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SUMMARY 

It is being seriously consideted that a permanent lunar
 

orbiting base and a permanent lunar surface base be constructed
 

during the next 10 to 20 years. The purpose of this report is
 

to study the objectives of these two lunar base concepts.
 

In this report we first pr6vide a detailed review of
 

AS/IITRI Report No. P-2- "Logic for Lunar Science Objectives",
 

which outlines, from an overall viewpoint, lunar science objectives
 

and available measurement techniques, and proposes a strategy of
 

lunar exploration based on four "levels":
 

Level l: 	 Overa-ll Reconnaissance
 

Level 2: 	 Sampling of Representative Systems
 

Level 3! 	Determination of Feature Related Processes
 

Level 4: 	 Comprehensive Regional Exploration and
 

Exploitation.
 

We then examine, primarily from-a scientific point of
 

view, the advantages and disadvantages of lunar bases. After
 

this examination, we conclude that (1) scientifically, there is
 

no strong justification for a manned lunar orbital base; such a
 

base should be established only if there are compelling non-scientific
 

reasons for doing so; and (2) we are entirely in favor of a manned
 

lunar surface base; man's capacity to understand, investigate, and
 

discover phenomena, -not to mention his ability to set-up and operate
 

instruments and equipment, are vital to both exploration and
 

exploitation of the lunar surface.
 

The justification for the above conclusions are as
 
follows:
 

(1) Lunar orbital science can be satisfactorily
 
performed by near state-of-the-art, automated
 

spacecraft (or satellites) which would not
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require nearly as much technological develop­

ment or cost as a manned orbiting base.
 

(2) 	The analysis of lunar surface samples should
 

be performed on earth (as opposed to lunar
 

orbit) where a large team of scientists and
 

supporting equipment can more realistically
 

provide the necessary level of detail.
 

(3) 	Detailed, long duration exploration of the
 

Moon (Level 4), although necessary, will be so
 

complicated, and will require so many scientific
 

specialists for so.long a time, that a surface
 

base is a mandatory item.
 

Besides the scientific reasons, there are other compelling reasons
 

for extending man's domain to the Moon (Hess and Hinners 1969).
 

There are many reasons related to human adventure, and national
 
prestige. There are also non-lunar science applications (astronomy,
 

physics experiments, terrestrial study). We recommend that
 

planning for a surface base be started well before final decisions
 

are made, and scientific objectives be carefully considered from
 

the outset.
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Report No. P-32
 

OBJECTIVES OF PERMANENT LUNAR BASES
 

1. INTRODUCTION
 

The goal of Project Apollo waa to put men on the
 

Moon as quickly as possible. During the next decade the empha­

sis will probably shift to reusable spacecraft, with a cor­

responding decrease in cost per flight. It is being seriously
 

considered that man and supplies will travel in (1) a space
 

shuttle between earth surface and earth orbit, (2) a nuclear
 

shuttle between earth orbit and lunar orbit, and (3) an LM-B­

between lunar orbit and lunar surface; all of these would be
 

reusable. Also being seriously considered are a permanent
 

lunar orbiting base and a permanent lunar surface base. The
 

purpose of this report is to study the objectives of these two
 

lunar base concepts.
 

Review of ASC/IITRI Report No. P-29, "Logic for
 

Lunar Science Objectives"
 

One of the major considerations in a lunar base
 

study is, of course, science. ASC/IITRI Report No. P-29,
 

"Logic for Lunar Science Objectives", has recently treated
 

this question. That report approaches lunar exploration from
 

the point of view of basic lunar science. Its authors feel
 

that, in the past, too much emphasis has been given to ex­

ploration capability, and too little to fundamental scientific
 

objectives. Since an understanding of its approach is necessary
 

for an understanding of this report, we present here a detailed
 

review of it.
 

The purposes of Report P-29 are to provide (a) from
 

the point of view of basic lunar science, an overall outline
 

of the categories and interrelationships of lunar science
 

objectives, (b) a detailed summary of how much we now know
 

about each of these objectives, (c) a detailed statement of
 

the next several steps necessary to reach more and more
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complete understanding of these objectives, (d) an outline of
 

present measurement techniques, (e) a suggested overall
 

strategy of lunar exploration, with detailed explanations of
 

how this strategy incorporates the available techniques in
 

increasing our knowledge of the objectives, (f) a correlation
 

of objectives, techniques, and levels, showing how each re­

lates to the overall task of lunar exploration, (g) an
 

explanation of how the suggested strategy can be expanded or
 

contracted, so as best to complement expanded or contracted
 

NASA mission schedules, in a way that will, in the future,
 

insure a maximum scientific return per dollar, whatever the
 

level of ASA funding, (h) -a specific example: how the
 

suggested strategy directly pertains to the remainder of thA
 

Apollo program Report P-29 serves as a basis for other
 

ASG/IITR1 reports (iholuding this one) which discuss further
 

specific aspects of the overall approach to lunar exploration.
 

Report P-29 starts from the viewpoint of basic lunar
 

science. The most interesting questions about the Moon relate
 

to that body as a whole: How and when did it originate?
 

What has happened to it since? How do its origin and evolu­

tion relate to the origin and evolution of the entire solar
 

system? Is there, or has there ever been, life on the Moon?
 

Accordingly, lunar science is divided into three main "Science
 
Areas": Origin, Evolution and the Search for.Life. These
 

areas are then further sub-divided according to those present
 

properties or features of the Moon which would most likely
 

give information regarding the Science Areas; these catagories
 

are termed "Broad Objectives". They are finally subdivided
 

into the "Specific Objectives" to which measurement techniques
 

are directly applicable.
 

Available measurement techniques are then discussed 

and correlated with the scientific objectives, and a strategy 

for exploration is proposed, based on a framework of four 

levels of capability: 
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Level 1: Overall Reconnaissance 
Level 2: Sampling of Representative Systems 

Level 3: Determination of Feature-Related 

Processes 

Level 4: -Comprehensive:Regional Exploration and 

Exploitation 

The major scientific goals of the levels correspond
 

toughly to the capabilities, respectively, of: lunar orbiting
 

speacecraft-, Apollo (landings),-Post-Apollo, and,a Lunar
 

Surface Base.
 
Next,the overall correlation of objectives, tech­

niques,, and levels is discussed, with a view toward finding
 

which techniques are most applicable to the scientific ob­

jectives, which objectives are most readily studied with
 

the techniques avaiiable, and how the "four-level" scheme
 

helps maximize the rate of- scientific return. This 'is 
summarized in Table 1. A major result-of this correlation
 

is a priority list for measurement techniques, illustrated
 

in Figures 1 and 2. The exact ordering of techniques cannot
 

be guaranteed but the approximate ordering is valid: for
 

example, it is evident that a laser ranger is much more
 

applicable to lunar science than a neutral particle detector.
 

The analysis can and should be used in lunar mission
 

planning regardless.-of the level of funding. Of course,
 

more funds mean a faster rate of scientific return: less funds
 

mean- a slower rate.
 

As an example of the.usefulness of Report P-29, it
 

is applied to the remainder of the Apollo'program. The
 

conclusion is that, although Apollo has been living up to its­

potential in the field of surface science, it has not been
 

doing so for orbital science.
 

The overall conclusion is that scientific objectives
 
should be a major input in the planning of any lunar mission,
 

from its inception*. Measurement techniques should be allocated
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FIGURE I. APPLICABILITY OF ORBITAL TECHNIQUES'TO OBJECTIVES, LEVEL I. 
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(Not including sample collection (81.1)and hand tools (81.3)) 



to future Apollo and Post-Apollo missions according to their
 

value in testing scientific objectives. It is recommended
 

that this be done for any Post-Apollo program, and for, all
 

possible remaining Apollo missions. It is'especially recom­

mended that a much greater role be accorded the CSM in
 

orbital science.
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2. LUNAR ORBITAL BASE
 

2.1 General Characteristics (NASA)
 

NASA's tentative thoughts regarding men in lunar orbit
 

are the following. The Apollo spacecraft will make nine trips to
 

the Moon (Apollo 11 through 19; as of this writing 11 and 12 have
 

been successfully completed). Each mission, of course, will
 

involve a CSM in lunar orbit. On Apollo'll through.15,-there
 

will be (has been) no lunar orbital scienceperformed other-than
 

photography. On Apollo 16 through 19, some significant orbital
 

science will be conducted,, but only forthree, relatively low­

inclination orbits in each mission. Such experiments will be
 

useful for determining the general features of the parameters
 

studied; however, they will not scan the entire Moon, and cannot
 

accomplish more than.about 30 percent of the orbital science
 

desired (Level I). One of their most important aspects" is, in
 

fact, to help specify the next stage of orbital experiments.
 

Following Apollo, a dry workshop (DWS) of the AAP variety
 

may be placed in lunar orbit. It may be capable of supporting
 

3 men for about 3 months: Later a space station module (SSM) may
 

be put in lunar (polar) orbit. (SSM's are also tentatively
 

scheduled to be placed in Earth orbit, and on the lunar surface).
 

It would have a capacity of 6 men for 2 years (autonomously), and
 

would be 22 feet in diameter, 40 feet long, and would weigh
 

50,000 pounds. Two such SSM's may be joined together to form a
 

12-man module. From the SSM, LM-B's would visit the lunar surface,
 

each carrying 3 men and 20000 lbsof discretionary payload (or
 

alternatively possessinga 40? plane change capability and carrying
 

no discretionary payload). The SSM would be supported either
 

by QCSM's (extended CSM's which can exist in a quiescent mode for
 

a year) from Earth, or by-nuclear shuttles, each with a capability
 

of 80,000 pounds of discretionary payload.
 

ilit RESEARCH INSTITUTE 

8 



2.2 

The orbital base (either DWS or SSM) could perform both
 

scientific research and serve as a mission operations base to the
 

lunar surface. The present study considers only the scientific
 

objectives of such bases.
 

Detailed Definition of Orbital Measurement Techniques
 

As described in Report P-29, orbital measurements will
 
perform a vital role in overall scientific understanding of the 

Moon. They will form a major part of Level I -, Overall Reconnais­

sance. This level will consist of complete selenodetic, 

selenographic, and selenologic surveying and mapping of the lunar 

surface. Specifically, this activity will identify and classify
 

major surface features and general surface composition, and will
 

characterize the Moon's near-space, particle and field environments.
 

The purpose of this level is to provide data for the selection of
 

sites for first-hand exploration in later levels,, and to provide
 

a comprehensive framework of hypotheses concerning the Moon's
 

origin and evolution, with which to evaluate and correlate the
 

data resulting from later levels. Surface features will be
 

compared with terrestrial features; particle and fields analysis
 

will characterize the Moon's interaction with the solar plasma;
 
and perturbations of the lunar magnetic field will be used to
 

form concepts of the Moon's interior. Selenologic analysis should
 

provide initial indications of those areas most probably conducive
 

to biologic or prebiologic formation and support.
 

Level 1 demands a complete orbital survey capability
 

around the Moon which will map the surface in all wavelengths of
 

interest (radio through yrays) and provide complete particle and
 

fields environmental data. Spatial resolution is required in
 

successive orders of magnitude beyond that which earth-based
 

observations can achieve. Lunar Orbiter has provided photographic
 

coverage of much of the Moon at a resolution of 100 meters, and
 

of small areas at I to 10 meters. This should be extended to
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1-meter resolution with full coverage in the visible spectrum,
 
and to about 10-100 meters at all other wavelength regions of
 

interest.
 

