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Generalized Rayleigh Methods 

with Applications to Finding- 

Eigenvalues of Large Matrices 

Section 1. Introduction 

Since the development of the Sturm sequence method [lo] and, later, 

the QR algorithm [21, the computational problem of finding the eigen- 

values and eigenvectors of a symmetric matrix A is essentially solved 

--provided A is not too large. In both of these methods, the matrix is 

first reduced to tri-diagonal form. If A is extremely large, this 

preliminary reduction may not be computationally feasible for several 

reasons. First of all, it requires the use of the entire matrix in a 

series of transformations and no use can be made of sparseness or bandedness 

--two characteristics of most large matrices which occur in applications. 

secondly, if only a few eigenvalues and eigenvectors are required (as is 

usually the case), the reduction may take more time than is reasonable. 

Finally, it often happens that physical considerations can provide rough 

approximations to some of the eigenvalues or eigenvectors. The above- 

mentioned methods cannot make much use of such information. 

In 141, I. Erdelyi proposed a method for finding p eigenvalues and 

eigenvectors of an n x n matrix A, where n is large and p << n. An 

important feature of this method is that the only operation which involves 

the matrix A itself is matrix-vector multiplication. Hence, A can be 

stored on magnetic tape (or other auxilliary storage) and sparseness and 

bandedness can be taken into account to reduce the amount of computation. 

A major drawback, however, is the necessity of finding the roots of a poly- 

nomial of degree p; a difficult problem for even moderate sizes of p. 
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In this paper, we present a theory of generalized Rayleigh quotients 

which can be used to develop methods, such as Erdelyi's, for calculating 

some of the eigenvalues and eigenvectors of large matrices. If X is an 

approximation to an eigenvector of an n x n symmetric matrix A, then the 

Rayleigh Quotient 

rn 

(1.1) 
X IAX x = -  
XTX 

is an approximation to an eigenvalue of A. Our generalization of this 

concept involves the construction of a p A p matrix B, where usually p << ne 

The eigenvalues o f  B will be used to approximate the eigenvalues of A. 

These eigenvalues are, in fact, Rayleigh quotients of A corresponding to 

certain approximate eigenvectors which are determined by the eigenvectors 

of B. The matrix B is obtained'by restricting A to a p-dimensional 

subspace H. If H is invariant under A, then the eigenvalues of B 

are also eigenvalues of A. In general, of course, H will not be invariant, 

and the accuracy of the approximations will depend on how "nearly" invariant 

H is. This leads to the problem of Constructing subspaces which are nearly 

invariant, and the related problem of estimating how close a subspace is to 

being invariant. 

The problem of constructing invariant subspaces can be solved using 

Bauer's Treppeniteration [I] or the method of Collar and Jahn c33. (See 

181 for a description o f  these techniques-) Both of these methods, however, 

employ a series o f  transformations which use the entire matrix A and hence 

suffer from the same disadvantages, for large matrices, as does the reduction 
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t o  t r i -diagonal  form. 

I n  Section 2 ,  the  eigenvalues and eigenvectors,  which are determined 

by a matr ix  A and a subspace H,  are defined. W e  then consider a 

quant i ty  V (H) which provides a measure of how nearly inva r i an t  H i s ,  

with respect to  A. Using t h i s  measure, i n  Section 3 #  we derive e r r o r  

bounds f o r  the approximate eigenvalues and eigenvectors.  F ina l ly ,  i n  the  

A 

l a s t  sec t ion ,  t w o  methods a r e  discussed f o r  f inding subspaces which a r e  

near ly  invar ian t ,  and hence give good approximations. The f i r s t  method i s  

a modification of Erde ly i ' s  method while the  second i s  an inverse i t e r a t i o n  

method. B o t h  can be used e f f ec t ive ly  on very l a rge  matrices.  

