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Estimation of the Mean of a Discrete Parameter, Covariance Stationary,
Stochastic Process in Rotation Sampling
by

Kin-¥a Nisghikawa and W. B. Smith
Texas A&M University

0. TIntroduction

The classical minimum variance unbiased linear estimator of the population
mean in rotation sampling, derived by Yates (1949) and Patterson (1950}, is
invariant under alterations of the rotation scheme. Herein we derive by a
constrained optimization procedure similar simultaneous linear equations. Patterson
considered this technique bub rejected it because of the lengthy estimator
expressions, however by introducing matrix expressions and assuming a speclal
rotation scheme this technigue is found to be tractible. That is, we give an
alternative way for deriving the estimator.

The merits of our procedure are as follows:

(1) Exact expression for the population mean estimator can be found for each
occasion.

(2) The matrix notation leads to easier computer programming.

(3) The derivation of the exact expression for the variance-covariance matrix
leads to ease in investigating the large sample properties of the estimators
and their relation to maximum likelihood.

Yates~Patterson's method depends on a necessary and sufficient condition
for minimum variance unbiased linear estimation of the population mean which is

given in the following theorem and its corollary.



Theorem 1. When we have h clagses of observations
{zi(t), i=12,2, ..., ntt)} ,b=1,2, «.., 1
such that
E(Zi(t)) = u(t) for any i,

then a function of these ohservations, Y., is minimum variance unbiased linear
estimator of w(T) if and only if

(1) Y, is an unbiased estimator of w(T)

(2) Y, may be expanded into a linear function of Zi(t)'s, and

(3) Cov(Zi(t), Y) = Cyp for all i, t.

Corollary. An unblased linear estimator ¥, of w(T) is of minimum variance if and
only if it holds for any unbiased linear estimator U, of u(s) that

cov(Us, Y.) = Cyp = 90v(Zi(s), Y.)

T

for any s, Specifically it must be held that

var(YT) = Cpp = cov(Zi(T), Y.).

Using the above relationships Yates-Patterson derived an expression for
the minimum variance unbiased linear estimator of the population mean on the
last observation occasion under the assumptions that:

(Al.) Correlation coefficient between observations on the same unit i occasions
apart is pi and known, 1 < i <h.

(A2.) The variances are the same on each occasion and known (denoted by 02).



(A3.) sSample sizes on each occasion are equal 40 n.

(Ak.) ng units, 0 <@ <1, are replaced by newly chosen units on each occasion.

{A5.) Sampling of each unit is done mutually independently from an infinite
population, so that correlation coefficient between any two observations
on different units is zero,

The estimator resulting is given by

T, = o + (- mh){ﬁh + (T g - iﬁ-l)}

where x is e mean of observations on occasion h~1 associated wi n{l- units
here x . is th f ob t h-1 ted with n(1-g) t

common with oeccasion h, ﬁg is the sample mesn on occasion h assocliated with the
;o .
same common units, yﬁ is the mean on occasion h associated with the newly chosen

vncommon units, and ¥, . is the estimator of p(h-l) based on the observations up

h-1
10 occasion h-1l., Note Yﬁ-l is the minimum variance unbiased linear estimator of

w(h-1). Moreover, ¢, is determined through the following recursive relation

) 92(1-¢)¢h_1 + (1-p°)g

(e, + (1D + (1)

Pn

with the initial condition @, = 1, and the variance of T is given by

2
Py,

var(Yh) =

For proofs of the above results see Patterson's paper, as well as, Cochran {1963),
Des Raj (1968), and Eckler (1955). It should be noted that each proof given for
the above relationships is independent and invariant to the specification of the
correlation bebtween Zi(t) and Zj(s), that is, the specific robtation scheme can be
changed without changing the formulation for Yh, P, and the variances of Y .

h

We state this result in the following theorem.



Theorem 2. Under the assumptions (Al.) - (A5.) above, the minimum variance unbias-
ed linear estimator of population mean on the last occasion, Yp» and its variance
are both invariant to any further specification of rotation scheme.

Patterson further derived the minimum variance unbiased linear estimate of
n(h-k) when all cbservations up to the hth occasion are available and denotes
this by’th_k. This estimation procedure is also independent of the particular
rotation scheme used but the formulation was extremely lengthy and was not exhibitbed
explicitly by Patterson.

By an alternative derivation the minimum variance unbiased linear estimator
of each of the above population means is derived by a constrained minimiza?ion
of the wvariance of the linear estimator with respect to its coefficients. That
is, we can derive these estimators by minimizing the variance while guaranteeing
unbiasedness. The result of this procedure, is nothing but Aitken's generalized
least square estimator. Butbt it is necessary to know the explicit representation
of variance~covariance matyrix in order to actually calculate this estimator. In

doing so we will give a simplified specification of the estimator,



1. Assumptions and Rotation Scheme.

We retain all assumptions (Al.) - (AS.) described in the previous section,
however for convenience we will exclude the cases where ¢ = O, and ¢ = 1 from
assumption (Ak.) and will consider them later as special cases. For these special
cases it can be easily shown that the minimum variance unbiased linear estimator
of the population mean is given by the arithmetic mean of the sample observations
only on each single occasion. We also exclude the cases where p2 = 0 and p2 =1
as trivial cases, though the case where p2 = O does not invalidate our resulis.
We,however, make an additional assumption which specifies the particular rotation
scheme to be employed.

(A6.) n sample units are partitioned into m+2 portions sach of which contains
n/(m+2) sample units. For generality, any k, 1 <k < m+2, portions may

be replaced on each occasion from G to 7.

Denote the arithmetic mean of observations on newly chosen units which
belong to i " portioRon to¥ occasion by 2(6), 1= 1,2, ..., k,and that of tle
oldest ith portion which is to be replaced on t + :1.St occasion by Ei(t),
i=1,2, ..., k. Alsgo denote the arithmetic means of observations on each of
the remaining portions on £ oecasion by ﬁi(t), ﬁz(t), cens §L(t)’ where
L =m2 - 2k,

TLet us represent the means described above in vector notation by

il

X} = (%(0), x,(3), ooy x(7), LS1ZK

3
I.-l‘- -
H

(3,00, «-vs B(M), 11 Sk

Y= (7,00), oo ¥3(M), 151 54

and X' = { :’LE.EX]’:), 7' = (Zif'le';)= Y= (Yif’fyi) with (v*) = (x';z';z') .



When § is greater than 1/2 there are some units common to both'a
newly chosen portion and that to be replaced on the next occasion, that is,
some units will be sampled only once. In this case, we will denote the mean
vectors of those common portions by Yi and when we use the notation Y%, we will
exclude those means of common portions out of the elements of X and Z. Under
the rotation scheme specified by assumption (A6.), the variance-covariance matrix

of the observations is derived below for § < /2.

