@ https://ntrs.nasa.gov/search.jsp?R=19700020808 2020-03-12T02:31:11+00:00Z

SEARCH FOR GOOD ALGORITHMS
FOR PRACTICAL SOLUTIONS TO DISCRETE

9
OPTINMIZATION PROBLEMS
Supporied by NAS8-11189
i)
(ACCESSI w ('n;l U}
AGAMERS: 7

CY-/02%)/3 %5

{NASA CR OR TMX OR AD NUMBER) (CATEGORY)

FACILITY FORM 602

)

UNIVERSITY OF TENNESSEE COMPUTING CENTER

THE UNIVERSITY OF TENNESSEE
Knoxville, Tennessee

Roproducad b
NATIONAL TECHNI
INFORMATION ASER—!SQ‘IE&%;

i S

TR RS BrinG g1, VTS 2 A e, Y
WSpringfigid, "\ AN

N70-30118

SEARCH FOR GOOD ALGORITHMS FOR PRACTICAL SOLUTIONS TO
DISCRETE OPTIMIZATION PROBLEMS

University of Tennessee
Knoxville, Tennessee

Distributed . . . ‘o foster, serve and promote the
nation’s economic development
and technelogical advancement.’

U.S. DEPARTMENT OF COMMERCE

This document has been approved for public release and sale.

FINAL REPORT

Search for Good Algorithms for
Practical Solutions to Discrete
Optimization Problems

Supported by NASS-11189

» Prepared by Gordon R. Sherman
University of Temnessee Computing Center

Knoxville, Tennessee, March, 1970

TABLE OF CONTENTS

Introducon. . . « & v v ¢t vt b e i e e e e e e e e e e e e e e e cee e e ii
The Stochastic Algorithmic Approach fo Diserete Optimizing Problems 1
Stochastic Algorithms Applied {o a Parfitioning Problem. e . B
Stochastic Algorighms Applied to Optimal Sequencing (Traveling

Salesman) Problem o . v i i e e e i e e e e e e s e e e e 7
Minimum Path Througha Network. e e e e .. 13
JAn Experimental Study of Algorithmic Performance as a Function of

Neighborhood Size and Shape ¢« . v v v 4 v v v s v . I I 18
The Quadratic Integer Programming Problem. C e et e e e e e e s 24
Programs for Solving the General Quadratic Programming Problem. 28
‘ Quadratic Programming by the Method of Dantzig « . ¢ v ¢ 0 v o o 28

Quadratic Programming by the Method of Beale v e v .. 46
Bibliography [R LI e s s e+ s .. 63

INTRODUCTION

Problems concerning the optimization of mathematical functions have always been of
interest to mathematicians and their solutions are of great practical value. Science and
engineering have especially benefitted over the past several hundreds, of years from
techniques developed by mathematicians{in calculus and related areas). Although the
need and practical -application for optimization has been apparent, mathematics has
furnished comparatively little help, however, in solving problems defined over discrete
spaces. Usually these problems have been combinatorial in natuxe and extremely
unyielding to theoretical analysis. At least this is true in so far as the record.of
mathematical analysis in providing theorems or characterizations which are useful
for practical application is concerned,

Interest in discrete optimization took a notable jump with the onset of such fields
as Operations Research and Management Science. The success of work done in these
areas is particularly dependent upon firiding solutions to problems in discrete optimi-
zation in the 1940's and early 1950"s which was independent of the availability of high
speed digital computers, Then, with widespread availability of powerful compufers

.becoming a reality in the 1950's, results in solving discrete optimization problems
took on even faster growth. It was not long, however, until the computer essentially
reached a limit in aiding researchers in this field. Algorithms were still largely

" being developed by people who were thinking computationally along traditional lines.

The computers were used as though they truly were "large, fast, desk calculators®.

Obviously, when this line of thinking prevailed, computers essentially reached their

limit in value when the ratio of computation necessary for solving a problem in small
dimensions over a problem with larger dimensions reached the approximate value of
the ratio of computer power to desk calculator power. That is, for example, one could
better solve linear programming problems with a computer over desk calculators to
about the same degree that the computer was faster than the calculator.

The computer had much more to offer, however, It offered a means to solving
problems by methods which not only weren't practical when worked by hand, but
weren't even thought of. The Monte Carlo method is an early example of this. The
increasing use of simulation by digital computer is another. In this work we have
investigated another ‘a:pproach which I chdose to_call the method of stochastic algorithms.
It relies upon probability to circumvent much of the enormous complexity which pre-
vails in combinatories. It provides anunderlying theory. If has been shown to be quite °
powerful in some important situations. It provides practical approach to many difficult
problems, and its usefulness will grow as experience is gained in formatting many .
‘problems into its rather simple structure. This work is primarily aimed at acquiring
some of this necessary experience. Our work took 6n several other side projects '
which naturally arose during the course of the study. Work was done on the non-
discrete quadratic programming problem and also on the problem of finding all shortest.
paths through a given network.

http:record.of

This project was worked on by several people at the University of Tennessee
Computing Center. Among the students who received support from this project (with
their major and degree received or being worked onj are: Alfred K. Hume, B. S,
in Engineering Physices; Sherrie L. Ippolito, B. S. in Education; Walter L. Leatherwood,
M. S. in Management Science; Suzanne M. Miller, M. S. in Computer Science;

John M. Rooker, M. S. in Mathematics; Douglas W. Toppins, M. S. in Management
Science.

iii

The :S‘toc‘hastic_A]:gigrithmic Approach to Discrete Optimizing Problems.

A. Discrete Mathematical Programming

The mathematical programming problem can be stated as

Determine x, from a space ¥ such that
£(x,) is maximized (or minimized) subject to constraints -
that %, belong.to some well defined subset, C, of 3.
f is called an objective functiom.

Example 1. Linear Proéramming
maximize cqxjy + coXpt ... + ey R,
subject to the conditions

811X * agoxkg + ... + a3k, < by

a91¥1 + a99Xg9 t ... + agpxpy < ba

ap¥y toapoxg + ... +oagx, < by

and xizl) i=1,...40

In this case x, equals the vector (%, Xp... X,), ¥ is euclidean
n - space and C is a convex polyhedron lying in the positive ’
‘orthant. f is simply a linear function of the components of x,.

Example 2. Discrete Linear Programming

In discrete linear programming the problem is usually considered
to be the same as the linear programming problem except that

the C set is restricted (or intersected) with the non-negative
integers.

http:belong.to

Example 3. Quadratic Programming

The quadratic mathematical programming problem is maximize

n n n
T pax, + & T QX
g 1 i i1 =1 13137]
subject
-n
z aiJXj < bi i= l,2,...,m
j=1
and
xi_(;o i=1,...,n

That is, C is identical teo that of Example 1 but the objective
function is a quadratic instead of a linear functiom of .

X1, X9, ...,X;. In some important cases, the quadratic functjon
is restricted to the positive definite class,

Example 4. Partitioning problems.

Given a sequence 1,2,...,n (call it ;3 and a matrix

{a..} i, jl,...,n =

11 12 In

a a
nl ***“nn

find a k set partition 1T = (Pl,...,Plz) of Elsuch that

i,jePy i,jE.P2 . i,jePy aij

is minimized.
In this case, £ is a set function over all possible k set
partitions of ® and-3¢ is the set of all possible k set
partitions of ®W. C in the example here is non-existent,
but in some cases it could consist of a restriction on the
cardinalities of the Pj, J=1,...,k.

Example 5. Sequencing Problems
A familiar sequencing problem is:

Given n, and a distance matrix

{?ij} i,j=1,...,n, find a permutation p (Pl’PZ"'Pn)

of the points in n such that f(p) = = app +ap,.p1
i=1 1i,ih

is minimum.
In this case }{ would correspond to all permutations of the first
n positive integers and £ is a function describing the sum of

the distances from point to adjacent point defined by the permutation.

