@ hitps:/intrs.nasa.gov/search.jsp?R=19700022113 2020-03-12T02:23:19+00:00Z

N 0 3142 4
NASA CR170447

Technical Report 70-106 January 1970
NGL-21-002-008

AN ANALYSIS OF SOME GRAPH THEORETICAL
CLUSTER TECHNIQUES(l)

by
J. Gary Augustson
and Jack Minker(z)

University of Maryland
College Park, Maryland

UNIVERSITY OF MARYLAND
COMPUTER SCIENCE CENTER

COLLEGE PARK, MARYLAND

(1)

(2)

Technical Report 70-106 January 1970
NGL-21-002-008

AN ANALYSIS OF SOME GRAPH THEORETICAL
CLUSTER TECHNIQUES(l)

by
J. Gary Augustson
and Jack Minker(z)

University of Maryland
College Park, Maryland

The computer time for this paper was supported by National Aeronautics
and Space Administration Grant NGL-21-002-008 to the Computer Science
Center of the University of Maryland.

Part of the work was sponsored under National Bureau of Standards
contract No. CST-821-5-69.

The authors wish to express their appreciation to Mr. H. Edmund Stiles
who generously made the corpus available to us in machine readable
form., We also wish to express our appreciation to Prof. C. C. Gotlieb
of the University of Toronto for calling our attention to the Bierstone
algorithm described in this paper.

ABSTRACT

This paper explores several graph theoretic cluster techniques aimed
at the automatic generation of thesauri for information retrieval systems.
Experimental cluster analysis is performed on a sample corpus of 2267 documents.
A term-term similarity matrix is constructed for the 3950 unique terms used
to index the documents. Various threshold values, T, are applied to the
similarity matrix to provide a series of binary threshold matrices. The
corresponding graph of each binary threshold matrix is used to obtain the
term clusters,

Three definitions of a cluster are analyzed:

1. The connected components of the threshold matrix.

2. The maximal complete subgraphs of the connected components of
the threshold matrix.

3. A cluster of the maximal complete subgraphs of the threshold
matrix, as described by Gotlieb and Rumar [15].

Algorithms are described and analyzed for obtaining each cluster type.
The algorithms are designed to be useful for large document and index col-~
lections. Two algorithms have been tested that find maximal complete sub~
graphs. An algorithm developed by Bierstone [6] offers a significant time
improvement over one suggested by Bomner [7].

For threshold levels, T 2 0.6, basically, the same clusters are developed
regardless of the cluster definition used. In such situations one need only

find the connected components of the graph to develop the clusters.

TABLE OF CONTENTS

Chapter

1. Introduction..,c-seceossossecossonosocooscsoscsanscssss e

2. Related Work in Gluster AnalysSiS...c.sooceetccncconssnan e
2.1 General Cluster TechniquesS......civeceoenn N ces
2.2 Graph Theoretical Cluster TechniqueS......oooveiaiuens .

3. Experimental SySfeM..ececeoscecesosossocossnsssosoncnnss veees
3.1 Overview of the Experimental System.....cececavsensns cen
3.2 Description of the COrpuUSc..cicescvassncactaossonscsssss
3.3 Selection of a Similarity MeasuUre...seessossscocscsonsas
3.4 Creation of the Threshold MattiX...cieescovoovononaosss .
3.5 Constructicn of the Connected ComponentS......... Ceeennn
3.6 Development of the Maximal Complete SetsS.......... e

3.6.1 Impi=mentation of the Bierstone Algorithm for
Producing Maximal Complete Subgraphs.....c.eoess.

3.6.2 An Alternative Implementation of Bierstcne's
Algorithm to Conserve 5torage SpPacE..cssiesvenes .

3.6,3 Experimentation with Bonner's Method for Cluster

Production.eceoececescocconoscaosssoosscsnoscaasoos
4. Analysis and Comparison of Bierstcne's and Bonner's Algorithm
5, Refinement of Clusters via Gotlieb and Kumar Algorithm.......
6. Experimental ResultS..ececececesorcocssssasosassacsocosssssns

6.1 Structural Composition of ClustersS....eooceeoccccesanses
6.2 Summary of Major ConclusionS...ccceeecrciasoscsnascsans .

APPENDIX 1 - Bierstcne's Algorithm for Finding Maximal Complete

SUBBTAPNS . s veeoesovocosvsoosrcosnoscassnascacssnssos
APPENDIX 2 - Bonner's Cluster-Building Algorithm......... feeeaees
APPENDIX 3 - Structural Composition of Threshold Matrices........

I HY
BIBLIOGRAPHY .. cocevcecocsoacsacssssscscscooassasssess cesssasesanes

11

16

17

24

26

27

KEY WORDS AND PHRASES

Cluster analysis, graph-theoretic, connected component, maximal
complete subgraph, clique, binary threshold matrix, information storage

and retrieval, similarity matrix, term~term matrix.

OR CATEGORIES: 3.71, 5.32

1. Introduction

One of the major problems concerning a user of present day information
systems is how to extract information pertinent to his needs. The rare
individual who knows exactly what he wants, and is aware of what the system
contains, will encounter few problems. The majority of users, however, are
usually unable to define all items of interest to them, and are not intimutely
familiar with their collection. Even if an adequate description of the type
of information desired can be specified, most users are not sufficientlv
familiar with the document collection to assure the retrieval of documents
relevant to their needs.

In most information systems, whether automated or not, some relationship
can be established between the various terms used to index documents.
Extensive experimental work has been undertaken in order to develop statis-
tically determined term associations. However, work performed by Salton [35]
and Lesk {23] on o limited sample document collection indicates that a well
constructed thesaurus may prove to be the best method of exhibiting term
associations. If this observation, based on a small corpus, proves to hte
true, the problem remains that, even though a relationship between index terms
generally exists, very few thesauri of index terms are available. How, then,
shall such a thesaurus be generated?

One approach is to compile a thesaurus manually, as for example, the
thesaurus for the EURATOM nuclear energy document collection. The result is
a well structured thesaurus represented in both list and graphical form [14].

The construction of such a thesaurus is a complex, time consuming operation.

Highly skilled subject—-area specialists must be used in order to insure proper

construction. For document collections larger and more general in nature than
the EURATOM collection, subject—-area specialists covering a wide variety of
fields must be used. Problems may be encountered in subdividing the document
collection into subsets that will be meaningful to the individual experts. The
use of such a wide range of specialists may be not only impractical economically,
but physically impossible. During the time required to construct such a
thesaurus, the user of the information system will suffer due to the lack of
information about the document collection which is available.

Experimentation in the field of cluster analysis is aimed at providing
the user of an information system with an automatically generated thesaurus.
The thesaurus produced could provide a two-fold purpose. First, it could
constitute a reasonable representation of the interrelatedness of the index
terms that could be used to query the document collection. Second, if a
better thesaurus is desired, the term relations established by a clustering
scheme could provide an original partition of the terms which subject-area
specialists could then refine. Many of the tediocus and time consuming problems
of thesaurus construction for large, general, document collections thereby
could be avoided.

An automatic, or semi-automatic generation scheme should prove valuable
for large, general, document collections about which little information
concerning the specific contents is known. It is to this problem that this

paper is addressed.

2. Related Work in Cluster Analysis

2.1 General Cluster Techniques

Many individuals have made substantial contributions to the field of

cluster analysis. Ball [4], surveys many of these efforts. In this section,
we briefly note some of the previous contributions to developing clusters

of terms in a document collection. Tanimoto, [34, 43], in the late 1950's,
studied aspects of this problem. We use Tanimoto's similarity measure in
this study.

In 1960, Borko [8] used the principle of factor analysis to develoy
clusters for a 90 x 90 correlation matrix. Stiles and Salisbury [42], have
developed a so-called B-coefficient, to subdivide term-profiles into distinct
sets. Baker, [3], in 1962, suggested the use of latent class analysis to
develop clusters.

