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PART I

r
	 Motion of a Satellite With Time Dependent Inertia Tensor 	 i

ABSTRACT	 -

-	 1

Conditions sufficient to guarantee the statility of the	 3

librational motion of a satellite with time varying inertia
	

f

tensor are derived. These conditions involve the initial

configuration, the rates of change of the principal moments

of inertia and the total change in these parameters. - Approxi-

mate solutions to the equations of motion are found in the

special cases in which the inertial parameters vary rapidly

or slowly relative to the librational period. The conditions

for stability of these solutions are ahown to be compatible

with the criteria established in the stability analysis.
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PART I

Motion of a Satellite With Time Dependent Inertia Tensor

Section 1. Introduction

The equation of planar libration for a satellite in

orbit is

dt [C(¢ + W)] + 3W (B-A) sink coso = 0 	 (1)

This equation assumes that the inertia tensor, whose elements

are A, B and C, varies with time in such a way that the

principal axes of inertia remain principal axes. The

requirement that the z (or C) axis remains principal and,

therefore, perpendicular to the orbit plane guarantees that

an initially planar libration remains planar. The require-

ment that the x (or A) and they (or B)_ axes retain their

orientation relative to the orbit plane guarantees that the

occuring in the first term of equation (1) is identical

to that occurring in the second term.

Equation (1) is examined in some detail in this chapter.

First, the stability of the solutions, where the motion is

defined to be stable if it remains librational, is studied

in section 2 where sufficient conditions for stability are

derived. These conditions should prove useful as design

criteria for gravity gradient stabilized satellites. In

section 3 the case 4here deployment is rapid with respect

to the orbital period is considered. In section 4, equation

-1-.
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(1) is studied for the c pse where-the inertial parameters

vary slowly with respect to an orbital period. Asmptotic

techniques are utilized averaging in the first case about

the linearized solution of the constant parameter case and

E	 in the second case, about the exact nonlinear solution of

the constant parameter case. Closed form approximate

solutions are presented for particular cases. In section 5

a pover.series solution is presented for the linearized

equation.

r
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Section 2: Stability of Motion of a Satellite With Time Dependent
Inertia Tensor

The equation of planar libration is

dt LCtdt + W)J + 30 (B - A) sin CP cos C 0	 (1)

which for a satellite in a circular orbit (W = positive constant) may

be written in the form

x + a(T) x ± b(T) sin x	 . -2a(T)	 (2)

b(T) = B
C - 

A .

T = Wt

and the superscript dots denote differentiation with respect to the

nondimensional time, T. This equation is nonlinear, nonstationary

(since the coefficients are nonconstant functions of time), and

nonautonomous (since the right hand side is not identically zero).

Very little is known concerning the solutions of such equations although

G. Leitmaau (1) has derived sufficient conditions for the stability of

the nonlinear; nonstatlonary equation

a(t); + b(t)x + c(t) f(x) = 0	 '^'; (3)..

which includes the autonomous form of equation (2).

P

t
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In this section the stability of the solutions of equation (2) are

studied where stability is defined in a physical manner, viz.:

A solution to equation (2) is said to be stable if the corresponding

motion of the satellite is librational as distinct from rotational.

Stability is examined about a stable equilibrium point and the coor-

dinate axes are chosen so this equilibrium point is in the neighborhood

of x = 0 .- This implies that the coordinate axes Ahe chosen such that

the stability requirement for three dimensional motion C > B > A is

satisfied. Therefore (B - A) > 0 and since C must be positive on

physical grounds, b(T) > 0 for all T.

Equation (2) mmay be written as a set of two first order differential

equations
x=z

_ -a(T)z - b(T; sin x - 2a(T),

Consider the function V(x, z,T) defined by

V n 2(1 - cos x) + b z2 + f(T )	 (5)

where f(T) is to be defined later. Then TT- following the motion is

dT = 2z sin x + b	 b
z C•az - b . sin x - 2a^ - 2 z2 + f

(6)	
I

b+ Z 2Jz-baz+f
b

dVdT < 0 for all z if the discriminant of the polynomial in z is less than

or equal to zero and f < 0. This implies that

b



'	 and that	 2
4( ab)

3	 f '4 	 + B	 (S)L b b2 J
,

i

Therefore, f will be defined by

2

f	

T 
4(b) dt	

(9)a.•,2a+_
o Lb b2

7

Existence and finiteness are guaranteed by relation (7), the previously

noted requirement that b > 0, and the physical requirement that = a

be finite.

Referring to equation- (2) it is apparent that if I2al> b, ;oscillatory

solutions cannot be expected: Therefore, it . will be assumed that

f La ! < 1	 (10)

for all T. If this condition is satisfied, the points at which

sin x	 - ba	 (11)	
..

f

	

	 are instantaneous equilibrium points; i.e., if the values'of.'!,Vand b'

were frozen at any time T the constant values of x specified by

equation (11) would satisfy the differential equation (2). Consider the

equation
y + a y .+ b sit(y + xo) _ -2a	

(12)

obtained by substituting (y + xo) into equation (2); where xo is a

solution to equation (11). This equation may be written fbr small y in

the form

y+ay+b cos xo y	 0	 (13)
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Considering a and b constrmt, the solution to (13) will be oscillatory

if cos X  is positive. If cos x  is negative, the solution will consist

of an exponentially increasing function plus an exponentially decreasing

function. Hence, the points x = t 2(n - 1)'R + sin 1 -2& are

instantaneous stable equilibrium points and the points

x = t WT + sin 1 ba are unstable instantaneous equilibrium points.

