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INTRODUCTION
 

Problems concerning the optimization of mathematical functions have always been of 
interest to mathematicians and their solutions are of great practical value. Science and 
engineering have especially benefitted over the past several hundreds, of years from 
techniques developed by mathematicianstin calculus and related areas). Although the 
need and practical-application for optimization has been apparent, mathematics has 
furnished comparatively little help, however, in solving problems defined over discrete 
spaces. Usually these problems have been combinatorial in nature and extremely 
unyielding to theoretical analysis. At least this is true in so far as the record.of 
mathematical analysis in providing theorems or characterizations which are useful 
for practical application is concerned. 

Interest in discrete optimization took a notable jump with the onset of such fields
 
as Operations Research and Management Science. The success of work done in these
 
areas is particularly dependent upon finding solutions to problems in discrete optimi­
zation in the 1940's and early 1950's which was independent of the availability of high
 
speed digital computers. Then, with widespread availability of powerful computers
 

*becoming ,areality in the 1950's, results in solving discrete optimization problems 
took oi even faster growth. It was not long, however, until the computer essentially 
reached a limit in aiding researchers in this field. Algorithms were still largely 
being developed by people who were thinking computationally along traditional lines. 
The computers were used as though they truly were "large, fast, desk calculators". 
Obviously, when this line of thinking prevailed, computers essentially reached their 
limit in value when the ratio of computation necessary for solving a problem in small 
dimensions over a problem with larger dimensions reached the approximate value of 
the ratio of computer power to desk calculator power. That is, for example, one could 
better solve linear programming problems with a computer over desk calculators to 
about the same degree that the computer was faster than the calculator. 

The computer had much more to offer, however, It offered' a means to solving 
problems by methods which not only weren't practical when worked by hand, but 
weren't even thought of. The Monte Carlo method is an early example of this. The 
increasing use of simulation by digital computer is another. In this work we have 
investigated another approach which I chdose to- call the method of stochastic algorithms. 
It relies upon probability to circumvent much of the enormous complexity which pre­
vails in combinatories. It provides an underlying theory. It has been shown to be quite 
powerful in some important situations. It provides practical approach to many difficult 
problems, and its usefulness will grow as experience is gained in formatting many 
problems into its rather simple structure. This work is primarily aimed at acquiring 
some of this necessary experience. Our work took on several other side projects 
which naturally arose during the course of the study. Work was done on the non­
discrete quadratic programming problem and also on the problem of finding all shortest, 
paths through a given network. 
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The Stochastic Algorithmic Approach to Discrete Optimizing Problems.
 

A. Discrete Mathematical Programmin? 

The mathematical programming problem can be stated as 

Determine x0 from a space * such that 

f(Xo) is maximized (or minimized) subject to constraints 
that ko belong.to some well defined subset, C, of 9. 
f is called an objective function. 

Example 1. Linear Programming
 

maximize clx1 + c2x2+ ... + cnxn
 

subject to the conditions
 

allX I + al 2 x2 + ... +.alnkn < b, 

a21 I + a 2 2 x 2 + ... + a2nxn _b 2 

amlxl + am2X2 + ''- + amnxn bm 

and x. 0 i = 1,...,n
 

In this case x0 equals the vector (xl, x2 ... Xn) is euclidean
, 


n - space and C is a convex polyhedron lying in the positive
 
orthant. f is simply a linear function of the components of xo.
 

Example 2. Discrete Linear Programming
 

In discrete linear programming the problem is usually considered
 
to be the same as the linear programming problem except that
 
the C set is restricted (or intersected) with the non-negative
 
integers.
 

http:belong.to
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Example 3. Quadratic Programming
 

The quadratic mathematical programming problem is maximize
 

n n n 
S PiXi + Z f xqijxji=l j=l
 

subject
 

.n 

aijx j :b i i = 1,2,...,m
 
j=l
 

and
 

xi C 0 i l,...,n 

That is, C is identical to that of Example 1 but the objective
 
function is a quadratic instead of a linear function of .
 
xl, x2 , ...,x . In some important cases, the quadratic function
n
 

is restricted to the positive definite class.
 

Example 4. Partitioning problems.
 

Given a sequence 1,2,...,n (call it n) and a matrix
 

A = [aiJ i, j=l,...,n =a 1 1  a1 2 ... aln 

a ...ann
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find a k set partition T= (PB,...,P12) of n such that
 

i,jP 1 ijaP2 ... i,jEPk aij 

is minimized.
 

In this case, f is a set function over all possible k set
 
partitions of W and-- is the set of all possible k set
 
partitions of -. C in the example here is non-existent,
 
but in some cases it could consist of a restriction on the
 
cardinalities of the Pj, j=l,...,k.
 

Example 5. Sequencing Problems
 

A familiar sequencing problem is;
 

Given n, and a distance matrix
 

taij i,j=l,...,n, find a permutation p (PlP2...pn) 
n-I 

of the points in n such that f(p) = 1 ap p + aPn,Pl 
i=l i,ih 

is minimum.
 

In this case 4- would correspond to all permutations of the first
 
n positive integers and f is a function describing the sum of
 
the distances from point to adjacent point defined by the permutation.
 

Other sequencing problems are those arising when shortest
 

paths through networks are being sought and will be covered later.
 

B. Heuristic Algorithms
 

For many problems in discrete optimization, algorithms have
 
been found which lead to global optimal solutions. Examples of
 
these situations are, the linear programming problem and the
 
(non-discrete) quadratic programming problem. These types of
 
algorithms which lead to exact solutions to problems are deterministic
 
but their practicality varies from one case to another. The
 
linear programming algorithms are very useful. In some other
 
cases, the problems for which solutions are derived, and their
 
corresponding algorithms are of theoretical interest only ­
that is, their practical usefulness is limited. For this reason
 
many approaches to some of the more complex problem situations
 
have led researchers to develop heuristic or near optimal solutions.
 
That is, algorithms which are facile and relatively simple in
 
construct and which have strong intuitive appeal and which show
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satisfactory and encouraging results when applied to small
 
problems are sought. Some of the criticism of these approaches
 
are: 1) there is no assurance of finding global optima,
 
2) there is usually no assurance that the heuristic algorithm
 
will be "near" the global optima nor even a method of measuring
 
how close to global optimality any particular solution is,
 
3) they lack mathematical concinnity, beauty and rigor, 4) their
 
usefulness can be determined only by comparison with other
 
algorithms applied to identical problems. Out approach in this
 
study has been to explore the advantages of near optimal solution
 
methods and to develop a particular class of them in the stochastic
 
algorithmic method. Also, in view of disadvantage 2) stated
 
above, a method of formally evaluating these differing algorithms
 
is developed and experimental comparisons are made.
 

C. 	 Stochastic Algorithms
 

Let -)kbe a discrete space of points and x be a typical member of 
#-). 4-yAssume that f is defined for all x4-. Then, for and f,
 
a stochastic algorithm consists of a particular neighborhood
 
structure an 46 and a probability distribution over 44-, denoted
 
as P(x). The neighborhood structure which we will call N, has
 
the following properties:
 

1. 	 For each x44- , there is a corresponding a neighborhood n(x)
 
consisting of points in 44­

2. 	 n(x) contains x
 

Given i- , f and N, the stochastic algorithm is completely
 
defined by a successor structure s(x) which has the following
 
properties:
 

1. 	 s() en(x) 

2. 	 f(s(x)) z f(y) for all yen (x)
 

3. 	 f(s(x)) = f(x) 4 x = s(x) 

4. 	 s(x) = x # f(x) a f(y) for all ysn(x) 

If s(x) = x then x is called a locally optimal point. Obviously, 
the collection of all locally optimal points contains the global 
optimal point. 