Most of the discussion is r e s t r i c t e d  t o  symmetric matrices.  Methods 

f o r  non-symmetric matrices, as wel l  as numerical r e su l t s ,  w i l l  be discussed 

i n  la ter  papers. 
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Section 2. Approximate Eigenvalues and Eigenvectors 

L e t  Y1,. . . ,Y be any set  of p < n orthonormal vectors  i n  En, 
P 

Euclidean n-space. I f  H i s  the  subspace spanned by these vectors ,  

and (Y l . . . Y  ) denotes the  nxp matrix whose i - th  column is  Yi ,  then the  
P 

r e s t r i c t i o n  of an nxn matrix A t o  H (which Householder, 181 c a l l s  t he  

sec t ion  of A determined by H )  i s  given by 

rn  

B = ( Y  l . . .Y I L A ( Y  l . . .Y ) . 
P P 

(2 .1)  

, then B i s  a l so  An If A i s  Hermitian, with eigenvalues 1 1 3  x 2  2-..2 

which s a t i s f y  
1 2 * * e 2  I-lP 

Hermitian, with eigenvalues p 

rn  

(2 .2)  
Z IAZ 

= min - ZEH ZTZ 
6 xp 

and 

m 

(2.3) 
z I A Z  x1 2 pl  = max - 

z E H  ZTZ 
2 'n-p+l 

(See Householder [8], pages 75-76.) Furthermore, i f  the corresponding 

eigenvectors of  B are Z Z 2 , . . e p Z  , and w e  l e t  
1' P 

Al Xi = ( Y I J  ) Z  

P i  

then 

Z .  T BZi 

zizi T 
=- -  1 - i = 1 , 2 , .  ..P 
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I f  w e  a r e  given a p-dimensional subspace H,  t he  above ideas  suggest 

the following de f in i t i on .  

Defini t ion 2 .1 .  Let H be a p-dimensional subspace of En, p < n ,  and l e t  

Y1,... ,Y be any set  of l i n e a r l y  independent vectors  i n  H.  The pxp matrix 
P 

B which s a t i s f i e s  

( Y  l . . .Y ) T (Y l . . . Y  ) B  = (Y1..-Y ) T A ( Y  l . . . Y  
P P P P 

i s  ca l l ed  the r e s t r i c t i o n  of A t o  H. The eigenvalues pl, ...,p of B 
P 

a r e  ca l l ed  H-approximate eigenvalues of A, and i f  Z i s  an eigenvector of 

# 

B, then X = CY ... Y )Z is  an H-approximate eigenvector of A. 
1 P  

N o t e  t h a t  (2 .4 )  has a so lu t ion ,  s ince  the  G r a m  matrix 161 
T 

(Y l . . . Y  ) ( Y  l . . . Y  ) is  non-singular whenever Y ..., Y are l i n e a r l y  inde- 
P P 1' P 

the choice of the bas i s  f o r  H. pendent. Clear ly ,  the  matrix B depends on 

I n  f a c t ,  i f  t h i s  b a s i s  is  orthonormal, then 2 .4)  becomes ( 2 . 1 ) .  Our f i r s t  

r e s u l t  shows, however, t h a t  the H-approximat#- eigensystem depends only upon 

the  subspace H. 

Theorem 2.1.  The H-approximate eigensystem does not  depend upon the  p a r t i c u l a r  

vectors  i n  H which are used to define the r e s t r i c t e d  matrix B. 

Proof: 

vectors  i n  H. Without loss of genera l i ty ,  we can assume t h a t  t he  f i r s t  set  

N N 
L e t  ( Y 1 , . . . r Y  1 and {Y1, ..., Y } be t w o  l i n e a r l y  independent sets of 

P P 

i s  orthonormal. L e t  T be the  pxp non-singular mat r ix  such t h a t  

( Y  l . . .Y = (Y l . . . Y  IT .  I f  i s  the  matrix defined by (2-4)  using 
cy N 

P P 
u H 

(Y1,a.apYp), then 
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hence 

T -  T T 
T TB = T (Y l . . .Y ) A ( Y  l . . .Y ) T  

P P 

T = T BT 

so 

N -1 B = T  B T .  

hl Thus B and B have the same eigenvalues, and their  eigenvectors, zi and 

'i 
N ad , are  r e l a t ed  by TZi = Zi. Hence, 

N 

which implies t h a t  B and B produce the same H-approximate eigenvectors. 

