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INTRODUCTION

The analysis of structural vibrations caused by
random excitation has reFeived general'attention for the past
two decades. Structural engineers have benefited from the
early mathematical work on random processes and its applica-
tion by electrical engiheers to Information Theory and Control
Theory. Such adaptation of knowledge to the structural problem
has advanced the art appreciably. However, in order to avoid
confusion in terminology and concept, restating and extending
the principles from one field to another field has been an
essential Eask.

(1,2,3] [4,5,6]

The works of Wiener, Lee and Wiener,

Khinchin, [/} [8]

Titchmarsh, and others opened the Wienerian
era. Structura; engineers adopted Wienerian concepts, which
are widely used in the so~-called "Wiener-Filter"” to analyze
linear structures under stationary random excitation. The

1[9] and especially Crandall and Mark[lO]

works of Crandal
were the main contributions in this direction. The high-

lights of the Wienerian approach are as follows:
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1. The spectral density function of a random and
at least weakly stationary®* process is the
FPourier transform of the autocorrelation

function of the process divided by 2w.

2. The spectral density function of the filtered
output equals the product of the square of
the absolute value of the frequency response
function of the filter and the spectral den-

sity function of the excitation of this filter.

Since the Wienerian approach analyzes the system in the
frequency domain, it has limited power; specifically, it can-
not treat cases where (a) the excitation forces are nonsta-
tionary, and (b) the system, although linear, is time varying.
Faced with these resfrictions, structural engineers have tried
to solve special cases where certain assumptions could be
made,[ll] but all the work was confined to Wienerjian concepts
and hence to frequency domain analysis, which still is the

state of the art in structural engineering.

* L]
Other popular terms for a weakly stationary process are
"stationary in the wide sense," "covariance stationary," or

"second order stationary" random process.
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In the beginning of the sixties a break-through

was achieved by systems engineers, which was mostly due to

the work of Kalman, !12s13] [14]

k. [131

Bucy and their common

woxr Although many other investigators dealt with the
same problems, it was Kalman and particularly the so-called
"Kalman-Filter" technique that spread the interest in
Kalmanian concepts in the very same way that the Wiener-
Filter spread the Wienerian concepts. Although elements
needed for the Kalmanian approach are already known to

structural engineers,[16]

the technique itself has yet to
be applied. ‘Once again it is time for the structural engi-
neer to introduce new concepts taken from systems engineering

to obtain nonstationary random responses.

The Kalmanian approach rids itself of the limita-
tions involved with the Wienerian approach by being confined
to only time domain analyses, and by using ensemble averages.
This way neither ergodicity nor transformation to the fre-
quency domain is necessary. For these reasons the Kalmanian
approach is suitable for treating nonstationary excitation
of time varying structures, whether they stand by themselves,
or whether they constitute a subsystem in a feedback system.

Moreover, even when the excitation is stationary and the
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system is constant, the Kalmanian approach offers certain

i computational advantages, especially when the system includes

a lightly damped structure.

In most cases, we are mainly interested in the
response intensity at certain points in the structures due
o to random excitations at some other points. We need to know

not only the mean value of the response, which can be easily
< obtained, but also its variance about the estimated level.
The problem of finding the mean response is a trivial one
because it is a deterministic problem. Thus in our analysis

we will concentrate mainly on the solution for the variance

of the response, or more specifically, we will deal with the

| time solution of the covariance matrix of the system.

! STATE VARIABLE APPROACH TO STRUCTURAL DYNAMICS

A basic requirement in the Kalmanian approach is
: é the state variable representation of a linear system. Such
an idea was first introduced in 1936 by A. M. Turing. How-

} ever, its wide application in the control field was initiated
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in the forties by the Russian scientists M. A. Aizerman, A. A.
Feldbaum, A. M. Letov, A. I. Lure, and others. A sufficient
discussion of the state variable approach can be found in

most of the modern control books.

The behavior of a linear physical system can usual-
ly be described by a mathematical model, which consists of a
set of linear ordinary differential equationé. The number of
equations should be sufficient to describe the interesting
properties of the system, and_they can be of any order. This
set, however, can be transformed into a first order matrix

differential equation, which takes the following form:
{x} = [A(t)]{x} + [B(t)I1{F} . (1)

The vector {x} is the state vector or the response of the
system, whereas the vector {F} is the input or the excita-
tion of the system. The matrix [A(t)] is the system matrix,
and the matrix [B(t)] is the input or the excitation matrix.
Finally, it should be added that the state variable repre-
sentation of a system is not unique. In this paper the
linear system’will include the structures as well as control
loops and parasitic feedback loops, although any other

conceivable linear subsystems can be included.
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As an example, we will now show the derivation of
a state variable representation of a system including
structures, velocity feedback loops, and position feedback

loops.