A stochastic algorithm proceeds by selecting x from ­
according to probability distribution P. The successor structure
 
is then applied (or computed) until a local optimal point is
 
found. The process is repeated a number of times until a
 
satisfactory probability statement can be made about the likelihood
 
of the global optimal point having been found and/or the relationship
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between the best observed local optimal point, a bound on the
 
global optimal point, and the cost of further computing. This
 
.process further detailed in [1].
 

Much 	of the success of the stochastic algorithmic approach
 
.depends upon the selection of the neighborhood structure to be
 
used for solving each different problem. For this reason,
 
research into the subject and experimental comparisons with
 
familiar problems are important. The following describes some
 
investigations into this subject.
 

Stochastic Algorithms Applied to a Partitioning Problem
 

The partitioning problem as defined above has been worked on by several
 
authors including J. A. Joseph. C23 In this part of the study, two stochastic
 
algorithms were developed and programmed to apply to partitioning problems
 
determined by varying the parameters n and k as defined in Example 3 above.
 
Joseph's algorithm was also programmed and applied to identical problems.
 

The two stochastic algorithms developed for the partitioning problem 
are called GRS(I) and GRS(II). GRS(I) proceeds as follows for a given 
n, k and aij i,j = 1,2,...,n 

1) 	 Select a random k set partitionhT of n
 

2) 	 Compute f(T) 

3) 	 Set i =.l 

4) 	 Alterrr to i i = 1, 2, ...,k by moving point i into each of
 
the k sets of I.
 

5) 	 Compute f(iTi) and determine such that f(mj) = f(ii) i =1,2,...,k 

6) 	 Tt'is the successor of it 

7) 	 If f(rr') = f(),WTis a locally optimal k set partitions with 
respect to GRSI
 

8) 	 Go to 1) unless some pre-chosen stopping criterion is satisfied.
 

CRSII is identical to GRS(I) except that ,i is selected as the first
 
partition found which is better (i.e. has a smaller f value) than77. That
 
is, ORSI is a steepest ascent algorithm, GRSI1 is a positive ascent
 
algorithm.
 

Experiments were run for randomly determined matrices for n values
 
equal to 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100. It turned out that
 
in every single experiment, the best value found by CRS(I) was at least
 
as good and in about 98% of the'cases better than that found with Joseph's
 
algorithm. All computer programming was done by the .same programming in
 
FORTRAN and run on the same machine. Some sample tabulations are given
 
below:
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N =35 Functional Values 
K=2 Joseph GRS (I) 

14280 13973
 
14551 13578
 
13828 13180
 
14013 13255
 
13871 13226
 
14174 13400
 

*Average Computer Time 68.0 	 101.18
 

K = 10 	 1177 728
 
- 1036 	 705 

887 692
 
1001 771
 
1074 713
 
934 676
 

*Average Computer Time' 183.8 118.9
 

K = 15 	 370 180 
323 	 150
 
334 	 193
 
456 	 197
 
342 	 232
 
357 198
 

*Average Computer Time 296.0 111.2
 

*Average computer time is in 60ths of a second on an IBM 7040.
 

These results are quite typical of the entire experiment. To briefly
 
summarize, we can say:
 

1) 	 GRSI consistently outperformed the other algorithms in finding
 
better values for the objective function.
 

2) 	 The time performance was consistent over various values of n and k.
 
The Joseph algorithm performed best for small values of k (k<5)
 
but GRSI consistently performed better time wise for k larger than 5.
 

An example of timing data follows:
 
N=35 

GRSI Joseph 
K =2 101.18 68.0 

5 114.85 113.2 
10 118.9 183.8 
15 111.2 296.0 

N=50 
K= 2 226.2 134.2 

5 261.5 224.2 
10 262.4 371.2 
15 249.6 508.7 
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Experiments with the optimal sequencing (or traveling salesman) problem.
 

The results with the optimal partitioning problem are encouraging
 
and suggest that the stochastic algorithmic approach might be especially
 
useful in attacking combinational type problems. Since combinational
 
problems are notoriously famous for being immune to mathematical analysis
 
but at the same time, very critical to the solution of many problems of
 
the real world, the value of our approach here can have a major impact on
 
the advancement of technology. In order to further study this aspect of
 
discrete optimizing, extensive application and experiments with the optimal
 
sequencing problem was carried out. This problem is defined in Example
 
5 above.
 

The problems on which we have worked include: Ten 9-city problems 
given [33, a 15-city problem, a 20-city problem [41, a 25-city problemESi, 
a 33-city problem[ J, a 42-city problem [67, a 48-city problem [5], 
and a 57-city problem E73. 

A family of algorithms were developed and applied to the problems
 
mentioned above. These algorithms which we have labeled Algo I, Algo II,
 
Algo III, Algo IV and AlgoIV(r). They are described below. They were
 
designed for computational-convenience. Algo I, Algo II and Algo III
 
were used in this study only to a limited extent; the Algo IV(r) series
 
was used on all of the problems mentioned above for several values of r.
 
Most of our results are for the Algo IV(r) experiments. In each case
 
an estimate was made of the value of r which would have given the best
 
performance. This, of courseyinvolves hindsight and cannot always be
 
expected to carry over to different traveling salesman problems. However,
 
the evidence presented here indicates that in practical situations, our
 
methods are likely to be valuable.
 

The Algorithms.
 

Algo I.
 

Algo I proceeds as follows: A random permutation p of [1,2,...,n}
 
is selected and f(p), the length of tour p, is computed. The permutation
 
p' i's derived from p by inverting the first and second elements of p.
 
The f(p') is compared with f(p); if f(p') is less than f(p), p' replaces
 
p and f(p') replaces f(p). Then the second and third elements of the
 
resulting permutation are inverted to form a.new permutation p" and again
 
comparison is made. This process is continued until n consecutive
 
interchanges have been checked without a change in the permutation, i.e.,
 
without reducing the length of the tour. At this point a locally minimal
 
tour has been found. The tour 5 and its length f(p) are recorded, another 
random starting permutation is chosen, and the process repeated.
 

Algo II.
 

Algo II is similar to Algo I except that instead of comparing two
 
Dermutations (i.e., by considering the twn permutations of a given pair
 
of adjacent points), six permutations are compared. The six nermutations
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are those obtained from the six permutations of i,i+l,i+2 (mod n) for
 
i = p,2,...,n. A locally minimal permutation is one such that no
 
better permutation (i.e., one with a shorter tour length) can be found
 
by permuting any three adjacent points in that permutation.
 

Algo III.
 

Let pl = (il, i2, -. , in) be a (randomly selected) permutation of 
of the integers p,2,...n. Now form-a new permutation, say p , by 
interchinging the values of ij and i to form p2(i.e., i1 in p is the 

i p and the i2 in p2 is i in pi). Then compute the tour lenth
 
f~p2) and records i value. Next interchange i2 of p

2 and i3 of p to form
 

a new permutation p . Compute f(p3) and record. Then interchange
 
4
i3 of p

3 and i4 of p
3 to folm p . Compute f(V ) and record, etc. This 

process continues until f(p ),f(p2),...,f(pn-L),f( n) = f (p) have all been 
computed. A permutation p j such that f(p) '--f(p ), i = 1,2,...,n, is 
determined and is used as a starting point for another set of comparisons. 
The next set of comparisons is carried out by starting with the second 
point in the permutation pq. This can easily be done by circling the 
elements of po one position to the left and then operating on the 
resulting permutation in the same manner as described above. The process 
is continued until n sets of (n-l) permutations have been examined without 
decreasing f. At this point a locally minimal permutation has been found. 
Another random permutation is then chosen and the algorithm preceeds to 
find another local minimal permutation. 

