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SUMMARY

The linear time optimal control problem is transformed into a Lagrange problem
by means of a mapping which takes a closed control region into an open one. Then
the problem and a particular example thereof are investigated in light of the

classical necessary and sufficient conditions in the calculus of variations.



INTRODUCT ION

There are several different ways of approaching an optimal control problem
by means of the calculus of variations. Perhaps the most well known technique,
described in a paper by Berkovitz (1), involves adjoining new variables to the
system, commonly called slack variables, in order to transform inequality
constraints into differential equations. Another approach, described by
Kalman (4), utilizes the Hamiltonian theory of the calculus of variations in
a framework principally due to Caratheodory. These methods have been applied
to various problems with some degree of success.

In this paper a method described by Park (5) will be illustrated by means
of a simple example. However, whenever convenient, results for the general
linear time optimal control problem will be exhibited. This technique involves
the transformation of the closed control region in an optimal control problem
to an open one by means of a suitable mapping, thereby making the problem
accessible to techniques of the calculus of variations, including sufficiency
criteria.

Section I describes in detail the problems to be considered and their
transformation into classical Lagrange problems. Section II first lists the
fundamental necessary conditions of the calculus of variations for the Lagrange
problem, and then examines their implications for the particular transformed
control problems being considered. Finally, Section III contains an investi-
gation of field imbeddibility and the Weierstrass sufficiency condition, and

also a global sufficient condition that does not require embeddability.



ANATLYSIS

I. The Problem.

The problem to be considered, a linear time-optimal control problem, is
the following:

Consider the equation X = u where u is a real control restricted by the
condition |u| < 1. To be found is a sectionally ccntinuous function u(t) which
yields a solution to the above differential equation such that one arrives at
the origin from a given initial state in the shortest possible time. That is,
u(t) is defined on some interval [O,tl] such that x(0) = x?, x(0) = xg and

x(tl) = Q, i(tl) = 0, and t. is as small as it can possibly be.

1

Notice that writing the above as a first order system we get:

% = x
) with |u(t)] <1
X, =u
and
— 0 =
xl(O) = x; xl(tl) =0
= 0 =
x2(0) = x, xz(tl) =0
t
such that J dt is a minimum.
0

In this case, the control region is the closed interval [-1,1]. However,
if we replace u by cos és, then the new variable ia is not restricted in any
sense since the cosine function maps the entire real line onto the closed
interval [-1,1}. The reason that the new variable is introduced as a derivative
is that the classical theory in the calculus of variations requires that each
solution function xi(t) be sectionally smooth, and of course we want to allow
the control variable to be possibly discontinuocus at a finite number of points.

Thus the new problem, an equivalent Lagrange problem, may be stated as
follows:

To be found is (xl(t), xz(t), x3(t)) defined on [O,tl] such that these

functions satisfy the differential equations:



and the boundary conditions:

xl(O)

i
"

xl(tl) =0

0

1

0 =
x2(0) 2 xz(tl) =0

n
»

such that

t
1 . -
j dt is a minimum.
0

Whenever convenient, the following more general linear time optimal control
problem will be considered: x = Ax + Bu where x = (Xys ooy xn) and u = (Uy, .4, um)
with A and B being constant n x n and n X m matrices respectively. Here again the
controls are restricted by the condition Iui(t)l <1fori=1, ..., m. We intro-
duce y = (¥, +o0s ym) by setting u; = cos §i for i =1, ..., m. Note that for

the previous problem n = 2, m = 1,

We have now stated the problem to be considered as a Lagrange problem which
in its most general form is as follows:

To be found is a vector function x = (xl(t), ceuy xn(t)) defined on [tg,t;]
which satisfies the constraining differential equations ¢i(t,x,i) =0

i =1, 2, «ee, ¢ < n and initial and terminal conditions:

xi(to) = xg i=1, 2, «eey n
by (e ,x(t))) =0 i=1,2, ..., k<nm

and is such that

t, .
J F(t,x(t),x(t))dt
t

0
takes on the smallest possible value. We also require that x(t) be sectionally
smooth, and that the functioms ¢i’ wi and f be continuously differentiable. A
full treatment of the theory associated with this problem may be found in Sagan (7).
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II. Necessary Conditions