Define	 B1 = - R + sin 1 2&

(14)

B2	+ IT + sin71 -2

If x is originally bounded by Bl(T) and B2(r} .. the motion remains

bounded by B1 and B2 if the total energy of ;,he motion at all times is

less than the potential energy of the system,at the unstable equilibrium

points, B1 and B2. This condition may be expressed as

2(1 - cos X) + bz 2 < min 2(1 - cos Bl)	 (l^)

:	 since cos Bl = cos B2 . But

V - f(T)	 2(1 - cos x) + b z2
	

(16)

from equation • (5) and V < V(•T = 0) = V07 if dT < 0. Therefore,

condition (15) may be expressed

Vo < min 2(1 - cos Bl) + f(T)
	

(17)
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if conditions ( 7) and ( 10) .hold and f is defined by equation ( 9). This

demonstrates:'

The solution of the equation

X + a(T) x + b(T) sin x • - 2a(T)

iR stable if a is finite, b > 0,•

b xo
2(1 - cos xo) +	 < min 2(1 - cos B1) + f(T) , (17)

f	 J

r2a + b > 0
Lb 	 ,	 c7)

and

u	 J, r 1	 '	 (10)

where
2

4(b)
f 	-

fOT L bad U dtb

and

coo. B 4a ^

b

In terms of the original parameters, these conditions my be expressed

as	 •

-dT ln(B-A)< dT la 	 ,	 (7)

3B A
2C	 < 1	 (],0)

•	 '-	 —	 ,
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0

T	 4?f-	 d	 dt	 ,	 (9)
0 3dttC(B-A)]

2(1 - cos z0) + 3 B CO A xo 4 sin {2(1 - cos Bl)] + f(T)
a	 o	 -

(17)

and

r	 4b2
cos Bl	 - 

Ll - 9(g - A)2ĵ 	
(3-8)

Condition (17)'can be -satisfied only if I f is Less than

2(1 - cos Bl) since the left hand side is always positive. Since the

integrand is always positive, this mY be expressed as

4C2
d	

< 2(1 - cos Bl) for all T.	 (19)

3 
dt CC(B - A)]0	 ]

Relation ( 7) which may be expressed as

d [C(B - A)] > 0dt

must be interpreted in -this light. In particular, although (7) does

not preclude negative C (the retraction situation) or negative

nt (B - A), it must be understood that these conditions are reflected in

the severity of restrictions imposed on the initial state. I_ both C

and B-A are monotonically increasing functions, If ( = 0 (in
Co	 ,

(7)

Y
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so that conditions (17) and (19) are seen to impose conditions on the

total change in inertial parameters. Equation (7) agrees with the

condition derived in section 4, equation (15) for stability in a

particular case where an approximate solution-can be found.

If C = 0, equation - (2) becomes autonoamaus and the sufficient

conditions for stability stated above may be compared with Leitmann's

(8) results. According to Leitmann, sufficient conditions for stability
r

are

tlmC<-dt la (B- A) <at ln C 	 (20) •'r

which, since-C = constant, requires (B - A) to be constant also, and

C° 	 x2+:(1-coax)< 4 	 (21)AP - 0 0	 0

which is identical to relation (17) since C = 0 implies f(t) - 0 and

cos Bl = -1.

Comparing (20) with relation M., the left baud inequality in (20)

results from placing a bound on z in Leitmaan 's analysis, a bound which

follows on physical grounds iu this paper. Referring back to equation

(6), the less than-relation in relation (7) may obviously be changed to

less than or equal to if C 0 (implies'ba - 0 and f = 0). Thus, the

general form of the results of this paper and that of Leitmann are

compatible and similar in fam.

The preceding analysis has been restricted by the condition

Lb?̂ + -U > O, or, equivalently, dt LC(B - A)] > 0. Thisb

-9-



restriction is not necessary. Referring again to equation (6),

consider the case where L5a + b	 s 0, or, equi mlently,b

WE C(B-A) = 0. If a = 0, f and f may be chosen to be zero, t = 0

and condition 17),suffices for stability, this being the case of

constant parameters. If a # 0, - < 0 if a < z for all z assumed

by the system, where f < 0. Since z must be permitted to take one

negative values, a must be greater chan zero which implies C > 0.

From equation (5) z can be expressed as

z - + i V - 2(i - cos x) - f1 bi 	(22)

Then the minion value of z satisfies the inequality

zmin > - LV - f 	 bi	 (23)

If relation (15) is to be satisfied, equation (16) yields

Zmin  > - [min {2(1 - cos B1) },I b^	 (24)

The condition fora < 0 may then be Written

fb < - min (2(1 -cos 81)} b^	 (25)

Thus, equation (2) is stable if ^a + b = 0, a > 0, relation j10)
b

-10-
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is satiyfied, and there exists an f(T) < 0 such that relations (17) and
T

(25) are satisfied where f(T) -Jo f(T)dT. Such f exist for suitably

chosen parameters a and b and initial conditions.