During a relatively short interval of time,
this system will have the following linear equation of

motion in matrix form:

[mI{u} + [cl{d} + [k]{u} (2)

= [G.I{f} + [Gu]{u} +.[GV]{ﬁ} ,

where
{u}l is a vector containing the motion of nodes in
their physical coordinates,

{f} is a vector containing the time functions of
the loads (i.e., engine thrust) at certain
nodes,

[m] is the mass matrix of the structure,

[c] is the damping matrix of the structure,

[k] is the stiffness matrix of the structure,
[Gfi is the load coefficient matrix,

[Gu], [GV] are the feedback coefficient matrices

of {u} and {u} respectively.

Rewriting the above equation as
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m !0 u clk u Ge £
- o o —— ....:_ + —..._‘_... [— - —
0|1 u -1lo0 u 0 (3)

where [I] is the identity matrix, and denoting

u
{y} = ( ---
u
— _q! | - -
m ﬁ 0 GV - c: Gu -k m l(G —c):m 1(Gu-k)
[A] = | ===~ || ===~—- " —————— = | —————— fo————————
¥ LE: I !0 I | 0
m “Ggj O
[B]: ————— .:. _____
y 0 1 I

Eq. (3) can be written in the form of Eg. (1) as the

following first-order differential equation:

7} = . 4
{y} [Ay]{y} + [By]{F} (4)

Eg. (4) is a state variable representation of the dynamic

system given by Eq. (2). Alternatively, Eg. (2) may be
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expressed in a modal coordinate form and for this case too,

a state variable representation can be developed.

The size of the matrices [Ay] and [By] in Eq. (2)
is (2n) x (2n), where n is the number of the degrees of
freedom of the system. It is obvious that Eq. (4) will be-
come impractical, if not impossible, to handle when the
system is a large one. In such case the use of modal coordi-
nates may be advantageous by considering only a limited number
of modes hence reducing the size of the matrices handled.
This, however, may be done provided the inclusion of only a
finite and a relatively small number of modes gives an accu-
rate enough description of the physical system. The switch

to modal coordinates can be done as follows. Let

{u} = [¢]l{q} (5)
q

{x} = ( --- (6)
d

where

[¢] and {g} are respectively the mode shape
matrix and the modal coordinate
vector of the system without

feedback,
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{x} is a vector containing the new state variables
q and é.

Substituting Eq. (5) into Eq. (2) and premultiplying each term
by [¢17:

(to1%tm1to1) a1 + (1o1%te1001) &3 + (1017 k1 101) 1)

(7)
= 1417 [G.1{£} + [G_IG,] i—i-(—) 2 )
itiole] la

Owing to the characteristics of [¢], we can define the follow-

ing diagonal matrices:

Ml = [617 [m] (4]
BRI = [6170k][¢] (8)
bed = [6170c] [4]

provided that the damping matrix [c] can also be decoupled

to modal damping.

Thus, using Egq. (8), Eg. (7) can be further expressed as:

mMI{q} + Fed{g} + BRI{qg} ,

(9)
$10 g
T : T 1 i
= [¢]17[G 1{f} + 1[4} GG N ~==- - .
i A O {q}
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Following the passage from Eg. (2) to Egq. (3), Egq. (9) is

transformed into:

AN N °
I DR U DN LN
1 -y a (10)

By defining:

AN

=
_._,/__

<
(=]

N1 T | T
MZp0lle e ¢ - [5l!le G ¢ - [R]
(a1 = _;E% _____ AN S S
RE: T 0
YoTeye -t inteTe s - k)
E e e - | ittt e 7
o 1 ! 0
-1.T
M “¢ Ge! O
[B,] = |---=-= S (11)
0 L
and using Eq. (6), Eg. (10) becomes:
{x} = [AX]{X} + [Bx]{F} 5 (12)

This is a state variable representationAof the system given
by Eq. (2), which after being solved yields the vector {u}
by the use of Egs. (6) and (5). It is evident that in

generating {Ax] and [Bx] for Eq. (12), we can include a



BELLCOMM, INC. - 11 -

limited number of modes, such that the size of the system

equation is reduced and therefore is easier to handle.

