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ABSTRACT

This paper discusses the problem of remote probing and diagnostics
of an inhomogeneous medium whose properties vary along a single dimen-
sion only. The medium is described in terms of a set of unknown param-
eters that are determined via parameter optimization techniques. These
techniques adjust the trial parameters describing the medium such that
the response of the trial medium agrees clesely with that of the actual-

medium.
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1. INTRODUCTION

In this paper we are concerned with the problem of remote probing
and diagnostics of an inhomogeneous medium whose properties vary as a
function of a single dimension only. The problem is posed as follows:
given the scattering properties of the medium, find the function that
describes the nonuniform nature of this medium. The approach to be taken
for attacking the above problem begins by characterizing the medium in
terms of a set of parameters, as yet unknown. Next, a search for these
parameters is carried out until the response of the trial medium agrees
closely, within a certain tolerance, with the measured response of the
actual medium. The search procedure is essentia%ly based on a parameter
optimization approach which minimizes the norm of the difference between
the measured response and the response of the trial medium.

Chapter 2 considers the case in which the medium is characterized
by plane, homogeneous, stratified layers. Chapter 3 studies the more gen-
eral case where the medium is continuously nonuniform. Finally, Chap-
ter 4 deals with circularly stratified media with azimuthal symmetry.
Numerical calculations are carried out for each of these three different
types of media and the trial media’derived by the parameter search method
are compared with the actual media in .order to exhibit the &egrée‘of

success achieved via the parameter optimization procedure.




2. INVERSION OF STRATIFIED INHOMOGENEOUS MEDIA

Consider a stratified medium composed .of M layers characterized by

dielectric constants € € Assume that the permeability of

10 Egs ove s

the medium is identical to that of free space and that the losses in the

M

medium are negligible. The problem at hand is to determine the charac-
teristics of such a medium by analyzing the plane wave scattering prop-

erties of the medium. In order that we may work with the reflected wave

alone, we consider the case where the (M~1) layer is terminated by a per
fectly conducting plane. The incident plane wave that is employed to
probe the medium is in general oblique, making an angle 6 with the z
axis, the éxis along which the medium is stratified (see Figure 1). The
electric field in the incident wave is assumed to be polarized entirely
in the'y diréction, i.e., perpendiéular to the plane of incidence. From
the geometry of the problem, it is evident that‘the electric field in
the reflectéd wave also contains the Ey component only.

We introduce a performance index F via the equation
{2

n
- g¢.8 -
F(e ) = 2 lpi(Km,wi,e) p;(k_,u,,6) (1)

i=1

g

where Py and Py are -reflection coefficients of the actual and trial media,

i’s are the relative dielec-

respectively, w is the angular frequency, «
tric constants of the actual medium, and Km's are the corresponding con-
stants of the trial medium. The function F is then minimized (using one
of the available numerical procedures) by varying the trial parameters Kon®
The entire study is carried out on the computer; also, it is found

convenient to calculate the response of the actual medium on the computer

rather than finding it from experimental measurements. It is therefore
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Figure 1.

A stratified medium consisting of M-1 homogeneous layers

terminated by a perfect conductor.




pertinent at this point to-.discuss. the method by which the. response of
a stratified medium can be calculated for a.specified set of values for
k_and h .
m m

By usual procedures, we can-show that Emy’ the y component of the

, . . th e e .
electric field in the m  layer, satisfies.the wave equation

2. 2 o
(V "Ym)Em’y =0 : (2)

where

[ J— 2=-—|< 2
SR afoto? -

It is assumed that o = 0 and Wy = Hoe @ = 1, ..., M-1, and Koy is the
relative dielectric constant of the‘mth layer.

The problem of inverting the medium from the knowledge of the E
and H fields at the surface z = 0 is dpproached as follows.: Start with
a set of trial parameters Km(=am/60).and hm, the relative dielectric
constant, and the:depth.of the mth layer, for m= 0, ..., M-1, and solve
for the electric and magnetic fields at z =.0. The difference between
the responses of the trial and the actual medium is used as a measure
of accuracy within which the trial parameters agree with those of the
actual medium. The determination of K andvhm is carried out numerically
using a parameter.optimization scheme.

The general solution of (2) is of the forml

-umz~j8x - umz—jBx
E =4Ae + B e (3)
my m m




where
. , 2 2 2
B = ~3y031n 6 and um = B‘ + ym.

The corresponding‘Hmx is derived from

o =1 _my
mx  juu, 3z )

The reflection coefficient at the mth interface may be defined as

_ Nm—Ym+l
P H
m Nm+Ym+l

p

and, in particular, at the interface z = 0,

p. = E(—)‘ = NO-Y]‘ 3]
AO NO+Yl
“n : th
where N = - and Y_ is the admittance looking into the m™ " layer.
m o Jugw m

<
I
I
l';&'
o
w
[
I
lm
*—I
w
el

1 EOy Ely
z=0 2z=0
me
ol o
my
z=m~1

For the special caée of normal incidence, i.e., 6 = 0, B = 0, we have
N =—
m n

m

. Here,nm is the characteristic impedance of the medium given

by n (um/em)l/z.
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Now, imposing the condition that the electric field is zero on the
perfect conductor, it follows that BM = ~A . Also, from. the continuity

conditions at the interface z =0, 1, ... , M-1, we get

E = E ]
m-1;y m,y
Z=m
oF JE
. -1 m—l, _pet -1 MY ]
(Jum__lw) =2 (Gu,w) e

We have 2(M-1) linear homogeneous  equations. for A.m and Bm‘in terms of
the known coefficient AO. Using these .results in Equation (5), we find

that the admittances Ym satisfy recurrence relations of the form:

Y +N»tanh u,h

v =N 2.1 171
1 1 N1+Y2tanh ulhl

Y =N Ym+l+NmFaqh umhm
m m Nm+Ym+ltanh umhm

* 8 00

= N [ 1
M-1 M-1 tanh uM—thrl

] .