Ideally, remote sensing should provide for, all regions
 

and all phase angles. To observe all regions, a polar orbit
 

capability is essential. The entire Moon is then scanned, in
 

daylight, every 28 days. All sun angles are obtained every 6 months.
 

(Actually, for each lunar region, sun elevation angles from
 

00 to 900 are obtained every three months; for most features, this
 

would probably be adequate, although some asymmetric features
 

might require elevation angles from 00 to 1800)., The-period of
 

an object in low circular orbit about the Moon is about 1 hour
 

50 minutes, during whidh period the Moon rotates 0.97', or about
 

one degree. The surface of the Moon moves- laterally about 30 km
 

in this amount of time'. For the field of view of an instrument
 

on a 100 km - high spacecraft to include an area 30 km wide, the
 

instrument's total fiew of view must be about 170. Thus, if a
 

100 km high spacecraft, in polar orbit, carries an instrument
 

with a 170 (or greater) field of view, looking straight down, the
 

instrument will scan the entire Moon, at approximately constant
 

sun angle, in one month.
 

We now turn our attention to specific measurement
 

techniques. We have started from the viewpoint of basic scientific
 

objectives, not from the viewpoint of available state-of-the-art
 

instrumentation. Accordingly, we have considered first the
 

scientific objectives to which a given measurable (physical
 

quantity measured) applies, and our present knowledge of these
 

objectives; next our present knowledge of the measurable; next
 

what instrument is ideally necessary, in lunar orbit, to improve
 

our knowledge of this measurable, and how much improvement would
 

represent our reaching "the next plateau" in such knowledge; then
 

the best available instrument, and how it compares-with the ideal;
 

next the increased knowledge of the measurable which would result
 

from such an experiment; finally the increased knowledge of the
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2.3 

objectives which would result from this new knowledge of the
 

measurable. In Part IT we present a series of detailed sheets
 

giving this information for all the measurables considered.
 

Table 2 summarizes the techniques, in order of their
 

scientific applicability (Figuresli and 2), giving the objectives
 

to which they pertain, approximate range, resolution, and data
 

rate; and orientation, attitude,, and orbital requirements. Lighting
 

is critical for techniques A2.6, A2.5, A2.4, A2.2; A2.7, 'A2.3, A2.9
 

and- A2.8; for these, therefore, 3 to 6 months may be necessary for 

complete coverage. For the others, only one month is necessary. 

If data-rate problems exist-, this time may be proportionately 

longer. Such pioblems may occur, since the spacecraft moves at 
2 ­

about 1.5 km/sec, and therefore scans about 45 km. of the lunar
 

surface per second. At I meter resolution, assuming 10 bits per
 

resolution element, the data rate for an instrument is 0.45 billion
 

bits per second (see Table 2), which is very high.
 

Therefore, a spacecraft in low, polar orbit, whose
 

attitude is stabilized to i' of arc (and known to 1" of arc),
 

carrying all the instruments outlined in Table 2, -eachwith a
 

field of view of at least17° (achieved either steadily or with
 

scanning), and the data-handlingcapability indicated, would be
 

able to complete Level 1, satisfactorily at all sun angles, in
 

six (perhaps even three) months.
 

Scientific Uses of the Lunar Orbital Base
 

In this section we examine, from a scientific point of
 

view, the advantages and disadvantages of a lunar orbital base.
 

After this examination, we conclude that, scientifically, there
 

is no strong justification for a lunar orbital base, and that such
 

a base should not be established unless there are compelling non­

scientific reasons for doing so. Our reasoning follows.
 

Two of the more commonly hypothesized scientific
 

justifications for a lunar orbital base are (1) to perform orbital
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TABLE 2 

SUKARY OF TECHNIQUES *(See part 11) 

Data Orientation 	 OrbitNuMber of
Technique Objectives Objectives Range Resolution Rate + Requirements Requirements 

Camera 15 1.9,.10,3 2 3 3 3 5 3.9 1/2 a 1.6x109bps Able to point to ?olar.clrcular,
A2.6 Panoramic 

3.10,3.,13.1:,3.25,i5.28 any region within low altitude
 
3.30.3.32,3.33,3.35 sight of spacecraft
 

8 
Camera 13 17 3.13 3,3.4,3.8,3.11 2 . 10 bps Able to point to Polar. circularA2.5 Metric 	 3.1&3.H3:24,3.28,3.29, any -region within low altitude 3.30,3.34 	 aight of spacecraft
 

9
 
A2.4 IR to UV Imager 13 3.3,3.4,3.6,3.8,3.11,3.12 0.1-30, 1 a 4xl0 bp Pointed Mon Polar. circular
at 

low altitude
3,143.17,3.21,3.22,3.25 (spatial) 

3.33,3.35
 

8
 
bpq 	 Polar. circular 


Al.3 Laser Ranger 13 	 1.7 3.1 3.3,3.4,3.8,3.11 -10
" 1
2 of + in sac 4xl0 Pointed at Moon 


3:16,3.i3,3.24,3.28,3.29 Earth based 15cm) 
 low altitude 
laser
3.30.3.34 


Pointed at Moon, Polar, circular 
omter 3.25,3.27,3.29,3.30,3.32 Teap. 30- 10

A2.1 Microwave Radi- 12 	 1.1,3.2,3.3,3.8,3.11.3.19 "150'K off. + 5-K 100 bps 
3mi pointed at lw altitude 

spot
3.33 	 30cm sac same 
spateal) 

2 7
 
A2.2 IR Radiometer 11 1..3.2,3.3,3.8,3.11,3.19 0.01-104/cm 0 in 4 lo bp, Pointed at Moon. Polar. circular 


3.25,3.27,3.29,3.30,3.33 at 6.7A 	 2 energy 
 3 min pointed at low altitude
 
10-5-1o/.m I IOD msame spot
 

at 32,
 

A2.7 Vis-UV Spec- 11 1.4,1.5,1.6,3.3,3.4,3.6 100-7000 A l%(ave- 107 bps Pointed at Moon, Polar. circular 

tromater 3.7,3.8,3.12,3.20,3.35 length) 3 min pointed at law altitude
 

100 a same spot
 
(spatial)
 

6
 
A2.3 IR Spetrometer 10 1.4,1.5,1.6,3.3,3.4,3.6, 0.7-40g 0.0g (0) 4xl0 bps Pointed at Moon. Polar. circular
 

3.7,3.8,3.12,3.35 	 100 a 3 min pointed at low altitude 
(spatial) same spot. 

"1 2 

AI.1 IF Radar 10 	 1 8,3.2 3 3,3.4,3.5,3.6 -l0 Earch 100 a 1000 bps Pointed at Moan Polar, circular 


3:7,3.11,3.16,3.19 based device (Does not altitude
as. low 
every point)
 

2 
A2.9 Fluorescence X- 9 1 4 3 3,3.4,3.6,3.7,3.8 0.01-100/ca 10% in 1000 bps*Rotate "1rpm about Polar, circular 

ray Detector 3:1&,3.17,3.35 sac energy axis 11 Lunarsur- low altitude 
0.l- Ev Om face and .Moon-

Sun line 

A3.6 Hagntometer a 1.2,1.7,3.1,3.24,3.31, 0.01-1001 0.5%or 15 bps Hona Polar, circular 

3.34,3.36,3.38 .O:lY low altitude
 

(whichever

is greater) 

2	 100A2.10 Y-ray Spectrometer 8 	 1.3 3.3,3.4,3.6,3.7,3.8, 0.01-100/ 107. bps RNotate ol rpm about Polar, circular, 
31C3.m -sec 10Dm axis 1 LUnar ur- low altitude 

0.1-10Mev 	 face and .1. Moon' 
Sun line 

A3.7 Gravity Measure- 5 1.7,3.1,3.23,3.24,3.34 - - 100 bps - Polar, circular, 
menet low altitude 

"1 2 	 5
 
A1.2 Radar Imager 4 3,11,3.28,3.29,3.30 I0 of 100 n 10 bps Pointed at Moon Polar, circular, 

Earth based low altitude 
Radar 

5
 
A2.8 Lyman- Tale. 3 3.20,3.21,3.22 A- 1216A; 10% flux 0-10 bps Pointed at Mon. Polar circular, 


scope -5 density 3 min pointed at low altitude
 
10 to lw/ 100 a 	 mace spot 

-2
 
cm
 

4
 
A.3.2 Charged Particle 2 1.3,3.38 lev-JOOfeV +10 energy O1bps All Directions Polar, circular. 


Detector -and flux los altitude
 

B2.7 Total Pressure 2 3.20,3.22 l0l14-10l
1
0 10 100 bps None Polar. circular, 


Gauge Tore low altitude
 

A3.5 Micrometeorold 1 3.19 Mass >10"4g, 107. 100 bits Pointed away from None 
Detector size >50, per day Lunar surface, in 

velocity o0 direction of motion 
see; Flux:
10-7.10"

4 /m2. 

se-s.tr.
 
6
 

A3.3 Cosmic Ray 1 3.38 0.05-50MeV +10% 10 bps All Directions Highly elliptical. 
Detector - (electrons) - ow periapse

0.3-500MeV
 
(protons)

0 2
 
1-10 /ca -.sec
 

A3.4 Neutral Particle 1 	 3.38 0-l/cm
2 

-sec 10% 100 bps Toward sun for neutro')Polar, circular ,
Detector 	 .1-10 Rew Toward Moon for low altitude 

Albedo; all direc­

tions-atmosphere
 

A3.1 Plasa Probe 1 	 3.38 105-I01cm2 + 2% 106 bps Toward direction Highly elliptical

sec-.Kew - of solar wind; low periapse
 
Electrons: toward Moan for
 
3ev-300ev albedo
 
Protons: 
120ov-5Kev
 

B5.5 Mass Spectrometer 1 3.20 	 Mol. wta. 10 1 t Along spacecraft's Polar, circular, 
1-100 Velocity vector low altitude 

* Note. This table describes desired instruments, not available Instruments. 

** Limited by count rate, not spatial resolution. 

+ Assuming whole Moon most be observed in one month. 
-4 Assume attitude known to 1/60 this value.
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science, and (2) to perform cursory or even detailed analysis of
 

lunar surface samples.
 

We examine both of the above issues in detail.
 

(1) Orbital Science
 

As described in Section 2.2 and Part II, lunar orbital
 

science is very important. We shall first examine the relative­

advantages and disadvantages of-manned and unmanned spacecraft
 

for performing these Level I measurements.
 

An advantage of a manned vehicle (we assume that some
 

scientists are on board) is that scientists are available to add
 

their skills and insight to the routine performance of unmanned
 

instruments. Whenever instruments find values of characteristic
 

parameters outside expected limits, the scientists could "watch"
 

that area of the Moon, with all their instruments, for a longer
 

period than planned, interpret data in real time, revise instrument
 

functions (e.g., change scales on instruments), etc. On the other
 

hand, the disadvantages of manned vehicles are that they produce
 

a dirty "atmosphere" around them, thus degrading measurements of
 

lunar atmospheric composition; and in addition, because of the
 

men-moving around inside them, their attitude is less stable.
 