If x(t) = (xl(t), coasy xn(t)), a sectionally smooth vector valued function,

is a solution of the Lagrange problem and if

rank(oi) =u , rank(wx) = k

where ¢ = (¢1’ ceey ¢u): Y = (¢1s ey Wk) and ¢i denotes the p ¥ n matrix of

3¢
partials composed of elements of the form 3;1 and ¢x denotes the k x n matrix
3P 3
composed of the 3;1 then:
1. Lagrange Multiplier Rule
There exists a sectionally continuous vector function A = (Al, ceey Au) and

a constant A, such that (Ao, Al, ooy Au) # (0, 0, ..., 0) and

¢(t,X,i) =0 (Constraining equations)
and

. d .
hx(t,x,x,x) - Ez-hi(t,x,x,k) =0 (Mayer equations)
are satisfied on every smooth portion of x(t) where
h(t,x,x,)) = Aof(t,x,i) + Ao (t,x,%).
Note that by A+¢ is meant the vector dot product of the u-vectors A and ¢. This

will be commonly employed throughout the text of this paper.

2. Corner Conditions

At every point where x has a jump discontinuity we must have that

by (£,% () ,%(£) ,A(£))
and

B(t,x(£),x(£),A(E)) = x(£) *hy (£,%(£) ,%(£) ,A (E))

remain continuous.



3. Transversality Conditions

There exists a non-zero constant vector v = (vl, ooy vk) such that

Y(t;,x(t;)) = 0, (terminal conditions)
and
vep () ,x(E))) = A E(E, ,x(E),%(E)) = B (e, ,x(e)),x (6D A (€))% (E)
(time transversality condition)
and

v wx(tl,x(tl)) = hi(tl,x(tl),ﬁ(tl),x(tl)). (state transversality conditions)

If the initial state is not fixed, but expressed as above, we apply similar

conditions at t = tye

4, Clebsch Condition
For every vector ¢ = (01, cees on) such that o is a solution to the linear
system
oz (£,%(£),x(£)) 0 = 0
we must have

o-h%i(t,x(t),i(t)9k(t)>c 20

(see Bliss (8), p. 224),

5. Weierstrass Condition.
For all (t,x,ﬁ? # (t,x,i) and satisfying the constraining equations we
have
E(t,x,x,%,A) > 0
where

E = h(t,x,%,\) - h(t,x,x,\) + (x - fl‘)-h;{(t,x,;{,)\)

(Welerstrass excess function).
Using these necessary conditions we shall now see what they mean in terms

of our particular problem.



PROPOSITION 1
k| i n~1.j
Let us assume that the rank of the matrix (BY, AB”, ..., A "B”) is n for
1 < j < m where Bj denotes the jth column of B, and that u(t) yields a solution
to the general linear time optimal control problem., Then, u(t) is sectionally

constant and takes on ohly the values +1 or -1l. Moreover, the multipliers

A(t) must satisfy the differential equations A o= —A:A.

Proof:
According to the multiplier rule, h = Ay + A-(x - Ax - B cos &) where

cos § = (cos §1, ce.y COS §m). Therefore the Mayer equatiomns yield

-ATA and A-Bj sin §j = constant

>
It

for 1 < j < m on each smooth arc of our solution. Now the corner conditions
tell us that A and the A*BJ sin §j must remain continuous at a switching point.
Hence, the above equations must be satisfied throughout [tO’tI]' Looking at

the state transversality conditions and using the fact that y(tl) is not fixed

we see that h§ = A-Bj sin §j =0 for 1 < j < m. Hence
jlt =t t =t
2eBd sin §j = 0 for all t ¢ [to,tl] and 1 < j < m,
Now suppose sin §j # 0 on some interval for some j, then X-Bj = 0 on that

interval and we may differentiate inside that iInterval obtaining

=L aesdy = ATt = aeasd
0 =4 (A*BY) = -A"AB AeaBl.