The reflection coefficient at the interface can be found from (4) once
Yl is calculated using the expressions above.

The case of one-, two-,and three-layered media was considered for the
computer study. It was assumed that the depths of these layers were iden-

tical and only the relative dielectric constants were taken to be the

variable parameters.



The computation was started by first calculating the reflection
coefficient pg(Ki) for the actual medium for 50 different wvalues of fre-—
quency w, such that ki =‘wi/56587varied from 1 to 2 in increments of
.02. The reflection coefficient was calculated for a fixed angle of inci-
dence 6 = 45°. The computed valuesfof‘pf were. considered as simulations
of the measured .data. As indicated .earlier, the performance index was

defined as

_ g, 8 o 2
! iil lpi(Km’wi”e) py (050 |

where Km's were the trial values-of:dielectric constants and were regarded
here as the optimization parameters.: It is. obvious that if Ki =Ko then
F = 0, so a success-criterion would-be to minimize F to a value as close
to zero as possible.. The minimization .scheme used in this-section is due
to Rosenbrock.Z(See Appendix A for more detail). In this technique, the
user provides in:the main program a set of starting points with each point
belonging to a specified interval. These starting points are taken to
be the initial trial.values of the unknowncharacteristics. ~The main
‘program’calls for a subfoutine which .calculates the reflection coefficient
as a function of-these.trial values;“”The performance index F is calculated
and its value recorded. Through a search algorithm, the main program
tries to find-trial values of unknown characteristics in the specified
intervals such that F is minimized.

Some of the numerical results arewpreéented in the following table.

The geometries for which the computations were carried out are shown in

‘Figures-2, 3, and 4.




Table 1. Numerical Results for a Single Layered Dielectric Slab
Layer Number Kﬁ Actual Km Numerical | Performance Index F
1 1.5 1.5011 41 x 1073

Table 2. Numerical Results for a Two-Layered Dielectric Slab
Layer Number Ki Actual Ko Numerical | Performance Index F
1 3.0 3.0039 -3

A : .21 x 10
2 4.0 3.9965
Table 3. Numerical Results for a Three-Layered Dielectric Slab

Layer Number Ki Actudl Ko Numerical { Performance Index F
1 1.5 1.5052
2 3.0 3.0586 42 x 1072
3 2.5 2.4565
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After determining the values of Ko® the reflection coefficient was
calculated from the numerically obtained values of Ko and compared with
the given values of the reflection coefficient. The comparison is illus-
trated in Table 4.

It is evident from the above table that the response .of .the inverted
medium agrees quite favorably with .the response of the actual medium.
It might be useful to quote the time involved for the determination of.
parameters using the RoSenbrock'S»optimization technique.’ " Typically, the
execution time on the WATFOR compiler of IBM 360 was of the order of 10

seconds for the above cases.




Table

4.

11

Comparison .of Given Reflection .Coefficient Data with
Those Obtained by Using the Numerically Determined
Dielectric Constant Parameters of the Three-Layered Medium

k= (e.u )l/2w Reflgt?ipn Coefficient Calculated | Reflection Coeff%cient
0%0 from Given Parameters Calculated Numerically
Real Part Imaginary Part Real Part.Imaginary Part

1.00 -.5343 .8452 -.5501 .8351
1.20 5400 .8416 .5300 8480
1.40 . 9455 -.3255 29467 - -.3219
1.60 . 7937 -.6083 .7951 -.6065
1.80 -.6751 -.7378 -.6789 -+ 7342
2.00 C-.7282 C.6854 -.7255 0.6882
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3. INVERSION OF CONTINUOUSLY VARYING MEDIA

In this chapter, we again consider the problem of remote probing
in an inhomogeneoﬁs medium but for the more general case where the refrac-
tion index of the medium varies continuously as a function of depth, as
opposed to discrete stratification, which was discussed in the previous
section. The profile of the inﬁomogeneifyvmay.be described in terms

of: a funetion
2 2..2 2,2
k¥ (2) = (equpw )k’ (2) = kok? (2) (6)

where o(z) of the medium is assumed to be zero.

