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A BSTRACT 

A method for analyzing augmented systems of structures, 

controls, and other subsystems is presented in this paper. The 

systems have to be linear but may be time varying and under non- 

stationary excitation. The analysis results in equations for 

solving the covariance matrix of the state of the system. The 

state of the system is a vector which may contain translational 

and rotational motions of the structures as well as other vari- 

ables of the system and their derivatives. Computational consi- 

derations involved in the solution of these equations are also 

discussed. 
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TECHNICAL MEMORANDUM 

IFTRODUCTION 

The analysis of structural vibrations caused by 

random excitation has received general attention for the past 

two decades. Structural engineers have benefited from the 

early mathematical work on random processes and its applica- 

tion by electrical engineers to Information Theory and Control 

Theory. Such adaptation of knowledge to the structural problem 

has advanced the art appreciably. However, in order to avoid 

confusion in terminology and concept, restating and extending 

the principles from one field to another field has been an 

essential task. 

[4 ,5  r61  The works of Wiener, E1r2'3J Lee and Wiener, 

Khinchin, [ 71  Titchmarsh, [ * I  and others opened the Wienerian 

era. Structural engineers adopted Wienerian concepts, which 

are widely used in the so-called "Wiener-Filter" to analyze 

linear structures under stationary random excitation. The 

works of Crandall and especially Crandall and Mark [ l o 1  

were the main contributions in this direction. The high- 

lights of the Wienerian approach are as follows: 
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1. 

2. 

Since the 

frequency 

not treat 

The spectral density function of a random and 

at least weakly stationary* process is the 

Fourier transform of the autocorrelation 

function of the process divided by A IT. 

The spectral density function of the filtered 

output equals the product of the square of 

the absolute value of the frequency response 

function of the filter and the spectral den- 

sity function of the excitation of this filter. 

Wienerian approach analyzes the system in the 

domain, it has limited power; specifically, it can- 

cases where (a) the excitation forces are nonsta- 

tionary, and (b) the system, although linear, is time varying. 

Faced with these restrictions, structural engineers have tried 

to solve special cases where certain assumptions could be 

made , but all the work was confined to Wienerian concepts 

and hence to frequency domain analysis, which still is the 

state of the art in structural engineering. 

* 
Other popular terms for a weakly stationary process are 

"stationary in the wide sense I *' "covariance stationary, or 

"second order stationary" random process. 
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In the beginning of the sixties a break-through 

was achieved by systems engineers, which was mostly due to 
i12,131 Bucy the work of Kalman, and their common 

work. [15] Although many other investigators dealt with the 

same problems, it was Kalman and particularly the so-called 

"Kalman-Filter" technique that spread the interest in 

Kalmanian concepts in the very same way that the Wiener- 

Filter spread the Wienerian concepts. 

needed for the Kalmanian approach are already known to 

structural engineers, [161 the technique itself has yet to 

be applied. ,Once again it is time for the structural engi- 

Although elements 

neer to introduce new concepts taken from systems engineering 

to obtain nonstationary random responses. 

The Kalmanian approach rids itself of the limita- 

tions involved with the Wienerian approach by being confined 

to only time domain analyses, and by using ensemble averages. 

This way neither ergodicity nor transformation to the fre- 

quency domain is necessary. For these reasons the Kalmanian 

approach is suitable for treating nonstationary excitation 

of time varying structures, whether they stand by themselves, 

or whether they constitute a subsystem in a feedback system. 

Moreover, even when the excitation is stationary and the 
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I 

system is constant, the Kalmanian approach offers certain 

computational advantages, especially when the system includes 

a lightly damped structure. 

In most cases, we are mainly interested in the 

response intensity at certain points in the structures due 

to random excitations at some other points. We need to know 

not only the mean value of the response, which can be easily 

obtained, but also its variance about the estimated level. 

The problem of finding the mean response is a trivial one 

because it is a deterministic problem. Thus in our analysis 

we will concentrate mainly on the solution for the variance 

of the response, or more specifically, we will deal with the 

time solution of the covariance matrix of the system. 