If Cab ± ^J < 0	 or	 dt CC(B • A)J < 0
b

equation (6) yields dT < 0 if f < 0-and s is contained in the interval
r	 -
L

$l , NJ. where

B + E2 4Df^l	 2D

- E__ S2 - OFD!•
s2	 2D

s	 -

-	 D - 2a+ bb b2

and	 S - 4a
'.	 b	 (26)

Then the solution to equation (2) is stable if D < 0 relation (10)

is satisfied and there exists an f(T) <•0, such that

min {2 (1 - cos B )), ;	 <	 (27)L	 1 .1 bmax - Z2

and relation (17) are satisfied. The values of the parameters a and b

and the initial conditions can be chosen such that a suitable f exists.

Hove-rer ., vir specified a and b and initial conditions, there =W be no f.

-11	 ff
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` Section 3.	 Rapid Change in Inertial Parameters

The equation of planar libration of a satellite is

^ + w)j +	 22B-A	 sin 2; = 0	 (1)
[C( *

dt

I! If the inertial parameters change rapidly with respect to W, the

first term is of order w and the second term is of order w2 .	 Since

w is a smALU parameter relative to 1 sec 1, the sin 2cp term may

} then be neglected during deployment or at least treated as a per-

turbation on the motion. 	 Equation (1) becomes simply

d fC(;
dt

= an equation which expresses conservation of the angular momentum'

of the satellite.	 This integrates immediately to .

C(cp + w)	 constant = h = Co(cpo + wo) -	 (3)

or

p	 C + 
w	 (^+)

which in"turn integrates to

•	 (P_	 (	 + w) dt + cpo	(5)	 ,

p These equations hold during deployment permitting computarion

of an angular displacement, fp f, and an angular velocity, eA f, at the

end of the deployment period. These constitute initial conditions

3



t

2 ,

on the motion described now by equation (1) with C equal

to the constant C f . The stability condition for the

resultant motion is.

2C 	 .
(1 - cos 2# f ) ♦ 	 2_ < 2

3 {Bf-Af)

It is generally desirable to oreserve orientation so that

#f should be less than n/2.

The effect of the deployment is teen to be very mu

dependent upon the Initial conditions, particularly upo;
t

^o and o . If . #0 = -wo , then ^_ to and _	 wdt +
0

If #o and 0 have the same sign as W, the destabilizing

effects (C < 0, dt (B-A) < 0) will be more severe than if

either or both of these conditions were not fulfilled. It

is apparent that deployment and retraction can be utilized

to either stabilize or destabilize librational motion by

appropriate programming of the action.

-13- .
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Section 4. Planar Librations of a Satellite -With Slow34• YM7 Lng
Inertial Parameters

In the situation where the inertial parameters in the planar

libration equation vary slowly with respect to a librational (or

orbital) period, asymptotic methods may be utilized to find approxi-

mate solutions (2 3). Three different asymptotic-approaches are

used to study the librational motion of a deploying satellite in

this chapter. The first.uses the Krylov-Bogoliubov method treating

the full equation as a perturbation of the equivalent stationary

linearized equation. The second also uses the Krylov-Bogoliubov

method but treats the full equation as a perturbation on the

equivalent stationary but-fully nonlinear equation. The third

method attempts to find. information on the amplitude of the motion

without attempting to follow the trajectory of the motion.

Consider the equation of motion in the form

at (Cx) + 3w2 (B-A) sin x = - 2Cw	 (1)

Suppose C and B-A are functions of T = et where a is a small para-

meter. Define the transformation

y = x - sinl(^2 	 = x - sin _1 66'_2C1  
 (B-A) 

= x - sin eu	 (2)

where -2C,
	(3)3W B-Wy

and the superscript prime indicates differentiation with respect to

^;	 -1k•
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3

L
im

to T. Then
2

X = y +	 e2u2 = y + e2u' .(1 + e2u2) + 0(e) 	 ( 4 )J,_e u

x = y + Q( e3 )	 (5)

22
sin x = sin y 11 - e2u + ...J + e u cos y 	(6)

To order e2 the differential equation (1) may then be written

[2CIW(l-cog Y)I + O(C-2) 	 (7)
t	 t (CY) + 3w2(B-A) sin y

Expanding sin . y in a power series gives

2

dt CC y' + 3e(B-A) y = - E 2C'W(1-cos y) + s 2B 
'A Y3 + .. ]

+ 0(e2)	
`a)

Following the technique .3f Krylov-Bogoliubov define the change of

variables	 s

y = a cos-T	 ; y =- BD(T) Bin 	 (9)

where	 tT =.3w2B-A 	 (20)C

Then the first appro3ima4;Ion'(3) is given by

da	 Ca

d = 12-05ddtn	 (u) .



i

21T	 2 B-A
dt 

n 
(T) + 2tT C Wa	

(2c il C1-cos (a coa `Y)] + W 2	 9
o

X a3 cos3 Y} cos T d T	 (12)

Equation (11) immediately integrates to

g° 	 (13)	

We

(	 ^3W2c(B-A)^

Then, substituting for a from equation (13),, equation (12) becomes'

.	 dt . 
C ( T)	 (14)

16(en)

Therefore,

3w2 B-A d - t a2 	 dt +	 (i5)Y	
C	

t	 o	
24B

-A 	 'Yo
0	 0 lei r 

It is apparent from equation (13) that the amplitude of the

motion, a,-increases (or decreases) as C(B-A) decreases (or increases).

