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SECTION 1

INTRODUCTION
1.0 GENERAL

An understanding of the statistical structure of local wind contributes

to both environmental science and the design, development, and launch
support of aerospace vehicles. The compilation of empirical statistics as
well as the explanation of observed data by applied dynamic meteorology
has produced many useful results. However, the analysis of the analytical
structure of observed statistics with a view toward obtaining a deeper
insight into the probabilistic structure of the wind has in some cases
tended to lag behind these other efforts. The purpose of this report is
to aid in filling this gap.

This report concentrates on one of the many statistical variables of
meteorological interest; namely, the power spectra of the scalar wind (where
the scalar wind is viewed as a function of height instead of time). To
generate the statistics, scalar wind profiles obtained by use of the FPS-16
Radar/Jimsphere balloon system were analyzed for their power spectral
content. This profile data was collected at Kennedy Space Center (KSC),
Florida. At each frequency of interest, the PSD values from all profiles
were assembled to form a time average statistic. This statistic exhibits a
simple probabilistic structure. The wind has no preferred frequencies,

the PSD probability distribution at each frequency has the same functional
form, and the parameters of the probability distributions at different
frequencies are related by a simple exponential function.

1.1 GENERAL DESCRIPTION OF ANALYSIS

The statistical analysis of power spectra was intended to produce both the
time average population statistics and the sampling distributions associated
with random sampling from the complete set of wind profiles. It was assumed
that the population was completely defined by approximately two and one-half
years of Jimsphere observations. No effort was made to compensate for time
trends or seasonal and diurnal oscillations. It seems plausible, however, to
contend that the functional form of the population statistics obtained in this
report will be correct for a larger more carefully screened population. If
this proves to be the case, only the estimation of those parameters specified
in the function need be recalculated from the longer data record. Methods
for performing these calculations are given below.

For comprehensive spectral statistics, a multivariate PSD population
analysis would be desirable. For example, the power spectral densities
used in this report were calculated at each of 256 wave numbers (cycles/
4000 meters) for each scalar wind profile. The distribution of power
density among the different wave numbers is necessary for an exhaustive
analysis. A complete multivariate analysis would require a 256 variate
distribution function. However, the labor involved in analyzing such a
distribution is extremely prohibitive. For these reasons the sampling
distributions are constructed independently at each wave number. Conse-
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1.1 (Continued)

quently, a single sample which yields "good statistics" (as represented
by the population statistics specified below) at one wave number may give
poor statistics at another wave number.

It should also be mentioned that the estimation of the parent population
probability density function severely affects each sampling density func-
tion. For example, one method for estimating the parent population may
yield a good sampling distribution on the mean and a biased sampling dis-
tribution on the median, whereas a second method for estimating the parent
population density function may do just the reverse. Caution must then be
exercised in employing estimated parent parameters in sampling distributions.

In this report efforts are concentrated on the sampling distribution of
the mean since this is more fully developed in the existing literature.
Due to its frequent utility, a discussion of sampling distributions on the
medians and other quantiles 1is presented.

Confidence intervals for the resulting sampling distributions were taken

to be tolerance intervals centrally located about the mean value of the

sampling distribution. For sufficiently high confidence, half the length

of a central confidence interval will exceed the value of the mean. Since '
PSD is a scalar quantity and thus positive, the left end point of a high
confidence interval centered at the mean will lie to the left of zero.
Consequently, the left end point will not represent an obtainable PSD
value and central confidence intervals on PSD are not defined for suffi-
ciently high confidence. However, central confidence intervals are easy
to compare with confidence intervals used in connection with a normal
distribution having the same mean and variance as the sample distribution.
The Timiting formulas for large samples may then be employed with a

known error.

1-2
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SECTION 2
POPULATION AND SAMPLING STATISTICS FOR JIMSPHERE WIND PROFILE POWER SPECTRA
2.0 GENERAL

The purpose of this section is to describe and discuss the data and
methods used to obtain probability inferences from compiled statistics.
The first paragraph gives a brief description of the data and its
condition. The second paragraph describes how the data were processed and
how the statistics were compiled. This is followed by several para-
graphs discussing the methods used to make statistical inferences.

2.1 DATA DESCRIPTION AND CONDITIONS

This investigation was based upon 1,196 FPS-16 radar/Jimsphere scalar wind
profiles covering approximately two and one-half years of data from Decem-
ber 1964 to May 1967. Of the 1,196 profiles, 861 had complete data records
of wind speed between the altitudes of 4 ard 16 kilometers in 25-meter
increments. Those profiles with complete data spanned approximately the
same time period with no obvious gaps. These 861 profiles were taken as
the population sample and all analysis was confined to the 4 to 16 kilo-
meter altitude range.

Scalar wind profiles were obtained from raw FPS-16 data coliected every
0.1 second by a preprocessing technique described in detail in References
1 and 2. The preprocessing essentially consisted of a tolerance filter

to eliminate spurious points, an RMS interpolation to find the balloon
position at every 25-meter height interval, and a finite differencing
technique to obtain the velocity. Other authors have commented (Reference
3) that the processing attenuates power in wave numbers above 40 (where
the unit of measure is cycles/4000 meters). This effect did not inter-
fere with the statistical analysis developed below since a statistical
analysis for wave numbers above 30 was not attempted.

