
0.-- q

Ctn,

0(COD 2 O

(NASA CR OR TMX OR AD NUMBR (CATEG RY) '

UNIVERSITY OrV TENNESSEE COMPUTING CENTER

THE UNIVERSITY OF TENNESSEE
Knoxville,, Tennessee

NATIONA TEHNICAL
INraRMATI oN SERVICE

https://ntrs.nasa.gov/search.jsp?R=19700020808 2020-03-12T02:31:11+00:00Z

N70 -30118

SEARCH FOR GOOD ALGORITHMS FOR PRACTICAL SOLUTIONS TO
DISCRETE OPTIMIZATION PROBLEMS

Univer ity of Tennessee
Knoxville, Tennessee

00

@00 *

Distributed ...	'to foster, serve and promote the
nation's economic development
and technological advancement.'

: ... ,;-0

Thisdocuenthasoeen pprvedoariublierelaseandeale

NATIONAL TECHNICAL INFORMATION SERVICE

*U.S. 	 DEPARTMENT OF COMMERCE
Thi 0 	 bfe

FINAL REPORT

Search for Good Algorithms for

Practical Solutions to Discrete

Optimization Problems

Supported by NAS8-lI189

Prepared by Gordon R. Sherman

University of Tennessee Computing Center

Knoxville, Tennessee, March, 1970

TABLE OF CONTENTS

Introduction ii

Stochastic Algbrighms Applied to Optimal Sequencing (Traveling

An Experimental Study of Algorithmic Performance as a Function of

The Stochastic Algorithmic Approach to Discrete Optimizing Problems 1

Stochastic Algorithms Applied to a Partitioning Problem 5

Salesman) Problem 7

Minimum Path Through a Network 13

Neighborhood Size and Shape 18

The Quadratic Integer Programming Problem 24

Programs for Solving the General Quadratic Programming Problem............. 28

Quadratic Programming by the Method of Dantzig 28

Quadratic Programming by the Method of Beale 46

Bibliography 63

INTRODUCTION

Problems concerning the optimization of mathematical functions have always been of
interest to mathematicians and their solutions are of great practical value. Science and
engineering have especially benefitted over the past several hundreds, of years from
techniques developed by mathematicianstin calculus and related areas). Although the
need and practical-application for optimization has been apparent, mathematics has
furnished comparatively little help, however, in solving problems defined over discrete
spaces. Usually these problems have been combinatorial in nature and extremely
unyielding to theoretical analysis. At least this is true in so far as the record.of
mathematical analysis in providing theorems or characterizations which are useful
for practical application is concerned.

Interest in discrete optimization took a notable jump with the onset of such fields

as Operations Research and Management Science. The success of work done in these

areas is particularly dependent upon finding solutions to problems in discrete optimi­
zation in the 1940's and early 1950's which was independent of the availability of high

speed digital computers. Then, with widespread availability of powerful computers

*becoming ,areality in the 1950's, results in solving discrete optimization problems
took oi even faster growth. It was not long, however, until the computer essentially
reached a limit in aiding researchers in this field. Algorithms were still largely
being developed by people who were thinking computationally along traditional lines.
The computers were used as though they truly were "large, fast, desk calculators".
Obviously, when this line of thinking prevailed, computers essentially reached their
limit in value when the ratio of computation necessary for solving a problem in small
dimensions over a problem with larger dimensions reached the approximate value of
the ratio of computer power to desk calculator power. That is, for example, one could
better solve linear programming problems with a computer over desk calculators to
about the same degree that the computer was faster than the calculator.

The computer had much more to offer, however, It offered' a means to solving
problems by methods which not only weren't practical when worked by hand, but
weren't even thought of. The Monte Carlo method is an early example of this. The
increasing use of simulation by digital computer is another. In this work we have
investigated another approach which I chdose to- call the method of stochastic algorithms.
It relies upon probability to circumvent much of the enormous complexity which pre­
vails in combinatories. It provides an underlying theory. It has been shown to be quite
powerful in some important situations. It provides practical approach to many difficult
problems, and its usefulness will grow as experience is gained in formatting many
problems into its rather simple structure. This work is primarily aimed at acquiring
some of this necessary experience. Our work took on several other side projects
which naturally arose during the course of the study. Work was done on the non­
discrete quadratic programming problem and also on the problem of finding all shortest,
paths through a given network.

ii

http:record.of

This project was worked on by several people at the Udiversity of Tennessee
Computing Center. Among the students who received support from this project (with
their major and degree received or being worked on) are: Alfred K. Hume, B. S.
in Engineering Physics; Sherrie L. Ippolito, B. S. in Education; Walter L. Leatherwood,
M. S. in Management Science; Suzanne M. Miller, M. S. in Computer Science;

John M. Rooker, M. S. in Mathematics; Douglas W. Toppins, M. S. in Management

Science.

iii

The Stochastic Algorithmic Approach to Discrete Optimizing Problems.

A. Discrete Mathematical Programmin?

The mathematical programming problem can be stated as

Determine x0 from a space * such that

f(Xo) is maximized (or minimized) subject to constraints
that ko belong.to some well defined subset, C, of 9.
f is called an objective function.

Example 1. Linear Programming

maximize clx1 + c2x2+ ... + cnxn

subject to the conditions

allX I + al 2 x2 + ... +.alnkn < b,

a21 I + a 2 2 x 2 + ... + a2nxn _b 2

amlxl + am2X2 + ''- + amnxn bm

and x. 0 i = 1,...,n

In this case x0 equals the vector (xl, x2 ... Xn) is euclidean
,

n - space and C is a convex polyhedron lying in the positive

orthant. f is simply a linear function of the components of xo.

Example 2. Discrete Linear Programming

In discrete linear programming the problem is usually considered

to be the same as the linear programming problem except that

the C set is restricted (or intersected) with the non-negative

integers.

http:belong.to

2

Example 3. Quadratic Programming

The quadratic mathematical programming problem is maximize

n n n
S PiXi + Z f xqijxji=l j=l

subject

.n

aijx j :b i i = 1,2,...,m

j=l

and

xi C 0 i l,...,n

That is, C is identical to that of Example 1 but the objective

function is a quadratic instead of a linear function of .

xl, x2 , ...,x . In some important cases, the quadratic function
n

is restricted to the positive definite class.

Example 4. Partitioning problems.

Given a sequence 1,2,...,n (call it n) and a matrix

A = [aiJ i, j=l,...,n =a 1 1 a1 2 ... aln

a ...ann

3

find a k set partition T= (PB,...,P12) of n such that

i,jP 1 ijaP2 ... i,jEPk aij

is minimized.

In this case, f is a set function over all possible k set

partitions of W and-- is the set of all possible k set

partitions of -. C in the example here is non-existent,

but in some cases it could consist of a restriction on the

cardinalities of the Pj, j=l,...,k.

Example 5. Sequencing Problems

A familiar sequencing problem is;

Given n, and a distance matrix

taij i,j=l,...,n, find a permutation p (PlP2...pn)
n-I

of the points in n such that f(p) = 1 ap p + aPn,Pl
i=l i,ih

is minimum.

In this case 4- would correspond to all permutations of the first

n positive integers and f is a function describing the sum of

the distances from point to adjacent point defined by the permutation.

Other sequencing problems are those arising when shortest

paths through networks are being sought and will be covered later.

