General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

university of california - santa barbara

THE LIBRATIONAL DYNAMICS OF SATELLITES

Part I. The Motion of a Satellite With a Time-Dependent Inertia Tensor

Part II. The Librational Dynamics of a Composite RigidE sic Satellite
by

> J. E. Iingerfelt and T. P. Mitchell

UCSB-ME-70-9

The Librational Dynamics of Satellites

Part I. The Motion of a Satellite With a Time-Dependent Inertia Tensor

Part II. The Librational Dynamics of a Composite RigidElastic Satellite
by
J. E. Lingerfelt and T. P. Mitchell

A Technical Report to the
National Aeronautics and Space Administration
Grant No. NGR 05-010-020

January 30, 1970
Mechanical Engineering Department
University of California
Santa Barbara, California 93107

TABLE OF CONTENTS

Part I: The Motion of Satellite With a Time-Dependent Inertia Tensor

Page 1

Part II: The Librotional Dynamics of a Composite Rigid-Flastic Satellite

Page 40

PART I

Motion of a Satellite With Time Dependent Inertia Tensor

Abstract

Conditions sufficient to guarantee the starility of the librational motion of a satellite with time varying inertia tensor are derived. These conditions involve the initisl configuration, the rates of change of the principal moments of inertia and the total change in these parameters. Approximate solutions to the equations of motion are found in the special cases in which the inertial parameters vary rapidly or slowly relative to the librational period. The conditions for stability of these solutions are ahown to be compatible with the criteria established in the stability analysis.

Motion of Satellite With Time Dependent Inertia Tensor

Section 1. Introduction

The equation of planar libration for a satellite in orbit is

$$
\begin{equation*}
\frac{d}{d t}[c(\dot{\phi}+\omega)]+3 \omega^{2}(B-A) \sin \phi \cos \phi=0 \tag{1}
\end{equation*}
$$

This equation assumes that the inertia tensor, whose elements are A, B and C, varies with time in such a way that the principal axes of inertia remain principal axes. The requirement that the z (or C) axis remains principal and, therefore, perpendicular to the orbit plane guarantees that an initially planar libration remains planar. The requirement that the $x(o r A)$ and the $y(o r ~ B)$ axes retain their orientation relative to the orbit plane guarantees that the ϕ occuring in the firot term of equation (1) is identical to thst occurring in the second term.

Equation (1) is examined in some detail in this chapter. First, the stability of the solutions, where the motion is defined to be stable if it remains librational, is studied in section 2 where sufficient conditions for stability are derived. These conditions should prove useful as design ariteria for gravity gradient stabilized satellites. In section 3 the case where deployment is rapid with respect to the orbital period is considered. In section 4 , equation
(1) is studied for the cpse where the inertial parameters vary slowly with respect to an orbital period. Asmptotic techniques are utilized averaging in the first case about the linearized solution of the constant parameter case and in the second case, about the exact nonlinear solution of the constant parameter case. Closed form approximate solutions are presented for particular cases. In section 5 a power series solution is presented for the linearized equation.

Section 2: Stability of Motion of a Satellite With Time Dependent Inertia Tensor

The equation of planar libration is

$$
\begin{equation*}
\frac{d}{d t}\left[C\left(\frac{d}{d t} \varphi+\omega\right)\right]+3 \omega^{2}(B-A) \sin \varphi \cos \varphi=0 \tag{1}
\end{equation*}
$$

which for a satellite in a circular orbit (ω = positive constant) may be written in the form

$$
\begin{equation*}
\ddot{x}+a(T) \dot{x}+b(T) \sin x=-2 a(T) \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
x & =2 \varphi \\
a^{\prime}(\tau) & =\frac{\dot{C}}{C} \\
b(r) & =\frac{3(B-A)}{C} \\
T & =\omega t
\end{aligned}
$$

and the superscript dots denote differentiation with respect to the nondimensional time, T. This equation is nonlinear, nonstationary (since the coefficients are nonconstant functions of time), ard nonautonomous (since the right hand side is not identically zero). Very little is known concerning the solutions of such equations although G. Leitmann (1) has derived sufficient conditions for the stability of the nonilnear; nonstationary equation

$$
a(t) \ddot{x}+b(t) \dot{x}+c(t) f(x)=0 \quad(3)
$$

which includes the autonomous form of equation (2).

In this section the stability of the solutions of equation (2) are studied where stability is defined in a phrsical manner, viz.:

A solution to equation (2) is said to be stable if the corresponding motion of the satellite is librational as distinct from rotational. Stability is examined about a stable equilibrium point and the coordinate axes are chosen so this equilibrium point is in the neighborhood of $x=0$. This implies that the coordinate axes are chosen such that the stability requirement for three dimensional motion $C>B>A$ is satisfied. Therefore $(B-A)>0$ and aince C must be positive on physical grounds, $b(T)>0$ for all T.

Equation (2) may be written as a set of two first order differential

squations

$$
\begin{gather*}
\dot{x}=z \\
\dot{z}=-a(T) z-b(T) \text { sin } x-2 a(T) \tag{4}
\end{gather*}
$$

Consider the function $V(x, z, T)$ defined by

$$
\begin{equation*}
V \equiv 2(1-\cos x)+\frac{1}{b} z^{2}+f(\tau) \tag{5}
\end{equation*}
$$

where $f(T)$ is to be defined later. Then $\frac{d V}{d T}$. following the motion is

$$
\begin{gather*}
\frac{d V}{d \tau}=2 z \sin x+\frac{2}{b} z[-a z-b \sin x-2 a]-\frac{b}{b^{2}} z^{2}+f \tag{6}\\
=-\left[\frac{2 a}{b}+\frac{b}{b^{2}}\right] z^{2}-\frac{4 a}{b} z+f
\end{gather*}
$$

$\frac{d V}{d T} \leq 0$ for $a 11 z$ if the discriminant of the polynomial in z is less than or equal to zero and $\mathbb{f}<0$. This implies that

$$
\begin{equation*}
\left[\frac{2 a}{b}+\frac{b}{b^{2}}\right]>0 \tag{7}
\end{equation*}
$$

and that

$$
\begin{equation*}
\dot{f} \leq \frac{4\left(\frac{a}{b}\right)^{2}}{\left[\frac{2 a}{b}+\frac{b}{b^{2}}\right]} \tag{8}
\end{equation*}
$$

Therefore, f will be defined by

$$
\begin{equation*}
I=\int_{0}^{T}-\frac{4\left(\frac{a}{b}\right)^{2} d t}{\left\lfloor\frac{2 a}{b}+\frac{b}{b^{2}}\right\rfloor} \tag{9}
\end{equation*}
$$

Existence and finiteness are guaranteed by relation (7), the previously noted requirement that $b>0$, and the physical requirement that $\frac{\dot{C}}{C}=a$ be finite.