A consequence of this theorem i s  t h a t  any H-approximate eigensystem 

can be obtained using an orthonormal bas i s  f o r  H. In pa r t i cu la r ,  f o r  A 

Hermitian, formulas (2.2)  and ( 2 . 3 )  must always hold,  and fur themore ,  w e  

can assert t h a t  the H-approximate eigenvalues and eigenvectors s a t i s f y  

(2.5) 

In order t o  der ive e r ro r  estimates for these approximations, we introduce 

the following notion. 
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Definit ion 2 .2 .  L e t  A be an nxn matrix,  H a p-dimensional subspace of 

En, p < n,  {YlP...,Y 1 an orthonormal bas i s  f o r  H, and P the  project ion 

of En onto H. The var ia t ion  of H under A i s  the  non-negative number 
P 

P 1/2 
={ 1 IIfk)12} 

k=l  

where 

(The norm we  use here,  and throughout t h i s  paper, is the Euclidean norm 

W e  w i l l  occasionally omit the reference t o  A and w r i t e  simply V ( H ) .  

In order f o r  t h i s  t o  be a proper de f in i t i on ,  V (H) should not change A 

i f  w e  use another orthonormal bas i s  f o r  H. 

Lemma 2.1. 

bases f o r  H. 

Proof: 

k L e t  

i s  a pxp orthogonal matr ix  T = (t. , ) such t h a t  

The value of VA(H) does not depend upon the choice of orthonormal 

a4 r3 
L e t  {Yll + .  "Y } and {Y1, - e , Y  1 be two orthonormal bases f o r  H. 

P P 
U % and E be t h e  corresponding vectors defined by ( 2 . 6 ) .  Then there  

1 7  

hence 
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WT T = 1 Y . A  [ I -PIA?~ 
j= l  3 

P 

j =P 
= c llq12 . 

Thus, the  two bases produce the same value f o r  V (HI. A 

which uses the  r e s t r i c t i o n  of A 
‘k’ An a l t e rna t ive  expression f o r  

t o  HI i s  given by the following lemma. 

Lemma 2.2.  L e t  Y1, ..., Y be an orthonormal bas i s  f o r  H. Then equation 

(2.6) can be replaced by 

P 

P 
(2.7) 

where {bik} a re  the elements of the matrix defined by ( 2 . 1 ) .  That is ,  

T 
bik= YiAYk . 
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Proof: 
P 

- 1 bikYi = AYk 
i=l i=l Ayk 

T 
1 1  k = AYk - 1 Y.Y.AY 

i 

= (I-P)AY~ = E k *  

Formula (2.7) can also be written in matrix form as 
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Section 3 .  Error E s t i m a t e s  

The c l a s s i c a l  Ri tz  method f o r  finding the  eigenvalues of a s e l f -  

ad jo in t  l i n e a r  operator L,  on a Hilber t  space X ,  involves finding 

a sequence of f i n i t e  dimensional subspaces X X2,*.., with 1' 

and X + X .  I f  the r e s t r i c t i o n  of L t o  X has eigenvalues k k 
- 3  A:), and L has eigenvalues A 2 A 2 ... then A(k) >, 

2 1 2 1 
it can be shown (see Gould [71, page 133) t h a t  

For  a fixed k ,  however, it i s  d i f f i c u l t  t o  obtain bounds on the  e r r o r  

I Ai -Ai  I. 
case of X = E . 

Ck ) Our next theorem gives a r e s u l t  of t h i s  type, f o r  the  simpler 

n 

Throughout t h i s  sec t ion ,  l e t  A be an nxn symmetric matrix,  H a 

p-dimensional subspacep and Y l e e e , Y  an orthonormal bas i s  f o r  H. 
1 P 

Theorem 3.1. L e t  plP..*#p be H-approximate eigenvalues. For each k ,  
P 

1 5 k 6 p,  there  is  an eigenvalue 'k of A w i t h  

Proof: Using (2.8)  w e  have 

ry 

AXk = A ( Y  l...Y )Z = (Y l....Y )BZk + ( E  l...E )Z 
P k  P P k  

= !J (Y ee.Y )Z + ( E  ) z  
k 1  p k  P k  
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hence 

By a well-known estimation theorem ([SI, page 141) there is an 

eigenvalue Xk of A with 

T Now, we may assume 112 1 1  = I, in which case, letting Z = ( E , ,  * .  . , E  ) , 
k k P 

we obtain 

T Furthermore, if = ( E ~ ~ ,  * .  . , E , i = 1,. . . ,p, then in 

Combining this with (3.3) proves the theorem. 