Needham [25], has experimented with cluster finding techniques using what
he calls arithmetic cohesion, and terms his process 'clump' finding. Sparck-
Jones [39], at the Cambridge Language Research Unit has extended Needham's
work, and has experimented with a set of 641 terms.

Recently, Dattola [13], has developed a cluster method based on an
adaptation of a technique suggested by Doyle [14]. Dattola's technique assures
that his method will converge to a set of clusters, whereas Doyle's approach

need not terminate.

2.2 Graph Theoretical Cluster Techniques

The original suggestion to use graph theoretical definitions of a cluster
was made, perhaps, by Kuhmns [22] in December 1959. Kuhns, in his paper,
defines the maximal complete subgraph of a graph as a cluster. A maximal
complete subgraph of a graph is a subgraph in which every pair of nodes in
the subgraph is connected by an edge of the graph. Kuhns does not provide

experimental results in his paper.

Parker-Rhodes and Needham [27,30,31] have defined what is called a G-R
clump, an iterative procedure having some graph theoretical relations. Dale
and Dale [12] have experimented with this technique.

Sparck-Jones [37] has reported on an extension of clustering work performed
by herself and Needham. Clusters were produced from a data base of 712 terms
using four definitions of a cluster, which she terms (1) strings, (2) stars,
(3) cliques (which are termed maximal subgraphs in this paper), and (4) clumps.

Gotlieb and Kumar [15] also use the concept of maximal complete sub-—
graphs forﬁdefining clusters. They employ the Library of Congress Subject
Heading list to develop clusters of terms rather than a document collection
from which one develops a term—term matrix. An important aspect of their
work is the suggestion to form clusters of the clusters. We experiment with
this approach in this paper.

Other work in cluster analysis is referenced in the bibliography.

3. Experimental System

3.1 Overview of the Experimental System

The experimental work reported on in this paper is presented in a more
extensive paper [2]. The work consisted of the development of a data base,
consisting of a set of documents and a set of terms used to index the docu-
ments. A similarity matrix is constructed from the document-term matrix
to show the interrelatedness of the various index terms. The similarity
matrix Has entries between 0 and 1 in the matrix. Various threshold values

are applied to the similarity matrix to produce the threshold matrices upon

which the clustering process is performed. The connected components(l) of
the threshold matrices provide the weakest definition of a cluster; the max-
imal complete subgraphs of the threshold matrices provide the strictest
definition of a cluster. (Fig. 1 illustrates a typical cluster graph, and
the definitions used for a cluster.) Some combining of the maximal complete
subgraphs is performed in order to provide a definition of a cluster inter-
mediate between the connected components of a graph and the maximal complete
set of the graph.

A corpus consisting of 2267 documents and 3950 unique index terms, and
concerning a wide variety of topics was used for the study. A term-term
similarity matrix, consisting of elements aij’ using the Tanimoto [34] sim-
ilarity measure, was then constructed. The element aij of the term—~term
matrix represents the degree to which terms i and j of the document collection
are interrelated. A series of binary threshold matrices were constructed
from the resultant similarity matrix for values of T = 0.1, T = 0.2, T = 0.3,
T=0.4, T= 0.5, T=0.6, and T = 0.7. If the entries aij of the similarity
matrix were greater than the threshold value T, then the corresponding entry
of the threshold matrix was set to one; otherwise, it was set to zero. The
binary symmetric threshold matrix is equivalent to an undirected graph where
the terms are the nodes of the graph, and where an edge exists between nodes
i and j if the threshold matrix has a one in the (i,j)tb position. Algorithms
developed by Bonner [7] and Bierstone [6] were modified and implemented to
find the maximal complete subgraphs of the connected components of the thres-
hold matrices. Maximal complete subgraphs were produced from threshold

matrices for T = 0.4, T = 0.5, T = 0.6, and T = 0.7 due to the large size of

the connected components found for values of T<O0.4.

(1) A connected component of a graph consists of the set of nodes that are
mutually reachable by proceeding along the edges of the graph.

5

Legend
1.

2.

3.

Sabotage

.Legal///// Recruitment

Bombers
Propaganda
/// Stritegic Missiles
Clandestine —Guerrillas
Insurgency. /éfi////faramilitary
Motivations

The graph has two connected components - the components:

{Bombers, Strategic, Missiles} and

{Legal, Sabotage, Recruitment, Propaganda, Clandestine, Guerrilla,
Insurgency, Paramilitary and Motivations}

The graph has four maximal complete sets:

{Bombers, Missiles, Strategic}, {Legal, Sabotage, Recruitment,
Propaganda}, {Propaganda, Clandestine, Guerrillas, Insurgency,
Paramilitary}, {Motivations, Clandestine, Guerrillas, Insurgency,
Paramilitary}. |

The graph has three grouped maximal complete sets:

{Bombers, Strategic, Missiles}, {Sabotage, Legal, Recruitment,

. Propaganda}, {Propaganda, Clandestine, Guerrillas, Insurgency,

Paramilitary, Motivations}.

Fig. 1 - Typical Clusters

-G

Using the procedure suggested by Gotlieb and Kumar [16], those maximal
complete subgraphs which had a significant number of common terms were
grouped together to form new clusters. These clusters provide an inter-
mediate definition between the clusters defined by the connected components
of the threshold matrices and those defined by the maximal complete subgraph
of the connected components.

The clusters produced from the several threshold matrices and the
three cluster definitions were analyzed and compared as to general composi-

tion and content.

3.2 Description of the Corpus

The corpus used for this study consists of 2267 documents composed
basically of research, development, test and evaluation information from
22 broad subjects fields of science covering a five year period from 1963
to 1968. The majority of the documents are from the fields of mathematics;
physics, and communication. For each document, the author, title, abstract,
and descriptors were available. For the work reported on in this paper. we
are concerned only with the title and the descriptors.

Approximately 90% of the documents were assigned descriptors at compo-
sition time by the author. The remaining documents were indexed by nonsubject-
matter-oriented individuals with the aid of a master descriptor dictionary.
Nearly one-fourth of the contributing authors had access to this master
descriptor dictionary while indexing their own documents. Regardless of
who performed the initial indexing of the documents, all indexed documents
were post-edited by library personnel prior to insertion into the collection

in order to assure proper indexing. The authors of this paper were not in-

volved in this process, but merely use the results of the above efforts.
As this corpus was already in machine readable form, the tedious work
of gathering and encoding a representative set of documents was avoided.
The corpus is a subset of a much larger collection composed of documents
from the same subject areas. Though no previous experimental work had
been performed on this particular set, it was possible to consult with in-
dividuals who were better acquainted with the contents of the entire collection

to determine if the clusters produced were meaningful.

3.3 Selection of a Similarity Measure

Some measure of the relatedness between terms used to index the docu-
ments of the data set must be established in order to perform clustér
analysis. Several different similarity measures have been proposed [7,12,
18,21,41,43). Since in-depth comparisons and evaluations concerning various
similarity measures have been conducted before by other authors [18,21,36],
only one similarity measure was studied. Sparck-Jones [37], in particular,
comments that the several similarity definitions used in her cluster pro-
duction experiments did not appear to give radically different results.

The Tanimoto [34] similarity measure was used for this work. Tanimoto

defines the similarity measure between two index terms i and j to be:

W sGE.3) = — 1J

where uij represents the number of documents in which both i and j occur as
index terms, and G4 represents the number of documents in which term i is

used as an index term.

3.4 Creation of the Threshold Matrix

To find clusters according to the three definitions considered, it was

necessary to determine to term—term association matrix. If C = [, .] re-
1]

(L (2)

. T . .
presents the document-term matrix , then C°. C is the term-term matrix .