B. Heuristic Algorithms

For many problems in discrete optimization, algorithms have

been found which lead to global optimal solutions. Examples of

these situations are, the linear programming problem and the

(non-discrete) quadratic programming problem. These types of

algorithms which lead to exact solutions to problems are deterministic

but their practicality varies from one case to another. The

linear programming algorithms are very useful. In some other

cases, the problems for which solutions are derived, and their

corresponding algorithms are of theoretical interest only ­
that is, their practical usefulness is limited. For this reason

many approaches to some of the more complex problem situations

have led researchers to develop heuristic or near optimal solutions.

That is, algorithms which are facile and relatively simple in

construct and which have strong intuitive appeal and which show

4

satisfactory and encouraging results when applied to small

problems are sought. Some of the criticism of these approaches

are: 1) there is no assurance of finding global optima,

2) there is usually no assurance that the heuristic algorithm

will be "near" the global optima nor even a method of measuring

how close to global optimality any particular solution is,

3) they lack mathematical concinnity, beauty and rigor, 4) their

usefulness can be determined only by comparison with other

algorithms applied to identical problems. Out approach in this

study has been to explore the advantages of near optimal solution

methods and to develop a particular class of them in the stochastic

algorithmic method. Also, in view of disadvantage 2) stated

above, a method of formally evaluating these differing algorithms

is developed and experimental comparisons are made.

C. 	 Stochastic Algorithms

Let -)kbe a discrete space of points and x be a typical member of
#-). 4-yAssume that f is defined for all x4-. Then, for and f,

a stochastic algorithm consists of a particular neighborhood

structure an 46 and a probability distribution over 44-, denoted

as P(x). The neighborhood structure which we will call N, has

the following properties:

1. 	 For each x44- , there is a corresponding a neighborhood n(x)

consisting of points in 44­

2. 	 n(x) contains x

Given i- , f and N, the stochastic algorithm is completely

defined by a successor structure s(x) which has the following

properties:

1. 	 s() en(x)

2. 	 f(s(x)) z f(y) for all yen (x)

3. 	 f(s(x)) = f(x) 4 x = s(x)

4. 	 s(x) = x # f(x) a f(y) for all ysn(x)

If s(x) = x then x is called a locally optimal point. Obviously,
the collection of all locally optimal points contains the global
optimal point.

A stochastic algorithm proceeds by selecting x from ­
according to probability distribution P. The successor structure

is then applied (or computed) until a local optimal point is

found. The process is repeated a number of times until a

satisfactory probability statement can be made about the likelihood

of the global optimal point having been found and/or the relationship

5

between the best observed local optimal point, a bound on the

global optimal point, and the cost of further computing. This

.process further detailed in [1].

Much 	of the success of the stochastic algorithmic approach

.depends upon the selection of the neighborhood structure to be

used for solving each different problem. For this reason,

research into the subject and experimental comparisons with

familiar problems are important. The following describes some

investigations into this subject.

Stochastic Algorithms Applied to a Partitioning Problem

The partitioning problem as defined above has been worked on by several

authors including J. A. Joseph. C23 In this part of the study, two stochastic

algorithms were developed and programmed to apply to partitioning problems

determined by varying the parameters n and k as defined in Example 3 above.

Joseph's algorithm was also programmed and applied to identical problems.

The two stochastic algorithms developed for the partitioning problem
are called GRS(I) and GRS(II). GRS(I) proceeds as follows for a given
n, k and aij i,j = 1,2,...,n

1) 	 Select a random k set partitionhT of n

2) 	 Compute f(T)

3) 	 Set i =.l

4) 	 Alterrr to i i = 1, 2, ...,k by moving point i into each of

the k sets of I.

5) 	 Compute f(iTi) and determine such that f(mj) = f(ii) i =1,2,...,k

6) 	 Tt'is the successor of it

7) 	 If f(rr') = f(),WTis a locally optimal k set partitions with
respect to GRSI

8) 	 Go to 1) unless some pre-chosen stopping criterion is satisfied.

CRSII is identical to GRS(I) except that ,i is selected as the first

partition found which is better (i.e. has a smaller f value) than77. That

is, ORSI is a steepest ascent algorithm, GRSI1 is a positive ascent

algorithm.

Experiments were run for randomly determined matrices for n values

equal to 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100. It turned out that

in every single experiment, the best value found by CRS(I) was at least

as good and in about 98% of the'cases better than that found with Joseph's

algorithm. All computer programming was done by the .same programming in

FORTRAN and run on the same machine. Some sample tabulations are given

below:

6

N =35 Functional Values
K=2 Joseph GRS (I)

14280 13973

14551 13578

13828 13180

14013 13255

13871 13226

14174 13400

*Average Computer Time 68.0 	 101.18

K = 10 	 1177 728

- 1036 	 705

887 692

1001 771

1074 713

934 676

*Average Computer Time' 183.8 118.9

K = 15 	 370 180
323 	 150

334 	 193

456 	 197

342 	 232

357 198

*Average Computer Time 296.0 111.2

*Average computer time is in 60ths of a second on an IBM 7040.

These results are quite typical of the entire experiment. To briefly

summarize, we can say:

1) 	 GRSI consistently outperformed the other algorithms in finding

better values for the objective function.

2) 	 The time performance was consistent over various values of n and k.

The Joseph algorithm performed best for small values of k (k<5)

but GRSI consistently performed better time wise for k larger than 5.

An example of timing data follows:

N=35

GRSI Joseph
K =2 101.18 68.0

5 114.85 113.2
10 118.9 183.8
15 111.2 296.0

N=50
K= 2 226.2 134.2

5 261.5 224.2
10 262.4 371.2
15 249.6 508.7

7

Experiments with the optimal sequencing (or traveling salesman) problem.

The results with the optimal partitioning problem are encouraging

and suggest that the stochastic algorithmic approach might be especially

useful in attacking combinational type problems. Since combinational

problems are notoriously famous for being immune to mathematical analysis

but at the same time, very critical to the solution of many problems of

the real world, the value of our approach here can have a major impact on

the advancement of technology. In order to further study this aspect of

discrete optimizing, extensive application and experiments with the optimal

sequencing problem was carried out. This problem is defined in Example

5 above.

The problems on which we have worked include: Ten 9-city problems
given [33, a 15-city problem, a 20-city problem [41, a 25-city problemESi,
a 33-city problem[J, a 42-city problem [67, a 48-city problem [5],
and a 57-city problem E73.

A family of algorithms were developed and applied to the problems

mentioned above. These algorithms which we have labeled Algo I, Algo II,

Algo III, Algo IV and AlgoIV(r). They are described below. They were

designed for computational-convenience. Algo I, Algo II and Algo III

were used in this study only to a limited extent; the Algo IV(r) series

was used on all of the problems mentioned above for several values of r.

Most of our results are for the Algo IV(r) experiments. In each case

an estimate was made of the value of r which would have given the best

performance. This, of courseyinvolves hindsight and cannot always be

expected to carry over to different traveling salesman problems. However,

the evidence presented here indicates that in practical situations, our

methods are likely to be valuable.

The Algorithms.

Algo I.

Algo I proceeds as follows: A random permutation p of [1,2,...,n}

is selected and f(p), the length of tour p, is computed. The permutation

p' i's derived from p by inverting the first and second elements of p.