Otlier sequencing problems are thoge arising when shortest
paths through networks are being sought and will be covered later.

Heuristic Algorithms

For many problems in discrete optimization, algorithms have
been found which lead to global optimal solutions. Examples of
these situations are, the linear programming problem and the
(non~discrete) quadratic programming problem. These types of
algorithms which lead to exact solutions to problems are deterministic
but their practicality varies from one case to another. The
lipear programming algorithms are very useful. In some other
cases, the problems for which solutions are derived, and their
corresponding algorithms are of theoretical interest only -
that is, their practical usefulness js limited. For this reason
many approaches to some of the more complex problem situations
have led researchers to develop heuristic or near optimal solutions.
That is, algorithms which are facile and relatively simple in
construct and which have strong intuitive appeal and which show

satisfactory and encouraging results when applied to small
problems are sought. Some of the criticism of these approaches
are: 1) there is no assurance of finding global optima,

2) there is usually no assurance that the heuristic algorithm
will be "near" the global optima nor even a method of measuring
how close to global optimality any particular solution is,

3) they lack mathematical concinnity, beauty and rigor, 4) their
usefulness can be determined only by cowparison with other
algorithms applied to idemntical problems. Out approach in this
study has been to explore the advantages of near optimal solution
methods and to develop a particular class of them in the stochastic
algorithmic method. Also, in view of disadvantage 2) stated
above, a method of formally evaluating these differing algorithms
is developed and experimental comparisons are made.

Stochastic Algorithms

Let 3L be a discrete space of points and x be a typical member of
>t . Assume that f is defined for all xeX~. Then, for M- and f,
a stochastic algorithm consists of a particular neighborhood
structure an)¢ and a probability distribution over 3¢, dencted
as P(x). The neighborhood structure which we will call N, has
the following properties:

1. For each xe}- , there is a corresponding a neighborhood n(x)
consisting of points in H-

2. n(x) contains x

Given 3 , £ and N, the stochastic algorithm is completely
defined by a successor structure s(x) which has the following
properties:

1. s(x)en)

2. £(s(x)) z £(y) for -a’ll ven (%)

3. f(s®) =f@ 3x=8s

4. s(x) = x3 £(x) » £{y) for all yen(x)

If s(x) = x then x is called a locally optimal point. Obviously,
the collection of all locally optimal points contains the global
optimal podint.

A stochastic algorithm proceeds by selecting x from ¥
according to probability distribution P. The successor structure
is then applied (or computed) until a local optimal point is
found. The process is repeated a number of times until a
satisfactory probability statement can be made about the likelihood
of the global optimal point having been found and/or the relationship

between the best observed local optimal point, a bound on the
global optimal point, and the cost of further computing. This
‘process further detailed in [1].

Much of the success of the stochastic algorithmic approach
.depends upon the selection of the neighborhood structure to be
used for solving each different problem. For this reason,
research into the subject and experimental comparisons with
familiar problems are important. The following describes some
investigations into this subject.

Stochastic Algorithms Applied to a Partitioning Problem

The partitioning problem as defined above has been worked on by several
authors including J. A. Joseph. [2} In this part of the study, two stochastic
algorithms were developed and programmed to apply to partitioning problems
determined by varying the parameters n and k as defined in Example 3 above.
Joseph's algorithm was also programmed and applied to identical problems.

The two stochastic algorithms developed for the partitioniﬁg problem
are called GRS(I) and GRS(II). GRS(I) proceeds as follows for a given
n, k and aij i,j=21,2,...,mn

1) Select a random k set partitionT of n
2) Compute f()
3) Seti=1

4) Altermtomi 1i=1, 2, ...,k by moving point i into each of
the k sets of 17 .

5) Compute £(ri) and determine such that £(G7j) = £@i) 1 = 1,2,...,k
6) T “4g the successor of 7 -

7 If £(t") = £67),Tis a locally optimal k set partitions with
respect to GRSL :

8) Go to 1) unless some pre-chosen stopping criteérion is satisfied.

GRSII is identical to GRS{I) except that 77’ is selected as the first
partition found which is better (i.e. has a smaller £ value) than7. That
is, GRSI is a steepest ascent algorithm, GRSII is a positive ascent
algorithm. -7)

Experiments were run for randomly determined matrices for m values
equal to 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100. It turpmed out. that
in every single experiment, the best value found by GRS(I) was at least
as good and in about 98% of the cases better than that found with Jogeph's
algorithm. All computer programming was done by the same programming in
FORTRAN and run on the same machine. Some sample tabulations are given
below: ' :

. N ="35 Functional Values
=2 Joseph GRS(T)

14280 13973

14551 13578

13828 13180

7 14013 13255

13871 13226

14174 13400
*Average Computer Time 68.0 101..18
K= 10 1177 728
© 1036 705

887 692

1001 771

1074 713

. 934 676

*Average Computer Time 183.8 118.9
K= 15 370 180
) 323 150

334 193

456 197

342 232

357 198

*Average Computer Time 296.0 111.2
®Average computer time is in 60ths of a second on an IBM 7040.
These results are quite typical of the entire experiment. To briefly

sumnarize, we can say:

1) GRSI consistently outperformed the other algorithms in finding
better values for the objective function.

2) The time performance was consistent over various values of n and k.
The Joseph algorithm performed best for small values of k (k<5)
but GRSI consistently performed better time wise for k larger tham 5.

An ‘example of timing data follows:

N¥=35
GRSI Joseph
K=2 101.18 68.0
-5 114.85 113.2
10 118.9 183.8
15 111.2 296.0
N=50
K=2 226.2 134.2
5 261.5 224,2
10 262.4 ’ 371.2
15

249.6 508.7 °

Experiments with the optimal sequencing (or traveling éalesman) problem.

The results with the optimal partitioning problem are encouraging
and suggest that the stochastic algorithmic approach might be especially
useful in attacking combinational type problems. Since combinational
problems are notoriously famous for being immune to mathematical analysis
but at the same time, very critical to the solution of many problems of
the real world, the value of our approach here can have a major impact on
the advancement of techmology. In order to further study this aspect of
discrete optimizing, extensive application and experiments with the optimal
sequencing problem was carried out. This problem is defined in Example
5 above.

The problems on which we have worked include: Ten 9-city problems
given [3], a 15-city problem, a 20-city problem [4], a 25-city problem[5],
a 33-city problem[>], a &42-city problem [6], a 48-city problem [5],
and a 57-city problem [7].

A family of algorithms were developed and applied to the problems
mentioned zbove. These algorithms which we have labeled Algo I, Algo II,
Algo III, Algo IV and AlgoIV(r). They are described below. They were
designed for computational-convenience. Algo I, Algo II and Algo ITIX
were used in this study only to a limited extent; the Algo IV(r) series
was used on all of the problems mentioned above for several values of r.
Most of our results are for the Algo IV(r) experiments. In each case
an estimate was made of the value of r which would have given the best
performance. This, of course, involves hindsight and cannot always be
expected to carry over to different traveling salesman problems. However,
the evidence presented here indicates that in practical situations, our
methods are Iikely to be valuable.

The Algorithms.

Algo T.

Algo I proceeds as follows: A random permutation p of {i,z,...,n}
is selected and £(p), the length of tour p, is computed. The permutation
p' is derived from p by inverting the first and second elements of p.