With respect to this latter point, Table 2 shows that, for some
 

orbital measurements, the attitude control must indeed be quite
 

accurate: 1' of arc or better.
 

The orbital science, except for photography, can be
 

performed as well, or better, from .an unmanned, non-returning
 

spacecraft. With respect to photography, a need evidently exists
 

for a camera system which does not use film but which can achieve
 

the same resolution and geometric accuracy as a camera which does
 

use film, and can telemeter its photographs to the Earth, Effort
 

should be spent to develop or obtain such a camera. If this fails,
 

an unmanned subsatellite or spacecraft should take the photos and
 

return the film to Earth or a CSM (or advanced counterpart).
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In either case the cost should be considerably less than that
 

of a manned orbital base.
 

We wish to stress that we are entirely in favor of
 

manned expeditions to the lunar surface, where man's capacity to
 

understand, investigate, and discover phenomena, nbt topmention
 

his ability to set up and calibrate instruments, are vital to both
 

scientific exploration, and exploitation, of the lunar surface,
 

But, comparatively, Orbital science is expected to be a rather
 

routine gathering of information from all lunar regions.
 

Considering all of the above, we definitely feel that,
 

from a scientific point of view, a manned orbital base is not
 

sufficiently superior to an unmanned orbital science spacecraft
 

to warrant the huge extra cost involved. Given an equivalent
 

amount of money to be spent on lunar science, we would probably
 

choose to spend some of it on one or several unmanned orbital
 

spacecraft, and the rest on more surface science.
 

If we assume that an orbital base will be established
 

for non-scientific reasons, but that scientific instruments and
 
personnel can be included, we recommend that the orbital base be
 

used for orbital science, since (by assumption) it will exist
 

anyway. In this case, at least some of the men should be scientists,
 
if this is compatible with the primary mission of the base; they
 

will be trained to understand and interpret the observations they
 

are making, and will greatly enhance the scientific return of the
 

base.
 

(2) Lunar Sample Analysis
 

it has been suggested that lunar samples be analyzed in
 

orbit. If this were done, the base would have to contain a
 
well-outfitted laboratory. Table 3 contatns a list of those
 

scientific objectives amenable to treatment by sample analysis,
 

along with the appropriate measurables, and instruments for
 

laboratory analysis; the instruments themselves are listed in
 

Table 4.
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TABLE 3
 

RELATIONSHIP OF LUNAR SAMPLE ANALYSIS TO SCIENCE OBJECTIVES
 

Measurable 	 Chief Instrument(s)

Objective 	 (via Sample Analysis) (see TAble 4)
 

1.3 Isotopes 	 Isotopic Comp, .. N,O,R,T
 

1.4 Elements 	 Elemental Comp. H,I,K,L,M,P,R
 

1.5 Chemicals Chemical Comp. 	 CGF)G
 

1.6 Minerals 	 Mineralogical Comp. AD,E,Q
 

-	 1.7 Internal Structure Gross Properties of UV,W
 
material
 

1.10 Solid Age 	 Radioactive isotope ratios T
 

1.11 Gas Ret. Age 40K 	_ 4 0A ratios T
 

2.1 Micro-organisms Micro-organisms 	 Q,F,X,Y
 

z
 
2.2 Organic molecules Organic molecules 	 Q,F,X,Y
 

- 3.3 Basin ejecta 	 Comparative Composition A,C,D,H,K,S,T, etc.
 

3.4 Mare fill 	 Comparative Composition A,C,D,H,K,S;T,. etc.
 

3.5 Lg. Crater Struc. Comparative Composition A,C,D,H,K,S,T, etc.
 

3.6 Lg. Crater Ejecta Comparative Composition A,C,D,H,K,S,T, etc.
 

3.7 Lg. Crater Fill Comparative Composition A,C,D,H,K,S,T, etc.
 

3.8 Central Peaks 	 Comparative Composition A,C,D,H,K,S,T, etc.
 

3.9 Craterlet Structure Comparative Composition A,C,D,H,K,S,T, etc.
 

3.10 Craterlet Ejecta Comparative Composition A,C,D,H,K,S,T, etc.
 

3.11 Uplands Structure Comparative Composition A,C,D,H,K,S,T, etc.
 

3.12 Uplands Comp. 	 Comparative Composition A,C,D,H,K,S,T, etc.
 



C 

Table 3 (Continued)
 

Objective Measurable 

(via Sample Analysis) 


3.13 Uplands Ages Solid and Gas Ret. Ages
 

3.15 Maria Ages Solid and Gas Ret. Ages 


3.17 Maria Comp. Comparative Composition 


3.18 Regolith Solar Physical properties, Rare 

m 
Effects gas content 

M 3.20 Atm. Composition Atm. Comp. (if any) 


3.28 Rilles Compar. Comp. 

Search for Volatiles
 

3.30 Volcanic Structures Compar. -Comp. 


3.35 Horiz. Differentiation Compar. Comp. 

3.37 Paleomagnetism Remanent Magnetism 


'4 

Chief Instrument(s)
 
(see Table 4.)
 

T
 

A,C;D,H,K,S,T, etc.
 

A,D,H,J
 

H,J
 

A,CD,H,K,S,T, etc.
 

A,C,D,H,K,S,T, etc.
 

AGD,H,K,S,T, etc.
 
S
 



TABLE 4
 

LABORATORY EQUIPMENT
 

FOR LUNAR -SAMPLE ANALYSIS
 

(Note: We recommend against its use in lunat orbit.)
 

A Petrology lab equipment (lens, etc.)
 

B Scale (perhaps a problem in zero g)
 

C Wet chemical analysis
 

D Petrological stereomicroscope (with crossed nicols, etc.)
 

E UV lamp
 

F X-ray spectroscope (Laue)
 

G X-ray diffractometer (Debye-Scherrer)
 

H Mass spectroscope
 

'I Electrostatic analyzer
 

J Gas chromatograph
 

K 'Neutron activation analyzer
 

L Alpha backscatter analyzer
 

-M 
 Proton backscatter analyzer
 

N Mossbauer analyzer
 

0 Nuclear magnetic resonance
 

P Electron spin resonance
 

Q Electron microscope
 

R Optical spectroscopic equipment
 

S Ferromagnetism detector
 

T Radiation-lifetime .detectors (single and coincidence)
 

U Equipment to determine stress-strain characteristics
 
(Young's modulus, Poisson ratio, yield point,
 
tensile and compressive strength, speed of
 
sound, etc.)
 

V Electrical Conductivity Meter
 

W Thermal Conductivity Meter
 

X Pyrolysis-flame ionization detector
 

Y Biological samples (tissue cultures, paramecia, plants,
 
germ-free mice, etc.)
 

I1t RESEARCH INSTITUTE 

17
 



This list is not intended to be exhaustive, but rather
 

to provide a preliminary idea of the sort of instruments which
 

may.be applicable. In fact, in the preliminary analysis of
 

Apollo 11 sawaples,.most of these techniques were: used (LSPET 1969),
 
and the complete analysis (Science, 1-30-70) involved many others.
 

Because of the large number of instruments-needed for sample
 
analysis, and the large number of skilled personnel required to
 

obtain and interpret the data, it would be impractical to try to
 

miniaturize the listed instruments and install them in an orbital
 
base. Rather, once the effort has been spent to lift lunar material
 

off the Moon, it should be returned quickly to Earth, where a
 

complete study can be performed by many groups of scientists of
 
various disciplines. The facilities and personnel available in
 
an orbital base could not possibly compare with the extensive
 

facilities and personnel available on Earth.
 

Therefore, we recommend against performing any sample
 
analysis in lunar orbit. The only exception to this might occur
 

if, for reasons of logistics, lunar samples were (unfortunately)
 

required to remain in lunar orbit for a few months; e.g., awaiting
 
a nuclear shuttle to take them to Earth; in this case, some
 

preliminary analysis might be justified, for timely availability
 

of results.
 

In passing, it is worth noting that very preliminary ­

analysis on the lunar surface would be a valuable contribution, 
because available material could be sorted, and the most interesting 

samples could be chosen for Earth return. Short half-life isotopes 

could also be studied. In other words, an adequate cursory analysis 

of the samples, if performed on the surface, would be much more 

practical then if performed in orbit. 

Since we have recommended against lunar sample analysis
 
in orbit under almost any foreseeable circumstances, we obviously
 

recommend against in-orbit analysis or data processing of lunar
 
sample data. However, if a lunar orbital base is established
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2.4 

for non-scientific reasons, since we have recommended that orbital
 

science be performed, and that scientists be present, we also
 

recommend that the scientists be provided with some equipment
 

(computer, plotter, etc.) to analyze and interpret data from
 

orbital measurements.
 

Summary of Conclusions and Recommendations
 

A. 	We conclude that lunar orbital measurements are
 

extremely important and should be vigorously pursued,
 

but with unmanned (returnable or non-returnable)
 

spagecraft or satellites. A manned orbital base
 

is not sufficiently superior to an unmanned spacecraft
 

to warrant the huge'extra cost involved. We recommend
 

that a lunar orbital base not be established unless
 

-there 	are compelling non-scientific reasons for doing
 

SO.
 

B. 	We recommend against performing any lunar sample
 

analysis in a lunar orbital base (except possibly
 

on samples constrained, for reasons of logistics,
 

to remain in lunar orbit for a period of months).
 

C. 	 Nevertheless, if an orbital base is established for
 

non-scientific reasons; and if the option exists of
 

including orbital science instruments, data analysis
 

equipment, and scientists trained to understand and
 

interpret the measured phenomena; then we recommend
 

that this option be exercised.
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3. 	 LUNAR SURFACE BASE 

3.1 	 General Characteristics (NASA)
 

NASA tentatively plans to establish a Lunar Surface Base
 

within 10 to 20 years. It would consist bf a space station module
 

(SSM), 22 feet (diameter) by 40 feet, which could support 6 men
 

for 2 years, The 50,000 lb SSM would be lowered to the lunar
 

surface by an LM-B, which Would use up all of its fuel in the
 

landing and could not return to orbit (without being refueled
 

on the Moon).
 

The base concept has been discussed by a number of
 

authors; a review and bibliography is-given by Hess and Hinners
 

(1969).. They discuss the possibility of a base becoming a new
 

national goal. They point out advantages of a base both for
 

lunar science:and non-lunar science, the latter consisting of
 

astronomy (optical, radio, X-ray, y-ray) and particle and
 

field studies. A base, they-speculate, also might eventually
 

be used for communication with interplanetary spacecraft, as a
 

refuelingand launch station (if fuel can be manufactured from
 

lunar materials), for manufacturing materials to be needed in
 

synchronous earth orbit (the hE is less; see Fig. 3), even for
 

various industrial applications,which could utilize the vacuum
 

and 1/6 g environment. They point out that the LESA study
 

(1965) proposed three successive phases 6f bases:
 

(1) 3 men for 3 months; several-modules, 1 vehicle,
 

(2) 6 men for 3 years; laboratory shelter, 2 vehicles, 

power plant, 

(3) 12 men, 5-10 years (of course, various 

individuals would rotate); 2 lab-shelters,
 

optical and radio astronomy observatories,
 

2 vehicles.
 

