Jon 5RR

ORBITAL IMAGERY FOR PLANETARY EXPLORATION

CONDENSED SUMMARY

IIT RESEARCH INSTITUTE 10 West 35 Street Chicago, Illinois 60616

ORBITAL IMAGERY FOR PLANETARY EXPLORATION

CONDENSED SUMMARY

Compiled by

Astro Sciences Center

of

IIT Research Institute Chicago, Illinois

for

Mission Analysis Division National Aeronautics and Space Administration Office of Advanced Research and Technology Moffett Field, California

Contract No. NAS2-4494

APPROVED:

OL Roberts

D. L. Roberts, Manager Astro Sciences Center

February 1970

ORBITAL IMAGERY FOR PLANETARY EXPLORATION

CONDENSED SUMMARY

TABLE OF CONTENTS

1.	Introduction	Page 1
2.	Exploration Objectives	3
3.	Measurement Definition	6
4.	Orbit Selection	10
5.	Imager Scaling Laws	13
6,	Experiment Support Requirements	18

5-----

ORBITAL IMAGERY FOR PLANETARY EXPLORATION

CONDENSED SUMMARY

LIST OF FIGURES

Figure	- -	Page
1.	Analysis of Scientific Goals	4
2.	Function of Scaling Laws	14
3.	Logic Diagram for Television Systems	16
4.	Scaling Laws for Television Systems	17

LIST OF TABLES

Table					H	'age
1.	Summary	of	Measurement	Specifications		7

CONDENSED SUMMARY REPORT

INTRODUCTION

1.

This report is a condensed summary of work reported in detail by Volumes I through V of "Orbital Imagery for Planetary Exploration." The purpose of the study was to estimate the requirements imposed upon spacecraft subsystems by the use of imaging sensor systems on unmanned planetary orbiting spacecraft. This study plays a key role in the identification of advanced technology development needs. By comparing the estimated support requirements provided by this study to the projected capabilities of spacecraft subsystems, some of the needs for advanced technology development of subsystems may be Since this study deals only with imaging experidetermined. ments which might be performed on unmanned planetary orbital missions, a comprehensive determination of advanced technology requirements must await completion of additional studies dealing with alternative mission modes. Nonetheless, since orbital imagery is expected to play an important part in planetary exploration, this study represents an essential contribution to the intelligent planning of advanced technology development.

The study focuses upon orbital imaging experiments because such experiments are expected to impose severe requirements upon spacecraft subsystems in future unmanned planetary exploration. The term imaging, as used in this study, means the collection of two-dimensional information from a planetary scene in an essentially simultaneous manner, either by direct two-dimensional recording or by rapid scanning. The planetary targets considered by the study are Mercury, Venus, the Moon, Mars, and Jupiter, while the time frame of interest covers launch opportunities from 1975-1995. The study subtasks were (1) exploration objectives, (2) measurement definition, (3)

IIT RESEARCH INSTITUTE

orbit selection, (4) imager scaling laws, and (5) experiment support requirements.

The <u>exploration objectives</u> task provided an explicit statement of those objectives of unmanned planetary orbital exploration which might be accomplished by remote sensing experiments. By considering the scientific goals of space exploration, the current knowledge of planetary phenomena, and conceptual measurement techniques, additional analysis identified those measureable planetary phenomena which can be investigated usefully by imagery from orbital altitudes.

The <u>measurement definition</u> task interpreted the exploration objectives into measurement specifications from the viewpoint of the scientist who must interpret the data. A set of nominal values (pertaining to ground resolution, imaged area, solar illumination constraints, etc.) was defined for each measurement, together with a range of values over which the measurement was deemed useful to the scientist. The measurement specifications were used in the orbit selection procedure and in the final estimation of experiment support requirements.

The <u>orbit selection</u> task defined operational orbits for the required experiments. Experiments with similar operational requirements were grouped into families, and orbits were selected for these families. The resultant orbital parameters were also used in the estimation of subsystem support requirements for each of the experiments.

The <u>imager scaling</u> laws defined the quantitative relationships between the imager characteristics and its ability to meet the required measurement specifications from a specific orbit. For each imager type, a collection of scaling laws which relate the experiment support requirements to the measurement specifications, to the sensor system characteristics, and to the orbit variables were derived.

The <u>experiment support requirements</u> task combined the results of previous tasks. Both measurement specifications and

IIT RESEARCH INSTITUTE

orbit parameters were used with the scaling laws to estimate typical support requirements demanded by each imaging experiment.

This condensed summary report discusses, in each of the task areas, the method of analysis and the results of the analysis. A more detailed summary report is provided by Volume I-Technical Summary. The exploration objectives task is documented in Volume II-Definitions of Scientific Objectives which describes in some detail those planetary phenomena for which remote sensing appears useful. The results of the orbit selection task are tabulated in Volume III-Orbit Selection and Definition. Volume IV-Imaging Sensor System Scaling Laws provides a detailed derivation of scaling laws for ultraviolet line scanners, television camera systems, photographic film camera systems, infrared line scanners, passive microwave imagers, and side-looking radar systems. A classified appendix (confidential) to Volume IV presents scaling laws for infrared television camera systems. Volume V-Support Requirements for Planetary Orbital Imaging presents an extensive tabulation of typical experiment support requirements for orbital imaging experiments at Mars, Venus, Mercury, and Jupiter.

2.

EXPLORATION OBJECTIVES

Both scientific and engineering objectives of planetary exploration were identified by a systematic analysis of the goals of space exploration. The scientific goal deals with understanding the origin and evolution of the solar system, while the engineering goal was defined as achieving the scientific goal in an efficient manner. These goals were expanded in steps of increasing detail resulting in the identification of subgoals, exploration objectives, and observable planetary properties, or "observables." The analysis of the scientific goal, down through the exploration objectives level, is portrayed in Figure 1. Down to this level of detail, it was not necessary to take account of detailed differences between the

IIT RESEARCH INSTITUTE

FIGURE I. ANALYSIS OF SCIENTIFIC GOAL.

planets, the location of the experimental platform, or the class of measurement (i.e., direct or remote sensing). Once the observables were defined in terms of physical phenomena and conceptual measurement techniques, the potential utility of remote sensing was assessed. If remote sensing was deemed useful, the observable was analyzed in greater detail to determine whether or not imagery obtained from an orbiting spacecraft might contribute materially to achievement of the exploration objective. This judgement was based on the characteristics of the observable (planetary distribution, characteristic size, temporal variation, etc.) at each of the target planets without regard to instrument availability or current technological capability. The observables defined in support of engineering exploration objectives were not analyzed in sufficient detail to define measurement specifications, but were correlated with the scientific observables.

Analysis of the scientific goal, as shown in Figure 1, led to the definition of nearly thirty exploration objectives dealing with understanding a planetary body (composition, structure, and active processes), the surrounding atmosphere (composition, structure, and active processes), fields, and both active and extinct biology. Nearly one hundred different observables were defined in support of these exploration objectives, but remote sensing was judged useful for only about half of these with emphasis upon those objectives dealing with planetary composition, planetary structure, atmospheric structure, and active atmospheric processes. Orbital imagery is expected to be useful in the study of more than half of the observables for which remote sensing is appropriate. In particular, orbital imagery can play a major role in the study of planetary structure and active atmospheric processes. Orbital imagery is not expected to contribute materially to an understanding of either planetary or atmospheric composition. The complete results of the exploration objectives task are given

IIT RESEARCH INSTITUTE

in Volume II-Definitions of Scientific Objectives.

3.

MEASUREMENT DEFINITION

From the standpoint of the sensor system designer, the planet-dependent observable descriptions do not adequately describe the nature and quality of the desired imagery. The observable descriptions define <u>what</u> should be measured, but do not define <u>how</u> the measurement should be performed in terms of the operational conditions and measurement accuracy necessary for proper image interpretation. Therefore, the observable descriptions were recast in a form meaningful to both the scientist and the sensor system engineer. The resulting measurement definitions provided nominal specifications for orbital imaging measurements, and are summarized in Table 1.