Once again, we will simulate the measured datavby computing the
scattered electric and magnetic fields at:the.intefface z = 0, for
obliquely incident plane waves and will try to find the characteristics
of the medium so as to approximate the simulated data as closely as
possible. To introduce the parameters to be optimized, we will char-
acterize the medium as -a polynomial of .z, the depth dimension for the

problem, viz.,

2 _ 2 n
k™ (z) = ay + a,z + a,2 + ..+ az . N

The problem then reduces to one of optimizing the coefficients a;, i=1,
ees 5 n. This will be cafried out by two different numerical optimiza-
tion schemes, one of which is Rosenbrock's technique discussed in Chap-
ter 2, and the other is the conjugate gradients method due to Fletcher
and Reeves3“(See Appendix B for more detail.) The basic difference

between these two mothods is that Rosenbrock's technique requires only
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the knowledge of the performance index function F with respect to the
optimizing parameters, while the conjugate . gradients method requires.the
knowledge of both the function F and its derivatives with respect to the
optimizing parameters. Both methods accommodate arbitrary starting values
for a, .

Figure 5 illustrates the geometry of .the problem which . shows a plane
wave incident at an oblique angle 6 on.a nonuniform dielectzic with the
dielectric constant varying only in the z direction. The dielectric
medium is terminated at z = 1 by a perfect wconductor.

Once'again,‘as:ih.the previous problem, we calculate the scattered
wave amplitudes for a specified kz(z)g and, using this information as sim-
ulated measured data, we try to invert the medium by adjusting the param-
eterS'describing kz(z).in terms of the polynomial such that the response
of the trial medium;égfees closely with that of the simulated data. It
- therefore brings us to the task of computing .the reflection coefficient
or scattered wave amplitudes due to a plane wave obligquely incident on
a nonuniform medium.: We discuss the solution.of this problem as follows.

We may write the"Ey of the free space in terms of the standard repre-

senté.tionl
o ~u.z wz
Ey = Ale O +p(p)e 0 1e3BX
where B ="k, sin 6, u, = (BZ_kZ)l/Z = jk.cos 6, k, = (u,e w2)1/2 and
0 > 70 0 0 * 70 00 ’

0(8) is the reflection coefficient. The nonuniform medium has Hp» e(z)y

as electrical constants. Thus

AN
[ =3

K% (z) = kgkz(z) = ~juny (Gue (). 0 <z

From Maxwell~s equations, we have
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Figure 5. Wave incident at an angle 8 on a continuously varying nonuniform
medium terminated by a perfect conductor.
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coul = —L
quOHx dz

JuugH = jBEy

‘ BHX
jwe(z) =‘—5‘;‘+ jBHZ.
Combining the above equations, we get
d2E 5 2
—F + [K°(2)=8"1E = 0 0<z<1 (8)
3z y
CE, 5 2
—F 4+ k5 [k“(z)=sin® 8]E =0 9)
d22 0 y

where Ey'= 0 atz = 1.

An exact solution of the above equation'is not possible except for
a very special class of profiles such as exponentials. We will therefore
solve Equation- (9) numerically using'the.Runge—Kutta4 technique, which
"vequires “the inversion of the second-order differential equation into
‘two coupled first-order equations with given .initial values.  This is

accomplished by setting
G=—3>«H. ©Ap)
Substituting G in Equation (9), we get-

dG 2..2 , 2 _ .
iz + ko[k (z)-sin” e]gy‘— 0. (11)

Equations (10) and (11) can now be solved for Ey and G using the Runge-

Kutta method in conjunction with the boundary condition that E = 0 and
y
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G=1at z = 1. The latter condition .is not restrictive in the sense that
it is a normalizing condition whichi sets the amplitude of the incident
plane wave.

The next step .was the use of this algorithm as a subroutine and the
transformation of the inversion .problem into .a -parameter optimization
problem. -The starting point was the calculation of the response of a
known profile. "~The Runge-Kutta routine was employed for calculating the
amplitudes of scattered electric-and magnetic .fields Eg(ei;wm,kg(z)),
Gg(ei,wm,ké(z)) at z = 0 for several angles of incidence ei‘and for fre-
quencies W kg(z) refers to the given profile. The above results were
stored in an array to simulate the measured data. The next step was the
consideration of a trial profilesz(z)vasvgiven by Equation (7) and the
adjustment of the parameters aj,‘jf=fl,".. sy 1, describing this medium
such that its response E(ei,wm,kz(z))5 G(ei,wm,kz(k)) approximated Eé
and Gg. Recall that'aj(j=l, <+ 5 n) are the coefficients of the poly-
nomial expansion for kz(z);

The performance index F was chosen to be

N

N 2 o 2 2
F = lfm [Eg(ei,wm,kg(.'a))-E(Gi,wm,k (z))1" -

+ 16,00 20, K2 (2))-6(0 40,k (20)1 (12)

where kz(z) is, in turn,a function of aj, i=1, «v. 5 N
The function F .was next minimized using'Rosenbrock's‘method’to yield
the optimum values of aj. It is obvious that F = 0 in the event k;(z)=k2(z),
The second method, the so=called conjugate gradients method due to