The f(p') is compared with f(p); if f(p') is less than f(p), p' replaces

p and f(p') replaces f(p). Then the second and third elements of the

resulting permutation are inverted to form a.new permutation p" and again

comparison is made. This process is continued until n consecutive

interchanges have been checked without a change in the permutation, i.e.,

without reducing the length of the tour. At this point a locally minimal

tour has been found. The tour 5 and its length f(p) are recorded, another
random starting permutation is chosen, and the process repeated.

Algo II.

Algo II is similar to Algo I except that instead of comparing two

Dermutations (i.e., by considering the twn permutations of a given pair

of adjacent points), six permutations are compared. The six nermutations

8

are those obtained from the six permutations of i,i+l,i+2 (mod n) for

i = p,2,...,n. A locally minimal permutation is one such that no

better permutation (i.e., one with a shorter tour length) can be found

by permuting any three adjacent points in that permutation.

Algo III.

Let pl = (il, i2, -. , in) be a (randomly selected) permutation of
of the integers p,2,...n. Now form-a new permutation, say p , by
interchinging the values of ij and i to form p2(i.e., i1 in p is the

i p and the i2 in p2 is i in pi). Then compute the tour lenth

f~p2) and records i value. Next interchange i2 of p

2 and i3 of p to form

a new permutation p . Compute f(p3) and record. Then interchange

4
i3 of p

3 and i4 of p
3 to folm p . Compute f(V) and record, etc. This

process continues until f(p),f(p2),...,f(pn-L),f(n) = f (p) have all been
computed. A permutation p j such that f(p) '--f(p), i = 1,2,...,n, is
determined and is used as a starting point for another set of comparisons.
The next set of comparisons is carried out by starting with the second
point in the permutation pq. This can easily be done by circling the
elements of po one position to the left and then operating on the
resulting permutation in the same manner as described above. The process
is continued until n sets of (n-l) permutations have been examined without
decreasing f. At this point a locally minimal permutation has been found.
Another random permutation is then chosen and the algorithm preceeds to
find another local minimal permutation.

Algo IV(r).

Algo IV(l) is just Algo III. Algo IV(2) is an extension of Algo III.

When a locally minimal permutation, p, has been found by means of Algo III,

two adjacent points in p are moved as a pair being placed into that

position and orientation which minimizes the length of the tour. This

procedure of moving two adjacent points together continues until no pair

of points can be moved so as to decrease the tour length. Algo IV(3)

is similar process for triples to adjacent points after Algo IV(2) can

find no further improvements, while Algo IV(r) continues until no advanta­
geous move can be made by applying Algo III, Algo IV(2), Algo IV(3),...,

Algo IV(r-l).

The computer program of the Algo IV(r) algorithum is described by the

following. An initial (random) permutation of the first n positive integers

is read in each integer associated with a point (or mode or city).

(CI,C2, ... Cn) represents an initial "tour" starting at Cj, the city

in position 1, proceeding to C2, the city in position 2, etc.

A parameter 9 (l<s<r) refers to the first s cities in the tour. The

algorithm, in effect, removes the first s cities and "re-inserts" them

sucessively into positions between C+1 through Cn . The total tour distance

is calculated at each position.- If the tour distance is decreased at one

or more positions, as compared with the initial tour distance, the s cities

are permanently inserted at that position at which the tour distance decreased

the most.

9

The permutation is then shifted so that the city formerly in position

C,+, moves to position C1 and the process is repeated. The s cities are

checked in both orientations. For example, if s = 2, and the position

being checked is k, the "backward" orientation is checked first:

Ck- C - C - Ck+l

and then the forward orientation:

--- gCk- C1 - C2 - Ck+l ---

If no improvement over the initial tour is effected, the permutation

is shifted to the left 1 place, so that the initial C2 becomes C1 .

Example: If 2'- 1 - 3 - 4 represents an initial tour of 4 cities and

no improvement (s=2) is found in the following sequence:

3-1-2-4

3-2-1-4

3-4-1-2

(3 - 4 - 2 - 1), represents the same tour as the initial one.

The permutation is shifted to 1 - 3 - 4 - 2 and the process repeated:

4-3-1-2

4-1-3-2

4-2-3-1

In the program,s is initially set equal to 1 is what we call PHASE
I analysis. This phase terminates when no further improvement is made
by inserting one city at the variouspositions; i.e., when, after the
initial city is checked, no furthei improvement is made for n - 1
consecutive applications.

s is then increased by 1, and the process repeated until no further

improvement is made by inserting two cities, (in either orientation),

similarly for s = 3, etc. After s reaches r or specified maximum value,

it is set equal to 1 again.

After the initial setting of s - 1, the process terminates when s - 1

successive applications yield no further improvement. In other words, if

some improvement is made at s = 4, say, and the maximum specified value

of r = 10, then the algorithm will terminate if no further improvement is

found by setting s = 5, 6, 7, 8, 9, 10, i, 2, 3, at this point, we say

that a "local optimum" has been found, and the tour distance and tour

vector are recorded.

-10

The above method constitutes a PHASE I analysis. The PHASE II

analysis is similar, except that s starts at the specified maximum value

r and is incremented by -1 at each stage until it reaches 0, at which

time it is reset to the maximum value. Detailed material on these computer

programs are available from the author.

Some of the results of these experiments are contained in reference [i.

Some of the more important results of this experiment are the following:

1) The stochastic algorithmic approach has again proven to be very

powerful in comparison with other known algorithms. In each case, answers

as good or better than any other known answers were found.

2) Important insight into the relationship of the definition of the

neighborhoods to the performance of the algorithms were established. In

particular, the algorithm Algo I, and Algo II and the series Algo IV(r)

revealed that performance is clearly related to the neighborhood size.

To see this more clearly one might consider the two extreme cases;

a) n(x) = x (i.e. each neighborhood consists of itself) and b) n(x) = 4­
(i.e. each neighborhood consists of the entire space. Case a) leads to

simple random search and is clearly inefficient. Case b) is merely our

exhaustive search of the entire space, the impracticality of which leads

to the discrete optimization problem in the first place.

3) An especially valuable discovery came from the work with the

Algo IV(r) series. These algorithms differ from generalizations of Algo I

and Algo II in that the neighborhoods differ not only by size but by shape.

The neighborhoods in Algo I and Algo IT are compact in the sense that each

pair of points are relatively close to each other.- For example, if we

define the distance between two permutations of n,'

p = (lp 2,p3.. pn)

q = (lq 2 ,q 3 ... qn)

= 1-as d(p,q) = TE i - ii: p. q.
i'j

it can be shown that the average distance between points in the neighborhoods

of Algo IV(r) is much greater than the average distance between pairs of

points in the neighborhoods .of generalizations of Algo I and Algo II. This

is true when the cardinalities of the neighborhoods are approximately the

same.

Intuitively one can conclude that the superior performance of the

Algo IV(r) series is due largely to the shapes of the neighborhoods. The

difference in performance within the Algo IV(r) series is also due largely

to differences in neighborhood shapes. An important fact to be noted here

is that computationally, the neighborhood shapes do not necessarily cost

more. In our case with Algo IV(r) the cost of computing over a neighborhood

.is the same as that for neighborhoods of generalized Algo I and Algo II

when the sizes of the neighborhoods are equal. It was this discovery which

lead to the study of the neighborhood structure and the idea that it is

the neighborhood shapes which determine the efficience of stochastic

algorithms. This is even more important when it is considered that

practically all known heuristic algorithms, or near optimizing algorithms,

whether there is a stochastic element to them or not, can be fit into the­
stochastic algorithmic structure. The case of a deterministic, near

optimizing algorithm can usually be looked at as a Stochastic Algorithm

of sample size 1, perhaps using a probability distribution which places

all weight on 1 or perhaps a few points in X .