The £(p') is compared with £(p); if £(p') is less than £(p), p' replaces
p and f(p') replaces f(p). Then the second and third elements of the
resulting permutation are inverted to form a.new permutation p" and again
comparison is made. This process is continued until n. counsecutive
interchanges have been checked without a change in the permutation, i.e.,
without reducing the length of the tour. At this point a locally minimal
tour has been found. The tour P and its length f£(P) are recorded, another
random starting permutation is chosen, and the process repeated.

Algo II.

Alge 1T is similar to Algo I except that instead of comparing two
pernmutations (i.e., by considering the twn permutations of a given pair
of adjacent paints), six permutations are compared. The six nermutations

are those obtained from the six permutations of i,i+l,i+2 (mod n) for
i=mp,2,...,0. A locally minimal permutation is one such that no
better permutation (i.e., one with a shorter tour length) can be found
by permuting any .three adjacent points in that permutation.

Algo TIT.

Let pl = (i9, 19, ++.5 1iy) be a (randomly selected) perﬁutation of
of the integers p,2,...n. Now form-a new permutation, say p»™,_ by
interchinging the values of iy and i% to form p“(i.e., i1 in p“ is the
i, in p~ and the i, in p2 is il in p~). Then compute_the tour length
f%pz) and records ig value. Next interchange iy of p“ and i3 of p“ to form
a new permutation p>, Compute £(p3) and record. Then interchange
ij of p3 and iy of p3 to foim p*.,_ Compute f(g) and record, etc. This
process continues until £(p),f(pz),...,f(pn"),f(gn) = £ (p) have all been
computed. A permutation p e« such that £(p«) §‘-.f(p), i=1,2,.,.,n, is
determined and is used as a starting point for amother set of comparisoms.
The next set of comparisons is carried out by starting with the second
point in the permutation p«. This can easily be done by circling the
elements of p one position to the left and then operating on the
resulting permutation in the same manner as described above. The process
is continued until n sets of (n~1) permutations have been examined without
decreasing f. At this point a locally minimal permutation has been found.
Another random permutation is then chosen and the algorithm preceeds to
find another local minimal permutation.

Algo IV(r}.

Algo IV(1) is just Algo III. Algo IV(2) is an extension of Algo III.
When a locally minimal permutation, p, has been found by means of Algo III,
two adjacent points in p are moved as a pair being placed into that
position and orientation which minimizes the length of the tour. This
procedure of moving two adjacent points together continues until no pair
of points can be moved so as to decrease the tour length. Algo IV(3)
is similar process for triples to adjacent points after Algo IV(2) can
find no further improvements, while Algo IV(r) continues until no advanta-
geous move can be made by applying Alge III, Algo IV(2), Algo IV(3),...,
Algo IV(z-1).

The- computer program of the Algo IV(r) algorithum is described by the
following. An initial (random) permutation of the first n positive integers
is read in each integer associated with a point (or mode or city).

(C1,C9, ... Cp) represents an initial "tour" starting at Cj, the city
in position 1, proceeding to Cz, the city in position 2, ete.

A parameter & (l¢s<r) refers to the first s cities in the tour. The
algorithm, in effect, removes the first s cities and "re-inserts" them
sucessively into positions between C;q through C,. The total tour distance
is calculated at each position. - If the tour distance is decreased at ome
or more positions, as compared with the initial tour distance, the s cities
are permanently inserted at that position at which the tour distance decreased
‘the most. ’

The permutation is then shifted so that the city formerly in position
o g4] Mmoves to position Cq and the process is repeated. The s cities are
checked in both orientations. For example, if s = 2, and the position
being checked is k, the "backward' orientation is checked first:

i " Rl Tl WL |
and then the forward orientation:

0k = €1 - C2 — O3 —=

If no improvement over the initial tour is effected, the permutation
is shifted to the left 1 place, so that the initial) becomes Gy

Example: If 2 - 1 - 3 ~ 4 represents an initial tour of 4 cities and
no improvement (s=2) is found in the following sequence: Y

3-1-224
3-2-1-4
3-4-1-2
(3 - 4 ~ 2 « 1) represents the same tour as the initial omne.

The permutation is shifted to 1 - 3 - 4 - 2 and the process repeated:

4-3-1-2
b-1-3-2
b-2-3-1

In the program,s is initially set equal to 1 is what we call PHASE
I analysis. This phase terminates when no further improvement is made
by inserting one city at the various positions; i.e., when, after the
initial city is checked, no further improvement is made for n - 1
congsecutive applications.

. s is then increased by 1, and the process repeated until no further
improvement is made. by inserting two cities, (in either orientation),
similarly for s = 3, ete. After s reaches r or specified maximum value,
it is set equal to 1 again.

After the initial settihg of s = 1, the process terminates when s — 1
successive applications yield no further improvement. In other words, if
some improvement is made at s = 4, say, and the maximum specified value
of r = 10, then the algorithm will terminate if no further improvement is
found by setting s = 5, 6, 7, 8, 9, 10, 1, 2, 3, at this point, we say
that a "local optimum’ has been found and the tour distance and tour
vector are recorded.

The above method constitutes a PHASE I analysis. The PHASE II
analysis is similar, except that s starts at the specified maximum value
r and is incremented by -1 at each stage until it reaches 0, at which
time it is reset to the maximum value. Detailed material on these computer
programs are available from the author.

Some of the results of these experiments are contained in reference [11].
Some of the more important results of this experiment are the following:

1) The stochastic algorithmic approach has again proven to be very
powerful in comparison with other known algorithms. In each case, answers
as good or better than any other known answers were found.

2) Important insight into the relationship of the definition of the
neighborhoods to the performance of the algorithms were egtablighed. In
particular, the algorithm Algo I, and Algo II and the series Algo IV(r)
revealed that performance is clearly related to the neighborhood size.

To see this more clearly one might consider the two extreme cases;

a) n(x) = x (i.e. esach neighborhood consists of itself) and b) n(x) = ¥
(i.e. each neighborhood consists of the entire space. Case a) leads to
simple random search and is clearly inefficient. Case b) is merely our
exhaustive search of the entire space, the impracticality of which leads
to the discrete .optimization problem in the first place.

3) An especially valuable discovery came from the work with the
Algo IV(r) series. These algorithms differ from generalizations of Algo 1
and Algo IT in that the neighborhoods differ not only by size but by shape.
The neighborhoods in Algo I and Algo II are compact in the sense that each
pair of points are relatively close to each other. For example, if we
define the distance between two permutations of T, -

]

p = (1,p,,P3-.-D)

q = (13‘:12:":13- --qn)

-as d(p,q) = I ﬂi~ il: p, = CI-}
1,3 o
it can be shown that the average distance between points in the neighborhoods
of Algo IV(r) is much greater than the average distance between pairs of
points in the neighborhoods of generalizations of Algo I and Algo IT. This
is true when the cardinalities of the meighborhoods are approximately the
same. -

Intuitively one can conclude that the superiocr performance of the
Algo IV(r) series is due largely to the shapes of the neighborhoeds. The
difference in performance within the Algo IV(r) series is also due largely
to differences in neighborhood shapes. An important fact to be noted here
is that computationally, the neighborhood shapes deo not necessarily cost
more. In our case with Algo IV(r) the cost of computing over a neighborhood
- is the same as that for neighborhoods of generalized Algo I and Algoe II
when the sizes of the neighborhoods are equal. It was this discovery which

-10

11

lead to the study of the neighborhood structure and the idea that it is
the neighborhood shapes which determine the efficience of stochastic
algorithms. This is even more important when it is considered that
practically all known heuristic algorithms, or near optimizing algorithms,
whether there is a stochastic element to them or not, can be fit into the-
stochastic algorithmic structure. The case of a deterministic, near
optimizing algorithm can usually be looked at as a Stochastic Algorithm
of sample size 1, perhaps using a probability distribution which places
all weight on 1 or perhaps a few points in X .

