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1. Introduction

The purpose of this paper is to obtain some results on the dif-

ferentiability properties of solutions of nonlinear integral equations

of the form

(1)	 x(t) = f(t) + foa(t-s)g(s,x(s))ds	 (0 s t s T)

when f(t) and g(t,x) are smooth functions, a(t) E C(O,T] n L'(O,T)

but a(t) may become unbounded as t -4 0. Such results are necessary

in order  to estimate the error in numerical approximations of the solu-

tion of (1), c.f. e.g. Linz [1, Section II]. This type of result is also

useful in proving the equivalence of certain nonlinear boundary value

problems for the heat equation with a corresponding Volterra system, c.f.

[2, Theorem 3 and its proof].

The general problem of determining the smoothness of solutions

v of (1) is rather complex.	 Suppose we fix a function	 g	 and a kernel

a(t) E L1 (0,T).	 Then as	 f	 varies over the set	 C[O,T]	 the solution

x(t) = x(t;f)	 will also vary over all possible functions in C[O,T].

To see this one has only to fix any 	 x*(t) a C[O,T]	 and then define

f*(t) = x*(t) - f0a(t-s)9(s,x*(s))ds

on 0 s t T. Then x* is the solution of (1) corresponding to f* E

C[O,T].
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This overabundance of solutions is caused by the overabundance

of forcing functions -f can be any continuous function. 'One would

expect that as f and g become smoother the solution of (1) must be-

come smoother. This is true to some extent but intuition should not

be trusted too far. To see this consider the equation

(2)	 x(t) = f(t) - jo(t-s)-1J2x(s)ds.

If f(t) = 1 (an entire function), then a Laplace transform argument

may be used to see that

x(t) = exp(7rt)erfc(%rrt)

where

erfc(x) = (2/,Tr) f oexp(-r2)dr

is the complimentary error function, On the other hand if f(t) = 1+Wt,

then it is easy to verify that x(t) = 1 (entire). In particular this shows

that fortuitous choices of the function f yield smoothness properties

at t = 0 which are "inversely proportional" to intuition.

Since (2) is a linear equation or convolution type, then it is

possible to analyze the behavior of solutions in some detail. Given any

fixed continuous function f let x0(t,f) be the corresponding solution

of (2). Integrating in (2) from zero to t and rearranging the double

integral yields
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xl(t, f) =ft 	T ) f)dT

= fof(T)dT - f0(t- s)-1/`(fs (T,f)dr)ds

or

xl(t' f) - f0f(Tl)dTl - f0(t- s)-1/2x1( s,f)ds.

This integration process can be continued indefinitely

xn+l(tf) = ft'	 xn(T.,f)dT

T	 T

= fOjol ... j0 f(Tn+l)dTn+1...dT1 -

f0(t-s)-l/2xn+1( sj,f)ds

or

xn+l(t^f) = fo( f( T )( t-T ) n/n: ) dT - f0(t-s)-1/2xn+1(s.,f)ds.

Given a function f e e+1 OAT) write f in the form

f(t) _ , J^f(3)(o)t^/j. + f0(f(N+1)(T)(t-T)N/NQ d-1.

Let uj (t) = xj (t..f) for the special choice f(t) =— 1. Then the



solution of (2) may be written in the form

x0(t,f) = E ^zOf(P (0)uj (t)/3: + +l(t,f(N+1)).

The functions u  can be computed explicitly. They are of class CJ[O,,T],,

indeed analytic in the complex.piane cut by the negative real axis. The

function xN+l(t'f(N+1)) is at least of class CN+l[0oT].

The foregoing analysis of (2) shows that as f becomes smoother,

then x(t) f) also becomes smoother but only for t > 0. In general there

will be no increase in smoothness of the solution at t = 0. At the same

time very special choices of f. (for example f(0) = 0 or f(0) = r(0) = 0)

may force smoother behavior at the origin. This general type of behavior

seems to be typical of solutions of (1). The analysis given below is an

attempt to prove this under reasonably general assumptions on the kernel

a(t).

In equation (2) let uO(t) be the solution when f(t) =— 1.

Then one can easily and explicitly compute u'0(t) = t-1/2 + VUO(t).

In the more general case where f e CN+1 (N Z 1) then

xp(t^ f) _ Z j^f(j)(0)u, ( t)/J ! + xN+ll (t. f(N+1))

= f(0)(t-1/2 +ru0(t)) + continuous term s.