12

Learning Experiments With the Optimal Sequencing Problem

'It has been conjectured that important information accumulates during

the process of a stochastic algorithm computation. That is, over a period

of time, certain areas of the spare 9tare likely to be explored more

frequently than other areas of X . This might lead a researcher to
believe that the area where most of the search is going on is the most

promising area to look for the global optimal. If so, this could be

taken advantage of by deliberately and perhaps exhaustively carrying on

the computation in the most promising places. This could be accomplished

by altering the probability function P(x) as the computation proceeds.

With this notion in mind, some experiments were set up using the optimal

sequencing problem. This consisted of keeping a frequency count of the

appearance of all possible links between pairs of points in the local

optimal permutations. After some computation, greater probability was

placed on those links which appeared to be most popular in the sample

of observed local optimal solutions.. Also, greater emphasis was placed

on those links which occurred when f(p) was relatively small. The net

result of these algorithmic experiments (they were called learning

algorithms) when performed on data very familiar to us was:

1) The frequency-with which the learning algorithm found-the

optimal (or the better) sequences did not vary significantly from­
the original AlgoIV(r) algorithms.

2) There was a slight improvement (about 2-3 percent on the average)

in the computer time expended to observe a local optimal sequence.

Variation in Algo IV(r)

Another variation in the optimal sequencing study was carried out.

In the AlgoIV(r) series, a parameter describing the length of displaced

subsequences is used. It starts with the value 1 and increases to the

value r and then goes back to 1, etc. A variation in this was attempted,

which started the parameter at value r and decreased it to I and then back

.to r, etc. It turned -out that this change improved performance on some

problems, both in computer time and in finding better sequences. The

improvements, when they occurred, were very slight but statistically

significant. For most problems, however, there was no significant

change in performance.

The optimal sequencing problem aroused much interest in shortest path

problems and investigation into generalized shortest path problems was made.

Two methods were studied and successfully programmed. One method was

especially interesting. It turned out that it was almost as economical,

computationally, to calculate the shortest path between all possible pairs

of points as-it was to-calculate the shortest path between a particular

pair of points. This was the program developed on the basis of Shimbel's

paper rlil. A brief description of the two programs follows. Detailed

program listings and operating instructions are available from the author.

-13

MINIMUM PATH THROUGH A NETWORK

This 	program finds the minimum distance between all pairs from a

given set of points or cities or nodes. In general, this is a fairly

simple technique, however, it was desired to develop a procedure that

can handle very large problems. The basic solution technique is closely

related to that described in a paper by A. Shimbel.(11)

The method starts at the base node and adds the distance to the

closest node. The method spreads from this base, each time adding the

closest node to the chains being developed. When all relevant nodes

have been added to the chains, the procedure is finished.

At any given point in the solution, the algorithm assumes there are

say N nodes in the network and the optimal distances between these nodes

are known. The addition of the (N+ 1) node selected as the closest one

of the remaining nodes (i.e. outside the N) connected by a single link to

one of the N nodes. The node selected from the N nodes is called the

established node. Since there are N nodes, this meats that at a maximdm

there are N possibilities for adding in the next node. For each of these

possibilities the sum of the distance from the base node to the established

node and from the established node to the new node is computed. The

next addition to the network is that node with the smallest such total

value. This process is repeated until all nodes in the original problem

have been added to the network.

For this problem two types of nodes were defined - primary and secondary.

The rimary nodes are the actual points under consideration, while the

secondary nodes are structural nodes necessary for the complete definition

of the network. A primary link is the basic connection between a pair of

nodes specified by the original problem.

Three types of analysis may be performed with the routine as it is

currently set up:

1. 	 All nodes (primary and secondary) are listed along with every

node connected by a primary link to them. This enables

checking of the input data.

2. 	 All the minimum distances between a specified primary node and

all other primary nodes are generated, along with sufficient

information for tracing the actual routes.

3. 	 All the minimum distances between all primary nodes are generated.

14

Another option can be easily added, that is consideration of non­
symetric distances. For example, suppose that the network under consideration

is an airline transportation network and the primary links show the time

for traveling between points. Due to outside factors, such as prevailing

winds, the time from A to B may not be the same-as from B to A. With.

minor modifications, this program can be altered to handle this non­
symetric case. Also one-way links can be considered, for example, for

the case where there is no return B to A.....

The program is designed to handle large problems. As it is currently

set up it can handle up to 3000 total nodes (primary and secondary) and

8000. total primary links'. This is accomplished through packing multiple

units of information in each storage location in many cases. The internal

storage is dynamically assigned in that there is no limit on the number

of links per node as long as the total number of links to all nodes does

not exceed 8000. By using this dynamic storage the inefficiency of

having unused positions can be avoided. Also, either the number of links

or nodes possible can be increased by decreasing the other.

The program has three major parts. Part I is a translator that reads

definitions for all nodes (both primary and secondary) and uses these

definitions to check and recode raw input data. Part II is a standard.

sort which groups all information in ascending order by node. Part III

performs the actual solution using the method described above, and if the

third type of analysis is specified, uses repeated applications of the

method to solve for all primary nodes.

As an example, a problem was run for the analysis of 321 cities

(i.e. 321 primary nodes) and 328 secondary nodes. There were over

1100 one-way primary links (i.e. over 2200 total links). Analysis time,

was slightly over 1.5 minutes for each primary,node, i.e. after the

input phase a type 2 analysis takes about 1.5 minutes plus time required

for output.

15

A Second Computer Algorithm for Finding The

Minimum Path Through a Network (MINNET)

The MINNET system is designed to find the route of minimum length

through a linked group of elements. The fundamental problem is basically

simple. This system uses the procedure described by Hillier and Leberman

[123

The algorithm begins with the specification of a base node. At any

point in the solution N nodes have been added to the network and the

distance to each of these nodes is known. For the addition of the N + 1

node, it must be the closest one of the remaining set connected by a

single link to the established nodes. Since there are N'known nodes, there

is a maximum of N possibilities for the next addition. For each of these

possibilities the sum of the distance from the base to the established node

and from the established node to the new node is computed. The next

addition to the network is that node with the smallest total value. The
process is repeated until all required nodes have been added to the system.

For small problems there is no problei in the implementation of this

type of algorithm. However, to allow for the solution of large problems

without partitioning the networkjspecial methods of storing, packing, and

referencing have been'developed. The problem can handel up to 3000 nodes

and up to 5000 links in its current configuration. Through the use of

dynamic relative storage assignment and addressing there is no limit to

the number of links per node, so long as the total number of links does

not exceed 5000. The system is currently set up to run in an 86K

environment. The restrictions on nodes and links can, of course, be

expanded if more core is available.. The system will handel both symetric

and non-symetric networks. Non-symmetric networks are frequently encountered,

especially when the link values are expressed in time. For example, due

to some outside factor such as prevailing winds, the time to go from

A to B is not equal to the time to go from B to A. This ability to

handel non=symetric cases also provides the ability to handl± one-way

links between nodes. All of these variables in the program are composed

of integer half-words (2 bytes). The method sets relative pointers to

- groups of nodes in a dynamic array and uses multiple levels of indirect ­

addressing. The MINNET System is composed of three phases. The first

phase (TRAN) translates the raw input data and generates two files - LINKNETl

and NAMEFL. The second phase (sort) is a sort of LINMET1. The third

and final phase (MIN) generates the minimum paths through the network and

uses as input the two files generated in phase 1. Descriptions of each

phase showing what the phase does, the files processed and generated, the

raw network definition data, and all control cards are available from the

author.