Algo IV(r).
 

Algo IV(l) is just Algo III. Algo IV(2) is an extension of Algo III.
 
When a locally minimal permutation, p, has been found by means of Algo III,
 
two adjacent points in p are moved as a pair being placed into that
 
position and orientation which minimizes the length of the tour. This
 
procedure of moving two adjacent points together continues until no pair
 
of points can be moved so as to decrease the tour length. Algo IV(3)
 
is similar process for triples to adjacent points after Algo IV(2) can
 
find no further improvements, while Algo IV(r) continues until no advanta­
geous move can be made by applying Algo III, Algo IV(2), Algo IV(3),...,
 
Algo IV(r-l).
 

The computer program of the Algo IV(r) algorithum is described by the
 
following. An initial (random) permutation of the first n positive integers
 
is read in each integer associated with a point (or mode or city).
 

(CI,C2, ... Cn) represents an initial "tour" starting at Cj, the city
 
in position 1, proceeding to C2, the city in position 2, etc.
 

A parameter 9 (l<s<r) refers to the first s cities in the tour. The
 
algorithm, in effect, removes the first s cities and "re-inserts" them
 
sucessively into positions between C+1 through Cn . The total tour distance
 
is calculated at each position.- If the tour distance is decreased at one
 
or more positions, as compared with the initial tour distance, the s cities
 
are permanently inserted at that position at which the tour distance decreased
 
the most.
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The permutation is then shifted so that the city formerly in position
 
C,+, moves to position C1 and the process is repeated. The s cities are
 
checked in both orientations. For example, if s = 2, and the position
 
being checked is k, the "backward" orientation is checked first:
 

Ck- C - C - Ck+l 

and then the forward orientation:
 

--- gCk- C1 - C2 - Ck+l ---

If no improvement over the initial tour is effected, the permutation
 
is shifted to the left 1 place, so that the initial C2 becomes C1 .
 

Example: If 2'- 1 - 3 - 4 represents an initial tour of 4 cities and
 
no improvement (s=2) is found in the following sequence:
 

3-1-2-4 

3-2-1-4 

3-4-1-2 

(3 - 4 - 2 - 1), represents the same tour as the initial one. 

The permutation is shifted to 1 - 3 - 4 - 2 and the process repeated:
 

4-3-1-2 

4-1-3-2 

4-2-3-1 

In the program,s is initially set equal to 1 is what we call PHASE 
I analysis. This phase terminates when no further improvement is made 
by inserting one city at the variouspositions; i.e., when, after the 
initial city is checked, no furthei improvement is made for n - 1 
consecutive applications. 

s is then increased by 1, and the process repeated until no further
 
improvement is made by inserting two cities, (in either orientation),
 
similarly for s = 3, etc. After s reaches r or specified maximum value,
 
it is set equal to 1 again.
 

After the initial setting of s - 1, the process terminates when s - 1
 
successive applications yield no further improvement. In other words, if
 
some improvement is made at s = 4, say, and the maximum specified value
 
of r = 10, then the algorithm will terminate if no further improvement is
 
found by setting s = 5, 6, 7, 8, 9, 10, i, 2, 3, at this point, we say
 
that a "local optimum" has been found, and the tour distance and tour
 
vector are recorded.
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The above method constitutes a PHASE I analysis. The PHASE II
 
analysis is similar, except that s starts at the specified maximum value
 
r and is incremented by -1 at each stage until it reaches 0, at which
 
time it is reset to the maximum value. Detailed material on these computer
 
programs are available from the author.
 

Some of the results of these experiments are contained in reference [i.
 
Some of the more important results of this experiment are the following:
 

1) The stochastic algorithmic approach has again proven to be very
 
powerful in comparison with other known algorithms. In each case, answers
 
as good or better than any other known answers were found.
 

2) Important insight into the relationship of the definition of the
 
neighborhoods to the performance of the algorithms were established. In
 
particular, the algorithm Algo I, and Algo II and the series Algo IV(r)
 
revealed that performance is clearly related to the neighborhood size.
 
To see this more clearly one might consider the two extreme cases;
 
a) n(x) = x (i.e. each neighborhood consists of itself) and b) n(x) = 4­
(i.e. each neighborhood consists of the entire space. Case a) leads to
 
simple random search and is clearly inefficient. Case b) is merely our
 
exhaustive search of the entire space, the impracticality of which leads
 
to the discrete optimization problem in the first place.
 

3) An especially valuable discovery came from the work with the
 
Algo IV(r) series. These algorithms differ from generalizations of Algo I
 
and Algo II in that the neighborhoods differ not only by size but by shape.
 
The neighborhoods in Algo I and Algo IT are compact in the sense that each
 
pair of points are relatively close to each other.- For example, if we
 
define the distance between two permutations of n,'
 

p = (lp 2,p3.. pn) 

q = (lq 2 ,q 3 ... qn) 

= 1-as d(p,q) = TE i - ii: p. q.
i'j
 

it can be shown that the average distance between points in the neighborhoods
 
of Algo IV(r) is much greater than the average distance between pairs of
 
points in the neighborhoods .of generalizations of Algo I and Algo II. This
 
is true when the cardinalities of the neighborhoods are approximately the
 
same.
 

Intuitively one can conclude that the superior performance of the
 
Algo IV(r) series is due largely to the shapes of the neighborhoods. The
 
difference in performance within the Algo IV(r) series is also due largely
 
to differences in neighborhood shapes. An important fact to be noted here
 
is that computationally, the neighborhood shapes do not necessarily cost
 
more. In our case with Algo IV(r) the cost of computing over a neighborhood
 

.is the same as that for neighborhoods of generalized Algo I and Algo II
 
when the sizes of the neighborhoods are equal. It was this discovery which
 



lead to the study of the neighborhood structure and the idea that it is
 
the neighborhood shapes which determine the efficience of stochastic
 
algorithms. This is even more important when it is considered that
 
practically all known heuristic algorithms, or near optimizing algorithms,
 
whether there is a stochastic element to them or not, can be fit into the­
stochastic algorithmic structure. The case of a deterministic, near
 
optimizing algorithm can usually be looked at as a Stochastic Algorithm
 
of sample size 1, perhaps using a probability distribution which places
 
all weight on 1 or perhaps a few points in X .
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Learning Experiments With the Optimal Sequencing Problem
 

'It has been conjectured that important information accumulates during
 
the process of a stochastic algorithm computation. That is, over a period
 
of time, certain areas of the spare 9tare likely to be explored more
 
frequently than other areas of X . This might lead a researcher to 
believe that the area where most of the search is going on is the most
 
promising area to look for the global optimal. If so, this could be
 
taken advantage of by deliberately and perhaps exhaustively carrying on
 
the computation in the most promising places. This could be accomplished
 
by altering the probability function P(x) as the computation proceeds.
 
