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Abstract

The purpose of this paper is to present an introduction to a
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class of functional differential eguations presently being studied
FUSCTIONAL DIFFERENIIAL EQUATIOLS
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I. Dilference und bifferential-Difference Bquations,

In this scetlon, we discuss the fundamental classcs of differ-

ence end differential-difference equations together with the

tiou that is reguired to define a sgolublon of such oy

il

PP . I - . -
l. ®ifference equations, Let R~ be m-dimensionai real

Euclidean space, A difference equation iIs a relation of the form

(1.1) x(6) = g(t,x(t-1),.00,x(t-m),

wnere X 1ig an n-~vector, m is a positive integer and g is a con-

. N - L .
tinuous function on R . Suppose c,xl,...,xm are given real

numbers. A reasonable initial value problem for (l.1) is to specify

yLlsEyene

that x(o-1) = xl,...,x(o;m) = X~ and determine x(otk), k = 0,1,2
from relation (1.1)., A solution of (1.1) is uniquely determined by
the initial data (o,xl,.,.,xm) and depends continuously upon the
initial date,

Since difference equations are not the main concern of fhis
parer, we do not dwell upon the preperties of solutions and refer
the reader to the references [1,2]. It is instructive on the other
hand to consider another class of difference equations which

generz2lly are not discussed in much detail. Consider the equation

(1.2) x(t) = h(t,x(t-rl),.g.,x(t-rm))

. : unt-]
vhere o is continuous on R , 0 < Ty < eoe < ?m’ m>1, are

such that at least one of the ratiqs rj/rk is irrational. In
such a situation, it is no longer possible to specify real numbers
(U,Xl,.o.,xm) and find a function x(t) satisfying (1.2) for any
t >0 which also satisfies x(o-1,) = xl,...,x(c-rm) =%. A
reasonable initial value problem for (1.2) can be specified in the

following manner. Suppose @ is a given conbinuous n-vector func-

tion on [a-rm,c] with

9(0) = h(o,@(o-x ), .. .,0(0-1 ).
A solution of (1.2) through the point (o,p) is defined to be a
continucus function defined on an intsrval [c-rm,c+A), A > 0, which
coincides with ¢ on [c-rm,c] and satisfies (1.2) on [o,c+A).

The basic properties of these equations are discussed in [3].

2, Differential-difference equations, For simplicity in

notation, we discuss in this section cnly a differential-difference

eguation (DPE) of the form
(2.1) x(t) = £(t,x(t),x(t-7),H(t-1),x(t+V))
where r >0, V> 0 are given constants, %(t) = dx(t)/dt and x

is an n-vector. Much more gencral situations will arise in the sub-

sequent discussion, Even for (2,1), it is not clear how to phrase a
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reescr wtic problem for which thore will exist a colution, To get a
betlter feel for the difficuliles involved, we consider special cases
of (2.1) #nd as a consequence obbtain a classification of DDE's. For
see [h].

By far the simplest tyve arve the retarded differential.difference

equaticrs (RDDE)

(2.2) 5(6) = £(6,%(8),x(8-7)),

where r >0 and f is continuous on R2n+l,

Since a specification
of % &t t and ¢ - r uniguely detemsines X(t), a reasonable
initizl velue problem for (2.2) is the following., Suppose ¢ 1is a
given real number and ¢ 1is a continuous n-vector function on
[o-r,0]. A function x . will be said to be a solution of (2.2)
through (0,9) if x 1is continuous on [g-r,o+A), A > 0, coincides
with ¢ on [o-r,o], X(t) is continucus on (o,c+A) and satisfies
(2.2) on (o,0otA).

Using the equivalent integral eguation

x(t) = @(t)
(2.3)
x(t)

#

t
9(0) + [ 2(5,%(s),x(s-x))ds, + 2 o,
g’ ,

~

and proceeding as in ordinavy differential equatious, one can prove

the local existence of a solution x through (o,9). With further

rivlions on f one oblains uniqueness and conbinucus dependcence
T the solution on the initial data (o,9).

The following observation is'very important. Even though ©
is enly continuous, the solution through (U,@) is continucusly
differentiable for + > o, This indicates that the natursl evolution
of the soluticn of system (2.2) is in the direction of increasing t.
cr a given ¢, there may not exist any solution of (2.3) on an in-
al [o-r-A,0], A > O, vhich coincides with @ on [o-r,6]. In
, if such a solution x exists, then there is an €& > O such

that @(t) must exist for o -€ <t 0 and

() = £(6,0(t),x(t-1)), c-€<t s ol
Therefore, for an arbitrary continuous function ¢, there can be no
solution in the direction of decreasing t. Furthermore, even if

9(t) 1is continuous for g -r st = o, there will not be a solution

tnless

(2.4) ?(0) = £(0,0(0),9(0-x)).