12

Learning Experiments With the Optimal Sequencing Problem

‘It has been conjectured that important information accumulates during
the process of a stochastic algorithm computation. That is, over a period
of time, certain areas of the spare ¥ are likely to be explored more
frequently than other areas of X . This might lead a researcher to
believe that the area where most of the search is going on is the most
promising area to look for the global optimal. If so, this could be
taken advantage of by deliberately and perhaps exhaustively carrying on
the computation in the most promising places. This could be accomplished
by altering the probability function P(x) as ‘the computation proceeds.
With this notion in mind, some experiments were set up using the optimal
sequencing problem. This consisted of keeping a frequency count of the
appearance of all possible links between pairs of points in the local
optimal permutations. After some computation, greater probability was
placed on those links which appeared to be most popular in the sample
of observed local optimal solutions. Also, greater emphasis was placed
on those links which occurred when £(p) was relatively small. The net
result of these algorithmic experiments (they were called learmning
algorithms) when performed on data very familiar to us was:

1) The frequency-with which the learning algorithm found the
optimal (or the better) sequences did not vary significantly from
the original AlgoIV(r) algorithms.

2) There was a slight improvement (about 2-3 percent on the average)
in the computer time expended to observe a local optimal sequence.

Variation in Algo IV(x)

Another variation in the optimal sequencing study was carried out.
In the AlgoIV(r) series, a parameter describing the length of displaced
subsequences is used. It starts with the value 1 and increases to the
value r and then goes back to 1, etc. A variation in this was attempted,
which started the parameter at value r and decreased it to 1 and then back
.-to T, ete. It turned-out that this change improved performance on some
problems, both in computer time and in finding better sequences. The
improvements, when they occurred, were very slight but statistically
significant. For most problems, however, there was no significant
change in performance. .

The optimal sequencing problem aroused much interest in shortest path
problems and investigation into generalized shortest path problems was made.
Two methods were studied and successfully programmed. One method was
especially interesting. It turned out that it was almost as economical,
computationally, to calculate the shortest path between all possible pairs
of points as-it was to -calculate the shortest path between a particular
pair of points. This was the program developed on the basis of Shimbel's
paper Eli]. A brief description of the two programs Follows. Detailed
program listings and operating instructions are available from the author.

‘13

MINIMUM PATH THROUGH A NETWORK

This program finds the minimum distance between all pairs from a
given set of points or cities or nodes. In general, this is a fairly
simple technique} however, it was desired to develop a procedure that
can handle very large problems. The basic solution technique is closely
related to that described in a paper by A. Shimbel. (11)

The method starts at the base node and adds the distance to the
closest node. The method spreads from this base, each time adding the
closest node te the chding being developed. When all relevant nodes
have been added to the chains, the procedure is finished.

At any given point in the solution, the algorithm assumes there are
say N nodes in the network and the optimal distances between these nodes
are known. The addition of the (N + 1) node selected as the closest one
of the remaining nodes (i.e. outside the ¥) connected by a single link to
one of the N modes. The node selected from the N nodes is called the
establishied node. Since there are N nodes, this meafs that at a maximim
there are N passibilities for adding in the next node. TFor each of these
possibilities the sum of the distance from the base node to the established
node and from the established node to the new node is computed. The
next addition to the network is that node with the smallest such total
value. This process is repeated until all nodes in the original problem
have been added to the network.

For this problem two types of nodes were defined - primary and secondary.
The pimary nodes are the actual points under consideration, while the
secondary nodes are structural nodes necessary for the complete definition
of the network. -A primary link is the basic connection between a pair of
nodes specified by the original problem.

Three types of analysis may be performed with the routine as it is
currently set up:?

1. All nodes (primary and secondary) are listed along with every
node connected by a primary link to them. This enables
checking of the input data.

2. All the minimum distances between a specified primary node and
all other primary nodes are generated, along with sufficient

information for tracing the actual routes.

3. All the minimum distances between all primary nodes are generated.

Another option can be easily added, that is consideration of non-
symetric distances. For example, suppose that the network under consideration
is an airline transportation network and the primary 3inks show the time
for traveling between points. Due to outside factors, such as prevailing
winds, the time from A to B may not be the same.as from B to A. With.
minor modifications, this program can be altered to-handle this non-
symetric case. . Also one-way links can be considered, for example, for
the case where there is no return B to A. - - - e -

The program is designed to handle large problems. As it is currently
set up it can handle up to 3000 total nodes (primary and.secondary) and
8000. total primary limks. This is accomplished through packing multiple
units of information in each storage location in many cases. The.internal
storage is dynamically assigned in that there is no limit on the number
of links per node as long as the total number of links to all nodes does
not exceed 8000. By using this dynamic storage the inefficiency of
having unused positions can be avoided. Also, either the number of links
or nodes possible can be increased by decreasing the other.

The program has three major parts. Part 1 is a translator that reads
definitions for all nodes (both primary and secondary) and uses these
definitions to check and recode raw input data. Part II is a standard.
sort which groups all information in ascending order by node. Part IIX
performs the actual solution using the method described above, and if the
third type of analysis is specified, uses repeated applications of the
method to solve for all primary nodes.

As an example, a problem.was run for the analysis of 321 cities
(i.e. 321 primary nodeg) and 328 secondary nodes. There were over
1100 ore-way primary links. (i.e. over 2200 total links). Analysis time-
was slightly over 1.5 minutes for each primary node, i.e. after the
input phase a type 2 analysis takes about 1.5 minutes plus time required
for output. ’

14

A Second Computer Algorithm for Finding The

. Minimum Path Through a Network (MINNET)

The MINMET system is designed to find the route of minimum length
through a linked group of elements. The fundamental problem ig basically
simple, This system uses the procedure described by Hillier and Leberman

f1z] .

The algorithm begins with the specification of a base node. At any
point in the solution N nodes have been added to the network and the
distance to each of these nodes is known. For the addition of the N + 1
node, it must be the closest one of the remaining set connected by a
single link to the established nodes. Since there are N known nodes, there
is a maximum of N possibilities for the next addition. For each of these
possibilities the sum of the distance from the base to the established node
and from the established node to the new node is computed. The next
addition to the network is that node with the smallest total value. The
process is repeated until all required nodes have been added to the system.

For small problems there is no problem in the implementation of this
type of algorithm. However, to allow for the solution of large problems
without partitioning the network, special methods of storing, packing, and
referencing have been developed. The problem can handel up to 3000 nodes
and up to 5000 links in its current configuration. Through the use of
dynamic relative storage assignment and addressing there is no limit to
the number of links per node, so long as the total number of links does
not exceed 5000. The system is currently set up to run in an 86K
environment. The restrictions on nodes and links can, of course, be
expanded if more core is available., The gystem will handel both symetric
and non-symetric networks, Non-sy.metric networks are frequently encountered,
especially when the link values are expressed in time. For example, due
to some outside factor such as prevailing winds, the time to go from
‘A to B is not equal to the time to go from B to A. This ability to
handel non=symetric cases also provides the ability to handleé one-way
links between nodeg. All of these variables in the program are composed
of integer half-words (2 bytes). The method sets relative pointers to
groups of nodes in a dynamic array and uses multiple levels of indirect
addressing. The MINNET System is composed of three phases. The first
phase (TRAN) translates the raw input data and generdtes two files - LINKNETL
_and NAMEFL. The second phase (sort) is a sort of LINKNET1l. The third
and final phase (MIN) generates the minimum paths through the network and
uses as input the two files generated in phase 1. Descriptions of each
phase showing what the phase does, the files processed and generated, the
raw network definition data, and all contrel cards are available from the
author.