With this notion in mind, some experiments were set up using the optimal
 
sequencing problem. This consisted of keeping a frequency count of the
 
appearance of all possible links between pairs of points in the local
 
optimal permutations. After some computation, greater probability was
 
placed on those links which appeared to be most popular in the sample
 
of observed local optimal solutions.. Also, greater emphasis was placed
 
on those links which occurred when f(p) was relatively small. The net
 
result of these algorithmic experiments (they were called learning
 
algorithms) when performed on data very familiar to us was:
 

1) The frequency-with which the learning algorithm found-the
 
optimal (or the better) sequences did not vary significantly from­
the original AlgoIV(r) algorithms.
 

2) There was a slight improvement (about 2-3 percent on the average)
 
in the computer time expended to observe a local optimal sequence.
 

Variation in Algo IV(r)
 

Another variation in the optimal sequencing study was carried out.
 
In the AlgoIV(r) series, a parameter describing the length of displaced
 
subsequences is used. It starts with the value 1 and increases to the
 
value r and then goes back to 1, etc. A variation in this was attempted,
 
which started the parameter at value r and decreased it to I and then back
 
.to r, etc. It turned -out that this change improved performance on some
 
problems, both in computer time and in finding better sequences. The
 
improvements, when they occurred, were very slight but statistically
 
significant. For most problems, however, there was no significant
 
change in performance.
 

The optimal sequencing problem aroused much interest in shortest path
 
problems and investigation into generalized shortest path problems was made.
 
Two methods were studied and successfully programmed. One method was
 
especially interesting. It turned out that it was almost as economical,
 
computationally, to calculate the shortest path between all possible pairs
 
of points as-it was to-calculate the shortest path between a particular
 
pair of points. This was the program developed on the basis of Shimbel's
 
paper rlil. A brief description of the two programs follows. Detailed
 
program listings and operating instructions are available from the author.
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MINIMUM PATH THROUGH A NETWORK
 

This 	program finds the minimum distance between all pairs from a
 
given set of points or cities or nodes. In general, this is a fairly
 
simple technique, however, it was desired to develop a procedure that
 
can handle very large problems. The basic solution technique is closely
 
related to that described in a paper by A. Shimbel.(11)
 

The method starts at the base node and adds the distance to the
 
closest node. The method spreads from this base, each time adding the
 
closest node to the chains being developed. When all relevant nodes
 
have been added to the chains, the procedure is finished.
 

At any given point in the solution, the algorithm assumes there are
 
say N nodes in the network and the optimal distances between these nodes
 
are known. The addition of the (N+ 1) node selected as the closest one
 
of the remaining nodes (i.e. outside the N) connected by a single link to
 
one of the N nodes. The node selected from the N nodes is called the
 
established node. Since there are N nodes, this meats that at a maximdm
 
there are N possibilities for adding in the next node. For each of these
 
possibilities the sum of the distance from the base node to the established
 
node and from the established node to the new node is computed. The
 
next addition to the network is that node with the smallest such total
 
value. This process is repeated until all nodes in the original problem
 
have been added to the network.
 

For this problem two types of nodes were defined - primary and secondary.
 
The rimary nodes are the actual points under consideration, while the
 
secondary nodes are structural nodes necessary for the complete definition
 
of the network. A primary link is the basic connection between a pair of
 
nodes specified by the original problem.
 

Three types of analysis may be performed with the routine as it is
 
currently set up:
 

1. 	 All nodes (primary and secondary) are listed along with every
 
node connected by a primary link to them. This enables
 
checking of the input data.
 

2. 	 All the minimum distances between a specified primary node and
 
all other primary nodes are generated, along with sufficient
 
information for tracing the actual routes.
 

3. 	 All the minimum distances between all primary nodes are generated.
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Another option can be easily added, that is consideration of non­
symetric distances. For example, suppose that the network under consideration
 
is an airline transportation network and the primary links show the time
 
for traveling between points. Due to outside factors, such as prevailing
 
winds, the time from A to B may not be the same-as from B to A. With.
 
minor modifications, this program can be altered to handle this non­
symetric case. Also one-way links can be considered, for example, for
 
the case where there is no return B to A.....
 

The program is designed to handle large problems. As it is currently
 
set up it can handle up to 3000 total nodes (primary and secondary) and
 
8000. total primary links'. This is accomplished through packing multiple
 
units of information in each storage location in many cases. The internal
 
storage is dynamically assigned in that there is no limit on the number
 
of links per node as long as the total number of links to all nodes does
 
not exceed 8000. By using this dynamic storage the inefficiency of
 
having unused positions can be avoided. Also, either the number of links
 
or nodes possible can be increased by decreasing the other.
 

The program has three major parts. Part I is a translator that reads
 
definitions for all nodes (both primary and secondary) and uses these
 
definitions to check and recode raw input data. Part II is a standard.
 
sort which groups all information in ascending order by node. Part III
 
performs the actual solution using the method described above, and if the
 
third type of analysis is specified, uses repeated applications of the
 
method to solve for all primary nodes.
 

As an example, a problem was run for the analysis of 321 cities
 
(i.e. 321 primary nodes) and 328 secondary nodes. There were over
 
1100 one-way primary links (i.e. over 2200 total links). Analysis time,
 
was slightly over 1.5 minutes for each primary,node, i.e. after the
 
input phase a type 2 analysis takes about 1.5 minutes plus time required
 
for output.
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A Second Computer Algorithm for Finding The
 

Minimum Path Through a Network (MINNET)
 

The MINNET system is designed to find the route of minimum length
 
through a linked group of elements. The fundamental problem is basically
 
simple. This system uses the procedure described by Hillier and Leberman
 
[123
 

The algorithm begins with the specification of a base node. At any
 
point in the solution N nodes have been added to the network and the
 
distance to each of these nodes is known. For the addition of the N + 1
 
node, it must be the closest one of the remaining set connected by a
 
single link to the established nodes. Since there are N'known nodes, there
 
is a maximum of N possibilities for the next addition. For each of these
 
possibilities the sum of the distance from the base to the established node
 
and from the established node to the new node is computed. The next
 
addition to the network is that node with the smallest total value. The 
process is repeated until all required nodes have been added to the system.
 

For small problems there is no problei in the implementation of this
 
type of algorithm. However, to allow for the solution of large problems
 
without partitioning the networkjspecial methods of storing, packing, and
 
referencing have been'developed. The problem can handel up to 3000 nodes
 
and up to 5000 links in its current configuration. Through the use of
 
dynamic relative storage assignment and addressing there is no limit to
 
the number of links per node, so long as the total number of links does
 
not exceed 5000. The system is currently set up to run in an 86K
 
environment. The restrictions on nodes and links can, of course, be
 
expanded if more core is available.. The system will handel both symetric
 
and non-symetric networks. Non-symmetric networks are frequently encountered,
 
especially when the link values are expressed in time. For example, due
 
to some outside factor such as prevailing winds, the time to go from
 
A to B is not equal to the time to go from B to A. This ability to
 
handel non=symetric cases also provides the ability to handl± one-way
 
links between nodes. All of these variables in the program are composed
 
of integer half-words (2 bytes). The method sets relative pointers to
 

- groups of nodes in a dynamic array and uses multiple levels of indirect ­

addressing. The MINNET System is composed of three phases. The first
 
phase (TRAN) translates the raw input data and generates two files - LINKNETl
 
and NAMEFL. The second phase (sort) is a sort of LINMET1. The third
 
and final phase (MIN) generates the minimum paths through the network and
 
uses as input the two files generated in phase 1. Descriptions of each
 
phase showing what the phase does, the files processed and generated, the
 
raw network definition data, and all control cards are available from the
 
author.
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The first phase in the solution procedure is the processing of the
 
elementary link cards. Since any code between +5000 and -5000 is valid,
 
a translation table must be set up which defines those nodes which are to
 
be used as part of the network and the internal code of each node. The
 
raw codes may be specified in either the primary or secondary file. As 
each new code is specified it is assigned a sequential internal code. 
This internal code begins at I and is incremented by +1 for each new code. 