Referring to equation (2) it is apparent that if laal>b, oscillatory solutions cannot be expected: Therefore, it will be assumed that

$$
\begin{equation*}
\left|\frac{2 a}{b}\right|<1 \tag{10}
\end{equation*}
$$

for all T. If this condition is satisfied, the points at which

$$
\begin{equation*}
\sin x=-\frac{2 a}{b} \tag{21}
\end{equation*}
$$

are instantaneous equilibrium points; i.e., if the values of ies:and b. were frozen at any time T, the constant values of x specified by equation (11) would satisfy the differential equation (2). Consider the equation

$$
\begin{equation*}
\ddot{y}+a \dot{y}+b \sin \left(y+x_{0}\right)=-2 a \tag{12}
\end{equation*}
$$

obtained by substituting $\left(y+x_{0}\right)$ into equation (2) where x_{0} is a solution to equation (11). This equation may be written for small y in the form

$$
\begin{equation*}
\ddot{y}+a \dot{y}+b \cos x_{0} y=0 \tag{13}
\end{equation*}
$$

Considering a and b constent, the solution to (13) will he oscillatory if $\cos x_{0}$ is positive. If $\cos x_{0}$ is negative, the solution will consist of an exponentially increasing function plus an exponentiaily decreasing function. Hence, the points $x= \pm 2(n-1) \pi+\sin ^{-1} \frac{-2 a}{b}$ are instantaneous stable equilibrium points and the points $x= \pm n \pi+\sin ^{-1} \frac{-2 a}{b}$ are unstable instantareous equilibrium points. Define . $\quad B_{1}=-\pi+\sin ^{-1} \frac{-2 a}{b}$

$$
\begin{equation*}
\mathrm{B}_{2}=+\pi+\sin ^{-1} \frac{-2 a}{b} \tag{14}
\end{equation*}
$$

If x is originaily bounded by $B_{1}(\tau)$ and $B_{2}(\tau)$, the motion remains bounded by B_{1} and B_{2} if the total unergy of 'he motion at all times is less than the potential energy of the system.at the unstable equilibrium points, B_{1} end B_{2}. This condition may he expressed as

$$
\begin{equation*}
2(1-\cos x)+\frac{1}{b} z^{2}<\min 2\left(1-\cos B_{1}\right) \tag{15}
\end{equation*}
$$

since $\cos B_{1}=\cos B_{2}$. But

$$
\begin{equation*}
V-f(\tau)=2(1-\cos x)+\frac{1}{b} z^{2} \tag{16}
\end{equation*}
$$

from equation (5) and $V \leq V(T=0)=V_{0}$ if $\frac{d V}{d T} \leq 0$. Therefore, condition (15) may be expressed

$$
\begin{equation*}
Y_{0} \leq \min 2\left(1-\cos B_{1}\right)+f(T) \tag{17}
\end{equation*}
$$

if conditions (7) and (10) hold and f is defined by equation (9). This demonstrates:

$$
\begin{aligned}
& \text { The solution of the equation } \\
& \ddot{x}+a(T) \ddot{x}+b(T) \text { sin } x=-2 a(T)
\end{aligned}
$$

is stable if a is finite, $b>0$,

$$
\begin{gather*}
2\left(1-\cos x_{0}\right)+\frac{1}{b_{0}} x_{0}^{2} \leq \min 2\left(1-\cos B_{1}\right)+f(r), \tag{17}\\
{\left[\frac{2 a}{b}+\frac{\dot{b}}{b^{2}}\right]>0 .} \tag{7}
\end{gather*}
$$

and

$$
\begin{equation*}
\left|\frac{2 a}{b}\right| \leq i \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
I=-\int_{0}^{T} \frac{4\left(\frac{a}{b}\right)^{2}}{\left[\frac{2 a}{b}+\frac{b}{b^{2}}\right] d t} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\cos B_{1}=-\left(1-\frac{4 a^{2}}{b^{2}}\right)^{\frac{1}{2}} \tag{18}
\end{equation*}
$$

In terms of the original parameters, these conditions may be expressed as

$$
\begin{align*}
& -\frac{d}{d \tau} \ln (B-A)<\frac{d}{d \tau} \ln C \tag{7}\\
& \left|\frac{2 \dot{C}}{3(B-A)}\right| \leq 1 \tag{10}
\end{align*}
$$

$$
\begin{equation*}
P=-\int_{0}^{T} \frac{4 \dot{C}^{2}}{3 \frac{d}{d t}[C(B-A)]} d t \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
2\left(2-\cos x_{0}\right)+\frac{C C_{0}}{3\left(B_{0}-A_{0}\right)} \dot{x}_{0}^{2} \leq \operatorname{ain}\left\{2\left(1-\cos B_{1}\right)\right\}+f(\tau), \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\cos B_{1}=-\left[1-\frac{4 i^{2}}{9(B-A)^{2}}\right]^{\frac{1}{2}} \tag{18}
\end{equation*}
$$

Condition (17) can be satisfied only if $|f|$ is less than $2\left(1-\cos B_{1}\right)$ since the left hand side is alweys positive. Since the integrand is always positive, this may be expressed as

$$
\begin{equation*}
\int_{0}^{T} \frac{4 \dot{C}^{2}}{3 \frac{d}{d t}[C(B-A)]}<2\left(1-\cos B_{1}\right) \text { for all } T \tag{19}
\end{equation*}
$$

Relation (7) which may be expressed as

$$
\begin{equation*}
\frac{d}{d t}[C(B-A)]>0 \tag{7}
\end{equation*}
$$

must be interpreted in this iight. In particular, although (7) does not preclude negative \dot{C} (the retraction situation) or negative $\frac{\bar{a}}{\bar{a} t}(B-A)$, it must be understood that these conditions are reflected in the severity of restrictions imposed on the initial state. If both C and $B-A$ are monotonically increasing functions, $|f|=0\left(\ln \frac{C}{C_{0}}\right)$
so that conditions (17) and (19) are seen to impose conditions on the total change in inertial parameters. Equation (7) agrees with the condition derived in section 4, equation (15) for stability in a particular case where an approximate solution can be found. If $\dot{C}=0$, equation (2) becomes autononous and the sufficient conditions for stability stated above may be compared with Leitmann's (8) results. According to Leitmann, sufficient conditions for statility are

$$
\begin{equation*}
-\frac{d}{d t} \ln C \leq \frac{d}{d t} \ln (B-A) \leq \frac{d}{d t} \ln C \tag{20}
\end{equation*}
$$

which, since $C=$ constant, requires $(B-A)$ to be constent 2iso, and

$$
\begin{equation*}
\frac{c_{0}}{3\left(P_{0}-A_{0}\right)} \dot{x}_{0}^{2}+2\left(1-\cos x_{0}\right) \leq 4 \tag{21}
\end{equation*}
$$

which is identical to relation (17) since $\dot{C}=0$ implies $f(t)=0$ and $\cos B_{1}=-1$.