Approximately 65 percent of the sample consisted of Jimsphere profiles
taken at 0100 and 1300 GMT. The daily distribution of the data over the
two and one-half year period is represented in Figure 2-1. The hourly and
monthly distribution of the data are represented in Figures 2-2 and 2-3,
respectively. Clearly, the early months of the year were more heavily
weighted than the later months. No adjustment has been made to compensate
for seasonal or diurnal bias in the data.

2.2 DATA PROCESSING

The power spectra for each of these profiles was constructed by using the
fast Fourier transform method (References 4 and 5). In this type of
spectral analysis, height replaces time as the independent variable. The
fast Fourier transform method generated the spectra for some 861 profiles
in less than two hours of computer time.

2-1
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2.2 (Continued)

In the past, MSFC has generated power spectra after first prewhitening the
signal with a Scoggins filter. The resulting statistics were compared
with the statistics of the raw spectra obtained without prewhitening. No
significant change in the statistical structure could be noted. A
41-weight Martin Graham filter was also tested as a prewhitening filter.
Here again, there was apparently no significant change in statistics.

Of course, the basic purpose of prewhitening is to produce a white noise
spectra so that a symmetric smoothing filter may be employed to estimate
the true spectra. No spectral smoothing was employed due to the
difficulties involved in analyzing the statistical bias of such a filter.
A discussion of the indiscriminate use of symmetrically weighted smoothing
filters is given in Section 3.

After the 861 power spectra were obtained, the spectral density values
were grouped according to frequency. This resulted in 861 values at each
of 256 wave numbers ranging from 0.3125 to 80 cycles per 4000 meters.

At each wave number the values were ordered according to magnitude. From
these ordered statistics the cumulative distributions on power spectral
density were obtained. Ordered statistics were selected in preference to
assembling density functions. These statistics allow the application of
the distribution free "goodness of fit" tests such as the Kolmogorov test.

The population distributions were assumed to be defined by theoretical
distributions fitting the ordered statistics. Sampling distributions for
the mean and quantiles were then calculated from these theoretical popu-
lation distributions. The sampling distributions were compared with
equivalent numerical sampling distributions obtained from a machine
oriented random sampling program (Reference 6}, sampling on the 861 PSD
values at a selected set of 6 frequencies. The numerical and theoretical
sampling distributions agree relatively well. However, the numerical
sampling distributions on quantiles are poorly defined with only 861 data
values.

Central sampling confidence intervals for the mean for sample sizes ranging
from 2 to 40 were calculated. Central intervals were chosen so that the
rate of convergence of the sampling distributions to a normal distribution
could be presented.

2.3 PEARSON TYPE III DISTRIBUTIONS

This section is offered for those readers who lack a familiarity with the
normalized incomplete gamma. function and its statistical relevance. Ref-
erence 7 contains most of the arguments presented in this section. Infor-
mation on this distribution is generally available in the literature on
statistics.

2-2
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2.3 (Continued)

The incomplete gamma function may be defined by the integral formula

Wy) = 2ea (2.0
v}

where X is a parameter which must be greater than zero.

The normalized function may be defined as

Fly = ]'1("ix)

where

r(2) =7 A e~2y, (2.2)
0

Since lim F(y) =1
y—)&‘

F(0) = 0, and F is monotonic increasing, the function F(y) is a cumulative
distribution function on the domain 0 <y < ». The parameter A shapes

the function F. The density function associated with this distribution is
given by

dF _ o a1, -y
E;-- fly) OO Y e (2.3)

In fitting such a function to data, one usually extends the definition of
the function to include some transformation on the independent variable,
such as a linear transformation. In our case, only a scaling factor is
required since the minimal value of PSD is zero and a translation on y {n
the function F(y) would destroy the property F(0) = 0. Thus, we require
only

X = z/B or z = Bx

where 8 is a scaling parameter. Employing the transformation for z on
equation (2.2) and noting that r(x) is a constant, the distribution function
becomes

(y/8)
Fly) = ]
0

iy (8x)* e (gdx) = F(x) (2.4)

with density function

ds)((X) = f(X) - T_(:i_)_ (BX))\“]e'BX (2'5)
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2.3 (Continued)

It is now necessary to fit two parameters to the data: a scaling parameter,
£, and shaping parameter Xx. To simplify further discussion, define f(x)=0
if x < 0.

The moments about the mean of this distribution (mean, variance, etc.) are
relatively easy to calculate by employing characteristic functions. Let p
denote the mean value and let

]

o(t) = f en(x'“)f(x)dx (2.6)
denote the characteristic function. Notice that the nth derivative of
o(t) is given by

d"e

- i (x-u) " eit(x'“)f(x)dx (2.7)
dt

h\O\B

If the nth derivative of ¢(t) is evaluated at t = 0, one obtains

@
n

de
dt"

= M ] (x-u)"F(x)dx (2.8)

t:O -0

The right-hand side of equation (2.8) is just the definition of the nth
moment about the mean times M.