Fletcher and Reeves, is somewhat more involved as compared to Rosenbrock's
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scheme, because it requires the evaluation .of grad(F) with respect to
a, i = 1, ... , n in addition to the function F itself. Since F was cal-

culated using numerical values for E and G obtained from the Runge-Kutta

method, it was necessary to resort to numerical differentiation schemes

to evalﬁaﬁé‘snge This was done-as follows:
h|
P e (6. 00 K2(2))=E(0, yu_,k>(2))] —E -
] > ; 4 \ e ] y
i=1 g i m g i"m aal
2 2 3G
4 - ot
grad (F) =-2 : (13)
N 2 2 S
z [E (ei’wm’k( '(z))"’E(ei;Nm:k (z))] Ya
i=1 8 & n
2 2 aG
" + [Gg(ei’wm’kg(z))_G(ei’wm’k (Z))] —a-;- ]
where grad (F) is a column vector.
E)E(al,.»_-e-{,faj»s},-” s an) I\J,E(a‘l;:;‘es9.:'v-aj1+4ta_) cee 3 an)‘E(al,“.,ai,e“,an)

da, v Aa
J

j=1, . , 0 (14)

. 3G(a R a )
1’ i 3 n .
A similar equation can be written for 53 . Since
. ]
both E(al,'.,, s aj, see s an) and'E(al, ces s aj+Aa, cen s an) were cal-

culated by the Runge-Kutta method, it is clear that in the conjugate-
gradients method, the computer has to go through this integration sub-
routine n times more than in Rosenbrock's method for each iteration step

in the minimization process of F. This obviously makes the conjugate
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gradients method more time consuming in comparisoh to Rosenbrock's scheme.
However, as the numerical results show, the conjugate gradients method
is relatively superior in terms of the accuracies obtainable for the inver-
sion problem. To illustrate this point, the results of the two methods
will be represented shortly.

We started out by choosing n, the highest degree of the .polynomial,
to be 4. Later on, an attempt was made to increase the accuracy by increas-
ing'n from 4 to 6, However, it was found that the results were not sig-
nificantly affected by this change. "In most cases, the angular frequency
was fixed and only the incident anglerei.wasfvaried. 6 varied from 0°
to*90? in 10 degree increments. ‘We also investigated the case in Which
the incident angle was held constant and-the frequency was varied. How-
ever, this did not improve the results. It was also found that with
increasing the frequency, the accuracy was diminished. The frequency
that yielded best'resultszﬁas found to vary in the range |

”520 ) <’w  ( ;iéi-)l/z. This fact was demonstrated for profiles

which have maxima or minima in the range 0 < z < 1.

We will now présent some results for several different profiles to
illustrate the numerical behavior of the optimization techniques.

The first profile considered was kz(z) = eZz‘ For this particular
profile;‘an‘analytical solution is available and it was used to assess

the accuracy of the Runge-Kutta method. ..The analytical solution is

derived as followsl:

2
r. K2[k* (2)-s1n” B]E = 0 (15)
dz
In:ganeral;'fcr'kz(z) = est set
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2 _z/2
v o= Y e ko
2 &%E dE.
vo —= 4+ v 5— + (v -n’ )E (16)
2 dv
dv
where
2 .2 .2 2.2
n~ = k051nA6 ( Y )

Equation (16) is Bessel's equation with the general solution given below:
= AJﬁ(v) + BNn(v).
For simplicity, we set kg = 1 and y was taken to be 2. Applying the bound-

ary condition

E=20 and-%E =1 at z = 1

at z =1, v =e, where e = 2,71828...

AJn(e) + BNn(e) =

N BNn(e)
Jn(e)
—N (e)
E = B J NRO) J (v) + N (v)] (17)
N (e)
E-1-3[- Jn(e) 25 W+ N W] (1)
z=1
N (e)
§§-= G = B[ - J“(e) dg I (v) + ~Q~N 1. (19)
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The analytical solution is completed by finding B from (18); the result

is then used in (17) and (19) to complete the solution of E and G.

dE
dz

compared with the analytical results and were found to agree up to 5 sig-

The values of E and G = obtained by the Runge-Kutta method were
nificant digits. For the profile ezz, we added 2' to 10 per cent random
noise to the simulated data. The deduced profile was satisfactory as
shown in Figure 8. The results of the introduction of noise can be seen
in Table 6. Note that the accuracy criterion in the Runge Kutta method

was set at .0001. The pfofiles considered are as follows:

i) kz(z) = ezz;

ii) kz(z) = e“sz;

111) k%(z) = 1 + .52

iv) kz(z):= 1+ z sin(2wz);
v) k2(z) = 1 4+ sin (mz).

It is evident from Tables 5, 6, 7, 8, 9, and 10 that the response
of the inverted medium agrees quite well with the response of the actual
medium, Figures 6 and 7, with a profile of ezz, correspond to Table 53
figure 8, profile eZz and with noise introduced, corresponds to Table 6;
figures 9 and 10, profile e+°5{ correspond to Table 7; figures 11 and 12,
with a profile of 1 + .5z, correspond to Table 8; figures 13 and 14, pro-
file 1 + z sin 2wz, correspond to Table 9; and figure 15, profile

1 + sin 7z, corresponds to Table 10.
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Figure 6. Profile of dielectric constant kz(z) = ezz for a slab terminated
by a perfect conductor at z = 1. Conjugate gradients method.




22

8.00}
— — — — EXACT PROFILE = ¢3?
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Figure 7. Profile of dielectric constant kz(z) = e22 for a slab terminated
= 1. Rosenbrock's method.

by a perfect conductor at z




Table 5
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Comparison of the Scattered Electric and Magnetic Field Amplitudes
for the Exact and Inverted Profiles. ko = 1.