The nominal specifications themselves do not indicate the amount of flexibility (or image degradation) the scientist is willing to accept. In order that overly-stringent support requirements not result from the measurement specifications, measurement worth curves were provided. The letter-digit combinations listed in Table 1 (e.g. A7) refer to these worth The worth curves are included in Volume I and indicate, curves. for each specification, how the nominal value may vary without degrading the scientific value of the experiment. The experiment support requirements estimated in this study are based upon the worth curve data rather than the nominal specifications given in the Table. It must be emphasized that the measurement definitions do not, in any way, reflect the current technological capabilities of imaging sensor systems. The measurements defined here indicate the imaging experiments the scientist would truly like to perform, rather than what he thinks he could perform.

The specifications shown in Table 1 imply an exploration heirarchy involving first, second, and even third generation missions aimed at acquiring data of increasing detail.

IIT RESEARCH INSTITUTE

TABLE I. SUMMARY OF MEASUREMENT SPECIFICATIONS

OBSERVA	81.E	PLANET	GROUND RESOLUTIO	N IMAGI	SIZE	POSITI	ONAL ACY	PLANETAI COVERAGI	Y PLANETARY DISTRIBUTION	ACQUI IMAGE	SITION TIME COVERAGE	REPETITI IMAGE	CON RATE	SENSOR REFERENCES	SENSOR TYPE	SPECTRAL H	REGION	BANDWID	TH	OVERLAP	SUN ELEVATION	SUPPORT MEASUREMENTS	COMPENTS
1) [*] Surface Elevation	ns	Moon Mercury Mars Venus Jupiter	5 km A7 5 km A7 5 km A7 5 km A7 5 km A8	500 km 800 km 1000 1 2000 1 20000	n B5 n B6 cm B6 cm B8 km B11	10 km 10 km 10 km 50 km	C7 C7 C7 C7 C7 C9	100% D1 100% D1 100% D 100% D 100% D	-	-	-			a,d,f,i b,d,g,i c,e,g,i g,i h,j	a Visible b d Visible Stereo e f Radar g h i Radar Stereo j	5750Å 5750Å 6250Å 6250Å 6250Å 50 cm 1 m 50 cm 1 m	F3 F4 F3 F4 F18 F18 F18 F18 F21 F18 F21	1000Å 1000Å 1000Å 1000Å 1000Å - - - - - - -	G3 G3 G3 G3 G3 G3	20% H1 20% H2 20% H2 60% H3 60% H3 20% H1 20% H2 20% H2 60% H3 60% H3	20° 11 20° 11 20° 11 80° 14 80° 14 - - - - -	S/C Altitude, Local Time S/C Altitude, Local Time S/C Altitude, Local Time S/C Altitude S/C Altitude S/C Altitude S/C Altitude S/C Altitude S/C Altitude S/C Altitude S/C Altitude S/C Altitude	Vertical resolution for all bodies is 1 km (J1) except Jupiter which is 4 km (J2).
2) Layering		Moon Mercury Mars Venus Jupiter	10 cm A1 10 cm A1 10 cm A1 10 cm A1 10 cm A1 1 m A3	1 km 1 km 1 km 1 km 1 km	82 82 82 82 82	10 m 10 m 10 m 10 m	C2 C2 C2 C2 C2 C2 C2	<1% <1% <1% <1%	Determined by prior mappin Determined by prior mappin Determined by prior mappin Determined by prior mappin Determined by prior mappin		• • • •		- - - -	a, d, f b, e, g c, e, g e, g h	a Visible b c d Radar e f Multifreq.Radar g h	5750Å 5750Å 6250A 10 cm 10 cm 50 cm 50 cm 60 cm	F3 F4 F17 F17 F18 F18 F18 F18	1000Å 1000Å 1000Å - - 3 bands 3 bands 3 bands	G2 G2 G2 G16 G16 G16 G16	20% H1 20% H2 20% H2 20% H1 20% H1 20% H2 20% H1 20% H2 20% H2	45° 12 45° 12 45° 12 - - - - -	- - - - - - -	
Contacts 3) (Region	nal)	Mercury Mars Venus Jupiter	1 km A6 1 km A6 1 km A6 5 km A7	800 km 1000 k 2000 k 10000	m B6 m B6 m B8 km B10 B4	10 km 10 km 10 km 50 km	C6 C6 C9 C4	100% D1 100% D1 100% D1 5% D3	- - Global		-	-	-	b,d,g,j,1,o e,h,j,1,p 1 m	a Ultraviolet b c Visible d e f Infrared	2250Å 2250Å 5750Å 5750Å 6250Å	F1 F1 F3 F3 F4 F4	500Å 500Å 1000Å 1000Å 1000Å	G1 G1 G2 G2 G2 G2 G2	20% H1 20% H2 20% H1 20% H2 20% H2 20% H2	90° 15 90° 15 20° 11 20° 11 20° 11	- - - -	
5) (Betail	ed)	Mercury Mars Venus Moon Mercury Mars	100 m A5 100 m A5 100 m A5 1 m A3 1 m A3 1 m A3	100 km 100 km 100 km 1 km 1 km 1 km	B4 B4 B4 B2 B2 B2	1 km 1 km 1 km 10 m 10 m 10 m	C4 C4 C4 C2 C2 C2 C2	10% D2 10% D2 10% D2 10% D2 <1% <1%	See regional maps See regional maps See regional maps See local maps See local maps See local maps		- - - -	-	- - - -	a,c,f,i,k,n b,d,g,j,1,o e,h,j,1,p a,c,f,i,k,n b,d,g,j,1,o e,h,i,1,p	k Radar m	1.5µ 1.75µ 120µ 120µ 10 cm 10 cm 60 cm	F6 F7 F12 F12 F17 F17 F18	0.1μ 0.1μ 20μ -	G2 G2 G9 G9	20% H2 20% H2 20% H1 20% H1 20% H2 20% H1 20% H2 20% H2	20° 11 20° 11 90° 15 90° 15		
Structure Features 6) (Region	of al)	Venus Merc ury Mars Venus	1 m A3 1 km A6 1 km A6 1 km A6	1 km 800 km 1000 k 2000 k	B2 B6 m B6 m B8	10 m 10 km 10 km 10 km	C2 C6 C6 C6	<1% 100% D1 100% D1 100% D1	See local maps	-	- - - -	-	- - -	b,d,g,j,1 c,e,h,j,1 j,1	n Multiband o P a Visible b	.15-2μ .15-2μ .5-2.5μ 5750Å 1 5750Å	F1,3,7 F1,3,6 F4,7 F3 F3	6 bands (6 bands (6 bands (1000Å (1000Å (G19 G19 G19 G19 G2 G2 G2	20% H1 20% H2 20% H2 20% H2 20% H1 20% H1	45° 12 45° 12 45° 12 20° 11 20° 11	S/C Altitude, Local Time S/C Altitude, Local Time	Vertical resolution same as horizontal
7) (Local)		Jupiter Moon Mercury Mars Venus	10 km A7 100 m A5 100 m A5 100 m A5 100 m A5	20000 100 km 100 km 100 km 100 km	km B11 B4 B4 B4 B4 B4	200 km 1 km 1 km 1 km 1 km	C10 C4 C4 C4 C4 C4	5% D3 100% D1 10% D2 10% D2 10% D2	Global - See regional maps See regional maps See regional maps	-	- - - -	-	- - - -	k,m a,d,f,i,1 b,d,g,j,1 c,e,h,j,1 j,1	d Visible Stereo e Visible Color g h i Radar	5750Å 5750Å 1 5750Å 1 5750Å 1 5750Å 1 50 cm 1 50 cm	F4 F3 F4 F3 F3 F3 F4 F18	1000A (1000A (1000A (3 bands (3 bands (3 bands (G2 G2 G4,17 G4,17 G4,17 G4,17	20% H2 60% H3 60% H3 20% H1 20% H2 20% H2 20% H2	20° 11 80° 14 80° 14 60° 13 60° 13 60° 13	S/C Altitude, Local Time S/C Altitude S/C Altitude S/C Altitude S/C Altitude S/C Altitude S/C Altitude	
