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0. Introduction
 

The classical minimum variance unbiased linear estimator of the population
 

mean in rotation sampling, derived by Yates (1949) and Patterson (1950), is
 

invariant under alterations of the rotation scheme. Herein we derive by a
 

constrained optimization procedure similar simultaneous linear equations. Patterson
 

considered this technique bub rejected it because of the lengthy estimator
 

expressions, however by introducing matrix expressions and assuming a special
 

rotation scheme this technique is found to be tractible. That is, we give an
 

alternative way for deriving the estimator.
 

The merits of our procedure are as follows:
 

(1) Exact expression for the population mean estimator can be found for each
 

occasion.
 

(2) 	The matrix notation leads to easier computer programming.
 

(3) 	The derivation of the exact expression for the variance-covariance matrix
 

leads to ease in investigating the large sample properties of the estimators
 

and their relation to maximum likelihood.
 

Yates-Patterson's method depends on a necessary and sufficient condition
 

for minimum variance unbiased linear estimation of the population mean which is
 

given in the following theorem and its corollary.
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Theorem 1. When we have h classes of observations
 

fZi(t), i = 1, 2, ... ' nMIt) , t = 1, 2, ... ' h 

such that
 

E(Zi(t)) = p(t) for any i,
 

then a function of these observations, y,, is minimum variance unbiased linear
 

estimator of P(T) if and only if
 

(1) YT is an unbiased estimator of u(r)
 

(2) YT may be expanded into a linear function of Zi(t)'s, and 

(3) Cov(Zi(t), YT) = CtT for all i, t. 

Corollary. An unbiased linear estimator Y of u,(') is of minimum variance if and 

only if it holds for any unbiased linear estimator U of P(s) that 

cov(Us , YT) = CSI cov(Zi(s), Y) 

for any s. Specifically it must be held that
 

var(YT) = CTT = cov(Zi(r), YT).
 

Using the above relationships Yates-Patterson derived an expression for
 

the minimum variance unbiased linear estimator of the population mean on the
 

last observation occasion under the assumptions that:
 

(Al.) Correlation coefficient between observations on the same unit i occasions
 
i
 

apart is p and known, 1 < i <h.
 

(A2.) The variances are the same on each occasion and known (denoted by a2
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(A3.) Sample sizes on each occasion are equal to n.
 

(A4.) no units, 0 < 0< 1, are replaced by newly chosen units on each occasion.
 

(A5.) Sampling of each unit is done mutually independently from an infinite
 

population, so that correlation coefficient between any two observations
 

on different units is zero.
 

The estimator resulting is given by
 

Y= -1+ (- P{h+ P X9
 

where x-l is the mean of observations on occasion h-1 associated with n(1-0) units 

common with occasion h, yh is the sample mean on occasion h associated with the 

same common units, h is the mean on occasion h associated with the newly chosen 

uncommon units, and Yh-l is the estimator of 11(h-1) based on the observations up 

to occasion h-i. Note Yh-l is the minimum variance unbiased linear estimator of 

p(h-1). Moreover, cp is determined through the following recursive relation 

P2 (l-)%h- + (1-p2 )o 

h 2 + (1-p 2 )op(l-0)wh I + (1-0) 

with the initial condition i = 1, and the variance of Yh is given by 

2 

var( h ) = 

For proofs of the above results see Patterson's paper, as well as, Cochran (1963),
 

Des Raj (1968), and Eckler (1955). It should be noted that each proof given for
 

the above relationships is independent and invariant to the specification of the
 

correlation between Z.(t) and Z.(s), that is, the specific rotation scheme can be
 

changed without changing the formulation for Yh',h and the variances of Yh
 

We state this result in the following theorem.
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Theorem 2. Under the assumptions (Al.) - (A5.) above, the minimum variance unbias­

ed linear estimator of population mean on the last occasion, Yh' and its variance
 

are both invariant to any further specification of rotation scheme.
 

Patterson further derived the minimum variance unbiased linear estimate of
 

g(h-k) when all observations up to the hth occasion are available and denotes
 

this by hYhk . This estimation procedure is also independent of the particular
 

rotation scheme used but the formulation was extremely lengthy and was not exhibited
 

explicitly by Patterson.
 

By an alternative derivation the minimum variance unbiased linear estimator
 

of each of the above population means is derived by a constrained minimization
 

of the variance of the linear estimator with respect to its coefficients. That
 

is, we can derive these estimators by minimizing the variance while guaranteeing
 

unbiasedness. The result of this procedure, is nothing but Aitken's generalized
 

least square estimator. But it is necessary to know the explicit representation
 

of variance-covariance matrix in order to actually calculate this estimator. In
 

doing so we will give a simplified specification of the estimator.
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1. Assumptions and Rotation Scheme.
 

We retain all assumptions (Al.) - (A5.) described in the previous section, 

however for convenience we will exclude the cases where = 0, and $ = 1 from 

assumption (A4.) and will consider them later as special cases. For these special 

cases it can be easily shown that the minimum variance unbiased linear estimator
 

of the population mean is given by the arithmetic mean of the sample observations
 

2 p2
 
only on each single occasion. We also exclude the cases where p = 0 and p = 1
 

2 
= 0 does not invalidate our results.
as trivial cases, though the case where p 


We,however, make an additional assumption which specifies the particular rotation
 

scheme to be employed. 

(A6.) n sample units are partitioned into m+2 portions each of which contains
 

n/(m+2) sample units. For generality, any k, 1 < k < m+2, portions may
 

be replaced on each occasion from 0 to T.
 

Denote the arithmetic mean of observations on newly chosen units which
 
th t h 

belong to i portion on t occasion by i(t), i = 1, 2, ..., k,and that of tIn 

oldest ith portion which is to be replaced on t + 1 t occasion by Ei(t) 

i = 1, 2, ... , k. Also denote the arithmetic means of observations on each of 

the remaining portions on tth occasion by yl(t), y2 (t), ..., yQt) where
, 

4,= m+2 - 2k. 

Let us represent the means described above in vector notation by 

X, = (x2(O), -(1), ..., xi(T)), < i <k
 

i "' '
 
z= 

3. 
... ,() E.Q), 1l< i<k 

Y'Sii= ( (0), ... , Yj(T)), 1 < i <4k 

andXV (X' .',Z' = (Z:.:z9, Y' = (Y':.:Y) with (Y*) (X':Y':Zr)
1.Y .. k1. .
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When 0 is greater than 1/2 there are some units common to both a 

newly chosen portion and that to be replaced on the next occasion, that is, 

some units will be sampled only once. In this case, we will denote the mean 

vectors of those common portions by Yi and when we use the notation Y*,we will 

exclude those means of common portions out of the elements of X and Z. Under 

the rotation scheme specified by assumption (A6.), the variance-covariance matrix 

of the observations is derived below for 0 < 1/2. 

V =E(* - p*)(Y* - p*)'
 

Ik(T+l) A1 K' .... A
 

1k-+) 2 ... A-2i-


A'- A'_
 
11 .k(T+) a-2 

(m+2)a2 

n
 

A.'Ai A
 

A
k(r+i) 


It'T+l)
 

given that V is symmetric and where ji*' = W.&,i O Eo) ... bT] 

iA. ', < < a -

A. 0 ...0
 

A. 
 0
 

A = 



and A. is an -'(T+l) matrix defined as 
1 

• =0 ". 0 < i < oC? 
1z 

0...0 A. 0 ... 0 

providing that a = m+I ,V m+2-ak. As usual I is the m x m identity matrix,
k Tn
 

0 is the null matrix of proper order. 

