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ABSTRACT

Iterative procedures for the solution of perturbation equations

are considered. Limitations of a procedure recently proposed by Harriss

and Hirschfelder [3] are discussed., and modifications are suggested. The
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applications are given.
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Introduction

Few of the differential equations in perturbation theory have

yielded to attempts to determine exact analytic solutions. Exact

solutions can be obtained by direct quadrature for those equations

which are strictly separable or which allow finite expansions of the

perturbation and perturbed wave function in complete orthonormal

sets. rll For nonseparable problems, attempts to determine exact

solutions are usually based on an assumption of the functional form of

the solution. if the complete form is assumed known, it then becomes

necessary to determine the coefficients recursively. If the form is

only partially assumed, a subsidiary set of differential equations must

be solved to complete the solution. For most nonseparable problems

either the functional form is still unknown or the subsidiary dif-

ferential equations are intractable, and one usually resorts to

variational approximations to the solution.

In some cases investigators have determined approximate solutions,

applicable to a particular region of space, by considering only that

portion of the differential equation important in that region. 
[2] 

A

procedure recently proposed by Harriss and Hirschfelder determines an

initial approximation in this manner and then iteratively refines the

approximations. 
[3] 

In the following sections this procedure will be

developed, its limitations pointed out, modifications suggested, and its

relationship to other iterative schemes shown.
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[4]

If the Rayleigh-Sch.rUdinger perturbation equations,

(HO-E 0) %? (1) + (V-E0M) TO = 0 ; Y (0) = Y0	 (1)

(HO-EO) ^(n) 
+ (V-EO(1))	 (n-1) _ ^ EO(k) 'y

(H
k=2	 (2)

n = 2,3,....

are assumed to have solutions of the Dalgarno-Lewis form, [5)

\y(k) = F(k) T 0 , they can be written in the form

T 0. '7 	 + Y 2 '7 2 F(1) = 2 Y 0(V-E (1) 	 0	 (3)

IVY 0 • QF(n) + T 0 '7 2 F (n) = 2 Y0(V-E O 1)) 
\V (n-1)

(4)

- 2t}/0 	E0 (k)
`v (n-k)

Boundary and normalization conditions 
[6] 

for the solutions are given by

F(k) 
\+O 0.. Y 0 Iq F (k) = 0 on the boundaries,	 (5)

a	 T

	

F (k) y 0 1 F (n-k) y 0 
> = 0, n = 1,2,...	 (6)

The initial proposal of the iterative procedure was based

on a consideration of Eqs. (3) and (4). If 	
0 

is a

simple exponential or a power series times an exponential
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and F(k) is expressible as a power series then^for large values of

the variables the first term on the left-hand side of Eqs. (3) and (4)

is dominant in magnitude over the second. Or, it could be statad

that the behavior of F(k) in that region of space is primarily

determined by	 Q.XP 0 • 17F (k) with %V`Q 2 F(k) having only a

minor effect. This suggested an iterative procedure in which the first

approximation to F (k) , F0 (k) , neglects the contributions from 	 0

0 V F (k) , and the effect of this term is only included in higher

approximations. Since all of the equations have the same form, we

shall drop the superscript (k) and represent the inhomogeneous

portion of the equation by f . The iterative procedure, which we

shall call Proc. A, is then

Proc. A

47Y 0 -'v F 0 = f
	

(7a)

Q 0 . VF i+1 = f - Y0 IV 2T	 F 	 (7b)

Some simple examples were presented in the initial work l3l in which

Fn did converge in a finite number of iterations, F
n+l F

n , and

these functions proved to be formal solutions obeying boundary con-

ditions; therefore actual solutions.

Several problems can be encountered in the practical application

of Proc. A. First, the solution of Eqs. (7) reduces, through use of

the method of chracteristics, to the problem of solving a set of

simultaneous, ordinary first-order differential equations. These

equations may prove to be intractable due either to WO being very
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complicated or to the fact that many one-dimensional integrals cannot

be evaluated in closed form or in a convergent series. In these cases

the procedure is simply not applicable.

A more serious problem may arise if individual iterates cannot be

made to meet boundary conditions. Proc. A attempts to generate the

solution of a second-order differential equation by solving a sequence

of first-order differential equations; and one can expect the solution

of each first-order equation to meet only half the boundary conditions

imposed on the original equation. For some systems the procedure

converges to an actual solution even though early iterates do not meet

boundary conditions. This type of behavior was found in the deter-

mination of the spherical component of the second-order wave function

for a ground-state hydrogen atom in a uniform, unit electric field. [31

The equation 
[71 

being solved was

(HO -E0) F To = (-2.25 + r2 /3 + r3 /6) Y O	,

where

T O	
,^► —^ exp(-r)

and

HD =	 d2 - 1/r

The sequence of iterates 
[8] 

found by Proc. A is

t
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F.