One may obtain an explicit form for ¢o(t) as follows:

o(t) = j' el tx-u) f%i748x)x'1 e BXdx
. Y .
z e-1tuf%i7- }’ex(1t'8)xk-]dx (2.9)

Perform the variable substitution
w=-(it -B)x

in the integral in (2.9) and obtain

Amitn -
iy Wy W AT o]
o) = Sy _£ et (FEay ™

2-4




D5-15800

2.3 (Continued)

o

j e ¥ wk']dw

-0

i Bxe-itu
r(x)(8-it)*

—wwx-l

Since e = 0 when w < 0 the above equation may be written as

-wW =1
—_ e W dw
r(x)(g-it)* j

Bke-itu
0
A -itu
-2
r(x)(B-it)

= e-itU(] _ _i_g)-X (2.10)

The first derivative of ¢ evaluated at zero is
-i(u-1/B) (2.11)

Since equation (2.11) is (-i)] (see eq. 2.8) times the first moment about
the mean, and since the mean, p, is the first moment about the mean, one obtain:

u-Ax/8 =0
B = A8 (2.12)

Substituting in equation (2.10) for u, from (2.12), the second derivative
evaluated at t = 0 is

(-1)2 gl
Thus, the variance, denoted by uj, is

g = A/g2 (2.13)

The higher moments may be obtained by a similar process but the first two
moments are sufficient to determine the distribution. Solving equations
(2.12) and (2.13) for the parameters A and B one obtains

2
)\z}'l_
H2
B:._E
U2
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2.4 PARAMETER ESTIMATION

In estimating X and B from data several techniques were employed. The
first technique discussed is called the maximum likelihood method. In
this method a function called the likelihood function is maximized with
respect to the parameters X and g and the resulting formulas are called
maximum likelihood estimators for X and R.

The 1ikelihood function L for the Pearson distribution is the finite
product

n
B A-1 -BXj
L= 1 [—T—748x.) e "]
521 TOA 1
B \n n A-1 871]
= ( VUL m(ex; )T e (2.14)
Y Hoy

This function may be maximized with respect to 2 by maximizing the In L
with respect to B.

n

nL=nCing - a0 LGN £+t x) - e (2.15)
1=
n
e - s LIOD/e - %] (2.16)

.i

Set equation (2.16) to zero and cbtain

>
i
S|~

n
,21 x; = 1/8 + (\-1)/8 = /8 (2.17)
i=

Since A/R is the true mean (equation 2.12) of the distribution, equation
(2.17) demonstrates that the maximum likelihood estimator of the mean is
given by the usual formula for estimating the mean.

But to obtain a formula for the pair of values of ) and g which maximize
the Tikelihood function the value of

3 Inl
A

must be calculated. Thus, differentiating equation (2.15)

31l _ , 3(-1n (1))
oA 3N

+ (1ng * 1nxi)

fHe-13
—_—

i
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2.4 (Continued)

, n
= -n(%ré%lJ +n 1nB+ iZ] In X (2.18)

where T''()) is the derivative of I'. Setting equation (2.18) equal to
zero, one obtains

n() ey = Y - (1 2
T n B} o4 In X; = In i Xi) (2.19)

Now employ the constraint given by equation (2.17) to remove 8, and obtain

T'(x) ) n
n( - In==) = In(T x) (2.20)
) j=1
where X is again given by
I
T 1.21 X
Rewriting (2.20)
T'()) n x4
n(—(—-;-- nA) = In( 0 =) (2.21)
I'{a i=] X

This equation is easy to solve numerically for A.

These formulas were used to fit the functions to the data. In Section 3
the results will be compared with other methods of fit. Although it is
not obvious from equation (2.21), the results of Section 3 show that the
formula for estimating the variance of a normal distribution, namely

[ - %7

He-13

1
nj

is not an adequate estimator of the variance. The values of the variance

given by this estimator were calculated from the data for comparison purposes
and were used with the values of the mean, given by equation (2.17), to calculate
the parameters A and g. Using these values of A and B the gamma function had
data fit errors in excess of 10 percent.

The second method of estimation employed was a least squares curve fit.
The parameters A and B are estimated by minimizing the sum of the squared
deviations of the Pearson distribution from the empirical distribution.

2-7
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2.4 (Continued)

This technique yields an excellent fit to the empirical distribution

of data. The resulting parameter estimates were employed in building
analytical sampling distributions and central confidence intervals. Of
course, these estimates are not necessarily unbiased although they are
consistent.

The third method of fit employed was a constrained least squares method.
In constructing a fit which would yield an unbiased sampling distribution
on the mean, the ratio A/B, was held constant at the true population mean
u. The mean square deviation was minimized under this constraint.