More generally one could rewrite (1) in the form
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(1)	 x(t) = f(t) + joa(s)g(t-s,x(t-s))ds

and then formally differentiate to obtain

(3)	 x1(t) = fl (t) + a(t) g(O,x(0)) + foa( s ) ( gl(t-s, x ( t- s ) )

+ 92(t-s,x(t-s))xt(t-s))ds

where g  = 6g/at and g2 = ag/ax. One might expect that if g(O,x(0)) j 0,

then x1 (t) _ (a(t)) as t -+-. We shall show that this is the case for

a certain class of kernels a(t). In general the nature of the singularity

at t = 0 is hard to analyze since the integral

f8a(s)g2(t-s,x(t-s))x' (t-s)ds

may also be singular at t = 0. We shall provide a detailed analysis

for the case a(t) = t-p, 0 < p < 1. The existence and nature of possible

singularities at t = 0 for arbitrary kernels a(t) is open.

2. preliminary Lemmas.

Consider a linear Volterra integral equation of the form

(^+)	 X(t) = F(t) + f0a(t-s)h(s)X(s)ds.
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Lemma 1. For some T > 0 assume F and a are of class L1(O..T) and

h E L (00 T). Then (3) has a unique solution X E L1(OjT).. If in addition

hJ,F and a are scalars and are a.e. nonneg_ative, then X(t) E 0 a.e.

Proof: The usual contraction map and translation argument works. Let

h0 = ess. supjh(t)j on 0 s t s T. Pick an integer J such that if

S = T/J then

hOfŜj a(t)I dt = a < 1.

Then existence of X(t) on 0 S t S S follows immediately by the principle

of contraction mappings on L1(O.S).

Replacing t by t+S in (4) one obtains

Xl(t) - Fl(t) + ft̂a(t-s)h(s+S)Xl(s)ds

where Xl(t) = X(t+S) and

Fl(t) = F(t+S) + f0a(t+S-s)h(s)X(s)ds.

Since X E Ll(O.,S) is known and F1 E LI(OI S) is known, then the con-

traction mapping argument yields Xl(t) a L1(O,S). Define X(t+S) = Xl(t)

a.e. on 0 < t < S. Continue by induction on the intervals 3S < t <

(j +1) S.
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If h, F and a are nonnegative, then the argument is the same

except that the contraction mappings are defined on the set (cp a L1 (OpS):-

cp(t) 2; 0 a.e.). Q.E.D.

Lemma 2. Su ose F and a e L1(01 T)^ h e 1^(0!T) and h0 it ess.supl h(t)I .

Symse there exists r > 0 and a function P e L1(O..r) such that

F(t)I + h0f0j a(t- s) I P( s) d s s P(t)	 (0 S t 5 r).

Then there exists r0 S min(r..T) such that the uni ue L1 solution of

(4) satisfies the estimate JX(t)j s P (t) a.e. on 0 < t < r0.

Proof: Let S be the number given in the proof of Lemma. 1 and let r 0 =

min(r,S). Define

A : i(P a Ll(O,rO)s J(P( t)j S P( t) a.e.).

Apply a contraction mapping on A. Q.E.D.

Corollary 1. Su	 ose the hypotheses of Lemma 1 are satisfied.	 Assume

F(t)I	 and I a(t)I	 S KP ( t)	 a.e. on 0 s t S r and that

(H1) For each S > 0 there exists S(E) > 0 such that

fp(t-s)P(s)ds s ep(t) ( a.e. on 0 < t < S).
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e a^^

(4) satisfies the estimate (X(t)I 9 (K+1)P(t) a.e. on 0 . < t < ro.

Proof: Fick E > 0 so small that ehOK(K+1) < 1 where hO it ease

supl h(t)I . Then pick S = 8(g ) using (Hl). Let ro = min(S,r,T).

e
For almost all t in 0 < t < ro one has

IF(t)I + hOfol a(t- s )I (K+1)p(s)ds

i KP(t) + hOK(K+l)ft̂P(t-s)P(s)ds

6 (K+1)P(t).

Now apply Lemma 2, Q.E.D.

It is easy to Mind examples of functions which satisfy hypotheses

(H1). For example if 0 < p < 1 then

f0(t-s) -ps-pds = Ktl-2p (Kt	 0(t-= o(t-pl

where K = P(1-p)2!P(2-p) and r(z) is the gamma function. If P(t)

-log t and 0 < t S 1, then

0 i f^log( t-s)log s ds = jG^21og( t-s)log s ds + ft/21og( t-s)log s ds

6 log(t/2)jt/2log s ds + log(t/2)ft/2log(t-s)ds = 2 log(t/2)j0/2log s ds



= t log (t/')[log (t/2)-I] - o( log t I (t -► 0+).