V = B(Y* - p*)(Y* - p¥)’

Ik( T+1) 1- AZ EELI Ay
Ik(T+l) . Al - . s ae AQ"E AQ‘.’-]_
_ {2 !02 T, *. . .
- n ) * . a . : : (l-l)
"8y )

Ik('r+1) Ay

I&’(frﬂ)_

bes

given that V is symmetric and where p¥' = (LL'E.EW), o= [u(o) ... w(m)],

0 'o
ST S ,
A =p : ,1<i<a-1,
T .
qIT~lE 0
e 0 ves 07
1 . .
A; = 0
T.on,
— l-




and A; is an L' (T+1l) matrix defined as

(A, 0 ...0 O cew O]
1 - [
A = . 0 : ,1<i<e,
0...0 A, 0 ... 0
— l -

providing that o = [ 5“-;;3 1, 4" = me2-ck. As usual I is the m x m identity mabrix,
O is the null matrix of proper order.

Similarly, it ¢ > 1/2, the variance covariance matrix becomes

TG D Ay
2
_ (m2)0
V=""7 Tr-1) (T+1) 0
i I&(T+l)_

vhere 4 = m+2-k and El is a square matrix of order 4(T+l) defined by

Al 0 ...0
Alz Al -.-O
Redefine
T = | X*), x*=| X zZ* =12,
Y
LI X2 Z’Ell']'l
Z‘* ':' o:v
] XQL | Zk ]




where £' = k-4+1l. That is, X¥¥* denotes the mean vector on such units as sare
observed on each occasion and also observed on the next occasion, and Z¥ denotes
the mean vector on such wunits that were observed on the preceding occasion

and are also t0 be observed on the current occasion though these units are to

be replaced on the next occasion.



2. Inversion of Variance Covariance Matrix

In a speclal case when k = 1 (implying $ < 1/2), we have the following

expression of the variance covariance matrix

-ITWl By Aé e Aﬁ+1-

V=.(P2§:§.)_°_’2_ Im: Ai_...A&l | (2.1)
.A:'i ‘
| . 'Iﬂi_

It can easily be shown that the inverse of this variance covariance

matrix can be written in the following form:

5 B’ 0 o 0 ... 0
3, B! 0 0...0

V-;L:n{(ma)ce (l_p2)}-l_ 3, B' 0...0 (2.2)
Ty )
I3

where Jl’ J2, J3 and 0 are all square matrices of order T+l and given by

1, 1

iA
e
it

.

tA
-

il
[
1
-3
+
l,....l
“

_ _ 2 .
Iy = (1845)s 1845 = 417075 1

0, i#]
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L 0, 14
l-p, i=j=1

1A
=
It

L)
A

Iy = (48545 9855 = ¢ 2 T 4 1; and B = -A

In (2.1), if it is the case that T < mtl, then we have

T . .
pri=7T+1,§=1
A =

(a..), 8., =

T T4 T i .
J J LO, otherwise

and all Ai's, i> T+ 1, are reduced to null matrices. Even in this case, however,

it can be shown that the inverse of (2.1) is given by (2.2).

We have a similar result for the general case using the following lemma,

which can be considered a generalization of the above result.
Temma 2.1. Define square matrices Ki‘s, Ej's and B all of order k{T+l) given

ags follows:

» L<i <o,

[
O s O

42
li
o
Q
o

» =1, 2,3,




-11-

B={B 0 v.. O]
4 t' . 0
b ) B-
then
™t ] ~1
Ik("r—l.l) A A LI B B B B ) AQ—]_
T oy
Ik( T+l) Al : L B B I ) Aa-z
Ik('r+1) .o
-1
Al
i Ik(’l'-l-l)
— ~ _
Jl B 0 O 0 . O
4 32 B 0 0 ...0
1 R St
=— J2 B . O. .o Q
1-p " .ot
‘. . "0
... :j: l'. El
2
J
L 3]

With this lemma, using the inversion formula of partitioned matrix, we

can find the inverse of (1.1), which is given by
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'31 B' 0 0
N 32 g o
- n L
= 2 ) - -
(m+2)o™(1-p7) 5, 3
I3
b o

:Jl O gr"
...1 _ n r i 2
v (m+2)c2(1-p2) © (1-p7) I(k—%)(7+1) 0 (2.4)
-B © JS‘

where J s 33 and B are as given in Temma 2.1 bubt of order 4, providing that

L = maP-k,
All these results can be confirmed by the direet multiplication, so that

the detailed proofs are omitted here.
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3. Minimum Variance Unbiased Linear (MVUL) Estimator of p.

Define the (m+2}(7+1) x (7T+l) matrix A as

l — .
A E LT gt et Td

*
then 1 can be expressed as

*
Bo= AM.

Then, clearly, if V is hnown as is assumed in our formulaticn,. the MVUL
estimator. of w is given by Aitken's generalized (or veighted) least squere

estimate., That is,

~ - - -l *
w= (A'V ;A ) lA'V 1y s

> +*
which is also the maximum likelihood estimate of M when ¥ is assumed to bei.

distribubed as a multivariote noral with awean veltor % and variance-covariance
matrix V.
] + 2 » "'l . . R
8ince & specific expression of V = has been derivcd in the preceding

section under ocur special robation scheme (A6.), using this expresgion of

v'J', we obtain a further specification of (A*v‘lz\)'l. That is,

(Av iyt = {(m+2)02(l—92)/n rt,

*
where T = (m+2)T , and I¥* = (

)
T 2 R .
1- ¢p for i = j =1 and 7+1

1+ (L-2f)p° for2<i=j<r

c(L- PP for2< §=i¥l< Tl (3.1)

48]
it
FN

ij

and 2 < 1 = j+1l < 741

i 0, otherwise
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Also we have
pv Y - {(mie)o? (107 /m) "t {xr,Ke ar,Te wrZ}
where 4 = mi2-2Kk,
Fl = Jl + b, r2 = B + J2 + B, T3 = B* + J3,

and

% = [%(0), K1), ..., X0 ¥ = [W0), ¥(2)y -y w01

z' =[2(0), z(1), ..., =z(7)1,

with the definibtions that

X _ _ L 3 K _
x(6) = T x(6)/k ¥(&) = = v, (0)/1, 2(t) = = z, (t)/k

i=1 i=1 i=1
for t =0, 1, 2, «..; T.
Denoting as
u = krliE + 2T 25‘ + kr32
= m2){pry 1 (L - 20, Yryl [l y'i 't 1 3:2)

we can reduce the estimator sbove-to the following sirple form:

Bo= F-lﬁ.

