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l. Introduction
The purpose of this paper is to obtain some results on the dif-
ferentiability properties of solutions of nonlinear integral equations

of the form
(1) x(t) = £f(t) + fza(t-s)g(s,x(s))ds (0=t =T

when f(t) and g(t,x) are smooth functions, a(t) € C(0,T] N I}(O,T)
but a(t) may become unbounded as t —»0. Such results are necessary
in order to estimate the error in numerical approximations of the solu-
tion of (1), cef. eoge Linz [1, Section IIJ. This type of result is also
useful in proving the equivalence of certain nonlinear boundary value
problems for the heat equation with a corresponding Volterra system, c.f.
{2, Theorem 3 and its proof].

The general problem of determining the smoothness of solutions
of (1) is rather complex. Suppose we fix a function g and a kernel
a(t) € Ll(O,T). Then as f varies over the set C[0,T] the solution
x(t) = x(t3f) will also vary over all possible functions in C[0,T].

To see this one has only to fix any x*(t) € C[0,T] and then define
£5(t) = x%(t) - [Ca(t-5)a(s,x*(s))ds

on 0=t sST. Then x* is the solution of (1) corresponding to f* e

c[0,T].




This overabundance of solutions is caused by the overabundance
of forcing functions «f can be any continuous function. " One would
expect that as f and g become smoother the solution of (1) must be-
come smoother. This is true to some extent but intuition should not

be trusted too fare To see this consider the equation
(2) x(t) = £(t) - fg(t-s)-llax(s)ds.

If f(t) =1 (an entire function), then a Laplace transform argument

may be used to see that

x(t) = exp(wt)erfbéJ;;)
where

erfe(x) = (2/Jw)f:exp( -r2)dr

is the camplimentary error function. On the other hand if f(t) = 1+8f%,
then it is easy to verify that x(t) = 1 (entire). In particular this shows
that fortuitous choices of the function f yield smoothness properties

at t = O which are "inversely proportional” to intuition.

Since (2) is a linear equation or convolution type, then it is
possible to analyze the behavior of solutions in some detail. Given any
fixed continuous function f 1let xb(t,f) be the corresponding solution
of (2). Integrating in (2) from zero to t and rearranging the double

integral yields




x, (%, f) = fgxo( 1, f)dt

= [Se()ar - fg(t-s)'lla[fgxo(f,f)dr]ds
or

-1/2

x,(t,1) = fgf('rl)d'rl - 'g(t-s) x,(s,£)ds.

This integration process can be continued jndefinitely

t
xml( t,f) = [ oxn('t, f)dt

tp 1 *n
= IOIO "'IO f(Tn-lhl)d‘rn+l"'d‘rl -

156820, (s, D) as

or

x (8, 0) = fg(f('r)(t-'c)n/n'.]dr - fg(t-s)'l/axn+l(s,f)ds.

Given a function f ¢ CN+1[0,T] write f in the form

2(6) = 25 oD 0ed/ar + TV (D) (e myen.

Let uj(t) = xj(t,f) for the special choice f£(t) = 1. Then the

B T [T+ 7



solution of (2) may be written in the form

xo(t,f) = Z§=of('ﬂ(0\ud(t)/j! + x_N"l(t’f(N"'l)).

The functions u, can be computed explicitly. They are of class CJ(O,T] R
indeed analytic in the complex plane cut by the negative real axis, The
funetion x (%, 1)y 5o at least of class € *Yo0,T].

The foregoing‘ analysis of (2) shows that as f becomes smoother,
then x(t,f) also becomes smoother but only for t > 0. 1In general there
will be no increase in smoothness of the solution at t = O, At the same
time very special choices of f£ (for example f£(0) =0 or f£(0) = £(0) =0)
may force smoother behavior at the origin., This general type of behavior
seems to be typical of solutions of (1). The analysis given below is an
attempt to prove this under reasonably general assumptions on the kernel
a(t).

In equation (2) let uo(t) be the solution when f£(t) = 1.

Then one can easily and explicitly compute ut')(t) = t'l/a + Wuo(t).