8) (Detail	ed)	Moon Mercury Mars Venus	1 m A3 1 m A3 1 m A3 1 m A3 1 m A3	1 km 1 km 1 km 1 km	B2 B2 B2 B2 B2	10 m 10 m 10 m	C2 C2 C2 C2 C2 C2	<1% <1% <1% <1%	See local maps See local maps See local maps See local maps	-	-	-		a,d,f,i,1 b,d,g,j,1 c,e,h,j,1 j,1	k 1 Radar Stereo m	50 cm 1 1 m 1 50 cm 1 1 m 1	F18 F21 F18 F21	-		20% H2 20% H2 60% H3 60% H3	-	S/C Altitude S/C Altitude S/C Altitude S/C Altitude	
Surface Topograph 9)* (Region 10)* (Local)	y al)	Mercury Mars Venus Jupiter Moon Mercury Mars	1 km A0 1 km A6 1 km A6 10 km A7 100 m A5 100 m A5 100 m A5	1000 km 2000 k 20000 100 km 100 km 100 km	m B6 m B8 km B11 B4 B4 B4 B4	1 km 1 km 200 km 100 m 100 m 100 m	C12 C12 C12 C10 C3 C3 C3 C3	100% D1 100% D1 100% D1 5% D3 100% D1 10% D2 10% D2	- Global - See regional maps See regional maps See regional maps	-	-	-	- - - -	b,d,g,i c,e,g,i g,i h,j a,d,f,i b,d,g,i c,e,g,i	a Visible b c d Visible Stereo e f Radar g	5750Å 5750Å 6250Å 5750Å 5250Å 50 cm 50 cm	F3 F3 F4 F4 F4 F4 F18 F18	1000Å 1000Å 1000Å 1000Å 1000Å	G3 G3 G3 G3 G3 G3	20% H1 20% H2 20% H2 60% H3 60% H3 20% H1 20% H2	20° 11 20° 11 20° 11 80° 14 80° 14 -	S/C Altitude, Local Time S/C Altitude, Local Time S/C Altitude, Local Time S/C Altitude S/C Altitude S/C Altitude S/C Altitude	Vertical resolution: (Regional) - 1 km (J1) for all except Jupiter at 4 km (J2) (Local) - 50 m (J3) (Detailed) - 10 m (J4)
11)* (Detail	.ed)	Moon Mercury Mars Venus	1 m A3 1 m A3 1 m A3 1 m A3 1 m A3	1 km 1 km 1 km 1 km 1 km	B2 B2 B2 B2 B2	100 m 1 m 1 m 1 m 1 m	C1 C1 C1 C1 C1	<1% <1% <1% <1% <1%	See local maps See local maps See local maps See local maps		- - - -	-		g, 1 a, d, f, i b, d, g, i c, e, g, i g, i	h i Radar Stereo j	1 m 50 cm 1 m	F21 F18 F21	-		20% H2 60% H3 60% H3	- - -	S/C Altitude S/C Altitude S/C Altitude	
Surface Appearance 12) (Region	e al)	Mercury Mars Venus Jupiter	1 km A6 1 km A6 1 km A6 10 km A7	800 km 1000 k 2000 k 20000	B6 m B6 m B8 km B11	10 km 10 km 10 km 200 km	C6 C6 C6 C10	100% D1 100% D1 100% D1 5% D3	- - Global		- - -	- - -	- - -	b,e,h c,f,h h i	a Visible b c	5750Å 5750Å 6250Å	F3 F3 F4	1000Å 1000Å 1000Å	G2 G2 G2	20% H1 20% H2 20% H2	20° 11 20° 11 20° 11		
 13) (Local) 14) (Detail 	ed)	Moon Mercury Mars Venus	100 m A5 100 m A5 100 m A5 100 m A5 100 m A5	100 km 100 km 100 km 100 km	B4 B4 B4 B4 B4	1 km 1 km 1 km 1 km	C4 C4 C4 C4 C4	100% D1 10% D2 10% D2 10% D2	- See regional maps See regional maps See regional maps See local maps	-	-	-	- - - -	a,d,g b,e,h c,f,h h	d Visible Color e f g Radar h i	5750Å 1 5750Å 1 6250Å 1 50 cm 1 50 cm 1	F3 F3 F4 F18 F18 F18 F21	3 bands 3 bands 3 bands - -	G4,17 G4,17 G4,17	20% H1 20% H2 20% H2 20% H1 20% H1 20% H2	60° 13 60° 13 60° 13	-	
15)Variable	(Reg) 1	Mercury Mars Venus Mars	Lm A3 Lm A3 Lm A3 Lm A3	1 km 1 km 1 km 1000 k	B2 B2 B2 m B6	10 m 10 m 10 m	C2 C2 C2 C2	<1% <1% <1% 10% D2	See local maps See local maps See local maps Mare and poles	- - 5 min	- - E6 100 hrs E1	- - 1 1 day E13	- - - 3.25 yr E16	b,e,h c,f,h h a,b	_			•		20% 112			
16) Surface (17) Appearanc	Local) 1 e (Det) 1	Mars Mars	LOO m A5 L m A3	100 km 1 km 800 km	B4 B2 B6	1 km 10 m	C4 C2	1% D4 <1%	Mare and poles Mare and poles	5 min 5 min	E6 100 hrs E1 E6 100 hrs E1	1 1 day E13 1 1 day E13	.25 yr E16 .25 yr E16	a,b a,b	a Visible b Visible Color	6250Å 1 6250Å 1	F4 F4	1000Å 3 bands	G2 G4,17	20% H2 20% H2	20° 11 60° 13		
18)* (Region 19)* (Local)	al) l	fars fercury fars	LO km A7 LOO m A5 LOO m A5	1000 km 100 km 100 km	m B6 B4 B4	10 km 1 km 1 km	C7 C4 C4	100% D1 1% D4 1% D4	- See regional maps See regional maps	10 sec 0.1 sec 0.1 sec	E3 - E2 - E2 -	1 hr E9 1 min E8 1 min E8	.25 yr E16	b a b	a Visible b	5750Å 6250Å	F3 F4	1000Å 1000Å	G2 G2	20% H2 20% H2	45° 12 45° 12	S/C Altitude, Local Time S/C Altitude, Local Time	
20) Topograph Changes	ic I	foon fercury fars Jenus Jupiter	Lm A3 Lm A3 Lm A3 Lm A3 Lm A3 L0 m A4	1 km 1 km 1 km 1 km 1 km 10 km	B2 B2 B2 B2 B3	1 m 1 m 1 m 1 m 1 m 100 m	C1 C1 C1 C1 C1 C3	<1% <1% <1% <1% <1% <1%	Determined by prior meppin Determined by prior meppin Determined by prior meppin Determined by prior meppin Determined by prior meppin	l hr l hr l hr l hr l hr	E7 - E7 - E7 - E7 - E7 - E7 -	-	300 hrs E12 300 hrs E12 300 hrs E12 300 hrs E12 300 hrs E12	a, d, f, i b, d, g, i c, e, g, i g, i h, j	a Visible b c d Visible Stereo e Radar f Radar j i Radar Stereo j	5750Å 5750Å 6250Å 5750Å 6250Å 50 cm 1 m 50 cm 1 m	F3 F3 F4 F3 F4 F18 F18 F18 F21 F18 F21 F18 F21	1000Å 1000Å 1000Å 1000Å - - - - -	G3 G3 G3 G3 G3 G3	20% H1 20% H2 20% H2 60% H3 60% H3 20% H1 20% H2 20% H2 60% H3 60% H3	20° 11 20° 11 20° 11 80° 14 - - - -	S/C Altitude, Local Time S/C Altitude S/C Altitude S/C Altitude S/C Altitude S/C Altitude S/C Altitude	Vertical Resolution All 10 m (J4)

*Measurements made on this observable may be applicable to engineering objectives.