The solution of Eq. (1) is known to be

{x} = [w(t,to)]{X(to)} + J[ [v(t,e)1[B(e)I1{F(g)}de , (13)
to
where to is the initial time at which the state vector

{X(to)} is known, and [¢], the state transition matrix,

satisfies the following differential equation:

i

[v(t, )] = ATl (t,e)] (14)

with the initial condition

[¥(t,,t)] = [1]

The solution of Eg. (14) is known to be the Neumann

series:[l7]

t
2
v e,eg)] = [T + _/.[A(El)]dal ¥ Jf [A(az)]u]’ [A(g,)1de, d¢,

(o} o (o]

deo ot f [A(E )]f [A(gn l)] f“"f [A(gl)]dgldgz"dg

dooo . (15)
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When the matrix [A] is a time invariant matrix, the integral
series in Eq. (15) is reduced to the following series:

)] = i (212 Ly )2
[b(t,t )] = [vlt-t)] = [I] + [A)(t-t,) + <3 (t-t )

i

o 3 m
[A] - 3 e [A]
+ =T (t to) + + -y

(t-to)m 4 ees (16)

[} >

JBl (t-t )

st

A number of papers have been written on the computation of
“g Eq. (16) and the errors associated with the use of the trun-

. -
‘ cated series.[18 25]

ﬁ THE STATE COVARTANCE MATRIX

The covariance matrix of the state of the system

at time t described by Eg. (1) is defined as:

>

5 % (£)] & [coviix(£)},{x(£)1T)] & [B(x(t)Hx(t)1T)]

o - (17)
e [E({x(t) DE({{x(t)})] .

A more explicit expression for the covariance

matrix is the following one:
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[Cov ({x (t)},{x(t)}T)]

-
Cov(x; (£) /%) (£))  Covixy (8),x,(£)) + + - Covix, (t),x_(t))

Cov(xz(t),xl(t)) Cov(xz(t),xz(t)) .

® @ >
@ L] L]

® @ °

Covix (£),X (E)) = o ¢ = ¢ o = o v v v Cov(x (t),x_(t))

- . el

The diagonal elements, which are the variances of each state
variable, give a measure of the fluctuation of the response
about their mean values. The off-diagonal elements indicate
the amount of correlation between two corresponding state
variables at the same time t. Notice that the state variables
xl(t), x2(t),=-°, xn(t) may be translational displacement,
angular rotation, pressure, or ény other variable of the sys-

tem and their first or higher order derivatives.

The computation of the last term in Eq. (17) is
simple, and involves only deterministic quantities, since by

applying the expectation operation to Eq. (13) one obtains:

E({x(£)}) = [b(t,t) IE({x(£,)})

t (18)

+ Jf [v(t,&) 1 [B(e)IE({F(£) A,

%
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where E({x(to)}) as well as E({F(¢)}) are known determinis~-
tic quantities. We shall, therefore, concentrate on the

computation of [P(t)], defined by

e

[P(t)] & [E({x(t) Hx(t)1T)] . (19)

The passage from [P(t)] to the covariance matrix
[P*(t)] using Egs. (17) to (19) is immediate. It is shown
in Appendix'I that if the noise vector {F(t)} and the ini-
tial state vector {x(to)} are uncorrelated (and this is the

case we are usually dealing with) then:

T
[P(E)] = [y(t,t)1IP(E )Ty (t,t)]

t

t
o o

t .
+ Jf Jf [y (t,£) 1 [B(E) 1 E({F(E) HF(p)} )1 IB(e)1 [ (t,0) ] dedp
t

If, in addition, the noise vector {F(t)} is a white noise

vector, then as shown in Appendix I:

' T
[B(£)] = [y(t, k) 1IP(E )T [v(t,t)]
(21)

t
+ Jf [v(t,e)1IB(E)1IQ()T1IB(E) 1T [w(t,e)1 ae
t

o

(20)
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where [Q(t)] is the intensity of the unbiased” noise

covariance matrix defined by:
[E({F(tl)}{F(tz)} )l = [Q(tl)lé(tl-tz) ’
and §(<) is the Dirac deita function.

In Appendix II it is shown that the following dif-
ferential equation is equivalent to the integral expression

for [P(t)] given in Eq. (21):

o]}

ge [P(B)] = [A(R)]1[P(t)] + [p(£)1[a(e) 1T

(22)
+ [B(E)1IQ(E)TI[B(E)IT .