In the more general case where f ¢ i+t (N 2 1) then

x(t,£) = L l§=of(j)(0)u3(t)/j! + 20" (% £(N+1)

= f(o)[t'l/2 + vuo(t)} + continuous terms,

More generally one could rewrite (1) in the form




(1) x(t) = £(t) + [Sa(s)e(t-s5,x(t-5))ds
- and then formally differentiate to obtain

(3) x1 () = £1(5) + a()&(0,x(0)) + [Pa(s)(gy(t8,x(t-5))

+ gy(t-5,x(t-5))x" (t-s)}ds
where g, = 0g/dt and g, = Jg/dx. One might expect that if g(0,x(0)) £ 0,
then x'(t) = Z(a(t)) as t -, We shsll show that this is the case for

a certain class of kernels a(t). In general the nature of the singularity

at t =0 is hard to analyze since the integral
t
foa(s)ge(t-s,x(t-s))x'(t-s)ds

may also be singular at t = 0. We shall provide a detailed analysis
for the case a(t) = t'IL 0<p < 1. The existence and nature of possible

singularities at t = 0 for arbitrary kernels a(t) is open,

2, Preliminary Lemmas.

Consider a linear Volterra integral equation of the form

(%) X(t) = F(t) + fga(t-s)h(s)x(s)ds.




Lemma 1, For some T >0 assume F and a are of class Ll(O,T) and

h € L°(0,T). Then (3) has a unique solution X € Ll(O,T).A If in addition

h,F and a are scalars and agre a.e, nonnegative, then X(t) 20 a.e.

Prooft The usual contraction map and translation argument works., Let

h, = ess. sup|h(t)] on 0 st =T, Pick an integer J such that if

S = T/J then

S
hofol a(t)|dt = @ < 1,
Then existence of X(t) on 0 £t £ S follows immediately by the principle

of contraction mappings on Ll(O,S).

Replacing t by t+S in (L4) one obtains
X,(t) = F(t) + [Sa(t-5)h(s+8)X,(s)ds
where Xl(t) = X(t+S) and
Fl(t) = F(t;s) + fga(t+s-s)h(s)x(s)ds.

Since X ¢ LJ(O,S) is known and F, € Ll(O,S) is known, then the con-
traction mapping srgument yields X,(t) e 1%0,5). Define X(t+5) = X;(t)
8., on 0 <t < S, Continue by induction on the intervals jsS <t <

(j+1)s.




If hy F and a are nonnegative, then the argument is the same
except that the contraction meppings are defined on the set (9 € Ll(o,s):-

o(t) 20 a.e.}. Q.E.D,

lema 2. Suppose F and a € LY(0,T), h € L°(0,T) and b # ess.sup|h(t)] .

Suppose there exists r >0 and a function B ¢ Ll(o, r) such that

| F(t)| + hof'gl a(t-5)|B(s)ds S B(t) (0 5t % r).

Then there exists z, S min{r,T} such that the unique Ll solution of

(4) satisfies the estimate |X(t)| s B(t) a.e. on 0<t <

l‘o .

Proof: Let S be the number given in the proof of Lemma 1 and let Ty

min{r,S}, Define
A= {9 ¢ 10,mp): |o(t)] = B(t) ase.).

Apply a contraction mapping on A. Q.E,D.

Corollary 1, Suppose the hypotheses of Lemma 1 are satisfied, Assume

|F(t)] and |a(t)] s KB(t) a.e, on 0 5t sr and that

(H1) For each € >0 there exists &€) >0 such that

fgﬁ(t-s)ﬂ(s)ds s €8(t) (ase. on 0 <t <B)




Then there exists r, & min{T,r}) such that the unique Ll solution of

(4) satisfies the estimate |X(t)| s (K+1)B(t) ace. om 0 <t < Toe

Prooft Pick € >0 so small that ehoK(K+l) <1 vhere b, ¥ ess.

sup| h(t)|. Then pick & = 8€) using (Hl)e Let I, = min{8,r,T}.

For almost all t in 0 <t < ro one has

|F(6)| + ByS5l a(t-s)] (K+1)B(s)as
s KB(t) + hoK(K-tl)f;ﬁ(t-s)a(s)ds
s (K+1)B(t).

Now apply Lemma 2. QeEsDs

It is easy to find examples of functions which satisfy hypotheses
(Hl)e For example if 0 <p< 1l then

[¥(4-5)"Ps7Pgs - k2P o (keI Pyt P o o(tP)

where K = I‘(l-p)z/r‘(2-p) and I(2z) 1is the gamma function. If PB(t) =
-logt and 0 <t &1, then

0s fglog(t-s)log s ds = fg/alog(t-s)log 5 ds + f:/elog(t-s)log s ds

H log(t/e)fg/zlog s ds + log(t/2)f:/elog(t-s)ds =2 log(t/2)f;/2log 5 ds




= t log (t/2)[1log (t/2)-1] = of(log t) (t -0™).