Note: Values given in this table are nominal values. Lettered references (e.g.A7) refer to worth curves given in Volume I.

TABLE I. SUMMARY OF MEASUREMENT SPECIFICATIONS (Continued)

		1			T			T																[]	· · · · · · · · · · · · · · · · · · ·
OESERVABLE	PLANET	GROUND RESOLUTIO	ON INAGE	SIZE	POSITIO ACCURA	NAL P	LANETARY	PLANETARY DISTRIBUTION	ACQU IMAC	UISIT GE	COVERAGE	RE IMA	GE	COVERAGE	E	SENSOR REFERENCE	SENSOR TYPE	SPECTRAL	REGIONS	BANDWIDT	H	OVERLAP	SUN ELEVATION	SUPPORT MEASUKEMENTS	COMMENTS
Surface Thermal Anomalies 21) (Regional)	Moon Mercury Mars Venus Jupiter	1 km A 1 km A 1 km A 1 km A 1 km A 10 km A	A6 500 km A6 800 km A6 1000 k A6 2000 k A7 10000	1 B5 1 B6 1 B6 1 B6 1 B8 1 km B1	10 km 10 km 10 km 10 km 10 km 100 km	C6 1 C6 1 C6 1 C6 1 C6 1 C9 1	00% D1 00% D1 00% D1 00% D1 00% D1	- - - -	1 hr 1 hr 1 hr 1 hr 1 hr 1 hr	E7 E7 E7 E7 E7		10 hr 10 hr 10 hr 10 hr 10 hr	E10 E10 E10 E10 E10) -) -) -) -) -		a,c,f b,d,g b,d,g d,h e	a IF b c Microwave d	50 _µ 50 _µ 50 ст 50 ст	F12 F12 F18 F18	10 ₁₄ 10 ₁₄ 10 cm 10 cm	G9 G9 G14 G14	207, H1 207, H2 207, H1 207, H1	-		Desired Temperature Resolution: Moon 1°K
22) (Local)	Moon Mercury Mars Venus	100 m A 100 m A 100 m A 100 m A	45 100 km 45 100 km 45 100 km 45 100 km	B4 B4 B4 B4	1 km 1 km 1 km 1 km	C4 55 C4 55 C4 55 C4 55	72 D3 72 D3 72 D3 72 D3 73 D3	See regional maps See regional maps See regional maps See regional maps	1 hr 1 hr 1 hr 1 hr 1 hr	E7 E7 E7 E7	- - -	10 hr 10 hr 10 hr 10 hr	E10 E10 E10 E10) -) -) -		a,c,f b,d,g b,d,g d,b	e f Multiband g h	60 cm 3μ-100 cm 3μ-100 cm 3μ-100 cm	F20 F12,18 F12,18 F19	10 cm 4 bands 4 bands 3 bands	G13 G18 G18 G16	207 H2 207 H1 207 H2 207 H2 207 H2	-	- - -	Mars 2°K Venus 5°K Jupiter 2°K
23) (Detailed)	Moon Mercury Mars Venus	lm A lm A lm A lm A	13 1 km 13 1 km 13 1 km 13 1 km 13 1 km	82 82 82 82	10 m 10 m 10 m 10 m	C2 1 C2 < C2 < C2 <	% D4 1% 1% 1%	See local maps See local maps See local maps See local maps See local maps	1 hr 1 hr 1 hr 1 hr	E7 E7 E7 E7	- - -	10 hr 10 hr 10 hr 10 hr 10 hr	E10 E10 E10 E10			a, c, f b, d, g b, d, g d, h									
Atmos. Thermal Anomalies 24)* (Regional)	Mars Venus Jupiter	10 km A 10 km A 10 km A	7 1200 ko 7 2000 ko 7 2000 ko	m B8 m B9 km B1	50 km 50 km 1 200 km	C8 10 C8 10 C10 10	00% D1 00% D1 00% D1	Polar regions Cloud belts, red spót	1 hr 1 hr 1 hr	E7 E7 E7	- - -	- -		.50 yr E .50 yr E .50 yr E	E17 E17 E17	a,b,d a,c,e a,c,e	a IR b Microwave c	20 ₁₁ 5 mm 5 cm	F11 F13 F15	6u 10 mm 10 mm	G7 G10 G10	207. H2 207. H2 207. H2	-	-	Desired Temperature
25)* (Detailed)	Mars Venus Jupiter	1 km A 1 km A 1 km A	16 100 km 16 200 km 16 2000 km	184 184 189	10 km 10 km 20 km	C6 10 C6 10 C8 20	0% D2 0% D2 0% D2	See regional maps See regional maps See regional maps	l hr l hr l hr	E7 E7 E7	- - -	l day 1 day 1 day	E13 E13 E13	- - -		a,b,d a,c,e a,c,e	d Multiband e	3u-10 mm 3u-10 cm	F11,13 F11,15	4 bands 4 bands	G18 G18	20% H2 20% H2	:		Same as above
26) Global Cloud Coverage	Mars Venus Jupiter	10 km A 10 km A 10 km A	7 1200 kr 7 2000 kr 7 2000 l	m B8 m B9 km B11	50 km 50 km 1,200 km	C8 10 C8 10 C10 10	DO% D1 DO% D1 DO% D1	Polar regions - -	15 min 15 min 2 min	n E6 n E6 E8	1 day E13 100 hr E11 1 day E13			.05 yr E .10 yr E .10 yr E	E14 E15 E15	a,b,c,d,e a,b,c,d,e a,b,c,d,e	a UV b Visible (BW & c IR color) d IR e Multiband	3000A 5750A 1.5u 24µ .2-30µ	F2 F3 F6 F11 F2,3,6,11	1000A 1000A 1 ₄ 8 ₁₁ 6 bands	G1 G2 G6 G8 G19	20% H2 20% H2 20% H2 20% H2 20% H2 20% H2	Day 16 Day 16 - - Day 18		
Convective Cells and Turbulence ?7)* (Regional)	Mars Venus Jupiter	10 km A 10 km A 10 km A	7 1000 km 7 1000 km 7 10000 km	n B6 n B6 km B10	50 km 50 km 100 km	C8 10 C8 10 C9 10	00% D1 00% D1 00% D1	Equatorial and polar areas Solar and anti-solar points Cloud belts, red spot	1 hr 1 hr 1 hr	E7 E7 E7	- -			.25 yr E .50 yr E .50 yr E	E16 E17 E17	a ,b,c,d a,b,c,d,e,f a,b,c,d,e,f	a UV b Visible c IR	2500A 6250A 10µ	F1 F3 F11	1000A 1000A 8u	G5 G2 G7	20% H2 20% H2 20% H2	Day 16 Day 16		
28)* (Detailed)	Mars Venus Jupiter	1 km A 1 km A 1 km A	6 100 km 6 100 km 6 1000 km	B4 B4 n B8	5 km 5 km 10 km	C5 20 C5 20 C6 20	0% D2 0% D2 0% D2	See regional maps See regional maps See regional maps	1 hr 1 hr 1 hr	E7 E7 E7	- - -	l day 100 hr 1 day	E13 E11 E13	- - -		a,b,c,d a,b,c,d,e,f a,b,c,d,e,f	d e Microwave f	24 <i>u</i> 2 cm 6 cm	F11 F16 F16	8µ 2 cm 6 cm	G8 G11 G11	20% H2 20% H2 20% H2	-	-	
29) Cloud Formation	Mars Venus Jupiter	1 km A 1 km A 10 km A	6 1000 km 6 1000 km 7 10000 k	n B6 n B6 cm B10	10 km 10 km 100 km	C6 20 C6 20 C9 20	0% D2 0% D2 0% D2	Equatorial and polar areas Subsolar and polar areas Belts, red spot, tropics	l min l min 10 sec	E5 E5 E3	-	10 min 10 min 2 min	E6 E6 E8	.25 yr E .25 yr E	E16 E16	a,b,c,d,f a,b,c,d,f a,b,c,e,f	a UV b Visible(BW & c IR color) d e f Multiband	3000A 5750A 1.5µ 24µ 20µ .2-30µ	F2 F3 F6 F11 F11 F2,3,6,11	1000A 1000A 1µ 10µ 10µ 6 bands	G1 G2 G6 G8 G8 G19	20% H2 20% H2 20% H2 20% H2 20% H2 20% H2 20% H2	Day 16 Day 16 Day 16 - - Day 18	-	