When the term-term matrix is suitably normalized as, for example, suggested

(3)

by Tanimoto, the entries of the normalized term-term matrix have values
between 0 and 1. By applying a cut—off value of T to the similarity matrix,
whereby two terms are considered associated if the entries in the similarity

matrix are 2 T, this matrix is converted into a binarv matrix-: termed the

threshold matrix.

The actual production of the term~term matrix was achieved by a series
of programs which avoided the problem of multiplying large matrices. A
description of this program is given in [2]. The program is applicable to

large matrices and is unrestrained by the size of the data set.

3.5 Comstruction of the Connected Components

In developing term clusters for large document collection, it is help-
ful to first reduce the graph in question to its connected components. Since
elements of clusters must be interrelated to one another, it would be waste-
ful to attempt to find clusters between terms in separate connected components.
By reducing a graph to its connected components and handling each component
as a distinct graph, term relations of large document collections can be

reduced to a size that is manageable within the core limits of a conventional

(1) An n x m binary matrix representing a data set of n documents and m
unique index terms. If document i is indexed by term j, then Ci,=l,
otherwise C, ,=0. J

13

(2) An m x m symmetric matrix where C,, represents the number of documents
which have been indexed by both tetms i and j.

(3) Also referred to as the similarity matrix.

-9

computer. The connected components are further required since they provided
our weakest definition of a cluster.

An algorithm was developed which produced the connected components of
an input graph and was dependent only upon the number of nodes in the input
graph. The output connected components provided both resultant clusters
and distinct divisions of the data set for input to the maximal complete
subgraph algorithms. The algorithm developed is described in [2]. It is
an adaptation of the algorithm developed by Galler and Fisher and described
in [19], p. 353.,:The adaptation permits one to find connected components
in large graphs; A graph with 2084 nodes and 6630 edges developed 475 con-
nected components in 1.87 minutes. This time includes the time required to
input the graph from magnetic tape, and output the connected components onto
magnetic tape. For all graphs discussed in this paper, the times required

to find the connected components in the graphs are given in Appendix 3.

3.6 Development of the Maximal Complete Sets

Several algorithms have been developed for generating maximal complete
subgraphs of a graph. These algorithms were introduced by Harary and Ross,
Bierstone [6], and Bonner [7). Apparently, the Harary-Ross algorithm was
the first developed; however, it involves the computation and manipulation
of large matrices for large input graphs. The Bierstone and Bonner algo-
rithms are more adaptable to cluster analysis for large data sets and, as
a result, were implemented for our work. Both the Bierstone and the Bonner
algorithms as reported in the literature were not complete. The algorithms
are described in this section and presented in detail in the appendix. Input

to the two algorithms consisted of the connected components of the threshold

-10-

matrices produced previously.

3.6.1 Implementation of the Bierstone Algorithm for Producing
Maximal Complete Subgraphs

The following algorithm, developed by Bierstone [6], was used to pro-

(1)

duce maximal complete subgraph clusters The algorithm required a minor
modification in order for it to work. To the best of our knowledge, the
algorithm has not been implemented and used on an actual data set previous.y.
It was selected as the major cluster producing algorithm for this paper.

The representation of a graph is input to the algorithm with each of
the nodes pj, (3 = 1,...,n), assigned a unique number used in all operations
in place of the actual nodes. For each node pj, there is associated a set

M., where
J

Mj = {pk | the pair (Pj’pk) represents an edge of the graph
and k > j}

It is crucial to the operation of the algorithm that Mj contain only nodes
Py where k > j (i.e. - if node number 7 were connected to nodes 3, 5, 9, 11,
and 13, the corresponding Mj entry would be M7 = {9, 11, 13}). The sets

Mj correspond to the upper triangular feorm of a matrix.

We further note that the same algorithm can be used to find the maximal
complete set of an acyclic directed graph; that is, a directed graph without
cycles. One first performs a topological sort (see [19], p. 259 for an al-
gorithm to develop a topological sort) on the directed graph. Nodes are
then numbered in order of their appearance in the topological sort.

To conserve storage space, the entries, Mj, are represented in the

computer as binary vectors where bit i is one in entry Mj if the input edge

(1} The algorithm was developed by Mr. E. Bierstone, a student in the Mathe-
matics Department at the University of Toronto.

~11-

(j,i) i > j, exists; otherwise, bit i is zero. The number of bits required
for entries of M is determined by the size of the largest connected compo~-
nent in the entire data set being processed.

The algorithm utilizes a set of elements C (each of which is in the
form of a binary vector) where the maximal complete subgraphs are built
up. During the operation of the algorithm, nodes are added to the various
complete subgraphs contained in C, until, upon termination, all of the Ck
(k=1,...,n) represent maximal complete subgraphs of the input set.

The algorithm takes the set of nodes represented by the set {pj}UMj
(Mj#O) and attempts to find maximal complete subgraphs of this set which

can be combined with the set of complete subgraphs C, that have already

k
been developed, or can be introduced as new unique complete subgraphs of
the data set. The following provides a brief description of the algorithm.
Originally, i is set to zero and j is set equal to the number of nodes
in the input graph. The value of j is decremented by one until a non-zero
Mj is found. At this point, for each Py contained in Mj’ i is incremented
by one and the pair {pj,pk} is placed into Ci' This establishes a set of
distinct elements Ck (k=1,...,1), each consisting of node pj and one of
the nodes to which pj is connected, as the original set of complete sub-
graphs upon which to build.
Iterative processing begins by decrementing j by one until a non-zero
Mj is found. When j becomes zero, the algorithm is finished and the elements

of the array C, represent the maximal complete subgraphs of the input graph.

k

A temporary storage location W, used to keep track of those nodes of

Mj which are not added to some Ck’ is set equal to Mj. The value of L is

set equal to i (the number of complete subgraphs produced so far by the

-12-

system) and k is set to zero so iteration through all C can begin. The

k
value of k is increased by one, and if it is greater than L, then all cur-
rent complete subgraphs Ck (k = 1,...,L) have been searched to determine where

d(l). Any nodes still remaining in W have not

elements of Mj can be inserte
been inserted in the set of complete subgraphs C. Since pj, by definition,
is connected to all such nodes, the pairs of items {pj,pk} for all p, con-
tained in W must be inserted into the system as complete subgraphs of degree
two. For each such pair, i is incremented by one and a2 new complete sub-
graph Ci = {pj,ka is constructed (i.e. - if W contains nodes 10, and 13,

j =4, and i = 6, then C, = {4, 10} and C8 = {4, 13}). Control then returns

7
back to continue decrementing j in order to introduce a new set M,.

If k is not greater than L, a temporary storage location T is set equal
to those elements common to Ck and Mj. By definition, elements of T are

contained within the complete subgraph C Thus, all elements of T must be

K
interconnected and since, by definition, all are connected to pj’ the set of
nodes T{/{pj} form a complete subgraph. If T is empty, no meaningful match
with Ck or M.j can be make in future steps, so it is futile to continue. If
T contains only one node, the most that can be accomplished by executing the
following series of complex steps would be to introduce the set {pj} T

as a complete subgraph of degree two. A Simple process, utilizing W, was
defined previously for this purpose. Therefore, if T contains fewer than
two nodes, control is returned to compare Mj with the values of the next

entry of C. If T contains more than two nodes, the nodes of T are deleted

from W as they will be inserted in the following steps into the set C.

(1) The entry Mj is only compared with the elements of C, for k = 1,...,L

k
because all entries Ck (k =L+ 1,...,i) will have been introduced by

the present Mj'
~13-

Depending upon the values of T, Mj’ and Ck’ one of the following
three alternatives will be used to introduce the elements of T into the set

of complete subgraphs C. If T = Alternative (I) will be taken; if

Lk,
T # Ck but T = Mj’ then Alternative (II) will be taken; if T # Ck and T # Mj’

then Alternative (III) will be used.