This compares with condition (2.17) in the stability analysis of

section 2 and demonstrates that condition (2.17) is indeed a suf-

ficient condition for stability if the initial conditions are

satisfactorily bounded. It also indicbtes that condition (2.17) is

not a necessary condition since increasing a does not necessarily

imply instability. Note that the fact that a may be bounded in the

first approximation does not imply stability of the full equation

due to the approximation made for sin.x.

The "forcing" term, -2Cw, . has no effect on the. averaged u eqv tions,
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r E

i

i.e. on a and T, in the first approximation. However, it does pro-

duce a shift in the mean value of x in the amount sin-1	
2C ,

the same shift which 6:ould be produced in the linearized solution.

This is to be expected from the assumption that C varies slowly

with respect to a librational period and, therefore, the integrated

effect of C over a period should be smarm

Equation (15) can be integrated in closed form for certain

cases and presents no difficulties with regard to numerical inter

gration in physically reasonable cases compatible with the assumption

of slow variation of inertial pt.ameters. The original differential

equation (1), however, - presents serious problems for numerical into-

gr-tion, since the integration must follow the "rapid" oscillation

with the attendant accumulation of error.	 j

The preceding analysis is limited in usefulness to small values

of y because of approximation of sin x by a truncated series. Although

the inclusion of additional terms of the series presents no difficulty,

a solution of the equation which does not cpproximate the nonlinearity'^

is desirable, particularly if the t•.• moition to rotational motion is

of interest. In the case of the planar librational equation an exact

solution exists for the equation with constant coefficients in terms

of elliptic functions.	 The full equation

with varying coefficients is considered as a perturbation on the con-

stant coefficient equation in what follows. The treatment is completely

analogous to the Krylov-Bogoliubov method used previously, but the

assumed form of the solution is the solution to the stationary nonlinear

equation with time dependent amplitude and phase.
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1

The starting point will be equation (7)

dt 
(C y) + 30 2(B-A) sin y = - s2C'W(1-cos x)j + 0(E2) (7)

3

Assume that s

n2
2
 B-A = ^2 + s 

22 (
t )	 (16)c	 o	 '1

and let

	

T = of	 (17)

Then equation (7) may be written

y" + sin y = - s 
L	

WT- (1-cos y) + !, sin y + C' •Jo	
f^	

C Y

= e f	 T)	 (i8)

where the prime denotes differentiation with respect to T. The

.equation

	

Y" + sin y = 0	 (19)

has known solutions in terms of elliptic functions dependent+ upon

the initial conditions for exact form. The first integral of

equation (19)

2 sing 2 ± y' 2	(20).
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expresses conservation of energy. The solution is librational if

E < 2 or rotational if E > 2.

If E < 2, the solution of (19) may be written in the form

sin g=kanu

•:OS2 =dnu (21)

k"cn u-
t

2

where sn, dn, an are Jacobian Elliptic Functions and k is the
i

modulus {).	 To apply the Ksylov-Bogol.ubov metoods the solution	 i

of equation (18) is , assumed tc be of the form of equations (21)

where k.and u are now unknown functions of T.

In terms of equations (21)s equation (20) becomes

= 2k2 sn . 0 + ?k2 an2u = 2k2 (22)

Thus

1 ft	 d k2 _ 1 a 2 sin $ + 	 y'2-2 WT	 dT	 2 FT 	 2	 2	 Ji
= sin 2 cos 2 y 	 + Z y , y"

= 2 Lain y + of - sin yJ

= e 2 f (y .,	 T)

..  - Y1 M y	 a.

= of (Y.,Y':T) k an u
... _ 

(23)



Aiso from equations (21).

T (k jd u) - 2 cos 2 - k cu u do u	 (24)

But (k)

2
d (ksnu) -kcnudnu-2Dd' +anus	 (25)

dT 

where	 -

r -,	 2
D^ _	 - LS(u) - k^2 u - k2 on u cd uJ - ran du	 (26)

kky

2
dT
da

 1+ 2: " D -	 an u	
I M	 (27)

kcnudnu

Therefore,, equation (18) has been reduced to tro first order dif-

ferential equatio z, (25) and (27).

The fiction kf cn u appearing on the right hand side of

equation (23) is periodic in u with period 4K where g(k) is the

complete elliptic integral of the first kind. ~ A periodic function

F(k,u) can always be expressed as - a smum of the fora

F (k,u) - Fl(k) + Z 2(k,u)

where Fl(k) is the mean value or-F(k,u) over a period and F2(k,u)

is periodic in u with the Barre period as F and with zero mean value.
2

By equation (23) 
^ 

is or order a and is of order 1 by equation

0

_20-
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(27). Hence -may be represented by au + o (e). Therefore, equa-
dT

tion (23) may be expressed as

2
,. 2S

_	 gf cn . 0 du + s 
a F

2(k,u) + o (e2)	 (28)

-2K

where the average :glue of 
7
2
1 

< F2 Y0. Equation (27) may be similarly

treated

d
du i+ L D- 2 anu _1 -F

kcnu din u

= 1 +.1[D(u) - g D(a)j + a D(b) - 2M
sn u 	} F. (29)

kudnu -

Define

	

G(k,u) = D(u) - 
g D(a)
	

(D)

so that G is periodic in u with period 4g. Then equation (29) becomes

	

da = 1+ 2 JM(k,u) + g D(k) - 2 u F	 t	 (31)
k cnu da u

A is also periodic in u with period 4K . and, since it is odd in u,

it h" mean value zero. Similarly, the last term in equation (31) is

periodic with period 4E and zero mean value. Also the identity

D (8) = 2 d	 (32)
dk

holds (4). Theretca a, equation (31) may be written
I



i

dT=7 +a +EdTH2+0 (E2 )	 (33)

Where H2 is periodic in u with period 4K and zero mean value. If

	

equations (28) and (33) are averaged over a period, the terms in	 =
g

F2(k,u) and H2(k,u) drop out leaving the equations of the first

approximation
4

2K

dkk a	 kP an u d u	 (34)
dT

E	 -	 -2K	 _	 3

and
-	 l

Equation (35) then yields

	

	 j
T

	

( )„^K T 	 (36)11 = $ T

p	 -

Cousider the integral.