30)*Precipitation Rate	Mars Venus Jupiter	10 km A 10 km A 10 km A	7 1000 km 7 1000 km 7 10000 km	n 186 n 186 an 1810	50 km 50 km 100 km	C8 10 C8 10 C9 10	0% D1 0% D1 0% D1	Wave of darkening and poles Equator, poles and mountains	l min 1 min 1 min	E5 E5 E5	-	10 min 10 min 10 min	E6 E6 E6	.25 yr E .25 yr E .25 yr E	E16 E16 E16	a b b	a Radar b	2.5 cm 5 cm	F14 F15	3 bands 3 bands	G17 G17	20% H2 20% H2	:		
Thunderstorms 31) (Regional)	Mars Venus Jupiter	10 km A7 10 km A7 10 km A7	7 1000 km 7 1000 km 7 10000 k	1 B6 1 B6 am B10	50 km 50 km 100 km	C8 10 C8 10 C9 10	0% D1 0% D1 0% D1	Equatorial and temperate zones - -	10 use 10 use 10 use	c El c El c El	- -	1 min 1 min 1 min	E8 E8 E8	.10 yr E .10 yr E .10 yr E	E15 E15 E15	a a b	a Passive RF b	50 m 5 m	F22 F21	1 m 1 m	G15 G15	20% H2 20% H2	-		
32) (Detailed)	Mars Venus Jupiter	1 km A6 1 km A6 1 km A6	6 100 km 6 100 km 6 500 km	B4 B4 B5	5 km 5 km 5 km	C5 20 C5 20 C5 20	17. D2 17. D2 17. D2 17. D2	See regional maps See regional maps See regional maps	10 use 10 use 10 use	c El c El c El	- - -	l min l min l min	E8 E8 E8	.10 yr E .10 yr E .10 yr E	E15 E15 E15	a a b									
Cyclone Formations 33) (Regional)	Mars Venus Jupiter	10 km A7 10 km A7 10 km A7	7 1000 km 7 1000 km 7 10000 k	B6 B6 m B10	50 km 50 km 100 km	C8 10 C8 10 C9 10	0% D1 0% D1 0% D1	- Subsolar point Cloud belts, red spot	10 min 10 min 1 min	E6 E6 E5	- - -	- - -		.25 yr E .25 yr E .25 yr E	E16 E16 E16	a,b,c,d a,b,c,d a,b,c,d	a Visible b IR c	5750A 1.5u 24ب	F3 F6 F11	1000A 1µ 10µ	G2 G6 G8	20% H2 20% H2 20% H2	Day I Day I -	}	
34) (Detailed)	Mars Venus Jupiter	1 km A6 1 km A6 1 km A6	5 100 km 5 100 km 5 1000 km	B4 B4 B6	10 km 10 km 10 km	C6 20 C6 20 C6 20	% D2 % D2 % D2	See regional maps See regional maps See regional maps	10 min 10 min 1 min	E6 E6 E5	- - -	l hr 1 hr 10 min	E9 E9 E6	.25 yr E .25 yr E .25 yr E	E16 E16 E16	a,b,c,d a,b,c,d a,b,c,d	d Multiband	.2-30µ	F3,6,11	6 bands	G19	20% H2	Day I	-	
35) Suface to Atmosphere Transfer	Moon Mercury Mars Venus Jupiter	1 km A6 1 km A6 1 km A6 10 km A7 10 km A7	5 500 km 5 500 km 5 200 km 7 1000 km 7 1000 km	85 85 84 86 86	10 km 10 km 10 km 50 km 100 km	C6 10 C6 10 C6 10 C8 10 C9 10	0% D1 0% D1 0% D1 0% D1 0% D1	- - - Red spot and tropical regions	1 min 1 min 1 min 1 min 1 min	E5 E5 E5 E5	l day E13 l day E13 l day E13 l day E13 l00 hr E11 l day E13	- - - -		.10 yr E .10 yr E .05 yr E .10 yr E .10 yr E	E15 E15 E14 E15 E15	a,c b,d b,d,e e,f e,f	a Visible b c Vis. Color d e IR f Microwave	5750A 5750A 5750A 5750A 24µ 30 cm	F3 F3 F3 F3 F11 F17	1000A 1000A 3 bands 3 bands 8u 10 cm	G2 G2 G4,17 G4,17 G8 G12	20% H1 20% H2 20% H1 20% H2 20% H2 20% H2	45° 1 45° 1 60° 1 60° 1 - -	2 - 2 - 3 - 3 - - -	
36) Radio Bursts	Jupiter	100 km A8	50000 k	m B12	500 km C	11 10	0% D1	Subsatellite pts. of satellites	1 msec	E2	-	l min	E8	-		а	a Passive RF	50 m	F22	3 bands	G17	20% H2	-	Łocal Time	
	Mars Venus Jupiter	10 km A7 10 km A7 10 km A7	1000 km 1000 km 10000 kr	B6 B6 m B10	50 km 50 km 100 km	C8 10 C8 10 C9 10	0% D1 0% D1 0% D1	Polar regions Polar regions Polar regions	l min l min l min	E5 E5 E5	- - -	1 hr 20 hr 1 hr	E9 E10 E9	.25 yr E .25 yr E .25 yr E	E16 E16 E16	a,b a,b a,b	a Visible b Vis. Color	5750A 5750A	F3 F3	1000A 3 bands	G2 G17	20% H2 20% H2	Night I Night I	-	
38) Animal Life 1	Mars Venus	20 cm A2 20 cm A2	400 m 400 m	B1 B1	100 m 100 m	C3 - C3 -	D5 D5	Wave of darkening and poles Mountains and poles	l sec l sec	E4 E4	-	10 sec 10 sec	E5 E5			a,b,c,d e,f	a Visible b Vis. Stereo c Vis. Color d Multiband e Radar f Radar Stereo	6250A 6250A 6250A 2.5μ 5 cm 5 cm	F4 F4 F8 F15 F15	1000A 1000A 1000A 10 bands -	G2 G2 G2 G20	- 60% H3 - - 60% H3	45° 1 80° 1 60° 1 45° 1 -		
39) Plant Life N	Mars Venus	100 m A5 100 m A5	200 km 200 km	84 84	1 km 1 km	C4 107 C4 107	6 D2 6 D2	Wave of darkening and poles Mountains and poles	1 hr 1 hr	E7 E7	-	-		.25 yr E .25 yr E	E16 E1 6	a,b <u>,</u> c d	a Visible b Vis. Color c Multiband d Radar	6250A 6250A .5-5u 5 cm	F4 F4 F8 F15	1000A 1000A 10 bands -	G2 G2 G20	-	45° 1 60° 1 45° 1 -		
40) Biochemical M Systems	Mars Venus Jupiter	lkm A6 lkm A6 lkm A6	800 km 1000 km 2000 km	B6 B6 B9	10 km 10 km 20 km	C7 10% C7 10% C8 5%	6 D2 7 D2 D3	Wave of darkening and poles Mountains and poles	1 hr 1 hr 1 hr	E7 E7 E7	- - -	- - -		.25 yr E .25 yr E .25 yr E	E16 E16 E16	a b b	a Multiband b	.5-5µ .5-5µ	F8 F8	10 bands 10 bands	G20 G20	20% H2 20% H2	45° 1 Day 1	-	
41) Hydrocarbons	Moon Mercury Mars	Lkm A6 Lkm A6 Lkm A6	500 km 800 km 800 km	85 86 86	10 km 10 km 10 km	C7 10% C7 10% C7 10%	% D2 % D2 % D2	Global Global Global	- - -		- - -	- - -		-		a la b	a Multiband b	11-10u .5-10u	F9 F10	10 bands 10 bands	G20 G20	-	Day I Day I	5 -	

*Measurements made on this observable may be applicable to engineering objectives.