0 -	 2.25r + r 3 /9 + r4/24

1	 -	 2.252nr -	 2.25r	 +	 r2 /3 + r 3 A + r4/24

2	 1.125/r	 -	 2.25Bnr -	 1.25r	 +	 3r2 A + r 3 A + r4/24

3	 1.125/r	 -	 1.251nr +	 3r2 A + r3 /4 + r4/24

4	 0.625/r +	 3r_ 2 /4 + r 3 A + r4/24

5 3r2 /4 + r 3 A + r4/24

6 3r2 /,4 + r 3 A + r4/24

Although F 1 -F4 are ill-behaved at r=0 , the iterates converge to

an actual solution with F 6 = F 5 = F .

The appearance of objectionable terms, those not obeying boundary

conditions, in the F  caused no real problem in the above example

since convergence was obtained in so few steps. In the general case

one cannot expect convergence in a few iterations and it is desirable

to modify the procedure so that these terms either are eliminated

or do not occur. Many modificaLlons are possible. A particularly

simple one, applicable in situations such as the above, will now be

described. This modification, called Proc. B, prevents the propagation

of those terms which violate the boundary conditions. If we define

An to be the collection of objectionable terms in Fn , (e.g. in the

example above, AO = 0 while A l 	2.25inr), we can eliminate An

from the equation determining Fn+l ' This procedure is given by

Proc . B

17Y O • V F O = f	 (8a)

Q Y 2
	 VF i+l = f - w0 ^j'2 (Fi - Ai )	 (8b)



Proc. B corresponds to initiation of the iterative process in Proc. A

with a particular type of function. This function may be considered to

represent, in some sense, a zeroth-order approximation to the solution,

(see Appendix). For Proc. B, convergence is attained when

Fi+l - F  - A
i	Note that Proc. B retains the attractive feature of

requiring only the solution of first order partial differential equations.

Application of Proc. B to the previous example leads to

i	 Ai	 (Fi - Aii

0	 0	 - 2.25r	 + r 3 /9 + r4/24

1	 - 2.25inr	 - 2.25r + r2 /3 + r 
3 A + r4/24

2	 - 2.25inr	 - 1.25r + 3r2 /4 + r3/4 + r4/24

3	 - 1.251nr	 3r2A + r3 /4 + r4/24

4	 0	 3r2 A + r 
3 
A + r4/24

where we see convergence with F 4 = F3 - A3 = F .

The primary limitation imposed by the use of Proc. B seems to be

that it is difficult for this procedure to yield certain types of

solutions, those that meet boundary conditions by mutual cancellation

among several terms. In view of this limitation it seems best to use

Proc. A when possible, using Proc. B only if the integrals due to the

undesirable terms become intractable or if the procedure requires so

many iterations that the number of terms becomes unmanageable.

In some instances it is found that all of the terms generated by

Proc. A are ill-behaved at the boundaries, i.e. F
n	 n

= A	 for all n .

A system exhibiting this type of behavior is the Hooke's law model of

the helium atom. In this model the electron-nucleus coulombic forces

are replaced with Hooke's law forces, but the coulombic inter-electron

6
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repulsion is retained. This system, as a model for correlation, has

been studied extensively by Kestner and Sinanoglu, [91 White and

Byers Brown, 
[10] 

and Benson and Byers Brown. 
[11] 

The perturbation

problem, in atomic units, is

__ _ 1	 2	 2H0	 2 (Q 1 + v2) + 2 (rl + r2)

where V = 1/r 12 . Also

t 'l G = IT	 exp
f-( rI + r2))

where EO = 3 and E^ 1) = (2 / Tf )- .

The analytic solution to the first-order perturbation equation has

been determined by White and Byers Brown 
[10] 

to be

^(1) = F ^0 =^ '^ (1 - exp(r12	 12/2 )erfc(r/2 't ))/ r0 	12

`rZ/̂  2
+ 2	 J	 es

0

where

00

erfc(x) = 2 7r_
x

i
erfc(s) ds - (2/'TT' ) -T (1 + In2)

2

e -t	 dt .

We obtain, by Proc. A. the following iterative sequence, ill-

behaved at the origin:
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i	 F1

0 (2/if )41 Inr12 + 1/r12

1	 (2 / 1N	 Inr12 + 1/r12 - (2J ^)	 /r12
2	 (2 / if	 Inr12 + 1/r12A. (2/ 7r )^ /r12 + (2/ Tr)# /2r12

and

FOO M (2 / IT )	 Inr12 
+ 1/r 12 - (2 / IT 3 /r12

+ (2 /7r )4C 	 Z (-1) 1 (2j-3):;'(j 23-2 (j-2): rte )
J -2

White and Byers Brown developed the "large r 12 " form 
[101 

of F which,

except for an additive constant, is identical with OO _

In cases such as the above, Eq. (7a) is a very poor initial

approximation. Instead, one should consider what might be called the

procedure complement to Proc. A. That is, with reference to Eq. (3),

consider the region of space where the first approximation is determined

by T ' V F and '7^ ' © F is assumed to have only a minor effect.