	

	 egral on the right hand side of equation (34)..

Substituting for f gives

	

2K	 2
72wg	 k ca u	 VT (2k2 ant u) + (2k an u do u) + .

	

..2K	 o

(2k cn u j du	 •
C	 J

Since the parameters C and a, are assumed to vary slowly with respect

to a period, this integral may be written as



	

2K	 2K
2

- BC WO Len
u an d u +	 do u	 u - ac k

TT ►VKC o

	

	 ) R ME

° •2K

2K

en2 u d u	 (38)
-2K	 ^.

The first integrand is even and antisy eetric with respect to K, and

therefore the integral vvanishes, The second integral is readily

integrated and also vanishes.. The total value of the integral

e
rK k f en u du is then (4)

r-2K

2K	 -

kf enudu•• f CE(k7 1!2 ]	 (39)

•2K

Therefore, equation (34) because

ft2 . •	 [Z * k) _ k'2K	 (40)dT	 No

where k' 2 = 1 - k2 and E is the complete elliptic integral of the

second kind.

Equation (40) alga be `evaluated numerically in s routine manner

since the quantities involved are slowly varying and equations (36)

may then also be evaluated nmmerieally. This is considerably easier

than -numerical integrations of the differential equit'lon (1). A

closed fors integration of equatioq (40^ is possible if ^ is constant.

The fa^

	

i	 -23

i

.a



F

e

and, +42erefare, equation (40) is immediately Integrable to

	

E- k,2 X Ale C C T	 (43)

where Al = constant. The function E = k'2 goes from 0 to 1 as k	 -

goes from 0 to 1. Hence, by equation (40), _ ^t2 decreases as T

increases if C` > 0. Then equation (43) implies that k goes to

zero as T goes to infinity. Equations (21) then Imply y is bound

to the interval (-Tr, v) and goes to zero as T goes to infinity..

7br large Z

k 4A1 a -C'/C T _
	 {44)

- .and then equation (36) yields

dT _ 1 C'	
d&2

	

u g 8 = 2 GT E .- k.^.	 f

0

..,(T- TO) +(T • To +Gr) e T 	 (4g) /
r

If C' < 0 equation (40) yields the result that k2 increases and

equation (43) implies that the motion can be stable only if C' becomes

zero or positive after 6. finite time dependent upm initial conditions

and CO.



•

If B > 2 1 it is convenient to begin with equation (l). Assuming ?

that



T

u ++ K (T)	
dT

kTKT
fo,

and

(52)

0

To order t

2K

d(12) •^ dau f du
dT	 ^	 .k

-2K

Evaluating the integral on the right hand. aide, equation (52)



0

k - 1.) If no < M . the term in brackets has a single root ko
2

between 0 and 1 and eincreases or decreases depending on whether

k is greater than or less than ko. Therefore, k must converge

monotonically to ko the time required being Infinite an in seen by

-expanding E in equation (54) In powers of (k - ko) to give

	

2	 C 1

k - ko	
K 

Ales C 
T

O 

Then equation ( 51) givea
C1

—
U. ow T-TO + (A + A -%-- T	 (56)

k	
2T	 3)6 . C

0

where A2 and A3 are constants.

If e> 2 and x1 < 0 the same procedure' yields

C1
I	 TC 1 W	 ^+ Ale C T	 (57)
k	 0

in place of.(54). Therefore, 	 decreases as T increases so that
k

it reaches 2 after finite tine.

In summary for the special case where CC1 is constant and C' > 09

the libration in damped by the deployment if the total change in r?

canan be characterized as asiall . This result in compatiblewith the

stability analysis because of the small change assumed for r?. in

the rotational casea l the rotational velocity diminishes and the

rotation eventually becomes a Lbration after finite time if x 1 < 0.,

or If x 1 > 0 and 110 
> We -If 00 < . W and. x!•> 0, the solution diverges

Jrwith increasing T. The special case of 	 Constant and total change

!12



P

in 0 
2 

small can be realized physically if C is described as a

function of time by a real exponential and B and C are nearly

equal and much larger than A or if deployment is primarily along

the x and i axes, with 0 again a real exponential.