2
If P(t) - E n-1 e n t, then

	

-n2t-e -m t	 2

	

f^P(t-s)P(s)ds - E n	
a

m
-1+ tE	

a -a-le t'^ 	 M2-n2
n

- 2y(t) + ts(t)

where y(t) is defined by

	

Y(t) - E " E	 —
a*	 a n2t_e mgt - 

E °° E °° e-n2t-e-(m+n)2t
	n=1 m-n+l `—	 n	 n-1 m=1 m +2mn

2

- E =1e-a2tE 
W 1-e-(m +2nm)t

	

n-1	
m-1 m +2nm	 •

Clearly tP(t) - o(P(t))	 as t -► 0.	 To see that	 y(t) - o(p(t))
fix any e > 0 and then pick M	 so large that

E m+12m 2< e/2 ' E m=1(m +2nm) -1 < e (n i m) .

Now pick 8 > 0 so small that if 0 < t < 8, then

2

E m=1(1 - e
-(m +2mn)t )

 < e/2 (1 i m i M).

Then one has

9
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0 S Y(t) r E nnl
e-n2t(E 

m-l(1
-e-( +2mn ) t) + E M+lm 2)

+ E 00	 a-n tE go	 2
+2mn 

-1m
n-M+l 

2 

m=1( 	)

E n.le
-n2t

(g/2 + C/2) + E n-M+le 
n2te - 

gp(t).

:.	 Using this result it is easy to show that the function P(t) = KE a-0e-n2t

also satisfies (H1).

`-	 The resolvent R t associated with a{ )	 given kernel function

a(t) is defined as the unique Li solution of the linear equation

(5) R(t) o a(t) + f;a(t-s)R(s)ds.

It is well known (c.f. e.g. Triccmi [3, Chapter I]) that the solution of

a linear equation

(6) X(t) - f(t) + f0a(t-s)X(s)ds

may be represented in terms of f and the resolvent:

(7) X(t) - f(t) + ft̂R( t-s)f(s)ds.

Consider a pair of nonlinear equations

(8)	 Xi(t) - Fj ( t ) + foa(t- s)gj (s,Xj (s))ds. (j - 112).
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Lemma 3• Assume

i. F.,Fl and F2 a Ll(01,T),

ii* gl(t,x) and g2(t,x) are continuous in (t,x) for 0 i g t ;i T

And all x,

iii* gl(t,x) is Lipschitz continuous in x with Lipschitz constant

L (independent of t and x), and

iv. Xl and X2 exist a. e. on 0 'i t s T and are Ll.

Let r (t) be the resolvent of the kernel q a(t)l and define

Q(t) = Fl(t) -F2( t) + f^ta(t-s)(gl(s,X2(s))-g2(s,X2(s)))ds.

Then a. e. on 0 < t < T one has

X1(t)-X2(t)l g IQ(t)I + ft̂r(t-s)jQ(s)jds.

Proof: Define z(t) = Xl (t)-X2(t), F(t) = Fl(t)-F2!t) and

G( t) = (gl(t'Xl(t)) - 91(tIX2(t)))/Z(t)

when z ( t) j 0 and G(t) = 0 when z (t) = 0. Clearly z and F e Ll(O,T),

G e L (O ,T) and IG(t)l s L a. e. Using (8) and the definitions above

it follows that
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Z(t) = F(t) + fQa(t-s)( gl(s)X2 ( s))-g2(s,X2(s)))ds

+ fQa(t- s ) ( gl( s ,Xl( s )) - gl(s,X2(s)))ds

= Q(t) + f^ta(t-s)G(s) Z(s)ds,

so that

Iz(t)I s I Q(t) y + Lfo a( t-s)I I Z(s)Ids.

Let p(t) be a nonnegative function such that

1 Z ( t) 1 = (Q(t)-P(t)) + Lft;la(t- s)llz(s)lds•

Since r(t) is the resolvent of Lla(t)j, then formula (7) implies that

Z(t)1 = Q(t) - p(t) + f^tr(t- s)(Q( s)-p(s))ds.

Since r and p are nonnegative the lemma follows. Q.E.D.

If a(t) = 1 and both Fl(t) = F1 and F2(t) = F2 are con-

stants, then r(t)= L exp(Lt). In this case Lemma 3 reduces to a familiar

estimate for ordinary differential equations.

In certain cases the resolvent associated with a kernel a(t) e

C(O,T] n L1(O,T) is not only L1(O,T) but also continuous for t > 0.

This is trivial to see if a e L2(O,T). Another instance is given by the

following result:
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Lemma 4. suppose a(t` a C(O .,T) n L1(O.,T). If a(t) is nonnegative

and nonincreasing then its resolvent is continuous on 0 <t S T.