*
Turther, if we define u as

0 = (m+2)“lu, (3.3)
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we have an alternative expression of the estimator

L=p

*

In passing, it might be interesting to point out that
T=gr + (L-2)r, + ¢
r =9 Fp T PT3

and sometimes it might e useful for compubational purposes to know the

T
following representation of each component of u , that is,

g(0) + (1 - 2H)F(0) + #(1-p%)2(0) - p {(1-2p)3(1) + #o(1) }
(1) + (1 - 2h)5(0) +42(1) - p{PE(0) + (L-2P)(F(0) + ¥(2)) + ga(1) }

W= | () + (1-2@)F(t) + gals) - p{g(t-1) + (1-20) (F(t-1) +§(t+1))+¢2(t+1)}

fx(7-1)+(1-28)y(7-1) +fz(+-1) - p{¢§('r-2) + (1-20) (?(T-2) + y(1)) +¢E(T)}

| §1-D%0) - QT + gale) - p{fRr-1) + (1-2p)F(e-D) )

~

The variance-covariance matrix of 4 is given by

E(ﬁ - u)(ﬁ- - u,)i = (I\_'V_:LA)_'L 1

((w+2)o” (1-p7) /n} 1

2
O 4. 2, %2
;;(l'P T .

l

These results are obtained commonly for both cases when § > % and § < %.

According to Yates-Patterson's wethod, the variance of MVUL estimator
on the last oceasion T is given by ¢h§2/n¢, where h = 7+1, Hence, from
Theorem 2 in section O and the result Just obtained above on variance-

o~

covariance matrix of B, it is cleax that Py is equivalent to the bottom

y
diagonal element of (l~92)¢I* 1. It is also possible to aseertain this

equivalence directly by mathematiecal induction.




16~

We will summarize all these results by the folliowing theorem.
Theorem 3. Under the assumptions (Al.) - (A5.), the minimum variance

~

unbiased linear estimator of p i§ given by K such that

~ #.] ¥
p=7T "u

2

R . . s . g 2y %=1 *
and its variance-covariance matrix is given by —E-(l-p )

T , Where 1

and u% are defined by (3.1) and (3.3) derived from (3.2), respectively.,
Turther the bottom diagonal element of (l-p2)¢r*-l is equivalent to

Yates-Patterson's ?, with the provision that h = v+l. 1In passing, note

that we do not have to assume {A6.) in Theorem 3 because of Theorem 2 in

section O. Hence the estimation formula stated in Theorem 3 is applicable

for any rotation scheme as lcng as (Al.) - (A5.) are satisfied.
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b, Explicit Representation of the Elements of r%"]

(t)

Define T s & square matrix of order t + 1, by

—

1~ o2, i=j=landi=j=t+l
() _ (%) (t) _ N o
T = (gij Y, where g8, = L+ (1-2¢0)p",2<i=3<t%
-(1 - @lo, 1 <= 14l <541
and 1 < 1= j+l < t+1
0, othervise.
(t-1) (t)

Also define D by deleting

(t)

40 be the matrix of order t constructed from T

(t-1)

the last row and column. Similarly, A is a t-matrix constructed from T

by deleting the last row and the tth column.
Then we have the following relations among the determinants of these

matrices:

IA(t)| = -{1 ~ @)p |D(t"l)| for any t > 1

o]

(1 - @) ]A(t_l)l + {l + (1~ 2¢)p%}|n(t-l)| for any t > 2

IP(t){

W

(1 ~ @) ‘A(t_l)] + (1 - sz) D(thl) for any t > 2

which yield

o
S’
it

-1 - })%° ID(t“g)l + {1 + (1 - 2¢)p?} |D(t‘l)1 for any t > 2

—
~—
ot
Ly
1

= =1 - 922 P+ (1 - 92 POV for any ¢ > 2.
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Denote
g6 = D8, £te) = )] | then the relations bove are rewritten as
g(t) = {1+ (1 - 2007} s(6-1) - (1 - 9)%2 glr-2) ,
£(t) = (1 - $o°) glt-1) - (1 = $)P° gls-2) ,

subject to the conditicns

g{0) =1 ~ ¢p2 = £(0) ,
g1) = (1~ {1+ (1= 20%% - - D%,
£(1) = (1 - 802)% ~ (1 - $)%° .

These simultaneous homogeneous difference equations of ordexr 2 have the

following solution

1l
=
Od‘
KR
=
Ori'

g(%)

. B2
£(t) * A0 )

[l
o~
=

t
=28
k=)

o
T
e
=
x
sy
| -
+
SD
[
Mg
I_I
o

I
e

-

I
=
S

no
©
o
=
| s
(9]

vhere

R R L A TR DLl

o=t aoam®  [ie - ona -0t ),

cg(0) - g(1) _ c,g(0) - g(1)

= - and A
Al Cc, - C 2 c, - C

1 2 1 2
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Recalling that the (i, j)th element of r=1 =(P(T))— 1is g!r) then

ij °?
60 =)= e e gy ato).

Considering cofactors of each element of I'(T), we have following

representation of the bottom row elements of peL,

(1)

T+1, T=j = (1 - ¢)j+lpj+l glr-j-2)/f(z) 3 =-1, ..., =2

g

ana ¢$3) ;= (1 - )7 o"/2(7)

Thediagonal elements of [* ™1 are represented by

gii) = giii,T+1 g(1-1)/1(x)

géé) = gi:l g(0) gl(t-2)/£(1)

els) = &) = a(1) alx-3)/2(x)

-
- -
- +

REARC)

i1 T Brojuen,rogep = 8(1-2) gle-1)/£(1)

[
.
. -

(L (1) o (T=3y T=l . :
gT+l -1-+l_ gT+l ™+1 - g( ) ) g( 2 )/f(T ) 3 it T+l is even
5 D 5t

and.

g(r)
T T
3t

={g(E - 1) E/e(x), if ©+1 is odd.
“ {gz F T), if T+l is
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Define

(), (1)

= = ; Twi+l T-i+l} i o
kT+l,i 831 /gr+l,i - g(r'l)/{(l - #) P s 2 <1 <1, providing

that o # 0, then by Ukita®s theorem (see Greenburg and Sarhan (1959) [4],

Uppuluri and Carpentor (1969) [Tl, or Ukita (1955) [6]), we have

ggz) = gi;) =k giii,j = (1 - ®YI prY gl5-2) glo-i)/o(x)

where 2 < j <iand 2 <i < T, and

gD = el = (1o i o gea)e(n)

Hote that

R )

which is glready given.

These results, assoclated with the sbove solution of difference

equations, will give explicit representation o every element of F*"l

—— —_— |
The representation of I+ directly follow from I' T = E«%E e



s I

5. Convergency of r*_q.

5.1 Definition of Convergency.

We will prove the convergency of 1 in the sense defined below.