Ine relation (2.4) may not even be enough since a solution of (2.2)

ry

or decreasing t will involve the determination of x(t-r) from
(2.2) as a function of k(t),x(t).

A differential-difference equation of neutral type (WDDE) is a
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relation of the form
(2.5) (08 = £(t,x(t),x(t-r),%(t-7))
vhere r >0 and £  is contimvous on R3n+l° Since a specifica-

tion of x at t and x,%¥ at t - r uniquely determines X(t),
it is natural to specify the following initial value problem.
Suppose ¢ 1s @ glven real number and ¢ 1is en n-vector function
on [o-r,o] which is continuous together with its First derivative.
A solution of (2.5) through (o,p) is a function x defined on

an intervel [o-r,c+A), A >0, which coincides with ¢ on [o¢-r,o],
has a continuous first derivative excest at the point$ o+ kr for
all k= 0,1,2,.,., for which o+ kr belongs to [o,o+i). A
theory for (2.5) along this line is developed inm [U4].

One shortcoming of the above definition of the initial value
problem is that it cannot be generalized to the situation in which
there is general dependence of X(%t) wupon values of x(s) for
s £ t, Even in (205), and even more so when r depends on i,
there are great Qifficulifies in discussing the dependence of s0lu-
tions upon the initia. data (o,p). Other objeciions arise if one
tries to develop a geometric theory Tor (2.5) in the same spirit as
in ordinary differential equations, There have been many papers
devoted to the formulation of the initial value problem and the

reader may consult [5,6] for references.

A very significsnt comtribution lo this guestion was made by
Driver [7] who gave a formulation which recently has also been
generalized by Melvin in his Ph.D. dissertation at Brown. We only
illusirate the ideas for equation {2.5). Suppose @ 1is & given
absolutely continucus function on {o-r,c]. A solubion of (2.5)
through - (0,9) is an ebsolutely continuous function defined on an
interval [o-r,orA), A > 0, coinciding with ¢ on [o-r,0] and
satisfying (2.5) almost everywhere on [o,o+A). Of course, in order
for this initial value problem to malke sense, the function f must
satisfy the following property. If x is any given sbsolutely con-

tinuous function on [o-r,o+d) and

F(t) = £(t,x(t),x(t-r),%(t-r)), gft <o+ A,

then the function F must be locally integrable on [c,o+A). A

satisfactory function f is

(2.6) £(t,%,7,2) = g(t,x,y)z + u{t,x,y).

If T satisfies (2.6) and the initial value problem is defined as
above, then a theory of existence, unigueness and continuous de-
pendence cn the initial dzta is developed in [7].

As en alternative way to look ét a special type of NDDE which

oceurs frequently in the applications, consider the equation



(2.7) ®(t) = g(t,x(t-r))X(b-r) + h(t,x(L),x{L-x))

where g,h  arve continuous functions of their arguments and  g(t,x)

has z continucug first derivabtive in t. 1If
X
(2.8) G(t,x) = [ g(t;s)ds
o
then equation (2,7) can be written as
a
(2.9) & [x(t) - Glt,x(e-x))] = Hlt,x(),x(t-))

¢here H(t,x,y) = h(t,x,y) - &(t,y)/db. It is now vossible to
pose the following initial value problem for (2.9). Suppose @ is
a given continuous n-vector function on [o~r,c]. A solution of
(2.9) through - (0,9) is a continuous function x defined on
[o-r,0+A), A > 0, coinciding with @ on [o-r,0] such that the
function” x(t) - G(t,x(t-r)), not x(t), is continuously differ-
entisble on (g,0+A) and satisfies (2.9) on (g,0+A). A thecry
in this direction was initiated in [83; [2] and will receive more
attention later, It 1s interesting to note that a discussion of
(2.9) in this setting includes the RDDE (2.2) [take G = 0 in
(2.9)] without the necessity of imposing additional smoothness con-
ditions on the initial function o.

