave numbers are desired, they may be quickly approximated by a graphical method. Select the confidence interval, sample size, and type of fit desired. Plot the tolerance value (table entry) vs. wave number on log-log graph paper. Since this is essentially a straight line, interpolation and extrapolation may be effected graphically.

For sample sizes above 40, the normal distribution can be used to obtain confidence intervals. To calculate confidence intervals, refer to a table of normal integrals where

$$P = \int_{-X}^{X} \phi(x) dx$$

in the table and  $\varphi$  is a Gaussian density function with zero mean and unit variance ( $\sigma$  = 1). Select the sample size, n, and confidence desired, P. Locate the value of x giving the probability P in the table. Decide on the wave number desired and obtain the variance  $\lambda/\beta^2$  from Table 3-1. Divide the variance by n and take the square root of the result. Multiply the result by x to obtain the tolerance value  $\delta$ . Thus

$$\delta = x \sqrt{\frac{\lambda}{n\beta^2}}$$

Tables A-IX and A-X list the error in confidence incurred when using the normal approximation for sample sizes 10, 20, etc. The entries in this table represent the percentages which must be added to the confidence calculated from the normal approximation to obtain the true confidence values. This error is clearly negligible when the sample size exceeds 40.

|            | OLV                         | 10          |          |                   |                   |                    |                |                    |                    |                    |             |                   |                    |                    |                               |                                           |                                              |                    |                         |                    |                |
|------------|-----------------------------|-------------|----------|-------------------|-------------------|--------------------|----------------|--------------------|--------------------|--------------------|-------------|-------------------|--------------------|--------------------|-------------------------------|-------------------------------------------|----------------------------------------------|--------------------|-------------------------|--------------------|----------------|
| 30         | C.L.S.                      | 27.85       | 20.01    | 16.41             | 14.25             | 12.76              | 11.66          | 10.80              | 10.11              | 9.533              | 9.046       | 8.627             | 8.261              | 7.939              | 7.651                         | 7.394                                     | 7.160                                        | 6.946              | 6.751                   | 6.572              | 6.405          |
| N          | g-OLX                       | 29.10       | 20.95    | 17.19             | 14.93             | 13.37              | 12.22          | 11.32              | 10.59              | 9.995              | 9.482       | 9.043             | 8.660              | 322                | 8.020                         | 7.749                                     | 6.080 7.506                                  | 7.282              | 7.078                   | 6.889              | 6.715          |
| WAVE       | M.L.                        | 1           |          |                   |                   |                    | l              |                    |                    |                    |             |                   |                    | $\dot{\omega}$     |                               |                                           | .7.                                          |                    |                         |                    |                |
|            | 9-01X                       | 23.66       | 16.99    | 26.44 13.94       | 12.10             | 20.55 10.84        | 9.901          | 9.172              | 8.583              | 8.095              | 7.682       | .326              | 7.015              | 6.74               | 6.497                         | 6.279                                     | .080                                         | 5.899              | 5.733                   | 5.580              | 5.439          |
|            |                             | 84          | 22       | 44                |                   | 55                 |                |                    |                    |                    |             | 90 7              | 31 7               |                    |                               |                                           | 53 6                                         |                    |                         |                    |                |
| . 25       | C.L.S.                      | 44.84       | 32.22    |                   | 22.95             |                    | 18.78          | 17.40              | 16.28              | 15.36              | 14.57       | 3.                | 13.                | 12.79              | 12.                           | 11.91                                     | =                                            | 11.19              | 10.88                   | 10.59              | 10.32          |
| 0N         | g-01X                       | 33.76       | 27.71    | 24.06             | 21.55             | 19.69              | 18.25          | 17.08              | 16.11              | 15.28              | 14.58       | 13.96 13.90 7.326 | 13.41 13.31        | .93                | .49                           | 12.10                                     | .74                                          | 11.41              | Ξ                       | 10.82              | 7.102          |
| WAVE       | M.L.                        |             |          |                   |                   |                    |                | 8 17               |                    |                    |             | 3 13              | 3 13               | 9 12               | 0 12                          |                                           | = =                                          |                    | 7 11                    |                    | 7.             |
|            | .8.1<br>8-01X               | 37.87       | 27.20    | 22.31             | 19.37             | 17.35              | 15.85          | 27.36 14.68        | 13.74              | 24.15 12.96        | 22.92 12.30 | 21.85 11.73       | 20.93 11.23        | 20.11 1.079 12.93  | 19.65 19.38 10.40 12.49 12.32 | 17.90 18.99 18.73 10.05                   | 9.73                                         | 17.84 17.60 9.443  | 17.34 17.10 9.177 11.11 | 8.933              | 8.707          |
|            | S-OLX                       | 70.60       | 50.70    | 41.59             | 36.10             | 32.33              | 29.54          | 36                 | 25.60              | 15                 | 92          | 82                | 63                 | =                  | 38                            | 73                                        | 4                                            | 9                  | 2                       |                    |                |
| 20         | .c.L.S.                     |             |          |                   |                   |                    |                | 27.                |                    |                    |             |                   | 20.                |                    | 19.                           | 8.                                        | 18.                                          | 17.                | 17.                     | 16.                | 16.            |
| NO.        | .J.M<br>8- <sub>0[X</sub>   | 71.51       | 51.38    | 42.15             | 36.59             | 32.77              | 29.94          | 27.74              | 25.96              | 24.48              | 23.23       | 22.15             | 21.22              | 20.39              | 3.65                          | 3.99                                      | 3.39                                         | 7.84               | 7.34                    | 16.88 16.65        | 16.45 16.23    |
| WAVE       | S-OFX                       |             |          |                   |                   |                    |                |                    |                    |                    |             |                   |                    |                    |                               | 0                                         | 5                                            |                    |                         |                    |                |
|            | .s.1                        | 67.48       | 48.46    | 39.75             | 34.50             | 30.89              | 28.23          | 26.15              | 24.47              | 23.08              | 21.90       | 20.8              | 20.0               | 19.2               | 18.5                          | 17.9                                      | 17.3                                         | 16.8               | 16.3                    | 15.9               | 15.5           |
|            | p-01X                       |             | 10.20    | 8.369             | 7.264             | 6.505              | 5.943          | 5.506              | 5.152              | 4.859              | 4.611       | 398               | 4.211 20.00        | 4.047 19.22        | 3.901 18.52                   | 3.769                                     | 3.650 17.33 18.39 18.14 9.733 11.74 11.53    | 3.541 16.82        | 3.441 16.34             | 3.350 15.91        | 3.265 15.51    |
| 15         | C.L.S.                      | 7 14        |          |                   |                   |                    |                |                    | 5.                 |                    |             | 4.                | 2.4.               | 5.4.               |                               |                                           |                                              |                    | 3.                      |                    |                |
| 0          | 4-01X                       | 14.37 14.21 | 10.32    | 8.469             | 7.350             | 6.583              | 6.014          | 5.572              | 5.214              | 4.918              | 4.667       | 4.450 4.398 20.89 | 4.262              | 11.21 3.862 4.095  | 3.947                         | 3.814                                     | 3.693                                        | 3.583              | 3.483                   | 3.390              | 3.304          |
| WAVE       | P-OIX                       |             | 9.739    |                   | 933               |                    | 672            | 5.255              |                    |                    |             | 4.197             | 919                | 362                |                               | 265                                       | 83                                           | 3.379              |                         | 3.197              |                |
|            | ۲.3.                        | 13.         |          | 7.5               | Ġ.                | 6.209              | 5.             | 5.5                | 4.917              | 4.6                | 4.401       | 4.                | 4.0                | <u>ښ</u>           | 3.7                           | <br>ت                                     | 3.4                                          | 8                  | 3.5                     |                    | 3.116          |
|            | C.L.S.                      | 39.37 13.57 | 28.26    | 23.18 7.988       | 20.12             | 18.02              | 16.46          | 15.25              | 14.27              | 13.46 4.638        | 12.77       | 12.18             | 11.67 4.019        | 1.21               | 10.80 3.723                   | 0.44                                      |                                              | 9.808              | 9.532 3.284             | 9.279              | 9.044          |
| 10         | P-01X                       |             |          |                   | 91 2              |                    |                |                    |                    |                    | 64 1        |                   | 1 1                |                    |                               | 33                                        | 9                                            |                    |                         |                    |                |
| NO.        | M.L.                        | 38.98       | 27.98    | 22.94             | 39.               | 17.83              | 16.29          | 15.09              | 14.12              | 13,32              | 75,6        | 12.0              | 11.54              | 11.09              | 10.69                         | 10.3                                      | 30.0                                         | 9.705              | 9.432                   | 9.181              | 8.949          |
| WAVE       | P-OIX                       | .34         | 27.52    | .58               | .59               | 17.55              | .03            | 53 14.85           | 13.90              | 13.11              | 12.44       | 98.               | 17 11.36           | .92                | 10.52                         | .17                                       | 844                                          | 9.551              | 282                     | 9.035              | 807            |
|            | .8.1                        | 70 38.34    | 34 27    | 51 22.58          | 9 19              | 62 17              | 44 16.03       | 3 14               | 9 13               | 7 13               | 4 12        | 111/              | 7 11               | 2 10.92            | 65   10                       | 2                                         | 6                                            | <u>ი</u>           | 05 9.282                | 3<br>9             | 36 8.807       |
| 2          | .2.1.3<br>8- <sub>01X</sub> |             |          |                   | 5.20              |                    | 2.4            |                    |                    | _                  | 9.65        | 9.207 11.86 12.05 |                    | _                  | 3. 165                        | . 89                                      | .64                                          | _                  | . 20                    | _                  | 6.836          |
| WAVE NO. 5 | -01X                        | 29.09 29.   | 20.90 21 | 6 17.22 17.14 17. | 8 14.95 14.88 15. | 10 13.39 13.33 13. | 8              | 14 11.33 11.28 11. | 16 10.61 10.56 10. | 18 10.00 9.955 10. | 47 9        | 5 60              | 24 8.669 8.627 8.8 | 26 8.330 8.290 8.4 | 28 8.028 7.990 8.1            | 30 7.759 7.721 7.891 10.17 10.33 10.44 3. | 32 7.513 7.477 7.641 9.844 10.00 10.:1 3.483 | 34 7.289 7.254 7.4 | 36 7.084 7.050 7.20     | 38 6.896 6.683 7.0 | 89 6           |
| AVE        | M.L.                        | 29.         | 20.      | 17.               | 14.               | 3.                 | 12 12.23 12.18 | =                  | 10.                | 9.9                | 9.447       | 22 9.053 9.009    | 8.6                | 8.2                | 7.9                           | 7.7                                       | 7.4                                          | 7.2                | 7.0                     | 9.9                | 40 6.722 6.689 |
| 3          | E-01X                       | 2 29.20     | 20.99    | .22               | . 95              | . 39               | .23            | . 33               | .6                 | 9                  | 20 9.492    | 053               | 699                | 330                | 028                           | 759                                       | 513                                          | 289                | 084                     | 968                | 722            |
| -          | ۲.۵.                        | 2 29        | 4 20     | 9 17              | 8 14              | 0                  | 2 12           | 4                  | 5 10               | 3 10               | 9.          | 2 9.              | 8                  | 8                  | 8                             | 7.                                        | 7.                                           | 1.                 | 5 7.                    | 3 6                | و              |
|            |                             | . •         | -        | _                 | . •               | =                  | _              | <u>, -</u>         | ~                  | ~~                 | 2           | 2                 | 2.                 | 72                 | 3                             | $\aleph$                                  | κ̈́                                          | ř                  | ř                       | ొ                  | 4              |

TOLERANCE VALUES IN (m<sup>2</sup>/s<sup>2</sup>)/(cy/4km) FOR 50 PERCENT CONFIDENCE INTERVALS

|          |                                                                       |                     |                               |                         |                               |                               |                                                 |                                     | _                                               | _                   |                            |                                     |                                                                                     |                               |                               |                     |                                                               |                         |                                     |                                     |                                                       |
|----------|-----------------------------------------------------------------------|---------------------|-------------------------------|-------------------------|-------------------------------|-------------------------------|-------------------------------------------------|-------------------------------------|-------------------------------------------------|---------------------|----------------------------|-------------------------------------|-------------------------------------------------------------------------------------|-------------------------------|-------------------------------|---------------------|---------------------------------------------------------------|-------------------------|-------------------------------------|-------------------------------------|-------------------------------------------------------|
| <br>Se   | C.L.S.<br>X10-4                                                       | 4.272               | 3.240                         | 2.705                   | 2.369                         | 2.133                         | 1.955                                           | 1.816                               | 1.702                                           | 1.608               | 1.527                      | 1.458                               | 1.397                                                                               | 1.344                         | 1.296                         | 1.252               | 1.213                                                         | 1.178                   | 1.145                               | 1.115                               | 1.087                                                 |
| No       | 4-01X                                                                 | 4.416               | 3.374                         | 2.824                   | 2.475                         | 2.230                         | 2.046                                           | 1.900                               | 1.782                                           | 1.683               | .599                       | 1.527                               | 1.463                                                                               | .407                          | .357                          |                     | . 271                                                         | . 234                   | 199                                 | .168                                | .139                                                  |
| WAVE     | 2.5.<br>101X                                                          | 3.637               |                               | 2.299                   | 012                           | 812                           | 1.661                                           |                                     | 1.446                                           | . 366               | 1.297                      | 1,238                               | . 187                                                                               | . 141                         | . 100                         | .064                | .030                                                          | .000                    | 9723 1                              | 9467 1                              | 9230 1                                                |
| 25       | C.L.S.<br>x10 <sup>-4</sup>                                           | 6,869               | 5.214 2.755                   | 4.355                   | 3.814                         | 3.434 1.                      | 3.149                                           | 2.924                               | 2.742                                           | 2.589 1.366 1.683   | 2.460                      | 2.348                               | 2.250                                                                               | 2.164                         | 2.087                         | 2.017 1.064 1.312   | 1.954                                                         | 1,897                   | .844                                | . 795                               | .751                                                  |
| 9        | 4-01X                                                                 | 7.102               | 5.433                         | 4.549                   | 3.988 3.814 2.                | 3.594                         | 3.296 3.149 1.661 2.046                         | 3.062 2.924 1.542                   | 2.872 2.742 1.446 1.782                         | 2.713               | 2.578 2.460 1.297 1.599    | 2.461 2.348 1.238 1.527 1.458       | 2.359                                                                               | 2.268 2.164 1.141 1.407 1.344 | 2.187 2.087 1.100 1357 1.296  | 2.115               | 2.049 1.954 1.030 1.271 1.213                                 | 1.988 1.897 1.000 1.234 | 1.933                               | 1.883                               | .836                                                  |
| WAVE     | L.S.1                                                                 | 5.816               |                               |                         | 3.221                         |                               | 2.658                                           | 2.469                               | 2.314                                           | 2.186               | 2.076                      | 1.982                               | 1.953 1.973 6.800 7.209 7.125 3.383 3.588 3.540 1.900 2.359 2.250 1.187 1.463 1.397 | 1.826                         | 1.761                         | 1.703               | 1.649                                                         | . 1.601                 | 2.900 1.556 1.933 1.844 .9723 1.199 | 2.824 1.515 1.883 1.795 .9467 1.168 | 5.541 2.631 2.791 2.753 1.477 1.836 1.751 .9230 1.139 |
| 50       | C.L.S.<br>x <sub>10</sub> -4                                          | 10.97 10.86 5.816   | 8.319 8.221 4.407             | 6.860 3.679             | 6.004 3.221                   | 5.405 2.900                   | 2.763 9.519 10.09 9.974 4.736 5.021 4.955 2.658 | 9.369 9.261 4.397 4.662 4.601 2.469 | 2.405 8.286 8.783 8.682 4.123 4.371 4.314 2.314 | 4.074               | 3.870 2.076                | 3.694 1.982                         | 3.540                                                                               | 3.404 1.826                   | 6.606 3.137 3.327 3.282 1.761 | 3.173 1.703         | 5 1.669 1.696 1.713 5.904 6.259 6.186 2.938 3.116 3.074 1.649 | 2.983 1.601             | 2.900                               | 2.824                               | 2.753                                                 |
| WAVE NO. | .J.M<br>P-0TX                                                         | 10.97               |                               | 6.946                   | 6.082                         | 5.476                         | 5.021                                           | 4.662                               | 4.371                                           |                     | 3.922                      | 3.744                               | 3.588                                                                               | 3.450                         | 3,327                         | 3.216               | 3.116                                                         | 3.024                   | 2.940                               | 2.863                               | 2.791                                                 |
| W        | .S.1<br>L.S.⁴                                                         | 21.89 10.38         | 4.585 15.80 16.73 16.56 7.857 | 6.556                   | 3.348 11.54 12.22 12.09 5.739 | 3.014 10.38 11.01 10.88 5.166 | 4.736                                           | 4.397                               | 4.123                                           | 8.199 3.893 4.129   | 7.434 7.880 7.789 3.699    | 2.059 7.096 7.522 7.435 3.531 3.744 | 3,383                                                                               | 6.850 3.253 3.450             | 3.137                         | 3.032               | 2.938                                                         | 6.004 2.851 3.024       | 5.837 2.772                         |                                     | 2.631                                                 |
| 15       | C.L.S.<br>X10 <sup>-4</sup>                                           | 21.89               | 16.56                         | 13.81                   | 12.09                         | 10.88                         | 9.974                                           | 9.261                               | 8.682                                           | 8.199               | 7.789                      | 7,435                               | 7.125                                                                               | 6.850                         | 909.9                         | 6.385               | 5,186                                                         | 5.004                   | 5.837                               | 5.683 2.699                         | .541                                                  |
| Æ NO.    | .J.M<br>01X                                                           | 20.90 22.08         | 16.73                         | 13.96                   | 12.22                         | 11.01                         | 10.09                                           | 9.369                               | 8,783                                           | 8,295               | 7.880                      | 7.522                               | 7.209                                                                               | 6.931                         | 6.684                         | 6.461               | 5.259                                                         | 6.075                   | 906.5                               | 5.751                               | 5.607                                                 |
| WAVE     | 1-01X                                                                 | 20.90               | 15.80                         | 3.825 13.18 13.96 13.81 | 11,54                         | 10,38                         | 9.519                                           | 8.839                               | 8.286                                           |                     | 7,434                      | 7,096                               | 6.800                                                                               | 1.898 6.538                   | 1.830 6.304 6.684             |                     | 5.904                                                         |                         |                                     |                                     | 5.288                                                 |
| 0        | c.L.S.                                                                | 6.063               | 4.585                         | 3.825                   | 3,348                         | 3.014                         | 2,763                                           | 2.565 8.839                         | 2.405                                           | 2.271 7.825         | 2.157                      | 2.059                               | 1.973                                                                               | 1.898                         | 1.830                         | 1.769 6.094         | 1.713                                                         | 1,663 5,730             | 1.617 5.571                         | 1.558 1.574 5.424                   | 1.535 5.288                                           |
| E NO. 10 | .J.M<br>6- <sub>01X</sub>                                             | 6.017               | 4.544                         | 3,789                   | 3.316                         | 2.984                         | 2 735                                           | 2.539                               | 2.380                                           | 2.248               | 2.135                      | 2.038                               | 1,953                                                                               | 1.878                         | 1.811                         | 1.750               | 1.696                                                         | 1.646                   | 1.600                               | 1.558                               | 1.519                                                 |
| WAVE     | .2.1<br>E- <sub>01</sub> x                                            | 5.905               | 4.466                         | 3.725                   | 3.260                         | 2.935                         | 2.690                                           | 2.498                               | 6 2.342                                         | 2.212               | 2,101                      | 2,005                               | 1.922                                                                               | 1.848                         | 1.782                         | 6 1.722             | 1,669                                                         | 1.619                   | 2 1.574                             | 9 1.533                             | 1.160 1.495                                           |
| 2        | .2.L.S.<br>S10 <sup>-2</sup>                                          | 4.539               | 3.450                         | 2.883                   | 2.525                         | 2.274                         | 2.085                                           | 1.937                               |                                                 | 1.715               | 1.629                      | 1,555                               | 1.491                                                                               | 1.433                         | 1.382                         | 1.336               | 1.295                                                         | 1.256                   | 1.222                               | 1.18                                |                                                       |
| WAVE NO. | .1.M<br>S- <sub>01X</sub>                                             | 4.469               | 3.386                         | 2.826                   | 2.474                         | 2.228                         | 2.042                                           | 1.896                               | 1.778                                           | 1.679               | 1.595                      | 1.523                               | 1,459                                                                               | 1.403                         | 1.353                         | 1.308               | 1.267                                                         | 1.230                   | 1.196                               | 1.164                               | 1.135                                                 |
| M.       | C.L.S.<br>X10 <sup>-2</sup><br>X10 <sup>-2</sup><br>X10 <sup>-2</sup> | 2 4.463 4.469 4.539 | 4 3.393 3.386 3.450 4.466     | 6 2.835 2.826 2.883     | 8 2.483 2.474 2.525 3.260     | 10 2.236 2.228 2.27           | 12 2.050 2.042 2.085 2.690                      | 14 1.904 1.896 1.937                | 16 1.785 1.778 1.81                             | 18 1.686 1.679 1.71 | 20 1.602 1.595 1.629 2.101 | 22 1.529 1.523 1.555                | 24 1.466 1.459 1.491 1.922                                                          | 26 1.409 1.403 1.433 1.848    | 28 1.359 1.353 1.382 1.782    | 30 1.314 1.308 1.33 | 32 1.273 1.267 1.29                                           | 34 1.235 1.230 1.256    | 36 1.201 1.196 1.22                 | 38 1.170 1.164                      | 40 1.140 1.135                                        |
|          |                                                                       | 2                   | 4                             | 9                       | œ                             | 10                            | 12                                              | 14                                  | 91                                              | 18                  | 20                         | 22                                  | 24                                                                                  | 26                            | 28                            | 8                   | 32                                                            | 34                      | 36                                  | 38                                  | 8                                                     |