Alternative (I). T = Ck means that the present node under consideration

is connected to all elements of the complete subgraph C

1 Then, pj must be

connected to all elements of C and can be added to the complete subgraph C

k k’

Due to the iterative nature of the algorithm, the remaining Cq (g =%k +1,...,1i)

must be searched to see if any are subsets of the just altered C If any

n
are found, they must be deleted from the set C. Bierstone omits this step
from his algorithm. The corrected Bierstone algorithm is detailed in Ap-
pendix 1.

After the above process is completed, T is compared to Mj. If the two

are equal, this means, since {pj}(jT = C,, that {pj}(fMj = and that any

K’ Cr

further processing for this Mj will only produce subgraphs of the just al-

tered complete subgraph Ck' As a result, control will return to the point

where another input set is introduced by again decrementing j. If T # Mj’

this means that there are zlement~ of Mj not in the newly altered complete

subgraph C, and there may still be other Cq (g =k +1,...,L) which contains

k

two or more nodes of Mj’ thus introducing more new complete subgraphs. If
this is the case, control will return to increment k to proceed with com-
paring Mj with the remaining Cq'

Alternative (11). If, at the point of constructing T = Ckx?Mj, T is
found to be not equal to Ck’ but T = Mj’ this means that, although all nodes

of Mj are contained within the complete subgraph C,, there exists at least

k’
f
~14-

one node in Ck to which pj is not connected. However, as previously es-
tablished, the elements of T U{pj} form a complete subgraph and therefore
must be included in the set C. As a result, i is incremented by one and Ci
is set equal to the set T‘f{pj}. Since Mj = T, effectively, the set
{pj}‘:Mj has been inserted as a complete subgraph and any further processing
of this Mj will only produce subgraphs of this set. Therefore, control will
return to the point which introduces a new set Mj.

Alternative (III), It is possible to have produced originally a T

which contains twe or more nodes but is not identical with either Ck or M,.
When such a situation arises, all Cq A=1,...,k -1, k+ 1,...1) must be
searched to see if any which contain pj also contain all elements of T. If
one is found, this means that the present set of element va{pj} already
belongs to a complete subgraph and no further processing is necessary.
Control will be returned to check Mj against the next entry of C. If no
such Cq is found, a temporary location S is set equal to the set Ti.{pj].

If the elements of some Cq (q =L+ l,...,i)(l) are contained within S, then
Cq is set equal to S. This has the effect of increasing the elements of the
complete subgraph Cq to include all elements contained in S. Any other

Cr (r = q+ 1,...,1) which is contained in S must be deleted from the set C
to avoid allowing a complete subgraph that is a subgraph of the complete
subgraph S. If there is no Cq which is totally contained in S, then i is
incremented by one and Ci is set equal to the complete subgraph S. Regard-
less of which course of action has been taken in this processing step, all

elements of Mj have not been placed into the same complete subgraph and control

must be returned to process Mj for the next entry.

(1) Only values of Ck (k =L+ 1,...,1) introduced during processing of the
present value of M, need be searched, as they are the only entries which
could possibly consist of subsets of the complete subgraph S.

-15-

3.6.2 An Alternative Implementation of Bierstone's Algorithm to
Conserve Storage Space

An alteration can be made to Bierstone's algorithm which can allow one
to deal with input data sets quite large in size. If the input data is or-
ganized such that the values of Mj (3 = 1,...,n) enter the system in de-

scending order (Mn, Mn— ,...,Ml), then only the elements of M for the present

1
value of j need be in the computer at any one time. This leaves the set C
as the only data item requiring core storage space. If each Ck entry were
represented internally as a binary vector, sizable input sets could be
handled. For example, the input graph represented by the threshold matrix
produced for T = 0.3 of our data set, included one connected component of
1150 nodes. It would have been impossible to operate the algorithm, as pre-
sented by Bierstone, on this set, as each of the 1150 entries for Mj would
heve required thirty-two 36 bit words even to be represented as a binary
vector. This would have exceeded the core storage space of the IBM 7094
without having allocated any space for the building up of complete subgraphs
in C. However, if only one entry of M were needed in core at any one time,
effectively 20,000 to 25,000 starage locations (approximately that amount
of core left after the system and needed programs are loaded) could be al-
located to elements of Ck' This would allow for approximately 600 to 800
elements of Ck (each being a binary vector 32 words in length) to be used
to create the maximal complete subgraphs. This would appear to be sufficient
space to handle the data set.

Such an alteration to the algorithm greatly increases the size of the

data input set which can be processed. Space limitation problems would oc-

cur only when the number of nodes in the input connected component becomes

-16-

so large that the number of words required to represent each entry of Ck

(k = 1,...,n) as a binary vector becomes so large that the maximum zllowable
value of n becomes smaller than the number of complete subgraphs in the
system at any one time. It should be noted that in our particular data set,
this limitation point approaches quickly once the threshold used to define
the input graph drops below T = 0.3. For T = 0.2, the largest connected
component contains 2,797 nodes; 78 thirty-six bit words would be required to
represent each entry of C. This would handle approximately 300 complete
subgraphs of the graph. Since, by applying a threshold value of T = 0.4 to
the same data set, we introduced 329 additional connected components into
the graph, many of which contained several maximal complete subgraphs, it
would be realistic to think that the input set for T = 0.2 would contain
more than the allowable 300 maximal complete subgraphs.

Regardless of the fact that the above alteration to Bierstone's al-
gorithm quickly approaches a limiting point, the algorithm does describe how
to find the maximal complete subgraphs of large data sets. Unfortunately,
due to the structure of our input data, we did not experiment with the

suggested change in the algorithm.

3.6.3 Experimentation with Bonner's Method for Cluster Production

Bonner [7] has reported on some extensive research in term clustering
which included the introduction of a new algorithm for producing the max-
imal complete subgraphs (referred to as 'tight clusters' by Bonner) of an
input data set. The Bonner algorithm as published in [6] is incorrect.

We have corrected the algorithm and programmed it in FORTRAN IV and MAP for

the IBM 7094, and applied it to our corpus.

=17~

Input to Bonner's algorithm is in the form of a threshold matrix T,

We have applied the Bonner algorithm to the threshold matrix produced by
applying a value of T = 0.4 to the similarity matrix of our data base.

Bonner asserts that, due to storage limitations imposed by the machine
he used (an IBM 7090 with a memory size of 32 K words), the maximum al-
lowable sample size the algorithm can handle is 350 input terms. Bonner
does not subdivide the input threshold matrix into a series of disjoint
threshold matrices, (Bonner's examples show that the elements may be dis-
joint), thereby permitting each of the disjoint matrices to be treated as
separate input data sets. Assuming there are disjoint sets, this could
enable an appreciable increase in the maximum allowable sample size. As an
example, for the threshold value T = 0.4 our data set which consists of
2,084 unique index terms, subdivided into 475 disjoint threshold matrices
(each corresponding to a connected component of the representative graph).
Each of the sets was then used as input to Bonner's algorithm with no problems
arising concerning storage space.