Similarly, if £ > 1/2, the variance covariance matrix becomes 

k'qr+i) 0 

V--n(m+2)a I(kL) (r+l) 0 

where - m+2-k and Ais a sare matrix of order (T+1) defined by 

[A1 0 ...0
 

A' A A1
 

1 
 L-

Redefine
 

x*= 1 z*" 
x2 z k+ 
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where V' = k-t+l. That is, X* denotes the mean vector on such units as are 

observed on each occasion and also observed on the next occasion, and Z* denotes 

the mean vector on such units that were observed on the preceding occasion 

and are also to be observed on the current occasion though these units are to 

be replaced on the next occasion.
 



v 
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2. Inversion of Variance Covariance Matrix
 

In a special case when k = 1 (implying 0 < 1/2), we have the following 

expression of the variance covariance matrix 

I +l A A .. A'+ 

2
 
+M A' 	 (2.1)
 

n IT+I *A1 A-""
 
n1
 

T+.1
 

It can easily be shown that the inverse of this variance covariance
 

matrix can be written in the following form:
 

3J1 	 B' 0 0 0 ... 0
 

J2 B' 0 0 ... 0
 

I
V-1= n{(m+2)a2 (,_,2)r J2 B' 0 ... 0 (2.2)
 

0
 

J2 "B'
 

3 _
 

where Jl' J2 J3 and 0 are all square matrices of order T+1 and given by
 

i =j T + 1
 J! = (1 gij), lgij = 
o,
 0 i j
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1, i=j = 1 and i j + 1 

2
 
J2=(2gii), 2 gij = l+p , 2< i=j< T
 

0, i/i
 

1-l-2, i =j = 1 

=
=
J3 (3gij)' 3gij 	 1,i 2< i = < T + 1; and B = -A1
 

0 i =j<
 

In (2.1), if it is the 	case that r < m+l, then we have
 

AT aj) i = T + , j = 1
 

L, otherwise
 

and all Ais, i > T + 1, are reduced to null matrices. Even in this case, however,
 

it can be shown that the inverse of (2.1) is given by (2.2).
 

We have a similar result for the general case using the following lemma, 

which can be considered a generalization of the above result.
 

Lemma 2.1. Define square matrices Ai 's J.'s and B all of order k(T+l) given
 

as follows:
 

Ai = A. 0 .. 0 1 < i < -1, 

S 0
 

•A.
 

-j= 0.. o , j =1,2, 3,". 

• 0 

Sj.
 



B 0. 

• 0
 

•BI 

then
 

'k(r+U) A. .A...
 

1(rl 2 

I A: ...... A 
k(+l() 1 01-2
 

1k(T+1)*'
 

"k(-T+l)
 

B 0 0
 

J ...
 

.. 
 .
1-P2 


• ,.0
 

2 

With this lemma, using the inversion formula of partitioned matrix, we
 

can find the inverse of (1.1), -which is given by
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J3 Bt o o
 

V- n J2
 

(m+2)a (1-P2) 2 B
 

J3
 

When 0 > 1/2, we have the following matrix as the inverse of (1.2): 

l o 

V ( ) l 0 (1-p2) 1 (kt)(T+l) 0 (2.4) 

0 4 

where J J3 and B are as given in Lemma 2.1 but of order I, providing that
 

4 m+2-k.
 

All these results can be confirmed by the direct multiplication, so that
 

the detailed proofs are omitted here.
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3. Minimum Variance Unbiased Linear (MIVUL) Estimator of i-. 

Define the (m+2)(+il) _x ('r+l) matrix A as 

A' = [I* " 

then p can be expressed as 

= AP. 

Then, clearly, if V is Imown as is assiued in our foriulation,, the MVUL 

estimator. of ji is given by Aithen's generalizcd (or weighted) least square 

estimate. That is, 

i-. = (v' A A'VX, 

• * 

which is also the maximum likelihood estimate of p when y is assumed to be ,
 

distributed as a multivariate nor! al with -Ran vector ',* and variance-cbvariance 

matrix V.
 

Since a specific expression of V-1 has been derivcd in the preceding 

section under our special rotation scheme (A6.), using this expression of 

-
V' , we obtain a further specification of (A'V-A) . That is, 

(m+2)cA (ap2)/n} F-1(A,V-'A) -' = 

where r = (m±2)r*, and P* = (g. ) 

1 - Op for i j = 1 andw+l 

21 + (1- 2)p for 2 < i = j < T
 

-(I - O)p2 for 2 < 3 = i+l <_ r+l (3.1)
= 

and 2 < i = j+l < T+l 

0, otherwise 
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Also we have
 

Av-1Y {(m+2)a,2 (12/p4 -l{krX+ tr2 + k-3Z}
 

where t = m+2-2k, 

F1 = J1 + b, F2 = B' + J2 + B, r3 = B' + J31 

and
 

x,= [x(O), x('), ... , x( )],y' [y(O), y(l), ... , 

=, (0), (), ... , (: 

with the definitions that
 

k ik
 

x(t) = E x.(t)/k, y(t) s yjt)/., zt(t
 

12 


Denoting as
 

for t =O0 1. ... 

u =kF +' F 2y'+k73z 

r-': -': 3', (3.2)= (m 2)Eorl (I - 20)r 0r 3 ] 

we can reduce the estimator above to the following simple form: 

^4 -1' 
I1 U. 

Further, if we define u as
 

u* (m+2)-lu, (3.3)
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we have an alternative expression of the estimator
 

V=r U. 

In passing, it might be interesting to point out that
 

r = or !+ (1-272)r 2 + or 3 

and sometimes it might be useful for computational purposes to know the 

following representation of each component of u , that is, 

9(o) + (1 - 20)3(0) + 0(I-p2)z(O) - p {(1-20) (l)+ 7z(l) 

Ox(1) + (1 - 2$)y(l) +9z(l) - p{5x(O) + (1-20)(G(0) + Y(2)) + Oz(1) 

U rx(t) + (1-27)y(t) + z(t) - p{7x(t-1) + (1-2$)(y(t-1) +y(t+il))+O(t+l) 

-p{e -r(-2) + (l-2',O5)(y( r-2) + y(Tr)) +$7Qr)} 

7(l-p2 )x() + (!-2)§(v) ± ) - {Eqx(T-!) + (1-20)y( -l) 

The variance-covariance matrix of j is given by 

-01= (- = (m+2)a 2(l-p2)/n} <1 

- 1 . 2(1p2 )r * 

These results are obtained commonly for both cases when 0 > 2 and 7 < . 

According to Yates-Patterson's method, the variance of MVUL estimator
 

on the last occasion T is given by Thu2/no, where h = T+l. Hence, from
 

Theorem 2 in section 0 and the result just obtained above on variance­

covariance matrix of i-, it is clear that cp is equivalent to the bottom-2 * 

diagonal element of (1-p )27r . It is also possible to ascertain this 

equivalence directly by mathematical induction. 



We will summarize all these results by the following theorem.
 