2
© -nt
If p(t) =Z e °, then

2 2
e B t
foﬁ(t-s)B(S)GS = 2 n,mel T— +t Z
oo

= 2y(t) + t8(t)

2t

where y(t) 4is defined by

-n2t -met -nat_ e-( m+n) 21‘.

) =Z T "—TT‘ =Z ol e I

_!12tZ - e-(m +2nm)t
e

m=l m2+2nm

=L

n=l

Clearly tB(t) = o(B(t)) as t —0. To see that y(t) = o(B(t))
fix any € >0 and then pick M so large that

2 <8/2 r® l(m+2nm) lce (n 2 m).

Now pick 8 >0 so small that if 0 <t < 8, then

(1 - e-(m2+2mn)t

el ) <e/2 (1sms M.

Then one has




'(1!124'&111)17) 4+ z" m-2]

2
osyt)ysZM MY H Me1

n=l m=1( 1-e

2
0 ol Lt o 2 2 -1
+Z n--M-o-.'l.e Z m-l(m )

2 2
ALN e te/2ae/2) + L0 e Y = ep(v).
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Using this result it is easy to show that the function B(t) = KE o e v

also satisfies (Hl).
The resolvent R(t) associated with a given kernel function
a(t) is defined as the unique 1t solution of the linear equation

(5 R(t) = a(t) + f;a(t-s)R(s)ds.

It is well known (cef. eege Tricomi [3, Chapter I]) that the solution of

a linear equation

(6) X(t) = £(t) + [Sa(t-5)X(s)ds

may be represented in terms of f and the resolvent!

(7 . X(t) = £(t) + ng(t-s)f( s)ds.
Consider a pair of nonlinear equations

(8) xj(t) b Fd(t) + fga(t-s)gd(s,xj(s))ds. (J = 112)0




Lemma 5. Assume

1
i. &F, and F, ¢ L'(0,7),

ii. gl(t,x) and gz(t,x) are continuous in (t,x) for 0 st s T

and all x,

114, gl(t »X) 1is Lipschitz continuous in x with Lipschitz constant

L (independent of ¢ and x), and

iv. xl and x2 existg._e_.gg OstsT and are Ll.

Let r(t) be the resolvent of the kernel I{a(t)] and define

Q) = FY(8)-F,(t) + [oa(t-5)g)(5,X(s))-gx(5,Xs(5)))dse

Then a.e. on 0<t<T one has

1%,()-%(8)] s [a(®)] + for(t-s)|a(s)] as.
Prooft Define z(t) = xl(t)'XQ(t)’ F(t) = Fl(t)-FE(t) and
&(t) = (g(t,X,(¢)) - g;(,%,(t))}/2(%)
when z(t) £0 and G(t) =0 when z(t) =0. Clearly z and FeLl(O,T),

Ge€L(0,7) and |G(t)] S L a.e. Using (8) and the definitions above

it follows that




2(t) = F(t) + [ga(t-5)(g,(5,%,(5))-gx(5,%x(5))) s
+ [La(t-5) g, (5,%,(5)) - g)(s,X(8))}ds

= Q(t) + f;a(t-s)G(s)z(s)ds,
so that

lz(0)] 5 [0)] + L a(t-8)|| )] as.
Let p(t) be a nonnegative funétion such that
l2(6)] = (a(t)-p(t)} + Lfg] a(t-9)]]2(s)] as.
Since r(t) is the resolvent of I]a(t)|, then formul?. (7) implies that

| Zt)] = Q) - p(t) + [or(s-s)(a(s)-p(s))ds.

Since r and p are nonnegative the lemma follows. Q.E.D.

If a(t) =1 and both Fl(t) =F, and Fy(t) =F, are con-
stants, then r(t)=Lexp(It). In this case Lemma 3 reduces to a familiar
estimate for ordinary differential equations.