TOLERANCE VALUES IN (m<sup>2</sup>/s<sup>2</sup>)/(cy/4km) FOR 75 PERCENT CONFIDENCE INTERVALS

| <del></del> | MA<br>M | WAVE NO. 5                | ر.<br>د                                            | <b>/</b> *    | WAVE NO.          | NO. 10                                                                                                         | M<br>M | WAVE NO.      | NO. 15                                              | WA                                                                      | WAVE NO. 20 | 50                          | WAV         | WAVE NO.   | 25                                                                                      | WAV           | WAVE NO.                           | 30          |
|-------------|---------|---------------------------|----------------------------------------------------|---------------|-------------------|----------------------------------------------------------------------------------------------------------------|--------|---------------|-----------------------------------------------------|-------------------------------------------------------------------------|-------------|-----------------------------|-------------|------------|-----------------------------------------------------------------------------------------|---------------|------------------------------------|-------------|
| -           | 2-01X   | .J.M<br>S- <sub>01X</sub> | X10-2<br>X10-2<br>X10-3<br>X10-3<br>X10-3<br>X10-3 | .8.1<br>5-01X | ε- <sub>01X</sub> |                                                                                                                | 2.5.1  | .J.M<br>P-01X | C.L.S.<br>X10-3<br>X10-4<br>M.L.<br>X10-4<br>C.L.S. | L.S. 4                                                                  | P-OIX       | C.L.S.<br>X10 <sup>-4</sup> | .S.⊿<br>orx | л.М<br>orx | C.L.S.<br>X10 <sup>-4</sup><br>X10 <sup>-4</sup><br>M.L.<br>X10 <sup>-4</sup><br>C.L.S. | .2.1<br>P-01X | p- <sub>Ofx</sub><br>.L.S.<br>.L.M | C.L.S.      |
| 4           | 1.672   | 4.672                     | 4.752                                              | 6.167         | 6.280             | 4 4.672 4.672 4.752 6.167 6.280 6.332 21.83 23.08 22.86 10.85 11.47 11.35 6.078 7.456 7.186 3.801 4.634 4.467  | 21.83  | 23.08         | 22.86                                               | 10.85                                                                   | 11.47       | 11,35                       | 6.078       | 7.456      | 7.186                                                                                   | 3.801         | 4.634                              | 4.467       |
| 9           | 3.957   | 6 3.957 3.950 4.02        |                                                    | 5 5.210       | 5.302             |                                                                                                                | 18.44  | 19.52         | 19.31                                               | 5.349 18.44 19.52 19.31 91.66                                           | 97.04       | 95.90                       | 5.141       | 6.337      | 97.04 95.90 5.141 6.337 6.083 3.214                                                     | 3.214         |                                    | 3.935 3.780 |
| 00          | 3.488   | 8 3.488 3.479 3.54        | 3.548                                              | 18 4.587      | 4.66              | 4.665 4.710 16.23 17.19 17.00 8.071 8.550 8.445 4.529 5.594 5.360 2.830 3.473 3.330                            | 16.23  | 17.19         | 17.00                                               | 8.071                                                                   | 8.550       | 8.445                       | 4.529       | 5.594      | 5.360                                                                                   | 2.830         | 3.473                              | 3, 330      |
| 2           | 3.153   | 3.143                     | 10 3.153 3.143 3.207 4.142                         | 4.142         | 4.212             | 2 4.253                                                                                                        | 14.66  | 15,53         | 15.35                                               | 4.253 14.66 15.53 15.35 7.290 7.725 7.627 4.091 5.062 4.843 2.556       | 7.725       | 7.627                       | 4.091       | 5.062      | 4.843                                                                                   | 2.556         | 3.142 3.008                        | 3.008       |
| 12          | 2.898   | 12 2.898 2.888 2.94       | 12.947                                             | 3.806         | 3.869             | 7 3.806 3.869 3.908 13.47 14.27 14.11 6.698 7.099 7.008 3.759 4.654 4.451 2.349 2.888 2.765                    | 13.47  | 14.27         | 14.11                                               | 6.698                                                                   | 7.099       | 7.008                       | 3,759       | 4.654      | 4.451                                                                                   | 2.349         | 2.888                              | 2.765       |
| 4           | 969.    | 14 2.696 2.686 2.74       |                                                    | 3.539         | 3,599             | 2 3.539 3.599 3.634 12.52 13.27 13.12 6.230 6.603 6.518 3.497 4.332 4.141 2.185 2.689 2.572                    | 12.52  | 13.27         | 13.12                                               | 6.230                                                                   | 6.603       | 6.518                       | 3.497       | 4.332      | 4.141                                                                                   | 2.185         | 2.689                              | 2.572       |
| 19          | 2.532   | 2,522                     | 2.575                                              | 3.322         | 3.37.             | 16 2.532 2.522 2.575 3.322 3.377 3.412 11.76 12.46 12.32 5.848 6.200 6.119 3.283 4.068 3.888 2.051 2.525 2.414 | 11.76  | 12.46         | 12.32                                               | 5.848                                                                   | 6.200       | 6.119                       | 3.283       | 4.068      | 3,888                                                                                   | 2.051         | 2.525                              | 2.414       |
| 8           | .393    | 2.384                     | 18 2.393 2.384 2.434 3.140                         | 3.140         | 3.192             | 2 3.224                                                                                                        | 11.11  | 11.78         | 11.64                                               | 3.224 11.11 11.78 11.64 5.528 5.860 5.784 3.103 3.848 3.675 1.939 2.388 | 5.860       | 5.784                       | 3.103       | 3.848      | 3.675                                                                                   | 1.939         | 2.388                              | 2.282       |
| 20          | 2.275   | 20 2.275 2.266 2.31       | 2.314                                              | 14 2.985      | 3.034             |                                                                                                                | 10.56  | 11.19         | 11.07                                               | 3.065 10.56 11.19 11.07 5.254 5.571                                     | 5.571       | 5.498 2.950                 | 2.950       | 3.659      | 3.494                                                                                   | 1.843         | 3.659 3.494 1.843 2.270            | 2.169       |
| 25          | 2.173   | 2.164                     | 2.210                                              | 2.850         | 2.897             | 22 2.173 2.164 2.210 2.850 2.897 2.927 10.09 10.69 10.57 5.018 5.321 5.251 2.817 3.495 3.337 1.760 2.169 2.072 | 10.09  | 10.69         | 10.57                                               | 5.018                                                                   | 5.321       | 5.251                       | 2.817       | 3,495      | 3.337                                                                                   | 1.760         | 2.169                              | 2.072       |
| 24          | 2.084   | 24 2.084 2.075 2.11       | , 2.119                                            | 2.733         | 3 2.77            | 9 2.733 2.778 2.806 9.669 10.25 10.13 4.811 5.101 5.034 2.701 3.351 3.199 1.687 2.080 1.987                    | 699.6  | 10.25         | 10.13                                               | 4.811                                                                   | 5.101       | 5.034                       | 2.701       | 3.351      | 3.199                                                                                   | 1.687         | 2.080                              | 1.987       |
| 56          | 2.004   | 1.996                     | , 2.038                                            | 2.629         | 3 2.67;           | 26 2.004 1.996 2.038 2.629 2.673 2.700 9.303 9.862 9.748 4.629 4.907 4.843 2.599 3.224 3.077 1.624 2.001 1.911 | 9.303  | 9.862         | 9.748                                               | 4.629                                                                   | 4.907       | 4.843                       | 2.599       | 3.224      | 3.077                                                                                   | 1.624         | 2.001                              | 1.911       |
| 78          | 1.934   | 28 1.934 1.926 1.96       | 1.967                                              | 2.536         | 5 2.578           | 57 2.536 2.578 2.605 8.974 9.513 9.403 4.465 4.735 4.672 2.507 3.110 2.970 1.566 1.930 1.844                   | 8.974  | 9.513         | 9.403                                               | 4.465                                                                   | 4.735       | 4.672                       | 2.507       | 3.110      | 2.970                                                                                   | 1.566         | 1.930                              | 1.844       |
| 8           | 1.870   | 1.862                     | 1.902                                              | 2.452         | 2.49;             | 30 1.870 1.862 1.902 2.452 2.493 2.518 8.677 9.199 9.092 4.318 4.579 4.518 2.424 3.009 2.872 1.514 1.867 1.783 | 8.677  | 9.199         | 9.092                                               | 4.318                                                                   | 4.579       | 4.518                       | 2.424       | 3.009      | 2.872                                                                                   | 1.514         | 1.867                              | 1.783       |
| 32          | 1.812   | 32 1.812 1.804 1.84       | 1.843                                              | 2.376         | 2.41              | 13 2.376 2.415 2.440 8.408 8.914 8.810 4.184 4.437 4.378 2.349 2.916 2.783 1.467 1.809 1.728                   | 8.408  | 8.914         | 8.810                                               | 4.184                                                                   | 4.437       | 4.378                       | 2.349       | 2.916      | 2.783                                                                                   | 1.467         | 1.809                              | 1.728       |
| 34          | 1.759   | 34 1.759 1.752 1.7        | 1.789                                              | 2.307         | 2.34              | 89 2.307 2.345 2.369 8.163 8.654 8.553 4.062 4.307 4.250 2.280 2.831 2.701 1.425 1.757 1.677                   | 8.163  | 8.654         | 8.553                                               | 4.062                                                                   | 4.307       | 4.250                       | 2.280       | 2.831      | 2.701                                                                                   | 1.425         | 1.757                              | 1.677       |
| 98          | 1.71    | 36   1.711   1.703   1.74 | 1.740                                              | 2.243         | 3 2.280           | 10 2.243 2.280 2.304 7.938 8.415 8.317 3.950 4.189 4.133 2.217 2.753 2.627 1.385 1.708 1.631                   | 7.938  | 8.415         | 8,317                                               | 3.950                                                                   | 4.189       | 4.133                       | 2.217       | 2.753      | 2.627                                                                                   | 1.385         | 1.708                              | 1.631       |
| 38          | 999.1   | 38 1.666 1.659 1.69       | 1.695                                              | 2.185         | 3 2.22            | 95 2.185 2.220 2.243 7.730 8.195 8.099 3.846 4.079 4.025 2.159 2.681 2.558 1.349                               | 7.730  | 8,195         | 8.099                                               | 3.846                                                                   | 4.079       | 4.025                       | 2.159       | 2.681      | 2.558                                                                                   | 1.349         | 1.664                              | 1.588       |
| 6           | 1.625   | 1.618                     | 1.653                                              | 2.130         | 2.16              | 40 1.625 1.618 1.653 2.130 2.165 2.188 7.538 7.992 7.898 3.751 3.978 3.925 2.106 2.615 2.495 1.316 1.623 1.549 | 7.538  | 7.992         | 7.898                                               | 3.751                                                                   | 3.978       | 3.925                       | 2.106       | 2.615      | 2.495                                                                                   | 1.316         | 1.623                              | 1.549       |
|             |         | i                         |                                                    |               |                   |                                                                                                                |        |               |                                                     |                                                                         |             |                             |             |            |                                                                                         |               |                                    |             |

