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SUMMARY

A general procedure for analyzing the nonlinear forced sloshing
of an inviscid fluid in a cylindrical container is presented. The total
energy and the frequency are related through & characteristic parameter
in the corresponding linear problem. The application of the technique

to circular container is presented.

INTRODUCTION

In this report we study the motion of an inviscid, incompressible
fluid in a rigid cylindrical container that undergoes a prescribed periodic
motion consisting of a sum of three translations in the directions parallel
and perpendicular to the generators of the cylinder. The flat bottom of the
container, perpendicular to the generators of the cylinder, remains horizontal
during the motion. The vertical acceleration of the container is an arbitrary
time periodic function; the horizontal acceleration components are small
periodic functions with the same period. The elevation of the free surface
is assumed to be a single-valued function of the horizontal variables.

We first formulate the fully nonlinear problem. By perturbing
these equations about & trivial solution (occurring for zero transverse
acceleration of the container), we reduce this problem to a sequence of
linear problems on & fixed domain. These problems have an eigenvalue
parameter in the free surface boundary conditions. By formulating these
problems in an appropriate Hilbert space, we can efficiently obtain eigen-
function expansions for the solutions. From these solutions can be found
a response diagram showing how the energy of the fluid depends upon the
nature of the container motion. Resonant behavior can be determined from this
diagram. The application to a circular container in lateral acceleration is

handled in the last section.




1. Formulation of the Nonlinear Boundary Value Problem

We adopt the convention that Iatin indices range over 1, 2, 3,
and Greek indices range over 1, 2. We employ the summation convention.
If f - f(x,t) is any differentiable function of a three vector
X = (xl, Xps xB) and a real variable t , +then we use the notation

_of _of

f’t = 5? f’k = &'k y k= 1,2,3.

Let xi be Cartesian coordinates of a frame of reference fixed in
space. Let t' denote the time. Let R(t') specify the position relative
to the origin of this system of a reference point, fixed relative to the
container, that lies on the plane of mean elevation of the free surface.

Let p locate points on the container relative to this moving reference
point.

The velocity potential is denoted by ¢£"(x',t') and the free
surface e}evation by e"(x',t') . The outward normal to the container is

denoted by n . The boundary value problem (cf. /1/ , /2/) consists of

the continuity equation
At = yS','kk(x',t') = 0 (1.1)

in the region occupied by the fluid, subject to the boundary conditions

\v} ¢" .B = "'knk = /Ri/’t' ',n.u (102)
on moving walls x' = R(t) + 2
?",'ac':'a = ?9"3 + C"'t' =0 (1.3)

on free surface x'3 =r" (x'a’ t')




1
g X'B + ¢"|.ti + 5 ¢"'k¢‘:k_ + p/p = 0 (16)‘4')
on free surface xé = K"(x'a,t') .

Equation (1.2) is the condition that the normal velocity of the fluid be
equal to the normal velocity of the wall, (1.3) is the condition that the
free surface be a material surface, and (1l.4) is Bernoulli's law for the

free surface with g the acceleration of gravity, p the prescribed surface
Pressure, and p the density. For simplicity we assume that p = 0 .

We now introduce coordinates x fixed in the container by

k

X, = Xp - R (t") (1.5)
¢'(Xk,t') = YS"(Xk";t') - (xk—Rk) Rk,t' ° (1‘6)
' (xpt") = " (x3t") - By - (1.7)

We denote the cross-sectional region of the cylinder by S and the average

depth of the liquid by h . The region occupied by the liquid is

o )
(1.1) - (1.4) and discard the purely time dependent terms that arise in

{5: x €8, -h<x,< c'(xat'j} + We substitute (1.5) - (1.7) into

(1.3) ana (1.4) because they can be absorbed into @' and they do not affect

the velocity field. We thus obtain a boundary value problem for

g' = ¢'(§;t'): ¢' = C'(Xa9t) .
To study our problem on a fixed time interval, we introduce &

frequency parameter ) Dby the transformation
t =t plnt) = 4'(x, tA) 5 £lx,st) = ' (x,t/A) - (1.8)

Substituting (1.8) into the last form of the boundary value problem we obtain




AyS:O,xaeS,—h<x5<C(xa,t), (1.9)

¢’ana =0,x €38, -h< Xz < 0 (1.10)
¢,5=0,x5=-h, Xy, €8 A (1.11)
Pog = Cog = Borfing s X5 =€ (x,t) 5 x €8, (1.12)
[g + D5(t)f} C+X By = - %¢, $rye - DX Xy = r(x,,t), x, € 8. (1.13)

Here Dk are proportional to the components of acceleration of the container.