A corresponding result for H-approximate eigenvectors is not possible, 

since it is known that error bounds for eigenvectors must depend upon the 

separation of the eigenvalues. 

example, in Isaacson and Keller [91, page 142, together with the inequality 

using a standard theorem as given, for 
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obtained in the previous proof, we can state the following result,, 

Theorem 3.2. Let A have eigenvalues A1l.ee,X and let n 
N 

Then for each H-approximate eigenvector X 
: Ai # X j l .  i d = minj I Ai-A, I 

3 

of A with xi there is an eigenvector 

If d is of the same magnitude as VN), then clearly this bound is not 

of much use. In the next section, we will consider two methods for finding 

. . . for which V(Hk) + 0. The 1' H2Z' sequences of p-dimensional subspaces H 

above theorem can then be used to conclude that the %-approximate eigenvectors 

converge to eigenvectors of A. 

rates of convergence of the approximate eigenvectors and eigenvalues, we 

next consider some asymptotic error estimates. 

k 

In order to gain some insight into the 

We will say that a vector YCE) is an O(E ) approximation to X if 

for all small E > 0, where c is a constant. 

A simple rephrasing of Theorem 3.2 results in: 

Theorem 3 . 3 .  If V (HI  = 0 ( E ) ,  then the H-approximate eigenvectors are O k )  A 

approximations to eigenvectors of A. 

The converse of this theorem is also true. 

Theorem 3.4. If Y1,...tY are O@) approximations to p distinct eigenvec- 

tors of A ,  and if H is the subspace spanned by Y ..,Y then VA(H)  = O ( E ) .  

Proof: 

P 

1' ' P 
Let Yi = X. + Wi where AX = XiXi and 11 Will = 0 (E 1. Then by formula 

1 i 

(2.6) t 
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E (I-P)AYi = (I-P) (hiXi+AWi) i 

= (1-P) IhiYi-hiWi+AWi) 

= (I-P) (A-XiI)Wi . 

But then 

L i=l 

For the H-approximate eigenvalues, we can obtain a better result. In 

fact, it is known (see Fox 151, pp. 279-280) that if X is an O(E)-approxima- 

tion to an eigenvector of 

an O ( E  )-approximation to an eigenvalue. 

the H-approximate eigenvalues are Rayleigh 

nd 

A, then the corresponding Rayleigh quotient is 

We have shown in Section 2 that 2 

quotients corresponding to the 

H-approximate eigenvectors. 

our final estimate. 

Theorem 3.5. 

approximations to eigenvalues of A. 

Combining this with the previous theorem gives 

2 
If VA(H) = O ( E ) ,  then the H-approximate eigenvalues are O ( E  ) -  
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Section 4. Methods for Finding Invariant Subspaces 

In this section, we consider two methods for finding a sequence of 

o, €I1,..., such thatV ( A %  subspaces H 

of the following method, proposed by I..Erdelyi [41, for finding the 

-t 0. The first is a modification 

p eigenvalues of largest moduli and the Corresponding eigenvectors. 

Let Yo be an arbitrary vector, and let Yk = AYk,lI k=1,2,...,p. 

If Yo is contained in a p-dimensional invariant subspace H, then 

Yo,...,Y are in H, hence they will be linearly dependent and there will 
P 

exist constants ao,a l,...,a , not all zero, such that P 

'a Y + a Y +...+ Y = 0 e 

0 0  1 1  P (4 1) 

The polynomial 

is an annihilating polynomial for A, hence is a divisor of the character- 

istic polynomial. 

the corresponding eigenvectors are given by 

The roots X1,. . . I ?, of (4 .2 )  are eigenvalues of A, and P 

(4.3) 
h 

= a Y + a Y +...+ a Y 'i 0 0  1 1  p-1 p-1 

where c1 O#...ra are defined by 
P-1 

- -  p ( x )  - a + a x +...+ a g-l e x- xi Q 1  P-1 

If Yo does not lie in an invariant subspace, we will not be able to 
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s a t i s f y  (4.1) .  I n  t h i s  case, determine a o t a e m , a  to  minimize t h e  

expression 

P-1 

+ a Y +...+ (4.4) I I aoY0 1 1  

This leads  t o  the  pxp l i n e a r  system 

(4.5) 
T T T a Y Y + a Y Y +...+ Y . Y  = 0,  i = l f o - e l p  . 

= P  O i O  l i l  

The so lu t ion  t o  t h i s  system is then used t o  form the polynomial (4.2). 