That is, requirements for regional, local, and detailed scale imagery have been carefully defined. The worth curves in Volume I indicate that at Mars, Venus, and Mercury, the regional scale imagery requires minimum scene areas from about 600 x 600 km to 1500 x 1500 km with ground resolutions ranging from three Because of Jupiter's size, regional scale imagery to 20 km. at that planet demands minimum scene areas from 5000 x 5000 km to 15000 x 15000 km and acceptable ground resolutions of 20 to 100 km. Local scale imagery at Mars, Venus, and Mercury implies scene areas of about 100 x 100 km with a ground resolution of 200 meters for surface phenomena and three km for Since the nature of Jupiter's "surface" atmospheric phenomena. is unknown, no requirements have been defined for surface imagery except on a regional scale. Local scale atmospheric imagery at Jupiter should view areas of at least 600 to 1500 km on a side with a resolution of about three km. Detailed scale imagery has been defined for Mars, Mercury, and Venus and involves scene areas of about 500 x 500 meters and resolutions of five meters or less.

Some types of surface imaging experiments must supply vertical height information, if the scientific requirements are to be achieved. In general, regional scale experiments are directed towards detection of one to three km height differences, local scale 100 to 200 meters, and detailed scale 50 meters. Thermal mapping experiments require detection of five deg K temperature differences at Venus and Mercury, and two deg K at The fractional amount of the planet's area Mars and Jupiter. which must be imaged depends on the scale of exploration. That is, regional scale experiments generally require at least 70 percent coverage, local scale about ten percent, and detailed scale one percent or less. Finally, since most atmospheric phenomena are dynamic, nearly all of the regional scale atmospheric imaging experiments require rapid coverage of large areas,

IIT RESEARCH INSTITUTE

and many of the atmospheric experiments require repetitive imagery. This can be performed on a short period basis to detect temporal variations, or on a long period basis to detect seasonal variations.

Table 1 also shows that more imaging experiments (159) have been defined for Mars than for any other target planet, and that one-third (53) of the Mars experiments utilize the visible portion of the spectrum. This is largely because both the surface and the atmosphere can be observed visually. Mars appears to have the greatest biological potential, and more life detection imaging experiments are suggested for Mars than for any other planet. Orbital imagery at Mercury and Venus is less useful than at Mars, in the sense that there are fewer phenomena to observe or fewer ways to observe them. Venus has a thick cloud cover prohibiting visual observation of the surface from orbit, hence visual imagery at Venus does not play the same role as at Mars (only 8 of 77 imaging experiments at Venus are visual experiments). Most of the Venus imaging experiments deal with atmospheric phenomena, although about one-third are radar surface imaging experiments. At Mercury (79 experiments), the emphasis is placed upon visual observation of surface phenomena (33 experiments), since Mercury appears to have no appreciable atmosphere. Fewer experiments have been defined for Jupiter and the Moon (57 and 59, respectively). At Jupiter, the cloud cover is presumed to prevent visual imaging of the surface from orbit. No local or detailed scale surface radar imaging experiments are defined at Jupiter, since a surface may not even exist. At the Moon, no atmospheric imaging experiments are proposed, and sufficient regional scale surface imagery has already been obtained.

4.

ORBIT SELECTION

Many of the 400 measurements defined in Table 1 require similar operational conditions, and it was unnecessary

IIT RESEARCH INSTITUTE

(and unrealistic) to select 400 different orbits, one for each experiment. Rather, the experiments were sorted into operationally compatible families for each planet, and orbits were selected for each family of experiments. This does not imply that all the experiments in a single family have similar subsystem support requirements, nor that they should be performed simultaneously on the same mission.

For those experiment families requiring large amounts of planetary coverage (seventy percent or more), orbit selection was based on achievement of contiguous coverage obtained through That is, the orbit trace apparently drifts orbital drift. across the planet surface in an orderly fashion, providing sequential coverage in longitude and time. The desired drift rate is closely related to the minimum acceptable scene area per image and the minimum acceptable image overlap. Thus the experiments in each family tend to have similar measurement specifications with regard to minimum scene area, minimum image overlap, and solar illumination constraints. In general, the orbits selected at each planet provide the maximum planetary coverage in minimum time using an orbit drift rate consistent with the minimum scene area and image overlap. Orbits were selected in the same manner for experiment families demanding much less coverage (ten, or even one percent). The desired distribution of such coverage is unknown, and has been assumed to be distributed randomly over the entire planetary surface.

The orbit selection process (and typical arrival conditions at each planet) is described fully in Volume I. Each selected orbit is defined in Volume III-Orbit Selection and Definition. Conclusions resulting from examination of the orbits selected for experiment families at Mars, Venus, Mercury, and Jupiter are summarized below. These conclusions are valid only for orbits providing contiguous coverage as defined above. Orbits were not selected for the Moon because during 1975-1995

it is likely that lunar orbital missions will involve manned operations or be in support of manned (orbital and surface) missions.

At Mars, the coverage required for regional scale imagery (70 percent) can be obtained from orbit in three to ten days, provided there are no solar illumination constraints or simply daylight illumination is required. A minimum of about 330 days is necessary to achieve 70 percent coverage at solar zenith angles less than 20 degrees, as is desired for visual stereo imagery. Image interval times (the time interval between opportunities for observing a specific location on the planet) are normally restricted to less than a couple of minutes or greater than a couple of hours. Seasonal repetitions are easily achieved.

At Venus, 120 Earth days are required to obtain 70 percent coverage under daytime conditions, or if there are no solar illumination constraints. Most of the imaging experiments at Venus require only daylight illumination or are independent of the solar illumination. Therefore, regional scale coverage can be repeated at most twice a planetary year. It is difficult to provide image interval times greater than a few minutes and less than 1.5 hours.

At Mercury, 70 percent coverage can be achieved in 30 to 40 Earth days, provided there are no solar illumination constraints or at worst daylight constraints. The coverage can be repeated every 30 to 40 days. However, only 64 percent of the surface is illuminated at solar zenith angles less than 40 degrees, and only 34 percent at zenith angles less than 20 degrees. Only about half the available area can be covered by an inertial orbit, and two Mercury years (about 180 Earth days) are required to obtain this coverage. Therefore, completely satisfactory visual color or stereo imagery at regional scale (70 percent coverage) cannot be obtained at Mercury.

At Jupiter, the desired imaging experiments have no stringent solar illumination constraints. Complete, or nearly

complete, planetary coverage can be obtained easily in about 20 to 40 Earth days. Virtually any image repetition rate can be provided by proper orbit selection.