Same of the results of the preceding analysis may be obtained

by means of a simpler analysis. For example, consider equation

(7) in the form

	

+ (T) sin	
Ce

Y-M -e 	 W(i - cos Y) + C'
C	

+ 0(62 (58)

6 f (y,ypT)

Where

P 2(B-A) (59),C

and the superscript prime and dot refer to differentiation with -
respect to t and T respectively ,, where T et. A first integral of

equation (58) is
y.	

x
	1 i2

+	
X2(T)sin y d y	 It	 F (y9yjT) dyfYO 	 ZO

Consider now equation (58) when c 0'



2 u2 + A2( 1-cos u) . Const. = a2(1-cos a1) 0(1-cos a2) (62)

where als a2 are the minimum value and the maximum value taken on

by u in li` ztional motion. Then on the interval from al to a2

u=	 a12 sin u d u = 2 (cos u-con ' a) 1	 (63)

U

i
and on the interval from• s2 to a1

a

r
u = - L2 

j 
12 sin u dul 	 (cos u-cos a )' a (64)

u

Define y1, y2 to be eztreme values taken on by y.during the	 i

first period so that Y(Yl) = YN), = 0 and define

Y
A (Y)^►

fyo

	

f(7^^in y dy	 (65)

. and	
..

}
Y (Y) =I f0pyl. )4	 (66)

yo

Theo

A (Yl)	 e. Y (Yl)	 (67)

and



2	 •
A (Y2) " A (Yl) - e	 f(Y,Y,	 dy

`	 .

Now let u denote the solution to (61). 	 Then

A (y2)	 sT < F(Y) >o (69)

.where < F(y) 
u 

is the average of F(y) taken over the first period

. of the unperturbed motion T

<.F(y) o n T	 f (u,u) udt (70)
o

e

where t = 0 and yo are chosen to correspond to an extreme point of

the motion.	 The change in amplitude over a period is then

p a = y2 - 'yl (71)

and for small e

A (x2) = p a ko sin xo (72)

)
Therefore,-

pa 	 c<F	 > T
7► 	 sin 

o
o 

Then.

S . 
i

di )L2 ,in a

' t	
^30-



where

• 
a

< F(y) > ° CT	
r 

2w-2ocos y +	 x (cos1 u-cos a) tidy
-a

!
_a

+r2w-2#cos y -`F2 71 (cos u-cos a)	 dY	 (75)
I

CT
a -

I
4C' 	 2 

{B(k) _ k'2K(k))CK

i

=

2	 1-cos a .and k. °	 This agrees with equation (40) derived by the

Krylov-Bogol.iubov method.

g

1 e

• Ii



Section 5s Linear Librations ,f a Satellite With Tine Varying Tnertia
Tensor

The equation of planar librations mW be linearized by assming

that the libratiom6ngl ,e remains small. In this case, sin aw be

replaced by (P giving a linear equation of ration

♦3^2H^ (P .mac®	 {j^

'".his equation has been studied in two particular caws vreviously (5) .
A general porter aeries solution is derivod hum, Defining T art,

equation (1) beccmea

4P" +
§eCP' + 3 ĤC CP - Cr	 {2^

there the superscript prises demote diflerentfation with respect to T.

The first derivative tea mW be eltsinated through use of the

traastorattiaa 7 • ,EC iP yIsIAIng
a

Y" + 1 y	 f	 {3)

vberei	 ..

D - A	 C'2	 C"	 {^^

3 C

and

-	 f s'2C#	 {5)

Tte solation Is - son&$ .in terns of a power series in T. That is,

let

ns0

-32-



Then

Yt

-	 N

n=1

inn

	

N	 '

T"n(n-1) inRn-2	 (8)

nmt

E
F	 Assuis that and f we re seated by pmr swiss in T. also, i.e.t

	

N bnTp 	(^)

E

r	 andF

E	 r	 -
I

f	 f	 rnlp
	 ( lp)	 - -

	

n'0	
=

Substituting ;into the ho-geneous equation aorrssponding to sguation (3)

gives r	 r	 r
n(n-1)e►QT^Z + Vp L %IP	4	 (33)

t	 noo	 n•0

8quating coefflaisnts of sagh paver of 3 to ssro gives the pt of

equatims



k(k - 
1)ak + bo4k-2 + bloc-3 + ..... + bk-2 so _ . 

p

. . . . . 0 - 0 . . . . . . . . . . . . .

a1 and % sW be chosen arbitrarily (they rill be determined, of course,

by the initial conditions) so that two linearly independent solutions

rill result if 
rl and s

o are alternately equated to soro. It a1 01,

the set of equations (12) becomes

.	 r

- boas
a2

bias

P.
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k
(k + 2)(k + 1)sk+2	- bk•, a,

J'0

Lst
2b	 b	 b	 bo T2	 T3 +	 i

I	
)V4

bo	 b
4'3

Assn tbs pwtimdw molution 16 . 0f the tom



w •. 	 i

f	substituting into the differential e quation (3) gives	 -

ri yl * ; Y2 +KI r1 +K2 sQ +. ^tal rl +K2yQ)I- !

or

uitri * ^►a►1) + K2(r2 + XR) +' rl	 f

or

Ii Y1,♦
	

Y21t)

The general solution is Men

7	 yl C f	 dt, +	 Yg	 Y;

1	 '' :. .

i
1

p 





I

J.

E^

t

f

3

Section 61 Conclusions

Sufficient conditions have been found to guarantee the stability of

the librational motion of a satellite with time varying inertia tensor.

These conditions involve the initial conditions, the rate of ohange of

the principal moments of inertia, and the total ohaage in these pars

meters. The conditions are easily-applied inpraotical situations.