Note that this problem is specified on a time-varying domain.

2. The Perturbation Equations

We note that the problem (1.9) - (1.13) has the trivial solution
$=0, r=0, for D,=0. (This solution represents the fluid moving as
a rigid body with the container.) We study solutions in a neighborhood of this

solution. ILet € be a small real number. We set

D, = ¢ D(;) , Dy = D3(°) + € Dj(l) . (2.1)

We assume that the solution of (1.9) - (1.13) depends smoothly upon € and

may be represented by series in the form

$=c ;6(1) r (2/2 1) ¢(2) +oeees

S R R A (2.2)

-~
]

)\=>\(°)+e)\(l)+ (eg/eﬁ)x(2)+ .

Here
¢(k) = éfé

aek € =0 , etc.




We obtain the equations for these quantities by differentiating
(1.9) - (1.13) with respect to € and then setting € = 0 . (Care must be
exercised when treating the free surface boundary conditions since ¢ depends

on € both explicitly and implicitly through its dependence on x3 .) We get

Ags(k):o, xaes,-h<x5<0, k =1,2, ... (2.3)
¢(k),ana=0,xaeas,-h<x5<0, K= 1,2, eve (2.4)
¢(k),5=0,x§=-h, xaeas,k=1,2, (2.5)
g;(l),5 4 () ((1),t -0, (2.6)
Tee 20T ¢ (4@ @ (2.7)
E I L
(2.8)
Te+ pD)] ¢ @ 1 (Og), - a W) 5 (03 ()
| (2.9)
-, g0, @0
g, (0l 2Bl 5B ()53 ()
- gt (2 s, ) (2.10)
v 38R, v 26 Wy ),



(,6) L 5 @40),

+

e+ 2@ O

- 3X(l)[i¢(22t + 2¢(1) f(l)?

_ 5 (0) ryg(zgtB,(l) + 75(1)1-,,55‘(1)2 + ¢,(g ,(2)?

]

R S RET EL PN

s © e o e

Note that these problems are defined on a fixed domain and that all the prob-
lems have the same homogeneous part.
Since we have introduced a parameter ) into the nonlinear problem

we impose an additional condition. We specify the relative energy

e, T [ 2
€B=1 f ¢,k¢,k dx,dx,dxs + g | €dxdx, | .o . (2.12)

S
sf -n,c

By means of Green's theorem and (1.9) - (1.11) the volume integral of (2.12)
can be written as

[ #8 a0 =[BT Bgfag * B axyax,

X =f(X t) S

3 aq

Substituting this into (2.12) and differentiating the resulting expression

with respect to € , we obtain

E=f[¢n¢n3+gcu>qdﬁu2h_o : (2.13)
. -

o= ﬂ'¢(2)+ 2¢(1255(1)? ’5(1?5 . ¢(11:¢(223 . 2¢(1?55C(1)- 2¢,(;)C’(;)1

] —

S
(1),(2)
" e } T ‘t =0 (2.14)




3., Solution of the Equations

We set Xq =X, Xy =Y, x3 = Z: We assume that each Dk has

period 2 in t . The boundary conditions (2.6) - (2.11) are of the form
P OO for x, y € § (3.1)
’3 g T 4y sy ¥ ) o
o)+, =2,  forx yes. (3.2)

where the prescribed functions a(t), fl(x,ygt) . fg(x,y,t) have period

2x in t . The elimination of r from (3.1), (3.2) yields
Bss + A(O)Tﬂf,t/c;(t)lt = £ 4 () rfg/G(t)lt I F. (3.3)

We introduce the space H of functions o =n(x,y,t) on

S x ro,znj having period 2x in t with «o(x,y,t) = #(x,y,0,t)

where
Ap=0, X, ye€8, -hecz<O (3.4)
\¢,ana =0, X, yeodS, hecz< O (3.5)
¢,3 =0, z=-hy X, ye S . (3.6)

(H is a space of boundary values of harmonic function.) On H we define

the inner product

an
<<p,1y>;Jf dtymﬁdxdy, G.7
0 S

where the bar denotes the complex conjugate. By completing H with respect
to this inner product, we obtain an appropriate Hilbert space for our problem
which we continue to denote by H .