Theorem 3. Under the assumptions (Al.) - (A5.), the minimum variance
 

unbiased linear estimator of Iait given by p such that
 

= u 

2* 
and its variance-covariance matrix is given by (1-p2 )r*l, where r
 

and u are defined by (3.1) and (3.3) derived from (3.2), respectively.
 

Further the bottom diagonal element of (1-p2 )OF- is equivalent to
 

Yates-Patterson's ph with the provision that h = r+l. In passing, note
 

that we do not have to assume (A6.) in Theorem 3 because of Theorem 2 in
 

section 0. Hence the estimation formula stated in Theorem 3 is applicable
 

for any rotation scheme as long as (Al.) - (A5.) are satisfied.
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of the Elements of f*-]
4. Explicit Representation 

(t )
Define , a square matrix of order t + 1, by
 

= 
S- i =j= = j t+l
Op2 and i 


=gij jweeij=--- <tr (t) = (gt) where g(t) 1 + (1-21)p2 , 2 < i = 

-(I - O)P' 1 < j i+l < t+l
 

and 1 < i = j+l < t+l
 

0, otherwise.
 

I ) 
lso define D(t- to be the matrix of order t constructed from F
(t ) by deleting 

the last row and column. Similarly, A( t - l ) is a t-matrix constructed from r ( t) 

by deleting the last row and the tth column. 

Then we have the following relations among the determinants of these 

matrices: 

IA(t)l = -(l - 0)p ID(t-1)t for any t > 1 

ID(t) = (1 - 0)P JA(t-1)l + 41 + (1 - 20)p2}lD(t-1)l for any t > 2 

) - l )  
jr(t)l = (1 - 0)p IA(t-l)l + ( - Op' D (t for any t > 2 

which yield 

IDC(t)l = (1 0)2P2 ID(t-2) I + {l + (l - 20)p2} ID(t-1)l for any t >2 

2jr(t)j = -(1-- 0) 2 p ID(t-2)l + (1 - 0p2 ) ID(t- 1)l for any t > 2. 



Denote 

g(t) = ID(t)1 , f(t) = 11 (t)1 , then the relations above are rewritten as 

g(t) = {1 + (1 - 20)p2} g(t-l) - (1 - )2p2 g(t-2) 

f(t) = (i -0p2) g(t-1) - i - )2p2 g(t-2) 

subject to the conditions 

g(O) = 1 - 0p2 = f(0) 

+ (1 - 20)p2 _ _0)2p2
) (1
g(l) = (I - 0p2){1 


(l _ (I 0) .
 

These simultaneous homogeneous difference equations of order 2 have the 

following solution 

t + 2C 
g(t) = AC 1 + A 

f(1) = - 0 2 
-2) - 2p2 


1 t-12 2 t-2 t-2
 

f(t) = (1 - Op2)(A1C- + A2C2 ) - ( - 0) p (Al1 l + A2C2 ) 

where
 

=
C {+ ) + 3{1 + (1- 20)p22 -4(-0p-{l(1-2 1 

2]
(l2)P2}2hl0)
C2-~~~{1 + (1-20 )p2 {' } 
C2L0) -l g) ( 1 C0) - g(1)
 

A 2g(O) - g~i) and A2 C 1
 
C1 - C2 C - 2
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* -1 
Recalling that the (i, j)th element of = (t ( )) i is g( , then 

11 T+l, T+I ID )I= g('r-1)/r(T). 

Considering cofactors of each element of r (T) we have following 

representation of the bottom row elements of r*-l: 

9()= g (T l inT-1)1,r 


(T) = -)J+lpj+l g(T-J-2)/f(T) 3 = -1, ... , T-2
gT+l, T-J
 

and g(T) = (1 - 0) pT /f(T)ST+II
 

-
Thediagonal elements of p are represented by
 

(T) (T) g(T-1)/f(T)
 
= T+I,T+lIg1 1  


g22 =() T(T) = g(o) g(r-2)/f() 

33 T-lT-1
( T= ) = g(l) g(T-3)/f(C) 

gii g-i+2,T-i+2 g(i-2) g(-i)/f(r)
((T) = = 

(T) (T) g(%) g(%/f(t), if T+l is even
 
T+l T+ T+l T+I2 2
 
2'2 2 '12
 

and
 

(T) +1 {g(j - 1) 7/f(T) , if r+l is odd. 
|gT T
I i?+l 
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Define
 

k(9T)./ (T) g(-)/( - )T-i+l PT-i+l}
 
kg+l,i= g Tl g(--i)/(i - p }, 2 < i < T, providing
 

that p # 0, then by Ukita's theorem (see Greenburg and Sarhan (1959) [4],
 

Uppuluri and Carpentor (1969) [7], or Ukita (1955) [6]), we have
 

= 
gji ij = -+l,i gT+l,j(T) =(T)((i ) = i - 0)'- pi-j g(j-2) g(T-i)/f(T) 

where 2 < j < i and 2 < i < T, and 

U()= (T) =( - )i-i Pi- g(T-i)/f() 

gli p rilg / 

Note that 

CT) = () - ¢ p'/f(),
Il,T+I gT+l' PI
 

which is already given.
 

These results, associated with the above solution of difference
 

-l
 

equations, will give explicit representation to every element 
of *1


- 1 r*-?

The representation of r 

I directly follow from F-1= 
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-1
5. Convergency of F .
 

5.1 	 Definition of Convergency.
 

Vie trill prove the convergency of in the sense defined below.
 

Definition 1. (Matrix of variable order). A matrix, each element of which
 

can be expressed as a function of its order, is referred to as a "matrix of 

variable order". Denoting the number of rows by s and the number of columns 

by t, we also call "matrix of variable order s by t". Specifically, if the 

matrix is square and its order is denoted by t, then we refer the matrix to 

a "square matrix of variable order t" or simply a "matrix of variable order tV. 

-
In the terminology of Definition 1, we can say that r* 1 is a matrix
 

of variable order T+1.
 

Definition 2. (Convergency of a matrix of variable order). When G is a matrix
 

of variable order s by t, and one of s and t, say s, tends to infinity, if
 

every element of G converges to a unique function of t which remains finite
 

for any finite t, then it is said that G is convergent with respect to s.
 

Further if every element of G converges to a finite number when both s and t
 

tend to infinity, G is convergent with respect to its order.
 

Specifically, if G is a square matrix of variable order t and every
 

element of G converges to a finite number when t tends to infinity, then G is
 

said to be convergent with respect to its order (t).
 

That is to say, if we denote (i, j)th element of a matrix G of
 

variable order s by t by gij(s, t), then the convergency of G means
 

lim lim g (s t) g.
 
g
1Wt~w 
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for any i, j such that 1,< i < s, I < j,<_.t and g.j being finite. 

In the case of square matrix, this reduces to
 

lim g.j(t) = g.j
 

for any i, j such that 1 < i < t, 1 < j < t and g.j being finite. 
131
 

Our problem here is to prove this property concerning to F*-l
 

5.2 Propertie of g(t) and f(t). 

The elements of 1'* , as we have seen in the preceding section, depend 

upon functions g(t) and f(t) by specifying t appropriately. It is necessary
 

then to know some useful properties of g(t) and f(t) in order to prove the
 

convergency of r*-.
 

Assuming P2 1, we can prove following properties concerning to 

g(t) and f(t). 

Property (1): g(t) > 0 for any t >0.
 