STATE VARIABLE APPROACH TO STRUCTURAL DYNAMICS 

A basic requirement in the Kalmanian approach is 

the state variable representation of a linear system. Such 

an idea was first introduced in 1936 by A .  M. Turing. How- 

ever, its wide application in the control field was initiated 
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in the forties by the Russian scientists M. A .  Aizerman, A. A. 

Feldbaum, A. M. Letov, A. I. Lure, and others, A sufficient 

discussion of the state variable approach can be found in 

most of the modern control books. 

The behavior of a linear physical system can usual- 

ly be described by a mathematical model, which consists of a 

i 
* ,  

1 

set of linear ordinary differential equations. The number of 

equations should be sufficient to describe the interesting 

properties of the system, and they can be of any order. This 

set, however, can be transformed into a first order matrix 

differential equation, which takes the following form: 

i 
* i  

The vector {XI is the state vector or the response of the 
system, whereas the vector (F1 is the input or the excita- 

tion of the system. The matrix [A(t)] is the system matrix, 

and the matrix [B(t)] is the input or the excitation matrix. 

Finally, it should be added that the state variable repre- 

sentation of a system is not unique. In this paper the 

linear system will include the structures as well as control 

loops and parasitic feedback loops, although any other 

conceivable linear subsystems can be included. 

'! 
c : 
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As an example, we will now show the derivation of 

a state variable representation of a system including 

structures, velocity feedback loops, and position feedback 

loops 0 

During a relatively short interval of time, 

this system will have the following linear equation of 

motion in matrix form: 

[mltul f [cl{;l + [klIul ( 2 )  

= [Gfl{fl + IGulIu) + [Gvltil , 

where 
i 
! 
I ._ tu1 is a vector containing the motion of nodes in 

their physical coordinates, 

{ f l  is a vector containing the time functions of 
the loads (i.e., engine thrust) at certain 
nodes, 

[m] is the mass matrix of the structure, 

[c] is the damping matrix of the structure, 

[k] is the stiffness matrix of the structurel 

[e,] is the load coefficient matrix, 

[Gulf [Gv] are the feedback coefficient matrices 
of {u) and (61 respectively. 

Rewriting the above equation as 
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where [I] is the identity matrix, and denoting 

Iyl = {$) 

Eq. (3) can be written in the form of Eq. (1) as the 

following first-order differential equation: 

Eq. (4) is a state variable representation of the dynamic 

system given by Eq. (2) e Alternatively, Eq. (2) may be 
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expressed in a modal coordinate form and for this case too, 

a state variable representation can be developed. 

The size of the matrices [A ] and [B I in Eq. (2) 
Y Y 

is (2111 x (2111, where n is the number of the degrees of 

freedom of the system. It is obvious that Eq. (4) will be- 

come impractical, if not impossible, to handle when the 

system is a large one. In such case the use of modal coordi- 

nates may be advantageous by considering only a limited number 

of modes hence reducing the size of the matrices handled. 

This, however, may be done provided the inclusion of only a 

finite and a relatively small number of modes gives an accu- 

rate enough description of the physical system. 

to modal coordinates can be done as follows. Let 

The switch 

I where 
! 

141  and {ql  are respectively the mode shape 

matrix and the modal coordinate 

vector of the system without 

feedback , 

! 
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{XI is a vector containing the new state variables 
q and 4. 

Substituting Eq. ( 5 )  into Eq. (2) and premultiplying each term 

by [ $ I T :  

Owing to the characteristics of [ $ I  8 we can ‘define the follow- 

ing diagonal matrices:: 

provided that the damping matrix [cI can also be decoupled 

to modal damping, 

Thus, using Eq, ( 8 ) 8  Eq. (7)  can be further expressed as: 
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I 

J 

Following the passage from Eq.  (2) to Eq. ( 3 1 ,  Eq. (9) is 

transformed into: 

By defining: 

0 J I 
I I 

and using Eq. (6), Eq, (IO) becomes:: 

This is a state variable representation of the system given 

by Eq, 

by the use of Eqs. (6) and (5) It is evident that in 

generating [Ax] and [Bx] for Eq. (12) , we can include a 

( Z ) ,  which a€ter being solved yields the vector €u} 
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limited number of modes, such that the size of the system 

equation is reduced and therefore is easier to handle. 