Definition 1, (Matrix of variable order). A matrix, each element of which

can be expressed as a function of its order, isreferrcdto as a "matrix of

variable order'. Denoting the number of rows by s and the number of columns

by t, wve also call "matrix of variable order s by t". Specifically, if the

matrix is square and its order is denoted by t, then we refer the matrix to

a "square mairix of variable order t' or simply a "matrix of variable order t'.
In the terminology of Definition 1, we can say that 1 ie a matrix

of variable order T+1.

Definition 2. (Convergency of a matrix of variable order). Uhen G is a matrix

of variable order s by t, and one of s and t, say s, %ends to infinity, if
every element of G converges to a unique function of t which remains finite
for any finite t, then it is said that & is convergent with respect to s.
Further if every element of G converges %o a finite nuﬁber when both s and %
tend to infinity, & is convergent with respect to its order.

Specifically, if & is a square matrix of variable order t and every
element of G converges to & finite number when t tends to infinity, then G is
said to be convergent with respect to its order (t).

That is to say, if we denote (i, jlth element of a matrix G of
variable order s by t by gij(s, t), then the convergency of G means

lim 1im g, .(s, £) = g,.
P & e ij
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for any i, j such that 1. i <5, 1< j< T and gij being finite.

In the case of square matrix, this reduces fo

lim g, .{(t) = g..
o 13 Bij

for any i, jesuch that 1 <i <%, 1< j<*t and gij being finite.

OQur problem here is to prove this property concerning to 1"*—1.

5.2 Properties of g(t) and f£(t).

The elements of F*_q, as we have seen in the preceding section, depend
upon functions g(t) and £(t) by specifying % appropriately. It is necessary
then to know some useful properties of g(t) and £(t) in order to prove the
convergency of =1,

Assuming Pz £ 1, we can prove following properties concerning to
g(t) and f(t).

Property (1): g{t) > O for any t > O.

Proof: Define

o =

o

©)y ¢ w (n glo) =« gl1))/2b

ithere

a =.g_{1 v (1 - 2;5)92}, b = %/{1 + (4 - 2,0_5)92}2 - 51 - %5,

then we have

A

]
R
|
oel
N
H
R
4
1w

qua-i-'b, C

i
i}
1
o
?

Since ¥ < 1, it is clear that

o >0, a >0,
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Further we can show that b is a real number and hence b > 0 as follows:

bo® = {1 + (1 - aﬁ)pz}a L1 - ﬁ)ap2
= {(1 - 5’0’)2 + gz}('i

>{0 - %+ g}
= {0 - 2® + Fa

92) + 1 = {(1 - ﬁ)z + gz} - 2¢(1 - ﬁ)ph

f)+1_ﬁ1wm2+f}~mm-¢>
2y

p
> 0.
N . . . . 2
This implies b is real and hence b > O, but since we assumed P £ 1 and

(1 - ﬁ)a + ¢2 >0 for any @, we know that b is strictly positive.

We can alsoc show that B < 0 as follows:

It

the numerator of B

{1 + (1 - 2¢)92}g(0) - 2g(1)

f

- (- pz){1 + B0 -.2¢)p2} .

Since 1 + #(1 ~ 2¢)92 >1 - pz > 0, ve thus know that the numerator
of B is always negative under our assumptions. As the dencminator of B is
given by 4b and we already know that b >0, 8 < O has now been established.

With these notations, we can write g(t), t > O, in the following

way s
- t t
g{t) = (@ - B)a + b)) + (@ + B)(a-b)
=20 Z (;) axbt_x -28 = (t) axbt-x
t-x: even t-x: odd
vhere I denotes the summation for all x such that t-x is even and
t~-xt even
z denotes the summation for all x such that t-x is odd.

t-x: odd
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Wow that a > 0, b >0, @ >0, and P < 0, it is clear g(t) > O for any
t such that t > 1. Further, it is also clear from the definition that
g{0) > 0. Thus we have g(t) > O for any t such that t > O.
Property: (2): f(£) > 0 for any t > O.

Proof: By the notation above, we can write g(t+1) for t > 0 as following

way s
(1) = (=) (at0) P (ath) + (o+8) (a+b) ¥ (amb)
t tx € t-x
=aly ¥ &y S * 2 2p ¥ ) &
{' t-Xteven x t-x:0dd X }
t t-x
+ b2y T ) axb
{ t-xtodd *
t t-x
-28 T ™) 2%
t-x:even x }
and hence -
£(6+1) = g(0) gle+1) = (1 - %% glt)

olofa g(0) - (1- %} - o @] £ () B

t~Xieven

- 2lofa g0) - (1- 9 -abs@] 2 (O
t-xz0dd

We already know that ¢ >0, <0, 2 >0, b >0, and g(0) > 0, hence we further
2 2
know that Bbg(0) < 0 and obg(0) > 0. We will show here ag(0) - (1 - @)p” >0

to yield f(t+1) > 0. Take

Z{a go) - (1 - 9)292}

I

{1 + (1 - 2¢)pa}(¢ - #0%) = 2(1 - 77

2[{1 + (1 - 2¢)92}(1 - ¢pe) - {1 - ﬁ)apgl

{1+ - 26t - )
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2 g(1) - {1 + {1 - 2¢)p2} 2(0)

il

- {ﬁhe numerator of 8} .

Since the numerator of B is negative, we have
a2 8(0) = (1 - P%° >0

vhich implies £(t+1) > O for any t > O. This establishes f(t) > O for any

t > 1. We already kuow that £(0) = g(0) > 0. Thus finally we have
£(t) > 0 for any t > O.

"From the properties (1) and (2) above, we have

Property (3): g{t-1)/g(%) > 0 and g(t-1)/2(t) > O for any t > 1.

We can also prove that

g(t-1) g(4-2)

Property (4): 2(5) " gt-1)

< 0 for any t > 2, that is to say, g(t-1)/g(%),

t =1, 2, 3, eees yield a monotonically decreasing progression.

Proof: Since

2
fo1)  gGem2)  EGD) - 8 g(6-2)
g(t) " gle-1) ~ 5(5) g(e-1) 1 t2z2

and g{t) g(t-1) > 0 by property (1), we have only to show that
2
{s-} - ett) glz-2) < 0.