Proof: Define 

= )(),C. = (ag(O) ­
2 

uhere/ 

then we have
 

A1 =a - P, A2 + 

C1 a + b, C2 =a - b. 

Since 0< 1, it is clear that
 

a > 0, a > 0. 
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Further we can show that b is a real number and hence b > 0 as follows: 

20)p2 1I- 40 - )2P24b2 = {1 + (I ­

_)2- + 02} _ 20(1 - )p4 
= {(1 0)2 +02}(1 - P2) + -{(1 

>{(1 _)2+ 0 2}(1 _ p2) + 1 1(, _ 0)2 +0 2}_ 20(1 - ) 

=I $)2 + 02 1 l _ p
2 

>0.
 

This implies b is real and hence b > 0, but since we assumed P2 A 1 and 

I - 0)2 + 0 > 0 for any 0, we know that b is strictly positive. 

We can also show that $ < 0 as follows: 

the nuterator of 0 = {i + (1 - 20)p 21g(O) - 2g(1) 

= (I - P2){1 + 0(0 - 2 P2} 

2 numerator 

of j is always negative under our assumptions. As the denominator of P is 

given by 4b and we already know that b > 0, 3 < 0 has now been established. 

With these notations, we can write g(t), t > 0, in the following 

way: 

)(a + b)t + (a + 5)(a-b)
t 

Since 1 + 0(1 - 20)P 2 > 1 - p > 0, we thus know that the 

-g(t) = (a 


= 2r S (t) aXbt-x - 2$ (t) axbt-x 
t-x: odd xt-x: even x 

where Z denotes the summation for all x such that t-x is even and
 
t-x: even 

S denotes the summation for all x such that t-x is odd.
 
t-x: odd
 



Now that a > 0, b > 0, o > 0, and P < 0, it is clear g(t) > 0 for any 

t such that t > 1. Further, it is also clear from the definition that 

g(O) > 0. Thus we have g(t) > 0 for any t such that t > 0. 

Property: (2): f(t) > 0 for any t > 0. 

Proof: By the notation above, we can write g(t+1) for t > 0 as following
 

way:
 

g(t+l) = (a-1)(a+b)t(a+b) + (ca+P)(a+b)t(a-b)
 

= a{2a F (t) aZbtX - 2g E (t) axt-
I
t-x:odd 	St-x:even x 

t - x + 	b{2' Z ( t) aXb
t-x:odd 

x b t- 2D E (t ) a -x} 
event-x: 


and hence 
f(t+1) = g(O) g(t+1) - (1 - 2p2 g(t) 

= 2[a g(o) - (1 - )2p2 - bg(o)] (t) xbt-x 
t-x: even
 

)2 P2 - 2[a g(O) - (1 - b g() (t) axt-t 
t-x:odd ' 

We already imow that a > 0, 9 < 0, a > 0, b > 0, and g(O) > 0, hence we further 

know that Pbg(O) < 0 and obg(O) > 0. We will show here ag(O) - (I - 0) 2p2 > 0 

to yield f(t+1) > 0. Take 

= 2[{1 + (i - 2_)p2}(1 - p2) _ (i -)2p2] 

- {i + C1 - 2)p 2j(1 ­
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= 2 g(l) - {i + (I - 29)P 2} g(o) 

- {the numerator of 8} 

Since the numerator of is negative, we have
 

a g(O) (1 - ) 2 > 0
 

which implies f(t+1) > 0 for any t > 0. This establishes f(t) > 0 for any 

t > 1. We already know that f(o) = g(O) > 0. Thus finally we have 

f(t) > 0 for any t > 0. 

From the properties () and (2) above, we have 

Property (3): g(t-i)/g(t) > 0 and g(t-1)/f(t) > 0 for any t > 1. 

We can also prove that 
Proprty 4) g(t-i g(t-2) 

Property (4-): g(t-) g- 0 for any t > 2, that is to say, g(t-1)/g(t), 

t = 1, 2, 3, ... yield a monotonically decreasing progression. 

Proof: Since 

g(t-i) '(t-2) {g(t-1)} - g(t) g(t-2)-- t)-g('t-1- g(t) g(t-l) ,t 2
 

and g(t) g(t-1) > 0 by property (i),we have only to show that 

{g(t-1)} - g(t) g(t-2) < 0. 

With the notations introduced before, we have
 

1{g(t-1)} - g(t) g(t-2) = {(c-e)(a+b) t + (a,.P)(a-b)t- 4 

.- P)(a+b)t + Cc+e)(a-b)t} 

- (a-13)(a+b)1 + (ct-i)Ca-b)t-2 
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( 2 )(a2 _ b2)t-2{(+b) - (a-b)}

= 

-4b2 2 2)(a2 _ b2)t-2
 

In this expression, we have 

4(a 2 _b 2 ) = 1+ (1_ 20)P212 
2 {1+ (1 20)p2 +4-)2P 

-2={i+_a Ci-2) - + -2$ + 4(i -$Arp 2 

= 4( -$)2p2 > 0. 

And further 

16b2((2 2) 4[rl + (1 -2) 212 40 S)2pJ2(a2- )
 

= 40( - 0)3p4(I - p2) > 0. 

2 12 
Thus we have a - > 0. Hence, 

2 - 2{g(t-i)} - g(t) g(t-2) = - 4b 2 2 - b 2)t < 0 

for any t > 2, which implies the property (4). 

From the property (4) it follows that 
g -1 (t-2)
 

Property (5): f(t)- Wt < 0, for any t > 2.
 

Proof:
 

f(t) g(t-1) 
( - p 2) g(t-i) - (I - 0)2p2 g(t-2) 

1 0I)2 p2. g }21/(-p2)-
=-0pi/(i Ci- ~g(t-1) J2)-


which implies that g(t-1)/f(t) decreases as g(t-2)/g(t-1) decreases. Meanwrhile,
 

by the property (4), we know that g(t-i)/g(t-1) decreases as t increases. Hen-e
 

g(t-1)/f(t) decreases as t increases. Thus the property (5) must hold.
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As is showm by the property (3), both g(t-i)/g(t) and g(t-1)/f(t)
 

are bounded from below. Therefore, the properties (4)and (5) imply
 

respectively that g(t-1)/g(t) and g(t+i)/f(t) converge to each limit value
 

as t tends to infinity. And we can show
 

lim g(t) =i
Property (6): 


t-~ M~) O
 

and hence
 

g(t-1) ,CI 

Property (7): lim g =t-) 22 
t 01g(O) - (1 - )p 

-
Proof: g(t-1) (a-O)(ab) 1 + (a+D)(a-b)t 

g-t-= (a_-)(a+b)tl(a+b) + ( a (a-b) 

t-i)1[a~ ,c)-l~
+btiI' + a+3K2) sn 

cl-Py- C 

Since C1 > O C2 > 0 and CI > C2' CIC 1 < I then lim ( 2 )t =0.
 