In a NDDE and in contrast to RDDE, there is no reason to suspect

that the solution enjoys any morce smoothness properties than the

¢ in certsin aitustions thet g

t. To 1llustrate this poing,

(2205 R(t) = £, (L), x(t-r)) + *(t-x).

& soluticn through (0,9)

viloo: ©f %, On the other hend if we write (2,10) as

X(t-r) = X(3) - £(b,x(s),x(t-x))

re will define solutions for values of © < g,
22 tner2 is generally no preference for  integrating in any

rarsisilay direction, this is probably the reason for the term

erenticl-differcace equation of advanced type (ADDE) is

rzlzvlon of the form

(2.0 L) = £(L,x(R),x(t+r))

5
Y
]
Y
e
o
w

ince this equation is the szne 25 a RDDE with ¢
larodby -, any solution of (2.11) which is defined for in-
¢ must correspond to initial dute satisfying special

¢ it is bhe soe as integrating a RDDE for decrerz-




An exzmple of a fferenticl equation of mi

type (MDDE) is & velution off the Torm
(2.12) () = r{v,x(e),x(tex), x(brx))

where T > 0, Very 1ittle is known about such equations and it
certainly eppears that a reasonable formulation for the existence
of a solubion should be in terms of boundary values at two gilven

points.

As 2 final rem

vetween the sbove classification and the classification of second

uvations. In fact, a RDDE h=s properties
suggestive of e parabolic equation, a NDDE those of an hyverbolic
equation and 2 MDDE those of an elliptic equation. Actually, these
analogues are more than superficial because certain problems in
parabolic equations can be reduced to a RDDE (see [10]) and some in

hyperbolic to NDDE (see [11]). The relation mentioned with elliptic

II. Functional Differential Equac:ions

In this section we generalize the concept of DDE and give some
of the basic properties of the equations of retarded and neutral

type.

10

5. Definitioun of the cquation., Suppose r x 0 is a given

real nunber, R = (-o,w) E' is a real or corplex n-dimensional
linear vector space with norm |-|, ¢([2,b],E") is the Banach spacc
of continuous functions mapping the interval [a,b] into 7 with
the topology of uniform convergence. If [a,b] = [-r,0], let
C= ﬁ([»r,“],En\ and designate the norm of an =lement ¢ in €
vy [of = sup»r§e§ol¢(0)(. Even though single bars are used for
norms in diffevent spaces, no confusion should erise. If o € R,
Az 0 and X ¢ C([d-r,c+A],En), then for each t in [o,0+A],
let x, € C be defined by xt(a) = x(t+8), -r £ @ £ 0. The symbol
Q will always denote an open set in R X C.

If p,fI Q - E" are continuous, thenr a functionzl differentizl
equation (FDE) is z reletioen

(3.1) -g? D(t,xt) = f(t,xt).

A function x is said to be a solution of (3.1) if there are

o € R, A >0, such thet x e C([c-r,c+A),En), (t,x,) €9, D(t,xt

is continuously differentiable and satisfies (3.1) on (g,o0+A). It
is not required that x(t) be differentiable on (o,0+A). A

solution of (3.1) through (o,0) € @ is a solution x = x(0,0) of

(3.1) on [0-r,o+A) such that X, = 9.
Equaticn (3.1) is very general and includes ovdinary differ-

ential equations [r = 0, D(t,0) = ¢(0)] as well as the following:
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.2) ‘ Some) = 76w

(5.5) S () - e(em)] = 208,
(.1) Se ¥(02) = 1)

(3.5) Senlt - 5 = £(t,x,).

Mueh more gencral equetlons are jncluded in (5.1) and e complete
classification in the spirit of Scctioné is not aveilsble. FKHow-
ever, equabion (3.2) is cslled a rebarded functional differeutial
equaticn (RFDE) [D{L,9) = ¢(0)] end eguations (3.3) - (3.5) are
respectively special cases of neutral (KFDE), sdvanced (AFDE) and
mixed (MFDE) functional differential equaticons., Difference equa-
tions are also included in (3,1) by teking £ == 0 eand considering
only initial (o,9) for which D(c,p) = O.