Proof: Let r(t) be the resolvent of a(t). By Lemma 1 r(t) a L1(O,,T)

and r(t) k- 0 a.e. Therefore the function a(B-s)r(s) E L1(O.,b) for

almost all b E (OA T). Fix any such b. Then

(9)	 r(t+S) = [a(t+S) + f^5a(t+S-s)r(s)ds) + ft̂a(t-s)r(s+h)ds.

The function a(t+S) E C[O.,T-8) and the function

E(t) = f^aa(t+8-s)r(s)ds

is easily seen to be continuous on 0 < t s T. To see that E(t ) is con-

tinuous at t = 0 we must show that for any sequence t o tending mono-

tonically to zero one has

f0a(tn+B-s)r(s)ds -+ f0a( b-s)r(s)ds.

But a(t) is nonincreasing so that a(t n+S-s)r(s) -+a(B-s)r(s) mono-

tonically. Now apply the dominated convergence theorem.

We have shown that (9) has the form
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x(t) = f(t) + f 0a(t-s ) x(s)ds, x(t) - r(t+S)

where f e C[O P T-S] and a(t) e Ll(O,T-S). Using an argument similar to

the proof of Lemma 1 it follows that x(t) = r(t+S) a C[O,T-5]. Since

S > 0 can be made arbitrarily small, we are done. Q.E.D.

A similiar proof will establish the following result.

Lemma 5. Suter F, a and 0 e C(O, T ] n L1(O, T) , h e L(O, T) and

Ia(t)l s P(t) on 0 < t s T. If P is nonincreasing then the solution

X of (4) is continuous on 0 < t 9 T.

3. Differentiability of Solutions

Consider the integral equation

(lt )	 x(t) = f(t) + ft^a(s)g(t-sPx(t-s))ds

and its formal derivative

(3)	 xt(t) = ft (t) + a(t)g(O,f(0)) + f0a(t-s) ( gl(s,x(s))

+ 92( s,x(s))xt(s3ds.

This last equation may be written in the form



(10) X(t) = F(t) + fta(t-s)g2(s,x(s))X(s)ds

where X(t) = x 1 (t) and

(11) F(t) = fl(t) + a(t)g(O,x(0)) + f^ta(t-s)gl(s,x(s))ds•

In the sequel we shall need some or all of the following hypotheses.

(Al) f(t) and g( t,x) are of class C1	in	 t	 and resp. (t,x)	 for

0 s t ;5 T and for all x.

(A2) The function 92(t,x) = ag(t,x) /ax is locally Lipschitz continuous

in x.

(A3) a(t) E L 
1
(O,T) n C(O,T] and there exists a nonincreasing function

a(t) a Ll(0,T) n C( O,T] such that ( a(t)1 s a( t) on 0 < t ;i T.

(A4) The unique continuous solution of (1) exists on the entire interval

04t9T.
;(A5) f(t) and g(t,x) are of class t +1

for some integer v a 1.

(A6) a(t) E Cv-1(0,T] n Cv(0,T) and ja(v) (01 ;S a(t) where a is

nonincreasing and integrable on 0 < t < T.

Theorem 1. Suppose (A1-4) are true. Let X(t) be the solution of

(10) with F defined by (11). Then the solution x(t) of (1) is of

class C(O, T] n C1(O,T] and x1 (t) = X(t) on the interval 0 < t S T.
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Proofs Note that by Lemmas 1 and 5 it follows that X e C(O,T) n Ll(O,T).

Let M = max x(t)j on 0 6 t 9 T and let P( x) be a CO. function such

that P( x) = 1 if jxj ;5 M+l and P ( x) = 0 if jxj ?. M+2, If the func-

tion g(t,x) in (1) is replaced by g(t,x ) P(x) then nothing is changed

in the range of interest. Therefore we shall assume that g has com-

pact support. In particular then gj, g1 and g2 are bounded and g2(t.,x)

is globally Lipschitz continuous in x.

Fix a number S in the range 0 < S < T/2. Define

Z(tJ h) = (x(t+h)-x(t))/h

for 0< h s 8 and 0< t s T-8. Since x(t) s4Dlves (1) ., then Z solves

an equation of the form

Z(t.0 h) = R(tj h) + ft^a(t-s ) 92(s,x*(s))Z(s^h)ds

where x*( s) is between x(t) and x(t+h)^ 0 < e(h) < h and

' )	 (	 ))I	 -lft+h	 t+h-sR(th = f( t+h)-f( t))/h+h	 a( s)g(	 .. x(t+h-s))ds

+ f0a(s)gl(t+e(h)-s.,x(t-s))ds.