The primary file is designed for the specifications of the most
 
important nodes on a node by node basis. For each node a short description
 
may also be included. The secondary file is designed for the specification
 
of groups of less important nodes. An individual node or a group of nodes
 
may be defined on each specification card. No descriptive information
 
is processed.
 

The last part of the secondary file should be used to describe the
 
structural nodes. These are the nodes that are only defined in order to
 
properly define the network, i.e. a node caused by the intersection of
 
two or more links. This type of node should be assigned the highest
 
internal sequence number, since it is possible to avoid linking all of
 
them (eg. only the ones necessary) in some types of analysis which results
 
in a faster solution. Either the primary or secondary file may be omitted
 
by inserting in it's place a NULLFILE card. An error will occur if an
 
attempt is made to re-define a previously defined node.
 

The linkage file definition card is used to specify the format of the
 
primary linkage data, define the location of the origin and destination
 
indices, the flag which specifies whether or not the link is symetric or
 
one way, and the calculations that are to be performed in the calculation
 
of the link values.
 

Up to [0 calculations may be specified on each link card. The
 
calculations may use input variables or immediate data specified in the
 
operation definition. All immediate and input data must be integer.
 

A through error checking routine is included which provides a
 
complete analysis of any input errors.
 

The Second Phase in the procedure is merely a sort of a file
 
generated in Phase I.
 

The third phase of the system generates the actual paths through
 
the network. Several options are available. A range of nodes is defined
 
and each of the nodes in this range is used as the base node in a solution
 
pass. Note - the nodes are referenced by their converted sequence numbers.
 
It is also possible to aefine at what point the structural, or non-vital
 
nodes begin. Several solution strategies are available which use only
 
those structural nodes necessary for the generation of the minimum paths
 
or trees. This method reduces the solution time and the volume of the
 
output over the case where all nodes in the system are linked into the
 
trees. If the network is symetric, i.e. A =7 B = B =2 A, a solution
 
strategy may be used which will reduce the execution time even further.
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Input files are automatically rewound before they are read. There­
fore, it is possible to use the same data for several applications, each
 
time varying some parameter, e.g. base node, total number of nodes, etc.
 

The master output file is rewound only on command. Therefore, it
 
is possible to stack several solutions on the same file. An automatic
 
checkpoint feature is included and may be invoked if required. This
 
feature will automatically store all relevant information on a tape at
 
key points during the solution process. If the run is terminated for
 
some reason the restore/restart tape may be used to restart the problem
 
at the last recorded checkpoint.
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An Experimental Study of Algorithmic Performance as a Function of
 
Neighborhood Size and Shape
 

In order to further confirm some conclusions drawn from the optimal
 

sequencing problem, a study was designed using a grid of discrete points
 
in 3 and 4 space. The objective function was an exponential function
 
defined by;
 

a 2 -wi
 
f(x,y) = Wi e
 

i=l 1 

where wi = (x-ai)2/bi2 + (y-ei)2 /di2 - 1 

where the a., b., c. and d. are selected constants and x and y varied
 
between -10 and +10 in intervals of, = .001. The function which
 
appears in E8 can be controlled to possess as many local maxima as
 
desired by the selection of the parameters ai, bi, ci, di and n.
 

Another experiment was made with a similar function but in 4
 
dimensions. The function was:
 

n 

W 2 -w i
 e
f(x,y,z) = 
-.i=l
 

where Wi<'(x-ai)2 /bi2 + (y-ci)2/di2 + (z-ei)2/fi2 -1 

These functions were chosen because of the ease with which the sizes and
 

shapes of the neighborhood structure could be chosen. Two types of
 
neighborhoods were defined which differed primarily by shape. One shape
 

is referred to as square. Its neighborhoods are defined as follows:
 

The neighborhood of a given point (x,y) consists of all points of the 
form (x + e, y +3) (x + G, y + S) where -rA < E< rA and -rA-S;<rA and 
where r is a parameter which determines the size of the neighborhood. In 
our experiment r took on value,.l, 2.-3i.4 and 5. (See charts on next pages.) 

The.other class of algorithms were related to the following neighborhood
 
structure and are referred to as star neighborhoods.
 

The neighborhood of a given point (x,y) consists of the point itself 
plus all points of the form (x + 8, y) or (x, y = s) where -(2r + l)A-_S< + (2r+l)A 

The definition of the neighborhoods for functions defined over points
 
in three space were made by the obvious generalization. For these
 
experiments r took on values of 1 and 2. Some results are given in the
 
following table.
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Function 1, 2 Dimensiois
 

r, Neighborhood Relative frequency Average number of 
S- - global optimal observed neighborhood computed 

1 Square .132 396.1 
1 Star .156 304.4 
2 
2 

The comparisons, which can be easily made by glancing at the data,
 
give overwhelming evidence of the algrithmic performance differences due
 
to simple changes in neighborhood shapes. In almost all cases, both types
 
of neighborhood structures led to observations of the global optimal
 
observation. In fact, 20 times out of 30 the star neighborhoods outper­
formed the square neighborhoods. The most significant result here, however,
 
is the overwhelming superiority of the star neighborhoods when comparing
 
the amount of computing involved. The ratios run from approximately 4:3
 
forr equal to 1 to 4:1 for r equal to 5. Since these ratios are directly
 
related to the computer time involved, the potential savings in computing
 
would be quite substantial. Although this function is not combinational
 
and is rather simple in form, it does serve to bring out the point in the
 
experiment thus re-inforcing the generality of the conclusions drawn from,
 
the optimal sequencing studies.
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ANALYSIS OF TWO DIMENSIONAL OPTIMIZATION EXPERIMENT 

Neighborhood r- Parameter 

Square 1 


Star 1 


Square 2 


Star 2 


Square 3 


Star 3 


Square 4 


Star 4 


-Square 5 


Star 5-. 


Neighborhood r- Paramete 

Square 1 


Star 1 


Square 2 


Star 2 


Square 3 


Star 3 


Square 4 


Star 4 


Square 5 


Star 5 


Experiment No. 1
 

Average No. of Steps to 
local optimal 

396.10 


304.43 

209.08 

102.39 

141.89 

52.84 

104.12 

31.88 

81.78 

22.83 

Experiment No. 2
 

Average No. of Steps to 
local optimal 

402.40 

317.76 

193.71 

104.40 

129.56 

49.98 

99.87 

31.60 

80.95 

22.21 

Relative Frequeqcy
 
Observed Global Maximum
 

0.132
 

0.156 

0.130 

0.160 

0.134 

0.162 

0.096 

0.164 

0.138 

0.152 

Relative Frequency 
Observed Global Maximum 

0.098 

0.108 

0.126 

0.100 

0.097 

.0.116
 

0.105 

0.120 

0.124 

0.129 
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Neighborhood r-Parameter 


Square 2 


- Star 2 


Square 3 


Star 3 


Square 4 


Star- 4 


Square 5 


Star 5 


Neighborhood r-Parameter 

Square 1 


Star 1 -


Square 2 


Star. 2 


Square 3 


Star 3 


Square 4 


Star 4 


Square 5 


Star 5 


Experiment No. 3
 

Average No. of Steps to 
local optimal 

173.25 

90.04 

120.88 

49.20 

82.03. 