5. IMAGER SCALING LAWS

The scaling laws resulting from this study are quantitative statements which relate an imaging system's capabilities to its characteristics. The scaling laws permit estimation of experiment support requirements, once the image specifications and orbit parameters have been defined. This functional relationship is portrayed in Figure 2.

Scaling laws were developed only for those types of imaging for which (1) a need exists (as expressed by the measurement definitions) and (2) adequate design experience was available. Unless the characteristics of a sensor system can be predicted over fairly wide ranges, scaling laws cannot be developed. Scaling laws were developed for visual, radar, infrared, ultraviolet, and passive microwave imagers.

The first step in obtaining scaling laws for a given type of imaging sensor was the collection and correlation of empirical data, in an attempt to relate the support requirements listed in Figure 2 to various characteristics of the sensor system. For example, the weight of a simple TV imaging system was found to be proportional to the diameter of the camera tube. Such empirical relations reflect the current state-of-art. Future capabilities must necessarily be speculative. In those few cases where sources of increased capability could be clearly foreseen, the presumed effect of state-of-art advances on the scaling laws were noted. If insufficient empirical data was available, or if no satisfactory empirical correlation between support requirements and the sensor characteristics was discovered, theoretical relations were developed.

The second step in obtaining scaling laws was to relate the important sensor system characteristics to measurement

IIT RESEARCH INSTITUTE

specifications and orbital parameters. Only in a few cases can the experiment support requirements be deduced directly from the measurement specifications and orbital parameters independently of the imaging system. That is, the first step in the analysis identified which sensor system characteristics determine the support requirements, the second step identified how those characteristics depend upon the measurement specifications and orbital parameters. For example, the weight of a simple TV imaging system depends upon the camera tube diameter, which in turn is related to the desired ground resolution, scene area, spacecraft altitude, and the TV line capability of the camera tube.

Finally, the scaling laws for each type of imaging system were organized in a manner which facilitates the estimation of support requirements, identifies the measurement specifications and orbital parameters which affect the support requirements, and delineates the sensor system variables which may be manipulated by the experiment designer. This systematic organization was expressed in a "logic diagram" for each Figure 3 shows, for example, a logic diagram for imager type. orbital TV imaging systems. Each box in the diagram represents a step in the system design, each balloon represents estimation of a support requirement. Figure 4 summarizes the scaling laws which are designed for use with the logic diagram. These figures are included here for illustrative purposes; a detailed explanation is given in Volume IV.

It should be emphasized that no artificial selection of sensor system variables was made in the analysis. For example, the exposure time selected for a TV system must be long enough to result in a satisfactory signal-to-noise ratio and must be short enough that motion of the system, or the imaged object, does not degrade the spatial resolution. These constraints are identified by the scaling laws and their method of employment, but no specific exposure time is implied by the scaling laws.

FIGURE 3. LOGIC DIAGRAM FOR TELEVISION SYSTEMS

		11y 6)	ę	n/sec um/sec t center trurary, kum dians ec2 rad/sec	M a 2.0 0.2 2.0 0.2 2.0 0.2 1.8 0.3 2.0 0.3
ATURE	kis, km [t-lambort [t-lambort ameter, cm ameter, cm rarc, bits/sec function itop (f-number)	, along orbit on element (norma m itude, km titude, km	mm fference fference olution, km resolution, km res	al speed, km/sec control at poriapse, ka rotation speed, l peed, km/sec ubtended at plane und positional acc wrate, rad/sec wrate, rad/sec islu-of-view ted of roll rate,	S(ft-candle-sec) 3x10 ⁻³ 3x10 ⁻³ 1x10 ⁻³ 5x10 ⁻⁵ 2x10 ⁻⁶
NOMENCI	a-orbit semi-major q B-scene luminatore, jo D-optics diameter (i D _d -minhumu prics ei D _R -dar acquisition D _R -dar acquisition D _R -dar acquisition C-orbit e accurticity f-scene photometric f ⁰ -pice aperture i F-focal lumph, on F'-filler factor	POV-Iseld-of-Viaw 8-fractional overlag 8-fractional overlag H-camera altitude, b H _a -orbit apoapse alt H _p -orbit periapse al 1-solar zenith angla 1-solar zenith inclination	rivence of the second s	version of the second s	<u>Tube type</u> Vidicon Plumbicon RRN SSC Image Orthicon

(2)		۵	@		6	۲	6		8		8
$D = \frac{F}{f_{eff}}$ 1 imited to 2 moters	Weight is 16 lbs./ inch of TV tube diamotor. If 1WC used, add 15 lbs.2 lbs.9 in cm. If D > 10 cm, add 15 lbs.2 lbs, D in cm.	11 Zoom ten 2 1 zoom ten 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	Volume is 560 cu in/inch of TV tube diameter If TWO used, and 600 cu in. If F > 20 cm, or D > 10 cm, add FD ² . If zoom lens used, add 1000 cu in for altimeter.	TV tube longth from Plenro 4-14.	System length $>$ tube length $+ F$ System diameter $>$ tube diameter or D.	Input power is 16 watts/inch of TV tube diameter. If INC used, add 15 watts? If soom lens used, add 10 watts.	F _c = <u>₩(1-8.)</u>	$IR = \frac{21^2}{E}$ where $t = f_c - 0.1$ are or 100 sec, which we is smaller.	rel J curut IIIcers, L - 3 c. V.I sec or 100 sec, whichever is smaller.	6 = 7 c 100	ос _о н ө <u>о.6г_ен</u> w/ IMC
$ \begin{array}{c c} P_{1\rm dincL} & R_{1}(\rm km) & \mu_{1}(\rm km^{3}/sec^{2}) & v_{L}(\rm km/sec) \\ \hline Poo: & 1740 & 4.90 \times 10^{3} \\ \hline Moercury & 2420 & 2.17 \times 10^{4} \\ \end{array} . $	Venus 6100 3.25 × 10 ⁵ - Mars 3380 4.30 × 10 ⁴ 0.24 Jupiter 71350 1.27 × 10 ⁸ 12.7	$r_c \stackrel{c}{=} \frac{3(v_h + v_v \tan \beta)}{10}$ w/o INC	$t_{e} \leq \frac{\pi}{3(0.1v_{h} + v_{v} \tan \theta)} w/ \text{ IHC}$	Use Figure 4-8 to select tube type and size. lasg formet size (1) from Figure 4-9.	$F = \frac{L}{2 \tan \phi} = 1$	$\begin{array}{c} Filter & D_{d} \\ \hline Filter & P_{d} \\ S00aa & 3.7 \\ Wretten S5 geen & 3.3 \\ Wretten S5 geen & 29.8 \\ Wretten S5 geen & 29.8 \\ \end{array}$	۵ ۳ ۳ ۳	Planet B ZenAth Angle (i) E Planet B ZenAth Angle (i) E Nerent 1400 20° 0.49 Nerent 8300 60° 0.33 Nerent 15,000 60° 0.33 Mars 15,000 60° 0.33 Mars 200 75° 0.06 Jupiter 200 75° 0.06 Use f = cos i for Venus, Jupiter <ft>for fill fill</ft>	$t_{c_{1}} \geq \frac{4.5(f_{e})^{2} - FF}{a_{1}^{2}}$	See step #9 above, S given in lower right table. Use n of 0.8 for zoom lans, 0.9 otherwise.	$\frac{S}{N} = \frac{4.6 \times 10^5 \text{ ML}}{1.690 \text{ k}} \left(\frac{q \text{mBL}_0}{\text{FF}} \right)^{\frac{1}{2}} $ (3)
۵٤ = ۵ <u>۵۲</u> H	If no vertical resolution required, $r = r_{h}$. For shadow monsurement, r is the smaller of r_{q} tant or r_{h} . For stored, r is the smaller of 0.4Mr_v/H or r_{h} .	$L \ge \frac{H}{0.77\epsilon}$, but $L \le 3400$	$y = \frac{W}{2R}$ If $\gamma < 0.1$, $\theta = \tan^{-1} \frac{W}{2H}$, otherwise	$\emptyset = \cot^{-1} \frac{R + 11}{k} \cdot \frac{1}{8.111} \cdot \frac{1}{k} - \cot \gamma $	FOV is 26 by 28	$L \ge \frac{W(r_0/r_0)}{0, r_0}, \text{ but } \le 3400, \text{ where}$	$\mathbf{x}_{0} \overset{\mathrm{H}}{\mapsto} \left[\left[\left[\left[\left[\mathbf{x}_{\mathrm{H}^{\mathrm{H}}}^{\mathrm{R}^{-2}} - \sin^{2} \mathbf{g} \right]^{\frac{1}{2}} \right] \right] $ which is given in Table 4-1.	$D_d = \frac{1.83 \times 10^{-f_{\rm L}}}{\rm tank} \ {\rm cm} \ {\rm but limited to two meters.} \ \textcircled{0}$	$a = R + \frac{1}{2}(H_p + H_a).$	$v_{\rm P} = \frac{R_{\rm H}}{R_{\rm H}} \left[- \left(\frac{R_{\rm H}^2}{R_{\rm H}} - \frac{1}{a} \right) \right]^{\frac{1}{2}}$ $v_{\rm h} = \left(v_{\rm e}^2 + v_{\rm e}^2 - 2v_{\rm e} v_{\rm e} \cos 1 \right)^{\frac{1}{2}}$	$\sqrt{1-\left[\frac{\mu e^2}{a(1-e^2)}\right]^{\frac{1}{2}}}$