TABLE A-III. TOLERANCE VALUES IN (m²/s²)/(cy/4km) FOR 90 PERCENT CONFIDENCE INTERVALS

| _           | ₽-01X                                                | 7.786 7.438 3.923 4.831 4.618   | 8 4.224 4.207 4.296 5.542 5.634 5.692 19.61 20.78 20.55 9.757 10.34 10.21 5.477 6.784 6.486 3.422 4.214 4.028 | 3.624                                                                   | 2 3.482 3.468 3.542 4.569 4.644 4.691 16.17 17.13 16.94 8.042 8.527 8.415 4.515 5.600 5.348 2.821 3.475 3.321 | 14 3.237 3.223 3.292 4.245 4.315 4.360 15.02 15.92 15.74 7.474 7.924 7.820 4.196 5.200 4.970 2.621 3.227 3.086 | 3.028 2.893                                                                                        | 5 3.758 3.820 3.859 13.30 14.10 13.93 6.616 7.016 6.923 3.714 4.610 4.400 2.321 2.861 2.732 | 2.595                                                                                                    | 2.480                                                                                                    | 2.377                                                                                                    | 2.285                                                                                                    | 2.204                                                                                                    | 2.978 3.009 10.37 10.99 10.86 5.158 5.471 5.398 2.896 3.597 3.431 1.809 2.232 2.130 | 2.064                                                                   | 34 2.102 2.092 2.137 2.755 2.800 2.829 9.748 10.33 10.21 4.850 5.144 5.075 2.723 3.383 3.227 1.702 2.099 2.003 | 1.948                                                                                 | 38 1.990 1.981 2.024 2.608 2.650 2.678 9.228 9.784 9.669 4.592 4.870 4.804 2.578 3.203 3.055 1.611 1.987 1.896 | 40 1.940 1.931 1.973 2.543 2.584 2.611 8.997 9.539 9.427 4.477 4.748 4.684 2.514 3.123 2.978 1.570 1.937 1.849 |
|-------------|------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 8           | - 01V                                                | 1 4                             | 4                                                                                                             | 8 3                                                                     | 5 3                                                                                                           | 7 3                                                                                                            | 8 2                                                                                                | 2                                                                                           | 8 2                                                                                                      | 2                                                                                                        | 9.2                                                                                                      | 2                                                                                                        | 9.2                                                                                                      | 2                                                                                   | 2 2                                                                     | 3 2                                                                                                            |                                                                                       | 7                                                                                                              |                                                                                                                |
| NO.         | .J.M<br>P-01X                                        | .83                             | .2                                                                                                            | 78                                                                      | 47                                                                                                            | .22                                                                                                            | .02                                                                                                | 98                                                                                          | 71                                                                                                       | 59                                                                                                       | 486                                                                                                      | 36                                                                                                       | Š                                                                                                        | 232                                                                                 | 162                                                                     | 60                                                                                                             | 0.                                                                                    | 98                                                                                                             | 937                                                                                                            |
| WAVE        | - 1 W                                                | 3.4                             | 4                                                                                                             | 3                                                                       | 3                                                                                                             | <u>س</u>                                                                                                       | 3                                                                                                  | 2                                                                                           | 2                                                                                                        | 2                                                                                                        | 2                                                                                                        | 2                                                                                                        | ~                                                                                                        | 2,                                                                                  | 2.                                                                      | 2                                                                                                              | ~i                                                                                    |                                                                                                                | -                                                                                                              |
| X<br>A      | p-01X                                                | 92                              | 42                                                                                                            | 0.79                                                                    | 85.                                                                                                           | 62                                                                                                             | 457                                                                                                | 321                                                                                         | 205                                                                                                      | 106                                                                                                      | 013                                                                                                      | 941                                                                                                      | 872                                                                                                      | 8                                                                                   | 753                                                                     | 702                                                                                                            | 654                                                                                   | 611                                                                                                            | 570                                                                                                            |
|             | S 1                                                  | m                               | <u>m</u>                                                                                                      | 3                                                                       | 2.                                                                                                            | ~                                                                                                              | 2                                                                                                  | <u>~</u>                                                                                    | 2.                                                                                                       | 2.                                                                                                       | 2                                                                                                        | <u>-</u>                                                                                                 | <u> </u>                                                                                                 | <u>-</u>                                                                            |                                                                         | <u>-</u>                                                                                                       | <u>-</u>                                                                              | <u> </u>                                                                                                       | 릐                                                                                                              |
|             | .2.1.3<br>4-01X<br>.2.1.3<br>710-4                   | 438                             | 486                                                                                                           | 836                                                                     | 348                                                                                                           | 970                                                                                                            | 623                                                                                                | 9                                                                                           | 8                                                                                                        | 994                                                                                                      | 828                                                                                                      | 681                                                                                                      | 550                                                                                                      | 431                                                                                 | 324                                                                     | 227                                                                                                            | 137                                                                                   | 055                                                                                                            | 978                                                                                                            |
| 25          | 8 1 3                                                | 7                               | 9                                                                                                             | 5                                                                       | 5.                                                                                                            | 4.                                                                                                             | 4                                                                                                  | 4.                                                                                          | 4                                                                                                        | 3                                                                                                        | m                                                                                                        | ب                                                                                                        | က်                                                                                                       | 3.                                                                                  | <u>ښ</u>                                                                | က                                                                                                              | <u>ښ</u>                                                                              | щ.                                                                                                             | 2                                                                                                              |
| WAVE NO. 25 | -2.5.1<br>P-0fX<br>.1.M<br>-0fX                      | 786                             | 28                                                                                                            | 104                                                                     | 9                                                                                                             | 200                                                                                                            | 88                                                                                                 | 910                                                                                         | 380                                                                                                      | 182                                                                                                      | 012                                                                                                      | 828                                                                                                      | 721                                                                                                      | 597                                                                                 | 485                                                                     | 383                                                                                                            | 289                                                                                   | 203                                                                                                            | 123                                                                                                            |
| آب<br>ح     | M                                                    | 7.                              | 6                                                                                                             | 9                                                                       | δ.                                                                                                            | ď.                                                                                                             | 4                                                                                                  | 4                                                                                           | 4.                                                                                                       | 4                                                                                                        | 4.                                                                                                       | ω.                                                                                                       | ω.                                                                                                       | 3.                                                                                  | w.                                                                      | ب                                                                                                              | ω.                                                                                    | ω.                                                                                                             | ۳.                                                                                                             |
| WA          | 4-01X                                                | 279                             | 477                                                                                                           | 928                                                                     | 515                                                                                                           | 196                                                                                                            | 933                                                                                                | 714                                                                                         | 529                                                                                                      | 372                                                                                                      | 231                                                                                                      | 107                                                                                                      | 966                                                                                                      | 896                                                                                 | 806                                                                     | 723                                                                                                            | 648                                                                                   | 578                                                                                                            | 514                                                                                                            |
|             | .s.1                                                 | 6.                              | 5                                                                                                             | 4                                                                       | 4.                                                                                                            | 4.                                                                                                             | <u>ښ</u>                                                                                           | <u>ښ</u>                                                                                    | က                                                                                                        | 3.                                                                                                       | <u>ښ</u>                                                                                                 | <u>ښ</u>                                                                                                 | 2                                                                                                        | 2.                                                                                  | 2.                                                                      | 2:                                                                                                             | 2                                                                                     | 2:                                                                                                             | 2.                                                                                                             |
|             | 4-01X                                                | 02.                             | .21                                                                                                           | 185                                                                     | 415                                                                                                           | 820                                                                                                            | 330                                                                                                | 923                                                                                         | 580                                                                                                      | 284                                                                                                      | 022                                                                                                      | 790                                                                                                      | 584                                                                                                      | 398                                                                                 | 229                                                                     | 075                                                                                                            | 934                                                                                   | 804                                                                                                            | 684                                                                                                            |
| 20          | .s.J.J                                               | Ξ                               | 10                                                                                                            | 9.                                                                      | ω                                                                                                             | 7                                                                                                              | 7.                                                                                                 | 9                                                                                           | 9                                                                                                        | 9                                                                                                        | 9                                                                                                        | 5.                                                                                                       | 5.                                                                                                       | 5.                                                                                  | 5.                                                                      | 5.                                                                                                             | 4                                                                                     | 4                                                                                                              | 4                                                                                                              |
|             | P-OIX                                                | .86                             | .34                                                                                                           | 306                                                                     | 527                                                                                                           | 924                                                                                                            | 429                                                                                                | 910                                                                                         | 999                                                                                                      | 369                                                                                                      | 103                                                                                                      | 869                                                                                                      | 629                                                                                                      | 471                                                                                 | 38                                                                      | 144                                                                                                            | 002                                                                                   | 870                                                                                                            | 748                                                                                                            |
| Z<br>W      | .J.M                                                 | Ξ                               | 10                                                                                                            | 9.                                                                      | ω.                                                                                                            | ~                                                                                                              | 7.                                                                                                 | 7                                                                                           | 9                                                                                                        | 6.                                                                                                       | 9                                                                                                        | 5.                                                                                                       | 5.                                                                                                       | S.                                                                                  | 5                                                                       | ς.                                                                                                             | 5.                                                                                    | 4                                                                                                              | 4                                                                                                              |
| WAVE NO.    | 1.5.4<br>M.L.<br>M.L.<br>X10 <sup>-4</sup><br>C.L.S. | .19                             | 757                                                                                                           | 778                                                                     | 342                                                                                                           | 474                                                                                                            | 900                                                                                                | 919                                                                                         | 288                                                                                                      | 305                                                                                                      | 755                                                                                                      | 534                                                                                                      | 336                                                                                                      | 158                                                                                 | 397                                                                     | 350                                                                                                            | 716                                                                                   | 592                                                                                                            | 11                                                                                                             |
|             | -5-7                                                 | 1.1                             | o,                                                                                                            | ω                                                                       | ω.                                                                                                            | <u>',</u>                                                                                                      | 7.                                                                                                 | 6.                                                                                          | 9                                                                                                        | 6.                                                                                                       | S.                                                                                                       | 7.                                                                                                       | <u>.,,</u>                                                                                               | ις.                                                                                 | 4                                                                       | 4.                                                                                                             | 4                                                                                     | 4                                                                                                              | 4.                                                                                                             |
|             | C.L.S.<br>A_0IX                                      | 23.56 11.19 11.86 11.70 6.279   | .55                                                                                                           | 5.121 17.64 18.70 18.49 8.778 9.306 9.185 4.928 6.104 5.836 3.079 3.788 | 94                                                                                                            | .74                                                                                                            | .75                                                                                                | .93                                                                                         | .24                                                                                                      | .65                                                                                                      | .12                                                                                                      | .65                                                                                                      | .24                                                                                                      | .86                                                                                 | 2.915 10.04 10.65 10.52 4.997 5.300 5.229 2.806 3.485 3.324 1.753 2.162 | .21                                                                                                            | 8 2.678 2.722 2.751 9.477 10.05 9.930 4.716 5.002 4.934 2.648 3.289 3.137 1.654 2.041 | 699                                                                                                            | 427                                                                                                            |
| 15          | . S. J. J                                            | 23                              | 20                                                                                                            | 8                                                                       | 92                                                                                                            | 5                                                                                                              | 14                                                                                                 | 3                                                                                           | 13                                                                                                       | 12                                                                                                       | 12                                                                                                       | =                                                                                                        | =                                                                                                        | 2                                                                                   | 9                                                                       | 2                                                                                                              | 9.                                                                                    | 9.                                                                                                             | 6                                                                                                              |
| NO. 15      | 4-01X                                                | 83                              | 78                                                                                                            | 2                                                                       | 73                                                                                                            | 92                                                                                                             | 93                                                                                                 | 2                                                                                           | 33                                                                                                       | 8                                                                                                        | 26                                                                                                       | 79                                                                                                       | 37                                                                                                       | 99                                                                                  | 65                                                                      | 33                                                                                                             | 9                                                                                     | 784                                                                                                            | 33                                                                                                             |
| ž           | , J. M                                               | 23.                             | 20                                                                                                            | 8                                                                       | 17                                                                                                            | 5                                                                                                              | 14                                                                                                 | 7                                                                                           | 33                                                                                                       | 2                                                                                                        | 12                                                                                                       | Ξ                                                                                                        | =                                                                                                        | 2                                                                                   | 2                                                                       | 2                                                                                                              | 2                                                                                     | 6                                                                                                              | 6                                                                                                              |
| WAVE        | 7-01X                                                | 48                              | 19                                                                                                            | 64                                                                      | 1                                                                                                             | 05                                                                                                             | 90                                                                                                 | 8                                                                                           | 64                                                                                                       | 0                                                                                                        | 57                                                                                                       | .12                                                                                                      | 72                                                                                                       | 37                                                                                  | 8                                                                       | 748                                                                                                            | 177                                                                                   | 228                                                                                                            | 197                                                                                                            |
|             | L.S. 1                                               | 22.                             | 19                                                                                                            | 17                                                                      | 16                                                                                                            | 5                                                                                                              | 14.                                                                                                | 3                                                                                           | 12                                                                                                       | 12.                                                                                                      | Ξ                                                                                                        | Ξ                                                                                                        | 2                                                                                                        | 2                                                                                   | 2                                                                       | 6                                                                                                              | 7.6                                                                                   | 9.                                                                                                             | 8                                                                                                              |
|             | X10-3<br>X10-3<br>W.L.<br>X10-3                      | 6.525 22.48 23.83               | 369                                                                                                           | 21                                                                      | 169                                                                                                           | 360                                                                                                            | 187                                                                                                | 359                                                                                         | 899                                                                                                      | 03                                                                                                       | 357                                                                                                      | 228                                                                                                      | = 3                                                                                                      | 60                                                                                  | 315                                                                     | 329                                                                                                            | 121                                                                                   | 378                                                                                                            | Ξ                                                                                                              |
| 10          | .ž.1.5                                               | 6.5                             | 5.6                                                                                                           | 5.                                                                      | 4.6                                                                                                           | 4                                                                                                              | 4.0                                                                                                | ω,                                                                                          | 3.6                                                                                                      | 3                                                                                                        | ω,                                                                                                       | 3.                                                                                                       | <br>ا                                                                                                    | ص                                                                                   | 2.9                                                                     | 2.8                                                                                                            | 2.                                                                                    | 2.6                                                                                                            | 2.6                                                                                                            |
| NO.         | £-01X                                                | 59                              | 34                                                                                                            | 69                                                                      | 44                                                                                                            | 315                                                                                                            | 45                                                                                                 | 320                                                                                         | 30                                                                                                       | 19                                                                                                       | 322                                                                                                      | 95                                                                                                       | 8                                                                                                        | 78                                                                                  | 88                                                                      | 8                                                                                                              | 722                                                                                   | 550                                                                                                            | 84                                                                                                             |
| Æ           | M.L.                                                 | 6.4                             | 5.6                                                                                                           | 5.0                                                                     | 4.6                                                                                                           | 4                                                                                                              | 4.0                                                                                                | 3.8                                                                                         | 3.6                                                                                                      | 3.4                                                                                                      | ۳<br>ش                                                                                                   | ا                                                                                                        | 3.0                                                                                                      | ~                                                                                   | 2.8                                                                     | 2:                                                                                                             | 2.                                                                                    | 2.6                                                                                                            | 2.5                                                                                                            |
| WAVE        | E-OTX                                                | 354                             | 42                                                                                                            | 87                                                                      | 69                                                                                                            | 45                                                                                                             | 79                                                                                                 | 58                                                                                          | 72                                                                                                       | Ξ                                                                                                        | 69                                                                                                       | 43                                                                                                       | 33                                                                                                       | 8                                                                                   | 88                                                                      | 55                                                                                                             | 178                                                                                   | 80                                                                                                             | 143                                                                                                            |
|             | ั.ร.า                                                | 9                               | 5.5                                                                                                           | 9.                                                                      | 4.                                                                                                            | 4.2                                                                                                            | 3.9                                                                                                | 3.7                                                                                         | 3.5                                                                                                      | 3.4                                                                                                      | 3.8                                                                                                      | 3.1                                                                                                      | 3.0                                                                                                      | 2.9                                                                                 | 2.8                                                                     | 2.7                                                                                                            | 2.6                                                                                   | 2.6                                                                                                            | 2.5                                                                                                            |
|             | 2-01X                                                | 27                              | 96                                                                                                            | 992                                                                     | 42                                                                                                            | 35                                                                                                             | 98                                                                                                 | 115                                                                                         | 69                                                                                                       | 45                                                                                                       | 36                                                                                                       | 138                                                                                                      | 351                                                                                                      | :73                                                                                 | 02                                                                      | 37                                                                                                             | 178                                                                                   | 124                                                                                                            | 173                                                                                                            |
| 2           | .š.1.5                                               | 4.9                             | 4.2                                                                                                           | 3.                                                                      | 3.5                                                                                                           | 3.2                                                                                                            | 3.0                                                                                                | 2.9                                                                                         | 2.7                                                                                                      | 2.6                                                                                                      | 2.5                                                                                                      | 2.4                                                                                                      | 2                                                                                                        | 2.2                                                                                 | 2.2                                                                     | 2.1                                                                                                            | 2.0                                                                                   | 2.                                                                                                             |                                                                                                                |
| . 0         | 7-01X                                                | 24                              | 07                                                                                                            | 98                                                                      | 89                                                                                                            | 23                                                                                                             | 121                                                                                                | 53                                                                                          | Ξ                                                                                                        | 8                                                                                                        | 85                                                                                                       | 87                                                                                                       | 202                                                                                                      | 25                                                                                  | 55                                                                      | 192                                                                                                            | 34                                                                                    | 8                                                                                                              | 13                                                                                                             |
| WAVE NO. 5  | ั.⊐.พ                                                | 4.8                             | 4.2                                                                                                           | 3.7                                                                     | 3.4                                                                                                           | 3.2                                                                                                            | 3.0                                                                                                | 2.8                                                                                         | 2.7                                                                                                      | 2.5                                                                                                      | 2.4                                                                                                      | 2.3                                                                                                      | 2.3                                                                                                      | 2.2                                                                                 | 2.1                                                                     | 2.0                                                                                                            | 2.0                                                                                   | 2.                                                                                                             | 1.5                                                                                                            |
| WAV         | 2-01X                                                | 44                              | 24                                                                                                            | 5                                                                       | 82                                                                                                            | 37                                                                                                             | 34                                                                                                 | 99                                                                                          | 23                                                                                                       | 8                                                                                                        | 6                                                                                                        | 16                                                                                                       | 215                                                                                                      | 35                                                                                  | 65                                                                      | 02                                                                                                             | 143                                                                                   | 90                                                                                                             | 6                                                                                                              |
|             | X10-2<br>X10-2<br>X10-2<br>C.L.S.                    | 6 4.844 4.824 4.927 6.354 6.459 | 4.2                                                                                                           | 10 3.801 3.786 3.865 4.987 5.069                                        | 3.4                                                                                                           | 3.2                                                                                                            | 16 3.034 3.021 3.086 3.979 4.045 4.087 14.08 14.93 14.75 7.006 7.429 7.330 3.933 4.881 4.659 2.457 | 18 2.866 2.853 2.91                                                                         | 20 2.723 2.711 2.769 3.572 3.630 3.668 12.64 13.39 13.24 6.288 6.665 6.580 3.529 4.380 4.180 2.205 2.718 | 22 2.600 2.590 2.645 3.411 3.467 3.503 12.07 12.80 12.65 6.005 6.369 6.284 3.372 4.182 3.994 2.106 2.595 | 24 2.493 2.482 2.536 3.269 3.322 3.357 11.57 12.26 12.12 5.755 6.103 6.022 3.231 4.012 3.828 2.019 2.489 | 26 2.397 2.387 2.438 3.143 3.195 3.228 11.12 11.79 11.65 5.534 5.869 5.790 3.107 3.858 3.681 1.941 2.394 | 28 2.312 2.302 2.351 3.031 3.080 3.113 10.72 11.37 11.24 5.336 5.659 5.584 2.996 3.721 3.550 1.872 2.309 | 30 2.235 2.225 2.273 2.930                                                          | 32 2.165 2.155 2.202 2.838 2.885                                        | 2.1                                                                                                            | 36 2.043 2.034 2.07                                                                   | 5.                                                                                                             | 2:                                                                                                             |
|             |                                                      | 9                               | ∞                                                                                                             | 10                                                                      | 12                                                                                                            | 14                                                                                                             | 16                                                                                                 | 18                                                                                          | 20                                                                                                       | 22                                                                                                       | 24                                                                                                       | 56                                                                                                       | 28                                                                                                       | 8                                                                                   | 32                                                                      | 34                                                                                                             | 36                                                                                    | 38                                                                                                             | 40                                                                                                             |
|             |                                                      |                                 |                                                                                                               |                                                                         |                                                                                                               |                                                                                                                |                                                                                                    |                                                                                             |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                     |                                                                         |                                                                                                                |                                                                                       |                                                                                                                |                                                                                                                |