The present report extends this thinking, and makes
 

it more definite. It re-emphasizes the need for a base as
 

the aforementioned documents have done. It then goes on to
 

consider the importance of site selection, Next a specific
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3.2 

possible site is examined: Mare Orientale; this is an excellent
 

site scientifically, although difficult to land at, with the
 

present systems. The advantages of multiple bases are then
 

considered. Specific scientific projects for a-base are also
 

proposed, although this must necessarily be fairly vague at
 

this stage, since the wealth of information returned by Apollo
 

(and Post-Apollo, hopefully) will undoubtedly change our
 

ideas about lunar science to a great degree. Finally we
 

examine other, non-scientific aspects of a base.,
 

Uses of a Bade for Surfac6-Science
 

3.2.1 Need for Surface Base
 

It is difficult to be specific about the
 

scientific objectives, site selection criteria, or support
 

requirements for the base pbecause the base is years ahead and
 

many of its characteristics must depend on the findings of
 

orbital, Apollo, and subsequent exploration. However, there
 

are extensive scientific needs for a base6 Almost by definition
 

man will play the crucial role. J. Verhoogen pointed out during
 

the 1965 LESA study that the objective of a lunar base demands
 
"a long term project ... and that the instrument of greatest
 

value in the investigation is man." We shall discuss the base
 

with reference to the "level" scheme of overall exploration
 

(Section 1). In the very fiature of Level 2 and 3 exploration,
 

lunar astronauts are limited in the three-dimensional range of
 

their operations. Therefore there is a maximum scale of
 

structural features that can be investigated by the time
 

that Level 3 (process-oriented science) begins to give way to
 

Level 4 (permanent occupation of the Moon). These dimensions
 

will be of the order 400 km horizontally, and tens of meters
 

vertically. Larger features, such as lunar basins and the lunar
 

interior,will have had only cursory study.
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3.2.2 Importance of Site Selection
 

The most crucial decision in establishing the
 

permanent lunar base is its location, because this will affect
 

the problems studied over the next several decades. Three
 

principles on site selection are apparent.
 

(1) The scale of accessible structures should be
 

larger than that of those of the Level 3 studies. Level 3
 

allows us to make a first-order study of multi-kilometer
 

features such as craters, rilles, faults, flows, etc., but
 

longer-term studies will be required to piece together the
 

properties of the 1000-km, multi-ring-basin systems or the
 

detailed structure of the lunar interior and "crust". Level 4
 

should be optimized for studying planet-wide features of the
 

Moon.
 

(2) The second principle in site selection is
 

that the types of accessible structures will determine the
 

content of knowledge to be gained. For example, we anticipate
 

that it would be an error to place the permanent base inside
 

the crater Copernicus, because studies of the local structures
 

and crustal interior would then not teach us about lunar
 

endogenic evolution but rather about a single exogenic impact
 

event. Study of a feature such as Copernicus, while of interest,
 

would better be done by a localized missio of the Level 3 type;
 

full-time pre-occupation with a single crater would waste the
 

potential of the lunar base.
 

(3) The third principle of site selection is that
 

the variety of accessible structures should be maximized. Thus,
 

it should remain possible to study moderate-sized structures of
 

many types, such as craters, rilles, faults, lava flows, crater
 

chains, lineaments, etc., refining studies begun in Level 3.
 

Small-scale structures, such as hectometer-scale craters,
 

strewn boulders, and glass spherules will be available at all
 

sites, since the regolith is presumably almost universal.
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3;2.3 Example of alrossible Base Site-


The Orientale Region appears in many ways an
 

ideal base site (as best we can judge at this 'early date);
 

<The sc41&of strudtures is appropriate to'Level4. The types
 

of exposed structures give'- a good dross section of important
 

problems (the best basin system ';ithconcentric and radial
 

structures;_ varied mare deposits, -somealong fault scarps;
 

complex rilles;-etc.). The variety of-structures is as great
 

as at any site bn the Moon, including immense faults, arcuate
 

make patches along them, radial valleys and crater chains; a
 

large, fresh crater in the central mare- an older, large, flooded
 

crater.,nearby; rilles ringing the central mare; and the
 

freshest basin ejecta-blanket. Though Orientale is near the
 

limb, base sites-lon the east side would remain in direct
 

line-of-site with Earth even during times of high western
 

libration. The possibility of operations beyond the limb to
 

the west or in valieys'out of sight of the Earth, effected by
 

mobileteams-or a temporary base site, might be advantageous
 

from certain points of view, e.g.-, radio astronomy.
 

3.2.4 Possibility of Multiple Bases
 

NASA should not become committed by default
 

to the concept of a single permanent base% The LESA study ­

probably the most thorough study directed at long-term lunar
 

occupation 7 suggested -multiple bases to allow study of varied
 

terrains (LESA, 1965). The geoscience panel in that study
 

recommended 'a minimum of three different long-term stations,
 

not'necessarily -simultaneous, prior to-a more complex single
 

base.
 

The triple base concept would have several advantages:
 

(1) It allows traverses along three inter-base routes instead
 

of constraining traverse to out-and-badk paths.- This improves
 

exploitation of the large-scale structural patterns that will
 

come under study in Level 4. (2) It provides redundancy in
 

the event of catastrophic accidents or failures that might
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render a single base uninhabitable. (3) It provides havens of
 

safety during mobile studies, which will probably concentrate
 

in the triangle or polygon formed by the bases. (4) The
 
different bases could be located one fn each type of terrain.
 

In the Orientale example, one could be located on the mare
 
floor, one near a major fault scarp, and one outside on the
 
striated upland ejecta blanket. It is not necessary, of course,
 

for the multiple bases to be of equal size or importance.
 

Bases 2, 3, ... could be regarded as "outposts."
 

3.2.5 Specific Lunar Science
 

Man-y scientific projects will involve continua­

tion of studies begun in Level 3. If the earlier levels are
 

correctly performed, Level 4 projects can involve refinement
 

of pre-existing concepts. Table 5 gives a summary of probable
 

lunar science activities.
 

This then, represents the culmination of the "four­
level" exploration approach; at the end of Level 4 we should
 

know as much, or more, about all details of the Moon as we now
 

know about such details of the earth. As we said before, pre­
sent thinking about Level 4 must necessarily be imprecise.
 

Thus Table 5 is meant to consist of indications and examples
 

of lunar science, and not to contain an exhaustive list of
 

projects. 

3.3 Role of a Base in Utilization of the Moon 

3,3.1 Non-Technical Aspects of a Base Role 

Extending man's domain to the Moon by 

establishing a permanent lunar base is a national goal recognized
 

by the Space Task Group under Vice President Agnew. In that
 

phase of lunar exploration, science objectives become intimately
 

mixed with human objectives. The goal is no longer simply
 

study of the Moon but its utilization. The problem of long­
range philosophy was raised recently at the December 28, 1969
 

meeting of the American Association for the Advancement of
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TABLE 5
 

LUNAR-ORIENTED SCIENCE FOR THE LUNAR BASE
 

Program 


Detailed structure of 

lunar interior 


Study of major basin 

concentric faulting 


Study of basin radial 

systems 


Study of basement beneath 

basins 


Isostasy, effects of 

thermal history, 

equilibration of figure
 

Origin of craters, 

sinuous rilles, linear 


Remarks
 

High-energy active seismology and
 
long-term monitoring for passive
 
seismology (dependent on Apollo
 
results).
 

Traverses, geophysical surveys.
 
-Is origin due to slumping during
 
lava emplacement?
 

Traverses, field mapping, petro­
fabrics. How much due to faulting?
 
To volcanism? To base-surge
 
deposits?
 

Geophysical traverses. Depth of
 
lava; extent of breccia, fractures.
 

Refinement of Level 1-3 physical
 
and selenodetic data.
 

Refinement of Level 1-3 data. Base
 
site must .be chosen to facilitate
 

rilles, crater chains, etc. access to these features.
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Science where participants included Gordon MacDonald, Carl Sagan,.
 

Lewis Branscomb, and Fred Singer. MacDonald stressed that
 

Congress is demanding a clearer ordering of national science
 

priorities than science has given in the past. No longer will
 

the ability to carry out an advanced program be sufficient
 

reason for doing so. He questioned explicitly whether the
 

value of the Viking program is really equal to 1-1/2 years'
 

funding for the National Science Foundation and by implication
 

whether extended lunar exploration will compete with an attack
 

on the environmental problems facing earthbound man. Sagan
 

and Branscomb, on the other hand, listed a permanent capability
 

of-man in space as necessary (1) to increase our awareness
 

of man's need to cooperate in preserving the Earth, (2) to
 

check our premises on how the Earth's meteorology, geology, etc.
 

function, and (3) to reinforce public interest and participation
 

in the adventure of exploring new frontiers. Singer stressed
 

the need for man as a key to exploration. Science is not the
 

only goal of man in space, he argued; the sense of adventure
 

is a very real need for man. "If we keep de-emphasizing man
 

in space, we may soon find ourselves with no space program at
 

all," because exploration by instrument will not fulfill this
 

need.
 

We can agree that there are compelling human reasons
 

to carry out Level 4 - i.e., to extend our domain to the Moon.
 

3.3.2 Scientific and Technical Programs
 

Technical Support. These include operations
 

not strictly scientific but contributing to lunar knowledge
 

and man's mastering of the Moon. Examples are search for
 

lunar water (pending results from Apollo); recovery of oxygen
 

from lunar rocks; and development of cast-basalt or similar
 

technology to utilize lunar materials on the Moon. By 1971,
 

a substantial study might be aimed at this problem, using
 

Apollo studies of lunar rock samples as a guide.
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TABLE 6 

SELECTED NON-LUNAR'SCIENCE 

FOR THE LUNAR SURFACE" 

Area Program - Advantage of Moon 
Over Near-Earth Orbit 

Geo-
physics 

(of Earth) 

Photography of surface 
structures under select-
ed lighting and lack of 
clouds, 

Long view times at con­
stant aspect. Aspect 
angle changes rapidly 
from near-earth orbit. 

Astronomy- High-resolution spectro-
scopy of faint objects. 

Low velocity. Long inte­
gration times may pro­
duce unacceptable Doppler 
shifts if performed in 
near-earth orbit. 

High-resolution imaging 
of faint objects; 
sequential imaging of 
planets. 

Distant from Earth. 
Occultation every 45 
min. in near-earth orbit 
may be unacceptable or 
at least inconvenient, 

Space 
Science 

Cis-lunar solar wind. Must be outside Earth 
magnetosphere. 

Earth aurora. Simultaneous monitoring 
of both terrestrial 
poles. 

Radio 
Astronomy 

Radio telescope 
operation. 

Lunar shielding. 

Exobiology Survival and evolution 
of organisms in non-
earth environment. 

Availability of sub­
surface rock layers to 
provide shielding and­
simulate early planetary 
bodies. 

Drawn from summary in LESA Final Report, 1965. This list
 
represents a "residue" after potential near-earth orbit
 
experiments are eliminated.
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Non-lunar Science.' Forecasting Level 4 science
 
is difficult, as noted: Whole areas of non-lunar science such
 

as stellar astronomy, physics experiments; and terrestrial
 

studies may be carried out from earth-orbit instead of from
 

the lunar base, dependifg on the demonstrated efficiency of 

orbital observing. The increasing attention being given to 

earth-orbit applications of the space program makes this in­

creasingly likely. Thus, major portions Qf lunar base science 

which have been contemplated (e.g., in the LESA 1965 study ­

meteorology, oceanography, astronomy, etc.) may never reach 
the Moon. Nonetheless, certain suggestions made inithe LESA 

study, such as simultaneous monitoring'of both the north and 

south polar areas of Earth for auroral activity, may yield 

non-lunar science programs ideally suited to the lunar base. 