Tacident angle Amplitude of Scattered E Field |9E _ Amplitudes of the
‘0 de :e s 8-€IExact |Rosenbrock's Conjugate ||z Scattered H Field
t gree Method Gradients Bxact Rosenbrock's | Conjugate
Method * Method Gradients
Method

0 -.5692| =,5748 -.5693 .1308 | .1293 1313

30 -.5998 | -.,6057 -,5999 .2108 | .2099 L2114

60 -.6637| -.6699 ~-,6638 .3831 | .3835 .3837

90 -.6969| ~,7034 -.6970 4756 | 4766 L4761

Exact profile k2(z) = e22
Rosenbrock's Method Conjugate Gradients Method
Inverted  |k2(z) = 1.0 + 2.16z + 2,16z k3(z) = 1.0 + 2,07z _ 1.64z°
Profile +.582° + .7262" + 1.422° + 1.32°
-5 T -8

Performance F = .89 x 10 F = .136 x 10
Index
Execution
time on
FORTRAN 40.11 sec. 35.15 sec.
Compiler
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Figure 8. Profile of dielectric constant kz(z) = ezz for a slab terminated
by a perfect conductor at z = 1. Random noise was added to the
simulated data.
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Table 6
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Comparison of the Scattered Electric and Magnetic Field Amplitudes
for the Exact and Inverted Profiles Adding Random Noise

to Simulated Data. kO = 1,
?nc;dent angle|Amplitude of S?attered E«?leld 9E Amplitude of Scattered
in degrees Conjugate Gradients]|oz s -
Exact H Field
Method - — T
Exact |Comjugate Gradients
Method
a |

0 -.5692 -.5584 .1307 .1209

30 -.5999 -,5887 .2108 .1998

60 -.6638 -.6518 . 3832 .3696

90 -.6970. —.6847. 4757 4607

Exact Profile kz(z) = ezz
Conjugate Gradients Method

Inverted 142y _ 1 4911z + 1.682% + 1.252° + 1.022% + .7712° + .5%42°
JProfile
[Performance F\= 93l x 10_1
Index
Execution
time on
LORIRAN 133.71 sec.
Compiler
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3.00- -~-—-- EXACT PROFILE = €°
PROFILE DEDUCED BY
CONJUGATE GRADIENTS METHOD
2.00
)
(3]
26
1.00
000 ] I | I | ]
0.00 0.20 0.40 0.60 0.80 1.00 1.20
Z

Figure 9. Profile of dielectric constant kz(z) = e.Sz for a slab terminated

by a perfect conductor at z

= 1.

Conjugate gradients method.

9¢
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Figure 10. Profile of dielectric constant kz(z) = e'sz for a slab terminated

by a perfect conductor at z = 1. Rosenbrock's method.
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Table 7
Comparison of the Scattered Electric and Magnetic Field Amplitudes
for the Exact and Inverted Profiles. kO =1,
Incident angle dmplitude of Scat?e:ad E.Fleld QE Amplitude of Scattered
, , Rosenbrock's ;| Conjugate||dz .
in degrees Given . . H Field
Method Gradients % sl Con’ —=
Method Given Rosenbrock's| Conjugate
Method Gradients
Method
0 -.7981 1 -.7999 -.7981 . 4654 L4650 .4653
30 -.8351| -.8370 -.8351 .5686 .5683 .5686
60 -,9120 | ~.9140 -.9120 .7892 .7893 . 7892
90 1-.9520 | -.9540" -.9520 ]}.9069 .9062 .9069
Exact Profile kz(z) = é+.5z
Rosenbrock's Method- Conjugate Gradients Method
Inverted kz(z)'= 1.0 + .591z k2(z) =1+ .495z + 113422 + °33723
Profile - .082z° + .5572% - .1622° - .1632°
Performance |p _ g7 4 107° F=.271 x 107
Index

Time Consumed
using FORTRAN|113.93 sec. 62.54 sec.
Compiler
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PROFILE DEDUCED BY
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0.00 ! 1 1 | I 1
0.00 0.20 0.40 0.60 0.80 1.00 1.20
z

Figure 11. Profile of dielectric constant kz(z) = 1+ .5z for a slab terminated
by a perfect conductor at z = 1. Conjugate gradients method.
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3.00} ~==—EXACT PROFILE = | 4 .52
PROFILE DEDUCED BY
ROSENBROCK'S METHOD
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~
N T T T e
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0.00 0.20 0.40 0.60 0.80 .00 1.20
4
Figure 12. Profile of dielectric constant kz(z) =1+ .5z for a slab terminated

by a perfect conductor at z = 1. Rosenbrock's method.
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Table 8
Comparlson of the Scattered Electric and Magnetic Field Amplitudes
for the Exact and Inverted Profiles. %, = 1.
Incident angle Amplitude of Scatfered’E‘Flgld O Amplitude of Scattered
. . Rosenbrock's| Conjugatelloz
in degrees Given . H Field
enmT 7 |Method Gradients Toook's Cond
Method Given Rosenbrock”s |Conjugate
' Method Gradients
Method
0 -.8043| ~-.8047 -.8042 4740 4736 4730
30 -.8%14 —.8418 -.8414 .5778 5774 .5778
60 -.9187 | -.9191 -.9187 79971 7994 <7997
90 —.9588 -.9592 -.9588 .9180 .9178 .9180
Exact Profile kz(z) =1, + .5z
Rosenbrock's Method ; Conjugate Gradients Method
Inverted k (x) = 1. + 523z kz(z) = 1.0 + 474z - °08822 - o00623
Frofile - .072° -.03422" - .04z> - .04z°
perfornance 1y = .29 x 107 F= .49 x 1078
ndex
Time Cofsumed __—
using FORTRAN| 31.49 sec. 100.12 sec.
Compiler