On H we define the linear operators

LCp = ¢33(X:Y:°’t) 5 (3°8)




Mo =-Tdy /o) . (3.9)
- _J.t
Thus our boundary value problem reduces to the solution of

Lo -2y - F (5.10)

on H.

We study the operators I and M . Let D= S x r—h,O-1 , Jlet
3 D be the boundary surface of D , and let ¢’n denote tﬁe normal
derivative of § on O D . To find the operator I* adjoint to L we

use the identity
<L(p,'l/’>=<co,1‘ﬂ‘1ll> °

By Green's theorem and (3.4) - (3.6), we have

an
I au:_)r ¢,5ﬂfdxdy=f dt§ $, ¥ ao

o] S, 0 D
z=0

peld

It

< Lew, ¥y>

|}

o~

en
dt‘.(;g }l‘-\F,ndG—

which is to equal

Hence

AY =0 1in D, m,opa = 0 on 0S + f-h,o = 0 for z= -h, I%& = m,B(x,y,O,t) .

'y 1!!,3

Thus L = It, i.e., L is self-adjoint. Moreover, L is non-negative

definite for




2 —
dtrv;éev;ﬁdxdydzzo.

L

D

2n
<L<p,cp>=§ dt§ $, 4 ao=
o oD

o'l. oy

I can be made positive definite by including the normalization

2n
f dtj‘ 4 axdy = O

0 S,2=0

in the definition of H .

" Turning to M we find

2%
< Mo,p> = - r dt r rﬁ,t/G-} b dxdy
W P! - . ’t
0 Sy 2=0
r ¢’t = 25 é_— an 1’21( T -l
= - | dxdy I[-—G— \!I - [G \l’:.t] + 'J‘ }é [\!}st/G;” d‘b}
0 0 t
S, 72=0 0

For this to equal < o, Mty >, the boundary terms must vanish implying

that § must have period 2n and it then follows that Mty = MY.

Thus M 1is also self-adjoint. Since

e on @, ¢,
<M(p,cp>=-j. dxder ]-gi,t/c;] ¢dt=f d_xdyd[‘ 't
. ’.t

S, =0 O S,Z=0 O

we see that M is positive definite if G> O (i.e., if the acceleration of

gravity or the mean acceleration dominates the time varying acceleration),

M is negative definite if G< O, and M 1is indefinite if G changes sign.
We now turn to the problem of solving (3.10). We suspend the

summation convention in the sequel. Let Qkp be the eigenfunctions of the

homogeneous form of (3.10) and let Mip be the corresponding eigenvalues:

LO (3.11)

kp = Mip M Op

Thus < L qu, Qkp> = U‘lq< M qu, 'O‘kp>

..9..




By the self-adjointness of x I and M
<OM’L%W>=HM<(%fMﬁ@>

which, by virtue of (3.11), equals

Uyq < P1gr L Op / Uiep >

Hence

)< 010 L0 =0 . (3.12)

We set

where 513 is the Kronecker delta.

We then have the Fourier expansion of a function h in H:

h = IP,P< h, LO > nk ° ' (301’4)

kp 3

From (3.10) we obtain

_, (0)2 _
< L0 O > - A <SMO, 0> =< Fy 0> (3.15)

By (3.11) and the self-adjointness of L and M, this equation becomes

La
kp Uyp P
(o0)2 o ae
If A ¥‘Jkp’ (3.16) implies
2

< 0 LQkp> =< F, okp>,/rl - 7\(0) /U‘kp? (3°l7)
whereas if 1(0)2 = ukp , then (3.16) provides theAcompatibility condition
< F, nkp> = 0 ° (5018)

From (3.14) and (3.17), we obtain the representation for the solution of (3.10):

-10~




<F,Okp>

0= T 0 . (3.19)
KaP 1 - )\(O)Q/lep *

It is often convenient to obtain representations for the solution and related

quantities in which F appears explicitly. We now obiain these:

2O Moo -Fr1n
< F, Okpt>
1052
- -F+ y L} L0y (3.20)
k,P !Jkp P
< F, 0, >
2 ’ 'k
= = F + S-: MO . 021
p Pxp ﬁﬁ Okp (3.21)
Thus,
1(0)2 O = - M“l F+ © My 2 <F, nk:p> Okp * (3.22)
k, P NE D
!J,kp— )\
Also,
Lo=rF+3(22y4
<F, 0,.>Mn"
_ 74 (002 o : k%o)g kp (3.23)
’ l - )\ /Ukp
< F, O,_>
~r+202 5 kp Lo, . (3.24)
X,p - )2052 kp
? 'ukp A
From (3.1) we then have
(0) L e =2 0s /6),. + 1 (025 <5 Tup Ln (3.25)
My = Lo -1y = o/ Glay, ;—:—)\—(375 “kp * :
kp