With the notations introduced before, we have

2 2
@w4ﬁ _gwg&e>=ﬁwmumﬁ”+<wm@¢ﬁ”}

- {(a-8)(as0)® + (2+b) (a-0)"}

. {(a—ﬁ)(a+b)t_2 + (a+8)(a-b)t—2}



2B

2
.m?wWJ_fﬁﬁwm_@m}

22 (f - gD 62 - v,

1}

In this expression, we have

4(&2 - b2)

1

ﬁ+(4-wmﬂ2_ﬁ+cq-wmﬂ2+uq-m%2

i

W1 - §)%% > o.
And further
2
1662(0° - 8% = 4{1 + (1 - 207} - k(1 - HHIEE - 89

= 151 - % 1 - 0% > 0.

Thus we have a'?' - {32 > 0. Hence,
pad
@&4% - els) glt-2) = - B - 890" - )P <0

for any t > 2, which implies the property (4).

From the property (4) it follows that

g{t-1) g{t-2)
£f(t) T £(s-1)

Property (5): < 0, for any t > 2.

Proof:

g{t-1) glt-1)
£(t) 1 - ﬂpz) gt-1) - (1 - ;zf)ap2 g(t-2)

i

i

O - g% - - 92 B

which implies that g(t-1)/f(t) decreases as g(t~2)/g(t-1) decreases. Meanvhile,
by the property (&), we know that g(t-1)/g(t-1) decreases as t increases. Hence

g(t-1)/£(£) decreases as t increases. Thus the property (5) must hold.
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As is shown by the property (3), both gli-1)/g(t) and g(t-1)/f(t)
are bounded Tfrom below. Therefore, the properties (4) and (5) imply
respectively that g(t-1)/g(t) and g{t+1)/£(t) converge to each limit value

as t tends to infinity. And we can show

Property (é): 1Lim -g(t-1) = ;l-,
eI
and hence
g(t=1) _ ¢

Property (7): lim =
e T g g(0) - (1 - )3

a(t-1)  (o-B)(a)® " + (@) (a-b)®!

Proof: =
8(t) T (8 (at) T () + (@+B) (ab) P (amb)
{ £}
_ oz+§3 ) ; o+l 2) -1
_[a-!»b"’i- (c / {I'H (c s]
Since C, >0, C_ >0 and €, > C,, C,/C. <1 then lim (—%)t- =0
1nce 1 - P g 1 21 1 oo c = a
Hence
glt-1) _ 1 _ 1.
o g®) " aw - o

t—'w o
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Property (7) dirvectly follows from this because

el {g(o) - (1 - %7 EE: ﬁg .

Property (4) also implies that the maximum value of g(t-1)/g(t) is given

by

g(0) _ 1= go°
s(1) 1 - pra){1 + (1 - gﬁ)pz} - (1 - ;af)ap2

vhich is finite, and hence, by Property (5), the maximum value of g(t-1)/f(¢}

is given by

g{0) _ 1 - @’92 i
£(1) (1 - %2)2 - (] - g)zpa

Thus, combining Properties (6) and (7) to these results, we have following:

Property (8): gé?;;) and gé%%%2°are both bounded,
A sl-1) _ go)
C, =gt Sgn)
¢
1 gl{t-1)
and 72 STE®)

C, g(0) - (1 - #)p

5(0) .
*LOP - (- 9%
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5.3 Proof of Convergency of rw_l

Using the properties derived above on g{(t) and £(%), we will first prove

Ko
several lemmas which lead to the proof of convergency of T l.

Lemma 5.1, (Monotonicity of g(T—i)/f(T))
g(r-1)£(r) is a monotonically decreasing function of v for any i,

i<igrT -1, wvhere T > 1,

Proof':

gle-1) _ glr-1)
e g0) gle-1) - (1 - B)%%a(r-2)

—_— g(T—i)/E(T-l)
g(0) - (1 - $)%p%alr-2)/e(r-1)

]

We already krow that g(7-2)/g(r-1) is a monotonically decreasing function of
7 by Property (4). Hence, the denominator of this expression is an increasing
function of 1. It will be enough, therefore, to show that g(r-i)/g{r-1) is
also a monotonically decreasing funchtion of ¢, in order to prove the lemma.

Since

glr-i)  glr-i-1) _ glr-2) glr-i) - g(z-1) glr-i-1)
glr-1)  gls-2) glr-1) gl{r-2)

and g{r-1) g{r-2) > 0, it suffices to show that g(r-2) gl(v-1) - glr-1) g(T-i-1) <0

for any i > 2.

Using the notation introduced in the preceding subsection, it can

e written that



g(7-2) g(7-1) -~ g(7-1) g(7-i-1)

{(0-8)(a#0) ™2 + (a4p)(a-b) "2} {(p) (asp) ™+ (a8)(ab) T}

- {(Q’"B)(a+b)T-l + (Q‘*B)(a-b)T-l} {(oa—{a)(:a;:-b)'r-i-1 + (mﬁ)(a-b)'r'i'_l}

Eb(cvg - 52)(3,2 - be)'f'i'l {(a-b)i'l - (a+b)i'l}

We already know that a > 0, b > 0, o.f2 - 52 >0 and a2 - b2 > 0 and. hence,

a+h>a~-b>0. Therefore
(a-b)l"l - (a+b)l_1 <0,

where =quality holds only when i = 1. Thus we have
. . 2 2,2 2 T-i-1 11 e
g(7-2) g(T-1) - g(7-1) g(7-i-1) = 2b(e"-g7) (a"-b%) {(a-b) - (a0)” T <0

for any 1 > 2.
In passing, note that the case when i = 1 reduces to Property (5) of
the preceding subsection. This establishes the lemma.
Lemma 5.2. (Boundedness of the principal diagonal elements of I"*-l).
We have the following relations among the principal diagonal elements of

I“K‘Hl, that is, for each T > 1,

QING BB

- _ (7 _ (7 () _ (1) ,
81 = g'r+l,'r+l = g'r,T g33 = R = b S 8

811, 7-1 i1 7 Bqeien, T-ieo



Proof: Suppose i > 3, then from the results in section 4 we have

A0 2 el {e(i-2) e(r-1) - g(i-3) e(r-141)} / £(7)

ii €i-1 s1-1

The numerator of the right hand side in this expression is egual to

{(-8)(a0)'8 + (08) (a-0) X2} {(c-p) (a0) ™1 + (ep) (ab) T}

- {(e-) (@)™ + (@) (20) 3} (tp) (a0) I 4 (asp)(a-n) "

providing that T-1 > i-2.