In certain cases the resolvent associated with a kernel a(t) ¢
c(o,T] N Ll(O,T) is not only Ll(O,T) but also continuous for t >0,
This is trivial to see if a € L?(O,T). Another instance is given by the

following results
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Lemma 4, Suppose a(t' e C(0,T] N Ll(O,T). If a(t) is nonnegative

and nonincreasing then its resolvent is continuous on 0 <t = T,

Proofs Let r(t) be the resolvent of a(t)., By Lemma 1 r(t) ¢ Ll(o,'l‘)
and r(t) 20 a.e. Therefore the function a(&s)r(s) e Ll(o, 8) for
almost all & e (0,T). Fix any such &. Then
(9) r(t+d) = {a(t+d) + fga(ua-s)r(s)ds) + f;a(t—s)r(s-rh)ds.
The function a(t+d) € C[0,T-8] and the function
3]
E(t) = foa(t+5-s)r(s)ds

is easily seen to be continuous on 0 <t =T, To see that E(t) is con-
tinuous at t = 0 we must show that for any sequence tn tending mono-
tonically to zero one has

o) o)

foa(tn+5-s)r( s)ds —ifoa(B-s)r(s)ds.
But a(t) is nonincreasing so that a(tn+6-s)r(s\ - a(5-s)r(s) mono-

tonically. Now apply the dominated convergence theorem,

We have shown that (9) has the form




1k
x(t) = £(t) + fga(t-s)x(s)ds, x(t) = r(t+d)

vhere f ¢ C[0,T-8] and a(t) ¢ Ll(O,T-S). Using an argument similar to
the proof of Lemma 1 it follows that x(t) = r(t+8) e C[0,T-8]. Since
® >0 can be made arbitrarily small, we are done. Q.E.D.

A similiar proof will establish the following result.,

Lemma 5. Suppose F, a and B ¢ c(0,T] N Ll(O,T), h e L°(0,T) and

a(t)] =B(t) on 0<tsT, If B 4is nonincreasing then the solution

X of (4) is continuous on 0 <t s T,

3. Differentiability of Solutions

Consider the integral equation
(1) x(t) = £(t) + f'ga(s)g(t-s,x(t-s))ds
and its formal derivative

(3) x'(t) = £7(t) + a(t)g(0,£(0)) + fga(t-s)(sl(s,X(S))

+ ga(s,x(s))x'(sﬂds.

This last equation may be written in the form




(10) X(t) = F(t) + fga(t-s)ge(s,x(s))x(s)ds
where X(t) = x'(t) and
(12) R(t) = £1(t) + a(t)g(0,x(0)) + [a(t-2)g,(s,x(s))ds.

In the sequel we shall need some or all of the following hypotheses,

(A1) f£(t) and g(t,x) are of class ¢t in t and resp, (t,x) for

0=t=T and for a1 x,

(A2) The function gz(t,x) = 3g(t,x)/dx 1is locally Lipschitz continuous

in x.

(A3) a(t) ¢ Ll(O,T) N ¢(0,T] and there exists a nonincreasing function

oft) e Ll(O,T) N c(0,T] such that |a(t)] sa(t) on 0<t sT,

(A4) The unique continuous solution of (1) exists on the entire interval

0t =T,
(A5) f(t) end g(t,x) are of class J1+1 for some integer v 2 1,
(46) a(t) € ¢""'[0,T] n c¥(0,7] eamd |al") ()| s ot) where « 1is

noninereasing and integrable on 0 <t < T.

Theorem 1. Suppose (Al-4) are true. ILet X(t) be the solution of

(10) with F defined by (11). Then the solution x(t) of (1) is of

class C[0,T] N Cl(o,T] and x"(t) = X(t) on the interval 0 <t s T.
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Proofs Note that by Lemmas 1 and 5 it follows that X e C(0,T] N Ll(O,T).
Let M =max|x(t)] on 0%t ST and let P(x) bea C. function such
that P(x) = 1 if |x| s M+l and P(x) 20 if |x| & M+2, If the func-
tion g(t,x) 4n (1) is replaced by g(t,x)P(x) then nothing is changed
in the range of interest, Therefore we shall assume that g has com-

pact support. In particular then g, and g, are bounded and gz(t,x)

€1
is globally Iipschitz continuous in x.

Fix a number & in the range 0 < 8 < T/2, Define
2(t,h) = {x(t+h)-x(t)}/h

for 0<hs3 and 0<t =T-8 Since x(t) solves (1), then Z solves

an equation of the form
2(t,h) = R(t,h) + [Ta(t-5)gy(s,x*(5))Z(s,h)ds

where x*(s) is between x(t) and x(t+h), 0 < 6(h) <h and

t+h

N a(s)g(t+h-s,x(t+h-s))ds

R(t,h) = (£(t+h)-f(t))/h + ™[

+ f;a(s)sl(t+9(h)-s,x(t-s))ds.