Hence
 

1 1
lim g(t-1) 

t Wg--) a+b 1
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Property (7) directly follows from this because 

g(t-1o)2 )2 g(t-2) -1 
ft) - (o) g-(tIJ 

Property (4) also implies that the maximum value of g(t-1)/g(t) is given
 

by
 

2

I - Op
g(O) 


)2 p2g-Il= (I - Op2 ){1 + (1 - 2)P 2 -_ (I ­

which is finite, and hence, by Property (5), the maximum value of g(t-1)/f(t)
 

is given by
 

1- Op2
 g(O) 


Thus, combining Properties (6) and (7) to these results, we have following:
 

Property (8): g(t-1) and g(t-1) are both bounded,

g(t) f(--t)
 

1_< g(t-1) g(o) 
c1 - -'__ - (--'_ t1 

and 22< ft) 
C1 g(O) - (1 - 0)2p ­

2g(g(a) 2 2 

2
{ (O)}1 -(1 -0)2 p
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Proof of Convergency 
of r
 

5.3 


Using the properties derived above on g(t) and f(t), we will first prove
 

several lemmas which lead to the proof of convergency of F
 

Lemma 5.1. (Monotonicity of g(r-i)/f(r))
 

g(T-i)f(r) is a monotonically decreasing function of for any i,
 

l< i < T - 1, where T > 1. 

Proof:
 

g(r-i) 
-g(r-i) 

fT) g(0) g(-i) - (l- 2p2pg(T-2)
 

g(T-i)/g(T-1)
 

g(o) - (1 - 2g(T-2)/g(r-l)
2 ?) 


We already know that g(T-2)/g(T-1) is a monotonically decreasing function of
 

T by Property (4). Hence, the denominator of this expression is an increasing
 

function of T. It will be enough, therefore, to show that g(l-i)/g(T-1) is
 

also a monotonically decreasing function of T, in order to prove the lemma.
 

Since
 

g(-i) g(T-i-i) g(r-2) g(i-i) - g(T-i) g(i--i-l) 
g(T-1) g(,r-2) g(,r-1) g(e-2) 

and g(r-1) g(T-2) > 0, it suffices to show that g( -2) g(r-i) - g(r-l) g(-i-l) <-0 

for any i > 2.
 

Using the notation introduced in the preceding subsection, it can
 

be written that
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g(T-2) g(-i) - g(T-l) g(-i-1)
 

= {(a-+)(a+b + ( )(ab) - {((a-O) (a+b) + ( s)(a-b) ­

- {(ap)(a+b)T-l + (ctl) (a-b )T-1'} {(a) (a+b) T'l + (+S)(a-b)Ti'l} 

- i ­= 2b(a2 2)(a2 - b2) l (a-b) i-' - (a b)i-l5 

We already know that a > 0,b > 0,Y2 _ 2 > 0 and a2 b2 > 0 and, hence, 

a + b > a ­ b >0. Therefore 

(a-b)i - l - (a+b)i -l < 0 

where equality holds only when i = 1. Thus we have 

g(T-2) g(T-i) - g(r-l) g(T-i-1) = 2 2 2)-i- {(a-b)i-1 - (a . j-!: < 0 

for any i > 2.
 

In passing, note that the case when i = 1 reduces to Property (5) of
 

the preceding subsection. This establishes the lemma.
 
- )
 

Lemma 5.2. (Boundedness of the principal diagonal elements of P*


We have the following relations among the principal diagonal elements of
 

"
 17* , that is, for each T > 1, 

.0() = >T) = > gc:T) ... == (T) _2 , 7 2 > 
1= T+l,T+l 22 T~I- >39-1, Tj2,-­iit 
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Proof: Suppose i > 3, then from the results in section 4 we have 

= r-ii,) = (T) {g(i-2) g(T-i) - g(i-3) g(T-i+l)})I/ / f(T)i-l'i-i 


The numerator of the right hand side in this expression is equal to
 

'
 {(- )(a+b)i-2 + (o+$)(a-b)i-2} {(a-)(a+b)T-i + (a+8)(a-b) 

- {(-)(a+b)i-3 + (+)(a-b)-33{(a+8)(a~b)T1+l + 

providing that T-1 > i-2.
 

Thus we have
 

(T) 2b a 2 (a-b2i- (a-b)(( ) i
 

Since we assumed T-1 > i-2, hence (T-i) - (i-3) > 0, and since a > 0, b > 0, 

> 0, we have a + b > 0. Further, since we know that a2 2 > 0, 

f(T) (g') - g(T) < 0 

and since f(T) > 0, this implies that
 

g( < -li-< for 1>3.•
11. for
Oi-l'i-1
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Combining this result to the results obtained in the section h, we have 

> () T) > 0(r) . g() =g ( 

==42 I-2,i--1 -i-lT-i-i gii T-i-2T-i-2 

Now consider
 

-g(r-l)
f Q(r) gQO) g(0) g(r-2) 

2g( -1) {g(o) g i} 

Since g(T-) > 0 and by Property (8) in the preceding subsection
 

we have 

< gKt-l\F 2 _,f (r) ( r) - g(T)) - Z L g(o)} ­
22 11 


But since
 

O2)2 (1 - OP2) {1 + (1 - 2)p2}+ (1 0)2 2{ )}- g(l) = (1 ­

-0(10 - ) p 2 (1 - p2 ) < 0. 
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and g(i-l)/g(l) > 0, we have
 

) - gjl)) < 0 

which implies
 

(') (r) (r) ('r) 
g1 = gr+l,r+l > g2 2  = gT " 

Furthermore, by Property (8) in the preceding subsection, we have 

Cr) (r) 2 (i¢2p23 

< g(O)/[ g(O)+ g(r-l)/f(r) 
­

which implies the boundedness of the all principal diagonal elements of
 

!
ip.-


Lemma 5.3. (Boundedness of gir 

(i) iF bounded for any i. j and r such that l < i < + 1 l< j T +, 
1.3 

and -! > 1. 

Proof: Becal:t that 

E(L - )( - :n) 

n 

From this, we know that the correlation coefficient between MVUL estimators
 

p(i) and i(j) of p(i) and i(j), respectively is given by
 

=-gij / dg.. g..A~)Pj

11(i Cr) Cr 

2
 
Since 0 < p < 1, we have
A 

ij 2 gi ) () 
Cr)(r (r) i one sel 

But by Lemma 5.2., both (i) and g.. are bounded. Hence g.. is bounded as well. 

o ,<'g)<g- g jj 

gi'a
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Lemma 5.4. (Monotonicity of (-i
 

-
For any i, such that 1 < i < i+l, if i is fixed, )decreases monotoni­

cally as T increases holds for any T > 1. 

Proof: Since 

gii g(i-2)g() = g('r-l)/f(r) 

and g(r-i)/f(T) > g(T-i+l)/f(T-+l) by Lemma 5.1, it is clear that
 

(i) (r+!) 
= 
(, g(i-2) g(r-i)/f(r) > g(i-2)(r-i+2)/f(+1) " 

WNts tbht this argument can be applicable even to such element or elements 
*-i
 

Chat are located at the center of the principal diagonal of F
 

-.3upcse +l is even, then there are two such central elements which can 

be written as 

IT (,T)
 
Zi2 1.2= I_ ++ = /f(T) 

2' 2 2 +" 

Now let vs denote i = ('r+l)/2 And suppose i is fixed, then this can be 

rewritten es 

9r) (T) - g(i-2)g(i-l)/f(r) = g(i-2)g(T-i)/f(r).gi'i = i+l,i+l
 

(r) ( +l) Sne 
Then let us compare g with i Since 

+1) gg--1i/frl 

(g+l)
gii g(i-2) g(T+l-i)/f(T+!)
 

and g(T+l-i)/f(T+l) < g(T-i)/f(T), we have
 

(,+i) (T) 
gii < gii
 



-35-


Next, compare g with g(+i) This time, g(.+l) comes to the unique
gi+l,i+l i+l, "g+l i+lc 

central element of the principal diagonal of new matrix with increased order
 

and is written as
 

1 2
-{(Tj(-~) (T+l) 
T+l + i1f 

gi+3i+l 
= -2 + -+1 

- {g<i-l)} 2 /<,4-l). 