Frow the above definition a ¥DE is 2 triple (D,f,r) eand it is
clear that the basic problem iz te determine the behavior of the
solutions of (3.1) on /D,f,r). To be more specific, suppose
(D,f,r) are required to lie in some linear toprlogical space,
Given a certain property of theé solutions of (3.1) for a given
(D,f,r), is this property preserved for the solubions of equations
(3.1) corresponding o those triples in e neighborhool of (D,f,r)?
Most of the pepors in the literature deal precisoly with such

questions,

-
hel

Without more couditions on D in (3.1), it scuns hopeless at
the present tine {o obtain very general results, In fact, even the
initial value problem for (5.1) will not have a solution since it
includes (3.4) and (3.5), special cascs of which were discussed in
some detail in Section 2. Ovr first objective, therefore, is to
impose additional restrictions cn D in order for the initial valuvc

problem to be well defined,

Definition Jl_ Suppose Q@ C R X C is open, DI @ ->En is
continuous, D(t,p) hes a continuovs Frechet derivative Dcp(t,@)

with respect to ¢ on N and
' =]
(3.6) DL (6,00 = [ [dgu(t,0,0)1¥(6)
-r

for (t,9) €@, v ¢ ¢, where u(t,9,0) is an n X n metrix function
of bounded variation in 8 ¢ [-r,0]. For any B in [.r,0], we say
ir

D is atomic at B on Q,

det A(t,9,B) £ 0
(7)) AG,9,8) = u(t,0,67) - k(+,9,87)

B+s
é (g1 (,9,0)10(6) - A(t,0,8)¥(B)] = r(t,0,5,8)]V]
-5
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Tor (4,9) ¢, ¥ €C, &~ U, whoe A(Lg,R) ds continuous in
(tg) and  y(b,p,e,0) G coniimons Jo (B,¢,8), v(t,9,0,8) = O.
Definition 3.2, A neolvat Dunevional differontial equation

(WFDR) iz & system (3.1) for which D is atomic al zero on Q.

The systen is autonomous i D, T eave independent of t.

A RFDE corresponds to a NVDi with D(t,9) = ¢(0). System (2.9)

is & IFDE. Another very speciel case of a NFDE is the cage in which

D(t,y) 1is linear in ¢ anl

(o]
D(t,9) = [ [du(t,8)I0(0)

(3.8) det B(t) # 0, B(t) = u(%,0) - u(+,07)

[o]
[ Ta,u(5,0)¥(6) - B(t)o(0)] = v(t,5) ol
-5

for (t,9) € 9, s 2 0, B, v continuous, v(t,0) = C. A special case

of this latter situation is (3.2) and the system
(5.9) T [x(6) - a(t)x(n(8)] = -&(£)x(n(s))

where h(%) <1, 1:1(1:) >0, h(t) are continuous for %t 2 0 and
a=1/h. If x is a solution of (3.9) which has a derivative al-
most everywhere, then x will satisfy the equation x(t) = %x(h(%)).

These examples should indicate the conditions that are imposed by

1h

defining a NWFDE in the sbove manuer, A more gencral Tormulation is

contained in [9].

Ik, Basic properties of solutions, The following results ave

proved in [12].

Theorem 4,1, If (3.1) is a NFDE on Q, then, for any (0,9) € 0

t4

there is a solution of (3.1) thrbu.gh (0,9).

Theorem 4,2, Suppose (3.1) is a NFDE on @ and for any closed
bounded set W in @ with a S-neighborhood of ¥ in 0, f maps
W into a bounded set, D, Dq‘; are uniformly continuous on W and D
is uniformly atomic at zero on W. If x is a noncontinuable solu-
tion of (3.1) on [o-r,b), then there is a t' in [o,b) -such that
(t,%,,) #W. If D(t,p) is lincar in ¢, then (t,x,) £ W for

£t < b,

Theorem 4.3. Suppose (3.1) is a NFDE on @, A(t,9,0), D are
uniformly continuous on closed bounded subsets of  and the solu-
tion x(o,p} of (5.1) through (o,p) is unique, then x(o,0)(t) » is
continuous in (c,cp’t) in its domain of definition.

Results on the continuous dependence of a solution of (3.1) on
(D,f,r) are also contained in [12]. Even for RFDE, the develcopment

of the field proceeded until the early 1950's by considering the
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aorphism provided one can give sufficient conditions for the
existence of 2 solution for decrensing t. This is sctunlly the

case and as a conseguconce of [12], we have

D is atomic at O and -~r on Q. If

Theorem 4,4, Suz

D{t,p), A(L,9,0), A(s,p,-r) are uni rmly continuous on closed

FAE Rt

bourded subsots of Q@ oal £(4,9) whilnian dn g,

16

then the mapping T(t,d) is 8 hameemorphis,
I D(t,0) = 9(0); thal is (%.1) is a RFDE and f(t,¢) is
atomsic at -xr on Q, then the mapping T(%,0) is one-to-one.