Comparing (20) with relation (7), the left hand inequality in (20) results from placing a bound on x in Leitmann's anslysis, a bound which follows on physical grounds is this paper. Referring back to equation (6), the less than relation in relation (7) may obviously be changea to less than or equal to if $\dot{C}=0$ (zmplies $\frac{4 \mathrm{a}}{\mathrm{b}}=0$ and $\mathrm{f}=0$). Thus, the general form of the resuits of this paper and that of Leitmann are compatible and similar in form.

The preceding ansiysis has been restricted by the condition $\left[\frac{2 a}{b}+\frac{b}{b^{2}}\right]>0$, or, equivalentiy, $\frac{d}{d t}[C(B-A)]>0$. This
restriction is not necessary. Referring again to equation (6), consider the case where $\left[\frac{2 a}{3}+\frac{\dot{b}}{b^{2}}\right]=0$, or, equivalentiy, $\frac{d}{d t} C(B-A)=0$. If $a=0, \dot{f}$ and f may be chosen to be zero, $\frac{d V}{d t} \equiv 0$ and condition 17).suffices for stability, this being the case of constant parameters. If $a \neq 0, \frac{d V}{d \tau} \leq 0$ if $\frac{f b}{4 a} \leq z$ for ail z assumed by the system, where $\dot{f}<0$. Since z must be permitted to take on' negative values, a must be greater chan zero which impilies $\dot{C}>0$. From equation (5) 2 can be expressed as

$$
\begin{equation*}
z= \pm[v-2(i-\cos x)-p]^{\frac{1}{2}} \mathrm{~b}^{\frac{1}{2}} \tag{22}
\end{equation*}
$$

Then the minimum value of z satisfies the inequality

$$
\begin{equation*}
z_{\min } \geq-[\overline{-}-]_{\max }^{\frac{1}{2}} b_{\max }^{\frac{1}{2}} \tag{23}
\end{equation*}
$$

If relation (15) is to be setisfied, equation (16) yields

$$
\begin{equation*}
z_{\min } \geq-\left[\min \left\{2\left(1-\cos B_{1}\right)\right\}\right]^{\frac{1}{2}} b_{\max }^{\frac{1}{2}} \tag{24}
\end{equation*}
$$

The condition for $\frac{d V}{d \tau} \leq 0$ may then be written

$$
\begin{equation*}
\frac{\dot{f b}}{4 a} \leq-\left[\min \left\{2\left(1-\cos B_{1}\right)\right\}\right]^{\frac{1}{2}} b_{\max }^{\frac{1}{2}} \tag{25}
\end{equation*}
$$

Thus, equation (2) is stable if $\left[\frac{2 a}{b}+\frac{\dot{b}}{b}\right]=0, a>0$, relation (10)
is satisfied, and there exists an $\dot{f}(T)<0$ such that relations (17) and (25) are satisfied where $f(T)=\int_{0}^{T} f(T) d T$. Such f exist for suitably chosen parameters a and b and initial conditions.

If $\left[\frac{2 a}{b}+\frac{b}{b^{2}}\right]<0 \quad$ or $\quad \frac{d}{d t}[C(B-A)]<0$,
equation (6) yield e $\frac{d V}{d T} \leq 0$ if $\dot{f}<0$ and z is contained in the interval $\left[z_{1}, z_{2}\right]$, where

$$
\begin{aligned}
& z_{1}=\frac{E+\sqrt{E^{2}-4 D f}}{2 D} \\
& z_{2}=\frac{E-\sqrt{E^{2}-4 D E}}{2 D}
\end{aligned}
$$

$$
=\quad D=\frac{2 a}{b}+\frac{\dot{b}}{b^{2}}
$$

ard $E=\frac{4 a}{b}$

Then the solution to equation (2) is stable if $\mathrm{D}<0$, relation (10) is satisfied and there exists an $\dot{f}(T)<0$, such that

$$
\begin{equation*}
\left[\min \left\{2\left(1-\cos B_{1}\right)\right\}\right]^{\frac{1}{2}} b_{\max }^{\frac{1}{2}} \leq z_{2} \tag{27}
\end{equation*}
$$

and relation (27) are satisfied. The values of the parameters a and b and the initial conditions can be chosen such that a suitable 1 exists. Hoverer; $20 r$ specified and b and initial conditions, there may be no f.

Section 3. Rapid Change in Inertial Parameters
The equation of planar libration of a satellite is

$$
\begin{equation*}
\frac{d}{d t}[C(\dot{\varphi}+\omega)]+\frac{3 \omega^{2}(B-A)}{2} \sin 2 \varphi=0 \tag{1}
\end{equation*}
$$

If the inertial parameters change rapidy with respect to $\frac{1}{W}$, the first term is of order ω and the second term is of order ω^{2}. Since ω is a small parameter relative to $1 \mathrm{sec}^{-1}$, the $\sin 2 \varphi$ term may then be neglected during deployment or at least treated as a per. turbation on the motion. Equation (1) becomes simply

$$
\begin{equation*}
\frac{d}{d t}[c(\dot{\varphi}+\omega)]=0 \tag{2}
\end{equation*}
$$

an equation which expresses conservation of the angular momentura. of the satellite. This integrates immediately to

$$
\begin{equation*}
c(\dot{\varphi}+\omega)=\text { constant }=h=C_{0}\left(\dot{\varphi}_{0}+\omega_{0}\right) \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
\dot{\varphi}=\frac{\mathrm{h}}{\mathrm{c}}+w \tag{4}
\end{equation*}
$$

which in turn integrates to

$$
\begin{equation*}
\varphi=\int_{0}^{t}\left(\frac{h}{C}+w\right) d t+\varphi_{0} . \tag{5}
\end{equation*}
$$

These equations hold during deployment permitting computaiiion of an angular dispiacement, φ_{f}, and an angular velocity, $\dot{\varphi}_{f}$, at the end of the deployment period. These constitute initial conditions
on the motion described now by equation (1) with C equal to the constant C_{f}. The stability condition for the resultant motion is

$$
\left(1-\cos 2 \phi_{f}\right)+\frac{2 C_{f}}{3^{2}\left(B_{f}-A_{f}\right)} \dot{\phi}_{f}^{2}<2
$$

It is generally desirable to preserve orientation so that ϕ_{f} should be less than $\pi / 2$.