Let r(t) be the resolvent of Lj a(t)j . By Lemma 3 above



17

iZ(t,h)-X(t)l s Q(tp h) + ftr(t-s)Q(s,h)ds

on 0 < t S T-5 where

Q(tp h) _ ,R(t,h)-F(t)' +'^I a(t- s)I (g2(s1x*(s)) -

92( s., x(s)) l ds.

Let K > 0 be a bound for all of the functions I f, ( t )I., Ig(t.-x)Iq

91( t ,, x)	 and g2(t, x) . Then the definitions of Q., R and F may

be used to obtain the bound

IQ( s ..h)) s K + (K/h)f$ +hIa(u)Idu + 3Kf8I a(u)Idu + IF( s)I

S 2K + (K/h) f 
s+ a(u)du + 4Kfoj a(u)I du + Ka(s)

S 2K(1+ 2f;I a(u)Idu + a(s))	 (0 < s < t).

Write this bound in the form I Q(t$ h)1 S KO + K1a(t).

Given E> 0	 let K2 be a bound for	 r(t)	 over	 S S t S T-S.

Pick	 n	 in the range	 0 < n S S	 and so small that

j^K2(K0 + K
1a(t))dt < E.

Now pick hO so small that whenever 0 < h S hO then

+e
^g?
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V

uniformly over I S t s T-19 Then for h and	 in the range 0< h S h0,

S ;9 t s T-b one has

Z(t,h)-X(t)l 9 Q(t,h) + flr(t-s)Q(s,h)ds

f ftr(t-s)Q(s,h)ds

;9 e + fTIK2 (KO + Klcx(s))ds + ftr(t-s)(e/fTr(u)du)ds

< 3e.

Since e > 0 is arbitrary this shows that z(t,h) -*X(t) as h -► 0+

uniformly in S s t s T-S. But S > 0 is also arbitrary so that X(t)

is the continuous right derivative of x(t) on the interval 0 < t < T.

By virtue of the uniform convergence to	 X(t) it follows that

on any interval	 I = (t: S S t s T-S)	 the set (Z( • ,h)S 0 < h < S)

is equicontinuous. Therefore

lim +z(t,h) = lim +z(t-h,h) = X(t)
h -i 0	 h --> 0

uniformly on I. But z(t-h,h ) is a left difference. For t - T a

separate but similiar argument shows that X(T) is the left derivative

of x(t) at t = T. Q.E.D.

WE-
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Exactly the same proof will establish the following theorem.

Theorem 2. Theorem 1 remains true if the assumptions on f are weakened

to f E C[O,T] n Cl(0,T] and 11l (f(t+h)-f(t) )/h - f t (t)l dt -40 as n -4 0

uniformly in h.

In case (A4-6) are true then one can formally differentiate (11)

as follows

(12)	 x(n)(t)
 = f(n) (t) + E nn-1a(k)(t)(Dn-k- lg(u,x(u)))u o

+ foa(s)(Dng(u,x(u))]u=t-sds

where D3 = dj/duj denotes the jth derivative and n = O,l,...,v+l.

We shall proves

Theorem 3. Suppose (A4 -6) are true with v 3 1. Then the solution of

(1) satisfies the followings

i. x E Cv[.O,T] n Cv+l(O,T),

ii.
x(v+l) e L

1(0,T), and

iii. x(t) satisfies (12) for 1 9 n S v+1 and 0< t I T.

Proof: Since the hypotheses of Theorem 1 are trivally satisfied then

XI (t) E C(O,T] n Ll(O,T) and x(t) satisfies (12) on 0 < t 9 T for

n = 1. Since a(t) is continuous at t = O, it is clear that
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(x(h)-x(0))h-
1
 - (f(h ) - f(0))h-1 + h-ljda ( s)g(h-sPx ( h-s))dr

-4 f'(0) + a(0)g(O,x(0))

as h -> 0+. Therefore x'(0) exists and satisfies (12).

Continuing by induction one ..an use Theorem 1 to establish (12.)

for n = 1.,2.,...,v. Applying Theorem 2 to (12) with n - v one then ob-

tains ( 12) for n = v+1. Q.E.D.