An additional method of fit was also studied but was not used in this

study. This method is much more promising for future work because it

employs more information than is generally available from the distrib-
ution functions. An assumption is made that the percentile levels are
given as functions of wave number by a function of the form

P =Py k™

where P is the PSD value for a given percentile level, at wave number k;
P, and s are parameters. This assumption is well supported by References
3 and 4 and the results given below.

Assuming that the quantiles are reasonably close to normal distributions
(with a sufficiently large sample of wind profiles this is quite reasonable)
a root mean square estimate of Py and s may be made by fitting linearly

InP= TnPg-5s 1Ink.

If this estimate is made at each wave number k, the functional form of
s(k) and Py(k) may be recovered.

In using the data in this report, the noise level in the high frequency
range restricts the usable values of k. In fact, the approach just des-
cribed should definitely be supported by careful data conditioning and
spectral smoothing. See section 3 for a further discussion on this sub-
ject.

2.5 SAMPLING DISTRIBUTIONS
After the distribution functions on the PSD population have been fitted,
the sampling distributions on the mean, variance and quantiles can be con-

structed. For simple random sampling with replacement, the sampling
density function for n-random samples is given by the finite product.

n
X ey (8x )" e 1= 1 (2.22)
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2.5.1 Sampling Distributions on the Mean

The sampling distribution on the mean, m, is then given by

F(m) =!/!:;[L dxy dx,...dx (2.23)
n times
integrated over the region specified by the set of all xj's such that
1"
n J.Z]Xj =m (2.24)

The moments of the distribution may be found by the use of equation (2.10)
which indicates that the characteristic function of

R x-1  -BX:
TOyex;) " e

about zero is given by

F5 e dinyTA s ey

L =)
¢j(t) = (I -11t/8) ~ (2.25)
Now the characteristic function, &(t), of F(nm) is given by
- itm
o(t) = ‘ ‘I....; e L dx] dx,...dx
0 © 0

n times

7 itx; B A-1 _-Bx -
][ g e J TTXT(ij) ey dxj] _

: ¢; (2.26)

=)
T

J J

Using the result of (2.25) in the final expression of (2.26) one obtains
o(t) = (1 - it/g)™ (2.27)

According to equations (2.10) and (2.25) equation (2.27) is the character-
istic function of the density function

ﬂ—ﬁﬂ(sx)"*" e BX (2.28)

another gamma density function. Thus

nm
-1 RBRx
F(nm) = -(—)-(B ax)MA-1 oBX gy (2.29)
ofl‘nx
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2.5.1 (Continued)

or by the variable substitution x = nx

m

_] ‘nSX
F(m) = E_— (nex)™1 e dx (2.30)
oﬂﬁJ

In this example, A is replaced by n\ and 8 is replaced by ng. According to
equations (2.12) and (2.13), the mean and variance of the sampling distri-
bution on the mean are then given by

~ nA _ i _

mean = ug =gz =g =M (2.31)
- N _ x _ 1

var. = p,o = z;gs?-- ;g2-- = Ho (2.32)

where p and U, are the mean and variance from the parent population.

Comparison of equation (2.32) for the variance of the sampling distribution
with the formula for sampling from a normal distribution

var = %- o] (2.33)

shows that the true variance, equation (2.32), is identical to the usual
formula employed for sampling from a normal distribution. The rate of
convergence of the gamma function sampling distribution to the normal
sampling distribution centered at the mean, u, with standard deviation

o = ’i& (2.34)
n
as a function of n is presented in Section 3.
2.5.2 Sampling Distribution on the Variance

The sampling distribution on the variance, v, is given by

F(v) = [J ! de]..,dxn (2.35)

e

n times
integrated over the values of the xi's satisfying

%2“1‘”2im’ (2.36)

Once again, U denotes the population mean. If the reader wishes to pursue
the structure of this function, Reference 7 offers several usable techniques.
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2.5.3 Sampling Distribution on the Quantiles

The sampling distributions on the quantiles (percentage levels) are of
some utility due to the fact that the power spectra are usually presented
in the form of exceedance envelopes. In order to treat the theory easily
a simplifying assumption will be made. If the sample size is n, only
those percentage levels of the form

r-1

n-T

where r is a positive integer, will be discussed. Thus, if the sample
size is 10, the sampling distribution for the 50 percent level cannot be
obtained exactly (under the above assumption) since there is no integer r
such that (r-1)/9 - 0.5.

Let F denote the population distribution (in our case F is given by
equation 2.4) and f the density function of the variable in question. Then

the sampling density function on the 1:4_ percentile value is (Reference
7): n-

£.00 = tmyHamyr (F 00 (1-F(0) ™ £(x) (2.37)

The distribution function associated with f,.(x) is easily obtained by
expanding the right hand side of (2.37) and integrating term by temm.

Y
fro- 1 O e P ae)
0

Confidence intervals may be easily calculated numerically since

Y2 nsr n! n-r r+j
f fets = 1 ey O3 ) g ()
N .
F ™ y,)) (2.39)

Appendix B contains a further discussion of quantile sampling.
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SECTION 3
RESULTS AND RECOMMENDATIONS
3.0 GENERAL

In this section the results of applying the fitting techniques of Section 2
and the subsequent implications are discussed. Recommendations for future
work on PSD are also presented.