Table 6 gives a selection of non-lunar science (taken from the 

LESA summary) that may remain ideal for the lunar surface even 

in the event of ' major science program in near earth orbit. 

A possible advantage of the Moon for these programs
 

is that they may require long-term residence by the scientists
 

and supporting staffs. Life on the lunar surface in a gravity
 

field may be more attractive and conducive to productive work
 

than life in orbit. Astronaut experience tentatively suggests
 

this.
 

Further evaluation of trade-offs for orbital vs. lunar
 

deployment of non-lunar science is in order.
 

3.4 Recommendations
 

The following recommendations are made with respect
 

to a Lunar Surface Base.
 

1. 	Studies of detailed base operations should not
 

be premature. Those outlined in LESA (1965) are
 

probably as complete as.we should use until after
 
Apollo results are evaluated, and experience is
 

gained with research in earth orbit.
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2. 	By about 1971, an effort should be made to define
 

the possibility of extracting water and oxygen
 

from lunar rocks and of utilizing lunar materials
 

to support base construction and life support.
 

This effort.can utilize Apollo results.
 
3. :By about 1974, a study should-be made to choose
 

between a single permanent base, a primary-base
 
with-"outposts", or multiple bases. The study
 

can utilize late Apollo experience. At the
 

same time, a parallel study should define the
 

optimum number of scientists and technicians and
 

to determine their distribution by discipline,
 

sex, stay-time, and experience.
 

4. 	In mid-70's, -decisipns should be made concerning
 

which experiments will be deployed at the base
 
-and which in earth orbit.
 

5. 	Site selection should be deferred until the mid
 

to late 70's to utilize experience with lunar
 

sciences gained by Post-Apollo exploration.
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PART II 

DEFINITION OF ORBITAL MEASUREMENT TECHNIQUES
 

The individual measurement techniques are described in
 
detail on the following pages.
 

The instrument requirements given herein are approximate
 
and serve only to give the reader a generai idea of the measurement
 
concept in question.
 

The requirements are not based on the current state of the
 
art, but rather on the characteristics of the measurable and our
 
present knowledge thereof. This is not to say that an instrument
 
of lesser capability is useless. If the requirements exceed the
 
state-of-the-art, then the best available instrument should be
 
used, since any significant improvement toward the stated require­

ments is always worthwhile. If the state-of-the-art exceeds the
 
requirements, it would probably still be prudent to use "state­
of-the-art" instrumentation, but only if this did not involve
 
excessive disadvantages (cost, availability, etc.) over "required­

resolution" instrumentation.
 
Obviously, the better the instrument, the better the
 

results. The best available instrument should always be used
 
unless good reasons (e.g. high cost) exist to the contrary.
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PART II 

DEFINITION OF ORBITAL-MEASUREMENT TECHNIQUES 

A1l LF Radar 

A1.2 Radar Imager 

Al.3 Laser Ranger 

A2.1 Microwave Radiometer 

A2.2 IR Radiometer 

A2.3 IR Spectrometer 

A2.4 IR to UV Imager 

A2.5 Metric Camera 

A2.6 Panoramic Camera 

A2.7 Vis-UV Spectrometer 

A2.8 Lyman cA Telescope 

A2.9 Fluorescence X-ray Detector 

A2.10 -ray Spectrometer 

A3.1 Plasma Probe 

A3.2 Charged Particle Detector 

A3.3 Cosmic Ray Detector 

A3.4 Neutral Particle Detector 

A3.5 Micrometeoroid Detector 

A3.6 Magnetometer 

A3.7 Gravity Measurements 
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Al. LF RADAR
 

Objectives: 	 (1.8) Crustal thickness, (3.2) Basin subsurface
 
structure, (3.3) Basin ejecta, (3.4) Large
 
crater structure, (3.5) Large.crater ejecta,
 
(3.6) Large crater fill, (3.7) Mare fill,
 
(3.11) Uplands structure, (3.16) Mare structure,
 
(3.19> Regolith erosion and turnover.
 

Measurable: 	 Delay of radar pulse as a function of frequency;
 
different frequencies reflect from different
 
depths, The pulse aeflects essentially when it
 
encounters.particles on the order of its wave­
length. LF radar would presumably- penetrate
 
the regolith and be reflected from bedrock or
 
the mantle.
 

Present
 
Knowledge of
 
Measurable: 	 The Moon has been mapped with radar using the
 

,delay Doppler technique at 70 cm (Thompson and
 
Dyce 1966) showing that uplands reflect 1-1/2
 
to 2 times as efficiently as maria, and that
 
some- (young) craters reflect up to 10 times as
 
much as their environs. From radar measurements,
 
these authors (and others they quote) determined
 
the dielectric constant of lunar surface material
 
and correctly predicted "a tenuous layer with a
 
relative dielectric constant of 1.5 to 2.0 over­
lying a base layer with a dielectric constant
 
of 5.0." At 23 cm, radar reflections have shown
 
an average slope of 10' (Evans and Hagfors 1966).
 
A detailed radar study of the floor of Tycho at
 
3.8 and 70 cm has shown it to be very rough
 
(Pettengill and Thompson 1968).
 

Instrument
 
Requirements:
 

-
Range: Low power (_10 12 of earth-based device).
 

Resolution: 100m for 3' beamwidth.
 

Data Rate: -1000 bps.
 

Orient. Req: Pointed at Moon.(Does not'scan every point)
 

* In general = h where ,=wavelength, h = altitude, D = 
D 

detector aperture.
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Al.l LF RADAR (Cont'd)
 

Orbit
 

Requirements: 	 Polar, circular, low altitude.
 

Candidate
 
Instruments: Standard LF Radar
 

Resulting
 
Increased
 
Knowledge of
 
Measurable: 	 A detailed map of lunar subsurface topography
 

and'layering will result.
 

Resulting
 
Increased
 
Knowledge of
 
Objectives: 	 This map will provide detailed information
 

about the subsurface structure of each objective.
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Objectives: 


Measurable: 


Present
 
Knowledge of
 
Measurable,: 


Instrument
 

Requirements:
 

Range: 


Resolution: 


Data Rate: 


Orient. Req: 


Orbit
 
Requirements: 


Candidate
 
Instruments: 


Resulting
 
Increased
 
Knowledge of
 
Measurable: 


Resulting
 
Increased
 
Knowledge of
 
Objectives:, 


Al.2 RADAR IMAGER
 

(3.11) Uplands structure, (3.28) Rille origin,
 
(3,29) Grid system, (3.30) Volcanic structures.
 

Delay of radar pulses.. Rapid scan produces
 
image. Different frequencies reflect from
 
different depths.
 

Same.as LF Radar.(Al.l).
 

Low power (_I0-12 of.earth-based radar).
 

100m spatially for 3' beamwidth.
 

5
-i0 bps.
 

Pointed toward Moon.
 

Polar, circular, low altitude.
 

Standard Radar Imager
 

A radar-image map of the lunar subsurface, with
 
100m resolution, will result.
 

Subsurface structure of the objectives will
 
result, revealing information about their
 
nature and origin.
 

* See note for A1.1 
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Objectives: 


Measurable: 


Present
 
Knowledge of
 
Measurable: 


Instrument
 
Requirements:
 

Range: 


Resolution: 


Data Rate: 


Orient. Req: 


Orbit
 
Requirements: 


Candidate
 
Instruments: 


Al.3 LASER RANGER
 

(1.7) Internal structure (3.l)Mascons,
 
(3-3) Basin ejecta, (3.45 Mare fill,.
 
(3.8) Central peaks, (3.11) Uplands subsurface
 
structure, (3.16) Mare structure,
 
(3.23) Density profile, (3.24) Internal com­
position, (3.28) Rille origin, (3.29) Grid
 
system, (3.30) Volcanic structures,
 
(3.34) Interior differentiation.
 

Time for pulsed laser beam to reflect from
 
lunar surface, and return.
 

A pulsed .laser beam (ruby, 6943 A) has success­
fully been reflected and returned from the
 
retro-reflector left on the Moon by the
 
Apollo 11 astronauts. Measurements of the
 
lunar distance can now be made + 15 cm
 
(+ iwnsec of total travel time TFaller et al.
 
1769)).
 

CW laser power needs to be only -10-12 of the 
earth-based laser (which emitted 7-8 joules 
per 60 nsec pulse every 3 sec). ­

+ I nsec in travel time (+ 15 cm in distance);
 
spatially 100m for 3' beamwidth, Im for 2"
 
beamwidth.
 

- 4,x 108 bps
 

Pointed at Moon.
 

Polar, circular, low altitude.
 

Scanning laser, pulsing about once per isec
 
for about 60 nsec.
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A1.3 LASER RANGER (Cont'd)
 

Resulting
 
Increased
 
Knowledge of
 
Measurable: 


Resulting
 
Increased
 
Knowledge of
 
Objectives: 


Detailed topography (altitude vs. latitude,
 
longitude) of Moon.-


The result would be a detailed topographic
 
map, providing direct information regarding
 
some lunar -bjectives (3.3, 3.4, 3.8, 3.16,
 
3.29) and indirect evidence regarding others
 
(3.1, 3.11, 3,28, 3.30). The overall lunar
 
figure would help determine interior param­
eters (1.7, 3.23, 3.24, 3.34), possibly
 
including departure from normal isostasy.
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Objectives: 


Measurable: 


Present
 
Knowledge of
 
Measurable: 


, 

Instrument-


Requirements:
 

Range: 


>Resolution: 


Data Rate: 


Orient. Req: 


Orbit
 
Requirements: 


Candidate
 
Inst: 


A2.l MICROWAVE RADIOMETER 

(1.1) ieat flow, (3.2) Basin subsurface struc­
ture, (3.3) Basin ejecta, (3.8) C6ntral peak
 
origin, (3.11) Uplands structure,,
 
(3.19) Regolith erosion and turnover,
 
(3.25) Active sites; (3,27) Intrusives,
 
(3.29) Grid system, (3.30)'Volcanic structures,
 
(3.-32) Heat flow, (3.33) Surface thermal
 
anomalies.
 

Microwave radiation.
 

Earth-based,R-wave measurements indicate a
 
lunar temperature of
 

T TO + T1 cos (a-P) 

where a = lunar phase (0 = full moon), 
.p 400, T-= 230 0 K, T1 = 15' to 750K, 
depending on wavelength (Troitsky 1962).
 
Measurements of Specific lunar regions during
 
eclipses (Reber and Stacey 1969) show that '
 
they cool at about 240K hr- , after starting
 
from a brightness temperature of 317 0K to
 
350 0K.
 

> 150'K effective temperature, 30p - 30 cm.
 

+ 50K; 10 km spatial.
 

"100 bps.
 

Pointed at Moon, able to "watch" specific
 
regions for -3 minutes.
 

Polar, circular, low altitude.
 

Standard microwave radiometer.
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A2.1 MICROWAVE RADIOMETER (Cont'd)
 

Resulting
 
Increased
 
Knowledge of
 
Measurable: 	 The result will be a map of the Moon's temper­

ature, at several p-wave frequencies, with
 
10 km resolution, for all lunar phases and
 
(possibly) an eclipse.
 