Thus we have

£(7) (&} - ggf%’i_l) = 25(cP-p?) (a202) 13 {(ap) (TH(13) (g (T-1)(5-30

Since we assumed T-1 > i-2, hence (T-i) - {i-3) > 0, and since & > 0, b >0,

32 - b2 > 0, we have & + b > 0. Further, since we know that o:2 - B2 >0,

{ONCHET S IEL

and since £(r) > 0, this implies that

(M < (D) L >
8iy 8,3 TXLII3-
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Combining this result to the results obtained in the section b, we have

Now consider

gfi,l—l ggjg_l,w-i_l > ggj% = g(T)_z B > 0.
£() (gg) gg)) = g(0) g(7-2) - g(T-1)
- g(r-1) {g(0) + RS - o}

Since g{T-1)} > 0 and g ::i ffﬁé%%-by Property (8) in the preceding subsection

-
2(7) (gl3) - gg)) <&ED T L)) - sw]
But since
e} -6 = (- #2210 @-20F s -2

B - g) o (1 - p°) <0

i}



and g(r-1)/g(1) » 0, we have

£(r)(els) - &l1)) <

o

which implies

(«) _ _(7) {r) ()
L7+ > 822 T Bp o

gll =g

Furthermore, by Property (8) in the preceding subsection, we have

£ gl - e/ < &(0)/1 8(0) B - (-p%7T

r+l, 741

which impiies the boundedness of the all principal diagonal elements of

L

Lemsa 3.3. (Boundedness of g,

(r)
3

f
gig) ir bounded for any i, j and 7 such that Lgi gt +1, 1gig7+ 1L

Proof: Eecall that

2

B - p)(p - 0)* =2 (l—pa)r%'l

n

From this, we know that the correlation coefficient between MVUL estimators

u(i) and p(j) of p(i) and u(j), respectively is given by

=gy el g

() (7
i1 53

OB

Since 0 ¢ p?

~ < 1, we have
U(i)au(j):

Oy <8 &

But by Lemma 5.2., both ggz) and g(;) are bounded. Hence g

J

(N? (1) ()

i

(r)

T
J

is bounded as well,



(A))

Temra 5.4, {Monotonicity of N

For any i, such that 1 ¢ i ¢ 7+l, if 1 is fixed, gég) decreages monotoni-
cally as T increases holds for any 7 > l.

Proof: PSince
ell) - g(1-2) g(r-1)/2(r)

and g(r-1)/7(7) » glr-i+1)/£(r+1) by Lemma 5.1, it is clear that

gi " g(i-2) g(r-1)/£(7) > g(i~2)(T-is1)/£(™41) = g(T+l) )

Wohe that this argument can be applicable even to such element or elements
Fu
that are Jocated at the center of the principal diagonal of T 1.
Junpese T+1 is even, then there are two such central elements which can

be writien a8

{r) (+) -3
S R R ¢ A T"‘l - g(_e‘"). g(%-l—) / £(r)
27 2 -

Now let vwe denote i = (1+1)/2 and suppose i is fixed, then this can be

rewrithen 8

o) = alT) L = s(1-2)a(i-1)/x(r) = a(i-2)slr-3)/8(r).
Then let us compare g( with g(T 1) Since
gg_ﬂ) = g(i-2) g(v+1-1)/£(r+1)

and g(r+l-i)/£(++1) < g(+-1)/£(r), we have

) ol
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Next, compare g(l‘% s4q VLR g('f +1) (7+1)

i+, 1+1° i-+l,i4+1

central element of the principal diagomal of new matrix with increased order

This time, g, comes to the unigque

and is written as

(++1) _  (v+1) T+1 2
141,441 T B4y ¢+1 { ( B 1)} [2(x+1)
2 Tk

= {g(i-l) }2/f(1+1) .

Hence

géli, 1ap = 8-2)g(1-0)/2(r) > {e(i-2) F/e(re1) = gg;f_g_ﬂ

e

tha
[{r]

g(i-2)/£(r) > g(i-1)/£(r+1).

Seopese ++Ll Is odd, then we have a unique cenbtral element which is

given by

2
g™ T,y {g(% - 1)} J£(c)
2

Mow let us dencte i = = + 1, then

ng) = {g(i-2)}2/f(w)

Meanwhile

g§;+1) B g(¢+1 3) (¢+1 -1 / £(e1)
g(% - 1) g(‘;“) / £lr+1)

g(i-2)g(i-1)/£(7+1).

It

it



Hence we have

{(t+1)

67 = {g(1-2)}2/e(0) > gli-2)gli-1)/e(x41) = g\

ii
because

g(i-2)/f(t) > gli-1)/f(x+1)

Thus g§;) > g§;+l) holds for any i.

Lemma 5.5. (Convergency of (l—¢)tpt/g(t-1))

(l—ﬁ)tpt/g(t—l) converges to zero as t tends to infinity.

Proof: Since

(1-8) %o /g(6-1)

it

(1-9)56%/ {a-8)(a40) " + (er8) (a-0)"7}

(a-8) (1-01%0%/ La-8)2(ar0)* 7 + (P=b®) (a-2) >}
and, as we already know,

atb » a~b > 0 and u2 - B2 >0,

We have then

fpotee-n P (o820 {a-)P @) + (o282 (a0) "L

ot 2% 2{t-1)

< (197" /(a-8) *(a#p)
= {(-1%2182} {-mP®E)
< {a-0222} u-mPl 119 1 (5.)

Meanwhile, since, as we already showm,

{1+(1—2¢)p2}2 - 4(1-8)%2 > o
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it holds that
5 (1-9)%02 {14 (1-20)07}% < 1 .

Note that strict ineguality holds here because of the assumption that p2 # 1.
Hence, the right hand side of (5.1) converges to zero as t tends Lo infinity,
so the left hand side converges to zero as well.

Using these lemmas, we can prove the convergency of P%'l stated by the

following theorem.

Theorem 4. (Convergency of r#~1) 171 15 convergent with respect to its order.

Proof: From Lemma 5.2, and Lemms5.h., it directly follows that each principal

()

diagonal element, Biq o i=1,2, ..., 11, converges to some Jimit value.

(1)

Vow let us consider sbout the bottom row elements, Bral 3
3

s J =L, 2, ceayT

For j > 2, ve have

Ers1,j - gl3-2)/r() .

Suppose J is fixed, then we have

(z) 2
T+l .,

g () 15" g (o) Pt a-2)rle-) 2 |

-j+l T~J+ A2ty
{(1-¢)T JrlgT=d 1/g(T-3)} {%g.)} .
J
Denote t = 1=J+1. Since ggg) converges to some limit value when T tends %o
infinity, applying Lemma 5.5., we have

%iﬁ{éiii,j}e

il

- {2 g (g )}2 F {ggg)}e

G e

1]
]
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Tor j = 1, we have

giii,l = (1-0)"p"/7(1) ='{(l-ﬁ)TDT/g(Tvl)}{g(T—l)/f(r)}

= {@-9"/g(x-1)} £

Hence, in the same way, we obtain

. {r)} 12
lim { . =0
T—s gT'I'l ad
Thus for any fixed J, giii 3 converges to zero vhen T goes to infinity.
?