The effect of the deployment is cen to be very much dependent upon the initial conditions, particularly upon ϕ_{0} and $\dot{\phi}_{0}$ If $\dot{\phi}_{0}=-\omega_{0}$, then $\phi_{F}=\omega$ and $\phi=\int_{0}^{t} w d t+\phi_{0}$. If ϕ_{0} and $\dot{\phi}_{0}$ have the same sign as ω, the destabilizing effects $\left(c<0, \frac{d}{d t}(B-A)<0\right)$ will be more severe than $j f$ either or both of these conditions were not fulfilled. It is apparent that deployment and retraction can be utilized to either stabilize or destabilize librational motion by appropriate programing of the action,

Section 4. Planar Librations of a Satellite With Slowly Vary ing Inertial Parameters

In the situation where the inertial parameters in the planar libration equation vary slowly with respect to a librational (or orbital) period, asymptotic methods may be utilized to find approximate solutions (2,3). Three different asymptotic approaches are used to study the librational motion of a deploying satellite in/ this chapter. The first uses the Krylov-Bogoliubov method treating the full equation as a perturbation of the equivalent stationary linearized equation. The second also uses the Krylov-Bogoliubov method but treats the full equation as a perturbation on the equivalent stationary but fully nonlinear equation. The third method attempts to find information on the amplitude of the motion without attempting to follow the trajectory of the motion.

Consider the equation of motion in the form

$$
\begin{equation*}
\frac{d}{d t}(C \dot{x})+3 w^{2}(B-A) \sin x=-2 \dot{C} \omega \tag{1}
\end{equation*}
$$

Suppose C and B-A are functions of $T=\epsilon t$ where ε is a small parameter. Define the transformation

$$
\begin{align*}
& y=x-\sin ^{-1}\left(\frac{-2 \dot{\alpha}}{3 \omega^{2}(B-A)}\right)=x-\sin ^{-1}\left(\varepsilon \frac{-2 c^{\prime}}{3 \omega(B-A)}\right) \\
& \therefore \tag{2}\\
&=x-\sin ^{-1} \varepsilon u
\end{align*}
$$

where

$$
\begin{equation*}
u=\frac{-2 C}{3 \mu(B-A)} \tag{3}
\end{equation*}
$$

and the superscript prime indicates differentiation with respect to
to T. Then

$$
\begin{align*}
& \dot{x}=\dot{y}+\frac{\varepsilon^{2} u}{\sqrt{1-\epsilon^{2} u^{2}}}=\dot{y}+\varepsilon^{2} u^{\prime}\left(1+\varepsilon^{2} u^{2}\right)+o\left(\varepsilon^{4}\right) \tag{4}\\
& \ddot{x}=\ddot{y}+o\left(\epsilon^{3}\right) \tag{5}\\
& \sin x=\sin y\left[1-\frac{\varepsilon^{2} u^{2}}{2}+\ldots\right]+\epsilon u \cos y \tag{6}
\end{align*}
$$

To order ε^{2} the differential equation (1) may then be written

$$
\begin{equation*}
\frac{d}{d t}(\dot{C y})+3 w^{2}(B-A) \sin y=-\varepsilon[2 c ' w(1-\cos y)]+O\left(\varepsilon^{2}\right) \tag{7}
\end{equation*}
$$

Expanding sin y in a power series gives

$$
\begin{gather*}
\frac{d}{d t}\left[\begin{array}{c}
c \\
y
\end{array}\right]+3 \omega^{2}(B-A) y=-\left[2 C^{\prime} w(1-\cos y)+\frac{\lambda}{\varepsilon} \frac{\omega^{2}(B-A)}{2} y^{3}+\ldots\right] \\
+O\left(\varepsilon^{2}\right) \tag{8}
\end{gather*}
$$

Following the technique of Krylov-Bogoliubov define the change of variables.

$$
\begin{equation*}
y=a \cos \Psi \quad ; \quad \dot{y}=-a \Omega(\tau) \sin \Psi \tag{9}
\end{equation*}
$$

wherc

$$
\begin{equation*}
\Omega^{2}=\frac{3 \omega^{2}(B-A)}{C} \tag{10}
\end{equation*}
$$

Then the first approximation (3) is given by

$$
\begin{equation*}
\frac{d a}{d t}=-\frac{c a}{2 C \Omega} \frac{d(C \Omega)}{d t} \tag{11}
\end{equation*}
$$

$$
\begin{array}{r}
\frac{d \psi}{d t}=\Omega(\tau)+\frac{\epsilon}{2 \pi C \omega} \int_{0}^{2 \pi}\left\{2 C \cdot \Omega[1-\cos (a \cos \psi)]+\frac{1}{\epsilon} \frac{\omega^{2}(B-A)}{2}\right. \\
\left.\quad x a^{3} \cos ^{3} \psi\right\} \cos \Psi d \psi \quad \text { (12 } \tag{12}
\end{array}
$$

Equation (.II) immediately integrates to

$$
\begin{equation*}
a(T)=\frac{a_{0}}{(C \Omega)^{\frac{1}{2}}}=\frac{a_{0}}{\left[3 w^{2} C(B-A)\right]^{\frac{1}{4}}} \tag{13}
\end{equation*}
$$

Then, substituting for a from equation (13), equation (12) becomes

$$
\begin{equation*}
\frac{d \Psi}{d t}=\Omega(T)-\frac{3 a_{0}^{2} w^{2}(B-A)}{16(C \Omega)} \tag{14}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\Psi=\int_{0}^{t} \sqrt{\frac{3 \omega^{2}(B-A)}{C}} d t-\int_{0}^{t} \frac{a_{0}^{2}}{16}\left[\frac{3 \omega^{2}(B-A)}{C}\right]^{\frac{1}{2}} d t+\Psi_{0} \tag{15}
\end{equation*}
$$

It is apparent from equation (13) that the amplitude of the moticn, a, increases (or decreases) as $C(B-A)$ decreases (or increases). This compares with condition (2.17) in the stability analysis of section 2 and demonstrates that condition (2.17), is indeed a sufficient condition for stability if the initiai conditions are satisfactorily bounded. It also indicates that condition (2.17) is not a necessary condition since incressing a does not necessarily imply instability. Note that the fact that a may be bounded in the first approximation dnes not imply stability of the full equation due to the approximation made for sin x.

The "forcing" term, -2cw, has no effect on the ayeraged"equationa,
1.e. on a and ψ, in the first approximation. However, it does produce a shift in the mean value of x in the amount $\sin ^{-1} \frac{-2 \mathrm{C}}{3 \omega(\mathrm{~B}-\mathrm{A})}$, the same shift which :ould be produced in the linearized solution. This is to be expected from the assumption that C varies slowly with respect to a librational period and, therefore, the integrated effect of C over a period should be smal.