Approximate. solutions to the equations of motion are. found in the

-special cases where the inertial paramsters change rapidly or slowly

relative to the librational period. The conditions for stability , of

the solutions is the differential equasion of librations derived in,

these oases are ocmpatible with the stability conditions established in

s

f
i

.j

t

i

the stability analysis. The a►pprootise►te solutions may be displayed

closed Dorm for particular casts or _integrated nua AGSW mob more

simpllr than the ox4inal differeatUa eguatioas.
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PART zx
X19

The Librational Dynamics of a

Composite Rigid-Elastic Satellite

,r

ABSTRACT

The conditions under Which librational and flexural

resonances may be induced in a satellite consisting of a

rigid central mass from which a lengthy flexible element

extends are derived. The influence of the central body

on the flexible element is specifically taken into account.

The center of mass of the composite satellite is assumed

to move in an elliptic planar orbit.



.

PART II

The Librational Dynamics of a Composite

Rigid-Elastic Satellite

Introduction

The geometric configuration of the composite satellite

envisaged in the following analysis is that consisting of a

uniform flexible beam attached to a body which can be

considered to be rigid in comparison with the beam.	 The

length of the beam is assumed to be much greater .th gn a"

characteristic length of the rigid body, and hence the action -

of this body cn the beam is represented by a point load and a

point moment.	 Both the load anti the moment are considered to

be localized at the center of mass of the rigid body which is

taken to lie on the beam axis. 	 The inertial and gravitational

loading on the beam during its librational motion in addition

to the loading exerted by the rigid element of the satellite

contribute to the deformation energy stored in the beam. 	 The
z

I purpose of this paper is to study the librational motion

making allowance for this energy of deformation.	 The paper

!
-i

thus constitutes a generalisation of earlier work, Liu and

Mitchelll,	 in which the influence of the rigid element of the

4

	

	
composite was specifically ignored. The opportunity_is also

taken'to correct an omission in the statement of the inertial'

t
	 reaction force used in reference 1. This oversight was .

e

	

	
pointed out to the authors by Mr. Eugene Cliff to whom we are

greatly indebted. -

-41-



The analysis to be presented is restricted to planar

libration of the satellite assuming the orbital and libra-

tional motions to be uncoupled. The restrictions inherent

in this latter assumption have been discu.,sed by Kane 3 and

4
Breakwell and Prinfle if the satellite were completely

rigid, the librational angle ^ would be determined by the

well-known equation

d
2o + 3 3 ( B ) sino cosw • - d22	 (1)
dt	 Rc	 dt

where the orbit of the satellite center of mass is given by

R `	p/(1 + e case)
	

(2)

p being the focal parameter and a the orbital eccentricity.

In equation (1) K is the gravitational parameter; the elements

of the inertia tensor of the entire satellite at its center

of mass are A,B about principal axes in the orbital plane and

C about the axis normal to it. See Figure 1 which also

illustrates the coordinate system to be used.

It can be shown directly that the total body force per

unit mass acting on the satellite is

f	 V xPl - yP2 ) + 4 (xP 3 + yP 4 )	 (3)

where the notation

P1	(e + j ) 2 + 3 (3 cos 2.^ - 1)
R3

P2 • 'x (a+ 1) sink cosh
Rc



P3	 33 (a- 1) sink cosh
R 3

P(^ + 9}2 + K (3 air,. 2qI + 1)
R c̀

and

o = kB - A)/C

is used. The deformation energy created in the beam by this

force, the point load reaction F and moment M r originating

in the presence of the rigid body.part of the composite

satellite, will now 'be calculated fol.oving a method used

previously1,2,

Elastic Energies

Since the beam is in overall equilibrium, the force of

reaction of the rigid body on the beam is, see Fig. 2,

	

r
L^	 a

F _ -p J ;dx	 dyd$[I(Xri-YP2 ) + j(xP3+yP dI

	

-L2	-a -b

- m (Ll-L2)(Ipl+JP3)
c

in which m - 40&b(L 1 + L2 ) is the mass of the beam, its mass

density being represented by p its rectangular cross section

by 2a x 2b and the origin of coordinates coincides with the

center of mass of the composite body. The bending moment in

the beam in found to be

(4)

-43-



M(x)	 2abpv(L1-x)I(a-1) M 2_ Ll x-x2 ) + 2a2(a+1))

(53

if x > xo , and

M(x)	 2abper(L1-x)I(a-l')M2_Llx-x2) + 2a2(a +1)j

+	 +m!L1-L2 )(a-1)(x-x0 ) 	
Mr	 (.6i

if x < x  where x  represents the abscissa of the point of

application of the rigid body reaction load and moaent. For

conciseness the symbol . * 3enotes the quantity (K/Rc)Gino cos#.

The value of the point moment M . is found by invoking the

boundary condition K(-L2 ) s o which corresponds to the fact

that the end x - -L2 of the been is free. Clearly M(L1 )	 c

is automatically satisfied.

Tn physically iaterestin ._ cases F will be zero if and

only if L1 s L2 i . e. if the centers of mass of the rigid body

and the beam coincide. Furthermore, Mr will vcn{sh if

L2_L1 L2 + 3(LI+L,}Xo/2 + L2_a2
(^ s

Li-L1 L2 + 3(L1+L2 } xo /e + L2
+a2

Accordingly, the influence of the rigid body en the beam is

exactly zero only if L1 a L2 R L and a : ( L2-a te )/( L +a }.