For r > 0, the map T(t,c) corresponding to a RFDE can never

be a homeomdorphism. In fact, a simple application of the Arzel

Asceli lemma implies the following results,
¥ z

E?Efﬂq_}ﬁi For RFDE, the map T(t,c) is locally completely
continucus for t 2 o+ ry that is, T(t,0) is continuous and for
any tzo+r,o e, there is a neighborhood V(t,o,9) of o
such that T(t,0)V(t,0,0) is precompzct in C.

Lemma 4.2, For RFDE, if I R X C ~E" takes bounded sets
into ‘bounded sets and T(t_,c) takes bounded sets into bounded sets,

then T(t,0) is completely continuous for t 2z o+ r.

Lemma k.5, For RFDE, if fI R X € —2E  takes bounded sets in-
to tounded sets and, for a given ¢, (T(t,c)cp, t z o} is bounded,
then (T(t,q)p, t = 0} belongs to a compact set of C,

Lemma 4,3 implies in particular that a bounded orbit of an
autonomous RFDE has 2 nenemply o-limit set which is compact,
connected and invariant, a result very important in the study of
stebility of RFDE (see [15], [16]). Many other geometric proporties
of the solutions of a RFDE have been developed using € as the

state space and we refer to [17-25] for results and references.
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1o sulubion operabor T(t,0) of & RFDE

tely continuous allogs onc to apply sophisticated mathematical

%o the study of the properties of solutions, Theorem bk

; 1o such nice property holds for the map T(t, g) of a

NFDE. However, there is & large class of NFDE which seem to be

in the applications and such that an analogue of Lemma 4.3

holds erd the map T(t,0) for + sufficiently large has the fixed

rty; that is, if T(t,0) for t sufficiently large

meps e closed bounded convex subset U of € into U, then there

is & fixed point in U. This class is described in detail in the N
. ot -~ LA
next section, v 7 ‘:jl}\‘kp
have modulii less then D is steblae

5. Stable operaters, Fer simplicity, we suppose throughout

n

this section that DI C —-E is linear, continuous, atomic at zero

andi consider the NFDE

(5.1) S D) = £(8,%,)
' Lemnz 5.2 [Hale

wnpublished], If D is stavle, T(t,0) is

2
. I . R defined by (4.1) and mavs closed bounded sets into beunded sois
where fi R X (¢ »E  is continuous and tekes bounued setvs into v (1) o : = ts into beunded sebs
h . : IR,

o X . then there is 2 > 0 such tha

bounded sets., The following concept was introduced in [26]. @ B i

Definition 5,1, D is said to be stable if there are K >0,

@ >0 such that the solution x = x(p) of the homogeneous functional

: where T (t,0) is a conbraction and T, (% is completaly con-
equatlon l(t“ ) R gcTeRV n and lg(v’U) CepDLeuR Ly Con

tinuous Tor 1 > B,
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(6.1) x(t) =

where ¢ is a constant,
for all t in (-e o),

then x(0,p)(t) = 1 for all t =
initisel values, xt(o,@), t oz,

translate of a subspace of C

T(t,0), t 2 0, into a peind,

The fact that the map T{i,u) noced not bz one-to-one

disturbing, Sufficient condiitions Tor onc-to-oneness were

is very

given

in Theorem 4.4, but it is instructive to lock at the general situa-

tion in a little more detail, S

x(o,p) of (3.2) are defincd on [v-x,»). We say {o,9) ¢

equivalenl. Lo (6,¥) ¢ R x ¢, (0,9} ~ (0,V) if there is 2

RxC

2 = R XC and all sclutions
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such that XT(O’,fP> e XT<U,\lf); that is (0,9) is equivalent to
(o,¥) if the trejectories through (v,) and (o,¥) have 2 point

L

in common. It is casy to see that is an equivalence relation

and the spece O is decomposed into equivalence oiasses [V 1 for
each fixed ¢, If T(t,0) is one-to-one, then each eguivalence
class consists of a single poi,nt; namely, the initial value ¢ at