EXACT PROFILE= | + ZSIN 2wz

PROFILE DEDUCED BY
CONJUGATE GRADIENTS METHOD

1.00

k% (z2)

0.00
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-2.00 L ' i ' ' :
0.00 0.20 040 0.0 0.80 1.00 .20
Y4
Figure 13. Profile of dielectric constant k2 (z) = 1+ z sin 2nz for a slab
= 1. Conjugate gradients

terminated by a perfect conductor at z
method.
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k%(2)

2.00

LOO—"

\\-.—’

-——-EXACT PROFILE = |+2ZSin2mz

0.00}
PROFILE DEDUCED BY
ROSENBROCK'S METHOD
-1.00}-
__aoo 1 ] [ ] [ ]
0.00 0.20 0:40 0.60 0.80 .00 1.20
z

Figure 14. Profile of dielectric constant kz(z)

1+ z sin 27wz for a slab
=1,

terminated by a perfect conductor at z

Rosenbrock's method.
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Table 9
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Comparison of the Scattered Electric and Magnetic Field Amplitudes

for the Exact and Inverted Profiles.

k

= 1.0.

0

Compiler

Incident an ie Amplitude of Scattered E. Field [|3E _ Amplitude of the
cnes 8 . Rosenbrock's| Conjugate 9z = Scattered H Field
in degrees Given ; X
Method Gradients 7 -
Method Given Rosenbrock's| Conjiugate
' Method Gradients
Method
0 -.8630] -~,8552 -.8627 .5317 .5382 .5313
30 -.,9017] -.8938 -,9015 6410 | .6472 .6408
60 -.98221 ~,9741 -.9823 87441 .8800 8746
90 1-.024 |-1.016 1=1.024 .9988 | 1,004 .9992
Exact Profile kz(z) =1, + z sin 2nz
Rosenbrock's Method Conjugate Gradients. Method
[nverted k%(z) = 1. + 158z + .962z° | k2(2) = 1. + 1.04z - 1.082% .- 1.1z
Profile 3 4 - 4
- .89%z" ~ 1,982 - .83z
Performance F= .99 x lOmB Fo= .04 leOu6
Index
Time Consumed
using FORTRAN| 70.21 sec. 85.55 sec, .
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—— PROFILE DEDUCED BY
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1 + sin wz for a slab

Figure 15. Profile of dielectric constant kz(z) =
1. Conjugate gradients

terminated by a perfect conductor at z
method.
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Table 10

Comparison of the Scattered Electric and Magnetic Field Amplitudes
for the Exact and Inverted Profiles. kjy = 1.0.

: — -
Incident angle Amplitude of Scattered OF Amplitude of Scattered H
. E Field 9z .
in degrees Con- te Gradients . Field
Given |-OPJuEZ ‘ . Conjugate Gradients
Method Given
S ‘ Method

0 -.7283 -.7282 .2864 .2861

30 -.7636 -.7635 .3821 - 3820

60 -.8371 -.8371 .5874 .5876

90 -.8753 -.8754 L6971 6974

Exact Profile = 1 + sin 7z

Conjugate Gradients Method

A

Inverted Profile k2(2) =1, + 3.06z - .82322 - 105123 - 1.47z

Performance Index| F = .531 x 10—6

Time Consumed
using FORTRAN 98.5 sec.
Compiler
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4. INVERSION OF CIRCULARLY STRATIFIED MEDIA

The problem in this chapter is basically the same as the problem
encountered in Chapters 2 and 3, except that a different model is consid-
ered. Here'again;~we are concerned about . the possibility.of determining
the characteristics.of é medium having some knowledge about the scattered
properties of the structure. The procedure used is exactly that of Chap-
ters 2 and 3 and will not be repeated here.

Our model is a layered dielectric cylinder illuminated by a plane
wave. Only one- and two-layered dielectric cylinders as shown in Figures
16 and 17 were considered. 'To simulate the required initial-data, the
problem was formulated analytically for some known parameters instead
of the unknown characteristics of 'the medium. The Fourier coefficients
of the scattered field were taken as the.initial data for simplicity.
Once again; we would attempt to determine.these known parameters by the
" ‘numerical-optimization techniques.

We proceed by formulating the problem of .a z polarized TM wave inci-
dent on a one-layered dielectric cylinder (Figure 16) with electrical

constants eqs Woo and ¢ = 0, The incident wave can be written as5

C‘El';‘E e—ka - Ede—Jkp;;oSv¢

2
2 0 s KT = p.e.w

070
‘which can be expressed in terms of cylindrical waves

e;Jkp cos ¢ I AJ (kp)e3n¢
. , nn

=

with An to be determined. Multiply each side by e—Jm¢ and integrate from




INCIDENT
——
TM WAVE

Figure 16. A plane wave incident upon a uniform dielectric cylinder.