-11-




4. The Eigenfunctions

We seek nontrivial solutions of the problem

Af=0 in D: X, yeS, -h<z< O, (4.1)
¢,n =0O0on 0S8, -hec z< 0, (k.2)
¢,Z =0on z=-h, xyesS, (4.3)
%z=“E%J“QIt on z=0, % yes. (4.14)
g(t) = 4 (t + 2n) . (4.5)

We employ separation of variasbles and assume the solution to be in the form
g = U(x,y)z(z)T(t) (4.6)

Substituting this expression into (4.1) and (4.2), we find that U must

satisfy the Neumann problem
2
- (U’xx + U’yy) =70, U, = O on OS . (4.7)

We denote the eigenfunctions of this problem by Uk and the corresponding

eigenvalues by 7y * The functions Z have the form

Z = Acosh y,z + B sinh y,z (4.8)
with condition (L.3) requiring the constants A and B to satisfy

A sinh y,h = B cosh y,h . (4.9)
The substitution into (4.4) and (k.5) yields

21(0) = u B°Z(0) , (4.10)

(7' /c)* + B°T = 0, T(t) = T(t + 21) . (4.11)




The eigenfunctions of (4.11) are denoted Tp and the corresponding eigen-
values are denoted Bp o

From (4.9) and (4.10) we find the eigenvalues for the original
problem (L4.1) - (4.5) to be

Tk tank Yx h

U =
“kp 2
BP

(ko12)

The corresponding nontrivial solutions of (k.1) - (4.5) are proportional to

¢kp = U cosh 7, (z+h) T (t) . (4.13)

The eigenfunctions Okp employed in Section 3 are just the surface values

of the function in (L4.13), namely
Yp = const Uk(x,y) Tp(t) . ’ (4o1k)

The constant is found from the normalization (3.13).

The corresponding surface elevations Ckp are found from

¢kp,z - ,/ Ukp Ckp,t = 0 , (4.15)

G(t) Cp * «/“kp ¢kp,t = 0 . (4.16)

To find the equation satisfied by Ckp , we observe that by (4.10) we have
2
= = tank ¥, h o (b1
¢kp,z Iz:O Ukp BP ¢kp lz:O (71{ Tx ) ¢kp 20 ( 7)

Substituting this result into (4.15), differentiating the resulting equa-

tion with respect to t , and using (4.16), we obtain
c +8°G6(t) e, = O (4.18)
~kp,tt P ~kp

The time dependent part Qkp(t) of Ckp satisfies

-13-




2
Qkp’tt+6p G(t) Qkp = 0 . (k.19)

whereas the time dependent part of ¢kp satisfies (4.11). We have the
interesting result that if one of these equations does not have an easily
recognizable solution, the other might and the solutions can be connected
by (4.15) and (4.16). For example, if G(t) = a + b cosmt, then (4.19) is
Mathieu's equation whereas (4.11) is unnemed. One can find other examples
of this phenomenon.

From (4.11) we have

MTP = Bp Tp (k.20)

Hence

Mo, = B.°0

= By Oxp - (4.21)

Introducing this explicit result into (3.21) and (3.23), we get

B 2 M 2 < F, 0, >0
(0)2 _ p Hxp > "xp~ “kp
AT Mo_—F+k?’,,p —x(a‘g . (k.22)
B 2 U, < F, 0. >0
Lo=-F+1202y 2 "kp (oy;p LS (4.23)
‘lkp - A

As in (3.22), (4.22) can be integrated to give 0 .

5. An Example

To demonstrate the application of the general formulation, the
nonlinear sloshing in a circular cylindricel container subjected to a periodic
lateral acceleration will be analyzed.