Equation (15) can be integrated in closed form for certain cases and presents no difficulties with regard to numerical integration in physically reasonable cases compatible with the assumption of slow variation of inertial pismeters. The original differential equation (1), however, presents serious problems for numerical integrotion, since the integration must follow the "rapid" oscillation with the attendant accumulation of error.

The preceding analysis is limited in usefulness to small vaiues of y because of approximation of $\sin x$ by a truncated series. Although the inclusion of additional terms of the series presents no difficulty, a solution of the equation which does not epproximate the nonlinearity is desirable, particularly if the transition to rotational motion is of interest. In the case of the planar librational equation an exact solution exists for the equation with constant coefficients in terms of elliptic functions. . . The full equation with varying coefficients is considered as a perturbation on the constant coefficient equation in what follows. The treatment is completely analogous to the Krylov-Bogoliubov method used previously, but the assumed form of the solution is the solution to the stationary nonlinear equation with time dependent ampitude and phase.

The starting point wiil be equation (7)

$$
\begin{equation*}
\frac{d}{d t}(C \dot{y})+3 w^{2}(B-A) \sin y=-\varepsilon\left[2 C \omega^{\prime}(1-\cos x)\right]+O\left(\varepsilon^{2}\right) \tag{7}
\end{equation*}
$$

Assume that

$$
\begin{equation*}
\Omega^{2}=\frac{3 \omega^{2}(B-A)}{C}=\Omega_{0}^{2}+\varepsilon \Omega_{1}^{2}(t) \tag{16}
\end{equation*}
$$

and let

$$
\begin{equation*}
T=\Omega_{0} t \tag{17}
\end{equation*}
$$

Then equation (7) may be written

$$
\begin{gather*}
y^{\prime \prime}+\sin y=-\varepsilon\left[\frac{2 w}{C \Omega_{0}} \frac{\partial C}{\partial T}(1-\cos y)+\frac{\Omega_{1}^{2}}{\frac{1}{2}} \sin y+\frac{C^{\prime}}{C} y^{\prime}\right] \\
 \tag{18}\\
=\varepsilon f\left(y, y^{\prime} ; T\right)
\end{gather*}
$$

where the prime denotes differentiation with respect to T, The .equation

$$
\begin{equation*}
y^{\prime \prime}+\sin y=0 \tag{19}
\end{equation*}
$$

bas known solutions in terms of elliptic functions dependent upon the initial conditions for exact form. The first integral of equation (19)

$$
\begin{equation*}
\varepsilon=2 \sin ^{2} \frac{y}{2}+\frac{1}{2} y^{\prime} \tag{20}
\end{equation*}
$$

expresses conservation of energy. The solution is librational if $\mathrm{E}<2$ or rotational if $\mathrm{E}>2$.

If $\mathrm{E}<2$, the solution of (19) may be written in the form

$$
\begin{align*}
\sin \frac{y}{2} & =k \operatorname{sn} u \\
\cos \frac{y}{2} & =d n u \tag{21}\\
\frac{y^{\prime}}{2} & =x \operatorname{cn} u
\end{align*}
$$

where sn, dn, cn are Jacobian Elliptic Functions and k is the modulus (4). To apply the Kxylov-Bogolsubov method, the solution of equation (18) is assumed tc be of the form of equations (21) where k. and u are now unknown functions of T.

In terms of equations (21), equation (20) becomes

$$
\begin{equation*}
\varepsilon=2 k^{2} \operatorname{sn}^{2} u+2 x^{2} c n^{2} u=2 x^{2} \tag{22}
\end{equation*}
$$

Thus

$$
\begin{aligned}
\frac{1}{2} \frac{d e^{\prime}}{d T} & =\frac{d\left(k^{2}\right)}{d T}=\frac{1}{2} \frac{d}{d T}\left[2 \sin ^{2} \frac{y}{2}+\frac{1}{2} y^{\prime}\right] \\
& =\sin \frac{y}{2} \cos \frac{y}{2} y^{\prime}+\frac{1}{2} y^{\prime} y^{\prime \prime} \\
& =\frac{y^{\prime}}{2}[\sin y+\varepsilon f-\sin y] \\
& =\varepsilon \frac{y^{\prime}}{2} f\left(y, y^{\prime}, T\right) \\
& =\epsilon I^{\prime}\left(y, y^{\prime}, T\right) k \operatorname{cn} u
\end{aligned}
$$

Also from equations (21).

$$
\begin{equation*}
\frac{d}{d t}(k \sin u)=\frac{y^{\prime}}{2} \cos \frac{y}{2}=k \operatorname{cn} u d n u \tag{24}
\end{equation*}
$$

But (4)

$$
\begin{equation*}
\frac{d}{d T}(k \operatorname{sn} u)=k \operatorname{cn} u \text { dn } u\left\{\frac{d u}{d T}-\frac{1}{2} D \frac{d k^{2}}{\overline{d T}}\right\}+\operatorname{sn} u \frac{d k}{d T} \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
D=\frac{1}{k x^{i}{ }^{2}}\left[E(u)-\dot{k}^{2} u-k^{2} \operatorname{sn} u c d u j=\int \frac{\operatorname{sn}^{2} u}{\cos ^{2} u} d u\right. \tag{26}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\frac{d u}{d T}=1+\frac{1}{2}\left\{D-\frac{\operatorname{sn} u}{k^{2} \operatorname{cn} u \text { in } u}\right\} \frac{d k^{2}}{d T} \tag{27}
\end{equation*}
$$

Therefore, equation (18) has been reduced to two first orier differential equatio. s, (25) and (27).

The function kf en u eppearing on the right hand side of - equation (23) is periodic in u with period $4 \mathbb{K}$ where $K(k)$ is the complete elliptic integral of the first kind. A periodic function $P(k, u)$ cen elvays be expressed as a sum of the form

$$
F(k, u)=F_{1}(k)+\frac{\partial}{\partial u} P_{2}(k, u)
$$

where $F_{1}(k)$ is the mear value of $\cdot F(k, u)$ over a period and $F_{2}(k, i)$ is periodic in u with the same period as F and with zero mean value. By equation (23) $\frac{d x^{2}}{d T}$ iz or order ε and $\frac{d x}{d T}$ is of order 1 by equation
(27). Hence $\frac{d}{d T}$ may be represented by $\frac{\partial}{\partial u}+0(\varepsilon)$. Therefore, equation (23) may be expressed as

$$
\begin{equation*}
\frac{d k^{2}}{d T}=\frac{\varepsilon}{4 K} \int_{-2 K}^{2 K} K f \text { cn } u d u+\varepsilon \frac{d}{d T} F_{2}\left(k_{\varepsilon} u\right)+0\left(\varepsilon^{2}\right) \tag{28}
\end{equation*}
$$

where the average vilue of $F_{2},<F_{2}>0$. Equation (27) may be similarly treated

$$
\begin{aligned}
\frac{d u}{d T} & =1+\frac{\varepsilon}{c}\left\{D-\frac{\operatorname{sn} u}{k^{2} \operatorname{con} u d n u}\right\} \\
& =1+\frac{\varepsilon}{2}\left\{\left[D(u)-\frac{u}{x} D(x)\right]+\frac{u}{K} D(x)-\frac{\operatorname{sn} u}{k^{2} \cos u \operatorname{dn} u}\right\} \text { F. (29) }
\end{aligned}
$$