30.81 

72.35 

23.14 

Experiment No. 4
 

Average No. of Steps to 
local optimal 

390.41 

284.20 

. 205.40 

100.20 


144.67 

52.39 


108.23 


32.59 


85.23 

25.71 


Relative Frequency
Observed Global Maximum 

0.134 

0.120 

0.092 

0.140 

0.102 

0.090 

0.104 

0.,112 

Relative Frequency 
observed Global Maximum 

0.045 

0.055 

0.080
 

0.065
 

0.035 

0.095
 

0.055
 

0.070
 

0.065 

0.033
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Analysis of Two Dimensional Optimization Experiment 

Experiment No. 5 

Neighborhood r-Parameter Average No. of Steps to
local optimal 

Relative Frequency"
Cbserved Global Maximum 

Square 1 385.83 0.030 

Star 1 269.72 0.050 

Square 2 209.38 0.030 

Star 2 104.47 0.005 

Square 3 130.33 0.0285 

Star 3 44.84 0.035 

Square 4 92.14 0.070 

Star 4 30.13 0.050 

Square 5 72.89 0.040' 

Star - 5 21.73 0.050 

Experiment No. 6 

Neighborhood r-Parameter Average No. of Steps to 
local optimal 

Relative Frequency
Observed Global Maximum 

Square 1 374.47 0.090 

Star 1 285.25 0.075 

Square 2 201.86 0.075 

Star 2 103.99 0.075 

Square 3 135.64 0.065 

Star 3 55.14 0.050 

Square 4 88.64 0.105 

Star - 4 35.50 0105 

Square 5 78.,75 0.075 

Star . :5 26.08 - 0.097 
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Analysis of Three Dimensional Optimization Experiment 

Experiment-No. 7 (Three Dimensions) 

Neighborhood r-Parameter Average No. of Steps to 
local optimal 

Relative Frequency
Observed Global Maximum 

Square 1 647.16 0.104 

Star 1 309.40 0.112 

Square 2 323.04 0.149 

Star - 2 99.43 0.150 
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The Quadratic Integer Programming Problem
 

Considerable effort was made in attacking the quadratic integer
 
programming problem. In order to obtain some insight into the problem
 
and to accumulate some data for comparative purposes, a comparative study
 
was made of several known algorithms for solving the (regular) quadratic
 
programming problem (9). During the study, a total of 10 problems were
 
developed and computed which were used for computational experiments
 
throughout this portion of the study.
 

The problem can be stated as: 
n n n 

let f(x:,.... xn) = E 1. x. + 2 qij.XiXj. 
fjn = 1 3 - = 1 i = 1 

n
 
subject to - aijXj b. ± =i.
 

jc=
 

x >0 j =l,...,n
 

x, integer valued j = 1,...,n
 

The idea from stochastic algorithms is to start with a random feasible
 
point in the convex set of feasible solutions and determine the optimum
 
value in a neighborhood of the initial point. The process is then repeated
 
for the new point. A sequence of locally optimal values is thus obtained.
 

The problem then is really composed of 2 subproblems:
 

1) The random choice of a feasible point.
 

2) Definition of a neighborhood in the feasible set.
 

An algorithm has been programmed for the IBM 7040 digital computer
 
for finding solutions to the integer quddratic programming problem by
 
using stochastic algorithms.
 

The procedure for initially selecting a point is based on a method
 
given in C0. Essentially, an initial point is chosen (not necessarily
 
integer valued); and if it is not feasible, for the non-integer problem,
 
it is reflected across the most distant hyperplane on whose wrong side
 
it lies. The process is repeated and in a finite number of steps, a
 
feasible (non-integer) point is determined. The coordinates are then
 
rounded, and if the resulting integer valued point is not feasible, then
 
a new random starting point is selected -and the entire process repeated.
 

The procedure for defining a neighborhood of a point is to place the
 
feasible point in the center of a square grid of points determined by a
 

e

given feasible point. That is, the neighborhood of (xl°, x2 °,...,Xn°) = x
 

is the intersection of the set of feasible points with the set
 



25 

'•'5'k'< x xs s0a 

t
 ...xs.... x xt + :kI.n:)
 

/
 

where k is a specified positive integer and s, t are randomly selected 
components. The point in G, yielding the lowest function value, then 
becomes the center of a new grid which defines the successor point's ­

neighborhood; 

A local optimum results when no further decrease in function value
 
can be made.by simultaneously consideriing any-two components and their
 
increments. The process is repeated in its entirety for a pre-determined
 
number of observations according to some stopping rule.
 

In order to describe the computational scheme for the determination of
 
a local optimum, the following problem formulation is assumed:
 

minimize
 
z= pjxj +Z ciqi x.
 

n
 
=
subject to 2 ai.x. - bi i 1,2,...,m
 

3 ­j=l 


xk. 0 k 1,2,...,n and integer valued.
 

let (x°,....,xr° .... ,s°,...,xn) be the initially feasible, randomly
 

chosen point.
 

To t is added tdxr -k< tI < k and t2 added to x o -k < t2 < k
 

then the difference in function values blecomes:
 

(Pro + 2 2 qirXi° ) t, + (ps. + 2 7- q1sxO)t2 + 2 qrstlt2+qrrtl2+qsst2 j=li
i=l 

2
 

At 1 + Bt2 + Ct1 t2 + Dt 1
 
2 + Et 2 

which, if negative, shows a decrease in function value.
 
The value of ti is fixed (starting at -k) and bounds are calculated for t2
 
by the inequality;
 

° aist2__:-:b i - Zaijxj it =,.. 
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Calculations are then made for the allowed range of -t with the change 
in function value calculated by the above formula. Tis is repeated for 
increasing values of t1 up to k. 

A new point is thus determined in the obvious way.which is then the
 
successor to x,
 

Some results have been obtained for a set of ten 10 variable, 10
 
constraint problems given in (9). The results of the computational
 
experiments indicated that their probably isn't too much advantage in
 
making the grid size larger than 3 or 4 for problems in this order of
 
magnitude. There seemed to be a definite increase in computer time used 
when k reached a value as large as 5. Several times, k=2 was the best
 
performing value. In each case, solutions were found which yielded
 
values of the objective function very close to the optimal values found
 
in the non-discrete problem - usually within 4-5%. For this particular
 
group of problems (which were generated randomly) the performance of
 
our method was best for problems with large functional values. This can
 
be explained by round-off error, however, and has nothing to do with the
 
algorithms' performances. The frequency with which the global optimal
 
(or best known) solution.was found varied markedly from one problem to
 
another. This is interesting, but perhaps not completely unexpected
 
with problems of this complexity. The same result occurred with the
 
optimal sequencing experiments. The answer probably lies in the curious
 
complexity of combinatorial problems.
 