The radius of the cylinder is a , the height h , and the direction
of the lateral acceleration is chosen to be X - axis , and the maximum

amplitude is defined as € g , therefore

-1b-




Dl =g cos t D2 = 0

The linearlized solutions of the velocity potential € n(l) and

the free surface elevation € g(l) are given by

(1) _ ee f_r_ o) .
0 = XTGT 4 = + H } cos® sin t
C(l) = - a H(l) cos Ocos t

where H(l) = ; ¢! (l - A(O)Z\_l

n=1 Inl Hin1 7 J1(71nr)» Min1 = g 71n tanh Y1n h,

2.2 e 508 2
' - = a
Cin1 (7] a“-1) [7] a Jl(7J a)l Cipy ? Cipy = @ ‘% J1(7J a) r-dr,

i

§ -
Jl(7ln§) =0 ,

Jl(x) is the Bessel function of the first kind of order one. The first

order frequency parameter X(o) is related to the given energy E at

t = 0 by the relationship

-2

2 ) (5.1)

E=na g ¥ C6-7 .(1-
n=1 Inl ulnl

The second order solutions of the velocity potential (e2/2!)0(2) and the

free surface elevation (62/2!)g(2) are given by

(1) (1)
@) a ,01), a Mo 1(@) eos 6 sin t
O ”;137‘ + ;T%Y‘_IKBY co sin
¢ @9 4 1(®2) o 20) sin et}
(@ @) oo b - 2a @) 4 152 cos 26) cos 2t
g = - f;(sy a H cos © cos a (H + H cos cos

(o)
2 () (1) _1,() Q)
- g O’ 3 C, - g O’ k Oi k




where H = nzl < ag 0, 3 5 Olnl > (l = " N ) J]’]l l(')'JnI‘) s
N (0)2
2,( = fet 2 ’
H( j) nZl < F( ) s njng > (1 - ) Jn2 J (7 I‘)

@ o0, @@ @ e, 0 @ @@

’33 o g Moz C e Tk
-1 r2n 2 a
<0, P> =a | at I dae f 0 Yr dr, mnp Nﬁanm(y r) cos m ©sin pt ,
o] o] o]
N =< N ) >_l/2 = p° tanh h
mnp ~ = mnp’ mnp,3 »Upnp = P Ty 8 Ym®
s (1) C
The energy condition of E = 0 1is given by

2
Lnde La{(ﬂ(e) vl (@) 0, @) 4 g %) @), () ¢, ()

+2¢g K(l) C(Q)} rd rlt:O = 0

Due to the orthogonalities between 1 and cos © , between cos & and

&
]

cos 20 , and by the fact that O(J> =0 at 0, it becomes

o a
x(l) E coseede I H(l) H(2) rdr=20
o} (o)
which yields
L A

(3)

The third order solutions of velocity potential (65/5!) 0 >

and the surface elevation (53/5!) Q(B) are given by

-16-




) _ 2@ () {6>\(2) (2) . > (3,1,3)
A _—(—70 +—z—7 cos® sin t + ¥ HVY’?
isj=o

cos 1 ©sin jt 1

2) @ "
C(B) N a H(g) cos © cos t - g 5 H(jl’a) j cos i@ sin jt

- _)\-(65- i, j=0
_s?«%?}>ﬁégga 2 (0,08) 4 20, @) (@) 0,
B T L T C IR L
26 _ gxp>yég(n_%u)<uﬂmm+%%qug>

3 (© ) | (o)
=0 (2 A2y ﬁ,g% S 0(8 f(g)),t - lé—-—f(o,(i) +

o) ()0, D)

’k3

The energy condition of E(g) = 0 1is given by

jgnde 5 [20©) & 50%) ,( ) 5"5%% ° ) "(l) * 3(20%) C(l) + ol
[e]

(D), @)

:"a L Q

2
e 4 @) (O 4 D) (6B 4 @) (B 4 ) ()

=0

@>u>64£m@cmw@wmcm+xwﬁmw

25

1t=0

Due to the orthogonality between any two of the functions 1, cos ©, cos 20

and cos 30 , and by the fact that O(J) =0 at t =0, it becomes

-17-




2 a 3 a .
5%5; ,L H(l) H(e) r dr = % .g J E H(l) H(B’l’J) r dr +
s j=0 o (5.2)
1 2n a (2) 2
) 5 JE a8 “'I; (c**’) rar

Equations (5.1) and (5.2) express E and x(o) + (62/22) x(g) as functions

of A(O) . Note that when and only when k(o) = Uinj

natural frequencies of the system, x(e)(k(o)) and E = E(O)(x(o)) 3 o .

, &any one of the

For x(o) varying from zero to the first natural frequency, or between
two successive values of “inj » We can construct an energy E(k<o),e) TS
frequency parameter x(h(o),e) curve for given forcing amplitude € g

Whenever ) = A(O) + (62/2!) X(2)(X(O)) is finite E 1is also finite.

~-18-
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