Define

$$
\begin{equation*}
G(k, u)=D(u)-\frac{u}{K} D(x) \tag{30}
\end{equation*}
$$

so thai G is periodic in u with period 4K. Then equation (25) becones

$$
\begin{equation*}
\frac{d u}{d T}=1+\frac{\epsilon}{2}\left\{F G(k, u)+\frac{F u}{X} D(k)-\frac{s n u F}{k^{2} c n u d n u}\right\} \tag{31}
\end{equation*}
$$

FGं is aiso periodic in u with period 4K and, since it is odd in u, it has mean value rerc. 8imilarly, the last term in equation (31) is periodic with period 4K and zero mean value. Also the identity

$$
\begin{equation*}
D(x)=2 \frac{d x}{d x^{2}} \tag{32}
\end{equation*}
$$

boids (4). Taerefor 3 , equation (37) may be written

$$
\begin{equation*}
\frac{d u}{d T}=1+\frac{u}{\bar{K}} \frac{d K}{d T}+\epsilon \frac{d}{d T} H_{2}+0\left(\epsilon_{2}\right) \tag{33}
\end{equation*}
$$

where H_{2} is periodic in u with period $4 K$ and zero mean value. If equations (28) and (33) are averaged over a period, the terms in $F_{2}(k, u)$ and $H_{2}(k, u)$ drop out leaving the equations of the first approximation

$$
\begin{equation*}
\frac{\partial \bar{k}^{2}}{d T}=\frac{\epsilon}{4 K} \int_{-2 K}^{2 K} k f \text { cn } u d u \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d \bar{u}}{d T}=1+\frac{\bar{u}}{\mathbb{K}} \frac{d K}{d T} \tag{35}
\end{equation*}
$$

Equation (35) then yields

$$
\begin{equation*}
\bar{u}=K(T) \int_{0}^{T} \frac{d T}{K(T)} \tag{36}
\end{equation*}
$$

Consider the integral on the right hand side of equation (34). Substituting for f gives

$$
-\frac{1}{4 K} \int_{-2 K}^{2 K} k \text { cn } u \int_{\frac{20}{C \sum_{0}} \frac{\partial C}{\partial T}\left(2 x^{2} \operatorname{sn}^{2} u\right)+\frac{\Omega_{1}^{2}}{0_{0}^{2}}(2 k \text { an } u \text { dn } u)+\frac{\partial C}{\partial T}} \quad
$$

Since the parmeters C and Ω_{1} are assumed to vary slowly with respect to a period, this integrat may be written an:
$-\frac{\partial C}{\partial T} \frac{\omega k^{3}}{4 K C \Omega_{0}} \int_{-2 K}^{2 K} \operatorname{cn} u \operatorname{sn}^{2} d u+\frac{\Omega_{1}^{2}}{2 K \Omega_{0}^{2}} \int_{-2 K}^{2 K} d n u-\alpha(d n u)-\frac{\partial C}{\partial T} \frac{k^{2}}{2 K C}$

$$
\begin{equation*}
\int_{-2 K}^{2 K} c n^{2} u d u \tag{38}
\end{equation*}
$$

The first integrand is even and antisymmetric with respect to K, and therefore the integral sanishes. The second integral is readily integrated and also vanishes.. The total vilue of the integral $\frac{\varepsilon}{4 x} \int_{-2 x}^{2 x} x f$ en $u d u$ is then (4)

$$
\begin{equation*}
\frac{\epsilon}{4 \pi} \int_{-2 x}^{2 K} k e \operatorname{cn} u d=-\frac{2 C^{\prime}}{K C}\left[E(k)-k^{22}\right] \tag{39}
\end{equation*}
$$

Therefore, equation (34) becomes

$$
\begin{equation*}
\frac{d k^{2}}{d T}=-\frac{2 C^{\prime}}{K C}\left[E(k)-k^{\prime 2} K\right] \tag{40}
\end{equation*}
$$

where $k^{\prime 2}=1-k^{2}$ and E is the complete elliptic integral of the second kind.

Bquation (40) can be evaluated numerically in a routine manner since the quantities involved are slow $1 y$ varying and equations (36) may then aiso be evaluated numericaily. Thim is sonsideriably eacier than numerical integrations of the differential equation (1). A closed form integration of equation (40) is posaible if $\frac{C^{\prime}}{C}$ is constant. The ferinia

$$
\begin{equation*}
\frac{d}{d x}\left(x^{\prime}-x^{\prime 2} x\right)=k x \tag{41}
\end{equation*}
$$

is well known (4). Thus

$$
\begin{equation*}
\frac{d}{d x^{2}} 2\left(B-x^{\prime 2} K\right)=\frac{1}{2} x \tag{42}
\end{equation*}
$$

and, inerefore, equation (40) is immediately integrable to

$$
\begin{equation*}
\mathbf{E}=\mathbf{x}^{2} \mathbf{X}=A^{\prime} e^{-\quad C / C} \tag{43}
\end{equation*}
$$

where $A_{1}=$ constant. The function $E=k^{2} K$ goes from 0 to I as k goes from 0 to 1. Fence, by equation (40), $E=\widetilde{Z x}^{2}$ decreases as T increases if $C^{\prime}>0$. Then equation (43) implies that \bar{E}^{2} goes to zero as T goes to infinity. Equations (21) then imply y is bound to the interval $(-\pi, \pi)$ and goes to zero an T goes to infinity. For large \mathbf{T}

$$
\begin{equation*}
k^{2} \sim \frac{4 A}{\pi} \cdot-c \cdot / C T \tag{44}
\end{equation*}
$$

and then equation (36) yield e

$$
\begin{align*}
& \bar{u}=x \int_{0}^{T} \frac{d T}{X}=-\frac{1}{2} \frac{C^{\prime}}{C} x \int \frac{d x^{2}}{Z-k^{2}!^{2}} \\
& \sim\left(T-T_{0}\right)+\frac{C_{2}}{\pi}\left(T-T_{0}+\frac{C}{C^{\prime}}\right) \bullet \frac{C^{\prime}}{C^{\prime}} T \tag{45}
\end{align*}
$$

