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- ABSTRACT

Conical flow is obtained by a flow over a body profile which is generated
by ruled surfaces from a vertex point or apex of the body. Many component
parts of supersonic-hypersonic vehicles have such profile, in particular
a Delta Wing is a typical example.

In theoreti~al analysis linearized theory has been widely used to predict
most aerodynamic data for supersonic flight of relatively low Mach numbers
and the validity is good for very slender body at small angle of attack.
For high Mach numbers, especially in the hypersonic range, the non-linear
effects of the flow properties become predominant and the results obtained
by the use of linearized theory are of little value. In fact, at higher
Mach numbers even second order theory is not adequate. Meaningful results
can be only obtained by the analysis including non-linear effects. The
present work is a study of conical flow of & Delta Wing which may serve as
a representative analysis to distinguish the non-linear effects from the
linearized theory.

The present work deals with the complete solution of the compression side
of the Wing. The whole flow region is divided into a supersonic cross-
flow region and a subsonic flow region near the center portion of the wing.
A system of rotational flow equations is first transformed into dimension-
less conical coordinates. In the supersonic cross-flow region method of
characteristics is applied. Though compatibility equations have been
derived in spherical coordinates by Maslem, to the author's knowledge the
derivation and actual computation of the compatibility equations in conical
coordinates for varying supersonic cross-flows are the first presentation
by this work. In the subsonic region a successive solution of non-linear
central difference equations by steepest descent from a zeroth solution is
used.
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ANALYSIS OF SUPERSONIC CONICAL FLOWS

Introduction

Conical flow is obtained by a flow over a body profile which is
generated by ruled surfaces from a vertex point or apex of the

body. Many component parts of supersonic-hypersonic vehicles have
such profile, in particular a Delta Wing is a typical example. In
conical flow the flow properties along any ray directed from the
vertex point remain uniform. This nice feature enables us to trans-
form a three-dimensional cartesian coordinate system into a two-
dimensional conical coordinate system and thus computations become
greatly simplified.

In theoretical analysis linearized theory has been widely used to
predict most aerodynamic data for supersonic flight of relatively
low Mach numbers and the validity is good for very slender b>ody at
small angle of attack. For high Mach numbers, especially in the
hypersonic range, the non-linear effects of the flow properties
become predominant and the results obtained by the use of linearized
theory are of little value. In fact, at higher Mach numbers even
second order theory is not adequate. Meaningful results can be only
obtained by the analysis including non-linear effects. The present
work is a study of conical flow of a Delta Wing which may serve as a
representative analysis to distinguish the non-linear effects from
the linearized theory.

For a Delta Wing, solutions have been obtained by the use of linearized
theory and the application of non-linear analysis of Wings of zero-
thickness. The only known exact solutions of Wings of finite thickness
are those which treat slab or elliptical cross-sections and which have
large leading edge thickness. In the case of large Wings for super-
sonic or hypersonic flow at high Mach numbers, the leading edge is

only a fraction of Wing size, thus solutions are needed for a small
sharp leading edge as a starting point.

The present work deals with the complete solution on the compression
side of the Wing. The whole flow region is divided into a supersonic
cross-flow region and a subsonic flow region near the center portion
of the wing. A system of rotational flow equations is first trans-
formed into dimensionless conical coordinates. In the supersonic
cross-flow region method of characteristics is applied. Though
compatibility equations have been derived in spherical coordinates

by Maslem, to the author's knowledge the derivation and actual computa-
tion of the compatibility equations in conical coordinates for varying
supersonic cross-flows are the first presentation by this work. In
the subsonic region a successive solution of non-linear central 4if-
ference equations by steepest descent from a zeroth solution is used.
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This method has been used quite successfully for a Delta Wing of zero-
thickness by Babaev,

Solutions for the supersonic cross-flow region have been reported by
C. W. Chiang and Richard D. Wagner in a NASA TN (submitted in December
196Q) which constitute the first part of this final report. In this
final report only analaysis for the subsonic region are presented.