This equation is a special case of the well known Riccati

equation

A SIMPLE EXAMPLE

To illustrate the correspondance between this
method and the previously known method, which is based on
frequency domain analysis, let us consider a case that

will be useful in the next section.

*In this paper, an unbiased quantity will mean a

quantity whose mean has been removed.
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Consider a linear system whose set of differential

equations is expressed in matrix form as follows:

{x} + [Al{x} = {h} . (23)

Let [A] be the diagonal matrix:

[A] =

and let {h} be a white noise vector whose autocorrelation

matrix is of the form:

» -
2
28101
[R; ()] = : (). (24)
2
28 ¢
- nn

Fourier transforming Eg. (23) yields:

(jwlIl + [A]){X} = {H}
orxr

1

{X} = (JulIl + [A]) ~“{H} . (25)



BELLCOMM, INC. - 17 -

Since [A] is a diagonal matrix, Eqg. (25) becomes:

( 1 a
Jutgy

{X} = {g} . (26)

By definition, the matrix in Eg. (26) is the transfer
function of the system, since it transfers the input vector
{H} into the output {X}. Using the Wienerian approach, the

power spectrum of the output vector {X} is given by

- l -5

[S,, (@)1 = ISy, (@1 (27)

and since {h} is a white noise vector, we obtain in corre-

spondence to Eg. (24):
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- 2 M
28101
[S.. (0)] = - :
hh 27 . (28)
2
ZBncn
s o

Substituting Eq. (28) in Eq. (27) yields:

- 2 -
28101
w2+812
= 1 )
[Sxx(w)] = 5= . ’
2
Zann
2 2
w +Bn B

and multiplying [Sxx(m)] by 2n yields the Fourier transform

of the autocorrelation matrix of {x}, which, when inverse

transformed results in the following matrix[27]:
- 2 -8 ,TI =
o, e 1
[Ryy (1)1 = : : (29)
2_ -8 ||
g,e 'n
L -
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In particular

for v = 0,

[R, (0)] =

- 19 -

. (30)

Let us now consider this system in the time domain

and apply Eq.

Rewriting Eq.

we obtain the

(I-8) from Appendix I to obtain the same results.

(23) in the form of Eq.

{x} = [-Al{x} + {h}

following transition matrix:

L6 (,t )] = [t -t )] =

since [A] is a constant matrix.

—~
e

-

"Sl (tb_ta)

e Ba(tyty)

e—Bn(tb—ta)

-

Assume that at to’ the ini-

tial time of the process, the covariance matrix [P(to)] has the

form:
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- 20 -
™, i
Py
P2
[P(t)] = ©
Pn
- -
From Eqg. (24) it is obvious that
—-
2
28101
282022
A T
[Q(g,0)]1 = [E({h(8)Hh(p)})] = .
Using Eq. (I-8) one obtains
[P(tl’tz)] = :
-B._(t,+t,=2t )
L pe n 1 72 o_‘

*§(g£-p)
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§ ) - 21 -
’ _ _
FZB 2 By (ty+t,~28) 7
! 171
‘g mln(tl,tz) .
* . dg
' t
i o .
-B_(t,+t,-2&)
2 n' 1 "2
ZBncn e
. ) ~d

) 1 After performing the integration,

]
. - -
| -8, (t,+t =2t )
; ‘Pl“°1z’e 15174,
| [P(ty,t,)] = -
n pn Gn e
L_ -
ﬂ
.2 -8y [tyty |
e 1
+ ’ . (31)
o . 2e“3n|tz‘t1l
L n N

The first matrix on the right hand side of this equation is

the transient part of [P(tl'tz)] and is due to thekpropagation
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of the initial matrix [P(to)]. The second part is the steady-~
state part of [P(tl’tz)] and is stationary. The stationary
part is indeed equal to [Rxx(r)] given by Eg. (29), and using
Eq. (21) rather than Egq. (I-8) to compute [P(t,t)] will result
in a steady-state matrix equal to [Rxx(o)]’ as given by Eq.
(30). Note that the power spectral density method yields

only the steady-state part of the autocorrelation function of

a stationary process.