16

The first phase in the solution procedure is the processing of the
elementary link cards. Since any code between +5000 and -5000 is walid,
a translation table must be set up which defines those nodes which are to
be used as part of the network and the internal code of each node. The
raw codes may be specified in either the primary or secondary file. As
each new code is specified it is assigned a sequential internal code.

This internal code begins at 1 and is incremented by +1 for each new code.

The primary file is designed for the spécifications of the most
important nodes on a node by node basis. For each node a short description
may also be included. The secondary file is designed for the specification
of groups of less important nodes. An individual node or a group of nodes
may be defined on each specification card. No descriptive information
is processed.

The last part of the secondary file should be used to describe the
structural nodes. These are the nodes that are only defined in order to
properly define the network, i.e. a node caused by the intersection of
two or more links. This type of node should be assigned the highest
internal sequence number, since it is possible to aveid linking all of
them (eg. only the ones necessary) in some types of analysis which results
. in a faster solution. ZEither the primary or secondary file may be omitted
by inserting in it's place a NULLFILE card. An error will occur if an
attempt is made to re-define a previously defined node,

The linkage file definition card is used to specify the format of the
ptimary linkage data, define the location of the origin and destination
indices, the flag which specifies whether or not the link is symetriec or
one way, and the calculations that are to be performed in the calculation
of the link values. .

Up to 10 calculations may be specified on each link card. The
calculations may use Input variables or immediate data specified in the
operation definition. All immediate and input data must be integer.

A through error checking routine is included which provides a
complete analysis of any input errors.

The Second Phase in the procedure is merely a sort of a file
generated in Phase I.

The third phase of the system generates the actual paths through
the network. Several options are available. A range of nodes is defined
and each of the nodes in this range is used as the base node in a solution
pass. Note - the nodes are referenced by their converted seguence numbers.
It is also possible to define at what point the structural, or non-vital .
nodes begin. Several solution strategies are available which use only
. those structural nodes necessary for the generation of the minimum paths
or trees. This method reduces the solution time and the volume of the
output over the case where all nodes in the system are linked into the
trees. If the network is symetric, i.e. A =7 B =38 =7 A, a solution
strategy may be used which will reduce the execution time even further.

17

Input files are automatically rewound before they are read. There-
fore, it is possible to use the same data for several applications, each
time varying some parameter, e.g. base node, total number of nodes, etc.

The master output file is rewound only on command. Therefore, it
is possible to stack several solutions on the same file. An automatic
checkpoint feature is included and may be invoked if required. This
feature will automatically store all relevant information on a tape at
key points during the solution process. If the run is terminated for
some reason the restore/restart tape may be used to restart the problem
at the last recorded checkpoint.

18

An Experimental Study of Algorithmic Performance as a Function of
Neighborhood Size and Shape

In order to further confirm some conclusions drawn from the optimal
sequencing problem, 8 study was designed using a grid of discrete points
in 3 and 4 space. The objective function was an exponential function
defined by . '

- n - - 2 -wi
f(x,y) = & W; e
i=1

where wi = (x—ai)2/b12'+ (y—-ei)z/di2 -1

where the a;, b;, c; and d; are selected constants and x and y varied
between -10 and +10 in intervals of & = .001. The funection which
appears in [8] can be controlled to possess as many local maxima as
desired by the selection of the parameters a;, by, ¢;, di and n.

Another experiment was made with a similar function but in 4
dimensions. The function was:

n .
f(x,y,2) = £ wit Wi
i=1

where Wi %+ (x-d1)2/bi2 + (y-ci)2/di? + (z-ei)?/£i? -1

These functions were chosen because of the ease with which the sizes and
shapes of the neighborhood structure could be chosen. Two types of
neighborhoods were defined which differed primarily by shape. One shape
is referred to as square. Its neighborhoods are defined as follows:

The neighborhood of a given pdint (x,y) consists of all points of the
form (x +e, y+8) (x+ G, y +8) where -rA < E< rA and -r A<LSSrA and
where r is a parameter which determines the size of the neighborhood. _In
our experiment r took on value.l, 2,-35.4 and 5. (See charts on next pages.)

The. other class of algorithms were related to the following neighborhood
structure and are referred to as star neighborhoods.

The neighborhood of a given point (x,y) consists of the point itself
plus all points of the form (x + &, y) or (x, v =5) where -(2r + DA<z + (2r+l)A

The definition of the neighborhoods for functions defined over points
in three space were made by the obvious generalization. TFor these
experiments r took on values of 1 and 2. Some results are given in the
following table.

19

Function 1, 2 Dimensions

r. Neighborhood Relative frequency Average number of

. d — global optimal observed neighborhoed computed
1 Square) .132 396.1

1 _ Star .156 304.4

2

9 -

The comparisons, which can be easily made by glancing at the data,
give overwhelming evidence of the algrithmic performance differences due
to simple changes in neighborhood shapes. In almost all cases, both types
of neighborhood structures led to observations of the global optimal
observation. In fact, 20 times out of 30 the star neighborhoods outper-
formed the square neighborhoods. The most significant result here, however,
is the overwhelming superiority of the star neighborhoods when comparing
the amount of computing involved. The ratios run from approximately 4:3
for'r equal to 1 to 4:1 for r equal to 5, Since these ratios are directly
related to the computer time involved, the potential savings in computing
would be quite substantial. Although this function is not combinational
and is rather simple in form, it does serve to bring out the point in the
experiment thus re-inforcing the generality of the conclusions drawn from:
the optimal sequencing studies.

\AN;MYSIS OF TWO DIMENSIONAL OPTIMIZATION EXPERIMENT

Experiment No. 1

20

Average No. of Steps to

Neighborhood r - Parameter local optimal Obi?jetév?}i;:ﬁ‘zggmum
Square x 396.10 0. 132)
Star 1 304,43 0.156
Square 2 209, 08 0.130
Star 2 102.39 0.160
Square 3 141,89 0.134
Star 3 52,84 0.162
Square 4 104,12 0.096
Star 4 31.88 0.164
.Square 5 81.78 0. i38
Star 5- 22, 83 0.152

- Experiment No, 2

Neigiborhoot | r-peremete Avoruge¥e cfsersto | e trae o
Square 1 402.40 0.098
Star 1) 317.76 0.108
Square 2 193.71 0.126
Star 2 104,40 0,100
Square 3 129, 56 0. 097
Star 3 49,98 . 0.116
Square 4 - 98,87 0.105
Star 4 31,60 0.120

" Square 5 80.95 0 124
Star 5 22,21 0.129

'Analyéis of Two Dimensional Optimization Experiment

Experiment No. 3

21 -

i

Neighborhood r-Parameter Average No. of Steps fo Relative Frequency
local optimal Observed Global Maximum

Square 2 173.25 0.134

. Star 2 90. 04 0.120
Square 3 120,88 C0.092 |
Star 3 49,20 0.140
Square 4’ 82, 03, 0.102
Star’ 4 30.81 0.020 '
Square 5 72.35 0.104
Star 5 23.14 0.‘112.