All notations and references are kept the same as those reported in
the first part. Because of lack of time, solutions for the subsonic
region are not obtained. A computer program was developed but has

yet to be completely debugged. It is hoped in the future, when the
NASA budgets are loosened up, this project can be continued.

Fundamental Equations

A rectangular coordinate system associated with a Delta Wing is shown
in Figure 1. The origin is set at the vertex point or the apex of

the wing, the axis (X is directed along the root chord of the lower
surface from the apex. The upper surface of the Wing has a lenticular
cross-sectional profile while the lower surface is kept as a flat

plane which coincides with the flat plane passing through the OX and OY
axes. The axis 0Z is perpendicular to the lower surface of the Wing.

Flow Equations in Conical Coordinates

In dimensionless conical coordinates the position of a straight-line

directed from the apex of the Wing is determined by the guantities
=Y4 and §=2/c . Partial derivative operator in x, y and z may
e writter in the conical coordinates as follows:

2 =202 +5%)

§ - 4
&= 4k

Continuity, momentum and energy equations in conical coordinates may
be written in the form:

v'(7z)§+;z,f+a7)+w[7w7 +Suf+) = -2 (73, +455)
Ulply 50 +t) +0(4y =) = 25, (1)
Ulydy +SUs +Ug ) +U(Y; —ty) = - &'

Cpu-v)3y +(fu-w)sg = 0




The continuity equation in conical coordinates may be shown in the
form: "

zi.‘qu,f-j‘({f—u;;—wj)—(7a—v)2;‘—(fu-w)0‘j‘—_—o (2)

In the subsonic region when finite central difference equations are
needed for numerical grid method, the central difference equations
may be obtained as shown in Appendix A in the form:

A"/‘ Ei [Ejd)‘;‘ ( ?‘:L’H "'Q:w) *+Xox ( ”;;-«'Z/‘M) +2 (f «€ 32',& ( Q::H" d's;lfJ
r 3 - -~ 2
FOUL QG Y Wl ) # 2t (B e~ )= ©
Bi ® JX Qs Y)Y (@) e Wi V) P2V @G, )20

* & - -~ -1 : ( 3 )
C:‘, k= zf_@% (ﬁ;m"ﬂ,m) X,k (a)‘;u/— w‘/'l'l) #2(& ")i;/c (d‘-l,.,‘ A o, f;w (4{;;@,1 ) =0
3 2 3
Do = 2‘4[24.‘,‘ 44 i,xfl-'()l-l) +’Y‘}¢ m}:-/-.p:}ﬁﬂ)j 1RL,, (E.'m'é‘-z,c)

2 ~1
=P (76‘-/,&-2‘:93) - AU . a-l)g =0

L

where (™ =Ju-V" ., th'tl-ld 5 U’=u£,ty~'—+w‘-) 6)‘___7_‘,24 5

i,k represent grid node point along 7 and 3‘ axis re-
spectively.

4, h- incremental length between neighboring node points
along 7 andj respectively.

The Velocity Components and Entropy Charge Behind the Shock

The velocity components behind the shock are determined in the TN
report as follows:

. X 60 S 2inB cosE
U = Cospain X — e a5

Sin K ces S Singd cos &

VvV = usﬂ%‘?‘ - Cos (€ -at,t;) (h)
W = :/2.5 Ssn g Ce3 & -
= Teos(éE —-q’,-;)f

where with reference to the Figure 2

74 - the angle between the fictitious leading edge and oy
axis. -

l‘ - the angle between the direction ¢f undisturbed flow and
the fictitious leading edge.




é §,o¢, = in the plane narmal to the fictitious leading edge and
the plane xoy, the angle between the shock plane and the
plane of the undisturbed flow passing through the fictitious
leading edge, the deflection angle due to the thickness of
the wing, and the angle formed due to the presence of the
angle of attack, o .