The Bonner algorithm builds clusters one at a time while keeping several
push-down lists. Index terms of the document collection are assigned unique
numbers which are used as representative forms within the lists for all
operations, The lists developed during the operation of the algorithm are
as follows:

L. The list Ai - contains items that are in a cluster at
e gtep 1.

2. The list Ci — contains elements which could be added to
cluster Ai at step 1.

3, The list L. - contains the number of the last item of Ci
e to be considered for addition to the cluster Ai'

~-18~

Originally, the candidate list C, contains all items of the input data set,

1

to be considered for addition to cluster A

A, is empty, and the item Ll 1

1

is set to 1.
The algorithm operates as follows. Ci is searched to see if it contains

the element represented by Li' If the element is present, Li is logically

'or'-ed with the elements of Ai and placed in Ai+ Ci is then logically

1
'and'-ed with the row of the threshold matrix corresponding to the value of

Li and the result is placed in C Li is deleted from Ci and then in-

i+1’ +1

cremented by 1 and placed in Li+l° Now, i is incremented by 1, and the
process is repeated for the new value of i. What, in effect, has happened,
is that the term represented.by Li has been added to the cluster Ai and the
elements of Ci have been changed to reflect all those elements in the data
set that are connected to, but not contained within, the cluster Ai' This
process continues until there are no elements left in Ci for consideration
for addition to the cluster Ai which have a numerical value larger than the
last element added to the cluster. If at any point in the above iteration,
Ci is found not to contain the e}ement corresponding to the value of Li’ Li
is incremented by 1 and the process is repeated for the new value of Li.
When no element of Ci is larger than Li’ a cluster has been found. Due to
the iterative nature of the algorithm, if the candidate list Ci has not been
exhausted, the cluster found has either been found before or it is a subset
of a cluster found before)and it is ignored. If Ci is empty, the cluster
(maximal complete subgraph) is unique, and it is saved. Regardless of the
contents of Ci’ Ai is saved in a temporary location T. A backwards search
of the previously stored elements (Ai’ Ci’ Li) is initiated by decrementing

i until a Ci is found which has elements greater than the value of the cor-

-19-

responding Li which do not form a subset of T. By making this check at
‘this point, some processing time is saved as some complete subgraphs of the
maximal complete subgraph just found are rejected without having to regen-
erate the entire cluster and then reject it because Ci is not null. When
a C meeting the above criteria is found, the forward processing of the data
set begins again using the previously stored values of A, C, and L for the
present value of i, Originally, i is set to 1 and the algorithm will
terminate when i becomes 0.

If, after finding a point to begin forward processing following the
production of a cluster, the value of Li is not incremented before proces-
sing is reinitiated, the Bonner algorithm will infinitely loop producing

over and over the same cluster. Incrementing Li corrects the algorithm. The

corrected version of Bonner's algorithm appears in Appendix 2.

4. Analysis and Comparison of Bierstone's and Bonner's Algorithms

Bonner claims that his algorithm offers an improvement over previous
methods [22,27] since he does not output the same cluster repeatedly or
continually print out subsets of clusters already found. Indeed, this offers
an improvement in the type of output produced, but its saving in processing
time does not appear to be that great. In this study, the larger clusters
of the data sets were produced by Bierstone's algorithm in significantly
less time than it took for Bonner's algorithm. An analysis of Bonner's al-
gorithm shows that, although each cluster is output only once with none of
its subsets output, many such subsets and duplicate clusters are found by
the algorithm and rejected only when Ci was found to be not empty after com-

plete production of the cluster (Step 6 of the algorithm).

-20-

Since clusters are built up one item at a time, beginning with the
first index term, the production of clusters is dependent upon the numerical
values originally assigned to the input terms. The time involved in finding
all clusters varies according to the location of the clusters with respect
to the numbering scheme. This fact was most evident in the results produced
by this algorithm for our data base. A timing algorithm was utilized to de-
termine how long it took Bonner's algorithm to produce the resultant set of
clusters from each input set. These results were compared with the tim=
needed by Bierstone's algorithm to produce the exact same clusters. Figure
2 shows the comparative results.

In several instances, Bonner's algorithm worked as fast or faster than
Bierstone's. However, such figures are misleading as most all of these in-
put sets contained only from one to three small clusters. The most indicative
comparative results are reflected by those input sets which contained several
clusters of varying size. 1In all but one case, Bierstone's algorithm was
at least twice as fast as Bonners'.

In the two largest input sets, Bierstone's algorithm proved to be much
faster. One large and highly connected input set consisting of 72 terms
was found to have three maximal complete subgraphs of 64 terms each and
five smaller maximal complete subgraphs of six terms each. Bierstone's al-
gorithm took 0.133 seconds to develop the clusters. Bonner's algorithm
needed 2.183 seconds to produce the same results. A somewhat smaller input
set (67 terms) was found to have five maximal complete subgraphs of 47 terms
each and six additional maximal complete subgraphs of 3 or 4 terms each in
0.733 seconds by Bierstone's algorithm (this was the most processing time

required of all the input sets). Bonner's algorithm, in processing the same

-21-

Comparative Number of
Time Applicable

Data Sets

B < A 11

B = A 382

B = 1.5A 4

B = 2A _ 31

B = 3A 1 . 12

B = 4A 1.

B = 5A 3

B = 10A 1

B = 17A 1

B > 250 > A 1

Legend:
A = Time required for Biersone's algorithm to find the maximal
complete subgraph clusters in an input set.
B = Time required for Bonner's algorithm to find the same maximal
complete subgraph clusters in the same data set.
(1) Of these: (2) Of these:
8 contained one cluster 15 contained one cluster
1 contained two clusters 14 contained two clusters
2 contained three clusters 5 contained three clusters

Figure 2. COMPARATIVE RESULTS OF TIME REQUIREMENTS FOR THE
BONNER AND BIERSTONE ALGORITHMS

-22-

data set, worked for nearly two minutes without producing final results,

The activities of Bonner's algorithm were carefully analyzed by means of
detailed debug printouts which related the contents of the lists A, C, 1L,
and T at various stages within the algorithm. It was discovered thar the
five large clusters were found quickly and then the algorithm proceedead to
spend the rest of its time rejecting subsets of these clusters in an attempt
to work itself back through the data set to find the other clusters.

The failure of the Bonner algorithm to produce results for the above
data set, while having relatively little trouble in finding the maximal ~om-—
plete subgraphs of a larger and more complex input set, demonstrates the
fact that processing time for the algorithm is highly dependent upon the
original numerical values assigned to the data terms. 1In the first of the
two examples above, the original numbering scheme was such that the vast
majority of the complete subgraphs of the large clusters already found were
rejected without having to completely reproduce the new cluster (step 8 of
the algorithm). However, in the second example, due to the location of the
nodes which caused the distinction between the five large clusters, a larger
percentage of the complete subgraphs of the larger maximal complete subgraphs
had to be completely produced by the algorithm and finally rejected only when
it was discovered that, upon producing the cluster, the candidate list Ci was
not empty (Step 6 of the algorithm).

For a maximal complete subgraph containing n nodes, the number of com-

plete subgraphs contained within it becomes excessive when n is large. For

. P /i n
any maximal complete subgraph containing n nodes, we can produce(n_l

complete
/

subgraphs containing n-1 nodes; we also can find(%?z)complete subgraphs with

n-2 nodes. By continuing this procedure, one can see that the total number

-23—

of complete subgraphs contained in any maximal complete subgraph of n terms

-1 /'n ‘
is ?;% (?. From the binomial theorem, we know that 2n = g n. Thereior:.,
) 120 3
the total number of complete subgraphs of a maximal complete subgraph ~{ s

gree n is equal to 2" -2 -n - ES%:ll . In the case where n = 37, as was

found in the above data set, we therefore have 1,37 x].O11 complete subgrapiis
that may be tested by Bonner's algorithm. Therefore, any significant de-
crease in the number of subgraphs eliminated at Step 8 of the algorithm

could cause the processing time of an involved input set to get out of hand.

This cannot happen with the Bierstone algorithm.

5. Refinement of Clusters via Gotlieb and Kumar Algorithm

Clusters formed by maximal complete subgraphs may overlap for highly
connected input sets. For example, one of the larger data sets processed
by Bierstone's algorithm was found to have three maximal complete subgraphs
of 64 terms, each of which had 63 terms in common with the other two maximal
complete subgraphs. An additional five smaller maximal complete subgraphs
of the same input set were found to contain 6 terms each, 5 of which were
common to all five maximal complete subgraphs. As was previously discussed,
the maximal complete subgraphs form our strictest definition of a cluster.
It is evident from the above example that such a definition may not be de-
sirable in a system whose aim is to produce a concise set of clusters of
highly related terms. In the above example, three distinct clusters of 64
terms are formed due to the fact that three nodes, all of which are connected
to 63 common nodes, have no interconnections. It would seem that the number
of common connections these nodés possess should override the fact that the

nodes are not directly related. .