WHITENING OF CORRELATED EXCITATION

When the excitation vector {F(t)} is a white noise
vector, Egs. (21) or (22) can be used to compute [P(t)]. These
equations are by far easier to handle than Eq. (20), but un-
fortunately the white noise concept is a nice mathematical
concept that does not exist physically. In many cases, how-
ever, the covariance matrix of the excitation vector can be
broken into a sum of elementary covariance matrices. The
matrices can be described as the covariance matrices of state
vectors of special systems, which are excited with correspond-
ing white noise vectors. These special systems are called

w[16,28]

"shaping filters, which can be added to the original

system by modifing [A], [B], {x}, and {F} in Eq. (1). In such
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a modified state variable differential equation, the modified
excitation vector {F!} is now a white noise vector and there-

fore Egs. (21) or (22) can be used to find [P(t)].

As an example, consider the system described by

Eq. (4):

7} = . 32
{y} [Ay]{y} + {By}{F} (32)

Let us assume that the excitation vector {F} consists of ele-

ments which are Markov processes, that is, the covariance

matrix of {F} is:

-

-8, ]t -t | =
o 2e 1'72 "1 0. « .« - 0
1
-8, | t,—t, |
0 022e 272 "1
[B({F(t) HF(£,) 371 =| - N G
. ) -B_|t, =t ]
2 n'"2 71
0 o ® o 9 @ O'n e
. . . [26]
Consider now the following special system:
{F} = [A_J{F} + (W } (34)

where
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(Al =

- 24

(35)

and {Ws} is a white noise vector whose covariance matrix is

given by:

; T
[E ({W_ (t,) HW_(£,)}T)] =

26101

L

2(3nc5n.-J

2

s § (tl_

t2)'

(36)

This special system is identical to the system treated in the

preceeding chapter; hence the covariance matrix of {F} is

given by Eg. (31).

[p,] =

then the covariance matrix {F} is the one given by Eq.

. T _
[E({F(to)}{F(to)} )] =

If we choosé:

[ 2

¥

(37)

(33).
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The initial system given in Eg. (32) and the shaping
filter given in Eq. (34) can be combined to form the following

augmented system:
3} A !B v 0
e e e L N A e (38)
F 0 'a F W
s s

vyi- A_IB
{2} = (--- [a] =| -Y4-¥ W = (-
F 0 1A ~

Letting

then Eq. (38) can be written as:
{z} = [Al{z} + {w} .

This equation is in the form of Eq. (1) and the excitation
vector {W} is a white noise vector. Therefore either Eg. (21)
or Eq. (22) can be used to find [P(t)]. Moreover we see that
we eliminated the matrix [B(t)] in Eq. (1), which further
simplifies the computation of [P(t)]. The penalty for these
simplifications is the increase in the size of the A matrix,

which we can partly relieve as will be shown later.

The preceeding example can be now generalized as

follows. Let the initial system be given by

{yl = [Ay]{y} + [By]{fy} . (39)
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We assume that

(£} = [6)1{g} + + + « + [ 1{g} (40)

where all the matrices may be time varying and the vectors
are functions of time. We assume that the vectors {gi},
i=1,2+-+,m, are the output vectors of shaping filters whose

inputs are white noise vectors. The state variable equations

of these shaping filters are:
{g;l = {Asl]{gl} + (W}
{g,} = [Aszl{gz} + {w,}
* v (41)
{g 1} = [Asm]{gm} +'{Wm}

where {Wi},i=l,2,'=',m, are white noise vectors. The combina-

tion of Egs. (39)-(41l) yields the final system:

~ (A 1 ! I | A D )
. B.G. !BG.! --—-1BG
_x_W __4-_2_;4__zu24__,ﬂ_%w_z,g Y. 0
: W
2 _2i~,§§lé;_g__4 _____ 4__9~_ ! s _.1 &
; 1 { i + . (42)
\ 9% - 01 0 4 Asph 1O o2 0 F (%
» : 3 ® o I @ * e
i S S — demmm 4__;__ e i
. Im Lo o b0y Amm;$gma " ¥m

The following quahtities
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[G;1

(Al (43)

[B({W, (£;) HW, (£) 1))
[E({g; (£ ) Hg; (£)I)]  i=1,2,--+,m

are determined such that the desired covariance matrix of {£f_}
is obtained. We note that‘{gi(tl)} and {gj(tz)} for i # j are
uncorrelated; therefore using Eq. (40) it can be shown that

the covariance matrix of {fy} is given by:

T
[E (L€, (£) }IE (£5)3D)]

m

= ) e (k) 1IE(g (£ Ha; (£ D116, (1T . (44)
i=1

The covariance matrices of {gi}, i=1,2,¢+°,m, used in Eq. (44)

can be found using Eq. (I-8).