TABLE A-IV. TOLERANCE VALUES IN (m2/s2)/(cy/4km) FOR 95 PERCENT CONFIDENCE INTERVALS

|             | ا تار                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u></u>                                                                                      | <u></u>                                                                                                        | m                                                                                                              | က                                                                                                              | 0                                                                                                              | m                                                                                                              | ~                                                                                                              | <u>_</u>                                                                                                       | <u> </u>                                                                                                       | 10                                                                                           | m                                                                                                              |                                                                                                                | ~                                                                                                              | 10                                                                                           | _                                                                                                              |                                                                                                                |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| _           | .2.1.3<br>4- <sub>01.X</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .339                                                                                         | 8                                                                                                              | .398                                                                                                           | .078                                                                                                           | .819                                                                                                           | .60                                                                                                            | .42                                                                                                            | .264                                                                                                           | . 129                                                                                                          | 90.                                                                                          | .898                                                                                                           | .8                                                                                                             | 7                                                                                                              | .635                                                                                         | .560                                                                                                           | 494                                                                                                            |
| e           | OIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>4</b> 0 5                                                                                 | 73.4                                                                                                           | 12 4                                                                                                           | 33 4                                                                                                           | 25 3                                                                                                           | 97 3                                                                                                           | 32 3                                                                                                           | 37 3                                                                                                           | 30 3                                                                                                           | 50 3                                                                                         | 18 2                                                                                                           | 14 2                                                                                                           | 53 2                                                                                                           | 58 2                                                                                         | 90 2                                                                                                           | 8 2                                                                                                            |
| 운           | т- т- W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.6                                                                                          | 5.0                                                                                                            | 4.6                                                                                                            | 4.3                                                                                                            | 4.0                                                                                                            | 3.7                                                                                                            | 3.6                                                                                                            | 3.4                                                                                                            | 3.2                                                                                                            | 3.1                                                                                          | 3.04                                                                                                           | 2.9                                                                                                            | 2.8                                                                                                            | 2.7                                                                                          | 2.69                                                                                                           | 2.6                                                                                                            |
| WAVE NO. 30 | .p-01X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 525                                                                                          | 170                                                                                                            | 730                                                                                                            | 459                                                                                                            | 240                                                                                                            | 157                                                                                                            | 904                                                                                                            | 69/                                                                                                            | 555                                                                                                            | 551                                                                                          | 160                                                                                                            | 378                                                                                                            | 303                                                                                                            | 235                                                                                          | 174                                                                                                            | 117                                                                                                            |
|             | .8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                            | 4.                                                                                                             | m                                                                                                              | m                                                                                                              | <u>ښ</u>                                                                                                       | 3.(                                                                                                            | 2                                                                                                              | ۲,                                                                                                             | 2.                                                                                                             | 2.                                                                                           | 2.                                                                                                             | 2.:                                                                                                            | 2                                                                                                              | 5                                                                                            | 2.                                                                                                             | 2.                                                                                                             |
| 25          | .2.1.3<br>4-01X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.592                                                                                        | 7.733                                                                                                          | 7.080                                                                                                          | 6.565                                                                                                          | 6.148                                                                                                          | 5.803                                                                                                          | 5.508                                                                                                          | 5.255                                                                                                          | 5.034                                                                                                          | 4.839                                                                                        | 4.665                                                                                                          | 4.509                                                                                                          | 4.368                                                                                                          | 4.239                                                                                        | 4.121                                                                                                          | 4.013                                                                                                          |
| 9           | p-OLX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93                                                                                           | 82                                                                                                             | 190                                                                                                            | 943                                                                                                            | 194                                                                                                            | 125                                                                                                            | E                                                                                                              | 345                                                                                                            | 307                                                                                                            | 860                                                                                          | 916                                                                                                            | 49                                                                                                             | 000                                                                                                            | 63                                                                                           | 337                                                                                                            | 52                                                                                                             |
| WAVE NO. 25 | .1.M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.                                                                                           | 8                                                                                                              | 7.6                                                                                                            | 9                                                                                                              | 9.9                                                                                                            | 6.1                                                                                                            | 5.8                                                                                                            | 5.                                                                                                             | 5.                                                                                                             | 5.0                                                                                          | 4.9                                                                                                            | 4.7                                                                                                            | 4.6                                                                                                            | 4.4                                                                                          | 4                                                                                                              | 4.2                                                                                                            |
| W           | b-01X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11 7.318 7.419 7.515 2.589 2.750 2.713 12.89 13.70 13.47 7.248 9.093 8.592 4.525 5.640 5.335 | 6.521                                                                                                          | 5.975                                                                                                          | 5.540                                                                                                          | 5.189                                                                                                          | 4.896                                                                                                          | 4.651                                                                                                          | 4.435                                                                                                          | 4.251                                                                                                          | 12 4.128 4.192 4.239 1.460 1.550 1.530 7.271 7.721 7.601 4.085 5.098 4.839 2.551 3.160 3.006 | 3.939                                                                                                          | 3.808                                                                                                          | 3.688                                                                                                          | 13 3.617 3.675 3.715 1.280 1.358 1.341 6.370 6.767 6.660 3.578 4.463 4.239 2.235 2.768 2.635 | 3.480                                                                                                          | 3.389                                                                                                          |
|             | P-OFX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 47                                                                                           | 33                                                                                                             | 2                                                                                                              | 8                                                                                                              | 48                                                                                                             | 07                                                                                                             | 47                                                                                                             | 5                                                                                                              | 90                                                                                                             | 5                                                                                            | 28                                                                                                             | 84                                                                                                             | 29                                                                                                             | 09                                                                                           | 75                                                                                                             | 9                                                                                                              |
| 20          | C.L.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13.                                                                                          | 12.                                                                                                            | Ξ.                                                                                                             | .0                                                                                                             | 9.6                                                                                                            | 9.1                                                                                                            | 8.6                                                                                                            | 8.5                                                                                                            | 7.9                                                                                                            | 7.6                                                                                          | 7.3                                                                                                            | 7.0                                                                                                            | 6.8                                                                                                            | 9.9                                                                                          | 6.4                                                                                                            | 6.3                                                                                                            |
| WAVE NO. 20 | P-OFX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 70                                                                                         | .34                                                                                                            | 8.                                                                                                             | .47                                                                                                            | 810                                                                                                            | 255                                                                                                            | 197                                                                                                            | 384                                                                                                            | 035                                                                                                            | 721                                                                                          | 442                                                                                                            | 194                                                                                                            | 968                                                                                                            | 767                                                                                          | 575                                                                                                            | 405                                                                                                            |
| AVE         | - 7.M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9 13                                                                                         | 0 12                                                                                                           | 3 1                                                                                                            | 7 10                                                                                                           | 39.                                                                                                            | 2 9.                                                                                                           | 8                                                                                                              | ж<br>ж                                                                                                         | ω.                                                                                                             | 7.                                                                                           | 3 7.                                                                                                           | 7.                                                                                                             | 5 6.                                                                                                           | 0 6.                                                                                         | 5 6.                                                                                                           | 5 6.                                                                                                           |
| 3           | 4-01X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.8                                                                                         | 11.6                                                                                                           | 10.6                                                                                                           | 9.85                                                                                                           | 9.23                                                                                                           | 8.71                                                                                                           | 8.27                                                                                                           | 7.89                                                                                                           | 7.56                                                                                                           | 7.27                                                                                         | 7.01                                                                                                           | 6.780                                                                                                          | 6.56                                                                                                           | 6.37                                                                                         | 6.19                                                                                                           | 6.03                                                                                                           |
|             | ε- <sup>01X</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 713                                                                                          | 441                                                                                                            | 237                                                                                                            | 074                                                                                                            | 943                                                                                                            | 833                                                                                                            | 742                                                                                                            | 199                                                                                                            | 592                                                                                                            | 530                                                                                          | 475                                                                                                            | 426                                                                                                            | 382                                                                                                            | 341                                                                                          | 304                                                                                                            | 269                                                                                                            |
| . 15        | .2.1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.                                                                                           | 2.                                                                                                             | 2.                                                                                                             | 2                                                                                                              | <del>-</del>                                                                                                   | <u>-</u>                                                                                                       | -                                                                                                              | ~<br>                                                                                                          | ~<br>-                                                                                                         | <u>.</u>                                                                                     |                                                                                                                | -                                                                                                              | <u>-</u>                                                                                                       | <u>~</u>                                                                                     |                                                                                                                | -                                                                                                              |
| WAVE NO. 15 | .1.M<br>E- <sub>01X</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.750                                                                                        | 2.474                                                                                                          | 2.267                                                                                                          | 2.102                                                                                                          | 1.969                                                                                                          | 1.857                                                                                                          | 1.765                                                                                                          | 1.683                                                                                                          | 1.613                                                                                                          | 1.550                                                                                        | 1.495                                                                                                          | 1.445                                                                                                          | 1,399                                                                                                          | 1,358                                                                                        | 1.321                                                                                                          | 1.286                                                                                                          |
| WA          | E-01X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .589                                                                                         | .329                                                                                                           | .134                                                                                                           | .979                                                                                                           | .854                                                                                                           | . 749                                                                                                          | .662                                                                                                           | .585                                                                                                           | .520                                                                                                           | .460                                                                                         | .408                                                                                                           | .361                                                                                                           | .319                                                                                                           | .280                                                                                         | .245                                                                                                           | .211                                                                                                           |
|             | 0 O L X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 2                                                                                          | 2 2                                                                                                            | 96 2                                                                                                           | 5                                                                                                              | 22                                                                                                             | - 8                                                                                                            | 12                                                                                                             |                                                                                                                | _                                                                                                              | 6                                                                                            | <u>-</u>                                                                                                       | 4                                                                                                              | 6                                                                                                              | 2                                                                                            | 3                                                                                                              | 6 1                                                                                                            |
| 10          | . S. 1. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.51                                                                                         | 6.76                                                                                                           | 6.19                                                                                                           | 5.74                                                                                                           | 5.38                                                                                                           | 5.07                                                                                                           | 4.82                                                                                                           | 4.60                                                                                                           | 4.4                                                                                                            | 4.23                                                                                         | 4.09                                                                                                           | 3.95                                                                                                           | 3.85                                                                                                           | 3.71                                                                                         | 3.61                                                                                                           | 3.51                                                                                                           |
| WAVE MO. 10 | ε- <sub>OLX</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 419                                                                                          | 682                                                                                                            | 123                                                                                                            | 678                                                                                                            | 320                                                                                                            | 020                                                                                                            | 769                                                                                                            | 549                                                                                                            | 361                                                                                                            | 192                                                                                          | 042                                                                                                            | 907                                                                                                            | 788                                                                                                            | 675                                                                                          | 574                                                                                                            | 478                                                                                                            |
| AVE         | - 1 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8 7.                                                                                         | 4 6.                                                                                                           | 36.                                                                                                            | 5.                                                                                                             | 5.                                                                                                             | 5.5.                                                                                                           | 8                                                                                                              | 1 4.                                                                                                           | 5 4.                                                                                                           | 8.4.                                                                                         | 4.                                                                                                             | 53.                                                                                                            | 9<br>3.                                                                                                        | 7 3.                                                                                         | ж<br>Э                                                                                                         | 3 3,                                                                                                           |
| 3           | .8.1<br>5-017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.31                                                                                         | 6.58                                                                                                           | 6.03                                                                                                           | 5.59                                                                                                           | 5.24                                                                                                           | 4.94                                                                                                           | 4.69                                                                                                           | 4.48                                                                                                           | 4.29                                                                                                           | 4.12                                                                                         | 3.97                                                                                                           | 3.84                                                                                                           | 3.72                                                                                                           | 3.61                                                                                         | 3.51                                                                                                           | 3.42                                                                                                           |
|             | s-orx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                              | 138                                                                                                            | 703                                                                                                            | 360                                                                                                            | 083                                                                                                            | 852                                                                                                            | 655                                                                                                            | 489                                                                                                            | 340                                                                                                            | 212                                                                                          | 960                                                                                                            | 994                                                                                                            | 900                                                                                                            | 813                                                                                          | 734                                                                                                            | 693                                                                                                            |
| . 5         | C.L.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 5.                                                                                         | 5.                                                                                                             | 4.                                                                                                             | 5.4.                                                                                                           | 4.                                                                                                             | ب                                                                                                              | 3,                                                                                                             | ω.                                                                                                             | س                                                                                                              |                                                                                              | س                                                                                                              | 2.                                                                                                             | 3 2.                                                                                                           | 3 2.                                                                                         | 3 2.                                                                                                           | 1 2.                                                                                                           |
| WAVE NO, 5  | X10-t   X10-t   X10-t   X10-t   X10-t   X10-t   X10-t   X10-t   X10-t   X10-3   X10- | 10 5.616 5.567 5.7                                                                           | 12 5.052 5.009 5.138 6.584 6.682 6.762 2.329 2.474 2.441 11.60 12.34 12.13 6.521 8.185 7.733 4.071 5.073 4.805 | 14 4.624 4.589 4.703 6.033 6.123 6.196 2.134 2.267 2.237 10.63 11.30 11.10 5.975 7.490 7.080 3.730 4.642 4.398 | 16 4.287 4.255 4.360 5.594 5.678 5.745 1.979 2.102 2.074 9.857 10.47 10.30 5.540 6.943 6.565 3.459 4.303 4.078 | 18 4.015 3.986 4.083 5.241 5.320 5.382 1.854 1.969 1.943 9.233 9.810 9.648 5.189 6.494 6.148 3.240 4.025 3.819 | 20 3.788 3.761 3.852 4.945 5.020 5.078 1.749 1.857 1.833 8.712 9.255 9.107 4.896 6.125 5.803 3.057 3.797 3.603 | 22 3.594 3.572 3.655 4.698 4.769 4.825 1.662 1.765 1.742 8.276 8.791 8.647 4.651 5.811 5.508 2.904 3.602 3.423 | 24 3.430 3.407 3.489 4.481 4.549 4.601 1.585 1.683 1.661 7.893 8.384 8.251 4.435 5.545 5.255 2.769 3.437 3.264 | 26 3.284 3.266 3.340 4.295 4.361 4.411 1.520 1.613 1.592 7.566 8.035 7.906 4.251 5.307 5.034 2.655 3.290 3.129 | 28 3.159 3.138 3.21                                                                          | 30 3.044 3.026 3.096 3.979 4.042 4.090 1.408 1.495 1.475 7.013 7.442 7.328 3.939 4.916 4.665 2.460 3.048 2.898 | 32 2.944 2.925 2.994 3.846 3.907 3.954 1.361 1.445 1.426 6.780 7.194 7.084 3.808 4.749 4.509 2.378 2.944 2.801 | 34 2.851 2.833 2.900 3.729 3.788 3.829 1.319 1.399 1.382 6.566 6.968 6.862 3.688 4.600 4.368 2.303 2.853 2.713 | 36 2.766 2.748 2.81                                                                          | 38 2.688 2.673 2.734 3.518 3.574 3.613 1.245 1.321 1.304 6.196 6.575 6.475 3.480 4.337 4.121 2.174 2.690 2.560 | 40 2.618 2.604 2.663 3.423 3.478 3.516 1.211 1.286 1.269 6.035 6.405 6.305 3.389 4.225 4.013 2.117 2.618 2.494 |
| WAV         | S-01X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 516                                                                                          | 352                                                                                                            | 524                                                                                                            | 287                                                                                                            | 315                                                                                                            | 788                                                                                                            | 594                                                                                                            | 130                                                                                                            | 284                                                                                                            | 159                                                                                          | 744                                                                                                            | 344                                                                                                            | 351                                                                                                            | 99/                                                                                          | 288                                                                                                            | 518                                                                                                            |
|             | ٠٤.٦                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.6                                                                                          | 5.                                                                                                             | 4.                                                                                                             | 4                                                                                                              | 4.                                                                                                             | <u>س</u>                                                                                                       | 3.                                                                                                             | 3.4                                                                                                            | 3.                                                                                                             | m                                                                                            | 3.0                                                                                                            | 2                                                                                                              | 2.8                                                                                                            | 2.                                                                                           | 2.                                                                                                             | 2.6                                                                                                            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                           | 12                                                                                                             | 14                                                                                                             | 16                                                                                                             | 200                                                                                                            | 20                                                                                                             | 22                                                                                                             | 24                                                                                                             | 26                                                                                                             | 28                                                                                           | æ                                                                                                              | 32                                                                                                             | 34                                                                                                             | 36                                                                                           | 38                                                                                                             | 40                                                                                                             |

TOLERANCE VALUES IN (m<sup>2</sup>/s<sup>2</sup>)/(cy/4km) FOR 99 PERCENT CONFIDENCE INTERVALS TABLE A-V.