In general we get by repeatedly differentiating that

0 = 83 = aeand = L. = aeaNR,

Since A # 0 this means that {Bj,ABj,...,An_lBj} is a linearly dependent set of
vectors or equivalently that the matrix (Bj, ABj, ooy An—lBj) has rank less

than n, a contradiction.



Thus we have that sin ij = 0 except possibly at isolated points (the
switching points) and so uj = cos §j = +1 or -1.

Note that in the example
0 1
(B,AB) =
1 0

which clearly has rank 2, so the above proposition applies.
It is useful to form the expression H = AO + A+ (Ax + Bu). We shall refer

to this as the Hamiltonian of the system. Notice that

H}\=Ax+Bu=;<

and

PROPOSITION 2
The Hamiltonian is constant and equal to O along a solution to the linear

time-optimal control problem.

Proof:

If we differentiate H along a smooth arc of a solution we obtain

-&ét- (H) = XA+(Ax + Bu) + A-Ax

since u(t) is constant on any smooth arc. Now using the fact that
° T .
A=-A"A and x = Ax + Bu

we obtain

% (H) = - A+A(Ax + Bu) + A*A(Ax + Bu) = 0

Thus the Hamiltonian is constant along any smooth arc of a solution. Moreover,

looking at the second corner condition we see that



along a solution must be continuous at the switching points, so H is constant

everywhere. Finally the time transversality condition yields that

0 = -A; - xvhy - §rhy = - H

at t = t,. Therefore H = 0 everywhere along our solution.

PROPOSITION 3
If u(t) yields a solution to the linear time-optimal control problem, then

A*Bu > A+BU for all @ such that |G

(21l forl<icm

Proof:

For this problem the excess function is

E = “Ag + Ae(¥X - Ax - B cos ?7 + Xy - Ae(x - Ax ~ B cos §)

+ (x - ?.z')-h;{ + (y - i")'h};.

Now hi = A and h§ = A-Bj sin § = 0 along a solution by Proposition 1, Therefore,

f h|
when simplified the excess function becomes £ = A*B cos y - A*B cos ?’which must

be non-negative by the Weierstrass Condition. That is, since u = cos §,

A<Bu > A-BU.

Now let us see what we now know about the example. We have

X} = X,
§2 =41 =+] or ~1
and ) . il -0
A=-A")" so{, by Proposition 1;
Az = ~ kl
H = AO + Alxz + Azu = 0 by Proposition 2;
and A*Bu = A,u > A*Bu = A, @ for all U

2 2
such that |G| < 1 by Proposition 3. Notice that the last statement means, since

u=1or -1, that sgn(xz) = ggn(u). Moreover, since H must be continuous across
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a switching point, the product Azu must be continuous also because every other

term in H is obviously continuous. Thus, when u switches we must have that

Now, the adjoint equations yield

Ay o= k,

(1)

Ay

—klt + k2
where kl and k2 are constants. Moreover, from the proof of Proposition 1, we
saw that we can only have that BTA = 0 at isolated points. But in this case

T

BA = Az so, since X, is a linear function, we see that Xz has at most one zero

on any interval. Therefore, any solution will have at most one switching point.
Case 1 (u = 1)
If we integrate the state equations we obtain

l t2 + ot + ¢

X

1 2 2 1
(2)
x, = t + c,
and elimination of t from the above yields
1. 1oy .12
X, =5 x; + (c1 -5 cy) = 5 X3 + c. (3

In the phase plane this defines a one parameter family of parabolas with the

xl—axis as their axis of symmetry and all opening to the right. Moreover, since

X, =u= +1, the phase point moves from bottom to top along one of these

parabolas as t increases.