Some examples of the computational results are:
 

Continuous Solution Best Discrete Solution 
f value = -32.44 f value = -28.8 

=1.84 1
 

X2 = 2.75 3
 

x3 =1.14 1
 

x4 =0 0
 

x5 .80 1
 

x6 = .60 1
 

x = 4.45 5 

x = .90 - 1 

x = .97 1 

x 3.86 3 
10 

for k=5 best value observed 13 out of 19 times 
for k=2 best value observed 9 out of 14 times 
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Continuous Solution Best Discrete Solution 
f value = -94.75 f value = -91.05 

x I = 1.08 1 

X2 = 2.48 2 

x 3 = 8.11 8 

x = 1.69 1 

x5 = O. 0 

x 6 = 4.04 4 

=0
x7 . 0 

x 8 =2.85 3 

x 9 = 2.97 3 

x10 =5.96 6 

for k=5, best solution observed 8 out of 14­
for k=2, best solution observed 11 out of 24
 

These results convince us that our method is a valuable one for these
 
types of problems. Our difficulty in further establishing this, however,
 
has been the lack of published experimental results by authors working on
 
the same program. Their examples have always been of a trivial (3 or 4 
variables) variety.
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PROGRAMS FOR SOLVING THE
 
GENERAL QUADRATIC PROGRAM1MING PROBLEM
 

Quadratic Programming by the Method of Dantzig
 

The algorithm 'OPMIND' solves the quadratic programming problems by
 
the method of Dantzig. The complete mathematical basis-for this method
 
is examined in "An Experimental Study of Some Quadratic Programming
 
Algorithms" by John McGraw Rooker, Technical Report Number 7, University
 
ComputingCenter, The University of Tennessee.
 

Basically, one of two sets of calculations is performed, depending
 
on whether or not the problem is in standard or non-standard form. The
 
problem is standard if for any variable either the primal or dual element
 
is in the basis, but not both. The problem is in non-standard form if
 
for any variable(s) both the primal and dual elements are in the solution,
 
forcing another variable to have neither element in the basis.
 

A. 	 Standard Form - The non-basic element with the smallest
 
negative term is chosen to enter. The element to be replaced
 
is the one first driven to zero. After these elements are
 
known the proper transformations are made. If the element
 
driven to-zero is the complementry element of the entering
 
element, the problem stays in standard form and the process is
 
repeated, otherwise the problem is in a non-standard form
 
and process B is used.
 

B. 	 Non-St&ndard Form- an attempt is made to bring the problem
 
back to standard form. An attempt is made to make basic the
 
dual element of the variable: with neither dual or basic
 
elements in the basis. If the element forced out makes the
 
problem standard, use process A, otherwise, repeat process B.
 

Summary of Subroutines Used:
 

QPM1ND - Control Program. Performs all input and output; controls 
iterations depending on whether the problem is in a standard or 
non-standard state. Also, it performs all checks for valid 
solutions, no solutions, or infeasible solutions. 

MINY - Finds the variable not in the basis to be entered - problem must 
be in standard state. 

VAROUT - Finds the variable in the basis to be removed when the entering 
variable is known - problem must be in standard state. 
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TRAN-	 Transforms the matrix given the variable to enter and the one
 
to remove - used in either standard or non-standard state.
 

YIN - Used to attempt to drive the problem back to the standard
 
state. Given a variable with both primal and dual elements
 
out of basis, it attempts to replace dual element in basis ­

used when in non-standard state.
 

FVAL - Given the final levels of all primal elements in the basis
 
FVAL determines the final function value.
 

Input Matrix:
 

A. Seven elements per card, ten columns per element (7Fi0.2).
 
The elements of A are punched row-wise. Figure 1 shows the 
construction of matrix A. 

P Q 

B A 

FIGURE 1 

where:.
 

Pi - are the linear terms of the quadratic function. 
Qjj - if i = j - squared terms of the quadratic function. 

if i # j - cross-product terms of the quadratic ftinction. 
A.. - coefficients of the linear constraints. 
B$j 
 - limit on constraint i.
 

NOTE: ** Only less than or equal type constraints can be used and B. must 
be positive, also the number of activities + constraints must be less1 

than 99, and the number of activities must be less than 50. 

Flow charts for the program follow.. Program listings are available
 
.from the author.
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2 

Program - Qpmind
 

Quadratic Program
 

Method of Dantzig
 

"K 1
 

Reset Timer
 , 
Read
 

N, JCON, 

NUMB
 

Wit
 

Zero FLGS; 

.ROW;ROWOUT; 
R'pOWIN YCI 
MCOL; IT 

[Pointers
 

Write detai­
led prob­

\le. desc­

iripo
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Program Qpmind
 

Contents of A matrix
 

at this time
 

Read in
 
Ai
 

P Q A 

B A P 

where:
Store P*2 
 P is linear elements

in EL in quadratic function
 

*1/2
 
Z is squared & cross
 

roduct elements in
 
quadratic function
 

B is limit of constraints
 
Store A is coefficients
 
Q elements in of constraints
 
Q from A
 

Store-A
 
elements
 

T \Write tots, 
Ainitial/
PRIN 


Store point­
ers to varia­
bles in basisf
 

INBAS (I) 

(initally
 
slacks)
 

Pointers in 1
 

INCOL (I)
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2
 

rite / 
entering/
 

Solution found
 

Nori rite number of]
varialefo- Noiterat ion-var-! 

(E)iables ba 
ss&leve 

Ys
 

CALVAROUT
 

.prFint rq


Write uete 
leaving"
 
variable Y es
 

\final 

Is matrix
 
No souto
 

~egenerat e/ 

(FID)Write 7 
\solution
 e \is deg- D 

aria-- -­
blestaci ritethere is 

ard form /-kJ no soutonCAL VA
 
(COMP) andt in
matix
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Program - Qpmind
 

.T-

Write fine
 
function
 
value
 

Zero storage
 
and get time
 
for solution
 

Write
 
solution
 
time 
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I
 

Yes
 

Trans formed
 

\matrix 

Number of
 
iterati6n.
 
increased by
 

Pointers
 
reivised due
 

to last
 
iteratifon, 
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c 

Program - Qpmind 


C
 

Trasforme
 
matrix
 
printed
 

inresedlby
 

1
 
iteration
 
increased by
 

Pointers
 

revised due to
 
last iteration
 

CALL YIN
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*Writeentered 

variabl 

.Vanable 
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No 

IN"N 

itera.tion 

" tr te 
de taie Nos 
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H 

CALL TRAN 

" tai No 

rin
 

Transformed/
 

Number of
 
Siteration
 
increased

by 1 

[Pointer revised
 
due to last
iteration 



38 Subroutine MINY 


Stt off YES
 

C~tartand FIRST
 

Is' 

Yes " 

Yes 

Yes 

F/ Ys, 

FIRST 

True 

Rowrin 

|Coefficient| 

Set YES 
ON 

I =I 4n 

Yes 

s No Reur 
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COMP; FIND; 

lpointeis 
Ifor 

. search 

MSet 

ind column 

COL) corres­

onding to 

ntering 
ariable 

_t­

arale or el-
Pnot correspo----­iag to nter-

Tru e -N 

Soluti 
bygeeae 

Fals-I e 

F orD-.FLS 

-- spudnFas 
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Subroutine TRAN
 

Start 

element
 

EAle element
 
in leaving

ARivot vo
row except
 
pivot conve­

rtnd by -A
 
(ROW,J)/ARC 

Pivot "
 

element c
 
A (IROW, ICOL)| 
l/ARC
 

|Ecrreponin eleen inxcp
 

leaving row 


True & alse
 

v 
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*Subr6utine TRAN
 

All el&ments in 
entering column
 
except pivot
 
element convert
 
ed by
 
A(I,COL)= 
A(I,COL)/ARC
 

Return
 



43 Subroutine FVAL
 

Start+I
 

y Yes 

+± XVAL()t
activities* K=0
lineal elementsv
 

of cross poduc VALUE VALUE
Z 

time (Qij) and + Q (J,K)*True Fals 
level of activity XJ*XK
 

1*level of
 
activity j
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S tr 
IN; POS;l DGEN[ 

et false ' 
setup pointer 

. eup pointer 

to column where 
slack is to be 
located 

1(Y= 

Is 

slack 

No 

frthis Ysriow= DGEN=RUE 

Not el mnt iRtr
 

seti t Fas"O TueA
AYe lseO
 

SROWIN =I
 
IN =TRUE
 

II 1
 



45 Subroutine YIN 


in A(Row YO)
0and P 

" " \ es - . 