'16

The first phase in the solution procedure is the processing of the

elementary link cards. Since any code between +5000 and -5000 is valid,

a translation table must be set up which defines those nodes which are to

be used as part of the network and the internal code of each node. The

raw codes may be specified in either the primary or secondary file. As
each new code is specified it is assigned a sequential internal code.
This internal code begins at I and is incremented by +1 for each new code.

The primary file is designed for the specifications of the most

important nodes on a node by node basis. For each node a short description

may also be included. The secondary file is designed for the specification

of groups of less important nodes. An individual node or a group of nodes

may be defined on each specification card. No descriptive information

is processed.

The last part of the secondary file should be used to describe the

structural nodes. These are the nodes that are only defined in order to

properly define the network, i.e. a node caused by the intersection of

two or more links. This type of node should be assigned the highest

internal sequence number, since it is possible to avoid linking all of

them (eg. only the ones necessary) in some types of analysis which results

in a faster solution. Either the primary or secondary file may be omitted

by inserting in it's place a NULLFILE card. An error will occur if an

attempt is made to re-define a previously defined node.

The linkage file definition card is used to specify the format of the

primary linkage data, define the location of the origin and destination

indices, the flag which specifies whether or not the link is symetric or

one way, and the calculations that are to be performed in the calculation

of the link values.

Up to [0 calculations may be specified on each link card. The

calculations may use input variables or immediate data specified in the

operation definition. All immediate and input data must be integer.

A through error checking routine is included which provides a

complete analysis of any input errors.

The Second Phase in the procedure is merely a sort of a file

generated in Phase I.

The third phase of the system generates the actual paths through

the network. Several options are available. A range of nodes is defined

and each of the nodes in this range is used as the base node in a solution

pass. Note - the nodes are referenced by their converted sequence numbers.

It is also possible to aefine at what point the structural, or non-vital

nodes begin. Several solution strategies are available which use only

those structural nodes necessary for the generation of the minimum paths

or trees. This method reduces the solution time and the volume of the

output over the case where all nodes in the system are linked into the

trees. If the network is symetric, i.e. A =7 B = B =2 A, a solution

strategy may be used which will reduce the execution time even further.

17

Input files are automatically rewound before they are read. There­
fore, it is possible to use the same data for several applications, each

time varying some parameter, e.g. base node, total number of nodes, etc.

The master output file is rewound only on command. Therefore, it

is possible to stack several solutions on the same file. An automatic

checkpoint feature is included and may be invoked if required. This

feature will automatically store all relevant information on a tape at

key points during the solution process. If the run is terminated for

some reason the restore/restart tape may be used to restart the problem

at the last recorded checkpoint.

18

An Experimental Study of Algorithmic Performance as a Function of

Neighborhood Size and Shape

In order to further confirm some conclusions drawn from the optimal

sequencing problem, a study was designed using a grid of discrete points

in 3 and 4 space. The objective function was an exponential function

defined by;

a 2 -wi

f(x,y) = Wi e

i=l 1

where wi = (x-ai)2/bi2 + (y-ei)2 /di2 - 1

where the a., b., c. and d. are selected constants and x and y varied

between -10 and +10 in intervals of, = .001. The function which

appears in E8 can be controlled to possess as many local maxima as

desired by the selection of the parameters ai, bi, ci, di and n.

Another experiment was made with a similar function but in 4

dimensions. The function was:

n

W 2 -w i
 e
f(x,y,z) =
-.i=l

where Wi<'(x-ai)2 /bi2 + (y-ci)2/di2 + (z-ei)2/fi2 -1

These functions were chosen because of the ease with which the sizes and

shapes of the neighborhood structure could be chosen. Two types of

neighborhoods were defined which differed primarily by shape. One shape

is referred to as square. Its neighborhoods are defined as follows:

The neighborhood of a given point (x,y) consists of all points of the
form (x + e, y +3) (x + G, y + S) where -rA < E< rA and -rA-S;<rA and
where r is a parameter which determines the size of the neighborhood. In
our experiment r took on value,.l, 2.-3i.4 and 5. (See charts on next pages.)

The.other class of algorithms were related to the following neighborhood

structure and are referred to as star neighborhoods.

The neighborhood of a given point (x,y) consists of the point itself
plus all points of the form (x + 8, y) or (x, y = s) where -(2r + l)A-_S< + (2r+l)A

The definition of the neighborhoods for functions defined over points

in three space were made by the obvious generalization. For these

experiments r took on values of 1 and 2. Some results are given in the

following table.

19

Function 1, 2 Dimensiois

r, Neighborhood Relative frequency Average number of
S- - global optimal observed neighborhood computed

1 Square .132 396.1
1 Star .156 304.4
2
2

The comparisons, which can be easily made by glancing at the data,

give overwhelming evidence of the algrithmic performance differences due

to simple changes in neighborhood shapes. In almost all cases, both types

of neighborhood structures led to observations of the global optimal

observation. In fact, 20 times out of 30 the star neighborhoods outper­
formed the square neighborhoods. The most significant result here, however,

is the overwhelming superiority of the star neighborhoods when comparing

the amount of computing involved. The ratios run from approximately 4:3

forr equal to 1 to 4:1 for r equal to 5. Since these ratios are directly

related to the computer time involved, the potential savings in computing

would be quite substantial. Although this function is not combinational

and is rather simple in form, it does serve to bring out the point in the

experiment thus re-inforcing the generality of the conclusions drawn from,

the optimal sequencing studies.

20
ANALYSIS OF TWO DIMENSIONAL OPTIMIZATION EXPERIMENT

Neighborhood r- Parameter

Square 1

Star 1

Square 2

Star 2

Square 3

Star 3

Square 4

Star 4

-Square 5

Star 5-.

Neighborhood r- Paramete

Square 1

Star 1

Square 2

Star 2

Square 3

Star 3

Square 4

Star 4

Square 5

Star 5

Experiment No. 1

Average No. of Steps to
local optimal

396.10

304.43

209.08

102.39

141.89

52.84

104.12

31.88

81.78

22.83

Experiment No. 2

Average No. of Steps to
local optimal

402.40

317.76

193.71

104.40

129.56

49.98

99.87

31.60

80.95

22.21

Relative Frequeqcy

Observed Global Maximum

0.132

0.156

0.130

0.160

0.134

0.162

0.096

0.164

0.138

0.152

Relative Frequency
Observed Global Maximum

0.098

0.108

0.126

0.100

0.097

.0.116

0.105

0.120

0.124

0.129

21 'Analysis of Two Dimensional Optimization Experiment

Neighborhood r-Parameter

Square 2

- Star 2

Square 3

Star 3

Square 4

Star- 4

Square 5

Star 5

Neighborhood r-Parameter

Square 1

Star 1 -

Square 2

Star. 2

Square 3

Star 3

Square 4

Star 4

Square 5

Star 5

Experiment No. 3

Average No. of Steps to
local optimal

173.25

90.04

120.88

49.20

82.03.