By applying the boundary conditions to (2) we see that ¢, = x? and c, = xg,

and that it is possible to reach the origin without switching only if one starts

out on the parabola x; = %~x§ with x, < 0.
Case 2 (u = -1)
Here we obtain
1.2
X, =-5tc+d,t+4d
1 2 2 1
4
x, =t + d2



and again eliminating t yields

I g2y oL,
Xl———2‘X2+(d1+2d2)_ 2x2+d' (5)

In the phase plane this defines a one parameter family of parabolas with the

X,~axis as their axis of symmetry and all opening to the left. Moreover, since

iz = u = -1, the phase point moves from top to bottom along one of these parabolas

as t increases.

Again the boundary conditions yield that d; = x? and d2 = xg, and that it
is possible to reach the origin without switching only if one starts out on the
parabola X = - % x% with x, > 0,

Now we are only allowed one switch from u = +1 to -1 or vice versa. So to
get to the origin from an arbitrary initial point not lying on a parabola which
leads to the origin, we must do the following. Through each (x?, xg) there
passes exactly one member of each of the families (3) and (5). However, only
one of these parabolas leads (in the direction of increasing t) to a parabola
which leads to the origin. So we must travel along that parabola and switch the
value of u when the parabola leading to the origin is encountered. For a fuller

discussion of this, see Sagan (7) pp. 295-301 and Pontryagin (6) pp. 23-27.

To summarize, if

X l-xz use u = +1
-2 "2
1. X, < 0 and 1
X, > E-x% use u = -1
1 - -
X, > — <= X% use u = =1
1 — 2 72
2. x, > 0 and
2= X; < = l-x2 use u = +1
1 2 72 ¢

So we see that through each point in the phase plane there passes a unique
trajectory satisfying all necessary conditions which leads to the origin.
Notice that only the above described trajectories can be optimal (solutions

to our problem). Thus, if a solution to our problem exists, from a fixed initial

11



point, then it must necessarily be the above unique trajectory passing through
the given initial point and leading to the origin. To find out if the above
trajectories are indeed optimal, we therefore shall examine them in the light

of the classical sufficiency conditions of the calculus of variations.

I1I. The Question of Sufficiency
We shall first consider a solution with no corners. In all that follows

we assume that XO = -1,

DEFINITION: A smooth vector valued function x(t) defined on [to,tl] satisfying

all necessary conditions is embeddable in a field if there exists in a neighbor-
hood of x(t) [considered as a curve in n + 1 space] a smooth vector valued function
¢ (t,x) such that i(t) = ¢(t,x(t)) for t ¢ [to,tl], and a continuous vector valued
function X (t,x) such that the solutions of x = ¢(t,x) and ) evaluated along these
solutions satisfy the Mayer equations, the constraining equations, the transver-

sality conditions and the self-adjointness condition which states that

s b (£,%,6(,0),A(8,0)) = s he (£,%,6(t,%),A(E,%))
i k k i

for i, k=1, 2, ..., n.

Now with this definition of field embeddibility, an invariant integral can

be found and the following sufficiency theorem proved (see Sagan (7), pp. 371-375).

THEOREM 1

If x(t) is embeddable in a field and 1f E(t,x,¢(t,x),%,A(t,x)) > O
(Weierstrass Excess Function) for all (t,x) in a neighborhood of x(t) and all
¥ for which (t,x,ﬁ) satisfies the constraining equations, then x(t) yields a

solution to the Lagrange Problem.

Note that in the case that the constraining equations are in the form

x - £(t,x) = 0, we have that hﬁ = ) and consequently the self adjointness

iz



condition in this case merely requires that the matrix g%-(k(t,x)) be symmetric.
Also notice that while the solutions of x = ¢ (t,x) must satisfy the transversality
conditions, the boundary conditions need not be met.