4. Weakly Singular Kernels.

Definition 1. Suppose v is a nonnegative integer and F is a function

defined on (OAT) or on [OAT]. Then F is called weakly singular of
order v if and only if

i. F e C(O IIT] if v - 0 or F e Cv l[O,T] n Cv(O ,,T] if v > 0,

ii. For each E > 0, F(v) (t) is absolutely continuous on 8 S t S T,

and fi_ Wally

iiie the function defined by

av(t,F) - F(T ) +ft^ F(v+1)(s)1 d 	 (0 < t S T)

is of class L1(0,T).
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For any integer v h 0 let WS(v) denote the set of all func-

tions F which are weakly singular of order v (T > 0 is fixed). The

function av(t,F) is a measure of the singularity of F (v) at t - 0.

Indeed it is easy to see that a  is nonnegative, nonincreasing and that

IF(v) (t)I S av(t,F) on 0 < t s T. The precise value of T is unimportant

in the sense that if T is replaced by another value T' then a  must

be adjusted only by an additive constant.

Theorem 4. Suppose (A4) is true, (A5) is true with v - 1 and a(t) s

WS(0). Then the solution x(t) of (1) is of class C 2(0,T] and there

exists a constant K* such that

(13) Prie ( t)ldt s K*( 1 + fTIa'(t ) Idt + f rIx'(t)I 2dt +

+ foI x' (s)I (f T-s I a' (t Jdt)ds

on 0 < T 9 T.

Proofs We shall ass=e that g(t,x) - g(x) is independent of to The

only addition complications in the general case are notational. By Theorem

1 above x e C[O,T] n c1(0,T) and g' (t) a Ll(O,T). For any T e (0,T)

one has

(14) x'(t+T) - (f'(t+T) +a(t+T)g( x(0))+f^a( t+T-s)g'(x(s))x'(s)ds)

+ f^a(t- s)g'(x(s+T))x'(s+T)ds

^^3
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on 0 < t S T-T. Note that f'(t+T), a(t+T) and 9 1 (x(8+T)) are of

class Cl[O,T-T]. Also note that the function defined by .

E(t) = fTa(t+T-s)g'(x(s))x'(s)ds

is of class C[O^T -T] n C1(O .,T- T] and that E' E I+ (O AT-T). Indeed one

has

( 15)	 f;- 'r 	 = fo TI foa'(t+T_ s)g'(x(s))x'(s)dsldt

S f0(fC TIa'(t+'r-s)ldt)Ig'(x(s))x'(a)Ids

S Kfol x'( 8)I(jr _ s j a'(t)Idt)d s <

where K is an a priori constant which bounds lg'(x(s))I. Moreover for

all small h one has

h-lfnIE(t+h)-E(t)ldt S (K/h)fofolfoa'(u+t+T-s)dA I x'( a) I dsdt

_ ( K/h) fo(fa(fol at (u+t+T-s ) I dt)I x' (s)I ds)du

_ (K/h) fo(fo(«o( u+l+'c-s)-%(u+T-s))I x' (s)l ds)du

where K is the bound on I g' (x(s)) i aad o0(t) = ob(t, a) . The expres-

sion inside the brackets in the last integral will tend to zero as n,-4 0

uniformly for 0 S u S 1. Indeed if this were not true, then there would

.r '	 exist sequences rin -#0 and un -► uO such that 0 9 uO S 1 and such that



0 ^ a„(t+'+T-s) - ob(u+T-s)

is a0(u+w-s) g'

when 0 s u s 1, n> 0 and 0 s s;5 T. Therefore the dominated conver-

gence theorem implies that

E	 lien f0(a0(u +qn+T-s) - a0( n+T-s))Ix'(s)Ids = 0.
h -►

These remarks show that

lien f"I (E(t+h)-E(t))/h - E'(t)Idt
-+ 0

s lim(f^+ E(t+h) —E(t)I /hdt + fob E' (t)I dt) = 0

uniformly for 0 < h s 1. In particular Theorem 2 applies to (14). There-

fore x"(t+T) exists and is continuous on 0 < t s T-T. Since T > 0 can
} 

be made arbitrarily small, it follows that x' a Cl(O,T].

For any T E (0,T) the function x"(t+T) satisfies an equation

of the form

(16) x7 (t+ = f (t+T) + a•(t+T)g(x(0)) + E'(t) + Fl(t) + F2(t)

+ f^a(t-s)g'(x(s+T))x`'(s+T)ds
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where E is the function defined above] F1(t) = a(t)g'(x(T))x'(T) and

F2(t) = ft^a(t-s)g"(x(T+s)x'(T+s)2ds.

Let K be a bound on 0 S t S T for the functions f (t) ,, g(x(t)),,

g'(x(t)) and g"(x(t)). There will be no loss of generality in assuming

that T is small enough so that

a = KfT;l a(t)I dt < 1/2.