The solution of Eq. (1) is 'known to be 

1 

I 

i 

where to is the initial time at which the state vector 

{x(to)> is known, and [$I, the state transition matrix, 

satisfies the following differential equation: 

with the initial condition 

The solution of Eq. (14) is known to be the Neumann 

series : C171 

5 / 2  t t 

+ *  - * +  

+. . e 
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When the matrix [A] is a time invariant matrix, the integral 

series in Eq. (15) is reduced to the following series: 

A number of papers have 

Eq. (16) and the errors 
[18-251 cated series. 

been written on the computation of 

associated with the use of the trun- 

THE STATE COVARIANCE MATRIX 

The covariance matrix of the state of the system 

l 
a ;  

! . .. 

at time t described by Eq. (1) is defined as: 

A more explicit expression for the covariance 

matrix is the following one: 



.. . 
1. 

! 

c .I 

I 

: i  

The diagonal elements, which are the variances of each state 

variable, give a measure of the fluctuation of the response 

about their mean values, The off-diagonal elements indicate 

the amount of correlation between two corresponding state 

variables at the same time t. Notice that the state variables 

x1 (t) I x2 (t) , e  e e ,  xn (t) may be translational displacement, 

angular rotation, pressure, or any other variable of the sys- 

tem and their first or higher order derivatives. 

The computation of the last term in Eq. (17) is 

simple, and involves only deterministic quantities, since by 

applying the expectation operation to Eq, (13) one obtains: 
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i 

i 
- i  

j 
_ I  J 

L '  
I 

where E ( { x ( t o ) } )  as well as E ( ( F ( 5 ) ) )  are known determinis- 

tic quantities., We shall, therefore, concentrate on the 

computation of [P(t)] , defined by 

The passage from [P(t)] to the covariance matrix 

[P*(t)l using E q s .  (17) to (19) is immediate. It is shown 

in Appendix I that if the noise vector {F(t)) and the ini- 

tial state vector {x(to')l are uncorrelated (and this is the 

case we are usually dealing with) then: 

If, in addition, the noise vector {F(t)) is a white noise 

vectorl then as shown in Appendix I: 
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where [Q(t)]  is the intensity of the unbiased" noise 

covariance matrix defined by: 

and b ( e )  is the Dirac delta function. 

In Appendix I1 it is shown that the following dif- 

ferential equation is equivalent to the integral expression 

for [P(t)l given in Eq. (21) : 

i 
- i  

I 

' I  

This equation is a special case of the we11 known Riccati 

equation 

A SIMPLE EXAMPLE 

* To illustrate the correspondance between this 

method and the previously known method, which is based on 

frequency domain analysis, let us consider a case that 

will be useful  in the next section, 

*In this paper, an unbiased quantity will mean a 

quantity whose mean has been removed. 
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Consider a linear system whose set of differential 

equations is expressed in matrix form as follows: 

Let [A] be the diagonal matrix: 

and let {hl be a white noise vector whose autocorrelation 

matrix is of the form: 

2 
'nan 

i 

Fourier transforming Eq, (23) yields: 
w :  

< ,  

or 

i 
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Since [A] is a diagonal matrix, Eq. ( 2 5 )  becomes: 

' I  

1 
i 

' 1  

i 

j 

. *  

i 

1 
ju+B2 

. 
1 

jw+Bn 

CHI . 

By definition, the matrix in Eq. ( 2 6 )  is the transfer 

function of the system, since it transfers the input vector 

{HI into the output {XI. Using the Wienerian approach, the 

power spectrum of the output vector {XI is given by 

rsxx(~)i = 

' 1  

6J . + B 1  
2 2  

1 
2 2  

6J + B 2  

. 
. 