The r e l a t i o n  of t h i s  method t o  our previous discussion is  given i n  the 

following theorem. 

Theorem 4.1. L e t  Y o  be an a r b i t r a r y  vector,  and l e t  Yk = AYkelf 

k = l , * - . , p .  I f  H is  the  subspace spanned by Yo,e..8Y I then the  

H-approximate eigenvalues are i d e n t i c a l  with the  approximations obtained 

P-1 

from Erde ly i ' s  method. Moreover, as ide  from a scalar f ac to r ,  t he  

corresponding approximate eigenvectors a re  a l so  iden t i ca l .  

Proof: The r e s t r i c t e d  matrix B ,  defined by (2.4) can be shown t o  have 

the  form 

0 0 ... 0 

1 0 . * e  0 

B =  0 1 ... 0 

bl 

b2 

0 0 . * e  1 b 
P-1 

where (bo , . ee .b  ) i s  the  so lu t ion  t o  
P-1 
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T T T T T Y . Y  b + Y . Y  b +...+ Y Y b = Y . A Y  = Y . Y  1 0 0  1 1 1  i p-1 p-1 1 p-1 1 p 

i = O , l ,  ...p- 1 . 

Thus, b = -a i = O , . . m , p - l  where aO,. ." ,a are defined by (4.5) 

Moreover, the mat r ix  B i s  i n  companion form and hence i ts  characteris- 

t i c  polynomial is  

i i9 P-1 

which i s  iden t i ca l  w i t h  the  polynomial obtained by Erdelyi .  To s h o w  tha t  

the t w o  methods produce the same eigenvectors, l e t  X 
/cl 

= (Yot . . . ,Yp- l )Zi  i 

where BZi = piZi. Ther. 

= (YIY 2 . . .Y  ) Z  - V i ( Y 0 " " " Y  p-1 ) Z  i 
P i  

= (YIY 2 . . .Y ) Z  - (Y o . . .Y p - 1 )  "i 
P i  

w 
= (YIY 2 . . .Y  ) Z  - (YIY 2.. .Y p-1 Y p ) Z  i 

P i  

m 
where Y = b Y + b Y f o e . +  b Y H e n c e  P 0 0  1 1  p-1 p-1" 

IV 

( A - p i I ) X i  = 5 .  [Y -b Y -. . .-b Y I 1P P 0 0  p-1 p-1 

= 5. ( a  Y +a Y +...+ Y 1 
P 1p 0 0  1 1  
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is the p-th coordinate of e From the from of B, it is 'i where Sip 

easy to verify that 5 # 0 for all i. Moreover, the eigenvector 

produced by Erdelyi's method satisfies 
iP 

A 
(A-P~I)x~ = a Y + a Y +...+ Y ; 

0 0  1 1  P 

thus, if vi is not an eigenvalue, then apart from the factor Sip , the 

vectors are identical. 

This theorem, together with Theorem 2.1, shows that we can obtain 

the same results as Erdelyi by orthogonalizing the vectors Yo, ..., Y 
and then finding the eigenvalues and eigenvectors of the pxp matrix 

P-1 

T B = (YiAY.). Notice that if A is symmetric, then so is B, and hence 
I 

the QR method can be applied to B. Thus, the problem of finding all 

roots of a polynomial of degree p is replaced by the simpler problem of 

finding the eigenvalues of a pxp symmetric matrix. The orthogonalization 

also eliminates the need for solving the pxp system (4.5). 

To obtain better approximations, Erdelyi recommends repeating the 

process, starting with a new vector Yo 

approximate eigenvectors that have just been found. Our invariant subspace 

which is a combination of the 

approach, however, indicates that a better procedure is to use, as the new 

subspace H, the space spanned by the vectors AX ..., AX where X1, ..., X 
are the H-approximate eigenvectors. This leads to the following method 

N N ry N 

1' P P 

for finding the p largest eigenvalues, and corresponding eigenvectors, 

of an nxn symmetric matrix. 
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Modified Erdelyi Method: 

L e t  Yo be an arbitrary vector ,  l e t  Y 

and l e t  H be the  space spanned by Y o , e e . I Y p - l a  For k=1,2, .  .. 
k=1,2, ... ,p-1, k 

= A Yo, k 

0 
M N 

be the  subspace spanned by the  vectors AX ..., AX where 
let %+l 1' P 
w ru 
XI,  ..., X a re  the %-approximate eigenvectors. 