{t)

Mow supposze T~J+l is fixed, Tthat is, €41 j is such element that locates
2
finitely away from the principal diagonal with fixed distance.

Denote i = 1-j, which is fixed because T-j+1 is fixed, then we have

()

i+l i+l
T+, B)" e

= (1- glt-i-2)/%(t)

How that i+l is fixed and g(t-i~2)/g(T) monotonically decredses as T increases

(1)

end is bounded from below, it is clear that 84l j
2

converges to some limit
value for any j such that t-j is fixed. Thus, all elements of the last row
of T¥L converge to some limit values respectively.

As to the other off-diagonal elements, we already obtained the following

representation:
67 = (Lot Tg(5-2)g(e-1) 2(0)
for such i, jthat 2 < j<iand 2 <1 <7, and

s{T) = (1) et Hglem) /2(0)
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Let us first consider the case when both 1-i and -] are finitely fixed.
Note that this implies that i-j is finitely fixed.
For any i, J such that 2 < j <ji and 2 <i < T,

(r) _

gy = (19190 Jg(3-2)g(c1) /2(x)

= (1-§) 9o Y glr-i)glr-k-2)/2(1)

vhere k = t-j. Since i~j, T-i, and k are all fixed and g(t-k~2}/f(t) is
monotonically decreasing when t increases and is bounded, it is clear that
gig} converges to some limit velue as T goes to infinity.

Consider next the case vwhen one of i and j, say j, is finitely fixed
while t goes to infinity and t-i is finitely fixed if j is fixed. Defire
k = 1-i, which is fixed, then we he;,ve

gi;) = M{kl~¢)T_kmlpT"k*l/g(r-kwe)}{é(k)g(f—k—])/f(r)}

where
i = (1)~ (=0 50

Since (l—ﬁ)T"k"lpT_kvllg(t~k—2) converges to zerc, when T tends to infinity

by Lemma 5.5., and since

g{k)g(t-k-2)/8(1) = g(i-2)glr-2}/5(1) ~ gy,

vhere & = k+2, slso converges to some limit value when T goes to infinity,

wa have



Ty

() _

dim
£1J

T > @
Finally suppose both i and j are fixed, then since (1- ¢) J i~ Jg(;} -2)
is fixed and g(v-i)/f(r) converges to some limit value when r infinitely

() (+)

increases, g converges to some limit value. As to g. 317 we can write

it as follows:

e = (1) T Yg(rea) 2()

]

{9 Y ei-2)} {sli-2)g(r-1)/2(0)}

(7)

If i is fixed, then it is clear that 854

of g(r-i)/f(r). If i is not fixed but 7-i is fixed, then define k = 7-i,

is convergent from the convergency

and we have

o o Ly Rt o) {eteae2)e0) /2]

—k-lpT—k—l/g(T

Since (1-¢)T -k-2) converges to zero as T goes to infinity

and

g(r-k-2) () /2(r) = alv-t)a(t-2)/2(r) = g;)

where £, = k+2, also converges to some limit value when 7 tends to infinity,

g

converges to zero when 7 goes to infinity.
Thus all off-disgonal elements converge to each limit value as T tends
to infinity and this completes the proof of Theorem k4,

Fe
Now that the convergency of T 1 has been proven, we next evaluate the

LS
1imit value of each element of T 13 Let us begin with the diagcnal elements

of 1 We already know that
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gi{) = giii’ ce1 = Blr-D)/£(x)

Hence Property (7) in the preceding subsection directly ylelds the following

1imit value of g(T) (r)

1y = g¢+1,7+1’ that is,

lim g§1)= 1immg£:_§_ﬁ+l = 1im g(r-1)/£(7) .~.cl/{clg(o) - (1-525)292}

T = o T =+ T »> @
= 1/{g(0) - (1—¢)2p205_l}

*-1
For i puch thet 2 £ 1 £ 7, the principal diagonal elements of T can be

represented by
&7 - gli-2)glr-1)/£(r)
If we put k = 7-1+2, we have
g(i-2)g(-1) = g(k-2)g({r-k)
Hence, without loss of generality, we can assume i is finitely fixed. Then

Lim ggz) = g(i-2) lim g(r-1)/%(s)

T > T >

Since

(r-1)/2(s) = g(T—?){g(T-l)
y VT () B2 lr2) el

and we already know that lim g(¢~2)/g(¢~l) = Cil, it suffices to evaluate
T

the 1imit value of g(v-i)/g(s-1). Since



o

glr-1)/a(r-1) = {(e-0) (a#0) " P4(e18) (a-0) "/ { (-0) ()T (a48) (a-0)T

-i
ot (_:P_ i
@) am)™t T oy \aw
- - -1
(@p)(a+p)" 1 Al ( T
o-p \ath
-1 T-1
and I1im (:—_;% = 1lim -3-_-;_% = 0, because atb » a-b > 0, we have
T %0

1im glr-i)/g(r-1) = (a+D)

T = @

~(1-1) _ Ci(i-l)
Hence we have
vm g\ D) = gi-2) ¢ Lg(0) - (1-)3%ct
o
N i-1

{Alcil * Aaceli'é? }/ {g(o) - (1_@202011}

Further,

1im 1im g( ) = 2,07 /{&l0) - (1-¢)2p20£l}

i+ oT 3> o

It can be easily shown that this gives the 1limit value of the element which
*u
locates at the central position of the principal diagonal of T l.
¥
Tet us consider about the bottom row elements of T 1 next, which is

represented as

(T) - (l_¢)i+lpi+1

L, T-1 g(“i‘-i-E)/f(T)

g

for2 ¢r-ig T, 0rfor2<j<rT,

g‘f‘ll)l_,j = (1—5?5)"'"jﬂp'r'jﬂg(j-z)/f(q-) .
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If we assume k = 7-1 is Tixed, then we have

while
&) 5 = QPP  g(ep-2)/2(e)

where £ = 5=-] which is fixed.
Hehce, assuming i or j being fixed in each case, 1t suffices to consider
L) (7)

34,4 and g 7+l respectlvely

From the result just obtained above, we have

un g(r-1-2)/2(r) = ;D Aa0) - (%P

Hence

1im g("I') — (l-¢)i+lp-i+lci(i+l)/ {g(O) . (l—¢)2p2cil}

,.r—-rc, 'r+l’ T -i

Meanwhile, since

) = {a I ps0)) [sl5-26(r-3-2) /2]

T+, ]

{(1- )1‘-J+l 1--.3+1/g( i 2)1( {g(fr)

T= J+i T~ J+l/

and llm (1-9) g{r-j-2) = 0 by Lemma 5.5, we have

()
o

lim g
0



N ITIN

2 22
> €6, = (1-6)%p%,

Further, since C1

{(1-¢)p/cl}2 <1

and so that

(1) : (T)
Lim 1im , = 1lim =0
i P @ & +1,7-1 o T+1,J

1+1 1+l (1+l)

becanse 1im (21~ ¢) = 0.

i 7

If j = 1, from

1) | = 19P2/ee) = {097 etr-0} {ete-0)/200)
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Finally let us consider about other off-diagonal elements. It is already
shown in the proof of Theorem 4 that g( ™) converges to zero if i and 7-J areboth
fixed and T goes to infinity, or j and t-i are both fixed and 7 goes to inTinity.
We also know that both 1-i and r1-j being fixed implies i-j being fixed which is
also implied by both i and j being fixed. Hence as long as i-j is fixed, whether

both i and j are fixed or both 7-i and t-j are fixed is a matter of convenience.