Hence 

-
g2+l,(j) i+l = g(i-2)g(i-l)/f(T) > {g(i-l)/f(r+l) g~~~ 

g(i-2)/f(T) > g(i-l)/f(T+l).
 

Syrr" .. +1 is odd, then we have a unique central element which is 

given by 

gTT 

Now let us denote i = I + I, then
2 

Meanwhile
 

= i2) g(j) I (+l) 

-g(i-2)g(i-l)/'(TrI-). 
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Hence we have
 

g(T) = {g(i-2)}2/f(x) > g(i-2)g(i-1)/f(-r+l) 
= gII+l)
 

because
 

g(i-2)/f() > g(i-1)/f(T+t)
 

Thus gT) > (+) holds for any i.

11 J13.
 

Lemma 5.5. (Convergency of (1-0)tpt/g(t-1)) 

(1-0)tpt/g(t-1) converges to zero as t tends to infinity.
 

Proof: Since
 

(1-0)pt/g(t-1) = (i-)tpt/ {(a-8)(a+b)t
-1 + (a+ )(a-b)t-1
 

= (a-0)(l-)tpt/{(a-)2(a+b)t-1 + (a2-2)(a-b.)t"%
 

and, as we already know,
 

a+b > a-b > 0 and a2 -2 > 0
 

We have then
 

{l- )tpt/g(t-l)}2 (a-2(1-0)2tp2t/{a­8 )2(a+b)t-l + (a2-82)(a-b)t-1}2
 

< (1-0)2tp2t/(-) 2(a+b)2(t-1) 

= {(10)2p2/4} {(i-)22/c2}t­

< Q1-0)I2 /2 4 [l 1 _0 )2p2/l+(l-20 )P12]t-1 (5.1)
 

Meanwhile, since, as we already shown, 

{1+(1-20)P2}2 - 4(1-0)22 > 0 
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it holds that
 

4(1-0)2p2/{l+(l_20)p 2 < . 

Note that strict inequality holds here because of the assumption that p2 V 1. 

Hence, the right hand side of (5.1) converges to zero as t tends to infinity, 

so the left hand side converges to zero as well.
 

Using these lemmas, we can prove the convergency of r*
-l stated by the
 

following theorem.
 

* - *- lTheorem 4. (Convergency of p l ) r is convergent with respect to its order. 

Proof: From Lemma 5.2. and Lemma.5.I., it directly follows that each principal 

diagonal element, g i = 1, 2, .. , -+l, converges to some limit value. 

Now let us consider about the bottom row elements, g j J= 1, 2, ... ,t. 

For j > 2, we have 

g +lj( - _)T-j+l pT-J+l g(j-2)/f(c)
() 


Suppose j is fixed, then we have
 

(j 2)r (T.-j) /f(T) }2
=2f(i_0) T-j+i pT-j+i/g (T j) }

{g (T)• +l jlY=9 

={_OT-j+! T-J+I/(Ej 
2 (T)1
 

= {(i-) 3-phti1/g(T-j) {gj 

Denote t = 'r-3+l. Since CT) converges to some limit value when T tends to
 

infinity, applying Lemma 5.5., ve have
 

2 

(lm{ = lira (1-0)T-J+lp-J+l /g(-J) lir fg(T)}2) 


1 -_~ur gYJjd L 3 

- 1m{l.0)tt~~tl) 
2 urn {g(T)}2 

0.
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For j = 1, we have 

(T) = (1-0)Tp T /f(T) ={(l_)TpT/g(l)}{g(T-l)/f(T)} 

(T)
(1_O)TpT/g(~l)} 


Hence, in the same way, we obtain 

lim {gTr)l}2 = 0 

(r)
 

Thus for any fixed j, g(T) converges to zero when T goes to infinity.
 

(r)
 
Now suppose T-j+l is fixed, that is, g(T) . is such element that locates
 

1
 

finitely away from the principal diagonal with fixed distance. 

Denote i = T-j, which is fixed because r-j+l is fixed, then we have 

( T~ = (1-0)i+pi+g(r-i-2)/f(T) 

Now that i+l is fixed and g(r-i-2)/g(T) monotonically decreases as T increase's 

and is bounded from below, it is clear that T converges to some limit 

value for any j such that T-j is fixed. Thus, all elements of the last rowl 

* - l
of r converge to some limit values respectively.
 

As to the other off-diagonal elements, we already obtained the following
 

representation:
 

(T) (l_0)i-j pi-jg(j2)g(T-i)/f(T)
gij=
 

for such i, j that 2 < j < i and 2 < i < T, and 

(QT) ()i- 1 i-g(T-i)/f(T)
gil 
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Let us first consider the case when both T-i end t-j are finitely fixed.
 

Note that this implies that i-j is finitely fixed.
 

For any i, j such that 2 < j < i and 2 < i < T,
 

gij=
(T)= (_)i-j pi-j g(j-2)g(t-i)/f(T)
S


-
= (1-0)i-jpi j g(t-i)g(T-k-2)/f(T)
 

vThere k = r-j. Since i--j, t-i, and k are all fixed an& g(t-k-2)/f(T) is 

monotonically decreasing when T increases and is bounded, it is clear that 

(r)
 
converges to some limit value as T goes to infinity.
 g14 


Consider next the case when one of i and j, say j, is finitely fixed
 

while T goes to infinity and T-i is finitely fixed if j is fixed. Define
 

k = T-i, which is fixed, then we have
 

gIj
 

'where 

M = (l_¢)-(0-1)P-(U-1)g(j2) 

Since (l-)T-k-lpT-k-l/g(T-k-2 ) converges to zero, when T tends to infinity
 

by Lemma 5.5., and since
 

- r(T)
g(Z-2)g(T--k)/f(T)
g(k)g(r-k-2)/f(T) = 


where £ = k+2, also converges to some limit value when T goes to infinity,
 

we have 
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lir)= o 
iT -

Finally suppose both i and j are fixed, then since (l-O)-jp'-g(j-2)
 

is fixed and g(r-i)/f(T) converges to some limit value when T infinitely
 

increases, g()
ij 

converges to some limit value.
oi 

As to () we can write 

it as follows: 

(T) l 

i (1-0) -p - g'r-i)/f(r) 

i) ovretfo ovrec
If i is fixed, then it is clear that g.1 is h 


of g(r-i)/f(). If i is not fixed but --i is fixed, then define k = r-i,
 

and we have 

(T) {(lO) -kl1p-rk/g(r-k­gilI{g 2 )} .- g-k-2)g(k)/f(,r)} 

Since (l-)T'k-'pT-k-l/g('-k-2) converges to zero as T goes to infinity
 

and
 

g(r-k-2)g(k)/f(r) = g(T-&)g(t,-2)/f(r) = g(T) 

tZ 

where X,= k+2, also converges to some limit value when r tends to infinity, 

g(T)
(l converges to zero when T goes to infinity. 