This is called Proc. C,

Proc. C

d 2F0 s f
AP 

0	 (9a)

02F1+1 ' f/ W2 - ^' .fin( T 2 V Fi	 (9b)

In the systems we have examined, if Proc. A failed for the reasons

given above, Proc. C would have yielded a solution satisfying the criteria



9

6

of successive iterates meeting boundary conditions and leading to a

formal solution. For the Hooke's la y; model, Proc. C generates the

following set of iterates:

i	 F 

0 r12 /2 - r12 /3(2 -ff )

1	 FU + r12 /24 - r12 /30(2'K )A

2	 F1 + r12 /240 - r12/ 315 (21f )'#

and	
n+l

00

F^ _ 7 (-l)n+l 
r12 / ( n (n+ ) .' 2 2 )

n=

FOO , except for a normalization constant, is the power series expansion

of F given by White and Byers Brown. [101

In no cases considered have both Proc. A and Proc. C yi:lded

satisfactory solutions. As an example, the application of Proc. C. to

the earlier considered hydrogen atom in an electric field leads to

i	 F 

0 3r2 A - r4/30 - r5/90

1 3r2 /4 ♦ r3 A - r4/30 - r5 /50 - r6/378

2	 F	 - r550 - r6/210 - r7/1764

3	 F	 - r6/210 - r 7 /880 - r8/9072

The major difficulties encourtered in the use of Proc. C are:

(1) Eqs. (9) often do -,j .-,t have unique solutions.

(2) Solutions to Eqs. (9) are normally difficult to

obtain, and in the n-dimensional case, n > 3

essentially impossible. Solutions( 12 1 to
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17 2U(x) = - 4'11'1. (x)

x = (xl,x2, ... , xn)

are, in principle, given by

r	 "Y (r) dx'
where

r= 'x- x'^

Y 
(r) _ r2-n/(n-2) 

dO n , n> 2

W" = 2 TT n/2 / T (n/2)

but these integrals become intractable for n '>3  .
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Appendix - Relation3h,- v 	 F -c A _ wed Proc. B

An iterative proc ,^-s G .w .: ^ can s r od'if ied to include a zeroth-

order approximation. For P o:4o A 9 t1.e -Ln--l- lion of an initial

approximation,	 would gk^,e

Proc. D

(Al)0 VF

	

Vk? 0 . 47 Fi}j a.	 Y' TT' 'L	 (A)

Proc. A can be considered to be tine special case of Proc. D when

= 0 .

The equivalence of Prcc.s. 3 and D can be demonstratr.d by showing

that a function J' e,U sts Guch that the results of the k-th iterations

are the same, Fk = k o The •stilizat_i.or of Proc. B does not require

any knowledge of	 but i.t is possible to determine a function
a

which satisfies this requirement.

►
The relationship between, .T and the (A i9 Fi ) can easily be

obtained for the first few iterations. In the following we shall

assume that the F,. and A.. of Proc. B are known and 	 will be
i	 z

Labelled with a subscript 	 k to show that this is the function

a

for which F  = F  .

'r0 Trivial case, x0 = FO implies Q ? 0 = 0 .

Proc. B

Y'0

VY 0 ^JF 1 =± - W0Q2(F0-A0)
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Proc. D

Q*,'dFO=f- ^0tr21

VY • QF L = f - ^2 Tg FO

FL = FL implies FO - FO - AO

	

2	 '	 2	 2

	

Ig T 2	 F0 =VY0 ''V FO - 17Y 2 .VAp

f - VW 0 • QAO

f	 -	 U 
v2	

1

and	 F1 can be determined from

'
Q 2 T-1 = VPXn( W 2 ) - Q AO .

2

Proc. B

\p O FO = f

v I?p ' V F L =f - \4) ^ 72(FO-AO)

V'^ 0 • Q F2 = f - \PO ^2( F1 - AL)

Proc. D

2
VY0''VFO=f-41OV F2

Q4
) ^ -VF L f - 0 '72 FO

Q
\_y

O 'QF2 a f - y 0 72 FL
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F2 - F2 implies F 1 = F 1 - Al

VY QF, vy2 
OF 

VW2 DA
0	 1	 0	 1	 0	 1

f - ^3 ^ V2F0 +  0 Q2A0 - Q4/2 • VA,

f - w0 02F0

Therefore

v2 
( F0 - F0) = 02A0 - Q In( Y O) • 17 Al

and	 r2 can be determined from

Q 2	 2 = f/ 0 - V gn( 
*2)

 0 • V FO

= '71n( y2 • 7 F - Q In(W 2 • 0 FO

Note that the determination of Tk requires the solution of k

Poisson equations.	

^^++
For the hydrogen atom in an electric. field, the	 Tk which force

all iterates to be well-behaved (i.e. F  of Proc4 D equals F  of

Proc. B) have been determined to be:

ii

1	 3r2 /4

2 3r2 /4 + r3/4

3 3r2 /4 + r3 /4 + r4/24 - F
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When Proc. B is applied to the Hooke's law model

..^^--e^

we find F i = Ai

for all i , and by Eq. (8b) F i = FO 	The	 Tk of Proc. D which

correspond to this are:

i	 Ii

1	 r 12 /2 - r12/3(2 IT ) 2

2 1 + r12 /24 - r12/30(2'R )'k

n+l

(-1)n+l 
r12/( 

n (1)	 2 2 )	 ,J nL-

the well-behaved result obtained by applying Proc. C to this system.
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