INCIDENT
TM WAVE

Figure 17. A plane wave incident upon a two-layered dielectric cylinder.
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0 to 27 on ¢. This gives Aﬁ = jfm, go

i u mg gy ind
EZ —AEO T 3 Jn(kp)e .

=0
To represent the outward traveling wave, the scattered field must

be of the form

B =ry 5 5T D ey

=gt + B o> oa
z z -
0 _ > =0 (2) iné
E, =B ni_m 3 LI (ke)ta Ho (kp)le p>a
in _ w% .~ y jng 2 _ 2
Ez EO L Can(kdp)e kd Eqho® P > a

OO

a énd'cnaaregin:genéral,complex‘constants. “For the boundary conditions,

we have

H =H, atp = a
o o e
E0”= E? at 0o = a
z z
JE

>

H =’—%‘———-, y = jwe
k




p5TM, Geyra D) (k) 130

. Jue L®
- HZ,= 20 §-{EO
k B e
j(,k)E © ] N
0 .- e (2
-0 E, o T eyra D) (o) TR
. jwe, o } i
in _ d D jn¢
H = kd EO ni_w j Cn(kdp)e
Hg = H;“ ] .
p=a

which yields

= L

n= -0

o
k

which yields

- Can(kda)

£
[Jé(ka)+anH;(2)(ka)] - Ei

ool

]

n=-—ow

Eliminating’cn from (20) and (21), we get

= (ka) .

[s9)

X

= OO

1
Can(kda)

T3 (ka) + anHrEz)(ka)°

e g0y (kygadegk J. (kga)-J. (ka) /ka J_(ka)

a = 1
n HEZ)(ka)i EdJé(kda)/€okd3n(kda)—Héz) (ka) /ka n® (ka)

as the Fourier coeffidients of the scattered field.

]

40

(20)

(21)

(22)
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We now proceed to evaluate the Fourier coefficients of an incident
plane wave upon a tonlayered dielectric cylinder with inner radius b and
electrical constants € Ho» o = 0, outer radius a and €40 Wg» o = 0 as
electrical constants. We have divided the entire region into three parts
as shown in Figure 17.

The expressions for the waves-in:different regions are as follows:

i':r"e—jkp cos ¢ _ B

" E =E 0

T e jn¢ 2 _ 2
. 0 DN Jn(kp)e , kW = HpEqW

===

whére'E: is the incident wave. "The scattered field is

s _ > =D (2) ;1\ dnd . -
Ez = EO b j aan (kple .p‘z a
n=—oo

5 2 aovea 589 oy 1edRt

Ez(3) ='E0 ’i—m 3 [Jn(kp)+aan' (ko) le s P> a (23)
A ine 2 2
Ez(l) = E0 ni_w 3 Can(khp)e . kh = HgEps P <b (24)
e -n (2) ing 2 2

EZ(Z) = EO ni_m 3 [DnHn (kdp)+Fan(kdp)]e s kd = UoEq¥ s (25)

where Ez(l), EZ(Z), and EZ(B) are fields in regions 1, 2, and 3.
We have four coefficients——an, Cn’ Dn’ and Fn——to be determined;

thus, we need four boundary conditions as follows:

B, = E, (D] (26)

H (L) = B (D] @7
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E,(2) = E,(3] _, (28)
(2 =B D] __ . (29)
' SEZ
Note that H¢ = kz 30 ° ¥ = jwe.

Following the procedure used for the one-layered case, we derive

the following expression for the Fourier coefficients a .

| S £0%g
1 (ka)[J'(k'a)-~§,H(2) (@) - T F J'(ka)[Jn(kda)—-%,Hé2>(kda)]
4 T k ' '
eg é”(kﬂJ&a)—H“Nkw]()&>w<kw 13 (1 j0))
(30)

where

(2)
®h (kqP) d . (2)"
A=§“<k“[?ﬁﬁs—1-z;% (g
e ' J (kdb) Ed '
B = —k; Jn(khb)[ TZ'k_E')— 1 - kd Jn(kdb)°

For the case of the one-=layered dielectric cylinder, the perform-
ance index function was taken to be the norm of the difference of two

“summations (squared) summed over different scattered angles, ¢m.

M e jng. = jno
F=1 | £ a()e P- 1 &8:Be ™% - D
. n n
m=]l  n=- B L

where k is the relative dielectric constant of the layer

£, = KE
0

d

The superscript g indicates the given or known values.



It was numerically shown that we only need to vary the index n in
Equation (31) from -7 to +7 to determine a with sufficient -accuracy.
Rosenbrock's optimization technique (See Appendix A for more detai

was used to minimize F with respect to the optimizing parameter k. ¢
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1

varied from O to 90 degrees in 2° increments. The results are summarized

in Table 11.