Experiment No, 4
Neighborhood ‘r-Parameter ‘ Average No. of Steps to Relative Frequency
| local optimal Observed Global Maximum

Square 1 390,41 0,045
Star 1 - 284.20 0. 055
Square 2 . 205,40 0. 080
‘Star. 2 100.20 0.065
Square 3 i 144.67 0.035
Star -3 52.39 0.095
Square 4 © 108.23 0. 055
Star 4 32,59 - 0,070
Square 5 85.23 0. 065

 star - 5 25. 71 0.033"

Ana.lysisiof Two Dimensional Optimization Experiment

k]

Experiment No. 5

22

Neighborhood r-Parameter Average No. of Steps to Relative Frequency -
: local optimal (hserved Global Maximum
Square 1 385,83 ¢.030
Star 1 269. 72 . 0.050
S_quare 2 209,38 0,030
Sta_r 2 104,47 0.005
Square 3 130.33 0.0285
Star 3 44,84 0.035
Square 4 92,14 0.070
B Star 4 30.13 0.050
Square - 5 72,89 0.040
Star -8 - 21.73 0.050
Experiﬁ:ment No. 6
Neighborhood r- farameter , Averﬁ;ggalNgi]tﬁfngtleps to Og:é?-ggde (E‘l%%%%eﬁgcimuﬁ
Square 1 374.47 0, 020
' Sifa.r 1 285,25 ‘ 0.075
Square 2 201, 86 0.075 -
Star 2 103, 99 0. 075
Square 3 135.64 - 0. 065
Star 3 55,14 0.050
Square 4 88.64 0.105
Star .4 35.50 0.105 -
Square 5 78,75 0.075 -
star - 5 26,08 . 0.097

23

Analysis of Three Dimensional Optimization Experiment

Experiment No. 7 (Three Dimensions)

- Nejehborhood —Paramet Average No, of Steps to - Relative Frequency
1ghbor Y- rarameter local optimal Observed Global Maximum
Square 1 647.16 0..104
Star i 309.40 0.112
Square 2 323. 04 0.149
Star . .2 99. 43 " 0.150

24

The Quadratic Integer Programming Problem

Considerable effort was made in attacking the quadratic integer
programming problem. In order to obtain some insight inteo the problem
and to accumulate some data for comparative purposes, a comparative study
was made of several known algorithms for solving the (regular) quadratic
programming problem (9). During the study, a total of 10 problems were
developed and computed which were used for computational experiments
throughout this portion of the study.

The problem can be stated as:

n n
let £(X.y4..,%0) = z 1, x, + P

I MB

qij. Xixj,
1 :

- n
subject to Z - aijXj £bi i=1,.,..,m

Xy >0 j=1l...5m

X, Integer valued j = 1,...,n

The idea from stochastic algorithms is to start with a random feasible
point in the convex set of feasible solutions and determine the optimum
value in a neighborhood of the initizl point. The process is then repeated
for the new point. A sequence of locally optimal values is thus obtained.

The problem then is really composed of 2 subproblems:
1) The random choice of a feasible point.
2) Definition of a neighborhood in the feasible set.

An algorithm has been programmed for the IBM 7040 digital computer
for finding solutiong to the integer quadratic programming problem by
using stochastic algorithms.

The procedure for initially selecting a point is based on a method
given in [{10]. Essentially, an initial point is chosen (not necessarily
integer valued); and if it is not feagsible, for the non-integer problem,
it is reflected across the most distant hyperplane on whose wrong side
it lies. The process is repeated and in a finite dumber of steps, a
feasible (non-integer) point is determined. The coordinates are then
rounded, and if the resulting integer wvalued point is not feasible, then
a new random starting point is selected -and the entire process repeated.

The procedure for defining a neighborhood of a point is to place the
feasible point in the center of a square grid of points determined by a
given feasible point. That is, the neighborhood of (xlo, x2°,...,xn°) = x0
is the intersection of the set of feasible points with the set

X @ . k<x x %+ x = n(x)
z° X X x.9): 5 - 8T8
/,... gaveripseveein o‘ .
/

where k is a specified positive integer and s, t are randomly selected
‘components. The point in G, yielding the lowest fumnction value, then
becomes the center of a new grid Wthh defines the Successor point's -
nelghborhood.

A local optimum results when no further decrease in function value
can be made by simultaneously considering any -two components and their
increments. The process is repeated in its entirety for a pre-determined
number of observations according to some stopping rule.

In order te describe the computational scheme for the determination of
a local coptimum, the following problem formulation is assumed:

minimize s
z = X, + 2, xigi.x
z pJ J L 4 i1
n
subject to > a:'L.xj < bi i=1,2,.,.,m
j=1

gk:z;o k=1,2,...,n and integer valued.

let (xlo,...;Xfo,.L.,xso,...,xno) be the initially feasible, randomly

chosen point.

If t; is added t6 x.° -~k= t; <k and t, added to x.° -k<t, <k
then the difference in function values becomes:
- n .
o o, ’ o} 2 - _
(pro + 2 b qirxi) tl + (PS + 2 .Z qjsz)tz + 2 qrst1t2+qrrtl +qSSt2 =
i=1 - i=1
A + Bt, + Ct,t +Dt2+Et2
ty 2 1% 1

2

3

whlch if negative, shows a decrease in function value.
The value of t; is fixed (starting at -k) and bounds are calculated for to
by the inequallty,

as .ty £ b ZaleJ = a4,.ty i=1,2,...

25

Calculations are then made for the allowed range of t, with the change
in function value calculated by the above formula. This is repeated for
increasing values of tl up to k.

A new point is thus determined in the obwious way .which is then the
successor to X.,

Some results have been obtazined for a set of ten 10 wvariable, 10
constraint problems given in (9).. The results of the computational -
experiments indicated that their probably isn't too much advantage in
making the grid size larger than 3 or 4 for problems in this order of
magnitude. There seemed to be a definite increase in computer time used
when k reached a value as large as 5. Several times, k=2 wasg the best
performing value. In each case, solutions were found which yielded
values of the objective function very close to the optimal values found
in the non-discrete problem - usually within 4-53%. For this particular
group of problems (which were generated randomly)} the performance of
our method was best for problems with large functional values. This can
be explained by round-off error, however, and has nothing to do with the
algorithms' performances. The frequency with which the global optimal
(or best known) solution.was found varied markedly from one problem to
another. This is interesting, but perhaps not completely unexpected
with problems of this complexity. The same result occurred with the
optimal sequencing experiments, The answer probably lies in the curious
complexity of combinatorial problems.

Some examples of the computational results are:

Continuous Solution - Best Discrete Sclution

f value = —-32.44 . £ value = -28.8
X, = 1.84 1
xy = 2.75 _ 3
Xq = 1.14 1
x, = 0 0
X5 = .80 1
X = .60 1
x, = 445 _ 5
g < -390 1
T = .97 1
xlb = 3.86 3

for k=5 best value cbhserved 13 out of 19 times
for k=2 best value observed 9 out of 14 times

26

Continuous Solution- Best Discrete Solution
f value = -94.75 _ £ value = -91.05

x, = 1.08 I
xg = 2.48 2
¥g = 8.11) B
= 1.69 ‘1

4
.XS =0 ’ 0
X, = 4,04 A
x, = 0 “. - "0
Xg = 2.85 3
Xg = 2.97 3
X@O f 5.96 6

for k=5, best solution observed 8 out of 1l4-
for k=2, best solution observed 11 out of 24

These results convince us that our method is a2 valuable one for these
types of problems. Our difficulty in further establishing this, however,
has been the lack of published experimental results by authors working on
the same program. Their examples have always been of a trivial (3 or 4
variables) variety.

27

.28 -

PROGRAMS FOR SOLVING THE
GENERAL QUADRATIC PROGRAMMING PROBLEM

Quadratic Programming by the Method of Dantzig

The algorithm "OPMIND' solves the quadratic programming problems by
the method of Dantzig. The complete mathematical basis- for this method
is examined in "An Experimental Study of Some Quadratic Programming
Algorithms™ by John McGraw Rooker, Technical Report Number 7, University
Computing. Center, The University of Tennessee.

Basically, one of two sets of calculations is performed, depending
on whether or not the problem is in standard or non-standard form. The
problem is standard if for any variable either the primal or dual element
is in the basis, but not both. The problem is in non-standard form if
for any variable(s) both the primal and dual elements are in the solutlon,
forcing another variable to have neither element in the basis.