ARYC= 

AA(IW ,YC) 

POS 
False 

IsetTrue 
_ . "",,, 

< RY Tue 
>COLMIN 

POS settrue 

~False 

SCOL MIN= ARYC 

ROWIN = ROW 
IN set true 
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QUADRATIC PROGRAMING BY THE METHOD OF BEALE 

The algorithm 'QBADPD' solves the quadratic programing problem by the 

method of Beale. The method is described and illustrated in 'An Experimental 

Study of Some Quadratic Programming Algoritbms' by John McGraw Rooker, Technical 

Report Number 7, University Computing Center, The University of Tennessee. 

The 	computational scheme utilizes the following rules:
 

I. 	Make the transformation according to the component corresponding to 

max Ipuk . That is determine that sign unrestricted component say xk 

[p' =1,2,..., t. 


rule for breaking ties. Then determine the transformation (Type I or
 

such that p 0 andjP p , i 	 Use a suitable 

Type II) which leaves all components except xk fixed. (Type I or 
U 

Type II) which leaves all components except x l 
u1 

fixed. (Type I is of 

the type xj-c 0 + CX; Type II is x.- p./2 + Q.X). 

2. 	If there is no sign restricted component (or if the p elements corres­

ponding to sign unrestricted components all vanish), then make the 

transformation according to the sign restricted component corresponding 

to ' kr < 0. (See page 3 for definition of terms.) 
1 1 

Summary of Subroutines Used:
 

QPMBPD - Control program. Performs all input and output and controls iterations 

for transformations. 

FINMV F 	 Calls SUBROUTINE
 rinds the component not in the basis to be entered. 

MAXIND. 

MAXIND - Finds the component in the basis to be removed given the-entering com­

ponent. Determines the type transformation to be made. 

TRAN - Performs the transformation.
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DGCK -

INFCK -

Checks for degeneracy of solution. 

Checks for infeasibility of solution. 

Input: 

Card No. Data Format 

LEAD iP, PR, FIRST (5 

1qP - nuiber of problems to be solved. 

PR - print control. T for printing of tableau 

after each- transformation; F other-' 

wise. 

FIRST - print control. T for printing of first 

and last tableaus; F otherwise 

V, Ll, i , L1) 

NV, JOON, M 

NV - number of variables 

slack variable. 

- including one 

(315) 

JCON = 

NUMB = 

number of constraints. 

arbitrary problem number. 

-2- A(IJ)'j = ±j0 I =i 

where IROWS = NV + JCON 

OS (710.2) 

A(I;J) - the A matrix is set up as follows: 
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A(I,J) 

XI X2 	 XIY
 

0 pO/2 p2 /2 . . . plvl2 

p1 /2 ql1 q12 . . . .l- NV
 

P2/2 q21 	 .q2 2 	 q2 NV
 

aN 1 V, .....	 NV;X
1 2  


1"NVYI 	 bI all. a 

Y2 	 b2 a21 a22 
 a2;NV
 

YJCON 	 bJCON aJCON, 1 ajCON2 . . " aJCoiNV 

Where p, are the coefficients of the linear terms of the objective
 

function;
 

qij are 	the coefficients of the cross product terms (i ' j) and the
 

squared 	terms (i = j) of the objective function; 

,b are 	the constant terms of the constraints; and
 

a.. are the negatives of thd coefficients of the linear terms of the
 

constraints.
 

NOTE: 	 Present dimensions restrict the number of rows in the A matrix
 

(tableau) to 150- and the number of columns to 50.
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Read 
Np, PR, 

First 

NV JCON, 
A 
 NUMB 

Get initial 

time 

Write descrip­
tive problem 
information 

Initialize 
counters and 
pointers 

Write 
descriptive
 
ifformation 

2 
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2
 

Read A matrix 
(first

tableau)
 

Initialize pointers
 

for basis component-


Find restricted 
component with maxi-

B mum partial deviative 
SUBROUTI NE FINMV 

/Determine whether 

/transformation is to 
\be Type I or Tye II:/\UB'MAI/
 

" str.ct\dWrite / 

t ~ Yes \ descriptiv 

.nd unrestricted ore-\ 
ponent to enter basis: 

SUBROUTINE FINKMV / 

No
 

C 



51 

3
 

unres
triced
component 
to -Bzer basis-? 

D SUBROUTINE 
TRAIX 

Increment 
iteration
 
counter
 

DGCWas
 

comoen-N
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ible solution: 

PrNt 

Checkor ineaMessage 
Write 

e 

esYe 

stion 

Goo 
too F 
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Write ia
 

A matrix 

(tableau)
 

Write elfaips
 

time and
 
umiber of'
 
iterations
 

STOP
 



SUBROUTINE 1IWFCK (INFEAS) 
 s
 
SetI = +flag
off, INFEAS =F. TR 

c/omponent 

in basis? 

Yes I!=? Ye 

• / 'IN'FEAS --

To/x> VV + icoN 
+ NU­



SUBROUTINE GCK (GEN) 

Set flag- off, DOEN =F. 

I = NV + I 

No
 
"NO
 

+'i DGEN T 

+
 

No -->NV +JCON 
+N.
 



56 SUBROUTINE TRAIN -(ROW, BSROW,TUV) 

START 

Tzransforma
 

FYes 

NO 

Make transformations 
,azcording to Ty-pe IJ7 

equations 

Upda 

piRTURN 

Make trans formations
 

according to 
Type I equations 

VR 
ea eaN), 

EUpdate 

Is 

Yes NVR > 

NU = NT+1I 
Update IN~BAS(RoW), a.nd 
create INBAS(JK) 



57 SUBROUTINE FINMV 

Initialize pointers 
ROW, BSROW, and 
NUV = 0.. 

Set flags off;
 

YES, PART = F. 

1=2 

pbMNo compone re- No
.standard form? / - sult in Type I -2 --


Yes
Yes 


YES=T
 
RO = I 

s e 

A 1 ) 
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2YS-T
 

acompo nent t No
 
enter in basis. 

YesUR
 



59 SUBROUTINE MAXIND 

-START 

Set flag off 

PART = F. 
I =NV+I1 

A( (ROW,))e
 

Wil
 

BMN = A(IL)/ 



60 
2 

Is 

+ NU?B ~JCONT 

Yes 

A(O,ROW)Ye 

NO.
 

- Yes [. 

PART =T 
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tiOn result in 
 Yes
 

TyeII transformation?
 

NO
 

Yes
 

+
 
Ye 


"'. ~Yes °" 

A(I ROW)
 
BSROW =I
 

I+l1
 

Is
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Yes 

Is
 
=0 -Yes
A(ROW,HOW) 


SYes 

-- 'PART =T 
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