Resulting
 
Increased
 
Knowledge of
 
Objectives: A temperature map will indicate (3.33) sur­

face thermal anomalies, such as (1.1 and 3.32)
 
heat flow or (3.25) active sites. Thermal
 
anomalies will also give clues regarding other
 
objectives.
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Objectives: 


Measurable: 


Present
 
Knowledge of
 
Measurable: 


Instrument
 

Requirements:
 

Range: 


Resolution: 


Data Rate: 


Orient. Req: 


Orbit
 
Requirements: 


Candidate
 
Instruments: 


A2.2 IR RADIOMETER
 

(I.1) Heat flow, (3.2) Basin subsurface struc­
ture, (3.3) Basin ejecta, (3.8) Central peaks,
 
(3.11) Uplands subsurface structure,
 
(3.19),Regolith erogion and turnover,
 
(3.25) Active sites, (3.27) Intrusives
 
(3.29) Grid system, (3.30) Volcanic structures,
 
(3.32) Heat flow, (3.33) Surface,thermal anomalies.
 

Absolute IR flux.
 

The Moon behaves roughly as a black body with
 
daytime temperature -430'K and nighttime
 
temperature r90°K, This corresponds to an
 
emission of: by day 0.2 w cm-2., peak 6.7p;


2
by night, 3.8 x 10-4 w cm- , peak 32g. Some
 
° 
features are 1-7* cooler, some are ,10 warmer.
 

Eclipse data yield a very low thermal inertia
 
('Z0. that of Earth rock)(Qackin 1967, p. 52).
 
During eclipses, "hot spots" persist long after
 
the rest of the Moon has cooled (Shorthill and
 
Saari 1965, Hunt et al. 1968, Allen and Ney
 
1969, Waldbaum 1969). Hayakawa et al. (1968)
 
found the IR albedo to be greater than the
 
visible.
 

0.01-10 w cm -2 at 6.7p, 10-5 - 1 w cm -2 at 32p.
 

10% in energy; 1-100m spatially.
 

- 4 x 107 bps 

Pointed toward Moon; capable of "watching" an
 
interesting site for "3 minutes.
 

Polar, circular, low altitude.
 

Standard IR Radiometer
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A2.2 IR RADIOMETER (Cont'd)
 

Resulting
 
Increased
 
Knowledge of
 
Measurable: The result will be an IR map of the Moon, for
 

all parts of the surface, for all times of
 
lunar day and night (also perhaps for an
 
eclipse), to an aduracy of 10% in effective
 
temperature, and of 100m in spatial resolution
 
(im in anomalous areas).
 

Resulting
 
Increased
 
Knowledge of
 
Objectives: Surface thermal anomalids, (3.33) will be
 

mapped. Cooling rates of hot spots will tell
 
whether or not they represent h-eat flow- (1.1),
 
or active sites -(3-.25) such as volcanic struc­
tures (3.30). Maps of thermal inertial and of
 
thermal anomalies, will give clues regarding
 
structure of lunar features (3.2, 3.3, 3.8,
 
3.11, 3.19, 3.27, 3.29).
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Objectives: 


Measurable: 


Present
 
Knowledge of
 
Measurable: 


Instrument
 

Requirements:
 

Range: 


Resolution: 


Data Rate: 


Orient, Req: 


Orbit
 
Requirements: 


Candidate
 
Instruments: 


Resulting
 
Increased
 
Knowledge of
 
Measurable: 


A2.3 IR SPECTROMETER
 

(1.4) Elements, (1.5) Chemicals, (1.6) Minerals,
 
(3.3) Basin ejecta, (3.4) Mare fill,
 
(3.6) Large crater ejecta, (3.7) Large crater
 
fill, (3.8) Central peaks, (3.12) Uplands com­
position, (3:35) Horizontal differentiation.
 

IR spectrum.
 

Cruikshank (1969) reported lunar IR spectra.
 
from 0.8 to 2 .1p: "The craters Kepler and
 
Aristarchus exhibit absorption bands sugges­
tive of orthopyroxene, whereas the background
 
mare material shows'a band probably due to
 
olivine." Van Tassel (1968) reported an
 
earlier attempt.
 

0.7-40.
 

0.Olp (wavelength), 100m (spatial).
 

- 4 x 106 bps 

Pointed toward Moon; capable of "watching" an
 
interesting site for -3 minutes.
 

Polar, circular, low altitude,
 

Standard IR Spectrometer
 

The result will be an IR map of the Moon, for
 
all parts of the surface, to an accuracy of
 
O.Ol in energy resolution, and of 100m in
 
spatial resolution.
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A2.3 IR SPECTROMETER
 

Resulting
 
Increased
 
Knowledge of
 
Objectives: By correlating observed spectra with known
 

spectra of lunar and terrestrial samples,
 
various aspects of surface composition
 
(1.4-1.6) can be determined for many types of
 
areas (3.3, 3.4, 3.6, 3.7, 3.8, 3.12, 3.35).
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Objectives: 


Measurable: 


Present
 
Knowledge of
 
Measurable: 


Instrument
 

Requirements:
 

Range: 


Resolution: 


Data Rate: 


Orient. Req: 


Orbit
 
Requirements: 


Candidate
 
Instruments: 


A2.4 IR TO UV IMAGER
 

(3.3) Basin ejecta, (3.4) Mare fill,
 
(3.6) Large crater ejecta, (3.8) Central
 
peaks, (3.11) Uplands subsurface structure,
 
(3.12) Uplands composition, (3.14) Mare
 
emplacement mode, (3.17) Mare composition,
 
(3.21) Sources of gas, (3.22) Particle
 
motions, (3.25) Active sites, (3.33) Surface
 
thermal anomalies, (3.35) Horizontal differ­
entiation.
 

IR and UV images.
 

Visual photography, from Earth (resolution
 
I km), Ranger (10 cm isolated regions), Lunar
 
Orbiter (5m whole Moon) and Apollo (im iso­
lated regions), is quite detailed. The best
 
IR images are by Shorthill and Saari (1965)
 
and Hunt et al. (1968) (e 15 km). Whitaker
 
has contrasted UV and red photos to map subtle
 
details such as lava flows and rays (Kuiper
 
1965).
 

0 1
. -0 .4R and 0.7-30[.
 

1 meter (spatial).
 

- 4 x 109 bps
 

Pointed at Moon, able to find specific targets
 
of interest.
 

Polar, circular, low altitude.
 

U. of Michigan scanning.
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A2.4 IR TO UV IMAGER 

Resulting 
Increased 
Knowledge of 
Measurable: IR and UV image maps of the Moon will result, 

for all parts of the surface, for all times 
of lunar day, to a spatial.resolution,of im. 

Resulting 
Increased 
Knowledge of 
Objectives: Active sites (3.25) and other surface thermal 

anomalies (3.33) will be detected and accurately 
located on IR images. Composition of various 
types of regions will be easier to determine, 
by comparison of IR and UV images with known 
terrestrial ones (3.3, 3.4, 3.6, 3.8, 3.11, 
3.12, 3.14, 3.17, 3.21, 3.22, 3.35). 
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Objectives: 


Measurable: 


Present
 
Knowledge of
 
Measurable: 


Instrument
 
Requirements:
 

Range:
 

Rdsolution: 


Data Rate: 


Orient. Req: 


Orbit
 
Requirements: 


Candidate
 
Instruments: 


Resulting
 
Increased
 
Knowledge of
 
Measurable: 


A2.5 METRIC CAMERA (2m)
 

(1.7) Internal structure, (3.1) Mascons,
 
(3.3) Basin ejecta, (3.4) Mare fill,
 
(3.8) Central peaks, (3.11) Uplands structure,
 
(3.16) Structure of maria, (3.23) Internal
 
density profile, (3.24) Internal composition,
 
(3428) Rille origin, (3.29) Grid system,
 
(3.30) Volcanic structure, (3.34) Internal
 
differentiation.
 

Photography with a metric camera, i.e., a
 
camera highly corrected for distortion so as
 
to record a geometrically accurate image
 
(resulting in some loss of resolution).
 

No metric photography has been taken of the
 
Moon from lunar orbit.
 

2m.
 

108 bps
 

Able to point at any interesting regions

within sight of the spacecraft, particularly
 
the horizon.
 

Polar, circular, low altitude.
 

Metric camera
 

The lunar surface, and shape of the selenoid,
 
will be mapped with good geometrical accuracy.
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A2.5 METRIC .CAMERA (Cont'd) 

Resulting 
Increased 
Knowledge of 
Objectives: Accurate measurements of the selenoid will 

yield information regarding the Moon's interior 
(1.7, 3.23, 3.24, 3.34). Metric measurements 
of surface features (3.1, 3.3, 3.4, 3.8, 3.11, 
3,16, 3.28, 3.29, 3.30) will help explain 
their origin and structure. 
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Objectives: 


Measurable: 


Present
 
Knowledge of
 
Measurable: 


Instrument
 
Requirements:
 

Range:
 

Resolution: 


Data Rate: 


Orient. Req: 


Orbit
 
Requirements: 


Candidate
 
Instruments: 


Resulting
 
Increased
 
Knowledge of
 
Measurable: 


A2.6 HIGH-RESOLUTION "PANORAMIC" CAMERA (l/2m)
 

(1.9) Crater retention ages, (1.10)-Solidifi­
cation age, (3.2) Basin structure, (3.3) Basin
 
ejecta, (3.5) Large crater structure,
 
(3.9) Craterlet subsurface structure,
 
(3 10) Craterlet ejecta, (3.11) Uplands struc­
ture, (3.19) Regolith erosion and turnover,
 
(3.25) Active sites, (3.28) Rile origin,
 
(3.30) Volcanic structures, (3.32) Heat flow,
 
(3.33) Surface thermal anomalies, (3.35) Hori­
zontal differentiation.
 

High-resolution photography, regular and stereo,
 

The Moon's near side has been photographed
 
from Earth (I km resolution), by Ranger
 
(10 cm very isolated regions), Lunar Orbiter
 
(5m most of Moon, including most of far side),
 
and Apollo (im isolated regions).
 

1/2m.
 

- 1.6 x 10 9 bps 

Able to point at any interesting regions with­
in sight of the spacecraft.
 

Polar, circular, low altitude.
 

Panoramic camera
 

The result should be a photographic map of the
 
entire Moon to 1/2m resolution.
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A2.6 HIGH-RESOLUTION "PANORAMIC" CAMERA (Cont'd) 

Resulting 
Increased 
Knowledge of 
Objectives: More detailed photographs of these surface 

features will produce a better understanding 
of their nature and origin, and, more important, 
provide base maps and specific site'objectives 
for surface.studies. 
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Objectives: 


Measurable: 


Present
 
knowledge of
 
Measurable: 


Instrument
 
Requirements:
 

Range: 


Resolution: 


Data Rate: 


Qrient. Req: 


Orbit
 
Requirements: 


Candidate
 
Instruments: 


Resulting
 
Increased
 
Knowledge of
 
Measurable: 


A2.7 VISUAL-UV SPECTROMETER ­

(1.4) Elements, (1.5) Chemicals, (1.6) Minerals,
 
(3.3) Basin ejecta, (3.4) Mare fill,
 
(3.6) Large crater ejecta, (3.7) Large crater
 
fill, (3.8) Central peaks, (3.12) Uplands
 
composition, (3.20) Atmospheric Composition,
 
(3.35) Horizontal differentiation.
 