If $C^{\prime}<0$ equation (40) yield the result that \bar{x}^{2} increases and equation (43) Angles that the motion cen be stable only if C' becomes zero or positive after e. finite time dependent upon initial conditions and $C^{C^{\prime}}$

If $\mathrm{E}>2$, it is convanient to begin with equation (2). Assuming that

$$
\begin{equation*}
\Omega^{2}=\Omega_{0}^{2}+c \Omega_{1}^{2}(T) \tag{16}
\end{equation*}
$$

and defining

$$
\begin{equation*}
T=\Omega_{0} t \tag{17}
\end{equation*}
$$

gives equation (1) in the form

$$
\begin{align*}
x^{n}+\sin x & =-\frac{\partial C}{\partial T}\left[\frac{2 n}{C n_{0}}+\frac{x^{i}}{C}\right]-c \frac{\frac{R}{2}_{2}^{2}}{\pi_{0}^{2}} \sin x \\
& =c f(x, x ; T) \tag{46}
\end{align*}
$$

Two cases are posmible depending on the direction of rotation. 8xppose R $\mathrm{F}^{\prime \prime}$ and $x^{\prime}>0$. :Then the solution of (46) for $=0$. may be writtien in the Porm

$$
\sin \frac{y}{2}=\operatorname{sn} u
$$

$$
\begin{align*}
& \cos y / 2=\cos u \tag{47}\\
& \therefore y^{\prime}=\frac{i}{x} \frac{d s}{} u
\end{align*}
$$

Proceediag as before

$$
\begin{gather*}
C=2 n^{2} u+\frac{2}{x^{2}} d n^{2} u=\frac{2}{x^{2}} \tag{48}\\
 \tag{49}\\
\therefore \frac{d}{d}\left(t_{2}\right)=\frac{\operatorname{dn} u}{x} x^{2}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{d u}{d T}-\frac{1}{z}+\frac{1}{2} D \frac{d x^{2}}{d t} \tag{50}
\end{equation*}
$$

To order c

$$
\begin{equation*}
\bar{u}=K(T) \int_{0}^{T} \frac{d T}{z(T) X(T)} \tag{51}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\left(\frac{I}{x^{2}}\right)}{d T}=\frac{c}{4 x} \int_{-2 x}^{2 x} \frac{\ln u}{. x} e d u \tag{52}
\end{equation*}
$$

Evaluating the integral on the right hand side, equation (52) becomen

$$
\begin{align*}
& \frac{d^{\left(\frac{I}{2}\right.} x^{2}}{d T}=\frac{n x^{1} x^{x C-2}}{0}-\frac{2 c^{\prime}}{k^{2} x c} s \tag{53}\\
& =\frac{C^{\prime}}{K X C}\left[\frac{\pi N_{0}}{\Omega_{0}}+\frac{2}{E} \mathrm{E}\right] \quad \therefore
\end{align*}
$$

Again, closed form solutions of (53) and (51) are possible only in apecial casen; for exnmie, when $C^{\prime} / \bar{C}=$ constant. In this circumetence, the solution to equation (53) is given by

$$
\begin{equation*}
\frac{E}{E}=\frac{\pi C^{\prime} \omega}{2 C R_{0}}+A_{1} \cdot \frac{C^{\prime}}{C} T \tag{54}
\end{equation*}
$$

where A_{1} = constant. Considering the doployment case ($C^{\prime}>0$), if $\Omega_{0}>\frac{T W}{2}$ then the term in brackets in equation (53) is negative (asmaing >0) so that $C=\frac{2}{k^{2}}$ is deoreasing and will eventualiy becce $2^{\text {; }}$ frote that I deoreasen with increaning Σ reaching 1 when
$k=1$.$) If \Omega_{0}<\frac{\pi N}{2}$, the term in brackets has a single root k_{0} between 0 and 1 and Pincreases or decreases depending on whether \mathbf{k} is greater than or leas than \mathbf{k}_{0}. Therefore, k must converge monotonically to k_{0} the time required being infinite as is seen by expending E in equation (54) in fowers of $\left(\bar{z}-x_{0}\right)$ to give

$$
\begin{equation*}
\bar{k}-k_{0} \sim=\frac{k_{0}^{2}}{X_{0}^{2}} A_{1} e^{\frac{C^{\prime}}{C}} T \tag{55}
\end{equation*}
$$

Then equation (51) gives

$$
\begin{equation*}
\bar{u} \sim \frac{T-T_{0}}{k_{0}}+\left(A_{2} T+A_{3}\right) e^{\frac{C^{\prime}}{C} T} \tag{56}
\end{equation*}
$$

where A_{2} and A_{3} are constents.
If $\mathcal{C}>2$ and $x^{\prime}<0$ the same procedure yields.

$$
\begin{equation*}
\frac{E}{\bar{K}}=-\frac{\pi C^{\prime} \omega}{2 C K_{0}}+A_{2} e^{\frac{C^{\prime}}{C}} T \tag{57}
\end{equation*}
$$

in place of. (54). Therefore, $E=\frac{1}{\mathbf{k}^{2}}$ decreases as T increases so that it reaches 2 after finite time.

In summary for the special case where $\frac{C^{\prime}}{C}$ is constant and $C^{\prime}>0$, the libration is damped by the deployment if the total change in Ω^{2} can be characterized as small. This result is compatible with the stability analysis because of the amall change assumed for Ω^{2}. In the rotational casea, the rotational velocity diminishes and the rotation eventiaily becciea a Lioration after finite time if $x^{\prime}<0$, or if $x^{\prime}>0$ and $\Omega_{0}>\frac{\omega^{\prime}}{2}$ If $\Omega_{0}<\frac{\omega}{2}$ and $x^{\prime} \cdot>0$, the solution diverges with increaning I_{t} The epecial cese of $\frac{C^{\prime}}{\mathrm{C}}$ = ccastant and total change

In Ω^{2} small can be realized physically if C is described as a function of time by a real exponential and B and C are nearly equal and much larger than A or if deployment is primarily along the x and z axes, with C again a real exponential.