We can see how the preceeding example follows from
the general case by realizing that Egs. (35)-(37) and the
choice of m=1 and [Gl] = [I] determine the guantities of Eq.
(43), which result in the covariance matrix given by Eq. (33),

and the augmented system given by Eq. (38).
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If we assume that m = 1, [Gl] = I, [Asl] =0,
T
[E({Wl(tl)}{Wl(tz)} )] = 0, and

[E({g; (£,) Hgy (£ ) 1T)] : (45)

- -

then the covariance matrix of {fy} is the same one given in

Eq. (45). If on the other hand {E({gl(to)}{gi(to)}T)] = [0]

and
-
Fql
92
. . T = L ® -
[E({W, (t)) HW (£)1T)] = ‘ s(ty=t,)
qn
then
~ -
93
92
[E((£, () HE (£5)})] = - min(t,,t,)
qn
hs -

The last case is known as the random walk excitation vector.
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COMPUTATIONAL CONSIDERATIONS

In most cases, an analytic solution to the state
covariance matrix cannot be found and one has to resort to
numerical techniques. The main difficulty in the use of the
integral equations (I-5), (I-6), (20) and (21) to evaluate
the state covariance matrix comes from the need of using
[w(t,to)], the state transition matrix, which is practically
impossible to evaluate for time varying systems (see Egq. 15).
In addition, if the excitation vector cannof be "whitened"
through shaping filters, the simpler equation (Eq. 21) cannot
be used, and Eq. (20) must bg solved (if the initial state is

correlated with the noise then Eg. I-5 must be used).

When the excitation is indeed a white noise vector,
uncorrelated with the initial state vector, Eq. (22) can be

used successfully because [w(t,to)] is not needed. Several

methods to solve this equation are known[29'3o’3l]

[30]

of which

integration is the most straight forward one. It should

be noted that when the system is time invariant and the ex-
citation is stationary and further we are interested only in
the steady-state covariance matrix, the derivative of [P(t)]

vanishes and we are left with an algebraic matrix equation

[29]

for which there are known solutions. Some computer

programs are available for the solution of this case.[32’33]
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If for the time varying system discussed here, where
the excitation is a white noise vector uncorrelated with the
initial state, one wants to use the integral equation (21),
then in order to overcome the difficulty in the evaluation of
[w(t,to)] one has to divide the time of interest (to,t) into
time increments, and assume an invariant system within the in-
crements. Then the transition matrix can be evaluated using
Eq. (16), where it is a function of the time increment only.
The size of the time increment is mostly a function of the
rate of change of the system; that is, the increment has to be
small enough for the system to be considered constant through
the increment. However, in cases where [Q] changes faster
than [A], a step size smaller than the one necessary for
assuming a constant [A] will enable us to assume a piece-wise
constant [Q], which will facilitate the computation. One is
forced to use this mefhod if mode shapes are chosen to describe

the structures.

Using this method one computes the value of
[P(tn+l)], the covariance matrix of the state vector at the
time tn+1’ from the value of this matrix at the time tn. In

the development of Eq. (21) we used the assumption

[E({F(t) Hx(t )}T)] =0 for >t . (46)

Similarly, it is necessary in the present case that:
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[E({F(£) Hx(t )}T)] = 0 for tot (47)

in order to use the Egq. (21), which becomes

_ T
[P(£)] = [v(t,t )1IP(E)II¥(E,E )]

t
+ Jf [w(t,i)][B(E)][Q(&)J[B(E)]T[w(t,é)]Tdi . (48)
t

n

As will be now shown, the latter requirement (Eq.
47) results from the first one (Eg. 46). This can be conclud-

ed as follows. Using Eq. (13) we can write for t>tn>to

[B({x(t_) HF(£)})]

[E([w(tn,to)]{x(to)}{F(t)}T

t

n
+ Jf [v(t_,&)1[B(2) 1{F(2) }ae(F (£)}7)]

t
o

[p (£ t )T [E({x (£ ) HF (£)})]

t

n .
+ Jf [v(t_,£) ] [B()][E(F(£) HF(£)1T) 1ae .

%

(49)

For a white noise excitation vector

[E({F(£) HF(£)IT)] = [Q(E)16(E-t)
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Therefore the last part of Eg. (49) becomes

t

n
_{ lu(e ,8)1[B(E)1IQ(E) 16 (e-t)de = 0
t

o
since t>tn. Using this result and Eqg. (46), Eq. (49) is re-

duced to

(E({x(t ) HF(®)ID] =0 .