1 
2 2  

QI +Bn 

and since Eh) is a white noise vector, we obtain in corre- 
spondence to Eq. ( 2 4 ) :  
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p l " 1  2 2 
%"l 

I e 

. 
* 

2 
- Brian - -  

Substituting Eq, (28) in Eq. (27) yields: 

2 

2 2  
2Blal 
W +e1 *" i 

1 CSXX(W)I = - 27r I 

. 

and multiplying [SxX(w)] by 27r yields the Fourier transform 

of the autocorrelation matrix of {XI, which, when inverse 

transformed results in the following matrix [271. 

f 
D 

? 
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In particular for T = 0 ,  

~Rxx(O)1 = 

- 19 - 

Let us now consider this system in the time domain 

and apply Eq. (1-8) from Appendix I to obtain,the same results. 

Rewriting Eq. (23) in the form of Eq. (1): 

{ G I  = [-AICXI + {hl , 

we obtain the following transition matrix: 

- B  (t -t 1 e 2 b a  . . 
e 

since [A] is a constant matrix. 

tial time of the process,the covariance matrix [ P ( t o ) ]  has the 

form : 

Assume that at to, the i d -  
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From Eq. (24) it is obvious that 

e . 

1 

(1-8) one obtains 

( t l"t 2-2 to) 

2 
262u2 . . . 
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+ rin 
After performing the integration, 

. 
(Pn--Gn2) 

-B, (t1+t2-2 
e 

* 

The first matrix on the right hand side of this equation is 

the transient part of [P(tlft2)] and is due to the propagation 
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1 
( I '  

of the initial matrix [R(to)la 

state part of [P(tltt2)J and is stationary, 

part is indeed equal to [ (T)] given by Eq. (29), and using 

Eq. (21) rather than Eqe (1-8) to compute [P(t,t)] will result 

in a steady-state matrix equal to [Rx,(S)], as given by Eq. 

(30). 

only the steady-state part of the autocorrelation function of 

a stationary process, 

The second part is the steady- 

The stationary 

Note that the power spectral density method yields 

WHITENING OF CORRELATED EXCITATION 

When the excitation vector {F(t)) is a white noise 

vector, Eqs. (21) or (22 )  can be used to compute [P(t)l. These 

equations are by far easier to handle than Eq. (20), but un- 

fortunately the white noise concept is a nice mathematical 

concept that does not exist physically. In many cases, how- 

ever, the covariance matrix of the excitation vector can be 

broken into a sum of e%e entary covariance matrices, The 

matrices can be described as the covariance matrices of state 

vectors of special systemsp which are excited with correspond- 

ing white noise vectors. These spec al systems are called 

"shaping filters 1 'C16J283  which can be added to the original 

system by modifing [ I t  and {F) in Eq. (1) a In such 
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a modified state variable differential equation, the modified 

excitation vector { P I  is now a white noise vector and there- 

fore Eqs. (21)  or ( 2 2 )  can be used to find [P(t)l. 

As an example! consider the system described by 

Eq. ( 4 ) :  

Let us assume that the excitation vector {F) consists of ele- 

ments which are Markov processes, that is, the covariance 

matrix of {F) is: 

4 

m 
e 

where 

. 

. ( 3 3 )  
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( 3 5 )  I 

and { W  I is a white noise vector whose covariance matrix is 
S 

-% 

2 
2filal 

2 
2B2a2 

. 
* 

0 

~6 (tl-t2). (36) 

This special system is identical to the system treated in the 

preceeding chapter; hence the covariance matrix of {FI is 

given by Eq. (31). If we choose: 

2 
"2  

. 
L 

PI " 

(37) 

then the covariance matrix IF )  is the one given by E¶. ( 3 3 ) ,  
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The initial system given in Eq, (32)  and the shaping 

filter given in Eq. (3  ) can be combined to form the following 

augmented system: 

Letting 

then Eq. ( 3 8 )  can be written as: 

This equation is in the form of Eq. (1) and the excitation 

vector {Wl is a white noise vec'tor. 

or Eq. ( 2 2 )  can be used to find [P(t)]. Moreover we see that 

we eliminated the matrix [B(t) I in Eq. (1) I which further 

simplifies the computation of [P(t)]. The' penalty for these 

Therefore either Eq. (21) 

simplifications is the increase in the size of the A matrix, 

which we can partly relieve as will be shown later. 