3.1 RESULTS

The cumulative distributions illustrated in Figures 3-1 through 3-6 are
easily fitted by the gamma distribution. Each of the three methods of fit
considered, least squares, constrained least squares, and maximum likeli-
hood was designed to meet some specific criteria.

Consider first the least squares fit. Using this method of fit alone, it
was possible to conclude that the empirical distributions illustrated in
Figures 3-1 through 3-6 were almost certainly gamma distributions. The
maximum deviation of the fitted function from the empirical distribution was
always less than 0.025 with an RMS deviation of less than 0.015.

Now the Kolmogorov test (Reference 7) places confidence intervals on distri-
bution functions and this least squares fit falls well within the 95 percent
confidence level on a distribution function constructed from 861 values for
most cases and never falls outside the 99% level. If the test was applic-
able, one could almost certainly conclude that the true PSD distribution is
a gamma distribution with parameters given by the least squares fit. The
difficulty comes from attempting to demonstrate that the test is applicable.
First, it assumes that the ordered statistical distribution is constructed
from 861 randomly selected samples which in this case may not be true.
Secondly, the test places symmetric confidence intervals about the distrib-
ution function ordinates which almost never occur in practice but do happen
to be closely approximated by the least squares fits obtained in this
report. In any case, the test is not conclusive for the methods of fit
employed in this report.

Consider secondly the constrained least squares fit. In contrast to the
least squares fit, the constrained least squares fit maintains the expected
value of PSD computed from the gamma functions at the mean value computed
from the data. The resulting fit to the empirical distributions illustrated
in Figures 3-1 through 3-6 is relatively poor. It roughly has a maximum
error of +0.06 and a minimum error of -0.04. Since these deviations are
not symmetric, the fit cannot be easily rejected by using the Kolmogorov
test.. Of course, this type of fit was employed to guarantee that the
sampling distributions on the mean would be unbiased when compared with the
data. The error in the maximum 1ikelihood method of fit is approximately
equal to the error from the constrained least squares method of fit.

These errors in fit are reflected in the mean value sampling density func-

tion presented in Figures 3-7 through 3-15. From a cursory examination of
these curves, it appears that the least squares fit is, so to say, "too

3-1
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3.1 (Continued)

good"; i.e., errors in the data values are worked into the fitting process
and these errors appear in the sampling distribution. On the other hand,
the maximum likelihood fit relies too heavily on the data distribution so
that errors, such as an incorrect variance, strongly affect its shape.
Consequently, it is a more realistic fit in the sense of being unbiased but
is somewhat poorly shaped. The only solution to this inconsistency is to
iterate towards the correct answer. A re-examination of the construction
of the statistics is required.

In figure 3-16, selected percentile levels are plotted as a function of
wave number. The peculiar rise in the higher percentage levels towards the
high frequency range is due to balloon tracking noise. Elimination or fil-
tering of those profiles containing tracking noise would increase the
number of wave numbers for which distributions could be obtained. The
functional dependence of the parameters on wave number might then be inves-
tigated. For example, a preliminary investigation indicates that the mean
and square root of the variance have the same functional form as the median.
Removal of the noise will also improve the estimation of the quantile
levels. The principle question of interest here is whether or not these
quantile 1ines are parallel. The drop in these curves around wave number
80 is probably due to power attenuation by data preprocessing. This could
be resolved by reanalyzing the raw FPS-16 data but is probably not necessary.

A significant refinement of the distribution shape might occur by employing
a more accurate spectral estimate than that obtained from the raw power
spectra. This is usually a delicate operation, but in the case of wind
spectra, it appears that there are many saving graces.

Most methods of spectral estimation, such as filter smoothing, reduce the
resolution. However, all of the evidence indicates that there are no pre-
ferred frequencies (Reference 3) in the spectra of wind profiles. Thus,
with nothing to resolve, resolution is not too important and a significant
trade of resolution for accurate estimation could be made.

A second error usually employed in power spectral smoothing could also be
avoided. Often times a symmetrically weighted narrow band filter is used
as a smoothing filter. This is a correct procedure to apply to a white
noise signal; i.e., one where the power viewed as a function of wave length
is constant. Since an a priori knowledge of the rough structure of the
spectra is necessary to properly prewhiten the signal, application of
symmetrically weighted filters is often times incorrectly used.

In the case of wind spectra, an a priori knowledge of the general

shape of the spectra is available (Reference 3) and a properly

whitened signal could be constructed. Alternatively, if the

direct transform method is preferred, a more correct nonsymmetrically
weighted smoothing filter can be employed. Thus, it should be possible

to obtain an excellent estimate of the true spectra. The statistics which
result may indeed clarify the discrepancies in methods of distribution
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3.1 (Continued)

function fit and allow one to be much more conclusive about the probabil-
istic structure of the wind.

Finally, some change in the distributions might be obtained by deleting the
more obvious biases in the time distribution of the data. But the effect
of such an effort is not at all clear and may indeed be negligible.