For the case of the two-layered dielectric cylinder, we were faced
with excessive computer time. To economize on the computer time, the
performance index F was taken to be

6 6 )
F=] 1 aGy)- 3 aB«HI|% (32)

n=-6 n=-6

where ¢ and €, = Ko€pe Equation (32) varies from (31) only

h - “1%0 d

because o is taken to be zero instead of varying it from 0° to 90°.
Also, n is taken to vary from -6 to +6 without any loss of significant
accuracy.

Rosenbrock's optimization technique was used here, and some of the

results are summarized in Table 12.




Relevant Data Corresponding to the

Table 11
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One~Layered Dielectric Cylinder

8 = 3, (exact) % = 3.00159 (numerically obtained)
+7 jné R +7 ing
T aBe (exact) T m (numerically obtained)
n=-=7 ° n=~7
Real Part Imaginarvaart Real Part Imaginary Part
0° -.84784" -0.97975 -.84871 -.98014
30° -.92928 -0.90284 -.93000 -.90315
60° -,77833 -.69952 ~.77894 ~.69960
90° -.70887 -.43726 -.70390 ~-.43704
Execution time 11.58 sec.

Table 12

Comparison of the Exact and Numerically Obtained Relative
Dielectric Constants of the Two-Layered Dielectric Cylinder

Layer Number

Relative Dielectric Constant

Exact

Obtained Numerically

1 Kl 2.5 2.5026
2 K, 1.5 1.4991
Execution Time 112.62 gec.
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APPENDIX A. ROSENBROCK'S ROTATING COORDINATE SYSTEM METH0D2

This method finds the greatest or least value of a function of sev-
eral variables when the variables are restricted to a given region.
Given a functionAu(xl,xz,...,xn) to be minimized, the procedure starts
with n orthogoﬁal vectorsygl, 52, °..».gnvo'riginating from an arbitrary
point and proceeds By searching along each vector Ei. The principle
adopted was to try a step of arbitrary length é. If this succeeded, e
was multiplied by o > 1. - If it‘failéd,‘e was ;ultiplied by -8 where
0 < B <1, '"Success,' here,was defiﬁed,to mean that the new value of
u was less than or equal to the old value. Each such attempt is called
a "trial." The criterion chosen was to'go on until at least one trial
had been successful in each direction, and 6nefhad failed. The set of
trials made with one set of directions is called a ''stage."

The method chosen for finding the new directions of & after each

stage was the following. Suppose that dl is the algebraic sum of all

the successful steps ey in the direction El’ etc. Then let

0 .0 0
A = dlgl +d 52 + ...+ d g

1 2 n°n
0 0

A2 = d2€2 + oees + dngn
_ 0

An = dn€n°

Orthogonal unit vectors gi, E%, co ey gi are obtained using the. Gram-

Schmidt orthonormalization methodo6
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1
B, = A, - A (<A ,A>/]|A |2) l= B /13|
2 y 2 T RS b R A R/ L bt
: n-1 ‘ 2 1
B =A - I Ai(<An,Ai>/]Ai| ), £ = Bn/anl .

i=1

The search procedure is then repeated using newly defined £ vectors.
The procedure continues until the distanceydj along the gj is smaller

than a selected criterion for all j.
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APPENDIX B. FUNCTION MINIMIZATION BY CONJUGATE GRADIENTS3

Consider a function of n variables whose value f(x) and gradient
vector g(x) can be calculated at any point x. We assume that in a neigh-
borhood of the required minimum h, the function may be expanded in the

form
N A T . , . -
£(x) = £(h) + 5‘(x—h) A(x~h) + higher order terms (1)

where A, the matrix‘of~Second-order'partial-derivatives,is symmetric and
positive definite, and (x—h)T is the transpose of (x-h).

For iterative methods having quadratic convergence, it is guaran-
teed that the minimum will be located exactly apart from rounding errors,
within some finite number of iterations. ~Virtually all iterative mini-
mization techniques; whether quadratically cohvergen; or not, locape h
as the limit-of a.sequence Kys Kps Kpyoeees where xo, is an initial

approximation to the'position of the minimum, and x;,,, is the position

i+l

of the minimum with.respect to variations. along the line through Xy in
some sgpecified direction Pi. Setting g(xi) =.8; for each i, X;,9 1s

determined from Xi'by the relations

T
- \
8i4+1%1 = © (2)
Xipp = %yt o4y (3)

where X Pi’-gi are all n-vectors and o, is a scalar.
The condition for the gradient to vanish is seen from Equation (1)

to be

Ax = b (4)

‘b = Ah. (5
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Now, if the vectors Pys Py> ces P, are A-conjugate, they satisfy
T , , .
p.AP, = 0 for i # j. (e)
o
In the solution of Equations (4) and (5), directions Pgs Pps -- are gen-

erated such that p is allinear. combination of ~8441> Pg» Pp> o+ Py

i+l i

such that Equation (6) is satisfied. . A straightforward calculation gives

the following general minimization algorithm.

Xy arbitrary

go = g(x0)3 po = _go

X4 = position of minimum on the line through Xi in the

direction Py

7
2,2
B; = 8141785

Piy1 = “Bipy T B4Ry
This process is guaranteed to locate the minimum of any quadratic func-
tion of n arguments in at most n iterations. For functions which are

not "quadratic, the process is iterative rather than n-step and a test

of convergence is required.
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