Let r(t) be the resolvent of L|a(t)|. By Lemma 3 above
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[Z(t,n)-X(t)] = Q(t,h) + fgr(t-s)Q(s,h)ds
on 0<t=sT-85 where

Q%) = [R(t,)-F()] + Y] a(t-5)] | g5, x%(s)) -

X s,x(s))] ds.

Let K >0 be a bound for all of the functions |f£'(t)|, |g(t,x)|,
le,(t,x)| and |gy(t,x)|. Then the definitions of Q, R and F may

be used to obtain the bound

|a(s,h)| s K + (K/h)f:+h| a(u)]du + BKIgI a(u)]du + | F(s)|

s 2% + (&/0)/5"o(wau + 4K[T] a(u)| au + Kafs)
s 2K(1 + efg| a(w)]du + ofs)) (0<s<t),
Write this bound in the form |Q(t,h)| s K, + Kla(t).
Given & >0 1let K, be a bound for r(t) over 5=t &T-5,

Pick 7 in the range 0 < n 8 & and so small that
n
foK2{K0 + Kla(t)}dt <E.

Now pick ho so small that whenever Q0 < h s ho then




|a(t,h)]| = e[fgr(s)ds + 1)'1

uniformly over 1 8 ¢ £ T-no Then for h and . in the range 0 < h & ho,

8=t £ T-5 one has

| 2(t,h)-X(t)] s Q(t,h) + fgr(t-s)q(s,h)ds
4 fgr(t-s)q(s,h)ds
S8+ [J,(K, + Kja(s))ds + [7r(t-s)(6/ [z (wau)as

< 3€.

Since € >0 is arbitrary this shows that z(t,h) »X(t) as h -o'
uniformly in 5 st s T-8 But 5 >0 4is also arbitrary so that X(t)
is the continuous right derivative of x(t) on the interval 0 <t < T.

By virtue of the uniform convergence to X(t) it follows that
on any interval I = (t: &8s t = T-8} the set {Z(e,h): 0 < h < 8}

is equicontinuous. Therefore

1im +z(t‘.,h) = lim +z('l:.-h,h) = X(t)

h =0 h -0
uniformly on I. But 2z(t-h,h) is a left differences For t =T a
separate but similiar argument shows that X(T) is the left derivative

of X(t) at t = Te QeEeDe
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Exactly the same proof will establish the following theorem.

Theorem 2. Theorem 1 remains true if the assumptions on f are weakened

to f e C[0,T] N cl(o,T] and fgl(f(t+h)-f(t))/h - f1(t)]dt 20 as 1 -0

- uniformly in h.
In case (A4-6) are true then one can formally differentiate (1')

as follows

(12) () = 26y & £ 22600 (6) (0" Yg(u, x(w)))

+ f3a(s) (0g(u, x()) ;s

where DJ = dd/duJ denotes the jth derivative and n =0,1,...,v+l.

We shall proves

Theorem 3. Suppose (Ah-6) are true with v 2 1, ®hen the solution of

(1) satisfies the following:

1. x e c'[o,1] n ¢"*Xo,m),

x(v+l)

i1, e 1X(0,T), and

111, x(t) satisfies (12) for 1sns v+l and O<t ST,

Proof. Since the hypotheses of Theorem 1 are trivally satisfied then
x'(t) ¢ c(o,T] N L}(O,T) and x(t) satisfies (12) on 0<t T for

n =1 Since a(t) is continuous at t =0, it is clear that




(x(n)-x(0)}0™% = (£(n)-2(0)}6™" + ™ fBa(s)g(n-5, x(b-s) )

- £1(0) + a(0)g(0,x(0))

as h »0%. Therefore x' (0) exists and satisfies (12),
Continuing by induction one .an use Theorem 1 to establish (12)
for n=1,2,,..,v. Applying Theorem 2%0 (12) with n = v one then ob-

tains (12) for n = v+l. Q.E.D.

Lk, Weakly Singular Kernels,

Definition 1. Suppose v is a nonnegative integer and F is a function

defined on (0,T] or on [0,T]. Then F 4is called weakly singular of

order v if and only if
V- \4
1. Fec(o,T] 4f v=0 or Fec' 0,11 nc%0,T] if v >o,

ii. For each € >0, F(v)(t) is absolutely continuous on € st s T,

and finallx

iii. the function defined by
a,(t,F) = F(T) + f'i] F(v*l)(ls)lds (0<tsT

is of class Ll(O,T).
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For any integer v &8 0 let WS(v) denote the set of all func-
tions F which are weakly singular of order v (T >0 is fixed). The
function av(t,F) is a measure of the singularity of F‘v) at t = 0.
Indeed it 1s easy to see that a, is nonnegative, nonincreasing and that
IF(V)(t)I fo/(t,F) on 0<t ST The precise value of T 1s unimportent
in the sense that if T 4s replaced by another value T' then & must

v
be adjusted only by an additive constant.