The values of the parameters X and g obtained by the different methods of
fit at six selected wave numbers are presented and compared in Table 3-I.
In summary, the population statistics for PSD values at all wave numbers
between 5 cy/4km and 25 cy/4km are tentatively given by Pearson Type III
distributions with shaping parameter, X, equal to approximately 9/10. The
parameter 8 is not constant but the logarithm of B is a linear function of
the logarithm of the wave number, k. Since A is approximately constant,
the 1og of the mean A\/B, and the log of the square root of the variance
vA/B2, are also linear functions of the logarithm of k.

The resulting mean value sampling distributions together with the machine

oriented random sampling distributions are shown in Figures 3-7 through
3-15 for three selected wave numbers and three selected sample sizes., The
tables in the Appendix show the tolerance limits on central confidence
intervals together with a comparison of the normal approximation. The
central 1imit theorem is well illustrated by the rate of convergence of
these tolerance levels as sample size increases. Clearly, good approxima-

tions may be obtained by using the Gaussian normal confidence intervals.

As a final speculation, it is very attractive to consider the possibility
that A is actually 1 instead of 9/10, since the distribution function then
reduces to a x2 function for two degrees of freedom. Such a situation
could possibly be explained by considering the Fourier coefficients ag and
by in the Fourier expansion of the wind profile as normally distributed
variables with zero mean and equal variance. Since the power at wave
number k is given by

1,2 .2
Pr = z{a + by)

normality in ay and b, would imply the XZ with two degrees of freedom as
the appropriate distribution for power. Attempts to fit the x¢ function to
the PSD distributions were unsuccessful. But, to this author at least,
there is no apparent reason why the bivariate distribution of the pairs
(ak, bk) should not have zero mean. Otherwise there is some preferred
pairing of sine and cosines in the expansion. Furthermore, it is not
obvious why the variance on ag should be different from the variance on by
or why the correlation coefficient should not be zero.

In fact, it seems much more likely that the bivariate distribution is not
normal, either because of the structure of the wind or because of contamina-
tion from sources not presently understood. In any case, it is clear that
the bivariate statistics of the Fourier coefficients is more fundamental
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3.1 (Continued)

than the PSD statistics. For obviously the wind profile may be recovered
from a knowledge of the expansion coefficients where a knowledge of the PSD
values do not allow for the recovery of this information.

3.2 RECOMMENDATIONS

If the probabilistic structure of power spectra is to be pursued further,
the data should be screened to eliminate noisy profiles. An accurate
filter should be developed and applied and the method of fit given at the
end of paragraph 2.4 should be attempted. Of course, the data set should

be expanded if feasible and some study of the effect of daily data bias
undertaken,

As regards fitting the gamma function in future work, the most convenient
method of estimating these parameters for enlarged data sets is the maximum
likelihood method. These fomulas are convenient since they do not require
the construction of a distribution function. Also, a continual update of
the parameter estimates is easily obtained. The sampling distributions on
the mean which result from the maximum Tikelihood method are unbiased.

As mentioned at the end of the last subsection, the bivariate distribution
of the Fourier coefficients is more closely related to the wind profile.
Since these coefficients are available when PSD are obtained with the
direct transform method, their statistics should be compiled and analyzed.
An increase in the data set would be necessary to obtain accurate results.
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CONSTRAINED LEAST SQUARES

WAVE NO. A
5 0.865179
10 0.927396
15 0.929622
20 0.916526
25 0.902129
30 0.909847
5 0.903647
10 0.945772
15 0.905528
20 0.890628
25 0.800717
30 0.812664
5 0.865032
10 0.925964
15 0.927418
20 0.915363
25 0.881433
30 0.893350
5 0.786545
10 0.903435
15 0.816986
20 0.753781
25 0.429262
30 0.395605

TABLE 3-I.

B

D5-15800

A/B

LEAST SQUARES ESTIMATORS

14,7415
116.492
329.636
657.703
1162.06
1868.19

Vvl

0.00796103
0.00282282
0.00139353
0.000776321
0.000487021

MAXIMUM LIKELIHOOD ESTIMATORS

15.1393
115.771
306.794
611.172
880.540
1429.96

14.4930
113.350
314.224
628.166
969.302
1571.94

0.0596888
0.00816933
0.00295158
0.00145725
0.000909348
0.000568312

ESTIMATORS

0.05968606
0.00816907
0.00295146
0.00145720
0.000909348
0.000568310

NORMAL PARAMETER ESTIMATORS

13.1780
110.592
276.807
517.281
472.063
696.125

0.0596860
0.00816909
0.00295146
0.00145720
0.000909331
0.000568296

o O O O O O o O O O o o o o O O O O

O O O O O O

A/B2

.00398134
.0000683397
.00000855534
.00000211878
.000000668056
.000000260691

.00394262
.0000705646
.00000962071
.00000238435
.00000103272
.000000397432

.00411825
.0000720694
.00000939284
.00000231977
.000000938147
.000000361534

.00452920
.0000783670
.0000106625
.00000281704
.00000192629
.000000816371

PARAMETERS OBTAINED FROM THE DIFFERENT METHODS OF FIT
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APPENDIX A
TABLES OF CONFIDENCE INTERVALS ON THE MEAN