30.81

72.35

23.14

Experiment No. 4

Average No. of Steps to
local optimal

390.41

284.20

. 205.40

100.20

144.67

52.39

108.23

32.59

85.23

25.71

Relative Frequency
Observed Global Maximum

0.134

0.120

0.092

0.140

0.102

0.090

0.104

0.,112

Relative Frequency
observed Global Maximum

0.045

0.055

0.080

0.065

0.035

0.095

0.055

0.070

0.065

0.033

22
Analysis of Two Dimensional Optimization Experiment

Experiment No. 5

Neighborhood r-Parameter Average No. of Steps to
local optimal

Relative Frequency"
Cbserved Global Maximum

Square 1 385.83 0.030

Star 1 269.72 0.050

Square 2 209.38 0.030

Star 2 104.47 0.005

Square 3 130.33 0.0285

Star 3 44.84 0.035

Square 4 92.14 0.070

Star 4 30.13 0.050

Square 5 72.89 0.040'

Star - 5 21.73 0.050

Experiment No. 6

Neighborhood r-Parameter Average No. of Steps to
local optimal

Relative Frequency
Observed Global Maximum

Square 1 374.47 0.090

Star 1 285.25 0.075

Square 2 201.86 0.075

Star 2 103.99 0.075

Square 3 135.64 0.065

Star 3 55.14 0.050

Square 4 88.64 0.105

Star - 4 35.50 0105

Square 5 78.,75 0.075

Star . :5 26.08 - 0.097

23

Analysis of Three Dimensional Optimization Experiment

Experiment-No. 7 (Three Dimensions)

Neighborhood r-Parameter Average No. of Steps to
local optimal

Relative Frequency
Observed Global Maximum

Square 1 647.16 0.104

Star 1 309.40 0.112

Square 2 323.04 0.149

Star - 2 99.43 0.150

24

The Quadratic Integer Programming Problem

Considerable effort was made in attacking the quadratic integer

programming problem. In order to obtain some insight into the problem

and to accumulate some data for comparative purposes, a comparative study

was made of several known algorithms for solving the (regular) quadratic

programming problem (9). During the study, a total of 10 problems were

developed and computed which were used for computational experiments

throughout this portion of the study.

The problem can be stated as:
n n n

let f(x:,.... xn) = E 1. x. + 2 qij.XiXj.
fjn = 1 3 - = 1 i = 1

n

subject to - aijXj b. ± =i.

jc=

x >0 j =l,...,n

x, integer valued j = 1,...,n

The idea from stochastic algorithms is to start with a random feasible

point in the convex set of feasible solutions and determine the optimum

value in a neighborhood of the initial point. The process is then repeated

for the new point. A sequence of locally optimal values is thus obtained.

The problem then is really composed of 2 subproblems:

1) The random choice of a feasible point.

2) Definition of a neighborhood in the feasible set.

An algorithm has been programmed for the IBM 7040 digital computer

for finding solutions to the integer quddratic programming problem by

using stochastic algorithms.

The procedure for initially selecting a point is based on a method

given in C0. Essentially, an initial point is chosen (not necessarily

integer valued); and if it is not feasible, for the non-integer problem,

it is reflected across the most distant hyperplane on whose wrong side

it lies. The process is repeated and in a finite number of steps, a

feasible (non-integer) point is determined. The coordinates are then

rounded, and if the resulting integer valued point is not feasible, then

a new random starting point is selected -and the entire process repeated.

The procedure for defining a neighborhood of a point is to place the

feasible point in the center of a square grid of points determined by a

e

given feasible point. That is, the neighborhood of (xl°, x2 °,...,Xn°) = x

is the intersection of the set of feasible points with the set

25

'•'5'k'< x xs s0a

t
 ...xs.... x xt + :kI.n:)

/

where k is a specified positive integer and s, t are randomly selected
components. The point in G, yielding the lowest function value, then
becomes the center of a new grid which defines the successor point's ­

neighborhood;

A local optimum results when no further decrease in function value

can be made.by simultaneously consideriing any-two components and their

increments. The process is repeated in its entirety for a pre-determined

number of observations according to some stopping rule.

In order to describe the computational scheme for the determination of

a local optimum, the following problem formulation is assumed:

minimize

z= pjxj +Z ciqi x.

n

=
subject to 2 ai.x. - bi i 1,2,...,m

3 ­j=l

xk. 0 k 1,2,...,n and integer valued.

let (x°,....,xr° ,s°,...,xn) be the initially feasible, randomly

chosen point.

To t is added tdxr -k< tI < k and t2 added to x o -k < t2 < k

then the difference in function values blecomes:

(Pro + 2 2 qirXi°) t, + (ps. + 2 7- q1sxO)t2 + 2 qrstlt2+qrrtl2+qsst2 j=li
i=l

2

At 1 + Bt2 + Ct1 t2 + Dt 1

2 + Et 2

which, if negative, shows a decrease in function value.

The value of ti is fixed (starting at -k) and bounds are calculated for t2

by the inequality;

° aist2__:-:b i - Zaijxj it =,..

26

Calculations are then made for the allowed range of -t with the change
in function value calculated by the above formula. Tis is repeated for
increasing values of t1 up to k.

A new point is thus determined in the obvious way.which is then the

successor to x,

Some results have been obtained for a set of ten 10 variable, 10

constraint problems given in (9). The results of the computational

experiments indicated that their probably isn't too much advantage in

making the grid size larger than 3 or 4 for problems in this order of

magnitude. There seemed to be a definite increase in computer time used
when k reached a value as large as 5. Several times, k=2 was the best

performing value. In each case, solutions were found which yielded

values of the objective function very close to the optimal values found

in the non-discrete problem - usually within 4-5%. For this particular

group of problems (which were generated randomly) the performance of

our method was best for problems with large functional values. This can

be explained by round-off error, however, and has nothing to do with the

algorithms' performances. The frequency with which the global optimal

(or best known) solution.was found varied markedly from one problem to

another. This is interesting, but perhaps not completely unexpected

with problems of this complexity. The same result occurred with the

optimal sequencing experiments. The answer probably lies in the curious

complexity of combinatorial problems.

Some examples of the computational results are:

Continuous Solution Best Discrete Solution
f value = -32.44 f value = -28.8

=1.84 1

X2 = 2.75 3

x3 =1.14 1

x4 =0 0

x5 .80 1

x6 = .60 1

x = 4.45 5

x = .90 - 1

x = .97 1

x 3.86 3
10

for k=5 best value observed 13 out of 19 times
for k=2 best value observed 9 out of 14 times

27

Continuous Solution Best Discrete Solution
f value = -94.75 f value = -91.05

x I = 1.08 1

X2 = 2.48 2

x 3 = 8.11 8

x = 1.69 1

x5 = O. 0

x 6 = 4.04 4

=0
x7 . 0

x 8 =2.85 3

x 9 = 2.97 3

x10 =5.96 6

for k=5, best solution observed 8 out of 14­
for k=2, best solution observed 11 out of 24

These results convince us that our method is a valuable one for these

types of problems. Our difficulty in further establishing this, however,

has been the lack of published experimental results by authors working on

the same program. Their examples have always been of a trivial (3 or 4
variables) variety.