The preceeding e ample can be now generalized as 

Let the, initial system be given by follows. 
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" !  
I 

i 

I 
i 

I ,  

J 

i 

* 

We assume that 

where all the matrices may be time varying and the vectors 

are functions of time, 

i=le2e 0 ,me are the output vectors of shaping filters whose 

inputs are white noise vectors. 

of these shaping filters are: 

We assume that the vectors {gi), 

The state variable equations 

e 

where {Wi)pi=1,2,e~e,m, are white noise vectors. 

tion of Eqs. (39)-(41) yields the final system: 

The combina- 

I 

6 ,  
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i 
i 

J 

i I 

f 

are determined such that the desired covariance matrix of { f  1 

is obtained. We note that {gi(tl) 1 and {g. (t,) 1 for i # j are 

uneosrelated; therefore using Eq. ( 0) it canhe shown that 

Y 

3 

the covariance matrix of {f 1 is given by: Y 

i=l 

The covariance ma 

can be found usin 

the general 

choice of m= nkities of Eq. 

ovariance mat given by Eq. ( 3 3 1 ,  

ven by Eq, (38). 
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If we assume that m = 1, [GI] = I, [Asl] = 0, 

[E({Wl(tl) )CWl(t2) I T ) ]  = 0, and 

P 

Eq. (45). If on the other hand 

and 

I 

then 

(45) 

then the covariance matrix of If I i s  the same one given in 
Y 

The bast case f andom walk excitation vector, 
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COMPUTATIONAL CONSIDERATIONS 

In most cases, an analytic solution to the state 

covariance matrix cannot be found and one has to resort to 

numerical techniques. 

integral equations (1-5l8 (1-61, (20) and (21) to evaluate 

the state covariance matrix comes from the need of using 

[$(t,to)], the state transition matrix, which is practically 

impossible to evaluate for time varying systems (see Eq. 15). 

In addition, if the excitation vector cannot be "whitened" 

through shaping filters, the simpler equation (Eq. 21) cannot 

be used, and Eq. (20 )  must be solved (if the initial state is 

The main difficulty in the use of the 

correlated with the noise then Eq. 1-5 must be used). 

When the excitation is indeed a white noise vector, 

uncorrelated with the initial state vector, Eq. (22) can be 

used successfully because [$(t,to)] is not needed. Several 

methods to solve this equation are known [29,30,311 of which 

integration r301 is the 

be noted that when the 

citation is stationary 

most straight forward one. It should 

system is time invariant and the ex- 

and further we are interested only in 

the steady-state covariance matrix, the derivative of [P(t)] 

vanishes and we are left with am algebraic matrix equation 

for which there are 'known solutions. [*'I 
programs are available for the solution of this case. 

some computer 
[32,331 
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If for the time varying system discussed here, where 

the excitation is a white noise vector uncorrelated with the 

initial state, one wants to use the integral equation (21), 

then in order to overcome the difficulty in the evaluation of 

[ $  (t,to) I one has to divide the time of interest (to, t) into 
time increments, and assume an invariant system within the in- 

crements. Then the transition matrix can be evaluated using 

Eq. (16), where it is a function of the time increment only. 

The size of the time increment is mostly a function of the 

rate of change of the system; that is, the increment has to be 

small enough for the system to be considered constant through 

the increment. However, in cases where [Q] changes faster 

than [A], a step size smaller than the one necessary for 

assuming a constant [A] will enable us to assume a piece-wise 

constant [Q], which will facilitate the computation. One is 

forced to use this method if mode shapes are chosen to describe 

the structures. 

Using this method one computes the value of 

[P(tn+,)], the covariance matrix of the state vector at the 

time tn+l, from the value of this matrix at the time tne 

the development of Eq. (21) we used the assumption 

In 

Similarly, it is necessar in the present case that: 



- 31 - CO Ne=. 

- ?  

in order to use the Eq, (211, which becomes 

I 

As will be now shown, the latter requirement (Eq. 