P 

Theorem 4.2.  I f  Yo is  not orthogonal t o  the subspace spanned by the 

eigenvectors Xl, ..., X , of the symmetric matrix A, which correspond t o  
P 

eigenvalues A ... ,A where lA,l 3 [ A 2 [  >,...>, l A p l  > IAp+l  I 2 - - - 3  l A n l r  
1' P 

then t h e  subspaces Hk 
produced by t h e  Modified Erdelyi Method s a t i s f y  

k 

Proof: Any H.,+l-approximate eigenvector l i es  i n  the  space H k+lt hence 
(u N Iv 

i s  a l i n e a r  combination of A? ...,AX , where X1, ..., X are %-approximate 
1' P P 

eigenvectors. By induction, it follows t h a t  %+1 i s  spanned by the  vectors 

i 
Ak+'yi , i = O,l, -. ., #p-l  where Y = A Yo. That is, %+1 i s  spanned by i 

Now, i f  Yo = 7 n R X R  then 
R=l 

k+i  
l R  

= A  c l n R I X )  X R +  E s c - - )  x,) 
R =1 P R=p+l AP 

P k+i  n k+i  
P 

P A k 
k + i  

= A  [ 
P R=l P 
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is spanned by the vectors Zit i = l,e.orpI where 
%+l Hence I 

e 
(4.7) 

are linearly independent, (otherwise 'i We may assume the vectors 

V(%+l) = 0), in which case, for large 

and (4.7) can be inverted to obtain 

k, the matrix (a ) is non-singular, 
it 

A k P 
1 B ~ ~ z ~  span Hk+l where again we have IlV 11 = 0 ( I ) - The vectors 

P i=l R 
.so by Theorem 3.4 we conclude 

which proves the theorem. 

This method can be considered to be a p-dimensional power method. 

Closely related to the usual power method is Wielandt's inverse iteration 

[8], and we now discuss a p-dimensional version of this. 

Let A be an m n  symmetric matrix, with eigenvalues A1,X2,-..,Xnt 

eigenvectors xl, ..., x . Suppose Y ..., Y are O ( E )  approximations to 

XII...,X - i.e., 
n 1' P 

P' 
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Then Theorem 4.2 implies V(H) = O ( E )  , where H is the subspace 

spanned by Y1,...,Y . Let I.I1,...,I.I be the H-approximate eigenvalues, and 
P P 

hl w 

X1, ... ,X the H-approximate eigenvectors, and let 
P 

ed -1- 
= (A-1.1.11 Xi 'i 1 

(4.8) 

where we assume here that p is not an eigenvalue, The subspace H i 
N 

spanned by ? . -. ,Y will be called the subspace obtained from H by 
1' P 

inverse iteration. 

If p = 1, then we have here the inverse iteration-Rayleigh quotient 

method ([Ill, pp. 635-636). Since each iteration requires solving an 

nxn system, this method is not often used. On the other hand, the conver- 

gence rate is cubic [ll], and hence it can be a useful method, provided 

good approximations are already known. In the more general case where p > 1, 

each iteration requires the solution of p linear systems of order nxn. 

Thus, we have here the same disadvantage as in the p = 1 case. The next 

theorem shows however that the cubic convergence also holds for p > 1. 

Theorem 4.3. If E is the subspace obtained from H by inverse iteration, 

then V(H) = O ( E )  implies 

3 N 

VCH) = O C E  ) 0 

N 

are 0 C E )  approximations to xi Proof: The H-approximate eigenvectors 

eigenvectors X i = ltaee,pr and for small E, i' 
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# 

are the H-approximate eigenvalues. But X = X. + z 
i 1 i 

2 l/2 & 
l'""pP 

where 1~. 

where Z = 1 SikXk, 1 Si,] = 0 (E)  I and H i s  spanned by the 
k#1 k#l 

vectors 

-1 
= x. + 1 Cik(Ai--Pi) (Xk-Pi) Xk . 

k# i  1 

h 
If X i  # X j # 1, 1 s  j 6 p, then we have Y = X. + W. where 

j '  i 1 1 

If A i  = A for some j # i, then we write 
j' 

A -1 -1 

k#i  'i 

where Xi is  an eigenvector, and 

3 Hence, by Theorem 4.2, V (.HI = 0 (E ) (I 
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