Take absolute values in (16) and integrate:

T
f ,rIZ(t)ldt = f8-•lx"(t+T)ldt

s K(T-T) +KfT
I
 a'(t)^ dt + f0 -T (i E'(t)1 +1 Fl(t)1 +1 F2(t)I )dt

+ f; T) ft^a(t-s)g'(x(T+s)x"( T +s) dsidt.

The last term in this inequality may be bounded as follows

Kf0-Tf s TI a(t-s)l x"(T+s)l dtds

= KfT USIa(t-s)Idt)iX"(s)lds	 afTIx"(s)Jds.

Furthermore

k :'
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fo-TI F1(t)I dt s KfTI a(t)I dtl x' (T)I s al x' (T)I

;9 a( I x' (T)I + fT i x"(t)I dt),

and

f0 TIF2(t)Idt s I(f0-T(fS-Tla(t-s)ldt)lx'(T+s)I2ds

af(fola(t)Idt)Ixt(sll 2ds = afTlx'(s)1 2T	 ds.

Combining these inequalities with (15) and rearranging yields

(1-2a)fTlx"(s)lds s KT+KfTIa'(t)jdt + KfT Ix'(s)I fT-sIa'(t)Idtds
T	 T	 O	 T-S

+ aIx'(T)I + afTlx'(s)l2ds.

Since 1-2a > 0. then the proof is complete. Q.E.D.

Corollary 2. Assume the hypotheses of Theorem 4. If in addition the

function aO(txa) E e(O..T) then x e WS(1).

Proof; First note.that

f0(fTl x1 ( t) I 2dt ) dT = f0(f0l x'( t )I 2dT ) dt = fOtjx'( t)I 2dt < ^.

and
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fTi al (t)l dt s ao(t,a).

Finally note that x 1 (t) and a0(t,a) E Ll(O,T). Therefore

f0lx1(s)1(fT-sja'(t)Idt)ds ;9 f01x'(s)jqO(T-s)ds

with the last function of class L1 in T, 0 s T s T. Using these esti-

mates in (13) it follows that

al(t,x(-)) = Ix'(T)l + ftix"(u)ldu E L1(O,T).	 Q.E.D.

Corollary 3. Assume the hypotheses of Theorem 4. If in addition P(t)

a0(t,a) satisfies assumption (Hl), then x(t) E WS(1) and al(t,x(-)) s

P(t) on 0 < t s T for score a rp iori constant K.

Proof: Theorem 1 and Corollary 1 imply that Ix'(t)j s KOP(t) on 0 < t ;9 T

for some fixed constant KO > 0. Since 0 is nonincreasing, then

fT^ x' (t)^ 2dt s f T4^ ( t ) 2dt s4p( _[)foP(t)dt.

Moreover (Hl) may be used to see that

f'Ixt(s)l(fT-s^a'(t)^dt)ds s f0jx'( s)jP(T-s)ds

s KOf^P(s)P(T-s)ds s K1P(T)•

Using these estimates in (13) one obtains
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fTI X"(t)I dt s K*(1 + (1+ 2fTp(t)dt + Kl))P(-r).	 E. D.

Theorem 5. Suppose ( A4) is true, a(t) a WS(v) where v k 1 and both f

and g are of class C
v+2. Then the solution of equation (1) is of class

WS(v+l) and av+1 ( t,x(-)) 5 Kav ( t ) a) on 0 < t 5 T for some fixed con-

stant K > 0.

Proof; Apply Theorem 3 to obtain ( 12). Replace t by t+T in (12)

and proceed as in Theorem 4.	 Q.E.D.

5. Special Kernels - An example.

Suppose x( t) is the solution of

(17)	 x(t) = f(t) + ft̂(t-s)v-pg(s,x(s))ds

on 0 5 t 5 T where v 9 0 is an integer and 0 < p< 1. If f and g

are sufficiently smooth, then the results in section 4 show that x e WS(v)

and x(v) (t) = ®(t-p) as t -+0. Further information may be obtained for

this special kernel. Change variables in the integral to s = t sin 2all

(17')	 x(t) = f(t) + 2fr
/2ty+l-p

cos
v+l-pcosv+l-p 19 	 8g( t sin 28y

x(t sin 28))d8.

If f and g are of class 
Cv+2, 

then by differentiating v+1 times

on both sides of (17') one obtains
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IF,

(V+l)	_P)fl2 C,,v+l-pe 	 2
x	 (t)	 (2(v+l-p)(v-p). 	 sin 8g(t sin e.,0

x(t sin 
2 
9))de)t -p + continuous tems of order

t 1-P ( J-2p if v = 0) or higher.