Therefore in order to use Eg. (48) to find the state
covariance matrix, it is sufficient that the excitation is a
white noise vector and this vector is uncorrelated with the
initial state vector. Since we are interested in [P] at the

end of the interval following tn’ we write Eqg. (48) as

< T
(p_, ] = [y lIP 1Ly 1" + [H]] (50)

where:

[P [P(t

n+l] = n+l)] '

[‘pn] = w(tn+l'tn)] 7

t

n+l o T
j’ (bt ,1,8) 1 [B(E)TIQE) I IB(EII [ty 801 dE

th

[(H_1
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and from Eq. (16)
[ (tpygot) ] = [exp(late)1- (e, -t ))] .

Eg. (50) provides an iterative equation for the

solution of [P(t)].

If the system is time invariant then Eg. (50) is
quite easy to use. For a constant interval of time the [v]
matrix becomes constant; hence at every new step the only new
computation necessary for applying Eq. (50) is the evaluation
of [Hn]. If,in addition, the input is stationary then [Hn] is
also a constant matrix, and the use of Eg. (50) is further
simplified. For this case it may, sometimes, be advantageous

to solve Eq. (22).[29]

Finally, it is advisable to use matrix partitioning
whenever possible. In many cases the matrices consist of sub-
matrices that occupy only a part of the matrix array (for ex-
ample see Egs. 11 and 42). The use of partitioning decreases

the computer storage requirement and speeds up the computation.

CONCLUSIONS

It has been shown in this paper how to operate in

the time domain in order to obtain the covariance matrix of
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the state vector of a system that consists of structures,
linear feedback, and any other linear subsystems. Being a
time domain operation, it enables us to analyze time varying
linear systems excited by nonstationary inputs. It has been
shown that if the input is a white noise vector, or can be ex-
pressed as a filtered white noise vector, then the equations
take a simpler form. However, by no means is the excitation
limited to this case. A general approach for "whitening" a

correlated noise vector is suggested; however, more work is

MJVW
I. Y. Bar-Itzhack

/" M¢WHV"\
IYB

SNH—jct S. N. Hou

needed in this direction.
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APPENDIX I: THE INTEGRAL EXPRESSION FOR THE

STATE COVARIANCE MATRIX 28]

WM} Define [P(tl’tz)]' the general covariance matrix of

the unbiased state vector as:
[P(ty,ty)] = [B({x(t) Hx(t,)})] . (I-1)