-28 -

PROGRAMS FOR SOLVING THE

GENERAL QUADRATIC PROGRAM1MING PROBLEM

Quadratic Programming by the Method of Dantzig

The algorithm 'OPMIND' solves the quadratic programming problems by

the method of Dantzig. The complete mathematical basis-for this method

is examined in "An Experimental Study of Some Quadratic Programming

Algorithms" by John McGraw Rooker, Technical Report Number 7, University

ComputingCenter, The University of Tennessee.

Basically, one of two sets of calculations is performed, depending

on whether or not the problem is in standard or non-standard form. The

problem is standard if for any variable either the primal or dual element

is in the basis, but not both. The problem is in non-standard form if

for any variable(s) both the primal and dual elements are in the solution,

forcing another variable to have neither element in the basis.

A. 	 Standard Form - The non-basic element with the smallest

negative term is chosen to enter. The element to be replaced

is the one first driven to zero. After these elements are

known the proper transformations are made. If the element

driven to-zero is the complementry element of the entering

element, the problem stays in standard form and the process is

repeated, otherwise the problem is in a non-standard form

and process B is used.

B. 	 Non-St&ndard Form- an attempt is made to bring the problem

back to standard form. An attempt is made to make basic the

dual element of the variable: with neither dual or basic

elements in the basis. If the element forced out makes the

problem standard, use process A, otherwise, repeat process B.

Summary of Subroutines Used:

QPM1ND - Control Program. Performs all input and output; controls
iterations depending on whether the problem is in a standard or
non-standard state. Also, it performs all checks for valid
solutions, no solutions, or infeasible solutions.

MINY - Finds the variable not in the basis to be entered - problem must
be in standard state.

VAROUT - Finds the variable in the basis to be removed when the entering
variable is known - problem must be in standard state.

29

TRAN-	 Transforms the matrix given the variable to enter and the one

to remove - used in either standard or non-standard state.

YIN - Used to attempt to drive the problem back to the standard

state. Given a variable with both primal and dual elements

out of basis, it attempts to replace dual element in basis ­

used when in non-standard state.

FVAL - Given the final levels of all primal elements in the basis

FVAL determines the final function value.

Input Matrix:

A. Seven elements per card, ten columns per element (7Fi0.2).

The elements of A are punched row-wise. Figure 1 shows the
construction of matrix A.

P Q

B A

FIGURE 1

where:.

Pi - are the linear terms of the quadratic function.
Qjj - if i = j - squared terms of the quadratic function.

if i # j - cross-product terms of the quadratic ftinction.
A.. - coefficients of the linear constraints.
B$j
 - limit on constraint i.

NOTE: ** Only less than or equal type constraints can be used and B. must
be positive, also the number of activities + constraints must be less1

than 99, and the number of activities must be less than 50.

Flow charts for the program follow.. Program listings are available

.from the author.

30

2

Program - Qpmind

Quadratic Program

Method of Dantzig

"K 1

Reset Timer
 ,
Read

N, JCON,

NUMB

Wit

Zero FLGS;

.ROW;ROWOUT;
R'pOWIN YCI
MCOL; IT

[Pointers

Write detai­
led prob­

\le. desc­

iripo

31

Program Qpmind

Contents of A matrix

at this time

Read in

Ai

P Q A

B A P

where:
Store P*2
 P is linear elements

in EL in quadratic function

*1/2

Z is squared & cross

roduct elements in

quadratic function

B is limit of constraints

Store A is coefficients

Q elements in of constraints

Q from A

Store-A

elements

T \Write tots,
Ainitial/
PRIN

Store point­
ers to varia­
bles in basisf

INBAS (I)

(initally

slacks)

Pointers in 1

INCOL (I)

32 Program - Qpmind

2

rite /
entering/

Solution found

Nori rite number of]
varialefo- Noiterat ion-var-!

(E)iables ba
ss&leve

Ys

CALVAROUT

.prFint rq

Write uete
leaving"

variable Y es

\final

Is matrix

No souto

~egenerat e/

(FID)Write 7
\solution
 e \is deg- D

aria-- -­
blestaci ritethere is

ard form /-kJ no soutonCAL VA

(COMP) andt in
matix

33
Program - Qpmind

.T-

Write fine

function

value

Zero storage

and get time

for solution

Write

solution

time

34 Program - Qpmind

I

Yes

Trans formed

\matrix

Number of

iterati6n.

increased by

Pointers

reivised due

to last

iteratifon,

35

c

Program - Qpmind

C

Trasforme

matrix

printed

inresedlby

1

iteration

increased by

Pointers

revised due to

last iteration

CALL YIN

36 Program - Qpmind

*Writeentered

variabl

.Vanable

*ientered
No

IN"N

itera.tion

" tr te
de taie Nos

37 Program - Qpmind

H

CALL TRAN

" tai No

rin

Transformed/

Number of

Siteration

increased

by 1

[Pointer revised

due to last
iteration

38 Subroutine MINY

Stt off YES

C~tartand FIRST

Is'

Yes "

Yes

Yes

F/ Ys,

FIRST

True

Rowrin

|Coefficient|

Set YES
ON

I =I 4n

Yes

s No Reur

Subroutine VAROUT ' 39

COMP; FIND;

lpointeis
Ifor

. search

MSet

ind column

COL) corres­

onding to

ntering
ariable

_t­

arale or el-
Pnot correspo----­iag to nter-

Tru e -N

Soluti
bygeeae

Fals-I e

F orD-.FLS

-- spudnFas

•Subroutine.VAROUT -40"

atio Iqa o co f­

respondingcoficent

ficient f6r I row/cor­

in entering variable

Yese

.- ...

Irow over
eneing vector
oefficient

:_ true
FFe-tu

True
urn at'

True
.

-[FXD se Fals

• . [Trru

IRetrnw Tu

41
Subroutine TRAN

Start

element

EAle element

in leaving

ARivot vo
row except

pivot conve­

rtnd by -A

(ROW,J)/ARC

Pivot "

element c

A (IROW, ICOL)|
l/ARC

|Ecrreponin eleen inxcp

leaving row

True & alse

v

42
*Subr6utine TRAN

All el&ments in
entering column

except pivot

element convert

ed by

A(I,COL)=
A(I,COL)/ARC

Return

43 Subroutine FVAL

Start+I

y Yes

+± XVAL()t
activities* K=0
lineal elementsv

of cross poduc VALUE VALUE
Z

time (Qij) and + Q (J,K)*True Fals
level of activity XJ*XK

1*level of

activity j

44 5utroutine YIN

S tr
IN; POS;l DGEN[

et false '
setup pointer

. eup pointer

to column where
slack is to be
located

1(Y=

Is

slack

No

frthis Ysriow= DGEN=RUE

Not el mnt iRtr

seti t Fas"O TueA
AYe lseO

SROWIN =I

IN =TRUE

II 1

45 Subroutine YIN

in A(Row YO)
0and P

" " \ es - .

ARYC=

AA(IW ,YC)

POS
False

IsetTrue
_ . "",,,

< RY Tue
>COLMIN

POS settrue

~False

SCOL MIN= ARYC

ROWIN = ROW
IN set true

46

QUADRATIC PROGRAMING BY THE METHOD OF BEALE

The algorithm 'QBADPD' solves the quadratic programing problem by the

method of Beale. The method is described and illustrated in 'An Experimental

Study of Some Quadratic Programming Algoritbms' by John McGraw Rooker, Technical

Report Number 7, University Computing Center, The University of Tennessee.