A. Standard Form - The noun~basic element with the smallest
negative term is chosen to enter. The element to be replaced
is the one first driven to zero. After these elements are
known the proper transformations are made. If the element
driven to-zero is the complementry element of the entering
element, the problem stays in standard form and the process is
repeated, otherwise the problem is in a non-standard form
and process B is used.

B. Non-Standard Form — an attempt is made to bring the problem
back to standard form. An attempt is made to make basic the
dual element of the variable with neither dual or basic
elements in the basis. If the element forced out makes the
problem standard, use process A, otherwise, repeat process B.

- Summary of Subroutines Used:

QPMIND -~ Control Program. Performs all input and output; controls
iterations depending on whether the problem is in a standard or
.non—-standard state. Also, it performs all checks for valid
solutions, no solutlons, or 1nfea51b1e solutions.

MINY - Finds the variable not in the basis to be entered — problem must
be in standard state. .

VAROUT -~ TFinds the variable in the basis to be removed when the entering
variable is known - problem must be in standard state.

TRAN — Transforms the matrix given the variable to enter and the one
to remove ~ used in either standard or non-standard state.

YIN — . Used to attempt to drive the problem back to the standaxd

state.

Given a variable with both primal and dual elements

out of basis, it attempts to replace dual element in basis -
used when in non-standard state.

FVAL - Given the final levels of all primal elements in the basis
FVAL determines the final function wvalue.

Tnput Matrix:

A, Seven elements per card, ten columns per element (7F10.2).
’ The elements of A are punched row-wise. Figure 1 shows the
construction of matrix A. '

where:.

L
He o
G
i

b
s

1

B A

FIGURE 1

are the linear terms of the quadratic function.

if 1 = j - squared terms of the quadratic functionm.

if 1 # j - cross—product terms of the quadratic function.
coefficients of the linear constraints.-

limit on constraint i. :

~NOTIE: #*%* (QOnly less than or equal type comstraints can be used and B, must
be positive, also the number of activities + constraints must be less
than 99, and the number of activities must be less than 50.

Flow charts for the program follow. Program listings are aveilable

. from the author.

29

Program - Qpmind
Quadratic Program

Method of Dantzig

Read
* NP’ PR’
IR = 1

‘.(:>___% Reset Timer

Read
N, JCON,
NUMB .

Write
NU, JCON
NUMB

. \/. _
Zero FLAGS:
ROW; ROWOUT;

ROWIN; YC;
M COL; IT |

Initilize
Pointers

Al
Write detail

led prob-

30

Program Qpmind

Read in

W

-Store P%2
in EL

A4

Store
Q elements in
Q from A

\

Contents of A matrix
at, this time

Store=-A
elements

P Q A
B A . |D
where:

P is linear elements
in guadratic function
*1/2

Z is squared g cross
Pproduct elements in
quadratic function

B is limit of constraints

A ig coefficients
of constraints

\ Write tota

Store point~
ers to varia-

3 initial
\ matrix

bles in basis
INBAS (I)
(initally

slacks)]

Store’
pointers in
INCOL (I)

31

Program - Qpmind 32

(: CALLlMINY.j)fb——<:)

Write
entering

-Solution found
No rite number of

iables ihba-

==\iteration,var-
\\sis & level

Write
leaving
variable

Write
final
matrix

No

£ leaving
variable found
(FIND)

No

Write
solution

is deg-
enerate

[

Write there is
no solution

and the fina
" "matrix

>—CCALL 'FVAL)ﬂ—

Program - Qpmind

Write fina
function
value

b

Zero storage
and get time
for solution

LEK=LEK+1

33

Program - Qpmind

Detgii\\\\\\ Yo
results

rinted

Transformed
matrix
printed

Number of
iteration.

increased by
1

A
Pointers
revised due
to last
iteration

34 -

Program - Qpmind

Q:ALL _TRAN)

Transforme
matrix
printed

h 7

Wumber of

iteration
increased by

| l’
Pointers

revised due to
last iteration .

© 35

Program - Qpmind

Write
"entered
Avariable

Was

-variable

entered
N

standard
condition -

CALL TRAN)

detailed
results

Number qf
iteration
increased
by 1

Pointer revised

due to last ___________(:)
‘iteration

36

Program ~ mind
g Qp 7 37

Transformed
matrix
printed

Number of
iteration

increased
by 1

74

Pointer revised
-{due to last
iteration

Subroutine MINY

- Set off YES
(i;Start j)__-_> and FIRST |

Yes

- Set
FIRST
True

oefficient
S ROMIN

Rowmin

AP =
Coefficient

R

Row =1

Set YES . Yes
ON

M I=TI+1

Subfoutine VAROUT'

Set

COMP; FIND;
Start }n-wwbhF; DGEN

false

|

Set
pointets
for

- {search

[find Column
(MCOL) corres-
onding to
ntering
ariable

t

Solution
degenerate
DGEN - TRUE
FIND - FALSE

 }

‘ Return >

Yes

- Subroutine. VARQUT

£f I row'cor-
responding to.en-

Yes

ering variabl

Ratio equal to P coef-
ficient for I row/cor-
responding coefficient
in entering variable

e T row over

F 'set. true

entering vector

COLMIN=Ratio
FIND set true

Current ratid

Rouout = T

true and ROW -
QUT equal

coMP
set
ftrue

- 40

Subroutine TRAN

ARC = pivot
element

b}

All element
in leaving
rYow except
pivot conve-~
rited by -4
(ROW,J)/ARC

l

Pivot
element
A(IROW,ICOL)F
1/ARC

equal
aving row

o le

or element in ent-
gring activity

is O

True

nected

Each element in row I, except
elemant in entering ¢olumn con-

A(I,J) =A(I,J) + corresponding
element in entering column =

t corresponding element in
leaving row

True

!

I=I+l <

T & Nrows Ngalse

41

. Subrdutine TRAN

All eléments in
entering column
except pivot
element convertd
ed by
A(I,COL)=
A(I,COL)/ARC

' Return)

42

. Subroutine FVAL

XVAL =
P value

I=T+1

Xes L 1amons
J=1
- - _ J=J+1
of level of . VALUE = VALUE
activities® + XVAL(I)+
lineal elements . EL(J)
K=1
of cross PrOdUCt ’ VALUE = VALUE
time (Qij) and + Q (I,K)x
level of activity / XJ’-.’.-XEE ’ .
iz Zlevel of J Return
activit
tvity J K = K+1
True - RN False

Subroutine YIN

' IN; POS; DGEN

setup pointersg

W
.ESetup pointer
to column where
slack is to be
located

(YC)

No

element in

KC column
d

POS set time [False

COLMIN = AY
ROWIN = I
‘11N = TRUE

Subroutine YIN

PQS set
‘true

COL MIN= ARYC
ROWIN = ROW
IN set ttrue

(®

45

46

QUADRATIC PROGRAMMING BY THE METHOD OF BEALE

The algorithm 'QPMDPD' solves the quadratic programming problem by the

method of Beale. The method is described and illustrated in 'An Experimenbal

Study of Some Quadratic Progrémming Algorithms' by John McGraw Rooker, Technical

Report Womber 7, University Computing Center, The University of Tennessee.

The computational scheme utilizes the fellowing rules:

1.

2.