The shear S(x) and tension T ( x) in the beam aro

E(x)	 -6abpd(a-1)(L2_x2) 	 x > xo

R 6abpd(a- 1)(L2_x2 ) , x	 xo

_44-



and

T(x)	 2abPI(0 + 9) 2+ K (3 cos 24-1))(Li-x 2 ` , x > xo

c

2ab0I(4 + 0)
2
+g3 ( 3 cos 2^-1)) ( t-2-x2 )	 x < xo

c

One can nor compute the deformation energy in the beam by

determining thv contributions of the bending, shear and

tension energies respectively. Thus, the strain energy of

bending is

L1

UB ` 21 f IM(x)1 2dx

-L2

4

• l — (1 + e eos8) 6 sin 24 co g 2^	 (T)

the straiv energy due to shear deformation is

L1

JJ	 i

'L2

4
(i ♦ a cos8) 6sin2# Cos 2d	 (8)

and that produce A by the tension is

L1

UT n ^S	 (T(x) - To 1 2 dx

a
s	 2 +	 3122(1+e cns6) 3sin2#I 2 (9)

-45.



In equations (7), (8) and (9) the A's represent constants

which are functions of L l , L29 a, b, xo , a and p. Young's

modulus is denoted by R and the modulus of rigidity by G.

The values of the A i in the special case L 1 R L2 n L,

a	 (L2-a2)/(L2ta2) are

Al	 32b4p2L7(1 - 0)2/145

A2	 96a2b202LI(, - 6)2/5

and

A 3	 boa b 0 /15

The differential equation describing the librational- -

motion is derived o.g. by writing the Lagrangian of the rigid

body motion modified by the inclusion cf x..e strain energy

calculated above. Restricting the analysis to small values

of # and expressing the equation in terms of the true anomaly

$ yields, recalling the assumed independence of the orbital

and librationai modus, a second order differential with

constant coefficients. This equation will be written here in

thi case where the banding energy dominates the ether ele-

msnts of the strain energy. It is

C d1!
2

	

	 271 n?

• 2Ce d8 ( ^. ♦•
sing
 oQS ) + 01i+0-i-0-0	 g... "r" (l+s lose)1

e 2 sine
`	 1+e cos

w-

-46-



which, when a n o, shows that the frequency, w, of oscillation

is given by

2	 112 (3(B -A) - 2A1 02 /E I)

When the orbit is elliptic i.e. o< ec 1 equation ( 10) can be

treated as follows. Define

T n (1 + a cose)4

to find

2
d2T + T
	 * c
	

- 2A 
1 (1+e cose) 2	 2e sine

d
dO 1+e oos8

(12)

A Renorsl solution to equation (12) is sought in the

fora of a power series expansion in the orbital eccentricity

(l-3)

nn0

in vhieh Yo is the solution for a circular orb+t an4 the

additive correction in powers of a represents the perturba-

tional offs at of the orbital eccentricity. To the first

order in a there -results

d2Y
+ (PI - 02 )wo n ^	 (1k)

of



_z

an4

dZ^'

de
	 + (U1 - N 2 )vI * (u 1 + 2y2 - ')Cone To + 2 sins

t 15)

where p1 * 3a and U2 . 2Al112/Cg1,

The solution of equation (14) is

TO 
n A0 sinful • 42) lie + H o aos(Nl - U2)If8

IF

f

where A  and go are srbitrsr

solution of equation (15) is

particular solution found by

parameters is

2	 y +2µ »1
^1	

pl"p2- + 41 •y )19 #
l 2

r Constsnts. The Complementary

of iaet.tical form and the

the method of voriation of

^i +	
I
.Aosin(µl-µ2)N+l

2(p 1 - v,^) 1'4,11
+ 1 + --^^► l Ao sin {^1 =u2 )^=i e

(P1°N2 ) Ml

_-	 (16)

+ »1 +	 j'	 Aocos (1' 1 -µ2 1 N+1 8
2(al -µ2 ) :1

+ 1 + — I --	 Roaos ( {► 1 • {4 2 ) , 9
2(N1-µ2 ) •1

equation (16) clearly exhibits the possibilities of parametric

resonance in the librational notion. Resonance may occur when

the geometry and materiel properties of the e+tellit• are such

.43.
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i

that either

H•A	 2A1A2

C ^ • 1

or

1	 8
C	 CS I. l

2 2
In the special case where Ll • L2 • L are i at • ^ , this

L ♦a
reduces to

$'	 16^T 
C2 ' (B A)2lg2 1

5# aC

and

8•	 Z 7 2W	 2 2 -
1

351 aC'

l quatlons M) and (^a) express resonance conditions correct

to the First power in the eccentricity With other resonances-

to be exyected from higher order corrective terms in

equation (13).

Structural resonances may occur it the load distribution

on the elastic elements contain periodic terms with frequencies

close to the natural lrequanoiea of the-elastic elements. The

eccentricity of the orbit provides a atructural resonanoe

condition

V®	 tl^)

and the llbrationaa, motion provides the additional conditions

"'	
t^l . u

6 )^ R n	
or	 (ul	 ;A	 s 1 n 	 (20)

04$.

7

(iT)

(18)



and

ym " nT
	 (21)

whore 
m 

is a natural frequency for the clastic elements.

These struotural resonance conditions &ro t of course,

restricted to the first pover of a and small values of 0 and
elastic-rigid coupling too small to appreciably-alter the

natural frequanoiss of the elastic elements.
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