|             | p-01X                                                                                                           | 40.22 40.21 40.91 5.308 5.405 5.451 18.79 19.87 19.68 9.336 9.874 9.767 5.233 6.420 6.186 32.72 39.90 38.46 | 52 3.945 4.013 4.051 13.96 14.79 14.63 6.943 7.355 7.264 3.895 4.813 4.611 24.34 29.88 28.64 | 35 3.273 3.328 3.361 11.58 12.27 12.13 5.761 6.105 6.028 3.233 4.003 3.828 20.20 24.85 23.78 | 14 2.857 2.904 2.933 10.11 10.71 10.59 5.029 5.331 5.262 2.823 3.499 3.343 17.64 21.71 20.76 | 18.66                                                                                  | 23 2.351 2.389 2.414 8.317 8.816 8.714 4.138 4.388 4.330 2.323 2.882 2.752 14.51 17.89 17.09 | 91 2.181 2.217 2.240 7.717 8.180 8.086 3.840 4.072 4.018 2.156 2.675 2.554 13.47 16.60 15.86 | 85 2.043 2.077 2.098 7.230 7.665 7.576 3.598 3.815 3.764 2.020 2.507 2.393 12.62 15.56 14.86 | 36 1.929 1.961 1.981 6.825 7.236 7.152 3.396 3.602 3.554 1.907 2.368 2.259 11.91 14.69 14.03 | 21 1.832 1.862 1.881 6.482 6.872 6.791 3.225 3.420 3.375 1.811 2.249 2.145 11.31 13.95 13.32 | 22 13.33 13.27 13.56 1.748 1.777 1.795 6.185 6.558 6.481 3.078 3.264 3.220 1.728 2.146 2.047 10.79 13.32 12.71 | 99 1.675 1.702 1.720 5.926 6.283 6.209 2.949 3.127 3.085 1.656 2.056 1.962 10.34 12.76 12.18 | 19 1.610 1.636 1.653 5.697 6.040 5.969 2.835 3.007 2.966 1.592 1.977 1.886 9.943 12.27 11.71 | 04 1.552 1.578 1.594 5.492 5.823 5.755 2.733 2.899 2.860 1.534 1.906 1.818 9.586 11.83 11.29 | 54 1.500 1.525 1.541 5.308 5.628 5.562 2.641 2.802 2.764 1.483 1.843 1.757 9.265 11.43 10.91 | 28 1.453 1.477 1.492 5.142 5.452 5.388 2.559 2.714 2.677 1.437 1.785 1.702 8.974 11.07 10.57 | 94 1.410 1.433 1.448 4.990 5.291 5.228 2.483 2.634 2.598 1.394 1.732 1.652 8.709 10.75 10.26 | 54 1.371 1.393 1.408 4.851 5.143 5.083 2.414 2.560 2.526 1.355 1.684 1.606 8.467 10.45 9.970 | 36 1.335 1.356 1.371 4.723 5.007 4.948 2.350 2.493 2.459 1.320 1.640 1.563 8.243 10.17 9.706 | 10 1.301 1.322 1.336 4.604 4.882 4.824 2.291 2.430 2.397 1.286 1.598 1.524 8.036 9.917 9.463 |
|-------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 30          | C.L.S.                                                                                                          | ਲ                                                                                                           | 22                                                                                           | 22                                                                                           | ×                                                                                            | =                                                                                      | -                                                                                            | ==                                                                                           | 7                                                                                            | 7                                                                                            | -                                                                                            | 12                                                                                                             | 12                                                                                           | =                                                                                            | Ξ                                                                                            | 9                                                                                            | 2                                                                                            | 2                                                                                            | 9.                                                                                           | 9.                                                                                           | 9.                                                                                           |
| . 0         | P-Ofx                                                                                                           | 9.                                                                                                          | ₩.                                                                                           | 8                                                                                            | 7.                                                                                           | .52                                                                                    | 86                                                                                           | 9.                                                                                           | .56                                                                                          | . 69                                                                                         | .95                                                                                          | . 32                                                                                                           | . 76                                                                                         | .27                                                                                          | .83                                                                                          | 43                                                                                           | 6.                                                                                           | . 75                                                                                         | 45                                                                                           | 17                                                                                           | =                                                                                            |
| z<br>w      | .J.M                                                                                                            | 33                                                                                                          | 53                                                                                           | 24                                                                                           | 2                                                                                            | 19                                                                                     | 12                                                                                           | 16                                                                                           | 15                                                                                           | 14                                                                                           | 13                                                                                           | 13                                                                                                             | 12                                                                                           | 12                                                                                           | =                                                                                            | =                                                                                            | =                                                                                            | 2                                                                                            | 2                                                                                            | 2                                                                                            | 9:                                                                                           |
| WAVE NO.    | P-OTX                                                                                                           | .72                                                                                                         | . 34                                                                                         | 8.                                                                                           | .64                                                                                          | .85                                                                                    | 5                                                                                            | 47                                                                                           | 62                                                                                           | 6                                                                                            | 3                                                                                            | 79                                                                                                             | 34                                                                                           | 43                                                                                           | 98                                                                                           | 99                                                                                           | 4                                                                                            | 9                                                                                            | 49                                                                                           | 43                                                                                           | 8                                                                                            |
|             | .8.1                                                                                                            | 32                                                                                                          | 24                                                                                           | 20                                                                                           | 17                                                                                           | 15                                                                                     | 4                                                                                            | 3                                                                                            | 12                                                                                           | Ξ                                                                                            | =                                                                                            | 10.                                                                                                            | 2                                                                                            | 6                                                                                            | 9.                                                                                           | 9.2                                                                                          | 8.9                                                                                          | 8.7                                                                                          | 8.4                                                                                          | 8.2                                                                                          | 8.0                                                                                          |
|             | P-01X                                                                                                           | 86                                                                                                          | Ξ                                                                                            | 828                                                                                          | <u>4</u>                                                                                     | 05                                                                                     | 52                                                                                           | 54                                                                                           | 93                                                                                           | 59                                                                                           | 45                                                                                           | 47                                                                                                             | 62                                                                                           | 8                                                                                            | 8                                                                                            | 57                                                                                           | 05                                                                                           | 52                                                                                           | 90                                                                                           | 63                                                                                           | 24                                                                                           |
| 25          | C.L.S.                                                                                                          | 6.1                                                                                                         | 4.6                                                                                          | 3.8                                                                                          | 3.3                                                                                          | 3.0                                                                                    | 2.7                                                                                          | 2.5                                                                                          | 2.3                                                                                          | 2.2                                                                                          | 2.1                                                                                          | 2.0                                                                                                            | .9                                                                                           | ω.                                                                                           | ω.                                                                                           | 1.7                                                                                          | 1.7                                                                                          | 9.                                                                                           | 1.6                                                                                          | .5                                                                                           | 5.                                                                                           |
| -·          | *-OIX                                                                                                           | 20                                                                                                          | 5                                                                                            | 03                                                                                           | 66                                                                                           | 46                                                                                     | 8                                                                                            | 75                                                                                           | 07                                                                                           | 89                                                                                           | 49                                                                                           | 46                                                                                                             | 99                                                                                           | 11                                                                                           | 90                                                                                           | 43                                                                                           | 85                                                                                           | 33                                                                                           | 34                                                                                           | 9                                                                                            | 8                                                                                            |
| 9           | , J. M                                                                                                          | 4.6                                                                                                         | 8.                                                                                           | 0.4                                                                                          | 3.4                                                                                          | 3.                                                                                     | 80                                                                                           | 5.6                                                                                          | .5                                                                                           | <u>ب</u>                                                                                     | .2                                                                                           | 7                                                                                                              | 0                                                                                            | 6                                                                                            | 9.                                                                                           | 80                                                                                           | .7                                                                                           | 7                                                                                            | <u>.</u>                                                                                     | 9.                                                                                           | 55                                                                                           |
| WAVE        | _ OLX                                                                                                           | 33                                                                                                          | 35                                                                                           | 33                                                                                           | 33                                                                                           | 37                                                                                     | 3                                                                                            | 99                                                                                           | 2                                                                                            | 7.                                                                                           | =                                                                                            | 8                                                                                                              | 99                                                                                           | . 2                                                                                          | <b>₹</b>                                                                                     | 33                                                                                           | 37                                                                                           | 4                                                                                            | 55                                                                                           | 0                                                                                            | 9                                                                                            |
| 3           | .S.1                                                                                                            | 2.5                                                                                                         | 80                                                                                           | 3.2                                                                                          | 8                                                                                            | 'n                                                                                     | 33                                                                                           | =                                                                                            | 0.                                                                                           | 9.                                                                                           | 8                                                                                            | .72                                                                                                            | 9                                                                                            | Ŗ.                                                                                           | 'n                                                                                           | 4.                                                                                           | 4.                                                                                           | 8                                                                                            | ж.                                                                                           | 8                                                                                            | 87                                                                                           |
|             | . OIX                                                                                                           | 72                                                                                                          | 4                                                                                            | 8                                                                                            | -22                                                                                          | 8                                                                                      | 0                                                                                            | 8                                                                                            | 4                                                                                            | 4                                                                                            | .2                                                                                           | 0.                                                                                                             | <u></u>                                                                                      | <u>_</u>                                                                                     | 5                                                                                            | 4                                                                                            | 1/1                                                                                          |                                                                                              | <u>_</u>                                                                                     | 6                                                                                            | 1                                                                                            |
| _           | .2.1.J                                                                                                          | 7.                                                                                                          | .2                                                                                           | 0.                                                                                           | 32.                                                                                          | . 72                                                                                   | <u>ج</u>                                                                                     | 5                                                                                            | . 76                                                                                         | . 55                                                                                         | .37                                                                                          | .22                                                                                                            | 8                                                                                            | 96.                                                                                          | 8                                                                                            | .76                                                                                          | .67                                                                                          | . 59                                                                                         | .52                                                                                          | .45                                                                                          | .3                                                                                           |
| 70          | 017                                                                                                             | 9                                                                                                           | 5 7                                                                                          | 5                                                                                            | <u></u>                                                                                      | 1 4                                                                                    | 8                                                                                            | 2 4                                                                                          | 5                                                                                            | 2 3                                                                                          | 0                                                                                            | 4 3                                                                                                            | 7 3                                                                                          | 7 2                                                                                          | 9 2                                                                                          | 2 2                                                                                          | 4 2                                                                                          | 2                                                                                            | 0 2                                                                                          | 3 2                                                                                          | 0 2                                                                                          |
| 9           | \$-0t/                                                                                                          | .87                                                                                                         | . 35                                                                                         | 2.                                                                                           | .33                                                                                          | . 79                                                                                   | 88.                                                                                          | .07                                                                                          | 8.                                                                                           | .60                                                                                          | .42                                                                                          | . 26                                                                                                           | . 12                                                                                         | 8                                                                                            | 8                                                                                            | 8                                                                                            | 17.                                                                                          | .63                                                                                          | .56                                                                                          | 49                                                                                           | £                                                                                            |
| WAVE        | 017                                                                                                             | 9                                                                                                           | 3 7                                                                                          | 9                                                                                            | 5                                                                                            | 4                                                                                      | 4                                                                                            | 4                                                                                            | ω<br>ω                                                                                       | 3                                                                                            | 3                                                                                            | 33                                                                                                             | 3                                                                                            |                                                                                              | 3                                                                                            | 2                                                                                            | 2                                                                                            | 2                                                                                            | 2                                                                                            | 2                                                                                            | 2                                                                                            |
| ¥.          | p-ULX                                                                                                           | 33                                                                                                          | 94                                                                                           | .92                                                                                          | 05                                                                                           | 5                                                                                      | <u> </u>                                                                                     | 84                                                                                           | 59                                                                                           | 38                                                                                           | 22                                                                                           | 078                                                                                                            | 94                                                                                           | 83                                                                                           | 733                                                                                          | 641                                                                                          | 523                                                                                          | 8                                                                                            | 417                                                                                          | 350                                                                                          | 23                                                                                           |
|             | .2.1                                                                                                            | 6                                                                                                           | <u>\( \o \)</u>                                                                              | <u>2</u>                                                                                     | <u> </u>                                                                                     | 4                                                                                      | 4                                                                                            | က                                                                                            | <u>~</u>                                                                                     | <del>n</del>                                                                                 | m                                                                                            | က                                                                                                              | <u>~i</u>                                                                                    | <u>~i</u>                                                                                    | <u>~i</u>                                                                                    | 2                                                                                            | 2.                                                                                           | <u>~i</u>                                                                                    | <u>~i</u>                                                                                    | ~                                                                                            | 2                                                                                            |
|             | X10-4         | 39.                                                                                                         | ø                                                                                            |                                                                                              | .53                                                                                          | 90 2.567 2.609 2.636 9.083 9.627 9.517 4.519 4.791 4.728 2.537 3.146 3.005 15.85 19.52 | 1                                                                                            | 80                                                                                           | 576                                                                                          | 152                                                                                          | 791                                                                                          | 481                                                                                                            | 203                                                                                          | 96                                                                                           | 755                                                                                          | 562                                                                                          | 388                                                                                          | 228                                                                                          | 083                                                                                          | 948                                                                                          | 824                                                                                          |
| WAVE NO. 15 | .s.1.3                                                                                                          |                                                                                                             | 4                                                                                            | 12                                                                                           | 5                                                                                            | 6                                                                                      | ω.                                                                                           | ထ                                                                                            | 7.                                                                                           | 7.                                                                                           | 9                                                                                            | 6.                                                                                                             | 6.                                                                                           | ď.                                                                                           | ເກ                                                                                           | 5.                                                                                           | 5.                                                                                           | 5.                                                                                           | 5.                                                                                           | 4                                                                                            | 4                                                                                            |
| No.         | ₽-OfX                                                                                                           | .87                                                                                                         | . 79                                                                                         | .27                                                                                          | ۲.                                                                                           | 627                                                                                    | 816                                                                                          | 8                                                                                            | 999                                                                                          | 236                                                                                          | 872                                                                                          | 558                                                                                                            | 283                                                                                          | 8                                                                                            | 823                                                                                          | 628                                                                                          | 452                                                                                          | 291                                                                                          | 143                                                                                          | 207                                                                                          | 88                                                                                           |
| ΚE          | .J.M                                                                                                            | 19                                                                                                          | 7                                                                                            | 12                                                                                           | 10                                                                                           | 6                                                                                      | œ                                                                                            | œ                                                                                            | 7.                                                                                           | 7.                                                                                           | 9                                                                                            | 6.                                                                                                             | 9                                                                                            | 9                                                                                            | 5                                                                                            | 5                                                                                            | 5.                                                                                           | δ,                                                                                           | 'n                                                                                           | ص                                                                                            | 4                                                                                            |
| X<br>A      | P-OIX                                                                                                           | 73                                                                                                          | 96.                                                                                          | 58                                                                                           | Ξ                                                                                            | 383                                                                                    | 317                                                                                          | 717                                                                                          | 33                                                                                           | 325                                                                                          | 182                                                                                          | 185                                                                                                            | 326                                                                                          | 597                                                                                          | 192                                                                                          | 308                                                                                          | 142                                                                                          | 90                                                                                           | 32                                                                                           | 723                                                                                          | 8                                                                                            |
|             | ۲.۵.                                                                                                            | 8                                                                                                           | 2                                                                                            | Ξ                                                                                            | 2                                                                                            | 9.                                                                                     | 80                                                                                           | 7                                                                                            | 7.                                                                                           | 9                                                                                            | 9                                                                                            | 9                                                                                                              | 5.                                                                                           | 5.                                                                                           | 5.                                                                                           | 5.                                                                                           | 5.                                                                                           | 4                                                                                            | 4.                                                                                           | 4                                                                                            | 4.                                                                                           |
|             | C.L.S.<br>X10 <sup>-4</sup><br>X10 <sup>-4</sup><br>M.L.<br>X10-4                                               | 5                                                                                                           | 5                                                                                            | 198                                                                                          | 33                                                                                           | 36                                                                                     | 4                                                                                            | 40                                                                                           | 98                                                                                           | 83                                                                                           | <u></u>                                                                                      | 95                                                                                                             | 720                                                                                          | 53                                                                                           | 94                                                                                           | 41                                                                                           | 36                                                                                           | 48                                                                                           | 80                                                                                           | 17                                                                                           | 98                                                                                           |
| 10          | .š.1.3                                                                                                          | 5.                                                                                                          | 4.                                                                                           | <br>د                                                                                        | 2                                                                                            | 2.6                                                                                    | 2.4                                                                                          | 2.2                                                                                          | 2.0                                                                                          | 5:                                                                                           | =                                                                                            | -                                                                                                              | =                                                                                            | <del>-</del>                                                                                 | =                                                                                            | -                                                                                            | 1.6                                                                                          | -:                                                                                           | -                                                                                            | -                                                                                            | -                                                                                            |
| NO. 10      | M.L.                                                                                                            | 05                                                                                                          | 3                                                                                            | 28                                                                                           | 8                                                                                            | 8                                                                                      | 8                                                                                            | 1                                                                                            | 11                                                                                           | 61                                                                                           | 29                                                                                           | 11                                                                                                             | 05                                                                                           | 36                                                                                           | 78                                                                                           | 25                                                                                           | 11                                                                                           | ဗ္ဗ                                                                                          | 93                                                                                           | 26                                                                                           | 22                                                                                           |
| <u>~</u>    | , J. M                                                                                                          | 5.4                                                                                                         | 0.4                                                                                          | 3.3                                                                                          | 2.9                                                                                          | 2.6                                                                                    | 2.3                                                                                          | 2.2                                                                                          | 2.0                                                                                          | 5.                                                                                           | .8                                                                                           | 1.7                                                                                                            |                                                                                              | 9.                                                                                           | .5                                                                                           | 1.5                                                                                          | 4.                                                                                           | 4.                                                                                           | .3                                                                                           |                                                                                              | -                                                                                            |
| WAVE        | C_OTX                                                                                                           | 80                                                                                                          | 45                                                                                           | 73                                                                                           | 21                                                                                           | 29                                                                                     | 2                                                                                            | 8                                                                                            | 43                                                                                           | 53                                                                                           | 32                                                                                           | 48                                                                                                             | 75                                                                                           | 2                                                                                            | 25                                                                                           | 8                                                                                            | 53                                                                                           | 2                                                                                            | ۲                                                                                            | 35                                                                                           | 5                                                                                            |
|             | ٤.٥.                                                                                                            | 5.3                                                                                                         | 9.0                                                                                          | 3.2                                                                                          | 2.8                                                                                          | 2.5                                                                                    | 2.3                                                                                          | 2.1                                                                                          | 2.0                                                                                          | 6.                                                                                           | 8.                                                                                           | 1.7                                                                                                            | 9.                                                                                           | 9.                                                                                           | .5                                                                                           | .5                                                                                           | 1.4                                                                                          | 1.4                                                                                          | .3                                                                                           | .3                                                                                           |                                                                                              |
| -           | c OIX                                                                                                           | -6                                                                                                          | 52                                                                                           | 35                                                                                           | 4                                                                                            | 8                                                                                      | 23                                                                                           | 5                                                                                            | 32                                                                                           | 96                                                                                           | 71                                                                                           | 99                                                                                                             | 66                                                                                           |                                                                                              | 4                                                                                            | 54                                                                                           | 58                                                                                           | 74                                                                                           | 54                                                                                           | 9                                                                                            | 힐                                                                                            |
| ın          | .2.1.3                                                                                                          | 2                                                                                                           | 8                                                                                            | 55                                                                                           | 22.                                                                                          |                                                                                        | 8                                                                                            |                                                                                              |                                                                                              | 4                                                                                            | 4                                                                                            | 3.                                                                                                             | 12.                                                                                          | 12.                                                                                          |                                                                                              | ].                                                                                           |                                                                                              | 9                                                                                            |                                                                                              |                                                                                              | 2                                                                                            |
| WAVE NO. 5  | OIX                                                                                                             | 7 [;                                                                                                        | 33                                                                                           | *                                                                                            | 38                                                                                           | 6                                                                                      | 35                                                                                           | 9                                                                                            | . 23                                                                                         | 55                                                                                           | =                                                                                            | 1. 7.                                                                                                          | . 2                                                                                          | 33                                                                                           | 6                                                                                            | 9                                                                                            | 4                                                                                            | . 1                                                                                          | =                                                                                            | 4                                                                                            | 23                                                                                           |
| <u>&gt;</u> | .J.M                                                                                                            | 0.5                                                                                                         | 9                                                                                            | 3.4                                                                                          | 9.1                                                                                          | 9.4                                                                                    | 7.8                                                                                          | 6.5                                                                                          | 5.5                                                                                          | 4.6                                                                                          | 3.5                                                                                          | 3.2                                                                                                            | 2.7                                                                                          | 2.2                                                                                          | ].                                                                                           |                                                                                              | 1.6                                                                                          | 0.                                                                                           | 4.0                                                                                          | 0.1                                                                                          | 98.                                                                                          |
| AVE         | 017                                                                                                             | 2 4                                                                                                         | 1 2                                                                                          | 2                                                                                            | 7 2                                                                                          | 7 1                                                                                    | 2 1                                                                                          | 3 1                                                                                          | 8                                                                                            | _                                                                                            | 7 1                                                                                          | 3 1                                                                                                            | 8                                                                                            | 8                                                                                            | 4                                                                                            | 5                                                                                            | 9                                                                                            | 1 9                                                                                          | 6 1                                                                                          | 8                                                                                            | 9                                                                                            |
| 3           | K10 <sup>-3</sup><br>X10 <sup>-3</sup><br>C.L.S.<br>X10 <sup>-3</sup><br>X10 <sup>-3</sup><br>X10 <sup>-3</sup> | 0.2                                                                                                         | 0.0                                                                                          | 4.9                                                                                          | 1.7                                                                                          | 9.5                                                                                    | 7.9                                                                                          | 6.6                                                                                          | 5.5                                                                                          | 4.7                                                                                          | 3.9                                                                                          | 3.3                                                                                                            | 2.7                                                                                          | 2.2                                                                                          | 8.                                                                                           | 1.4                                                                                          | 0.                                                                                           | 0.7                                                                                          | 4.0                                                                                          | 0.1                                                                                          | .92                                                                                          |
|             | 2 I                                                                                                             | 4                                                                                                           | 4 30.01 29.93 30.5                                                                           | 6 24.92 24.84 25.                                                                            | 8 21.77 21.68 22.                                                                            | 10 19.57 19.49 19.                                                                     | 17.92 17.85 18.                                                                              | 14 16.63 16.56 16.                                                                           | 16 15.58 15.52 15.                                                                           | 18 14.71 14.65 14.9                                                                          | 20 13.97 13.91 14.3                                                                          | <u></u>                                                                                                        | 24 12.78 12.72 12.9                                                                          | 26 12.28 12.23 12.4                                                                          | 28 11.84 11.79 12.0                                                                          | 30 11.45 11.39 11.0                                                                          | 32 11.09 11.04 11.                                                                           | 34 10.76 10.71 10.9                                                                          | 36 10.46 10.41 10.                                                                           | 38 10.18 10.14 10.                                                                           | 40 9.929 9.883                                                                               |
|             |                                                                                                                 | •                                                                                                           | *                                                                                            | _                                                                                            |                                                                                              | =                                                                                      | =                                                                                            | ~                                                                                            | =                                                                                            | Ĩ                                                                                            | 7                                                                                            | 7                                                                                                              | Ž                                                                                            | 2                                                                                            | $\tilde{\mathbf{z}}$                                                                         | <u></u>                                                                                      | Ŋ                                                                                            | Ą                                                                                            | ਲ                                                                                            | <u></u>                                                                                      | 4                                                                                            |