0. For each eguivalence class Va ‘choose a representative element

q)U’a and let
(6.2) w(o) = U o™

From the point of view of the qualitative theory of funciional
differential equations, the set W(o) is very interesting since it
is a maxinal set on which the map T(t,0) is one-to-one., However,
it secms to be very difficult to say much aboul the propertics of
W(v). In fact, without some more precise description of the manner
. . o,0 . .
in which ¢ is chosen from Va’ cne cannot hope to discuss such
topological properties of W(o) as connectedness. For example,

consider the scalar equatior
x(t) = 0

considersd as a funcbional differential eguation with lagr > O.
I c, = [p e C2 @(0) = a), ther ¢ € c, implies xt(c,@) is the

2

constant function a for + 2 o+ r. Therefore, the equivalence
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classez V_ arc the sels Ca, - < < w, for each o, An arbitrary
o

s a,0
chicice of @7

leads to a very wiinteresling set W(c). On the

other hand, W(o) consisting of all the constant functions is certainly
the seb that is of interest for {the eguation. In a general situctior,
we know nothing about the ”app?opriate" choice of q)g’a. The follow-

ing examples are given to indicate sume of the other difficulties

involved,

Remerk 6,3, For sutonomous linear equations, W(0) is completely

determined in a finite time interval and can be chosen as a linear

stbspace of (., In fect, for an autonomeus linear equation, D. Henry
[31] has shown there is a mwber < such that if xt(o,qa) = xt(O,\‘/)

for t 2zt

then t £ 7. that is, the equivalence classes ¥V _  are
J 2 2
o o o3

'completely determined in the interval [0,7]. Let T(t,0) = T(t)

and consider the set S = [p ¢ CI T(t)p = ¢, t = 7}, This is 2
cloged linear subspace of C invariant under T(t). The set S ad-
mits projection in ¢ (continuous?), C= S ® U where U is also
inveriant under T(t). Furthermore, T(t) is one-to-one on U,

Thus, we can take W(0) = U and each element of U corresponds %o

one of *re equivalence classes Va'

Remark 6.4, TFor nonlinear equations, the equivalence classes

Va may involve the consideration of trajectories which have a point

in comeon after any vreassigned times, The following example is due

to A. Hausrath, For £ >0, r = 1, consider the scalar equation

b
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%(6) = pllxgl - x()1.

For a given ¢ in (= C([~l,0],Rj, there is z unigue solution
x = x(p,B)(t) of this equation through (0,9) which is continucus
in  (9,B.t).

It @(0) = 0,  # 0, then x(p,B)(t) is a positive constaut
for %z 1, In fact, since X(t) 2 O, it follows that [x | = x(%)
for t 2 1 and wniqueness implies x(t) is a constant 2 (0) for
tz 1, Also, if @(0) = 0, then @ # 0 => X(0) >0 and x(t) >0
for t 2z 1. Therefore, for any positive constant function, the
corresponding equivalence class contains more than one element,
Alsc, the above argument and the autonomous nature of the equation
show that the equivalence class corresponding to the constant func-
tion zero contains only zero.

If ¢(0) < 0, then it is clear thet x(9,8)(t) =pproaches 2
constant as t — e, If x(@,B)(t), (0) <O, has a zero z(9,B),
it must be simple and, therefore, z(p,B) 1is continuous in @,B8.

For any 8 > 0, there exists a ¢ ¢ C such that z(cp,B) exists.

In fact, let 9 € C, {0) = -1, 9(8) = -v, ¥>1, -1 58 = -1/2 and let

©(6) be a monotune increasing function for -1/z s 6 £ 0. As long

as x(t) £ 0 and 0t % 1/2; we have [x.] =71 and
%(t) = Blr - x(t)] = Br.

Therefore, x(t) = pyl - 1. For By/2 > 1, it follows that x must

2k

have a zero,

¥

Tne closed subscl C = (¢ ¢ C. @(0) = -1} can be written as

. . o . .
€, =C, UC, where ¢, {p e C 1+ 2(9,B) exists),

n

C?l = {0 € C-l: z(¢,p) dous not exist}. Since z(9,B) - is conti>nuous,
the set - Cf)l is open and, therefore, Cill is closed., For any

¢ € C?JJ x(9,B)(t) = O monotonicity as t — o, Therefore, if ¢
is not empty, then there is a secquence qvj € Cfl’ (pj -9 € C?l as
j e and z(cpJ.,fS) ww o as e,

There is a BO > 0 such that Cnl is not empty. In Tact,

choose f}o > 0 less than or equal to that value of B8 for which

the equation A+ B = -Be')” has a real root )“o of multiplicity
two., Por this Bo’ the equation A + B = _ﬁe')‘ has two real