In this appendix the tables of confidence intervals together with the errors
associated with assuming a normal distribution are presented. The tolerance
intervals are grouped according to confidence level. Thus the first table,
Table A-I, lists the tolerance value for the 50 percent confidence inter-
vals for sample sizes 2, 4, etc. for selected wave numbers. Referring to
Table A-I, and assuming the maximum 1ikelihood method of fit is

employed, a sample of 16 wind profiles selected at random will_give the

true PSD mean at wave number 10 with an error of * 1.412 x 10-3 (m2/s2)/
(cy/8km), 50 percent of the time. Referring to the table in Figure A-V

the PSD mean at wave number 10, calculated from a random sample of size 16,
will be correct to within * 5.678 x 10-3 (m2/s2)/(cy/4km) 99 percent of

the time.

The difference between the several methods of fit, least squares (L.S.),
maximum likelihood (M.L.) and constrained least squares (C.L.S.) is in
part a measure of the relative accuracy of these methods. Disregarding
the higher wave numbers, which were increasingly contaminated by balloon
tracking error, the difference between the several methods of fit is

nanlinihle
Il\—vl lvl“l\..

If confidence intervals at other wave numbers are desired, they may be
quickly approximated by a graphical method. Select the confidence interval,
sample size, and type of fit desired. Plot the tolerance value (table
entry) vs. wave number on log-log graph paper. Since this is essentially

a straight line, interpolation and extrapolation may be effected graphi-
cally.

For sample sizes above 40, the normal distribution can be used to obtain
confidence intervals. To calculate confidence intervals, refer to a table
of nomal integrals where

X
P = ] ¢ x) dx
=X

in the table and ¢ is a Gaussian density function with zero mean and unit
variance {oc = 1). Select the sample size, n, and confidence desired, P.
Locate the value of x giving the probability P in the table. Decide on the
wave number desired and obtain the variance A/B2 from Table 3-1. Divide
the variance by n and take the square root of the result. Multiply the
result by x to obtain the tolerance value §. Thus

§ =X
J neZ

Tables A-IX and A-X list the error in confidence incurred when using the
normal approximation for sample sizes 10, 20, etc. The entries in this table
represent the percentages which must be added to the confidence calculated
from the normal approximation to obtain the true confidence values. This
error is clearly negligible when the sample size exceeds 40.

A-1
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APPENDIX B
CALCULATION TECHNIQUES

A few guidelines to calculation techniques are listed below. These tech-
niques are not necessarily efficient but they are generally understood by
people familiar with performing numerical statistical calculations. Con-
siderable literature exists covering their implementation (e.g., Ref. 6).

Since statistics often deal with massive amounts of data and since the
formulas sometimes involve large factorials, exponentials, logarithm sums,
etc., simple discretion must be employed to maintain accurate calculations.
Adequate results can usually be obtained by implementing the formulas in a
way which avoids the generation of large numbers.

Accurate numerical integrations can be accomplished by a three or four

pass Runge-Kutta scheme and implementation is relatively easy. Also some type
of numerical isolation scheme is necessary. One based on finite difference
approximations to partial derivatives is adequate. A complete recalculation
of the partial< on each pass does not necessarily result in a serious loss
of computation time and is often simpler to implement than methods based

on an update scheme.

Accurate calculations of the Pearson density function may be improved by
rewriting equation (2.5) as follows

TTE) (Bx)x'] oTBX o(InB=Tnr (1) + (X-1)1n(Bx)-Bx)
A

This is especially important when calculating the integrand of the sampling
distribution on the mean, equation (2.30). Otherwise, the argument of the
exponential may exceed the range of the exponential subroutine. Several
good routines are available for calculating the gamma function T'(XA).
Reference 6 1ists one such subroutine. Five place accurate integration of
the density function over its entire useful range may be obtained by

using one hundred steps with a four pass Runge-Kutta integrator.

In employing the likelihood method (Eqs. 2.17 & 2.21) to fit the population
distribution, it is necessary to use numerical isolation to obtain the

value of A satisfying (2.21). The formula can be implemented as written. Of
course, the xj's represent the data values and x the mean value of the data.
Many formulas are available for calculating T'(X)/T(X). The following

series may be used but this series converges very slowly in the neighbor-
hood of A = 1.

r')/r) = - y- %‘* N prry

B-1
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APPENDIX B (Continued)

In this formula Y is Euler's constant. Notice if A = 1 the nth partial
sum, Sp, is given by

S, = = (rl)+(n/ (m1))

Thus, 1000 terms of the sum are required to obtain 4-place accuracy.