UV and visible spectra.
 

Although Apollo astronauts see very little
 
color on the Moon, faint coloring does exist,
 
e.g. Mare Tranquillitatis is bluish, Oceanus
 
Procellarum is reddish, Wood's Region near
 
Aristarchus is quite reddish, etc. UBV photos
 
have been taken (Baldwin 1963, pp. 256-58).
 
There may be some correlation with solar
 
activity. Whitaker has'had considerable
 
success in mapping subtle features by contrast­
ing red and UV images (Kuiper 1965).
 

100-7000 A.
 

1% (wavelength), 100m (spatial).
 

ri07 bps
 

Pointed toward Moon, able to "watch" an inter­
esting region for 3 minutes.
 

Polar, circular, low altitude.
 

Spectroscope, plus film or hodoscope of
 
photodiodes.
 

The result will be a UV-visible spectroscopic
 
map of the Moon, for all parts of the surface,
 
for all times of lunar day and night (possibly in­
cluding an eclipse), to an accuracy of 1% in
 
wavelength, and of lOOm in spatial resolution.
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A2.7 VISUAL-UV SPECTROMETER (Cont'd) 

Resulting 
Increased 
Knowledge of 
Objectives: Spectroscopic observations of absorption (and 

fluorescent emission?) lines will yield in­
formation regarding composition (1.4, 1.5, 1.6) 
of interesting regions (3.3, 3.4, 3.6, 3.7, 
3.8, 3.12) and a possible atmosphere (3.20). 
Resulting information about horizontal differ­
entiation (3.35) may clarify the observed 
color differences within maria. 
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Objectives: 


Measurable: 


Present
 
Knowledge of
 
Measurable: 


Instrument
 

Requirements:
 

Range: 


Resolution: 


Data Rate: 


Orient. Req: 


Orbit
 
Requirements: 


Candidate
 
Instruments: 


Resulting
 
Increased
 
Knowledge of
 
Measurable: 


A2.8 LYMAN-ALPHA TELESCOPE
 

(3.20) Atmospheric composition, (3.21) Sources
 

of gas, (3.22) Particle motions.
 

Lyman-a radiation.
 

Lymana radiation (1216 A, UV) results when an 
electron in a hydrogen atom falls from the
 
L shell-to the K shell. Its presence is a
 
sure sign of hydrogen. There has been no
 
search for far-UV radiation from the Moon.
 

-2 .
1216 A; 10- 5 to 1 w cm 

10% in flux density; 100m spatially.
 

0-105 bps.
 

Pointed toward Moon; capable of "watching" an
 
interesting site for -3 minutes.
 

Polar, circular, low altitude.
 

Lyman-alpha telescope
 

The result will be a Lyman-a map of the Moon,
 
for all parts of the surface, for all times of
 
lunar day and night (also perhaps for an eclipse),
 
to an accuracy of 10% in flux density, and
 
100m in spatial resolution. Most or all lunar
 
regions will probably yield only an upper limit.
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A2.8 LYMAN-ALPHA TELESCOPE (Cont'd)
 

Resuiting
 
Increased
 
Knowledge of
 
Objectives: If-Lyman-h ks detected, it will probably
 

represent the hydrogen gas component of lunar
 
atmospheric compositibn (3.2,0). -The map will
 
indicate sources (3.21) and .paths.of motion
 

t
(3.22) of this gas.
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Objectives: 


Measurable: 


Present
 
Knowledge of
 
Measurable: 


Instrument
 

Requirements:
 

Range: 


Resolution: 


Data Rate: 


Orient. Req: 


Orbit 

Requirements: 


Candidate
 
Instruments: 


Resulting
 
Increased
 
Knowledge of
 
Measurable: 


A2.9 FLUORESCENCE X-RAY DETECTOR
 

(1.4) Elements, (3.3) Basin ejecta, (3.4) Mare,
 
fill, (3.6) Large crater ejecta, (3.7) Large
 
crater fil, (3.8) Central peaks, (3.12) Uplands
 
composition, (3.17) Maria composition,
 
(3.35) Surface horizontal differentiation.
 

X-rays from Moon.
 

Loh and Garmire (1969) have estimated that
 
the solar,wind will produce fluorescence
 
X-ray lines, the strongest being from oxygen
 
at 23.62 A, With a flux of 1.38 x 10-10 ergs
 
cm-2 s-1 (0.087 kev cm-2 s-1). This is much
 
weaker than could be detected at Earth.
 

-2 1
s­0.01-100 cm . 0.1-10 kev.
 

10% in energy, 100m spatially.
 

"1000 bps, compressible (limited by count rate)
 

Should rotate -1 rpm about an axis I lunar
 
surface and IMoon-Sun line, to scan both sub­
spacecraft point and specular solar reflection
 
point.
 
Polar, circular, low altitude.
 

Proportional counter, Li-drifted Ge detector,
 
X-ray image telescope, Bragg crystal spectrom­
eter.
 

The magnitude and energy spectrum of the X-ray
 
flux from the Moon will be determined, for all
 
parts of the lunar surface, for all Sun angles.
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A2.9 FLUORESCENCE X-RAY DETECTOR (Cont'd) 

Resulting 
Increased 
Knowledge of 
Objectives: Any element betweenZ 4 (Be and Z' 30 '(Zn)

should be detected-if it comprises more than 
5% of the surface'material. The resulting map 
will provide inf6rmation on the other objectives. 
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A2.10 -RAY SPECTROMETER
 

Objectives: 	 (1.3) Isotopes, (3.3) Basin ejecta, (3.4) Mare
 
fill, (3.6) Large crater ejecta, (3.7) Large
 
crater fill, (3.8) Central peaks,
 
(3.12) Uplands composition, (3.35) Horizontal
 
differentiation.-


Measurable-: 	 y-rays from Moon.
 

Present
 
Knowledge of
 
Measurable: The Russian orbiting spacecraft Luna 10 has
 

made the only y-ray observation to date. It
 
found that the total intensity at the lunar
 
surface is "1.5-2.0 times higher than over
 
terrestrial rocks of the granite type," but
 
that at least 90% of.these are due to cosmic
 
rays; less than 10% comes from the natural
 
radioactivity of K, U, and Th, meaning that,
 
in this respect, lunar rocks correspond to
 
terrestrial basalts (Vinogradov et al. 1966).
 
The radioactivity of granite is
 
r 6 x 106 cal y-1 g-1 (Howell 1959, p. 57)
 

-1
or r = 5 Mev s-l g , mostly from 4 0K (1.33
 
or -1.63 Mev), 238U (4.25 Mev), and 232Th
 
(4.05 Mev) (Jacobs et al. 1959, pp. 109-10);

this corresponds to a surface emission rate
 
of
 

1 	 ­f rx (5 Mev s-. g-l) (2 g cm 2 )
 

-2 -1
s ,
2 Mev cm
 

where x is the radiation length for these
 
y-rays in granite (Y _ 13). Thus the total
 

-2 s-1
rate from the lunar surface is 3-4 Mev cm ,
 
with Y"4 Mevo This is consistent with
 
Apollo 11 samples (LSPET 1969).
 

Cosmic rays interact with nuclei in the lunar
 
surface material, to produce characteristic
 
y-rays; lines corresponding to 0, Mg, Al and Si
 
were observed by Luna 10 (COSPAR Transactions
 
No. 5, 1968, p.204).
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Instrument
 
Requirements:
 

Range: 


Resolution: 


Data Rate: 


Orient. Req: 


Orbit 

Requirements: 


Candidate
 
Instruments: 


Resulting
 
Increased
 
Knowledge of
 
Measurable: 


Resulting
 
Increased
 
Knowledge of
 
Objectives: 


A2.10 y-RAY SPECTROMETER (Cont'd)
 

-2 I ,
0.01-100 cm s- 0.1-10 Mev.
 

10% in energy; 100 m spatial
 

100 bps (Timited by count rate)
 

Should rotate "-I rpm about an axis if lunar 
surface andL Moon-Sun line, to scan both sub­
spacecraft point and specular solar reflection
 
point.
 
Polar, circular, low altitude.
 

NaI(TI) detector, Li-drifted Ge detector.
 

The magnitude and energy spectrum of the y-ray
 
flux from the Moon will be determined, for all
 
parts of the lunar surface, for all Sun angles.
 

(1.3) Isotopes: radioactive isotopes, such as
 
K, U, Th, etc., should be detected if their
 
concentration exceeds 2 x 10-7 g g-l; an iso­
tope map-of the Moon (resolutionA,10 km) will
 
result.
 

Cosmic-ray induced radioactivity from isotopes
 
of other elements (e.g. 0, Mg, Al, and Si)
 
should also be detected.
 

The resulting isotope map will give information
 
on the other objectives.
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Objective: 


Measurable: 


Present
 
Knowledge of
 
Measurable: 


Instrument
 
Requirements:
 

Range: 


Resolution: 


Data Rate: 


Orient. Req: 


Orbit
 
Requirements: 


-Candidate
 
Measurements: 


Resulting
 
Increased
 
Knowledge of
 
Measurable: 


Resulting
 
Increased
 
Knowledge of
 
Objectives: 


A3.1 PLASMA PROBE
 

(3.38) Sun-Moon field interaction.
 

Plasma in vicinity of Moon.
 

The solar wind directly hits the sunlit side
 
of the Moon (no magnetosphere); a solar wind
 
"shadow" with umbra and penumbra, is created
 
on the dark side (Ness et al.. 1967, Lyon et al.
 
1967). The composition at the lunar surface
 
is essentially the same as in interplanetary
 
space (Buhler et al. 1969).
 

-2 - ­105-1011 cm s 1 sr I kev -1
 

Electrons: 3 ev-300 ev.
 
Protons: 120 ev-5 kev.
 

+ 2% flux and energy.
 

tI0 6 bps, compres'sible.
 

Toward direction from which solar wind comes
 
toward Sun. Also toward Moon to measure
albedo.
 

Highly elliptical, low periapse.
 

Faraday cup and electrostatic analyzer (Lyon
 
et al. 1967); Pioneer F/G - type detector
 
(J. H. Wolfe et al., Ames Research Center).
 

More detailed mapping of the Explorer 35 type.
 

More detailed theoretical understanding of the
 
interaction between the solar wind and the
 
(non-magnetized) Moon.
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Objectives: 


Measurable: 


Present
 
Knowledge of
 
Measurable: 


Instrument
 
Requirements:
 

Range: 


Resolution: 


Data Rate: 


Orient. Req: 


Orbit
 
Requirements: 


Candidate
 
Instruments: 


Resulting
 
Increased
 
Knowledge of
 
Measurable: 


A3.2 -CHARGED PARTICLE DETECTOR 

(1.3) Isotopes, (3.38) Sun-Moon field inter­
action.
 

Charged particles associated with the Moon,
 
such as trapped radiation, albedo, or radio­
active byproducts.
 