Theorem 4. Suppose (A4) is true, (A5) is true with v =1 and a(t) ¢
WS(0)s Then the solution x(t) of (1) is of class Ca(O,T] and there

exists a constant K* such that

(1) o) at 8 k(1 + [Tar(e)]at + [T (e)] %at 4

+ [3 (N (7' (£]at)as

on 0 <TtsT,

Proofs We shall assume that g(t,x) = g(x) is independent of t. The
only addition complications in the general case are notational, By Theorem
1 above x ¢ C[0,T] N Cl(O,T] and x'(t) e Ll(O,T). For any 1t € (0,T)

one has

(14)  x'(t+1) = {f'(t+1)+a(t+r)g(x(0))+f;a(t+t-s)g’(x(s))x'(s)ds)

+ fga(t-s)g'(x(s+1))x'(s+1)ds




22

on 0<t &T-1. Note thet f'(t+t), a(t+1) and g'(x(s+t)) are of

class Cl[o,T-1]. Also note that the function defined by .
E(t) = f;a(t+1-s)g'(x(s))x'(s)ds

is of class C[0,T-1] N C*(0,T-7] end that E' ¢ L(0,T7-7). Indeed one

has

(15) Ig'TIE'(t)Idt = Ig"l [qa" (t41=5)g' (x(8))x* (s)ds| at
s f;(fg-Tla'(t+1-s)|dt)|g'(x(s))x'(s)lds
s K[glx' ()| (S5l o' (V)] at)as < =
where K 4is an a priori constant which bounds |g'(x(s))|. Moreover for
all small h one has
h'ljgl E(t+n)-E(t)|at & (K/b) /OS] fga.' (ust+t-8)du] | x* ()] dsdt
. (x/h)fg[fg(fgla'(u+t+1~s)[dt)|x'(s)lds}du
= (K/h)]g[f;(ob(u+n+1-s)-ob(u+1-s))|x'(s)lds)du
where K 4is the bound on |g'(x(s))| and ob(t) . ob(t,a). The expres-
sion inside the brackets in the last integral will tend to zero as n —0

uniformly for O % u § 1, Indeed if this were not true, then there would

exist sequences [ -0 and W Y, such that 0 = Yy & 1 and such that
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along this sequence the expression is larger than some preassigned e > 0.

But ao(t) is continuous for t >0 and

0= ao(t+'q+1-s) - ao(u+'r-s)
s ao(u+n+'r-s) s ao('r-s)

when 0Susl 7>0 and O £ s £ 1, Therefore the dominated conver-

gence theorem implies that

€ s lim fg(ao(unmnn-s) - ao(un+'r-s))|x'(s)[ds = 0.

h 25w

These remarks show that

lim fgI(E(tm)-E(t))/h - E'(%)]at
1 -0

S Lim{ [ E(t+h)-E(t)| /ndt + fgl E'(t)]dt) =0

uniformly for O < h £ 1., In particular Theorem 2 applies to (14). There-
fore x"(t+1) exists and is continuous on Q0 <t £ T-1, Since T >0 can
be made arbitrarily' small, it follows that x' € Cl(O,T].

For any Tt ¢ (0,T) the function x"(t+71) satisfies an equation

of the form

(16) W (tat) = £(t+1) + at(t+7)g(x(0)) + E'(t) + Fl(t) + Fy(t)

+ fga(t-s)g' (x(s+7))x"(s+7)ds




24

where E 1is the function defined above, Fl(t) = a(t)g' (x(1))x'(7) and

Fy(t) = fga(t-s)gr(x(1+s)x'(1+s)2ds,

Let K beaboundon O St ST for the functions f£'(t), g(x(t)),

g'(x(t)) and g"(x(t)). There will be no loss of generality in assuming

that T is small enough so that
o= ngla(t)ldt <1/2,
Take absolute values in (16) and integrate:

A (o)lat = 277 2" (b0 at
s K(T-1)+Kf$|a'(t)|dt + fg'T{lE'(t)|+|Fl(t)|+|Fé(t)i}dt

+ ]g-rlfga(t-s)g'(x(r+s?x"(1+s) ds| at.
The last ttrm in this inequality may be bounded as followss

ng'Tfi-TIa(t-s)l[x"(1+s)|dtds

= KIS a(t-8){at)| ¥"(s)] as s af 7| x"(s)| as.