TOLERANCE VALUES IN (m2/s2)/(cy/4km) FOR 68.72 PERCENT CONFIDENCE INTERVALS TABLE A-VI.

A-7

| WAVE NO. 5   WAVE NO. 10   WAVE NO. 15   WAVE NO. 15   WAVE NO. 20   WAVE NO. 25   WAVE NO. 25   WAVE NO. 10   WAVE NO. 20   WAVE NO. 25   WAVE NO. 10   WAVE NO. 10   WAVE NO. 10   WAVE NO. 20   WAVE NO. 20   WAVE NO. 30   WAVE NO. 20   WAVE NO. 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | 4-01X                       | 15    | 30       | ဥ        | 66    | 55    | 27     | 93        | 53     | 33    | 27    | 34       | 51       | 76    | 90    | 46       | 68       | 37       | 88    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------|-------|----------|----------|-------|-------|--------|-----------|--------|-------|-------|----------|----------|-------|-------|----------|----------|----------|-------|
| WAVE NO. 5   WAVE NO. 10   WAVE NO. 15   WAVE NO. 15   WAVE NO. 20   WAVE NO. 25   WAVE NO. 5   WAVE NO. 5   WAVE NO. 16   WAVE NO. 25   WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 99                | .2.1.3                      | 4.7   | 4.1      | 3.7      | 3.3   | 3.1   | 2.9    | 2.7       | 2.6    | 2.5   | 2.4   | 2.3      | 2.2      | 2.1   | 2.1   | 2.0      | 1.9      | 1.9      | .8    |
| WAVE NO. 5   WAVE NO. 10   WAVE NO. 15   WAVE NO. 15   WAVE NO. 20   WAVE NO. 25   WAVE NO. 5   WAVE NO. 5   WAVE NO. 16   WAVE NO. 16   WAVE NO. 16   WAVE NO. 26   WAVE NO. 16   WAVE NO. 27   WAVE NO. 16   WAVE NO. 27   WAVE NO. 16   WAVE NO. 16   WAVE NO. 26   WAVE NO. 27   WAVE NO. 28   WAVE NO. 28   WAVE NO. 28   WAVE NO. 28   WAVE NO. 29   WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NO.               | P-OFX                       | 1.983 | 1.323    | 3.883    | 3.557 | 3.303 | 3.096  | 2.924     | 2.779  | .652  | . 542 | .445     | . 358    | .279  | . 208 | 143      | .084     | .029     | 979.  |
| WAVE NO. 5   WAVE NO. 10   WAVE NO. 15   WAVE NO. 25   WAVE NO. 26   WAVE NO. 26   WAVE NO. 27   WAVE NO. 10   WAVE NO. 15   W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WAVE              | 4-01X                       | 035 4 | 208 4    | 152      | 887   | 089   | 512    | 372 2     | 254 2  | 151   | 190   | 982 2    | 912 2    | 848 2 | 790 2 | 738 2    | 689      | 645 2    | 604 1 |
| WAVE NO. 5   WAVE NO. 10   WAVE NO. 15   WAVE NO. 15   WAVE NO. 20   WAVE NO. 25   WAVE NO. 5   WAVE NO. 5   WAVE NO. 10   WAVE NO. 20   WAVE NO. 25   WAVE NO. 25   WAVE NO. 25   WAVE NO. 26   WAVE NO. 26   WAVE NO. 25   WAVE NO. 26   WAVE NO. 27   WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | 5 1                         | 4.    | <u>ب</u> | 3.       | 3 2.  | - 2.  | 3.     | 2.        | 3 2.   | 1/2.  | 2     | <u> </u> | <u>-</u> | _     | 1.    | <u>-</u> | <u>-</u> | <u>:</u> |       |
| MAVE NO. 5   WAVE NO. 10   WAVE NO. 15   WAVE NO. 15   WAVE NO. 15   WAVE NO. 16   WAVE NO. 16   WAVE NO. 16   WAVE NO. 16   WAVE NO. 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25                | .2.1.3<br>P-01X             | 7.654 | 6.652    | 5.97     | 5.473 | 5.081 | 4.763  | 4.498     | 4.273  | 4.079 | 3.909 | 3.759    | 3.625    | 3.505 | 3,395 | 3.295    | 3.204    | 3.120    | 3.042 |
| WAVE NO. 5  WAVE NO. 5  WAVE NO. 10  WAVE NO. 15  WAVE NO. 20  WAVE N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . NO.             | 4-01X                       | 8.033 | 5.967    | 5.257    | 5.732 | 5.322 | 1.990  | 1,713     | 1.478  | 1.275 | 1.097 | 3.940    | 3.800    | 3.674 | 3.559 | 3.455    | 3.359    | 3.271    | 3.189 |
| MAVE NO. 5 WAVE NO. 10 WAVE NO. 15 WAVE NO. 15 WAVE NO. 20 $\frac{1}{12}$ $\frac{1}{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WAVE              | 4-01X                       | .459  | .616     | .044     | .621  | .289  | , 120. | , 797 .   | , 603. | .443  | 300 , | .173     | 090.     | .958  | . 865 | .781     | .704     | .633     | . 567 |
| WAVE NO. 5 WAVE NO. 10 WAVE NO. 15 WAVE NO. 15 WAVE NO. 5 WAVE NO. 5 WAVE NO. 5 WAVE NO. 5 WAVE NO. 10 S. 2 WAVE NO. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | OLX                         | 74 6  | 17 5     | 3 5      | 3 4   | 95 4  | 4      | 77        | 3 3    | 7 3   | 90    | 4 3      | 2 3      | 2 2   | 10 2  | 33 2     | <u>3</u> | 17 2     | 34 2  |
| WAVE NO. 5         WAVE NO. 10         WAVE NO. 15         WAVE NO. 16         WAVE NO. 10         WAVE NO. 15         WAVE NO. 15         WAVE NO. 16         WAVE NO. 10         WAVE NO. 15         WAVE NO. 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20                | C.L.S.                      | 12.(  | 10.4     | 9.4      | 8.6   | 7.99  | 7.4    | 7.07      | 6.75   | 6.4   | 6.15  | 5.91     | 5.70     | 5.5   | 5.34  | 5.18     | 5.0      | 4.90     | 4.78  |
| WAVE NO. 5   WAVE NO. 10   WAVE NO. 15   WAVE NO. 15   WAVE NO. 5   WAVE NO. 15   W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9                 | 4-01X                       | 12.20 | 10.61    | 9.528    | 8.728 | 8.102 | 7.595  | 7.172     | 6.814  | 6.504 | 6.233 | 5.994    | 5.780    | 5.587 | 5.413 | 5.254    | 5.108    | 4.974    | 4.850 |
| WAVE NO. 5   WAVE NO. 10   WAVE NO. 15   WAVE NO. 15   $\frac{1}{12} \cdot \frac{1}{12} \cdot \frac{1}{12$ | WAV               | 4-01X                       | 1.50  | 0.00     | .987     | .231  | .641  | .162   | .764      | 425    | .133  | .878  | .652     | .450     | .268  | 104   | .954     | .816     | .689     | .572  |
| MAVE NO. 5         WAVE NO. 10         WAVE NO. 15 $\frac{2}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | . OIX                       | 2     | -        | 3 8      | 3 8   | 9.7   | 8/2    | 4 6       | 3 6    | 2 6   | 88    | 0 5      | 8        | 9 5   | 5 5   | <u>ن</u> | 4        | 5 4      | 8 4   |
| WAVE NO. 5         WAVE NO. 10         WAVE NO. 11         WAVE NO. 11         P. T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                 | C.L.S.                      | 24.2  | 21.0     | 18.9     | 17.3  | 16.0  | 15.0   | 14.2      | 13.5   | 12.9  | 12.3  | 11.9     | 11.4     | 11.0  | 10.7  | 10.4     | 10.1     | 9.87     | 9.62  |
| WAVE NO. 5       WAVE NO. 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0. 1              | p-OLX                       | .51   | .33      | 14       | .54   | .28   | .26    | <u>'4</u> | 69.    | .07   | .52   | .04      | .61      | .23   | .87   | .55      | .26      | 992      | 742   |
| MAVE NO. 5   WAVE NO. 10   WAVE NO. 5   WAVE NO. 10   WAVE NO. 5   S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | بيا<br>ع          | .J.M                        | 24    | 21       | 19       | 17    | 16    | 15     | 14        | 13     | 13    | 12    | 12       | =        | Ξ     | 10    | 9        | 10       | 6        | 9.    |
| WAVE NO. 5   WAVE NO. 10   Signary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WAV               | 4-01X                       | 23.12 | 20.11    | 18.06    | 16.54 | 15.36 | 14.39  | 13.59     | 12.91  | 12.33 | 11.81 | 11.36    | 10.95    | 10.59 | 10.26 | 9.955    | 9.679    | 9.454    | 9.189 |
| WAVE NO. 5   WAVE NO. 10   String   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | 6.L.S.<br>ST0 <sup>-3</sup> | .710  | .835     | .242     | .802  | .457  | .178   | 3.945     | 1.748  | 1.577 | .428  | .296     | 1.179    | .073  | 776.  | .889     | .809     | .735     | 799.  |
| WAVE NO. 5   WAV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1               | E-01X                       | 340 6 | 776 5    | 89       | 753 4 | 112 4 | 35 4   | 905 3     | 309    | 341 3 | 393 3 | 63 3     | 46 3     | 141 3 | 346 2 | 359 2    | 88       | 707      | 339 2 |
| WAVE NO. 5   WAV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <del>ك</del><br>س | .J.M                        | 6.6   | 5.       | 5.       | 4     | 4.    | 4      | <u>ښ</u>  | ω,     | 3.    | 3.    | 3.8      | ж<br>Г.  | 3.0   | 2.5   | 2.8      | 2.       | 2.       | 2.6   |
| WAVE NO. 5   S. N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WAV               | .2.1<br>8-01X               | 6.534 | 5.683    | 5.105    | 4.676 | 4.340 | 4.068  | 3.842     | 3.650  | 3.484 | 3,339 | 3.210    | 3.096    | 2.992 | 2.899 | 2.814    | 2.735    | 2.664    | 2.597 |
| MAVE NO. 5  L.S2  KTO L2  KTO L3  B 4.332 4.314 4.  3.891 3.875 3.  3.564 3.550 3.  4.332 4.314 2.  3.564 3.550 3.  2.783 2.771 2.  2.657 2.645 2.  2.657 2.645 2.  2.657 2.645 2.  2.657 2.645 2.  2.657 2.645 2.  2.657 2.645 2.  2.657 2.645 2.  2.657 2.645 2.  3.8 2.361 2.351 2.  3.8 2.083 2.272 2.  3.8 2.087 2.077 2.  3.8 2.082 2.023 2.  3.9 1.972 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | s-orx                       | 171   | 105      | 357      | 525   | 365   | 155    | 8         | 831    | 702   | 290   | 190      | £0;      | 321   | 249   | 183      | 122      | 290      |       |
| MAVE NO.  L.S2  KTO.  KTO.  S. 84 . 332 4 . 314  8 4 . 332 4 . 314  8 4 . 332 4 . 314  8 4 . 332 4 . 314  8 2 . 330 3 . 295  14 3 . 309 3 . 295  14 3 . 309 3 . 295  15 2 . 657 2 . 645  16 2 . 448 2 . 438  17 2 . 265 2 . 272  18 2 . 361 2 . 351  18 2 . 283 2 . 272  18 2 . 283 2 . 272  18 2 . 283 2 . 272  18 2 . 283 2 . 272  18 2 . 283 2 . 272  18 2 . 032 2 . 023  10 1 . 981 1 . 972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                 | .2.1.3                      | 5.(   | 4.       | <u>ش</u> | ۳.    | ω,    | m      | 2         | 2      | 2.    | 2.1   | 2.       | 2.       | 2     | 2     | 2        | 2        | 2.(      | 2.(   |
| MAN<br>6 4.986<br>8 4.332<br>10 3.891<br>12 3.564<br>14 3.309<br>16 3.102<br>18 2.930<br>19 2.783<br>20 2.783<br>20 2.448<br>20 2.283<br>20 2.283<br>20 2.283<br>20 2.283<br>20 2.283<br>20 2.087<br>20 3.891<br>20 3.991<br>20 3.891<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Æ NO.             | .J.M<br>S- <sub>01X</sub>   | 4.962 | 4.314    | 3.875    | 3.550 | 3.295 | 3.089  | 2.917     | 2.771  | 2.645 | 2.535 | 2.438    | 2.351    | 2.272 | 2.201 | 2.137    | 2.077    | 2.023    | 1.972 |
| 0 80 0 4 4 8 8 0 4 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WAV               | 2-01X                       | 986.  | .332     | .891     | .564  | .309  | .102   | .930      | .783   | .657  | .546  | .448     | .361     | .283  | .211  | .146     | .087     | .032     | .981  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | J 1                         | 6     | 8        | 0 3      | 2 3   | 4 3   | 6 3    | 8         | 202    | 2 2   | 24 2  | 2 5      | 28.      | 2     | 32 2  | <u>¥</u> | <u>2</u> | 38/2     | -01   |

TOLERANCE VALUES IN (m<sup>2</sup>/s<sup>2</sup>)/(cy/4km) FOR 95.45 PERCENT CONFIDENCE INTERVALS TABLE A-VII.