-2t
negative roots. If A~ is one of these roots, then x(t) = -e ©

is ; ;olution of the above equation with initial value ch(O) =
-e- °© , -r £8 50, P, € C-l‘ Therefore, C!.ll is not empty.
With B as above, it follows that 5(50) def
Thersfore, using the fgct that our original eguation is positive
homogeneous of degree 1 in X, it follows that for any positive con-
stants g,t , there exists a ¢ € C, such x(cp,ﬁo) (t) = a, t 2 T
x(vlﬁo) (t) <a for 0sts t.- This proves the assertion in the
remark.
In [31], it is shown that linear autonasous equations have the
property that no two distinet solutions can exist on (-w,m) and.

coincide cn [0,w). The following remark acserts this statement is

felse for nonlinear equations.

= Supmecolz(q),ﬁo) = .



Rerwark 6.9,  There moy be two distinel solulions of a RihE do-

fined on (-e,e) and yet they coincide on [0,w). The following

exanple is due to A, Hevsrath, ILet r =1, f(s) =0, 058 %1,

. [
iz} = —/\\/: - l) , 8 > i, end congider lhe eguabion
CR(E) - EX(EMPR

The Tunction x = 0 is a solution of this equation on (-co,oo).

3

Also, the function x(t) = -t7, t <0, = 0, t 2 0 1is also a solution.

In fact, since x £ 1 for t 2 -1, it is clesr that x satisfies
the equation for % 2 O, Since x 1is monotone decreasing for t £ 0,

}xtJ = x(t-1) = -(t-1)5 and X(t) = _5t2. It is easy to verify

that -3t° = £((1-)°) for t < oO.

Remark 6,6, The map T(t,0) is locally bounded for any t z o}

that is, for any t 2 g, ¢ € C, there is a neighborhood V(t,0,p)
of ¢ such that T(t,0)V(t,0,p) is bounded. This is an immediate
consequence of the cor;tinuity of T(t,0)p in ¢@. The fact that
T(t,0)p is continuous in t,0,¢ actually implies the following
stronger resul; For any T >0, 0 e R, ¢ € C, € > 0O, there is a

neighborhocd V(€,o0,0,T) of ¢ such that
[T(t,0)% - T(t,0)p] <€, ostso+ T, ¥eVE,0,0,7).

Remark 6.7, T(%,0) may not teke closed bounded sets of C
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into boundod schts of Co The following example is due to K. BHamnsgen.

Suppose r = 1/4%, C = C([~r,0],R) and conzider the equation

' def 2 0
(6.5) $(6) = 1) € aEw) - Ix(s)] .
min{t-r,0)

Tt is clear that f <4akes closed bounded sets Into bounded sets and
is even locally Lipschitzian, If B= {9 e Ci {¢| 5 1} and x(b)
is the solui;.ion of (6.3), then ‘x(b) is alvays 2 - 1. Also,
%(b)(0F) <1 for g1l b e B and, thus, there is e ¢ >0, in-
dependent of b such that x(b)(o) < (Lc)‘l. If y(%,0,x(b)(9)),
y(o,0,x(b)(c)) = x(b)(v¢) is the solution of F(t) = yz(t), then
15 x(b)(8) £ y(t,0,2(0)(0)) < (1-1)"F, o = & 5 r. Thus, x(0)(t)
exists for -r st sr and x(b)(r) < (l-r)_l for all b ¢ B.
For tzr, X(b)(t) = x(b)(t) and the fact that x(b)(r) < (1-v)™"
implies x(b)(t) exists for .r st s 1.

If we show that for aﬁy & > 0, there is 2 b € B such that
x(o)(r) > (l-r)—l - €, then the set x(B)(1) 1is not bounded. . To
show this, suppose & > 0 is given, C = [l-r| -l, M= 2cre=T 1,

Choose b € B 50 that b(0) =1, [ (b(t))dt <e/M and let
t-r

. e 2
y(t) = y(t,0,1), ¥(0,0,1) = 1, be tue solution of y(t) =y (t)

and x(%) = x(®)(t). IT ¥(t) = y(t) - x(t) for 0 <t <r, then

“¥(t) 20 and W(t) = 20¥(t) + €/M. Since ¥(0) = O, one thus ob-

"

tains ¥{r) £ €. This shows that x(v) = y(r) - ¥(r) =
(l-r).l - ¥(r) z (l-r)—l - & and proves the generzl assertion made

above,
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