Furthermore
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A

57 (0)]at = KfT] a(w)] at] 2t (9)] S of (7]

"

of| (D] + [31x"(8)] at),

and

1A

L ry0)lat s KI5 (T a(t-5)] av)| x (45| s

2 2
s</2 [ a(8)] at)| x* ()] “as = ofT| 3 (s)] “as.
Cambining these inequalities with (15) and rearranging yields

(1-2a)ff|x"(s)|ds s KT+KJ£|a'(t)ldt + Kf;lx'(s)lfz:ZIa'(t)ldtds

+ o x (D] + afT]xt ()] Zas.

Since 1-2a > 0, then the proof is complete. Q.E.D.

Corollary 2, Assume the hypotheses of Theorem L, If in addition the

function ao(t,a) € L2(O,T) then x e WS(1l).

Proof, First note that
fg(lexv(t\lgdt)dr a fg(f;lx'(t)|2dr)dt = fgt|x'(t)|2dt <=

and
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,rf| at(t)]dt s ao(t,a.).
Finally note that x'(t) and ao(t,a) € Ll(O,T). Therefore
fglx'(s)l(if_sla'(t)ldt)ds s[5l %' (s)| q( v-s)ds

with the last function of class I.1 in 1, 0 £ 1 =T, Using these esti-

mates in (13) it follows that
oy (6,x(*)) = [xt(T)| + le x"(u)|du € Ll(O,T). Q.E.D.

Corollary 3. Assume the hypotheses of Theorem 4, If in addition p(t) =

ao(t,a) satisfies assumption (Hl), then x(t) € WS(1) and al(t,x(-)) £

KB(t) on 0<t ST for some apriori constant K.

Proof: Theorem 1 and Corollary 1 imply that |x'(t)] = Koa(t) on 0<t ST

for some fixed constant Ko > 0. Since B is nonincreasing, then

Pl (9] %as s [T6p(6)%a s Kp(a)[Tp(t)at.

Moreover (Hl) may be used to see that

f;|x-(s)|(ff_s|a'(t)|at)ds s [7| " (s)]B(v-s)as

s Ky[op(s)B(t-5)ds = K;B(7).

Using these estimates in (13) one obtains
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Flan(o)]at 8 kx(1 + (L65/Tp(8)at + K))IB(0).  Q.E.D.

Theorem 5., Suppose (A4) is true, a(t) € WS(v) where v 21 and both f

end g are of class ¢”*2, Then the solution of equation (1) is of class

WS(v+l) and QV+1(t’x(.)) s Knk(t,a) on 0<t&ET for some fixed con-

staht K > 0.

Proof: Apply Theorem 3 to obtain (12). Replace t by t+1 in (12)

and proceed as in Theorem 4, Q.E.D.

5. Special Kernels - An example,

Suppose x(t) is the solution of
(an) x(t) = £(t) + [5(t-5)""Pe(s,x(s))ds

on 0 £t =T where v 20 1is an integer and 0 <p<1l, If f and g
are sufficiently smooth, then the results in section 4 show that x e WS(v)
and x")(t) = #(tP) as t »0. Further information may be obtained for

this special kernel, Change variables in the integral to s =1t sinae.

(17) x(t) = £(t) + 2fg/ e+ Poos * 1 Peos"* 1Py sin og(t sin®e,

x(t sing))as,

If f and g are of class cv+2, then by differentiating v+1 times

on both sides of (17') one obtains

o e - = e —. P — - D — - — D —— —
T R L N e pe e acar—— — i — e ——— ™ i oo ——
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x(v+l)(t) = l:2(v-u»1-1>)(v-p)...(l-p)fg/2 cos'*1 Py sin eg(t Sin29,

x(t sinee))de] t"P 4+ continuous terms of order

£ 1P (tl'ap if v =0) or higher,
In particular then not only is xv+l(t\ = ﬁ(t-p) but

x(v"‘l\(t) - f(v+l)(o) + Klt-p + ﬁ(tl-p) (v 2 1)

or
x'(t) = Klt'P + o(+17%P (v =0)
where

v+l-p

K, = 2(v+l-p)(v-p)...(l-p)fg/zcos sin 6g(0,x(0))de

= 2¢(0,£(0))(v+1-p)e..(1-p)/(v+2-p).