Explorer 35 yielded no evidence for trapped radi­
ation (Ness et al. 1967, Ness 1969). It also
 
placed an upper limit on radon in the, lunar at­
mosphere, 'which in turn implied an upper limit
 
on alpha particle emissivity of 0.128 cm-2 s-l
 
str2-. This indicates, 'as do the gamma-ray

results, that the amount'a f 238u in the rego­
lith is much less than that in granite; though
 
consistent with that in basalt (Yeh and
 
Van Allen 1969).
 

2 - .
I ev-500 Mev, o-103 cm- .s
 

+ 10% energy and flux.
 

104 bps, compressible.
 

All directions, especially toward Moon.
 

Polar, circular, low altitude.
 

Totally depleted gold-silicon barrier detector
 
(for alphas); Geiger tubes, solid state tele­
scopes, etc. for electrons and protons.
 

A more detailed search will be made for any
 
trace of charged particles associated with
 
the Moon.
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A3.2 CHARGED PARTICLE DETECTOR
 

Resulting
 
Increased
 
Knowledge of
 
Objectives: More detailed knowledge will result concerning
 

charged particles associated with the Moon
 
(3.38). Also, detection of lunar endogenic
 
alpha-particles would yield a map of the con­
centration of 238U (1.3). Search will be
 
conducted for lunar ionosphere and Rn gas
 
emission.
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A3.3 cosMIc RAY .DETECTOR
 

Objective: 


Measurable: 


Present
 
Knowledge of
 
Measurable: 


Instrument
 
Requirements:
 

Range-

-

Resolution: 


Data Rate: 


Orient. Req. 


Orbit
 
Requirements: 


Candidate
 
Instruments, 


Resulting
 
Increased
 
Knowledge of
 
Measurable: 


Resulting
 
Increased
 
Knowledge of
 
Objectives: 


(3.38) Sun-Moon field interaction.
 

High-energy particles in vicinity of Moon.'
 

The Moon has no detectable magnetosphere;
 
therefore, one would not expect trapped high­
energy particles (Ness et al. 1967). The only
 
high-energy particles expected'are the normal
 
extra-solar cosmic rays.
 

0.05-50 Mev (electrons), 0.3-500 Mev (protons),

2
•1-1010 cm s-l
 

+ 10% energy and flux.
 

tvl0 6 bps, compressible.
 

All directions, especially parallel to magnetic
 
field.
 

Highly elliptical, low periapse.
 

There are many proven cosmic ray detectors,
 
e.g. Lepedea, Geiger tube telescopes, solid
 
state telescopes, Cerenkov detectors, etc. A
 
typical assortment is scheduled for Pioneer F/G.
 

A more detailed search will be made for any
 
trace of lunar trapped radiation.
 

Same.
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Objective: 


Measurable: 


Present

.Knowledge of
 
Measurable: 


Instrument
 
Requirements:
 

Range: 


Resolution: 


Data Rate: 


Orient. Req: 


Orbit
 
Requirements: 


Candidate
 
Instruments: 


Resulting
 
Increased
 
Knowledge of
 
Measurable: 


Resulting
 
Increased
 
Knowledge of
 
Objective: 


A3.4 NEUTRAL PARTICLE DETECTOR
 

(3.38)*Sun-Moon field.interaction.
 

Neutral particles in lunar environment.
 

There is no evidence for neutral particles in
 
the lunar environment. The most likely candi­
date is solar neutrons, or neutron albedo from
 
Moon; or else a tenuous, probably transient,
 
lunar atmosphere.
 

-2 - 1 ,
0-1 cm 0-10 kev
 

10% energy and flux.
 

"i00 bps, compressible
 

Toward Sun to search for primary neutrons;
 
also toward Moon to search for albedo. All
 
directions for atmosphere.
 

Polar, circular, low altitude.
 

BF counter (neutrons), mass spectrometer

(a mosphere).
 

More details will result on the possibility of
 
neutrons in the lunar environment, and on the
 
possibility of a lunar atmosphere.
 

Same
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A3.5 MICROMETEOROID DETECTOR
 

Objective: 


Measurable: 


Present
 
Knowledge of
 
Measurable: 


Instrument
 
Requirements:
 

Range: 

.
 

Resolution: 


Data Rates: 


Orient. Req: 


Orbit
 
Requirements: 


-Candidate
 
Instruments: 


Resulting
 
Increased
 
Knowledge of
 
Measurable: 


Resulting
 
Increased
 
Knowledge of
 
Objective: 


(3019) Regolith erosion and turnover.
 

Micrometeoroids in vicinity of Moon. Also.
 
perhaps ejecta from meteorites.
 

The micrometeorofd flux near the Earth is of
 
the order of 10-7 to 10-4 m-2 s-i str-, for
 
particles of mass 1
10-9g (Nilsson et al.
 
1969).
 

-
Mass > 10-9 g, size t50t, velocity 10 m s 1 to 
1 2
100 km s- , flux 10-7 to io-4 m- s-l str-1 .
 

10% in -everything.
 

I00 bits per day.
 

Pointed away from Moon's surface, particularly
 
in Moon's direction of motion.
 

No special requirements.
 

Puncture cans, piezoelectric microphones,
 
capacitor detectors, light transmission
 
detectors, etc0 (Corliss 1967, p. 534).
 
"Sisyphus" instrument chosen for Pioneer F/G
 
(Grenda et al. 1969).
 

More detailed knowledge regarding the micro­
meteoroid environment of the Moon.
 

More detailed knowledge concerning the role
 
micrometeoroids play in regolith erosion and
 
turnover. Possibly clues to tektite origin.
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Objectives: 


Measurable: 


Present
 
Knowledge of
 
Measurable: 


Instrument
 
Requirements:
 

Range: 


Resolution: 


Date Rate: 


Orient. Req: 


Orbit
 
Requirements: 


Candidate
 
Instruments: 


Resulting
 
Increased
 
Knowledge of
 
Measurable: 


A3.6 MAGNETOMETER
 

(1.2) Deep isotherms, (1.7) Internal structure,
 
(3.1) Mascons, (3.24) Internal composition,
 
(3.31) Internal temperatures, (3.34) Deep
 
interior differentiation, (3.36) Present lunar
 
field, (3.38) Interplanetary field and
 
particle interaction.
 

Moon's magnetic field.
 

There is no magnetic field 0.ly at 800 km
 
altitude in the Earth's equatorial plane.
 
Lunar magnetic moment <4 x 1020 gauss cm3
 
(= 10-5 of Earth). There is no capture of
 
interplanetary field (electrical conductivity
 
= a<10-5 mho/m) (Ness et al. 1967, Explorer 35 
results). At Apollo 12 site, B = 30y
 
(Aviation Week 12/1/69, p. 21), higher than
 
expected.
 

0.01-00,y
 

0.5% or 0.01y, whichever is greater.
 

r415 bps
 

3-axis instrument; no preferred orientation.
 

Polar, circular, low altitude.
 

Vector He, fluxgate,or Rb vapor magnetometer.
 

Any overall lunar magnetic moment > 1018 gauss cm3
 
will be detected. Anomalous surface magnetic
 
moments > 1015 gauss cm3 will be detected; since
 

3
the magnetization of iron is 1700 (gauss cm3 ) cm­
(Condon and Odishaw 1958, p. 4-134), this is
 
equivalent to a cube of ferromagnetic iron,
 
100 meters on a side, lying on the lunar surface.
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A3.6 MAGNETOMETER (Cont'd)
 

Resulting
 
Increased
 
Knowledge of
 
objectives: The present lunar field (3.36) will be measured
 

in more detail, providing direct information
 
about the interplanetary field and particle
 
interaction (3.38).
 

The Moon's electrical conductivity a may be
 
determined by measuring the characteristic
 
time T for interplanetary field lines to
 
diffuse out:
 

c L2 
= 4v 

(Cowling 1957, p. 5); p = magnetic permeability,
 
L = lunar diameter. If a = T = 0, the field
 
lines pass through the Moon and are unaffected
 
by it. If T j 0, the lines are distorted near
 
the lunar surface by an angle 9, given by
 
tan 9.-'vs/L; -r./v)tan 9 = (I hr) tan 9,
 
whete v is the Moon's orbital speed. From
 
Explorer 35, we know only that
 

tan 9 '( 5.
 

If, from an orbital measurement, we can infer
 
9 (surface) to within 50, we can measure (or
 
place an upper limit on) a to within
 
+ 3 x 10-7 mho m-1 .
 

Given a , one can place limits on the temper­
ature T; the upper limit is presently 9000C 
from magnetometry (Gilvarry 1969, Ness 1969). 
More detailed knowledge of a will provide 
more detailed knowledge of (3.31) internal 
temperature and (1.2) deep isotherms, which in
 
turn will provide information regarding other
 
properties of the interior (1.7, 3.24, 3.34).
 

Magnetic anomalies will be studied for possible
 
relationship to mascons (3.1) and other surface
 
and near-surface phenomena.
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A3.7 GRAVITY MEASUREMENTS
 

Objectives: (1.7) Internal structure, (3.1) Mascons,
 
(3.23) Detailed density profile,

(3.24) Internal composition, (3.34) Internal
 
differentiation.
 

Measurable: 	 Gravitational field.
 

Present
 
Knowledge of
 
Measurable: 
 The model of the Moon's field used to discover
 

the mascons was a triaxial'one (Muller and
 
Sjogren 1968), i.e., that of an ellipsoid with
 
3 unequal axes; this is equivalent to adding,

to the monopole term, only the quadrupole or
 
second harmonic term in the spherical harmonic
 
serieq (Roy 1968, p. 86; Baldwin 1963, Chapter 10,
 
"The Problem of the Moon's Motion and Shape").

The known values of further terms in the series
 
are summarized by Kaula (1969). Apollo 12 found
 
small mascons under Ptolemaeus and Albategnius
 
(M. Molloy, private communication).
 

Instrument
 
Requirements: 	 The mascons were discovered by analyzing the
 

Doppler shift of Lunar Orbiter signals, i.e.,
 
the velocity component along the Earth-Moon
 
line. More accurate data would result from
 
the knowledge (with time) of the spacecraft's

total velocity (vector), and absolute position
 
in space, on both sides'of the Moon. This
 
should be done with laser ranging and photo­
graphs. It could 	also be done with a gravity­
gradient satellite.
 

Kaula (1969) points out:
 
"The problem of how to use the lunar satel­

lite most effectively to determine the gravi­
tational field on the back side of the Moon
 
must be regarded as still unsolved. Possible
 
solutions are: (i) a greater variety of orbital
 
inclinations, (ii) a satellite - to satellite
 
tracking system, (iii) satellite-borne laser
 
altimetry, or (iv) satellite-borne measurements
 
(sic) of gravity gradients."
 

Orbit
 
Requirements: Polar, circular, low altitude.
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Resulting. 

Increased
 
Knowledge of 

Measurable: 


Resulting-

Increased
 
Knowledge of
 
Objectives:--


A3.7 'GRAVITY MEASUREMENTS (Cont'd)
 

"
 
"Amore detailedo-determinationof spherical
 
hatmonic coefficients,-and a more detailed
 
-map of lunar'gravitational anomalies, will
 
result.
 

Knowledge of the spherical harmonics will con­
tribute-to a-further understanding of the
 
Moon's interior (1;-7, 3.,23,- 3.24, 3.34).
 
Gravitationa-1 anQmalies,, including large,
 
positiveanoialies (mascons (3.1)),-will be
 
mapped in more .detail;­
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