In calculating central confidence intervals on the quantiles, the true
value of the quantile must be assumed to be given by one of the theoretical
functions fitting the population distribution. Let Q denote the value

of the quantile to be studied. Then one seeks the value of y satisfying
the equation

Q = Z T%XT'(BX)X-] e BX dx

This value of y represents the true value of the population quantile.
After y has been obtained, confidence intervals centered at y may be
calculated numerically.

Suppose a random sample of n profiles has been selected, the power
spectra has been calculated, and at some selected wave number the resulting
n values of PSD have been ordered according to magnitude.

< < . < < ... <

Suppose § is a positive number such thaty - § > 0. What is the probability
that x, is in the interval y + §? This is the probabjlity that x, repre-
sents the true value of the Qth percentile power density with a known
error. Now if Xy is not even close to y, the probability that it represents
the true value is very small. In paragraph 2.5.3, the assumption that Q
was of the form (r-1)/(n-1) was made to assure x, being as close as pos-
sible to Q as the samplie size increases.

For simplicity we would recommend that for a given sample size, n, confi-
dence intervals should only be developed for quantiles of the form
(r-1)/(n-1) where r is a positive integer. To proceed with this calculation,
select the sample size, n, and the percentile value, Q, (of the form (r-1)/
(n-1)) and solve for the value of y. Then select the confidence desired,

P, and use equation (2.38) or (2.39) to solve for that value of § satisfying

n-r

i '20 (1) (r-1)?zn-r)l (ngr)(r+}-])(Fr+j(Y*5)- P (y-6))
j= ! .
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APPENDIX B (Continued).

In this equation, Fr‘+J is given by

B

F™z) = [ TOT (ex)1 e BX gxrtd

© Newm N

A little experimentation with the implemented form of the equation may be
necessary to obtain accurate results, especially for large sample sizes
(Targe values of n).

Finally, the reader's attention should be brought to the distribution free
methods of calculating confidence intervals on quantiles. Once again,
suppose a random sample has been selected, the PSD values ordered, etc.

X-l<X2<...<Xj<...<xr<...<xn

The distribution free method answers the question, "What is the probability
that Q lies between xj and xy?" This probability does not depend on

the population distribution. Computations are thereby reduced to a minimum.
The formula for calculating this probability, P, is

n

! i -3 n | ) _
izj 1!(g-ijf Q'(-q)"" - izr 711%:?7T'Q1(1-Q)n i

P

As an examp]e of the application of this formula, suppose a random sample
of size 15 is selected. What is the probability that the 50 percentile
value of the power lies between the 7th and 9th values of the sample?
Here

Q=0.5=1/2
r=9
j=17

& 15 i 1,15-1
P LT @' @

m

0.4
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APPENDIX B (Continued)

The interval with end points x7 and xg serves as a 40 percent confidence
interval for the 50 percentile value in a sample of size 15,

The distribution free techniques may also be used to measure the size of
a sample necessary to include a given high percentile level of power.
For the probability, P, that the percentile value Q exceeds the nth
value of a sample of size n is

-y 0

n

= Q

Thus if Q is selected as the 99 percentile level, the probability that
the largest value in a sample of size 3 is less than Q is

3

(0.99)° = 0.97

A sample size large enough to include a value of the power exceeding the
99 percentile value 50 percent of the time is given by the solution of
n in the equation

(0.99)" = 0.5

Solving for n
_ 109(0.5; =
n = 53(0. 69

To exceed the 95 percentile value of power 99 percent of the time requires
a sample size of 86 or more.

For n
(0.95)" = 0.01

_ 10g9(0.01) .
" = Togto-9E = 8

To exceed the 99 percentile value 99 percent of the time
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APPENDIX C
GLOSSARY OF DEFINITIONS, ABBREVIATIONS AND SYMBOLS

DEFINITIONS

Bias - Used in statistics to indicate that the
first moment (mean values) of a distribution
does not agree with the mean value of the
population the distribution is supposed to
represent,

Central confidence interval A tolerance interval centered at some

preselected value.

Quantile - If a set of n numbers has been ordered
according to magnitude, the rth quantile
(where r < n) is the rth value in the set.

Tolerance interval - A type of confidence interval used with
sampling distributions. The confidence
. associated with such an interval is the
probability that the desired value will be
obtained within the tolerances specifying
the interval.

Time average statistic - Used here in connection with PSD values
where the time variation has been destroyed
by considering data collected at different
times as belonging to a single population
with no time difference.

ABBREVIATIONS

GMT - Greenwich mean time

KSC - Kennedy Space Center

PSD - Power spectral density
. SYMBOLS

8 - A scaling parameter used in the Pearson
" distribution.

Y - Incomplete gamma function - also used as

Eulers constant

C-1



SYMBOLS (Continued)

k
In

A

H2

Hg

K2s

D5-15800

APPENDIX C (Continued)

Wave number.
Natural Tlogarithm.

A shaping parameter used in the Pearson
distribution.

Mean.

Variance.

The mean of a sampling distribution.

The variance of a sampling distribution.
Power density - also used as probability.
Continued product.

Characteristic function.

Characteristic function of the sampling
distribution on the mean.

MSFC—RSA, Ala
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