FIGURE 4. SCALING LAWS FOR TELEVISION SYSTEMS

Such freedom of choice may be used by the experiment designer to effect tradeoffs between the support requirements. The performance of such tradeoffs was beyond the scope of the study, and hence the experiment support requirements actually estimated must be regarded as representative, not optimum or minimized.

A complete derivation of scaling laws for ultraviolet, visual (TV and film), infrared scanning, passive microwave, and radar systems is provided in Volume IV-Imaging Sensor System Scaling Laws. Scaling laws for infrared television systems are presented in a classified appendix to Volume IV.

6. EXPERIMENT SUPPORT REQUIREMENTS

Once the measurement specifications were defined, and an orbit selected for achievement of the measurements, subsystem support requirements were estimated for imaging experiments at Mars, Venus, Mercury, and Jupiter using the sensor system scaling laws. Each experiment consists of a specific imaging system operating in a specific mode providing imaging data to achieve a specific objective. Thus the experiment support requirements represent a synthesis of exploration objectives, orbital mechanics, and sensor system design.

In general, the estimated support requirements are sensitive to the orbital parameters, the imaging system design, and, of course, the scientific requirements. For each experiment, the support requirements reflect minimal achievement of the scientific objective (with due regard to orbital mechanics constraints) as defined by the worth curves associated with the measurement specifications. Different support requirements may be obtained by selecting a different orbit, or by changing the design of the sensor system. If such changes are skillfully made, the measurement achievement need not suffer. No attempt was made in this study to define explicitly the limits of support requirement flexibility for each experiment. There-

fore the support requirements obtained must be regarded as representative of requirements demanded in an actual mission. In some individual cases, similar experiments were compared with one another as a test of representativeness.

The following paragraphs summarize, in gross terms, the experiment support requirements of orbital imagery as might be used in unmanned planetary exploration. Only the weight, average power, and peak data acquisition rate requirements are emphasized here. Additional support requirements for individual experiments are tabulated in Volume V-Support Requirements for Planetary Orbital Imaging. The support requirements quoted here, and in Volume V, are based upon imaging system capabilities consistent with the current or near-future state-of-art. Some speculation on likely advances in the state-of-art have been provided in Volume IV, but the support requirements summarized here do not reflect these speculations.

All the visual imaging experiments suggested by the study employ imaging systems which are within reach of the current state-of-art, except for those few experiments which require ground resolutions of less than five meters. In fact, it appears that ground resolutions on the order of one meter are not currently feasible with any type of orbital imaging system. Most of the atmospheric imaging experiments at Mars and Venus can be performed by one-half-inch vidicon systems each weighing eight pounds, consuming eight watts of power (average), and acquiring data at a rate of 25,000 bits/sec, or less, assuming six binary bits per resolution element. At Jupiter, high imaging altitudes and elliptic orbits require a two-inch RBV (return beam vidicon) system using about 30 watts of power and a data rate of 4×10^{5} bits/sec. For 20 km ground resolution, the system weighs about 50 pounds, but for 3 km ground resolution, the system grows to 300 pounds because of the large optical subsystem required. Support requirements for

surface imagery at Mars and Mercury are 15-30 pounds, 15-30 watts, 5,000-500,000 bits/sec for regional scale imagery; 30-60 pounds, 30-100 watts, 10^{6} - 10^{7} bits/sec for local scale imagery; and 300-500 pounds, 30-300 watts, 10^{7} - 10^{8} bits/sec for detailed scale imagery.

Orbital <u>radar</u> imaging experiments are not feasible at Jupiter, at least from the orbital altitudes considered here, and enormous amounts of power are required. At Mars, Venus, and Mercury, the weight, average power, and peak data acquisition rates are 200-300 pounds, 300-500 watts, about 10,000 bits/sec for regional scale imagery; 300-400 pounds, 200-300 watts, 10^5 - 10^6 bits/sec for local scale imagery; and about 1000 pounds, 1000 watts, and 10^6 bits/sec for detailed scale imagery. Ground resolutions of less than five meters are not feasible.

Except at Jupiter, all the atmospheric <u>infrared</u> imaging experiments can be performed by scanning systems weighing two to six pounds, consuming about two watts of power, and collecting data at a peak rate of less than 7,000 bits/sec. Regional scale surface imagery at Mars and Mercury requires 2-10 pounds, about five watts, and less than 15,000 bits/sec, while local scale surface imagery requires 50-100 pounds, 5-30 watts, and about 10^6 bits/sec. Detailed scale imagery and atmospheric imagery at Jupiter do not appear to be feasible.

Surface <u>passive microwave</u> imagery from orbit is feasible only at Mars and Mercury, and then only for regional scale imagery. A typical imaging system is estimated to weigh about 500 pounds, consume 100 watts of power, and collect about 2000 data bits/sec. Atmospheric imaging experiments are applicable only to Venus and Jupiter. At Venus the atmospheric experiments require 20-100 pounds, 20-80 watts, and 200-2,000 bits/sec. At Jupiter the experiments desired are not feasible.

<u>Ultraviolet</u> scanning systems can be used at Mars, Venus, and Mercury. For three km ground resolution, a typical

system weighs about two pounds, consumes only one watt of power, and collects data at rates from 2,000 to 250,000 bits/sec, depending upon the orbit. A ground resolution of 200 meters can be achieved by a 50 pound system with a 10⁶ bit/sec data rate and one watt average power.

Multispectral scanning systems are likely to be very useful at Mars, Venus, and Mercury. Support requirements for such systems will be similar to those for infrared scanning systems, although the data acquisition rates will depend upon the number of spectral channels required. Multifrequency radar systems might be useful at Mars and Venus, especially for study of atmospheric precipitation. The support requirements are likely to be somewhat more demanding than for monochromatic radar systems. Passive radiofrequency imaging systems would be especially useful at Jupiter, but the design of such systems is so speculative that scaling laws have not been derived during this study.

One of the more important tradeoffs found common to all the imaging systems studied is that imagery obtained from an elliptic orbit over any significant altitude range results in increased weight, power, and data acquisition rates as compared to use of a constant, or nearly constant, imaging altitude. Thus experiment support requirements can frequently be traded off against the velocity change of the orbit capture maneuver and the mission duration required to achieve the desired amount of planetary coverage.