Make the transformation according to the component corresponding to
k
max [Pui" That is determine that sign unrestricted component say xﬁ R
1
such that pk # 0 and)pk [> lpk |, i=1,2, ..., t. Use a suitable
™ e %
rule for breaking ties. Then determine the transformation (Type I or
Type II) vhich leaves all components except xﬁ fixed. (Type I or
. 1
Type II} which leaves all components except xﬁ fixed. (Type I is of

the type xj——) cq + CX; Type IT is xj-ﬁ pj/z + QJX)°

If there is no sign restricted component (or if the pk elements corres-

ponding to sign unréstricted components all vanish), then meke the

transformation according to the sign restricted component corresponding

to max Ep§‘| s pf < 0. (See page 3 for definition of terms.)
l 3 -

1

Summary of Subroutines Used:

'QFMBPD - Control program. Performs all input and output and controls iterations

FINMV =~

for transformations.

Finds the component not in the basis to be entered. Calls SUBROUTINE
MAXTND.

"MAXTND - Finds the component in the basis to be removed given the.entering com-

" TRAN -

.ponent. Determines the type transformation to be made.

Perfo;ms the transformation.

47

DGCK - Checks for degeneracy of solution.

INFCK - Checks for infeasibility of solution.

LInput:

Card No. Data Format

LEAD NP, PR, FIRST) (15, 4x, 11, L4X, I1)
NP - number of problems to be solved. ~ '

PR - print control. T for printing of tableau
after each-transformation; F other- ‘

wise.

FIRST - print conbtrol. T for printing of first

and last tableaus; ¥ otherwise

NV, JCON, NUMB _ (315)

NV = number of variables - including one

slack variable.

g
=2
I

pnumber of constraints.

‘NUMB = erbitrary problem number.

2 _ A(1,7) J = 1,0V, I = 1,IROWS (7F10.2)

where TROWS = NV + JCON

A(I,J) - the A matrix is set up as follows:

48

A(L,T)

0 pl/z p2/2 e e s pmv/z
pl/z 931 cl_:L2 e e e s s ql,NV
pz/z Uy s e e e .. q,, TV
Pyy/2 Uv,1 0 Y,z Ce e v, W
b a a « b e e . a
¥, 1 11 12 1,8V
Yz b2 sy Bog . e e s aE,NV
Tjeow Pscown Fjeow,1 Zjcow,z C t t tC & JCoN, W

Where p; axre the coefficients of the linear terms of the objective
' function;

q; 5 are the coefficients of the cross product terms (i # j) and the

squared terms (i = j) of the objective function;
~'bi are the constant terms of the constraints; and

aij are fhe negatives of thé coefficients qf the linear terms of the

constraints.

NOTE: Present dimensions restrict the nugber of rows in the A matrix
(tableau) to 150- and the mumber of columns to 50.

QPMBED

START

Read
NV, JCON,
NOMB

Write
Title

k

*Get initial

) time

Write descrip-
tive problem
information

Initialize
counvers and
pointers

|

Write
descriptive
ififormation

49 '

Read A matrix //

(first ©
tablean)

Initlalize pointers

for basis component.

Y

Find restritted
component with maxi-
ve

mum partial deviati
SUBROUTINE FINMV

Determlne whether
transformatlon is to
be Type I or Type II:
SUB” MAXIND

ter baiis?

ind unrestricted com-
pounent to enter basis:

SUBRQUTINE FINMV

solutisn .
optimal?

50

#” Find
unrestricted
component €0 _en-
Ter basis~

Make +trans-
formation:
SUBROUTINE

TRAN

'

Increment
iteration
counter

No

component -

entering basis
restricted

- Check for degen-
eracy: SUBROUTINE
DGCK

51

1Is
solution

Yes

degeneral

Check for infeas-
ible solution:

SUBROUTINE INFCK

Is
golution

_Yes

infegsible

No

Print

o

Write -

Message

" tableau?

Write .
transformg
A matrix

d

52

53

. Write
optional
solutio

Y

Write final
A matrix
. (tableau)

Y

Write elapsed
time and
number of
iterations

Any

more
problems?

SUBROUTINE INFCK (INFEAS)

e (o)

Set flag off, INFEAS =F.

IT=HV+1

in basis?

I =71+ 1]

A

54

SUBROUTINE DGCK {DGER)

Set flag off, DGEN = F.

I=MW+1

e——(START

)

component
in basis?

I=1+17—<

SUBROUTINE TRAN -(ROW, BSROW,UV)

transforma-

tion Type IT res

Make transformations
according to
Type I equations

Mase transformations
according to Type IT
equations

y

Update NVR, INBAS(RGW),
and INBAS (BSROW)

Update NVR

NOU =NU +1

Update INBAS(ROW), and
create INBAS(JK)

SUBROUTINE FINMV

Initialize pointers

ROW,BSROW, 2nd Q_._—C START)
NUV = O..

Set flags off;

YES, PART = F.

Will
component re-
sult in Type I
. transfor-
mai?on

problem in
standard form?

No

partial derivative

oM = A(T,1)
YES = T
ROW = I
MUV = INBAS(I)

INCRES =T

negative?

)

‘57

Find
a component O
enter in basis?
(YES=T)

o

58

e/

get flag off
- PART = F.
e e e I =WV O+ 1

negative?

sult in Type II
transformation?
i

_~A(1,1) and
A(I,ROW) 5 07

~ 1Is
A(1,1)/A
(I,ROW) a min-
imum?

RMIN = A(TL,1)/

-1 A(T,ROW)
BSRGW = I
I=I+1

" SUBROUTINE MAXTIND

59 -

60

JCON + NU?

a component
to leave basis?

No

A(roW,1)/
A(ROW,ROW) <
RMIN?

No

e #» PART =T

(RETURN)H

~"and A{I,ROW) < 0%

No

RMIN = A(I,1)

A(I,ROW)
BSROW = I

I=I+1

]
-

61

2 component

No to leave basis?

~" 1Is
ZA(ROV, 1)/
A(ROW,ROW) <
RMIN?

No

PE=—~ PART = T

62

1
[
-

[3]
[4]
[5]
[6]

BIBLIOGRAPHY

Gordon Sherman and Stanley Reiter, '"Discrete Optimiéing", J. Soc.
Indust. Appl. Math., Vol. 13, No. 3, September, 1965.

J. A. Joseph, "Heuristic Approach to Nonstandard Form Assignment
Problems", Operations Regearch, Vol. 15, No. 4, July-August 1967.

J. T. Robacker, "Some Experiments on the Traveling Salesman Problem",
RAND Research Report BM-1521, 1955.

G. A. Croes, "A Method for Solving Traveling Salesman Problems",
Operations Research, 6 (1958), pp. 790-812.

M. Held and R. M. Karp, "A Dynamic Programming Approach to Sequencing
Problems", J. Soc. Indust. Appl. Math., 10 (1962), pp. 196-210.

G. Dantzig, D. R. Fulkerson, and 5. Johnson, "Solution of a Large-
Scale Traveling Salesman Problem", Operations Research, 2(1954),
pp. 393-410.

R. L. Karge and G. L. Thompson, "A Heuristic Approach to Traveling
Salesman Problems", Manacement Sei., 10(1964), pp. 225-248.

Kubert, J. Szabo and S. Giulieri, "The Perspective Representation
of Functions of Two Variables", Journal of the Association for
Computing Machinery, Vol. 15, No. 2, April 1960, pp. 193-204.

John McGraw Rooker, "An Experimental Study of Some Quadratic
Programming Algorithms™, Technicdl Report No. 7, University of
Tennessee Computing Center, Knoxville, Tennessee.

Isaac J. Schoenberg, "The Relaxation Method for Linear Inequalities!,
Canadian Journal of Mathematics, 1954, Vol. 6, pp. 393-404.

A. Shimbel "Applications of Matrix Algebra to Communication Nets"
Bulletin of Mathematical Biophysics, Vel. 13, 1951..

Hillier and Leberman, Introduction to Operations Research, pp. 218-222.

63