Thus all off-diagonal elements converge to each limit value as T tends 

to infinity and this completes the proof of Theorem 4. 

Now that the convergency of r has been proven, we next evaluate the 
*-i%
 

limit value of each element of r ., Let us begin with the diagonal elements 

of r We already know that 
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(r) () - g( -I)/f () 
gli OT+l,T+l
 

Hence Property (7) in the preceding subsection directly yields the following
 

liitvaueorCi) (T) _.that is,

limit value of (gll= g(+lr) 

lim g(,) lim g( = = C1/{Cg(O) - (l'0)2PrT) lim g(r-1)/f(T) 


l/{g(O) - (l-¢)2p2C 
1 

For i ouch that 2 < i < T , the principal diagonal elements of F can be 

represented by 

( g(i-2)g(-i)/f( ) 

If we put k = '-i+ 2 , we have 

g(i-2)g(,-i) = g(k-2)g(-k) 

Hence, without loss of generality, we can assume i is finitely fixed. Then 

im g( ) = g(i-2) lim g(.-i)/f(r) 

Since
 

g(r-i)/f(r) = (,r -i)g(T- l ) 

gO)-4-# 2 g(rT-2)/g( -l) 

and we already know that lim g('-2)/g(C-l) = C11, it suffices to evaluate
 

the limit value of g(r-i)/g(r-l). Since
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gG--i)/g~~~~r-l) abt~--3 a+(i13(a)/{a )Ca)T-l )(ab)}
(ce)(a+b)T- I a+4-(a-b) 

__________ -a+b)(-I(b)b3a- b t-1 

and (im = (ab)T = 0, because a+b > a-b > 0, we haveah)T iim 

"(
ln g(T-i)/g(-l) = (a+b) U -1 ) = C!U-1)
 

Hence we have 

lim g i) g(i-2) C-(±') 1 

-1 -1 ,PC2 - / g O 

Further,
 

lim lim g AC'/~0 (10)2plc,'}
i= 1 


It can be easily shown that this gives the limit value of the element which
 

locates at the central position of the principal diagonal of r
 
*-l
 

Let us consider about the bottom row elements of r next, which is
 

represented as
 

C0) i.-pIi+i g(T-i-2)/f(T)
 

for 2 < r-i < T, or for 2 < j < T 

(T)=(1_0)T-j+1P'-j+1g(j_2)/f(T).
 
gt+l, j 
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If we assume k T-i is fixed, then we have
 

Cr) r-ki- -r-k+l
 
(1-0) -kp g(k-2)/f(T)
( ), = 

while 

9T-+Jl, j 

where Y = T-j which is fixed. 

Hence, assuming i or j being fixed in each case, it suffices to consider 

CT) and gr+) .,respectively. 

From the result just obtained above, we have 

ltn g(,-i-2)/f() = 0 -(i+l)/{g(o) - (-0) 2 201} 

Hence
 

4L-r)
Ji, - 0)i+l 1-+lC!(1+1)/ {g(O) - (1-0)'p, 1j 

Meanwhile, since
 

9 (,r) {(l0) 'FJ+lpFJ~l/g(r-j-2)} {g(i-2)gG,--i-2)/f(r)}-rlj 

+ j 

and !ira (1-0) 'J+lp'-J+l/g(r-j-2) = 0 by Lemma 5.5, we have 

lim -(T) 0
 

,rco g-Iy J 
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Further, since C2> Cc11 22 = (l-0) p 

{(-J1.)p/0 1} < 1 

and so that
 

lir lir g ) = lim g(T) 0 

(1-+)+l 1 (i+)because lim i = 0. 
i -cM 


If j = 1, from
 

r) = _)2P2/f(2) = 22T+l; 1
 

and i j(-O)2p2/g(r-l)y = 0, it directly follows that 
T c'€ 

CT)
 

Finally let us consider about other off-diagonal elements. It is already
 
(T)
 

shown in the proof of Theorem 4 that g.. converges to zero if i and r-j are both
 

fixed and T goes to infinity, or j and 1--i are both fixed and T goes to infinity.
 

We also know that both '--i and T-j being fixed implies i-j being fixed which is
 

also implied by both i and j being fixed. Hence as long as i-j is fixed, whether 

both i and j are fixed or both T-i and T-j are fixed is a matter of convenience. 

Because if we assume that k = T-i+2 and t = T-j+2 are both fixed, then we have 



() Sk -&-k -(T) 

gi ('0 p g(k-2) g(r-t) -%( 

Hence we will assume that both i and j are fixed. Then for i > j > 2, we 

have 

=
T- j (1-0)'j p g(j-2) lim g(-i)/f(r) 

=(1-0)'-j p g(j-2)&(l) {g(0) - 2102 11 

(). j pi-i 0-(i-j+l) +fA1 A2(C2/ )3
1 /fg(0)) 
 -102pC1
 

If j = 1, we have 

9()= T) 1 -0) i p - g(T-i)/f(T) 

Hence, for finitely fixed i, we have 

lim gOT) = ('-0) j-' p1-l/{g(Q) - (1-0)2 P2 -1 
T-ec1 

Further, since j(l-0)pl < 1, we have 

lir Mm ()i 
= 0. 

i- T-

Thus we have the following theorem.
 

-
Theorem 5. Each element of F* I has the following limit value respectively: 

Qr = T/ _ P2 C -1g() ( ) g(0) (10)2 


1
(T) (T) 1AC (2i }/{g(0) _ (1_0)2= A- l P2 c7} 

lim g.. = lira g 2 A C + 2 2 
T- 1 ,-1 fT- - -+2 T 2 1 he+2 2 < j 


where 2 < i < T
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limger)g(Tg(r) Ji (_) i+l il 1+l)/ g(O) - (10),, C-1 
T -iT+l
T+,-i 

where 0 < i < T-2, 

lira g( l ( 0 

T i 


TT+ I -' T+1, T-i 

where j is finitely fixed and j > 1 and T > i, 

Ja g T) (%) /g()-) ( Cuim g (T) = = p -'*"' )2 P2 
T ii 7 11il
 

.ir ('T) = Ji- 8(J) = (-0)' iJ {A +A(C 2 ­

r 2 2 
[g(o) - (1-0) p -l} 

where i-> j > 2, and 

lim lim g ) = lim lim g) =0,
ji- T-o i-- T-

where j > 1 and j is finitely fixed. 

So far, throughout this paper, we have assumed that 0 < 0< 1. We will 

-
consider now the limit value of each element of' F* I when 0 approaches zero
 

or 1.
 

Directly substituting 0 or 1 for 0, we have the following results:
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2 
lim C2 = p

limrC = 1, 

lim C1 = 1-p, 	 lim C2 = 0, 

lim g(0) i-p 2 

lim g() 1, 

.1}
limcg(o) - (()-1 	 himgo)- ( )- ill ­

lim g(l) = 1, 	 lim g(1) (l-p2)2 , 

lir A1 = 1-p2
lir A, = 1, 

lim A2 = limA 2 = 0, 

and, from these results, we 	also have
 

+ I
 
lim f(T) = (i-p2 )Mm (T) = 1-p , 

and, for any t,
 

t + l 
1 and lira g(t) = 	 (l-p2)

lim g(t) = 

From these results, it follows that
 

im gQT) n.iM gQT) = a/(l-p2) 

for any i such that 1 < i < T+l, 

l m g!.) = pi'J/(1-p2)Ii
0 0 
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for any i,j such that 1 < j < i < T+I, and
 

lira gT) = 0 
'j
0>1 


for any i,j such that 1 < j < i < T+l. 