The entropy change behind the shock is calculated by

T < 27 2 .
AT =5- Sie =17L_M)Za [77/' (Mo :/n/;:/az—r+,)] (5)
- -)-_L/- b [ LX) M Sin B I €

2+0-)pts0m 3 31n"é

Subsonic Region

With reference to the Figure 3 the subsonic region is bounded by the
approximate sonic surface AB, the shock BC, the plane of symmetry CD and
the body profile DA. The fundamental differential equations are elliptic
and the method of characteristics is no longer applicable. All dif-
ferential equations are replaced by central {inite difference equations
and numerical calculations may be performed for finite grid points. An
approximate zeroth solution and the shock shape is assumed, then suc-
cessive corrections of the shock shape and flow fields are obtained by
the method of the steepest descent. All boundary conditions are to be
satisfied. This method is essentially the same as the one used by
Babaev.

Velocity Components in Frbnt of and Behind fhe Shbck

Velocity components in front of the shock BC are the velocity components
of the undisturbed stream, namely,

a.. = CosX

(6)
U = o
W = — SmA

Velocity components behind the shock BC are determined as shown in the
Appendix B by the following equations.

U =Un — (% —7)flk

Ve =Ua—FR (7)
ﬂJ,_ = s +'Q




where f=f(7) , the equation of the shock BC

fl= cif
77
kzﬁ'; n-/(‘ﬁ’; ?z.-/‘d:- ").«/(‘% ,M)

W, = Up (- 7{’)+y;. fl=za
W = |+ (f-9f)+ £°

Initial Shock Shape BC and Zeroth Solution

The initial shock shape may be given by
wts
§ =4, + 2 ik fon (¢ -4, -J)ﬁ—(%) _/ (8)
vhere 3; 76 - location of the point B which may be located from the
' ’ supersonic cross-flow calculation
> -~ constant value, varying from 1 to 2

The zeroth values of u, v and w may be written in the form

U= o= h ) L-tn s JE)
% (L)- e F) @] ) 9)
w = wc; ) (L) L2

Vhere 1779 Y, ~ veloeity components at points, A, D
3‘[ — values of 3‘ on the shock BC corresponding
to 7=z$
00"),”8&&!(3'-) - velocities calculated on the shock BC.

The initial entropy change 45 at the point C and the surface may be
calculated. The entropy change 43, on the surface of the Wing is the
same as the one calculated for the straight wedge section 1° from the
leading edge of the Wing, it is calculated by the equation (5) for given
values of @4, € and y . The entropy change 45, at the point C is
determined by the shock shape BC, it is calculated from the equation

(5) with m'w’/en  replacing Mo swmpg Ssm '€« . The initial
entropy change at different locations may be approximated by interpola-
tion from a linear table of entropy change vs. ;77 . The zeroth




solutions should satisfy t?}e boundary conditions.

Method of Steepest Descent

The solution of the equations (3) corresponds to & minimum of a
function which is the sum of squares of each individual equation
of equations (3). The minimum of the function can be approached
rapidly in the direction opposite to that of the gradient of the
function. Let & be the funegtion.

2z =§ (A2 +8js #Cl +Dix) (10)
where A~ - total numoer of node points

&:ﬂ" F -'\3%; (11)
where i - variable, namely, u, v, w or § .

21 - number of approximations or iterations
A - constant

A=0 1is started, for values of A incremented at 4} ,
calculations of F™ is continued until .f.xf Z0 . This gives
Amin corresponding to a minimum of ™ 7 For the value of
A minusing equation (11) corresponding to Apy, to compute the next
approximation until after nth approximations for which the rate of
decrease of _2 () min)‘ as st increases becomes negligible., The

£ .
calculations of -},—%, %7__’ %‘% and g_g are shown in the Appendix C

C ogxgut ation

All computations are programmed in Fortran IV language. The method
of steepest descent seems to work but cenverges very slowly. For
CDC 6400 computer one whole loop to get lst approximation from the
zeroth solution takes 2 minutes.