Substituting the expressions for'{x(tl)} and'{x(tz)}T as given

.QE by Eq. (13) into Eq. (I-1l) yields:
§
e t1
?? [P(tl,tz)] = [E(§[¢(tl,to)]{X(to)} + jf [¢(tl,£)][B(E)J{F(E)}dE§
to
*
L t2 v
. T
- vyt T () +f [4(t,,0) 1 [B() 1{F (o) 2} T )] .
B to
~~~~~ 3 Performing the indicated transposes and multiplications, we
obtain:

(Pt t)1 = [B(Iv0ey b)) 1 {x(ty) Hx () YT Iw (£, £ ) 1"

tz- T T T,
+ Dty e ) 1x(E)) f {(F(o)}T[B(e) 1T [y (ty,0) 1 dp
t

(o]
f t]_ ) 7 -
] + f [v(ty,8) 1 [BE)ILF(£) FAELx (£ )} [W(ty,t )]

%



; . .
j 1 _ 2

+ f [w(tl,s)][B(a)]{F(s)}dE f {F(p)}T[B(p)]T[w(tz,p)]po)] .
i t t

; o o (1-2)

Rearranging the positions of the integrals in Eq. (I-2) yields:

M@ [B(t),t,)] = [E([w(tl,to)]{x(to)}{x(to)}T[w(tz.to)]T

t
T 2
| + jr [ (k)£ ) 1{x (£ ) HEF () 1B (o) 1T 1w (t,,0) 1 %a0

s

t

1
- ¥ -[' [ (£, 8) TIB(E)TUR (2) 13 x (k) YT Ly (e, ) 1 ae

. to

tl t2
; T T
w0 [Twepoimeime e e
t t

| ) o
¢ Tylty,0)1Tdear)] . (1-3)

Defining

&
li>

[Clty ty)] & BECx(t) HF ()T (1-4)

e

E | | .
o [Q(t,,t,)] E({F(t;) HF(£,)}") ,

; j and using the linearity properties of the expectation opera-
tion, which allow interchange between the expectation and

y integration operators, one may write Eqg. (I-3) as:



;» I-3

[P(t),t,)]

il

[t k) TR (E )1 [y (ty,t )17

PR (WL t
: 2
o [ T et 1160 1T v ey 001
£
i
t
] ¢ [ Tnepoime e, 01 e, )%
tO
j PR T
B + [ Twepoim@ieeo1menTive, 01 s . @)
o £ £
,i [o] O

N In our case,'{x(to)} and {F(t)} are uncorrelated for all t

greater than and equal to to’ then from Egq. (I-4)
[C(t,,t)] = 0
and Eq. (I-5) reduces to:

B - T
- [P(ty,t)] = [v(ty, £ IR (E )TVt )]

t t
1 2 7 T
+ Jf Jf [w(tl,ﬁ)][B(E)][Q(S,p)][B(p)] [w(tzyp)] dedg . (I-6)

@ E % %
* f Eq. (20) is immediately obtained from Eq. (I-6) by letting
o tl = t2 = t.
) When {F(t)} is a vector of unbiased white noise
. i processes, then by definition the covariance matrix of {F} is

expressed as:



I-4

3 [E((F(£) HF(£) 1] = [0t 16 (k) -ty  (I-7)

where §(-) is the Dirac delta function. Substituting Eq.

(I-7) into Eq. (I-6) clearly vields:

; T
[Pty t))] = [¥lty, )1 (£ )1 0(t,, )]

min(tl,tz)
+ [b (1, 8)1IB(E)TIQE) I IB(E) )T [0 (t,,6) 1T ag  (T-8)

. from which Eq. (21) is obtained by letting t, =t, = t.



’g APPENDIX II: THE DIFFERENTIAL EQUATION OF

THE STATE COVARIANCE MATRIX[34]

Noting that [y(t,E)] = [v(t,t )1[v(t,,E)], we can

write

t
| Jf [y (t,e)1IB(E)11Q(E)1IB(E) 1T v (t,8)1 a
' t

“ o
| t
. = [w(t,to)].[.[w(tofE)I[B(é)l[Q(E)][B(E)]T[w(to.a)]TdE[w(t,to)]T
El to
b
: = Db (e, e ) 1L T Iv (e, e )1 (11-1)
o where
- [I(t)] & -j'[w(td,s)][B(E)][Q(e)][B(E)]T[w(to.a)]TdE . (1I-2)
€
3 (o]

Substituting Eq. (II-1) into Eq. (21) yields

()] = (e, e)1([R(e)] + [3(0I]) vt e )1 o (121-3)
Differentiation of this equation results in

()] = b, e )1 ((B(EDT + [T(0)T) Iy (ke )1

+ e, e )T Tv (et )"



£

I1-2

+ et )1(IP ()] + [3(01) (e, e )17 . (11-4)

Recall from the matrix differential equation that the transi-

tion matrix satisfies Eqg. (14), namely
[V (t,t )] = [A(E)ITv(t,t)]
Substituting this equation into Eq. (II-4), yields
[B(t)] = (A1 (t,t)1(IB(e )] + [3(e)1) v (e, e )17
+ et )T 1 (ke )17
+ Dot e )1 (IP(e)] + [0 1) v (e, £ )17 A ®)IT . (11-5)
Using Egq. (II-3), Eq. (II-5) may be written as
[B(t)] = [AM)]I[R()] + [P(&)][A(E)]T
+ Do(e, e ) TITE I v (k)1 (I1-6)
and using Eq. (II-2), it is easy to show that

s T
vt )1 ()T v (et )]

T T T
[v(t, e )11y (£, £)TIB(E)T QL) TIB(E) I (¥l ,£) 1" [¥(t,t )]

[T1[B(t)][Q(t)][B(e)1TII] = [B(t)1[Q(t)1[B(£)1T. (II-7)

From Eq. (II-6) and (II-7), it is obvious that



S

[P

O |

IT-3

d

- [P(B)] = [AM®IT[PE)] + [P(t)]1[A(E)]T

Q)

+ [B(E)IlQ(E)1[B(E)1T .

This is Eg. (22). We note that the assumptions made in this

appendix are those made in the derivation of Eg. (21), namely:

a) {F(t)} is an unbiased white noise vector, hence

[E({F (£)) HF(£,)3T)] = [Q(t;) 16t ~t,)

b) The initial state vector'{x(to)} and the noise
 vector {F(t)} are uncorrelated for all time t;

hence [C(to,t)] as defined in Eqg. (I-4) vanishes.