4 7 )  results from the first one (Eq. 46). This can be conclud- 

ed as follows. Using Eq. (13) we can write for t>tn>to 

I 

P 

For a white noise e citation vector 
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Therefore the last part of Eq. (49) becomes 

since t't," Using this result and Eq. (46), Eq. (49) is re- 

duced to 

Therefore in order to use Eq. (48) to find the state 

covariance matrix, it is sufficient that the excitation is a 

white noise vector and this vector is uncorrelated with the 

initial state vector. Since we are interested in [PI at the 

end of the interval following tn, we write Eq. ( 4 8 )  as 

where : 
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and from Eq. (16) 

Eq. (50) provides an iterative equation for the 

solution of [P (t) ] 

If the system is time invariant then Eq. (50) is 

quite easy to use. 

matrix becomes constant; hence at every new step the only new 

computation necessary for applying Eq. (50) is the evaluation 

of [H,] e 

also a constant matrix, and the use of Eq. (50) is further 

simplified. For this case it may, sometimes,be advantageous 
to solve Eq. ( 2 2 ) .  [291 

For a constant interval of time the [ J i ]  

If, in addition, the input is stationary then [H,] is 

Finally, it is advisable to use matrix partitioning 

whenever possible. In many cases the matrices consist of sub- 

matrices that occupy only a part of the matrix array (for ex- 

ample see E q s .  11 and 4 2 ) .  The use of partitioning decreases 

the computer storage requirement and speeds up the computation. 

CONCLUSIONS 

It has been shown in this paper how to operate in 

the time domain in order to obtain the covariance matrix of 
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the state vector of a system t,,at consists of structures, 

linear feedback, and any other linear subsystems, Being a 

time domain operation, it enables us to analyze time varying 

linear sys-tems excited by nonstationary inputs. It has been 

shown that if the input is a white noise vector, or can be ex- 

pressed as a filtered white noise vector, then the equations 

take a simpler form. However, by no means is the excitation 

limited to this case. A general approach for "whitening" a 

correlated noise vector is suggested; however, more work is 

needed in this direction. 
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APPENDIX I: THE INTEGRAL EXPRESSION FOR THE 

STATE COVARIANCE MATRIX 1281 

Define [P(tlft2)1, the general covariance matrix of 

the unbiased state vector as: 

Substituting the expressions for {x(tl) 1 and {x(t2) IT as given 
by Eq. (13) into Eq. (1-1) yields: 

Performing the indicated transposes and multiplicationsf we 

obtain: 



1-2 

i 
.._ ... 

I 
b . .  

a ,  

Rearranging the positions of the integrals in Eq. (1-2) yields: 

(1-3) 

and using the linearity properties of the expectation opera- 

tion, which allow interchange between the expectation and 

integration operators, one may write Eq. (1-3) as: 
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i 
'* J 

t. 

In our case, {x(to)) and {F(t)) are uncorrelated for all t 

greater than and equal to to, then from Eq. (1-4) 

[C(t,,t)I = 0 

and Eq. (1-5) reduces to: 

Eq. (20) is immediately obtained from Eq. (1-6) by letting 

tl = t2 = t. 

When {F(t)) is a vector of unbiased white noise 

processes, then by definition the covariance matrix of IF) is 

expressed as: 
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1 

where 6 ( 0 )  is the Dirac delta function. Substituting Eq. 

(1-7) into Eq. (1-6) clearly yields: 

' I  

i 

from which Eq. (21) is obtained by letting tl = t2 = t. 
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APPENDIX 11: THE DIFFERENTIAL EQUATION OF 

1341 THE STATE COVARIANCE MATRIX 

write 

where 

Substituting Eq. (11-1) into Eq. (21) yields 

Differentiation of this equation results in 
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. . ..i 

., -4 

i 
, .  i 

Recall from the matrix differential equation that the transi- 

tion matrix satisfies Eq. (141, namely 

Substituting this equation into Eq. (11-4), yields 

Using Eq. (11-3), Eq. (11-5) may be written as 

(11-6) 

From Eq. (11-6) and (11-7), it is obvious that 
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t 

, 

- 1  
i 

This is Eq. (22). We note that the assumptions made in this 

appendix are those made in the derivation of Eq. (21), namely: 

a) {F(t) 1 is an unbiased white noise vector, hence 

b) The initial state vector (x(to) 1 and the noise 

vector {F(t)) are uncorrelated for all time t; 

hence [C(to,t)] as defined in Eq. (1-4) vanishes. 

. ._.I 