The 	computational scheme utilizes the following rules:

I. 	Make the transformation according to the component corresponding to

max Ipuk . That is determine that sign unrestricted component say xk

[p' =1,2,..., t.

rule for breaking ties. Then determine the transformation (Type I or

such that p 0 andjP p , i 	 Use a suitable

Type II) which leaves all components except xk fixed. (Type I or
U

Type II) which leaves all components except x l
u1

fixed. (Type I is of

the type xj-c 0 + CX; Type II is x.- p./2 + Q.X).

2. 	If there is no sign restricted component (or if the p elements corres­

ponding to sign unrestricted components all vanish), then make the

transformation according to the sign restricted component corresponding

to ' kr < 0. (See page 3 for definition of terms.)
1 1

Summary of Subroutines Used:

QPMBPD - Control program. Performs all input and output and controls iterations

for transformations.

FINMV F 	 Calls SUBROUTINE
 rinds the component not in the basis to be entered.

MAXIND.

MAXIND - Finds the component in the basis to be removed given the-entering com­

ponent. Determines the type transformation to be made.

TRAN - Performs the transformation.

-47

DGCK -

INFCK -

Checks for degeneracy of solution.

Checks for infeasibility of solution.

Input:

Card No. Data Format

LEAD iP, PR, FIRST (5

1qP - nuiber of problems to be solved.

PR - print control. T for printing of tableau

after each- transformation; F other-'

wise.

FIRST - print control. T for printing of first

and last tableaus; F otherwise

V, Ll, i , L1)

NV, JOON, M

NV - number of variables

slack variable.

- including one

(315)

JCON =

NUMB =

number of constraints.

arbitrary problem number.

-2- A(IJ)'j = ±j0 I =i

where IROWS = NV + JCON

OS (710.2)

A(I;J) - the A matrix is set up as follows:

48

A(I,J)

XI X2 	 XIY

0 pO/2 p2 /2 . . . plvl2

p1 /2 ql1 q12l- NV

P2/2 q21 	 .q2 2 	 q2 NV

aN 1 V,	 NV;X
1 2

1"NVYI 	 bI all. a

Y2 	 b2 a21 a22
 a2;NV

YJCON 	 bJCON aJCON, 1 ajCON2 . . " aJCoiNV

Where p, are the coefficients of the linear terms of the objective

function;

qij are 	the coefficients of the cross product terms (i ' j) and the

squared 	terms (i = j) of the objective function;

,b are 	the constant terms of the constraints; and

a.. are the negatives of thd coefficients of the linear terms of the

constraints.

NOTE: 	 Present dimensions restrict the number of rows in the A matrix

(tableau) to 150- and the number of columns to 50.

QPNPD 49

Read
Np, PR,

First

NV JCON,
A
 NUMB

Get initial

time

Write descrip­
tive problem
information

Initialize
counters and
pointers

Write
descriptive

ifformation

2

'50

2

Read A matrix
(first

tableau)

Initialize pointers

for basis component-

Find restricted
component with maxi-

B mum partial deviative
SUBROUTI NE FINMV

/Determine whether

/transformation is to
\be Type I or Tye II:/\UB'MAI/

" str.ct\dWrite /

t ~ Yes \ descriptiv

.nd unrestricted ore-\
ponent to enter basis:

SUBROUTINE FINKMV /

No

C

51

3

unres
triced
component
to -Bzer basis-?

D SUBROUTINE
TRAIX

Increment
iteration

counter

DGCWas

comoen-N

52

ible solution:

PrNt

Checkor ineaMessage
Write

e

esYe

stion

Goo
too F

53

Write ia

A matrix

(tableau)

Write elfaips

time and

umiber of'

iterations

STOP

SUBROUTINE 1IWFCK (INFEAS)
 s

SetI = +flag
off, INFEAS =F. TR

c/omponent

in basis?

Yes I!=? Ye

• / 'IN'FEAS --

To/x> VV + icoN
+ NU­

SUBROUTINE GCK (GEN)

Set flag- off, DOEN =F.

I = NV + I

No

"NO

+'i DGEN T

+

No -->NV +JCON
+N.

56 SUBROUTINE TRAIN -(ROW, BSROW,TUV)

START

Tzransforma

FYes

NO

Make transformations
,azcording to Ty-pe IJ7

equations

Upda

piRTURN

Make trans formations

according to
Type I equations

VR
ea eaN),

EUpdate

Is

Yes NVR >

NU = NT+1I
Update IN~BAS(RoW), a.nd
create INBAS(JK)

57 SUBROUTINE FINMV

Initialize pointers
ROW, BSROW, and
NUV = 0..

Set flags off;

YES, PART = F.

1=2

pbMNo compone re- No
.standard form? / - sult in Type I -2 --

Yes
Yes

YES=T

RO = I

s e

A 1)

58

2YS-T

acompo nent t No

enter in basis.

YesUR

59 SUBROUTINE MAXIND

-START

Set flag off

PART = F.
I =NV+I1

A((ROW,))e

Wil

BMN = A(IL)/

60
2

Is

+ NU?B ~JCONT

Yes

A(O,ROW)Ye

NO.

- Yes [.

PART =T

61

tiOn result in
 Yes

TyeII transformation?

NO

Yes

+

Ye

"'. ~Yes °"

A(I ROW)

BSROW =I

I+l1

Is

4 62

Yes

Is

=0 -Yes
A(ROW,HOW)

SYes

-- 'PART =T

63

BIBLIOGRAPHY

[11 Gordon Sherman and Stanley Reiter, "Discrete Optimizing", J. Soc.
Indust. Appl. Math., Vol. 13, No. 3, September, 1965.

[2] J. A. Joseph, "Heuristic Approach to Nonstandard Form Assignment
Problems", Operations Research, Vol. 15, No. 4, July-August 1967.

[3] J. T. Robacker, "Some Experiments on the Traveling Salesman Problem",
RAND Research Report RM-1521, 1955.

[41 G. A. Croes, "A Method for Solving Traveling Salesman Problems",
Operations Research, 6 (1958), pp. 790-812.

[5i -M. Held and R. M. Karp, "A Dynamic Programming Approach to Sequencing
Problems", J. Soc. Indust. Appl. Math., 10 (1962), pp. 196-210.

[6] G. Dantzig, D. R. Fulkerson, and S. Johnson, "Solution of a Large-
Scale Traveling Salesman Problem", Operations Research, 2(1954),
pp. 393-410.

[7] R. L. Karge and G. L. Thompson, "A Heuristic Approach to Traveling
Salesman Problems", Management Sci., 10(1964), pp. 225-248.

[8] Kubert, J. Szabo and S. Giulieri, "The Perspective Representation
of Functions of Two Variables", Journal of the Association for
Computing Machinery, Vol. 15, No. 2, April 1960, pp. 193-204.

[9] John McGraw Rooker, "An Experimental Study of Some Quadratic
Programming Algorithms", Technicil Report No. 7, University of
Tennessee C6mputing Center, Knoxville, Tennessee.

[101

[1]

Isaac J. Schoenberg, "The-Relaxation Method for Linear Inequalities!',
Canadian Journal of Mathematics, 1954, Vol. 6, pp. 393-404.

A. Shimbel "Applications of Matrix Algebra to Communication Nets"

Bulletin of Mathematical Biophysics, Vol. 13, 1951..­

[12] Hillier and Leberman, Introduction to Operations Research, pp. 218-222.