= 0 or = i as long as p / 1. 
Note that r* is non-singular even when 0 


So that the limit value of r*"l just obtained above when 0 goes to 0 or 1 actually
 

gives the element of r*-1 when =0 or 0=1 respectively.
 

Since
 

E - ) - )'= °2 (-2r-1
 

02 (1_p2)r*­

our results imply that, when 0 = 0 or 0 = 1, the variance of MVUL estimator P(t) 

of p(t) is equal to a /n and the correlation coefficient between p(i) and I(j), 

where i / j, is equal to pli-il when A= 0 and equal to 0 when 0 1. And 

further, this implies that MVUL estimator of p(t) is given by simple arithmetic 

mean of sample observations on tth observations only, when 0 = 0 or 0 = 1. So 

our procedure derived in this paper can be applicable even when 0= 0 or 0 1. 

This fact can be used effectively to prove the existence of optimal
 

( )

value for given p and T. Suppose 0 = 1/2. Let us derive g1 = g(')

11 T+' T+l
 

for this value of (. Note that
 

11 T+I,T+l g(T-l)/fQT) =g(T-l)/{ (l_0p2) gQT.l) - (l_0)2 p2 g(T-.2j9()= 9(T 


= ll{(l-Op2) -(10) 22 g(r-2)/g(r-l)} 

A C2)T-2 }]+A
= 1 ( p2) 22(l_)2 2r-2 2 

L. jl ~ 1 J / 1 1
 



and also note that A1 >A 2 > 0 and C1 > C2 >Q. Thus we know that 

A2 )T-2 A2 T-2 
1 + f > 0 and 2C + - • 2C2 > 0. 

for 0 = 1/2, we have 

c (i+ - 2)/2 ddC = (i /1 - p2/2. 

Hence, from the fact that 

>
A-
P1 +2A 2 SA T 2 

- +L ff (2C3 -1) + (2C2 -1 AA 2Y 1 

1~ 
 11
 

we obtain 

{+Ag C2 T-2- A2 C 21-

A	? (-C) 2}/{2C1 + 2 1 ©_) I <1 
1 1i 1 1 

Meanwhile, since
 

(1-Op2 ) = 1 - p2/2 and 2(1-0)22 p 2/2 

for = i/2, we have 
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g('0 

11 T+l, T+l L -A 1u~ AC9 J. 

(Qr). Fl p2/2) - 22 {n. + A2- T2}/ 2 2 ­

< {l p/2 -p 2/21}-2 


2 2-­

2 1 
This implies that the vari-nce of 2(z) is less thr-n a /n for $ = 2 

Since f(T) > 0 for any , 0 < 9<1, providing that p2 / 1 and g(r-1) and 

f(T) are both unique functions of 9,g(l) = (r) is a continuous function of11 T+I T+I
 

in 0 < 9 < 1. Further since g( ) (') is bounded in the same domain,
 
-= 9T+IT+I 

the fact that
 

9(T) (T) <11(l ­

implies that there exists such a value of 0 that minimizes the value of
 

11T+I T+l"

(T) 1 > g9r))

Furthermore, since g[1 ) 9(T) > g .) for any i such that 2 < i < T,1 11= T+l T+l I 

and g ) is continuous end bounded, the optimal 0 exists for any objective
() 

function which is an increasing function of every gii , for instcnce, 

for any weighted mean of gTA's. 

Though it is difficult to derive a general or exact solution for optimal
 

9 even when T is infinitely large, it is always possible to derive the optimal
 

value of 9 numerically for any given p or T. Because, now that we already know
 

the explicit representation of g which represents gl) as a function of 9, p,
 

and T, and since the number of feasible 0 values is finite because 0 must
 

satisfy such restrictions that 0 < 9 < l,and k = $(m+2) is an integer such that 

1 < k < r+l, and further ni+2 is less than or equal to n, we can actually 

calculate the value of the objective function for every feasible 9, assimling
 

course, we have access to a high speed computing syztei. 
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6. Concluding Remarks
 

We derived the MVUL estimator of population mean vector in a rotation sanplin
 

design, which is an alternative representation of classical Yates - Patterson's
 

estimator and is nothing but a specification of Aitken's generalized (or weighted
 

least squares estimator. 

Now that it can be assumed that the variance-covariance matrix of observationr 

is known, it is possibly well-known fact to most statisticians that the MVUL 

estimator will be given by Aitken's 'generalized least square estimator. Our 

essential contribution here, henceforth, is considered to be that a specific 

representation, p = F'- V*, was given to this estimator through the explicit 

specification of the inverse of variance-covariance matrix. This representation
 

is simpler than the usual representation of Aitken's estimator in the sense that
 

]Y has much more reduced order than the original variance-covariance matrix
 

which must be used if we would work through the usual and general formula of 

Aitken's estimator.
 

Further, the explicit representation of each element of r*-I which was also 

given in this paper makes it possible to give exact proof of convergency 
of r*-I
 

and hence convergency of the variance-covariance matrix of estimated mean vector
 

as has actually been carried out in this paper. And it also provides a way to 

solve numerically the optimal replacement ratio, 95, in a more general and more
 

exact manner than those which has been advocated so far, because such opbimal 95 

can be derived, according to our method, for more general classes of objective 

functions. This derivation can be done not only for the asymptotic variance of
 

estimator when T is infinitely large but also the exact variance formula for 

finite T.
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It is true, however, that Yates - Patterson's method still has great merits
 

especially when estimating only the current population mean, in other words,
 

population mean on the last occasion. Because in this case, according to Yates­

Patterson's method, we do not need to keep records of all previous observations,
 

as is required by our method, but we have only to keep records of observations,
 

the MVUL estimator, and coefficient %h-i obtained on the last preceding occasion.
 

The computation procedure is so simple that we hardly need to use a computer.
 

Furthermore, through this simple procedure, we actually use all information in
 

the past, which can be even the infinite past if we have really kept estimating
 

since that infinitely past occasion. But there are many surveys which propose
 

to provide a time series of estimates for some specified period. So the importance
 

to improve the precision of estimates on previous occasions still exists in many
 

practical situations. We believe that one of our method's merits is that it
 

provides improved estimates on all previous occasions simultaneously when tk-elfft7L 

estimate on the last occasion is obtained and this procedure, furthermore, looks
 

even simpler than the one proposed by Patterson.
 

As a matter of fact, however, if the number of occasions is too large, rche
 

-
inversion of '*becomes practically impossible. But the convergency of F* makes 

it possible to restrict the number of occasions to some large but still finitc 

number so as to be permissible to computer capacity. It is also possible to 

save records by using the formula of explicit representation of each elemen;- of 

though it might increase the computing hours.
 

Finally, derivation of the inverse of variance-covariance matrix, which ras 

done in the course of derivation of our estimation formula, makes it possible to 

derive the maximum likelihood estimators of P and a2 (assumed known herein) assmi 

multivariate normal distribution. Another paper on this topic is under preparatioi 
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