| WAVE NO. 5   WAVE NO. 10   WAVE NO. 15   WAVE NO. 15   WAVE NO. 20   WAVE NO. 25   WAVE NO. 30   WAVE NO. 5   WAVE NO. 16   WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                   |      |          |              |     |     |            |          |          |         |              |          |                                         |     |                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------|------|----------|--------------|-----|-----|------------|----------|----------|---------|--------------|----------|-----------------------------------------|-----|--------------------------------------|
| WAVE NO. 5   WAVE NO. 10   WAVE NO. 15   WAVE NO. 15   WAVE NO. 20   WAVE NO. 25   WAVE NO. 25   WAVE NO. 30   WAVE NO. 5   WAVE NO. 16   WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | P-OIX             | 15   | 376      | 736          | 456 | 516 | Ξ          | 333      | 573      | 332     | 8            | 93       | 90                                      | 95  | 80                                   |
| WAVE NO. 5   WAVE NO. 10   WAVE NO. 15   WAVE NO. 20   WAVE NO. 25   WAVE NO. 25   WAVE NO. 26   W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8    | .s.J.3            | 5.   | ď.       | 4.           | 4.  | 4   | 4          | ص.<br>ج. | ж<br>Э.  | ω,      | 3.           | ω,       | ا                                       | 3.  | 3.0                                  |
| WAVE NO. 5   WAVE NO. 10   WAVE NO. 15   WAVE NO. 20   WAVE NO. 25   WAVE NO. 25   WAVE NO. 26   W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | *-OIX             |      | 65       | 60           | 90  | 54  | 36         | 45       | 75       | 53      | 98           | 7        | 54                                      | 53  | 2                                    |
| WAVE NO. 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8    | M.L.              | ;    | .3       | 0.5          | 4.7 | 4.4 | 1.2        | 0.       | 8.       | 3.7     | .5           | 4        | <u>ښ</u>                                | 2.  | -                                    |
| MAVE NO. 5   WAVE NO. 10   WAVE NO. 15   WAVE NO. 20   WAVE NO. 25   WAVE NO. 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ٩VE  | . 01X             | 55   | 4        | α            | 80  | 9   | _          | 9        | S.       | 9       | -            | 4        | 9                                       | ι., | _                                    |
| MAVE NO. 5   WAVE NO. 10   WAVE NO. 15   WAVE NO. 20   WAVE NO. 25   WAVE NO. 5   WAVE NO. 5   WAVE NO. 5   WAVE NO. 16   WAVE NO. 16   WAVE NO. 16   WAVE NO. 17   WAVE NO. 20   WAVE NO. 25   WAVE NO. 25   WAVE NO. 17   WAVE NO. 25   WAVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3    | , C. 1            | 9    | ĸ.       | <u>.</u>     | 7.  | .57 | ₹.         | . 24     | Ξ        | 95      | 8            | . 79     | 22.                                     | .62 | .55                                  |
| WAVE NO. 5   WAVE NO. 10   WAVE NO. 15   WAVE NO. 15   WAVE NO. 20   WAVE NO. 25   WAVE NO. 5   WAVE NO. 5   WAVE NO. 15   WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 017               | 0    | 2        | 8            | 5   | 93  | 6          | 7        |          | 62      | 4            | =        | 2                                       | 6   | 응                                    |
| HAVE         NO.         15         WAVE         NO.         16         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27         17.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ω.   | <b>1</b> -01x     | 8.   | ₩.       | .63          |     | 5.  | .46        | .17      | .92      | .69     | 49           | £.       | 14                                      | 86. | 85                                   |
| WAVE NO. 5  WAVE NO. 10  WAVE NO. 15  WAVE NO. 10  WAVE NO. 15  WAVE NO. 15  WAVE NO. 10  WAVE NO. 15  WAVE NO. 10  WAVE NO. 15  WAVE NO. 15  WAVE NO. 10  WAVE NO. 15  WAVE NO. 20  WAVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~    | 2 1 3             | 8    | ∞        | 7            | 7   | 9   | 9          | 9        | Ŋ        | S       | 2            | 2        | S                                       | 4   | 4                                    |
| WAVE NO. 5 WAVE NO. 10 WAVE NO. 15 WAVE NO. 15 WAVE NO. 20 WAVE NO. 5 WAVE NO. 5 WAVE NO. 5 WAVE NO. 5 WAVE NO. 10 WAVE NO. 20 WAVE NO. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2    | p-OLX             | ;    | 99       | 085          | 597 | 188 | 837        | 530      | 256      | 910     | 798          | 502      | 424                                     | 263 | 2                                    |
| WAVE NO. 5 WAVE NO. 10 WAVE NO. 15 WAVE NO. 20 WAVE NO. 5 WAVE NO. 10 WAVE NO. 11 WAVE NO. 12 WAVE NO. 5 WAVE NO. 12 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ΛE   |                   |      | ω̈́      | œ.           | 7.  | 1.  | 6          | 6.       | 6.       | 6.      | 5.           | 5.       | 'n                                      | 'n  | 5                                    |
| WAVE NO. 5 WAVE NO. 10 WAVE NO. 15 WAVE NO. 20  1. $\frac{1}{12}$ $$         | ¥    | P-OFX             | 154  | 394      | 132          | 50  | 8   | 151        | 07       | 90       | 99      | 526          | 176      | 32                                      | 90  | 87                                   |
| WAVE NO. 5         WAVE NO. 10         WAVE NO. 15         WAVE NO. 16         WAVE NO. 16         WAVE NO. 16         WAVE NO. 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | ר.s.              | 7.   | 9        | 6.           | 6.  | 5.  | 5,         | 5.       | 4.       | 4.      | 4.           | 4.4      | 4                                       | 4.2 | 4.                                   |
| WAVE NO. 5 WAVE NO. 10 WAVE NO. 15 WAVE NO. 15 WAVE NO. 20  1. $\frac{2}{15}$ $\frac$       |      | *-0FX             | 88   | 84       | 98           | 26  | 29  | 14         | 88       | 90       | 32      | 6            | 28       | 29                                      | 32  | 15                                   |
| WAVE NO. 5 WAVE NO. 10 WAVE NO. 15 WAVE NO. 15 WAVE NO. 15  WAVE NO. 5 WAVE NO. 10 WAVE NO. 15 WAVE NO. 15 WAVE NO. 15  WAVE NO. 5 WAVE NO. 10 WAVE NO. 15 WAVE NO. 16 WAVE N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20   | .g.1.5            | 13.  | 12.      | =            | =   | 6.  | 9.         | 9.6      | 9.2      | 9.9     | 3.6          | ω,<br>ω, | 0.0                                     | 8.7 | 9.                                   |
| MAVE NO. 5 WAVE NO. 10 WAVE NO. 15 WAVE NO. 15 WAVE NO. 15 WAVE NO. 5 WAVE NO. 10 WAVE NO. 15 WAVE NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •    | O1X               | 2    | 4        | 17           | 45  | 83  | 8          | 13       | 8        | 7.      | 8            | 66       | 96                                      | :-  | 22                                   |
| MAVE NO. 5   WAVE NO. 10   WAVE NO. 15   WAVE NO. 15   WAVE NO. 5   WAVE NO. 10   WAVE NO. 15   WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22   | . J.M             | 4.   | <u>س</u> | 2            | =   | 0   | 0          | œ.       | 4        | 0       | 3.7          | 4.       | <u></u>                                 | 9,  |                                      |
| WAVE NO. 5   WAVE NO. 10   WAVE NO. 15   WAVE NO. 15   WAVE NO. 5   WAVE NO. 10   WAVE NO. 15   WAVE NO. 5   WAVE NO. 10   WAVE NO. 15   WAV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IAVE | DIX               | 9    | 7        | <del>ا</del> | 9   | 8   | 4          | 8        | ထ        | rč<br>O | 8 9          | 8        | 9                                       | 4   | 7                                    |
| WAVE NO. 5 WAVE NO. 10 WAVE NO. 15 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -    | P-017             | 3.2  | 2.2      | 4.           | 0.7 | 5   | .69        | .25      | .87      | .53     | .23          | .95      | 2                                       | 4.  | .27                                  |
| WAVE NO. 5 WAVE NO. 10 WAVE NO. 15 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 017               | 9 1  | _        | 7            | 3   | =   | 8          | 8        | 8        | 7 8     | 8            | 7        | ~                                       | -   | $\stackrel{\hookrightarrow}{\vdash}$ |
| WAVE NO. 5 WAVE NO. 10 WAVE NO. 17  Solution 19  WAVE NO. 5 WAVE NO. 10 WAVE NO. 18  Solution 19  WAVE NO. 5 WAVE NO. 10 WAVE NO. 18  Solution 19  WAVE NO. 10  Solution 19  WAVE NO. 10  WAVE NO. 10  WAVE NO. 10  Solution 19  Solution 19  WAVE NO. 10  Solution 19  WAVE NO. 10  Solution 19  Solution 19  WAVE NO. 10  Solution 19  WAVE NO. 10  Solution 19  Solution 19  WAVE NO. 10  Solution 19  Solution 19  WAVE NO. 10  Solution 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10   | £-01x             | 78   | 57       | 4            | 26  | 4   | 03         | 94       | 8        | 79.     | 73,          | 67       | 62%                                     | 57  | 531                                  |
| WAVE NO. 5 WAVE NO. 10 WAVE NO. 10  Solve No. 5  WAVE NO. 10  WAVE NO. 5  WAVE NO. 10  WAVE NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ===  | 2, 1,0            | 3.2. | ~        | ~            | 2.  | 2   | 2          |          |          | -       |              |          | <u>-</u>                                | -   | -                                    |
| WAVE NO. 5 WAVE NO. 10 WAVE $\frac{1}{12}$ $1$ | 8    | ε- <sub>OfX</sub> | 828  | 615      | 440          | 297 | 172 | 990        | 974      | 893      | 820     | 756          | 869      | 645                                     | 296 | 551                                  |
| WAVE NO. 5 WAVE NO. 10 WAVE NO. 10 WAVE NO. 5 WAVE NO. 10 WAVE NO. 5 WAVE NO. 10 WAVE NO. 10 $\frac{1}{12}$ $\frac{1}$                   | ¥    | , J.M             | 2.   | 2        | 2.           | 2.  | 2.  | 2          |          | <u> </u> | -       | -            | <u>-</u> | <u>-</u> :                              |     | -                                    |
| WAVE NO. 5 WAVE NO. 10 $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3    | E-OTX             | 199  | 53       | 297          | 62  | 46  | 45         | 359      | 782      | 715     | 53           | 98       | 48                                      | 93  | [6]                                  |
| WAVE NO. 5 WAVE NO. 10 $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | .s.1              | 2.0  | 2:       | 2            | 2   | 2.0 | -:         | ~:       | =        | -       | <del>-</del> |          | ======================================= | =   | -:                                   |
| WAVE NO. 5   WAVE NO. 10   S. 2. 2. 2. 3. 3. 5. 5. 5. 80   S. 2. 2. 3. 3. 5. 5. 5. 80   S. 2. 4.438   4.398   4.514   5.782   5.868   5.9   S. 2. 4.438   4.398   4.514   5.782   5.868   5.9   S. 2. 4.438   4.398   4.514   5.782   5.868   5.9   S. 2. 4.220   4.030   3.996   4.099   5.255   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.330   5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | c-OIX             | 25   | 4        | 69           | 71  | 38  | 46         | 16       | 74       | 79      | 66           | 41       | 95                                      | 64  | 39                                   |
| WAVE NO. 5   WAV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2    | .g.1.3            | 7.7  | 7        | 6.6          | 6.2 | 5.9 | 5.6        | 5.3      | 5.1      | 4.9     | 4.7          | 6.6      | 4.4                                     | 4.3 | 4.2                                  |
| WAVE NO. 5  WAVE N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | C-OIX             | 53   | 54       | 90           | 97  | 89  | \$         | ဓ္က      | 15       | 8       | 44           | 98       | =                                       | =   | =                                    |
| WAVE NO. 5  WAVE N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ž    | ε-<br>- ν         | 7.6  | 0.       |              | 3.1 | 8.  | .5         | ω,       |          | 6.      | 1.7          | 33.      | 4.                                      | 'n  |                                      |
| WAVE NO. 5    Single   WAVE NO. 5   Single   Sin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Α    | OIX               | 23   | 22       | <u>د</u>     | 5   | 22  | œ          | 55       | 8        | 8       | 7 ر          | 7 6      | 9                                       | ų.  | 0                                    |
| WAVE NO. 5    C   N   N   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -5   | £-014             | .52  | 95       | 4.           | 5   | 37. | <u>4</u> . | .25      | 0        | 8.      | .67          | 2        | .37                                     | .24 | =                                    |
| MAVE NO. 5  2. 2  2. 2  3. 3.0  4. 984 4.940 5.06  4. 687 4.940 5.06  4. 220 4.184 4.29  24 4.220 4.184 4.29  28 4.220 4.184 4.29  30 3.715 3.686 3.77  31 3.581 3.554 3.64  31 3.581 3.554 3.64  32 3.353 3.327 3.41  38 3.254 3.231 3.30  40 3.161 3.139 3.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | - 3 '             | -    | 2        | 9 6          | 7 6 | 4 5 | 2 5        | 9        | -0       | 9       | 2            | 2        | 4                                       | 4   | 5                                    |
| WAVE NO. 5  WAVE N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | S-017             | 88.  | 43       | 90.          | .76 | 5.  | 29         | 60.      | .93      | 17      | 64           | 52       | 4                                       | ଞ୍ଚ | 12.                                  |
| WAVE NO    1,5,78  5,726    1,6,78  5,726    1,8,438  4,396    2,4,38  4,396    3,865  3,833    3,58  3,554    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,58  3,58    3,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 5  | 2 1 3             | 5    | S        | 5            | 4   | 3.4 | 4          | 4        | ω.       | m       | m<br>—       | m        | က်                                      | സ്  | 6                                    |
| MAVE  14 5.781 5.  16 5.341 5.  18 4.984 4.  22 4.438 4.  24 4.220 4.  28 3.865 3.  30 3.715 3.  31 3.463 3.  32 3.554 3.  40 3.161 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9    | s-orx             | 726  | 295      | 940          | 651 | 398 | <u>%</u>   | 966      | 833      | 989     | 554          | 438      | 327                                     | 231 | 133                                  |
| 2.2. 1.6. 5.781 1.8 4.984 2.0 4.687 2.2 4.438 2.4 4.220 2.8 3.865 3.353 3.353 3.353 3.353 3.865 3.865 3.865 3.865 3.865 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VE   | .J.M              | 5.   | 5.       | 4.           | 4.  | 4.  | 4          | ω.       | ω.       | ω,      | ω.           | ω.       | ب                                       | ω.  | ا                                    |
| 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ¥    | S-OIX             | 781  | 341      | 88           | 287 | 138 | 220        | 30       | 365      | 715     | 186          | 163      | 353                                     | 54  | <u>6</u>                             |
| 16<br>16<br>16<br>17<br>18<br>18<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | ۲.۵.              | 5    | 5        | 4            | 4.6 | 4.4 | 4.         | 4.0      | 3.8      | 3       | ω<br>1,      | 3.4      | ω                                       | 3.6 | ۳.                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                   | 14   | 16       | 18           | 20  | 22  | 24         | 26       | 28       | 8       | 32           | 34       | 36                                      | 38  | 40                                   |