Let us now apply this to our example in the case where we can get to the

origin without switching. For example if we take u = +1 then we will have

xg = E-xgz with xg < 0 and
x, = %-tz + c2t + ¢,
X, = t + c,
X3 = €3
A=k
AZ = - klt + k2

where k1 and k2 must be chosen so that H = 0, sgn(xz) = ggn(u) and the self
adjolntness condition is satisfied along our field.

It is easily seen that the following choice of a field suffices in this

case,
4 = x, AL =0
¢, = 1 A, =1
$, =0

That is, with this choice of ¢ and A, all conditions for field embeddability
are satisfied. Moreover,

E(t,x,0(t,x), ¥, A(t,x)) = 1 - cos X,

which is clearly non-negative for all ﬁé. Hence the hypotheses of Theorem 1
are satisfied, so our proposed solution is indeed a solution to our problem in

this case.

13



Now if we only require that ¢ be sectionally smooth in t and smooth in x,
and that A be sectionally continuous in t and continuous in x, and require that
solutions of x = ¢(t,x) also satisfy the corner conditions, then we obtain a
generalization of Theorem 1 for the case where we allow solutions with corners.
However, for the problem being considered if we attempt to embed a trajectory
with corners in a field, trouble is encountered. It can be shown that no choice
of A (t,x) can be made for which along solutions of x = $(t,x) the conditioms
H =0, sgn(X,) = sgn(u), A, = 0 at a corner, and the self adjointness condition
are all met simultaneously. Thus, for this problem it is not possible to embed
an extremal with corners in a field, so we must look elsewhere to establish
sufficiency in this case.

The next approach that we shall consider is described in Ewing (2), p. 129-131.
However, to facilitate the use of this theory, we must first transform our
problem to one with a fixed time duration. This is done in the following way.

Introduce to the system in the general linear time optimal control problem

the new variable x so that x is a constant whose square denotes the time

o+l n+l
duration of a trajectory, t; - t;. Also introduce a new independent variable

df > df
s. Then for any function f we will have 3s = *n+l dc

. = 2
s by letting t = tg + X 41
and when t is restricted to [tl’ to], s will be restricted to the fixed interval
[0,1].

Then our new equivalent Lagrange problem is the following:

To be found are vecter functioms x = (x;(s), ..., xn(s)),xn+l(s),

y=(y,(8)s «uu, ym(s)) defined on [0,1] which satisfy the constraining equations

x' = x§+l (Ax + Bcos y")

14



and boundary conditions
x(0) = x%, x(1) =0

1

such that J x2 ds is minimal.
0 n+1l

Note that here ' is used to denote é% . It can be easily shown that this
indeed constitutes an equivalent problem and that consequently the application
of necessary conditions here yields the same trajectories as previously.

We are now in a position to apply the global condition in (2). For the

Lagrange problem described in Section I define the function G to be
G(t,x,X,%,%,\) = h(t,%,%,1) - h(t,x,x,\) + (x - i)-hx(t,x,;t,)\) + (x - i)-h}-{(t,x,;:,x).
Then we have the following theorem.

THEOREM 2

Given a Lagrange problem for which £, and t, are fixed and given a trajectory

x(t) which satisfies the necessary conditions with Ao = -1, then if

t
J L ee,x(t),x (1) ,F(t) , % (L), A (t))dt

o

+ [E(E) - x(e )] he (e ,x(8),%(E)),A(E;)) (6)

+ [x(tg) = F(ty)]ehe(t ,x(ty),x(t),A(Eg))

is non-negative for all X(t) satisfying the constraining equations and the

boundary conditions, then x(t) is a solution to this Lagrange problem.
For a discussion and proof of this theorem, see Ewing (2), pp. 129-134,