In particular then not only is x 
V+1 (t) - &(t -P) but

	

x (V+l) 
(t) = f(v+"(0) + Klt-P + &(tl-p)	 (V k 1)

or

X' (t) = Kjt-P + &( 4. 
1-2p)	

(V a 0)

where

..(,_P)lr/2cosv+l-psK, = 2(v+l-p)(v-p).	 in 9g(O,x(0))d8
0

= 2g(O,f(0))(v+l-p) ... (1-p)/(v+2-p).

Even more information is available when f and g are analytic.

Theorem 6. Assume v is a nonnegative integer, 0 < p < 1 and that f(t)

is real analytic in a neighborhood of 0 9 t 9 T. DMose g(t,x) is

real analytic on an open set which contains 
all 

real ordered pairs (tjx),

0 9 t 9 2 and , jxj < -. Then x(t) is real analytic in a neighborhood

of the set 0 < t 9 T.

Proof: Let 11 x1l - maxi x(t) I on 0 ;S t 91 T. Given e > 0 define

D(e) =(z:O SRe z6T49 and jimzj se)



E(E) _ ((z,w)t z E D(E) and IwI 5 
1I ^1+1).

Define

M - max(I g(z,w)I j, Ig(z,w)I : (z,w) E E(L)),

K= max(If(z)I + T4 (z+s)v+l-p1 : z E D(e) and 0 5 x 5 T),

and

S(S) = (z complext 0 S Re z s E, Jim zI s e/2).

Pick E0 so sma11 that whenever 0 < E S e  then f is analytic in

D(E) and g is analytic in E(E).

Let F(E) denote the set of all functions cp, real analytic

in the interior of S(E), continuous on S(L') and satisfying the bound

((P(z)I s K+1 for all z E S(E). Given q) in F(E) define

p v+l-
(Rc^)(z^ = f(z) + f, 22zv+1- cos	 pB sin 8g(z sin29,

cp(z sin 20))dO.

If 8 is chosen so that

rill:

-1
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_ ( vr5 S/2) v+l-P1rM < 1,

then for any z s S(e)

(rip) ( z) I g I f( z) I + f /22( lr5 a/2)v+1-pI g(z sin28, (p(z sin28) ) d8

f,12 2( ^(5 g/2) v+1-PM de g KV < K+1.

Therefore sp E F(e) when cp E F(e). Moreover if (p
1 

and (p
2 

E F(e) then

^ F^l(zl -F^2(z) ( s f,/22( ^5 S/2) v+1-PA cp
l(z sin28) -cp2(z sin 28)1 d8

6 
P max( I CPl( Z) -92( Z) I :

 z E S(e)).

Therefore R is a contraction mapping on F(e).

Let x(z) be the unique fixed point of R. Then x(z) is real

analytic in the interior of S(e), continuous on all of S(6) and x(t)

solves (17) if 0 f- t g e. This means that the solution of (17) is analytic

in a neighborhood of 0 < t < e.

Suppose we know that x(z) is analytic in a set (z: 0 <

real z 9 T, jIm zj 9 e/2) where T < T.

Translation in (17) will show that

K+

x(t+T) - fl(t) + f0	 v-p(t-s)g(s+'r,x(s+T))ds



Since f  is real analytic in t and If I(z)( s K if z e S(E), then

the first part of the proof applies. This means that x(z +T) is in the

class F(e). Since the number S has been fixed beforehand, one may

step across the interval 0 A t S T in a finite number of steps. Q.E.D.

Corollary 4. Assume the hypotheses of Theorem 6. If p is a rational

number, p = r/q in lowest terms, then x(tq) is analytic in a neighborhood

of t = 0.

Proof: First replace t by z  in (17j):

(17")	 x(zq) . f(zq) + f
0
/22z(v+l-P)gcosv+l-P8 sin t

g(zq sin28, x(zq sin28))d8.

Let F(S) _ (q): q) is real analytic in Iz: < S and continuous on IzI ;6 e).

Define

Fq(z) - f(zq) + j7j22z(v+l-p)g Cos v+l-p8 sin 8g(zgsin28,fp(z sin2/g8))d8

for (P e F(e) and IzI 9 E. As in the proof of Theorem 6 one can show

that if E is sufficiently small then R is a contraction mapping on



32

F(E). Q.E.D.

It would be interesting to 'know whether or not Theorem 6 can be

generalized to a large class of kernels a(t) which are analytic for

Re t > 09 The proof of Theorem 6 cannot be generalized too much since

it depends on the monotonicity and homogeneity of a(t) = tv_p. Corollary

4, which establishes the exact nature of the singularity of x(z) at
V-p

z • 0p is even more firmly wedded to the particular properties of t.
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