24—

Gotlieb and Kumar [16], have developed a procedure for combining such
clusters into diffuse classes of index terms. They form a cluster - clusrter

similarity matrix D with entries dij defined as

c./\c,

(2) d, =1 - —-oud
Ci L/ Cj
where } Ci (\Cj I is equal to the number of terms the two maximal complete
sets have in common, and ! Ci.k/Cj ‘ is equal to the total number of unique
terms contained in cluster Ci and in cluster Cj' The values dij represent
the proportion of terms contained jointly in the two clusters. As with the
term~term similarity, we set a threshold level § for the cluster-cluster
similarity matrix, the resulting binary matrix again represents a graph.

The entries dij are essentially the set theoretic representation of
the Tanimoto measure. (It is actually one minus the Tanimoto measure. The
entries are used to be consistent with Gotlieb and Kumar's paper.) Clusters
of the clusters may now be found by considering the matrix D as our input
graph. Any of the criteria for determining clusters of an input graph can
be selected for producing clusters of the input maximal complete subgraphs.
Gotlieb and Kumar state that clusters should be the maximal complete sets,
that is, the same definition as he uses to form the clusters between terms(l),
For our application, we require that the elements of the second generation
clusters form a cornected component. The clustering of clusters is repeated,
with the values of dij computed from the resultant clusters of the previous
iteration, until a point is reached where no combinations of the elements
can be made.

Results were obtained for the threshold levels § = 0.5 and 6§ = 0.7,

(1) Although Gotlieb and Kumar state that they use the maximal complete
subgraphs of the newly formed graph to develop diffuse concepts, the
experimental results provided in their paper suggest that the con-
nected components were used to find the diffuse concepts.

~25-

Rather than find the diffuse concepts by means of a separate pass on the
resultant maximal complete subgraphs output by Bierstone's algorithm,
Gotlieb's combining scheme was incorporated as part of Bierstome's algo-
rithm, This additional processing roughly doubled the required execution
time for producing clusters. The diffuse concepts produced from the known
maximal complete subgraphs appear, on a subjective basis, to be quite good.
For example, both of the § values combined the above sample data set into
two diffuse concepts, one consisting of 66 nodes (containing the 63 common
nodes plus the th;ee nodes which were not inter-connected) and the other
consisting of six nodes (containing the five common nodes plus the five nodes
which were connected to these nodes in the original maximal complete sub-

graphs).

6. Experimental Results

The clustering procedure using the Bierstone algorithm was applied to
several different threshold matrices of the original term-term matrix. Thres-
hold matrices for values of T = 0.4, T=0.5, T=0.6 and T = 0.7 were
generated. Each of these threshold matrices was then divided into a set of
disjoint threshold matrices (representing the connected components of the
corresponding graph) and used as input to the Bierstone algorithm. Thres-
hold matrices were constructed for values of T = 0.1, T = 0.2, and T = 0.3
but, since each matrix contained one connected component of at least 1150
terms, the Bie;stone algorithm was not applied. It was found that the number
of nodes contained in the largest connected component of the graph described
by the threshold matrix varies the greatest between the threshold matrices

of T = 0.3 (1150 nodes) and T = 0.4 (72 nodes). The fact that the size of

-26-

the largest comnected component in the threshold matrices for T = 0.4,

T = 0.5 (69 nodes), T = 0.6 (67 nodes), and T = 0.7 (66 nodes) remains
fairly constant, while the same values for T = 0.1 (3,783 nodes), T = 0.2
(2,797 nodes), and T = 0,3 varies so greatly, tends to indicate that some
stablization of the threshold matrix occurs around a threshold value of

T =0.4.

For T = 0.4, two additional clustering procedures were applied. In
these two cases, maximal complete subgraphs of a connected component were
combined via the clustering technique described by Gotlieb and Kumar. These
grouped maximal complete subgraphs were considered as the resultant clusters.

Threshold values of 6§ = 0.5 and 8§ = 0.7 were used.

6.1 Structural Composition of Clusters

For values of T = 0.4 and T = 0.5, the average size of the clusters de-
fined by the connected components was 6.5 terms. Clusters defined by the
maximal complete subgraphs of the connected components had an average of
5.1 terms per clusters. However, the maximal complete subgraphs of the con-
nected components introduced approximately 60% more clusters. This was to
be expected as many of the connected components contained several maximal
complete subgraphs consisting of some of the terms of the connected component.

For values of T = 0.6 and T = 0.7, very little change in the average
size of clusters was detected between clusters defined by connected compo-
nents and clusters defined by maximal complete subgraphs of connected com-
ponents. The total number of clusters defined by maximal complete subgraphs
was one less than those defined by connected components for both T = 0.6

and T = 0.7. The reason for each of the preceding results can be determined

~27~

by considering the composition of the two threshold matrices for these values
of T. In each case, an extremely high percentage of the connected compo-
nents were also maximal complete subgraphs (97.3% for T = 0.6 and 99.2% for
T = 0.7), and the greater majority of the terms of the input data set were
contained in those maximal complete subgraphs (91.67% for T = 0.6 and 93.37%
for T = 0.7). Thus, very few additional clusters were produced by searching
for maximal complete subgraphs in the small number of connected components
which were not themselves maximal complete subgraphs. Those found had very
little effect on ghe average size cluster produced. The total number of
clusters was reduced because fewer clusters were added by the discovery of
connected components which contained maximal complete subgraphs than were
deleted by the présence of connected components which contained no maximal
complete subgraphs.
As was to be expected, when the Gotlieb and Kumar algorithm was used

to combine maximal complete subgraphs found in the threshold matrix for T =
0.4, the total number of resultant clusters was reduced. However, interest-
ingly enough, the average size of the clusters produced decreased only
slightly. This apparently was due to the fact that a good number of maximal
complete subgraphs of two elements, previously not considered as clusters,
combined to form clusters of three and four terms. This same réason could
be given to explain why the number of clusters produced for § = 0.7 was 4%

greater than the number produced for § = 0.5. Conceptually, it would seem
that clusters produced for a larger § value, which induces more combining of
clusters, would‘produce fewer and larger clusters. The clusters produced
for § = 0.7 were slightly larger on the average than those produced for ¢

= 0.5.

One further point of interest is that the average size of the clusters
defined by maximal complete subgraphs was approximately comstant for all
values of T. (See Figs. 3 & 4) At the same time, the number of clusters
produced for the lower values of T was significantly greater than the number
produced for the larger values of T. For example, for T = 0.4, 402 clusters
were found, nearly three times the 148 found for T = 0.7. Apparently, the

threshold value applied does not affect the average size of the clusters

produced, but more directly affects the number of clusters produced. Admi -~
tedly, all the clusters produced were results of the szame data base, but it
seems that this is a fair conclusion to make from the work conducted in this
study. It would be of interest to apply the techniques of this study to

other data sets to determine if similar results would be obtained.

6.2 Summary of Major Conclusions

The following list summarizes the major conclusions of the study.

1. The Bierstone algorithm, which develops maximal complete subgraphs
for an input graph, appears to be the most efficient one presently avail-
able. It avoids the problems of repeatedly cutputting the same maximal
complete subgraph and of outputting complete subgraphs which are not
maximal. At the same time, it operates significantly faster than recent
algorithms proposed by Bonner [7] and Sparck-Jones [39].

2. Threshold matrices produced for values of T 2 0.6 yield basically
the same clusters regardless of which of the three cluster definitions is
used. This is substantiated by the data in Appendix 3 which shows the large
percentage of connected components which are also maximal complete sub~

graphs for large values of T. This observation, if found to be valid for

~29.

other data bases, could save considerable computer time by permitting the
use of only the algorithm to find the connected components of the graph.