Now for our preblem

15
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= 2 - r 2 r
h =x + A-(x xn+l(Ax + B cos y')) + A

xl
nt+l o+l nt+l

SO

x2

= 72 (F' - w2 - 5! =1 -
G =% + A (X xn+l(Ax + B cos ¥')) + An+l X 1 L

n+l

T
(x - i)-x§+ A\

- e (x' - x2 Ny _ | .
Ao (x xn+l(Ax + B cos v')) An+lxn+l 1

- - i ] r 1 -
+ (x 2xn+lA (Ax + B cos y")) + (x b 4P

otl T Fpn) (g

+ (x! - )

v _ ot
n+l nt+l + (& v hy"

n+l

Now recall that the Mayer equations together with the transversality conditions
(since y(1) is free) yield hy' = 0 along a solution. Thus the last term above

is zero. Simplifying, we obtain

G =(x

- 2 . R2 o (AKX - T') - %2 B '
41 xn+l) X A (AX B cos ¥') X1 Ae(Ax + B cos y')

n+1l

2 « (AT - . '
+x A (A - Ax) + 2§£+ 41 A (Ax + B cos v").

1 *n
Using Proposition 2, we have that A*(Ax + B cos y') = A+(Ax + Bu) = 1 since

H = 0 along a trajectory which satisfies the necessary conditions. Therefore,

after simplifying

G = }E'fl_'_l()\'Bu - ABD + (x ) (A-AX ~ A+Ax). ¢))

2 .32
n+1l n+1

PROPOSITION 4
Assume that u and x satisfy all necessary conditions and T is any other
admissible control with X its corresponding trajectory such that ¥ and U@ satisfy

the constraining equations and boundary conditions. Then 1f
=2 2 !
(xn+l ~ xn+l) Jo (A+Ax - A+AX)ds > O (8)

for all such u, then u and x furnish a solution to the linear time optimal control

problem



Proof:
We apply Theorem 2., First notice that the last two terms in (6) are zero
for this problem since the boundary conditions fix x at 0 and 1 and hy' = 0 for

the free variables by the transversality conditions. Thus we need only consider

1
the first term, that is, J G ds. Now (7) gives the expression for G, and by
0

Proposition 3 we see immediately, that the first term in (7) is always non-~
negative. Moreover, condition (8) insures that the integral of the second term
is always non-negative, so the hypotheses of Theorem 1 are satisfied, and

therefore u and x must furnish a solution to our problem (i.e. be optimal).

Now let us apply this criteria to the trajectories obtained in Section II
0 1
for our simple problem. Recalling that A = we obtain that
0 0

A*Ax - AAX = Alxz - leé.
Thus, (8) becomes

1
=2 o x2 -
(x3 x3) Jo (Alx2 Xlﬂé)ds.

Now x] = x%xz and E{ = xgi' and A, is constant, so we can write the above as:

X 0

1 1
(fg—xg)ll—l-J xids——]-'—J %! ds
x% 0 3

®2 - x2) A% (03 -FD) - A x, (0)(F - xD?

20r2 222
x3%3 X3%;3

which is non-negative provided the product Alxl(O) is non-positive.

Now A, = —iz and where u = +1 initially then X,(0) > O so Xz must be a
decreasing function. But this implies that iz < 0 and so A, > 0. Similarly
we can show that if u = -1 initially then A, < 0. Thus the product Alxl(O) will
be non-positive for all extremals in which u(0) = -1 and xl(O) > 0 or u(0) = +1
and xl(O) < 0. Referring back to the summary on page 10 we see that this is

satigfied in the second and fourth quadrants and also in the two regionms

17



1
R, = {(xl,xz) N >0, x, < - E-xg} and

2

R, = {(xl,xz) tx, <0, x > %-x%} .

2 1

Therefore, we have established suffibiency for any extremal obtained in Section II
which originates in any of these parts of the plane. Although, as is well known,
the trajectories obtained in Section II originating at any point of the plane are

optimal, this condition enly establishes that fact in the above mentioned regiomns.

18



CONCLUDING REMARKS

We have shown how an optimal control problem with the unit m-cube as control
region may be transformed into a Lagrange problem. Then considering the linear
time optimal control problem and a particular example thereof, we have investi-

gated the implications for these problems of the classical necessary and sufficient

conditions in the calculus of variations.
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