Even more information is available when f and g are analytic,

Theorem 6, Assume v 1is a nonnegative integer, 0 < p <1 and that £(t)

is real analytic in a neighborhood of O = t £ T. Suppose g(t,x) is

real analytic on an open set which contains all real ordered pairs (t,x),

0stsT and |x| <w, Then x(t) is real analytic in a neighborhood

of the set 0 <t ™.

Proof: Let ||x| = max|x(t)] on 0stsT. Given € >0 define

D(€) = {28 0 SRe z ST+ and |Im z| s €}
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and
E(€) = {(2,w)s z € D(€) and |w] =[x +1}. |
Define
M = max(] (2, » |SKz,|2 (2,0) ¢ B(E)),
K = max{| £(z)| + ™™ (2+s)"* P2 z e D(€) and 0 s s = T},
and

S(€) = (z complext O s Re z 5 €&, |Im z| s¢&/2}.

Pick 80 so small that whenever 0 <€ s €, then f is analytic in

0
D(€) and g 4is analytic in E(€).

Iet F(E) denote the set of all functions @, real analytic
in the interior of S(€), continuous on S(€) and satisfying the bound

|o(z)] = K+1 for all z ¢ S(€)s Given ¢ in F(E) define

- v+l-
(Rp)(2) = £(2) + fg/222V+l Poos Pg sin 0g(z sinae,

o(z sin®e))ae.

If € 1is chosen so that




B=(v5e/2)"* 1 Pruc,
then for any 2z ¢ S(€)

| (Ro)(2)| 5 | £(2)] + jg/az( J5 €/2)"* 1P| g(2 sin®6, o(z sin0))|ds

SK+ fg/ 22( W5 €/2)"* 1Py ge s K4p < K+l
Therefore Sp ¢ F(€) when ¢ € F(€)s Moreover if ¢, and 9, ¢ F(€) then

| By, (2)-Ro(2)] s fg/ea( V5 €/2)"* Puo, (2 s1n6) g (2 sin’6)|as

5 B maxl|oy(2)-0(2)[ 2 € 5(8)].

Therefore R 1is a contraction mapping on F(€).

Let x(z) be the unique fixed point of R. Then x(z) is real
analytic in the interior of S(€), continuous on all of S(€) and x(t)
solves (17) if O £ t = €. This means that the solution of (17) is analytic
in a neighborhood of 0 <t <&,

Suppose we know that x(z) 4is analytic in a set (z! 0 <
real z & T, |Im z| 5€/2}) where T <T.

Translation in (17) will show that

x(t+1) = £ (t) + fg(t-s)v'pg(s+1,x(s+1))ds
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where
f,r(t) = f(t+1) + fg(tﬂ-s)v'pg(s,x(s))ds.

Since f_ 1is real analytic in t and IfT(z)l £§K if 2z e 8(€), then
the first part of the proof applies. This means that x(z+T) 4is in the
class F(€)s. Since the number € has been fixed beforehand, one may

step across the interval 0 # t 8T In a finite number of steps. Q«E.D.

Corollery 4. Assume the hypotheses of Theorem 6o If p 1is a rational

number, p = r/q in lowest terms, then x(tq) is analytic in a neighborhood

2£t=00

Proof: First replace t by 2z% in (17*)e

(™) x(2%) = £(2%) + fg/aaz(v+l'P)qcos”*1'Pe sin t

g(z2 sinae, x(23 sinee))de.

Let F(€) = (9% @ 4is real analytic in |z| <& and continuous on |z| = €}.

Define
Rp(z) = £(2%) + f1or/222(v+l-p)qc°sv+l-pe sin 6g( zqsinae,q)(z sina/qm)de

for 9 € F(€) and |z| €. As in the proof of Theorem 6 one can show

that if € is sufficiently small then R is a contraction mapping on
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F(€)s QeE.D.
It would be interesting to know whether or not Theorem 6 can be
generalized to a large class of kernels a(t) which are analytic for
Re ¢t > 0« The proof of Theorem 6 cannot be generalized too much since
it depends on the monotonicity and homogeneity of a(t) = 1¥°P, Corollary

4, which establishes the exact nature of the singularity of x(z) at

z = 0, is even more firmly wedded to the particular properties of tv'p.
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