3. The average size of the clusters defined by the maximal complete
subgraphs does not appear to be dependent upon the threshold value applied.
However, the total number of clusters produced increases significantly as
the threshold value decreases.

4, Clusters defined by connected components of the threshold matrix
for small values of T < 0.5 may be large in size and contain highly related
subgraphs which have little, if any, interrelatedness. Such subgraphs may
become part of the same connected component cluster through the existence
of general terms which are strongly related to the content terms of several
unrelated subsets of the connected component.

5., Clusters defined by maximal complete subgraphs of the connected
components of the threshold matrix for values of T < 0.5, tend to subdivide
the connected component into highly related and overlapping clusters. Such
overlapping clusters will generally reflect specific aspects of the same
general area of interest.

6. Clusters defined by grouped maximal complete subgraphs tend to com-
bine highly overlapping clusters into one general cluster. Such clusters
usually are composed of the elements contained in the union of the overlap-
ping clusters.

7. Clusters produced from the threshold matrices for values of T > 0.6
tend to divide the terms into sets of disjoint clusters which are small in
size and genefal in néture. For overlapping maximal complete subgraphs

found for lower values of T, the representative clusters for higher values

of T will generally correspond to the intersection of the elements contained

in the overlapping maximal complete subgraphs.

-30-

It is important to note that the conclusions and evaluations presented
in this paper are based on three different cluster definitions produced from
four different threshold matrices on one data base. The evaluation of a
cluster and the determination of its relevance to the data set can be a
function of what clusters are considered. It is clear from this study that
no single threshold value or cluster definition can be guaranteed to pro-
duce worthwhile clusters regardless of the input data set. Rather, several
different threshold values and cluster definitions should be tested to de
termine which produces the best results for the particular data set. The
user can gain greater insight into the structure of the data base by viewing
such alternative clusters. The decision of what parameters to use in de-
fining clusters of a data set should be dependent upon how the clustering
process is to be implemented and, in light of this, what type clusters will
provide the most meaningful results. This will be explored in a companion

paper.

-31-

AYVERAGE CLUSTER SIZE (Number of Terms)

T Legend:
- — ~ — Connected component clusters
e Maximal complete subgraph clusters
N
\
\
\
\
\
T \
\
\
\
)
\
\
—"’-’ .
: t }
400 500 600 700

Threshold value T

Figure 3, Average Cluster Size

-32-

NUMBER OF CLUSTERS

- = =~ - Connected component clusters

Maximal complete subgraph clusters

Legend:
400
300 -
200 _|
100 —
} } }
400 500 600 700
Threshold value T
Figure 4,

Total Number of Clusters

APPENDIX 1

BIERSTONE'S ALGORITHM FOR FINDING MAXIMAL COMPLETE SUBGRAPHS

The following notation is used by the algorithm:

th

M.: An array containing those nodes greater than j that the j
J node is connected to.

Pyt The k nodes of the data set.

Ci: A set of arrays in which maximal complete subgraphs are
built up.

W : A temporary storage location which contains those nodes of
the Mj,being processed which have not yet been put into some
member of Ci'

S,T: Temporary storage locations.
Operation of the Algorithm
Step 1. 1i=20
j = number of nodes in the input data
Step 2. j=3-1
Step 3. 1If Mj =0 -=- go to Step 2.
Otherwise, continue to Step 4.
_Step 4. For each P € Mj increase i by 1 and put Ci = {pj,pk}
Step 5. j=3-1
Step 6. If j = 0 we are finished and the set of arrays C repre-
sents the nodal sets of all maximal complete subgraphs
of the input set.
If j # 0, continue to Step 7.

Step 7. 1If Mj = 0, go to Step 5.

Otherwise, set W = Mj
L=1i
k=0

and continue to Step 8.

=34~

Step 8.
Step 9.

Step 10.

Step 11.

Step 12.

Step 13.

Step 14.

Step 15,

Step 16.

Step 17.

k=%k+1
If k = L + 1, go to Step 17.

,\:
T = Ck{‘Mj

If T contains fewer than 2 nodes, go to Step 8; other-
wise, delete from W all nodes common to T and W and
continue to Step 11.

IfT= Ck go to Step 15,
If T = Mj’ i=1i+1
= 7l
c, TJ{pj}

and go to Step 53

otherwise, continue to Step 13.

Is T a subset of any Cq (g =1,...,k-1.k+l,...,1)
that contains pj?
1f yves, go to Step 8;

otherwise, set S = Tk){pj} and continue to Step 14.

Is some Cq (q = L#l,...,i) a subset of S?

If so, put C S and delete any Cr (r = g+l,...,1)

q
which is also a subset of S;
If not, set 1 = i + 1

C. =5

i

Go to Step 8.

Put node pj into Ck'

Delete any Cq (q = k+1,...,i) that is a subset of the
altered Ck'

Continue to Step 16.

If T = Mj’ go to Step 5;

otherwise, go to Step 8.

For each P, remaining in W, increase i by 1 and put
Ci = {pj, pn}:
Go to Step 5.

=35

APPENDIX 2

BONNER'S CLUSTER-BUILDING ALGORITHM

This algorithm builds up a cluster one object at a time, keeping track

of items at each level i of the buildup. The following items are used by

the algorithm:

1. A, -
i
2. C, -
i
3. Li -
4 Sj,l
Elements

An Array representing the set of objects in the cluster
at this point.

An array representing the set of objects which could
possibly be added to Ai to further increase the cluster.

h
An array of numbers where the it element represents the
last object of Ci to be considered for addition to the
cluster.

i -~ The input threshold matrix where 8.1 represents the

set of all members related to object Li'

for A, C, and L are stored for each i which is smaller than

or equal to the present i. The algorithm proceeds as follows:

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

. Add 1 to Li and store as Li

Set: i =1

Ci = all objects
Ai = no objects
Li =1

Consider C1 for the presence of object L :
i
If it is present go to Step 3;

if not, add 1 to L and go to Step 5.

Store objects common to C

L. (from C
i

and SL’ ias C deleting

i i+l?
i+ 1"
Store objects in A

plus L, as set A,
i i

i +1

+ 1
i=1+1

If Li is greater than the number of the last possible

object, go to Step 6; otherwise, go to Step 2.

36.

Step 6.

Step 7.

Step 8.

Step 9.

Set T = A,,
i

If Ci is empty, store Ai as a cluster.
If Ci is not empty this means either the cluster Ai
has been found before or it is a subset of a cluster
found before.
i=1i-1
If i = 0, all clusters have been found--stop;
otherwise, go on to Step 8.
Form the set of all objects in Ci with numbers greater
than L, :

i
If these are not a subset of T, go to Step 9.

If they are a subset of T, it means that the cluster found
from these objects would only be a subset of T; therefore,
go to Step 7.

L{iy = L{j) + 1
Go to Step 2.

~37-

STRUCTURAL COMPOSITION OF THRESHOLD MATRICES

APPENDIX 3

T(l) Edges Nodes (2) # of (3) N.N.(a) % Nodes (3) % C.C.(6)Time(7
c.C. in MCS own MCS |(min.)

0.1 22,993 3,848 24 3,783 1.3 87.5 1.07

0.2 12,476 3,255 146 2,797 9.1 82.2 .68

0.3 8,542 2,603 349 1,150 22.5 68.8 1.58

0.4 6,630 2,084 475 72 41.6 69.1 1.87

0.5 6,532 2,001 450 69 41.1 68.0 1.80

0.6 4,772 1,314 411 67 91.6 97.3 1.85

0.7 4,696 1,222 379 66 93.3 99.2 1.48

(1) T - The threshold level.

{2y Nodes - The number of nodes that are connected to at least one other node,

The total number of terms (nodes) in the data set was 3950.