Because if we assume that k¥ = 7-i+2 and { = 7-j+2 are both fixed, then we have
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Thus we have the following theorem.
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where j 2 1 and j is finitely fixed.

So far, throughout this paper, we have assumed that 0 < ¢ <. We will
consider now the limit value of each element of I 5L vhen @ approaches zero
or 1.

Directly substituting ¢ or 1 for ¢, we have the following results:
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for any i,j such that L < j < i < T+l, and

lim g( ™) =0
g1
@1

for any 1,j such that 1 < j < i £ ™l

Note that I'* is non-singular even when § = O or § = 1 as long as p2 £ 1.
Sco that the limit value of F*-l just obtained above when ¢ goes to O or 1 actually
gives the element of I"%—l when ¢ =0 or ¢' = 1 respectively.

Since

E(E - p) (0 - p)' = %3 (2-p2)Tw

our results imply that, when f = O or § = 1, the variance of MVUL estimator (%)
of u{t) is equal to 02/n and the correlation coefficient between 1{i) and u(j),
where 1 # J, is equal to p'i-J7 when ¢ = O and equal to O when § = 1. And
further, this implies that MVUL estimator of (%) is given by simple arithmetic
mean of sample observations on tth cbservations only, when ¢ = O ox ¢ = 1l. So
ouf proﬁedure derived in this paper can be applicable even when ¢ =0 or ¢ =

This fact can be used effectively to prove the existence of optimal ¢
value for given p and 7. Suppose § = 1/2. Let us derive g( ) 2 glm
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This implies that the vari~nce of w(z) is less then ¢/n for § =3 .

o
Since £(T) > O for any $§, 0 < @ < 1, providing that p~ # 1 and g(7-1) and

T . .
T(T) are both unique functions of , ggl) £+i T3l is a continuoug function of
. (7) . .
$ in 0 <@ < 1. Further since gy, = £+; 74 1S bounded in the same domain,

the fact that
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implies that there exists such a value of @ that minimizes the value of
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Furthermore, since ggz) gg+% T+l > ggi) for any 1 such that 2 <1i =T,

and ggz) is continuous and bounded, the optimal ¢ exists for any objective
function vwhich is an increasing function of every 85 o for instence,
for any weighted mean of g( )

Though it is difficult to derive a general or exact solution for optimal
ﬁ even when T is infinitely large, it is always possible to derive the optimal
value of ¢ numerically for any given p or T. Because, now that we already know

(7)

the explicit representation of g1 s which represents g( 7) as a function of ¢, 0>
and T, and since the number of feasible $ values is finite because § must
satisfy such restrictions that 0 <@ < 1,and k = @(m+2) is an integer such that
1 <k <mtl, ang further m+2 is less than or equal to n, we can actually |

calculate the value of the objective function for every feasible ¢, gssuming

course, we have zccess to a high speed commuting sycton.
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6. Concluding Remarks

We derived the MVUL estimator of population mean vector in a rotation sampling
design, which is an alternative representation of classical Yates ~ Patterson's
estimator and is nothing but a specification of Aitken's generalized (or weighted.
least squares estimator.

Now that it can be assumed that the variance-covariance matrix of observations
is known, it is possibly well-known fact to most statisticians that the MVUL
estimator will be given by Aitken's generalized least square estimator. Our
esgentiz] contribution hers, henceforth, is considered to be that a specific
representation, ¢ = r*_1V*, was given to this estimator through the explicit
specification of the inverse of variance  covariance matrix. This representation
is simpler than the usual representation of Aitken's estimator in the sense that
I'* has much more reduced order than the original variance-covariance mabtrix
which must be used if we would work through the usual and general formula of
Aitken's estimator.

Purther, the explicit representation of each element of T+ vhich was also
given in this paper makes it possible fo give exact proof of convergency of e
and hence convergency of the variance-covariance matrix of estimated mean vector
as has actually been carried out in this paper. And it also provides a way to
solve numerically the optimal replacement ratio, @, in a more general and more
exact manmer than those which has been advocated so far, because such optimsl
can be derived, according to our method, for more general classes of objective
functions. This derivation cen be done not only for the asymptotic variance of
estimator when 7 is infinitely large but also the exact variénce fprmula for

finite 7.
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It is true, however, that Yates - Patterson's method still has great merits
especially vhen estimating only the current population mean, in other words,
population mean on the last occasion. Becazuse in this case, according to VYates~
Patterson's method, we do not need to keep records of all previous observations,
as is required by pur method, but we have only to keep records of observations,
the MVUL estimator, and coefficient P obtained on the last preceding occasion.
The computation procedure is so simple that we hardly need to use a compuber.
Furthermore, through this simple procedure, we actually use all information in
the past, vhich can be even the infinite past if we have really kept estimating
since that infinitely past occasion. But there are many surveys which propose
to provide a time series of estimates for some specified period. So the importance
to improve the precision of estimates on previous occasions still exists in many
practical situations. We believe that one of our method's merits is that it
provides improved estimates on all previous occasions simultaneously vhen the MVUL
estimate on the last occasion is obtained and this procedure, furthermore, looks
even simpler than the one proposed by Patiterson.

As a2 matter of féct, however, if the number of occasions is too large, <ch=2
inversion of I'™* becomes practically impossible. But the convergency of e makes
it possible to restrict the pumber of occasions to some large but still finitc
number so as to be permissible to computer capacity. It is also possible to
save records by using the formula of explicit representation of each elemen: of
F*Hq, though it might increase the computing hours.

Finally, derivation of the inverse of variasnce-covariance matrix, vhich uvas
done in the course of derivation of our estimation formula, makes it possibie to
derive the maximum likelihood estimators of P and 02 (assumed known herein) assumir

multivariate normal distribubtion. Another paper on this topic is under preparatio
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