TABLE A-VIII. TOLERANCE VALUES IN  $(m^2/s^2)/(cy/4k_{\rm m})$  FOR 99.73 PERCENT CONFIDENCE INTERVALS

|        |        |          | 20-95                        |            | 0600                         | 1           | 0040                         | ,           | အအလူထ                        | 1          | 1940                             |  |
|--------|--------|----------|------------------------------|------------|------------------------------|-------------|------------------------------|-------------|------------------------------|------------|----------------------------------|--|
| 30     | .s.1.5 |          | 0.22<br>0.11<br>0.06<br>0.05 |            | 1.20<br>0.59<br>0.40<br>0.30 | <br>        | 1.36<br>0.66<br>0.44<br>0.32 | • 1         | 0.66<br>0.36<br>0.23<br>0.18 |            | -0.50<br>-0.26<br>-0.17<br>-0.13 |  |
| ۳ NO.  | .J.M   |          | 0.24<br>0.12<br>0.08<br>0.05 |            | 1.32<br>0.65<br>0.43<br>0.33 |             | 1.50<br>0.73<br>0.48         | • 1         | 0.74<br>0.39<br>0.25<br>0.19 |            | -0.53<br>-0.29<br>-0.19          |  |
| WAVE   | .8.1   |          | 0.21<br>0.10<br>0.06<br>0.05 |            | 1.18<br>0.58<br>0.39<br>0.29 |             | 0.65                         | • 1         | 0.66<br>0.34<br>0.23<br>0.18 |            | -0.49<br>-0.26<br>-0.17<br>-0.13 |  |
| 25     | .2.1.3 |          | 0.22<br>0.11<br>0.06<br>0.05 |            | 1.22<br>0.60<br>0.40<br>0.30 |             | 1.38<br>0.67<br>0.44         | • 1         | 0.67<br>0.36<br>0.23<br>0.18 |            | -0.50<br>-0.26<br>-0.17<br>-0.12 |  |
| Æ NO.  | .J.M   |          | 0.24<br>0.12<br>0.08<br>0.05 |            | 1.35<br>0.76<br>0.44<br>0.33 |             | 0.74                         |             | 0.75<br>0.39<br>0.25<br>0.20 |            | -0.53<br>-0.30<br>-0.19          |  |
| WAVE   | .8.1   |          | 0.21<br>0.10<br>0.06<br>0.05 |            | 1.19<br>0.69<br>0.49<br>0.39 |             | 0.66                         | • 1         | 0.66<br>0.35<br>0.23<br>0.18 |            | -0.50<br>-0.26<br>-0.17<br>-0.13 |  |
| 20     | .s.1.3 |          | 0.21                         |            | 1.17<br>0.58<br>0.39<br>0.29 |             | 0.65                         | •           | 0.65<br>0.34<br>0.23<br>0.18 |            | -0.48<br>-0.25<br>-0.16<br>-0.12 |  |
| E NO.  | .J.M   | ROR      | 0.22<br>0.11<br>0.06<br>0.05 | RROR       | 0.60                         | ERROR       | 0.66                         | •   🗠       | 0.67<br>0.36<br>0.23<br>0.18 | ERROR      | -0.50<br>-0.26<br>-0.17<br>-0.13 |  |
| WAVE   | .8.1   | NCE ERI  | 0.21<br>0.10<br>0.06<br>0.04 | ш          | 1.17<br>0.58<br>0.39<br>0.29 |             | 1.33<br>0.65<br>0.42         | 7   5       | 0.65<br>0.34<br>0.23<br>0.17 | 1          | -0.49<br>-0.26<br>-0.17<br>-0.13 |  |
| 15     | .2.1.3 | CONFIDEN | 0.21<br>0.10<br>0.06<br>0.06 | CONFIDENCE | 1.16<br>0.57<br>0.38<br>0.28 | CONFI DENCE | 1.31                         | •   11      | 0.65<br>0.33<br>0.22<br>0.17 | CONFIDENCE | -0.49<br>-0.25<br>-0.16<br>-0.12 |  |
| E NO.  | .J.M   | 50% C    | 0.21<br>0.10<br>0.06<br>0.05 | 75% 0      | 1.19<br>0.59<br>0.39<br>0.29 | 30%         | 1.34<br>0.65<br>0.43         | . 3c.<br>5% | 0.66<br>0.35<br>0.23<br>0.18 | ) %66      | -0.49<br>-0.26<br>-0.17<br>-0.13 |  |
| WAVE   | .8.1   |          | 0.21                         |            | 1.15<br>0.57<br>0.38<br>0.28 |             | 1.31                         | • }         | 0.64<br>0.33<br>0.22<br>0.17 |            | -0.49<br>-0.25<br>-0.16<br>-0.12 |  |
|        | .2.1.3 |          | 0.21<br>0.10<br>0.06<br>0.04 |            | 1.16<br>0.57<br>0.38<br>0.29 |             | 1.32                         | •           | 0.65<br>0.33<br>0.22<br>0.17 |            | -0.49<br>-0.25<br>-0.17<br>-0.12 |  |
| NO. 10 | .J.M   | ]        | 0.20<br>0.10<br>0.06<br>0.04 |            | 1.13<br>0.56<br>0.37<br>0.28 |             | 0.63                         | • 1         | 0.64<br>0.33<br>0.22<br>0.17 |            | -0.48<br>-0.25<br>-0.16<br>-0.12 |  |
| WAVE   | ٠٤٠٦   |          | 0.21<br>0.10<br>0.06<br>0.04 |            | 1.16<br>0.57<br>0.38<br>0.28 |             | 0.64                         | • !         | 0.65<br>0.33<br>0.22<br>0.17 |            | -0.49<br>-0.25<br>-0.16<br>-0.12 |  |
|        | .8.1.5 |          | 0.22<br>0.11<br>0.06<br>0.05 |            | 1.24<br>0.61<br>0.41<br>0.31 |             | 1.41                         |             | 0.68<br>0.37<br>0.24<br>0.18 |            | -0.51<br>-0.27<br>-0.18<br>-0.13 |  |
| NO. 5  | .J.M   |          | 0.21<br>0.10<br>0.06<br>0.05 |            | 1.19<br>0.59<br>0.39<br>0.29 |             | 0.65                         | 0           | 0.66<br>0.35<br>0.23<br>0.18 |            | -0.49<br>-0.26<br>-0.17<br>-0.13 |  |
| WAVE   | .8.1   |          | 0.22                         |            | 1.24<br>0.61<br>0.41<br>0.31 |             | 1.41                         | 0.34        | 0.68<br>0.37<br>0.24<br>0.18 |            | -0.51<br>-0.27<br>-0.18<br>-0.13 |  |

SAMPLE SIZE

5885

**528\$** 

5285

5284

2284

ERROR IN THE PERCENTAGE CONFIDENCE OBTAINED FROM USING THE NORMAL APPROXIMATION WITH EXACT CONFIDENCE INTERVALS AT PERCENTAGES 50, 75, 90, 95, AND 99 TABLE A-IX.

|          |         |            | · · · · · · · · · · · · · · · · · · · |                  |                              |                  |                                                       |
|----------|---------|------------|---------------------------------------|------------------|------------------------------|------------------|-------------------------------------------------------|
| 30       | c.L.S.  |            | 0.92<br>0.46<br>0.30<br>0.23          |                  | 0.55<br>0.29<br>0.20<br>0.15 |                  | -0.18<br>-0.14<br>-0.11                               |
| E NO.    | '7'W    |            | 1.01<br>0.50<br>0.33<br>0.25          |                  | 0.60<br>0.32<br>0.22<br>0.16 |                  | -0.18<br>-0.15<br>-0.12                               |
| WAVE     | .8.1    |            | 1.00<br>0.45<br>0.30                  |                  | 0.54<br>0.29<br>0.19<br>0.15 |                  | -0.18<br>-0.14<br>-0.13                               |
| 25       | .S.1.3  |            | 0.93<br>0.46<br>0.31<br>0.23          |                  | 0.56<br>0.30<br>0.20<br>0.15 |                  | -0.18                                                 |
| 9        | .J.M    |            | 1.02<br>0.51<br>0.34<br>0.25          |                  | 0.60<br>0.33<br>0.22<br>0.17 |                  | -0.19<br>-0.15<br>-0.13                               |
| WAVE     | .8.1    |            | 0.91<br>0.45<br>0.30<br>0.22          |                  | 0.55<br>0.29<br>0.20<br>0.15 |                  | 0.18 -<br>0.14 -<br>0.11 -                            |
| 50       | .s. 1.0 | ERROR      | 0.89<br>0.30<br>0.22                  | ROR              | 0.54<br>0.29<br>0.19<br>0.15 | ROR              | 3 -0.17 -0.18<br>-0.14 -0.14<br>-0.11 -0.11           |
| Æ NO.    | .J.M    | ENCE EF    | 0.92<br>0.46<br>0.30<br>0.23          | INCE EF          | 0.55<br>0.30<br>0.20<br>0.15 | NCE ER           | -0.18<br>-0.14<br>-0.12 -                             |
| WAVE     | ۱.5.    | CONFIDENCE | 0.89<br>0.44<br>0.29<br>0.22          | CONFIDENCE ERROR | 0.54<br>0.29<br>0.19<br>0.15 | CONFIDENCE ERROR | 0.18                                                  |
| 15       | .s.1.5  | 68.27%     | 0.88<br>0.44<br>0.29<br>0.22          | 95.45%           | 0.54<br>0.28<br>0.19<br>0.14 | 99.73% (         | 3 -0.17 -0.18<br>1 -0.14 -0.14<br>1 -0.11 -0.11       |
| E NO. 15 | .J.M    | 9          | 0.90<br>0.45<br>0.30<br>0.22          | 6                | 0.55<br>0.29<br>0.20<br>0.15 | ŏ                | 0.18                                                  |
| WAVE     | ٠٤.٦    |            | 0.88<br>0.43<br>0.29<br>0.22          |                  | 0.53<br>0.28<br>0.19<br>0.14 |                  | -0.17 -0.18 -0.18 -0.18 -0.14 -0.14 -0.11 -0.11 -0.11 |
| 91       | .s.1.5  |            | 0.88<br>0.44<br>0.29<br>0.22          |                  | 0.54<br>0.28<br>0.19<br>0.14 |                  | 0.17                                                  |
| MAVE NO. | .J.M    |            | 0.87<br>0.43<br>0.29<br>0.21          |                  | 0.53<br>0.28<br>0.19<br>0.14 |                  | -0.17<br>-0.14<br>-0.11                               |
|          | .8.1    |            | 0.88<br>0.44<br>0.29<br>0.22          |                  | 0.54<br>0.28<br>0.19<br>0.14 |                  | -0.17<br>-0.14<br>-0.11                               |
| ഹ        | .s.1.5  |            | 0.95<br>0.47<br>0.31<br>0.23          |                  | 0.57<br>0.30<br>0.20<br>0.16 |                  | 0.18<br>-0.12                                         |
| Æ NO.    | .л.м    |            | 0.91<br>0.45<br>0.30<br>0.22          |                  | 0.55<br>0.29<br>0.20<br>0.15 |                  | 0.18                                                  |
| WAVE     | ٠٤.٦    |            | 0.95<br>0.47<br>0.31<br>0.23          |                  | 0.57<br>0.30<br>0.20<br>0.15 |                  | 0.18<br>0.14<br>0.12                                  |
|          |         |            | 5284                                  |                  | 5284                         |                  | 284                                                   |

IN THE PERCENTAGE CONFIDENCE OBTAINED FROM USING THE NORMAL APPROXIMATION WITH CONFIDENCE INTERVALS AT PERCENTAGES 68.27, 95.45, AND 99.73 ERROR EXACT TABLE A-X.

THIS PAGE INTENTIONALLY LEFT BLANK.

#### APPENDIX B

### CALCULATION TECHNIQUES

A few guidelines to calculation techniques are listed below. These techniques are not necessarily efficient but they are generally understood by people familiar with performing numerical statistical calculations. Considerable literature exists covering their implementation (e.g., Ref. 6).

Since statistics often deal with massive amounts of data and since the formulas sometimes involve large factorials, exponentials, logarithm sums, etc., simple discretion must be employed to maintain accurate calculations. Adequate results can usually be obtained by implementing the formulas in a way which avoids the generation of large numbers.

Accurate numerical integrations can be accomplished by a three or four pass Runge-Kutta scheme and implementation is relatively easy. Also some type of numerical isolation scheme is necessary. One based on finite difference approximations to partial derivatives is adequate. A complete recalculation of the partials on each pass does not necessarily result in a serious loss of computation time and is often simpler to implement than methods based on an update scheme.

Accurate calculations of the Pearson density function may be improved by rewriting equation (2.5) as follows

$$\frac{\beta}{\Gamma(\lambda)} (\beta x)^{\lambda-1} e^{-\beta x} = e^{(\ln \beta - \ln \Gamma(\lambda) + (\lambda - 1)\ln(\beta x) - \beta x)}$$

This is especially important when calculating the integrand of the sampling distribution on the mean, equation (2.30). Otherwise, the argument of the exponential may exceed the range of the exponential subroutine. Several good routines are available for calculating the gamma function  $\Gamma(\lambda)$ . Reference 6 lists one such subroutine. Five place accurate integration of the density function over its entire useful range may be obtained by using one hundred steps with a four pass Runge-Kutta integrator.

In employing the likelihood method (Eqs. 2.17 & 2.21) to fit the population distribution, it is necessary to use numerical isolation to obtain the value of  $\lambda$  satisfying (2.21). The formula can be implemented as written. Of course, the  $x_i$ 's represent the data values and  $\bar{x}$  the mean value of the data. Many formulas are available for calculating  $\Gamma'(\lambda)/\Gamma(\lambda)$ . The following series may be used but this series converges very slowly in the neighborhood of  $\lambda=1$ .

$$\Gamma'(\lambda)/\Gamma(\lambda) = -\gamma - \frac{1}{\lambda} + \lambda \sum_{n=1}^{\infty} \frac{1}{n(\lambda+n)}$$

## APPENDIX B (Continued)

In this formula Y is Euler's constant. Notice if  $\lambda = 1$  the nth partial sum,  $S_n$ , is given by

$$S_n = -(\gamma+1)+(n/(n+1))$$

Thus, 1000 terms of the sum are required to obtain 4-place accuracy.

In calculating central confidence intervals on the quantiles, the true value of the quantile must be assumed to be given by one of the theoretical functions fitting the population distribution. Let  $\mathbb Q$  denote the value of the quantile to be studied. Then one seeks the value of y satisfying the equation

$$Q = \int_{0}^{x} \frac{\beta}{\Gamma(\lambda)} (\beta x)^{\lambda-1} e^{-\beta x} dx$$

This value of y represents the true value of the population quantile. After y has been obtained, confidence intervals centered at y may be calculated numerically.

Suppose a random sample of n profiles has been selected, the power spectra has been calculated, and at some selected wave number the resulting n values of PSD have been ordered according to magnitude.

$$x_1 < x_2 < \dots < x_r < \dots < x_n$$

Suppose  $\delta$  is a positive number such that  $y-\delta>0$ . What is the probability that  $x_r$  is in the interval  $y\pm\delta$ ? This is the probability that  $x_r$  represents the true value of the Qth percentile power density with a known error. Now if  $x_r$  is not even close to y, the probability that it represents the true value is very small. In paragraph 2.5.3, the assumption that Q was of the form (r-1)/(n-1) was made to assure  $x_r$  being as close as possible to Q as the sample size increases.

For simplicity we would recommend that for a given sample size, n, confidence intervals should only be developed for quantiles of the form (r-1)/(n-1) where r is a positive integer. To proceed with this calculation, select the sample size, n, and the percentile value, Q, (of the form (r-1)/(n-1)) and solve for the value of y. Then select the confidence desired, P, and use equation (2.38) or (2.39) to solve for that value of  $\delta$  satisfying

$$P = \sum_{j=0}^{n-r} (-1)^{j} \frac{n!}{(r-1)!(n-r)!} {n-r \choose j} (\frac{1}{r+j-1}) (F^{r+j}(y+\delta) - F^{r+j}(y-\delta))$$

## APPENDIX B (Continued).

In this equation,  $F^{r+j}$  is given by

$$F^{r+j}(z) = \left[\int_{0}^{z} \frac{\beta}{\Gamma(\lambda)} (\beta x)^{\lambda-1} e^{-\beta x} dx\right]^{r+j}$$

A little experimentation with the implemented form of the equation may be necessary to obtain accurate results, especially for large sample sizes (large values of n).

Finally, the reader's attention should be brought to the distribution free methods of calculating confidence intervals on quantiles. Once again, suppose a random sample has been selected, the PSD values ordered, etc.

$$x_1 < x_2 < \dots < x_j < \dots < x_r < \dots < x_n$$

The distribution free method answers the question, "What is the probability that Q lies between  $x_j$  and  $x_r$ ?" This probability does not depend on the population distribution. Computations are thereby reduced to a minimum. The formula for calculating this probability, P, is

$$P = \sum_{i=j}^{n} \frac{n!}{i!(n-i)!} Q^{i} (1-Q)^{n-i} - \sum_{i=r}^{n} \frac{n!}{i!(n-i)!} Q^{i} (1-Q)^{n-i}$$

$$= \sum_{i=j}^{r-1} \frac{n!}{i!(n-i)!} Q^{i} (1-Q)^{n-i}$$

As an example of the application of this formula, suppose a random sample of size 15 is selected. What is the probability that the 50 percentile value of the power lies between the 7th and 9th values of the sample? Here

Q = 0.5 = 1/2  
r = 9  
j = 7  
P = 
$$\sum_{i=7}^{8} \frac{15!}{i!(15-i)!} (\frac{1}{2})^i (\frac{1}{2})^{15-i}$$
  
 $\approx 0.4$ 

## APPENDIX B (Continued)

The interval with end points  $x_7$  and  $x_9$  serves as a 40 percent confidence interval for the 50 percentile value in a sample of size 15.

The distribution free techniques may also be used to measure the size of a sample necessary to include a given high percentile level of power. For the probability, P, that the percentile value Q exceeds the nth value of a sample of size n is

$$P = \frac{n!}{n!(n-n)!} Q^{n} (1-Q)^{n-n}$$
  
=  $Q^{n}$ 

Thus if  $\,Q\,$  is selected as the 99 percentile level, the probability that the largest value in a sample of size 3 is less than  $\,Q\,$  is

$$(0.99)^3 \approx 0.97$$

A sample size large enough to include a value of the power exceeding the 99 percentile value 50 percent of the time is given by the solution of n in the equation

$$(0.99)^n = 0.5$$

Solving for n

$$n = \frac{\log(0.5)}{\log(0.99)} \cong 69$$

To exceed the 95 percentile value of power 99 percent of the time requires a sample size of 86 or more.

For

$$(0.95)^n = 0.01$$

$$n = \frac{\log(0.01)}{\log(0.95)} \approx 86$$

To exceed the 99 percentile value 99 percent of the time

$$n = \frac{\log(0.01)}{\log(0.99)} \cong 455$$

#### D5-15800

#### APPENDIX C

### GLOSSARY OF DEFINITIONS, ABBREVIATIONS AND SYMBOLS

## DEFINITIONS

Bias

- Used in statistics to indicate that the first moment (mean values) of a distribution does not agree with the mean value of the population the distribution is supposed to represent.

Central confidence interval - A tolerance interval centered at some preselected value.

Quantile

- If a set of n numbers has been ordered according to magnitude, the  $r^{th}$  quantile (where r < n) is the  $r^{th}$  value in the set.

Tolerance interval

- A type of confidence interval used with sampling distributions. The confidence associated with such an interval is the probability that the desired value will be obtained within the tolerances specifying the interval.

Time average statistic

- Used here in connection with PSD values where the time variation has been destroyed by considering data collected at different times as belonging to a single population with no time difference.

#### **ABBREVIATIONS**

**GMT** 

- Greenwich mean time

**KSC** 

Kennedy Space Center

**PSD** 

- Power spectral density

#### SYMBOLS

β

- A scaling parameter used in the Pearson distribution.

Υ

- Incomplete gamma function - also used as Eulers constant

## D5-15800

# APPENDIX C (Continued)

# SYMBOLS (Continued)

| k               | - | Wave number.                                                      |
|-----------------|---|-------------------------------------------------------------------|
| ln .            | - | Natural logarithm.                                                |
| λ               | - | A shaping parameter used in the Pearson distribution.             |
| μ               | - | Mean.                                                             |
| μ2              | - | Variance.                                                         |
| $\mu_{S}$       | - | The mean of a sampling distribution.                              |
| <sup>μ</sup> 2s | - | The variance of a sampling distribution.                          |
| p               | - | Power density - also used as probability.                         |
| π               | - | Continued product.                                                |
| ф               | - | Characteristic function.                                          |
| Φ               | - | Characteristic function of the sampling distribution on the mean. |