(3) {# of C.C. -~ The number of connected components in the graph.

(4) HN.N. -~ The number of nodes in the largest connécted component ,

(5) % Nodes in MCS - The percentage of nodes contained in connected components

which form maximal complete subgraphs.
(6) 7% C.C. on MCS - The percentage of the connected components which form
maximal complete subgraphs.
{7) Time - The time in minutes required to find all connected components of

the graph.

...,38.,.

BIBLIOGRAPHY

1. Abraham, C. T. OGraph~theoretic techniques for the organization of
linked data. In Some Problems in Information Science, M. Kochen, The
Scarecrow Press, New York, 1965.

2. Augustson, J. 5. Experiments with Graph Theoretical Clustering Tech-
nigues, Thesis submitted to the Faculty of the Graduate School of
the University of Maryland on partial fulfillment of the requirements
for the degree of Master of Science 1969,

B, Information retrieval based on latent class analysis,
(1962}, pp.512-521.

H. Data analysis in the social sciences: What about details.
FJCC, 1965, pp.533-559.

terge, (. and Shouila-Houri, A. Programming, Games, and Networks, John
WL? ey and Sons, New York, 1965.

6, Bierstone, E. Cliques and generalized cliques in a finite linear graph.
Unpublished report.

7. Barne? ¥, E. On some clustering techniques. IBM Journal of Research
and eveiqpmeﬂt 8, 1 (Jan. 1964), pp.22-32.

%, Borko, H. The construction of an empirically based mathematically de-
rived classification system. Rept. No. SP-585, System Development
Corp., Santa Monica, California, October 26, 1961.

Zesearch in document classification and file ovganization.
5P-1423, System Development Corp., Santa Monica, Califormia,

10. Borko, H. and Bernick, M. D. Automatic document classification; Part

II - additional experiments. Tech. Memo TM-771/001/00, System De-
velopment Corp., Santa Monica, California, October 18, 1963.

1i. COSATI Subject Category List (DoD — Modified). AD-624 000, Defense
Documentation Center, Defense Supply Agency, October 1965.

17. mDale, A. G. and Dale, N. Some clumping experiments for information

vieval., LRC 64-WPILl, Linguistic Research Center, University of

Texas, February, 1964,

13. Dattola, R. T. A fast algorithm for automatic classification. In
Lnfezmatlon Storage and Retrieval, Scientific Rept. No. ISR-14, Chpt.
V, Cornell University, Ithaca, New York, October, 1968.

-39

14,

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

270

Doyle, L. B. Breaking the cost barrier in automatic classification.
Rept. No. SP-2516, System Development Corp., Santa Monica, California,
July 1966.

EURATOM-Thesaurus: Keywords Used Within EURATOM'S Nuclear Energy
Documentation Project. Directorate "Dissemination of Information',
Center for Information and Documentation, 1964.

Gotlieb, C. C. and Kumar, S. Semantic clustering of index terms, J.
ACM 15, 4 (Oct. 1968), pp.493-513.

Giuliano, V. E. and Jones, P. E. Linear associative information re-
trieval. In Vistas in Information Handling, Vol. 1, P. W, Howerton
(Ed.), Spartan Books, Washington, D. C., 1963.

Ivie, E. L. Search Procedures Based on Measures of Relatedness
Between Documents. Ph.D. Thesis presented at M.I.T., May 1966.

Knuth, D. E. The Art of Computer Programming: Volume 1, Fundamental
Algorithms, Addison-Wesley, Reading, Mass., 1968.

Kochen, M. and Wong, E. Concerning the possiblity of a cooperative
information exchange. IBM Journal of Research and Development 6, 2
(April 1962), pp.270-271.

Kuhns, J. L. The continuum of coefficients of association. In Sta-
tistical Association Methods for Mechanized Documentation, M, E.
Stevens, V. E. Giuliano, and L. B. Heilprin (Eds.), U.S. Dept. of
Commerce, Washington, D. C., December, 1965.

Kuhns, J. L. Mathematical analysis of correlation clusters. In Word
Correlation and Automatic Indexing, Appendix D, Progress Report No. 2,
C82-0U1, Ramo-Wooldridge, Canoga Park, California, December, 1959.

Lesk, M. E. Word-word association in document retrieval systems. In
Information Storage and Retrieval, Scientific Rept. No. ISR-13, Section
IX, Cornell University, Ithaca, New York, January 1968.

Meetham, A. R. Graph separability and word grouping. Proc. 2Ist
National Conf. of ACM, Thompson Book Co., Washington, D. C., 1966.

Needham, R. M. A method for using computers in information classifi-
cation. In Information Processing, 1962, Proc. of the IFIP Congress
62, North-Holland Publishing Co., Amsterdam, 1962, pp.284-287.

Needham, R. M. The termination of certain iterative processes. Memo-
randum RM-5188-PR, The Rand Corp., Santa Monica, California, November
1966.

Needham, R. M. The theory of clumps II. Rept. No. ML-139, Cambridge
Language Research Unit, Cambridge, England, March 1961.

40—

[
At

31.

33.

40,

41,

Ogilvie, J. C. The distribution of number and size of connected com-
ponents in random graphs of medium size. IFIP Congress 1968, Booklet
H, Applications 3, North Holland Publishing Co., Amsterdam, August
1968, pp.HB9-H92.

Ore, 0. Graphs and Their Use. Random House, New York, 1963.

Parker-Rhodes, A. F. Contributions to the theory of clumps: The use-
fulness and feasibility of the theory. Report No. ML 138, Cambridge
Language Research Unit, Cambridge, England, March 1961.

Parker-Rhodes, A. F. and Needham, R. M. The theory of clumps. Rept.
No, NL 126, Cambridge Language Research Unit, Cambridge, England,
February 1960.

Price, N. and Schiminovich, S, A clustering experiment: First step
towards a computer—generated classification scheme. Information
Storage and Retrieval 4, 3 (August 1968), pp.271-280.

Rocchio, J. J., Jr. Document retrieval system - optimization and
evaluation. Scientific Rept. No. ISR-10, The Computation Laboratory,
Harvard University, Cambridge, Mass., 1966.

Rodgers, D. and Tanimoto, T. A computer program for classifying plants.
Science 132 (October 1960) pp.1115-1118.

Salton, G. Automatic Information Organization and Retrieval. McGraw-
Hill, New York, 1968.

Shepard, M. J, and Willmott, A. J. Cluster analysis on the Atlas
computer. Computer J. 11, 1 (May 1968), pp.57-62.

Sparck-Jones, K. Automatic term classification and information re-
trieval. IFIP Congress 1968, Booklet G, Applications 2, North Holland
Publishing Co., Amsterdam, August 1968.

Sparck~Jones, K, Mechanized semantic classification. Paper 25 in 1961
International Conference on Machine Translation of Language and Ap-
nlied Language Analysis, National Physics Laboratory Symposium No. 13,
Volume 1L, 1962, pp.417-435.

Sparck-~Jones, K. and Jackson, D. Current approaches to classification
and clump-finding at Cambridge Language Research Unit. Computer J. 10,
1 (May 1967), pp.29-37.

Stevens, M. E. Automatic Indexing: A State of the Art Report. NBS
Monograph 91, U.S. Dept. of Commerce, Washington, D. C., March 1965.

Stiles, H. E. The association factor in information retrieval. J.
ACM 8 (1961), pp.271-279.

~41-

42.

43.

44,

Stiles, H. E. and Salisbury, B. A. The use of the B-coefficient in
information retrieval. Unpublished report, September 1967.

Tanimoto, T. An Elementary Mathematical Theory of Classification and

Prediction. IBM Corporation Rept. 1958.

Vaswani, P. K. T. A technique for cluster emphasis and its application
to automatic indexing. IFIP Congress 1968, Booklet G, Applications 2,
North Holland Publishing Co., Amsterdam, August 1968,

42~