Conclusion
The method of steepest descent seems to work in the subsonic region

of wings with thickness althcugh further debugging of computer pro-
gramming is needed.
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APPENDIX A

Continuity, momentum and cnergy equations may be written in the form:

%—’t{g‘v‘%t/;*fyfl*“ﬁitffwf*ﬁ‘ﬁb: -1577;+;§)

a7.-+ L—‘f;fd-%“" %‘ib;z'f‘tb‘?l:’zals; (B_l)
S » « 2 DL o SR
U+ o+ S sty Zﬂ—,_w; =-2a'g

Uy+ 22Xt r Syt = 205 (8-2)
Te + f‘:,"’%—.“-/- 7—‘-‘_‘;_”}.;-7‘ = —-za‘-‘a}

The continuity equation (la) may be written in the form
1 S s ~+
24 lya-v)7—(7u-2')Z"7 +24 (ju-ar)‘(,-(ja-advf- 23U =90 (B-3)

Equations (B-2) and B-3) may be further simplified in the form
2 a v s a 2 ~ -~ &
S« XNty —2usgay +7u @y £y ~2usyd, =0
a a & b
Y, U~ 225 =0
Xy 10§y 68 =252 (B-4)
w'qs" +xw}‘— 2wsdg FE& ‘=0
2EX —XU§ +2AE, - £V — 4 =0
where &= Pea -2~
X =§u—wr
T'= ubv%wr*
Q@ =v%2aF
In order to solve the system of equations (B-4) by the numerical grid

method, all first derivatives may be replaced by central finite 4if-
ference, for the grid point (i,k)

5=kt

7=

11




f}'=ii% CEL
79 = 5%' [{‘ﬂlz - £-9.¢) (B-S)

where i,k - number of grid along 7 and 5‘ direction
f - any function

,l,/t - the incremental length between neighboring node
points along 7 and{ respectively.

The system of equations (B-4) then becomes
2 a z ~ ~1 ~d
Aix E%“)gg (@oer~R,xv) -/-X“(LQ;; Uspn) #2 (fa-",l/- (2 /,,.,‘a,,-,,,)]
+(7a)w(0n;x (?ﬂf'é,,‘ w,t ‘)}2(7((5}/‘ (d‘-rx 4"";‘) =0
"‘zé”‘}»‘z(“—:-pk ¢ﬂ,l:)
3 L -2
Coe=gfie( %m Kol Pk (s~ W) #2(0S ) (B Ce,)]
+E 4y« (; ﬂz 44"4,‘) =0

.D‘yK' = 2‘& 294: (Xokrs X.,‘.,) *‘ 27;:,., t/lfl)]'*zaw,k (bt#K'E'b/Q
‘f fgx(ﬂ-rlg F'[/&) 4;(‘/‘

(3-6)

.4 =g

12 .~




APFENDIX B

Let § =f(7) , it represents the equation of the shock BEC, then

F = gs_.;(7) , represents the shock surface whose normal is 4 .

. WF L

R o= = TR AERI #hy i+ K
R S I (1)
where w,; = J+ ({—7{?’;‘_{,2

-—

since (f, =4 AU+ U k

(F-2)
where /Z/,,/ =) = Uttt
The normal velocity component of 9,. to the shock surface,
/Z/I»/”"‘z‘7?=7°—:—f )
where ¢, = U. (F-2f)+ U f'~ i
Ui =[] 7 = B LF-7F)0#£7f ~K] (F-1)

-t
The tangential velocity component of Z/,', to the shock surface,

A

- 2 -
zé’n:u- —U-"‘

=[th- b G- Ui t0h-G £+ Lo+ 82 Tk . (F-5)
Yp =1-5- ' | (F-6)

Since the shock wave must satisfy the relation.
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where é’t:-;‘-f;-[,—\f; +%_'—/]

U - Velocity component behind the shock.
Combining equations (F-6) and normal (F-7)

Jol =-%Fap (= + 51 4)

— o . ’
U =177 = 5, S S yh)i e 45 -4]

Combining equations (F-5) and (F-9)

4 -
T=UtT. = [t tF-1R]e #Lor~ 2] + (ai+R) &

—w, _ 2 L -
where R = of ~se (i, + T 5)

= /oy L
= 247 (4»; ";wﬁﬁ;)

1k

(F-7)

(r-8)

(F-9)




APPENDIX C
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