Some of the results of the preceding analysis may be obtained by means of a simpler analysis. For example, consider equation (7.) in the form

$$
\begin{align*}
\ddot{y}+\lambda^{2}(r) \text { in } y & =-\epsilon\left[\frac{c^{\prime}}{C} \omega(1-\cos y)+\frac{c^{\prime}}{c} y\right]+O\left(\epsilon^{2}\right) \tag{58}\\
& =\in f(y, y, T)
\end{align*}
$$

where

$$
\begin{equation*}
\lambda^{2}=\frac{3 v^{2}(B-A)}{C}, \tag{59}
\end{equation*}
$$

and the superscript prime and dot refer to differentiation with respect to t and T reapectively, where $T=c t$. A first integral of equation (58) is

$$
\begin{equation*}
\frac{1}{2} \dot{y}^{2}+\int_{y_{0}}^{y} \lambda^{2}(r) \sin y d y=-c \int_{x_{0}}^{x} F(y, y, T) d y \tag{60}
\end{equation*}
$$

Consider now equation (58) when $\varepsilon=0$.

$$
\begin{equation*}
\ddot{u}+\lambda^{2} \sin u=0 \tag{6i}
\end{equation*}
$$

and λ^{2} is constant. The integral comramponding to (60) is

$$
\begin{equation*}
\frac{1}{2} \dot{u}^{2}+\lambda^{2}(1-\cos u)=\text { Const. }=\lambda^{2}\left(1-\cos a_{1}\right)=\lambda^{2}\left(1-\cos a_{2}\right) \tag{62}
\end{equation*}
$$

where a_{1}, a_{2} are the minimum value and the maxinum value taken on by a in 11 : ational motion. Then on the interval from a_{1}, to a_{2}

$$
\begin{equation*}
\dot{u}=\left[2 \int_{u}^{2} \lambda^{2} \sin u d u\right]^{\frac{1}{2}}=\sqrt{2}(\cos u-\cos a)^{\frac{1}{2}} \lambda \tag{63}
\end{equation*}
$$

and on the interval from a_{2} to a_{1}

$$
\begin{equation*}
\dot{u}=-\left[2 \int_{u}^{a} \lambda^{2} \sin u d u\right]^{\frac{1}{2}}=-\sqrt{2}(\cos u-\cos a)^{\frac{1}{2}} \lambda \tag{64}
\end{equation*}
$$

- Define y_{1}, y_{2} to be extreme valuea taken on by y during the first period so that $\dot{y}\left(y_{1}\right)=\dot{y}\left(y_{2}\right)=0$ and define

$$
\begin{equation*}
\wedge(y)=\int_{y_{0}}^{y} \lambda^{2}(y) \sin y d y \tag{65}
\end{equation*}
$$

.and

$$
\begin{equation*}
F(y)=\int_{y_{0}}^{y} f(\dot{y}, y, r) d y \tag{66}
\end{equation*}
$$

Ther

$$
\begin{equation*}
\Lambda\left(y_{1}\right)=-F\left(y_{1}\right) \tag{67}
\end{equation*}
$$

and

$$
\wedge\left(y_{2}\right)=\wedge\left(y_{1}\right)-\varepsilon \int_{y_{1}}^{y_{2}} f(\dot{y}, y, \tau) d y \quad .
$$

Now let u denote the solution to (61). Then

$$
\begin{equation*}
\left.\wedge\left(y_{2}\right) \propto-\epsilon T<F(y)\right\rangle_{0} \tag{69}
\end{equation*}
$$

where $\langle\boldsymbol{F}(\boldsymbol{y})\rangle_{0}$ is the average of $F(y)$ taken over the first period of the unperturbed motion

$$
\begin{equation*}
<F(y)\rangle_{0}=\frac{1}{T} \int_{0}^{T} f(\dot{u}, u) \dot{u} d t \tag{70}
\end{equation*}
$$

where $t=0$ and y_{0} are chosen to correspond to an extreme point of the motion. The change in amplitude over a period is then

$$
\begin{equation*}
\Delta a=y_{2}-y_{1} \tag{71}
\end{equation*}
$$

and for mail 6

$$
\begin{equation*}
\therefore \quad \wedge\left(x_{2}\right)=\Delta a \lambda_{0}^{2} \sin x_{0} \tag{72}
\end{equation*}
$$

Therefore,

$$
\Delta a=-c \frac{\left\langle F(y)>_{0}\right.}{\lambda_{0}^{2} \sin x_{0}}
$$

- Then

$$
\frac{d s}{d t}=-\epsilon \frac{\langle F(y)\rangle}{\lambda^{2} \sin a}
$$

(74)
where

$$
\begin{aligned}
<F(y)> & =\frac{C^{i}}{C T} \int_{-a}^{a}\left[2 w-2 w \cos y+\sqrt{2} \lambda(\cos u-\cos a)^{\frac{i}{2}}\right] d y \\
& +\frac{C^{\prime}}{C T} \int_{a}^{-a}\left[2 w-2 u \cos y-\sqrt{2} \lambda(\cos u-\cos a)^{\frac{1}{2}} d y\right. \\
& =\frac{4 C^{\prime}}{C K} \lambda^{2}\left\{E(k)-k^{\prime 2} k(k)\right\}
\end{aligned}
$$

and $x^{2}=\frac{1-\cos a}{2}$: This agrees with equation (40) derived by the Krylov-Bogoliubov method.

The equation of pimar librations mer be innariced by assuring that the libretionangle remaine mall. In this cace, fin φ may be replaced by φ giving a linear equation of motion

$$
\begin{equation*}
\ddot{\varphi}+\frac{\dot{C}}{C} \varphi+3 w^{2} \frac{B-A}{C} \varphi=-\frac{\dot{C}}{C} \varphi \tag{i}
\end{equation*}
$$

This equation has been studied in two particular cases previousiy (5). A generel power eeries colution ia dezived here. Deflaing $T=$ et, equation (1) becomes

$$
\begin{equation*}
\varphi^{\prime \prime}+\frac{C^{*}}{C} \varphi^{\prime}+3 \frac{B-A}{C} \varphi=-\frac{C^{\prime}}{C} \tag{2}
\end{equation*}
$$

where the superscript primes denote differantintion with respect to T. The first derivetive tan ang be elialnated throagh nee of the trengformation $y=$ CC甲 yielding

$$
\begin{equation*}
y^{n}+\lambda y=1 \tag{3}
\end{equation*}
$$

were

$$
\begin{equation*}
\lambda=\frac{3(B-A)}{\sqrt{c}}+\frac{c^{2}}{4 c^{3 / 2}}-\frac{c^{n}}{2 \sqrt{c}} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
1=-\frac{2 c^{\prime}}{\sqrt{C}} \tag{5}
\end{equation*}
$$

The solution is moutht in teirse of power series in T. That ing 1et

$$
\begin{equation*}
\varphi \sum_{n=0}^{\infty} n_{n} x^{n} \tag{6}
\end{equation*}
$$

Then

$$
y^{\prime}=\sum_{n=1}^{\infty} n E_{n^{2}}^{n-1}
$$

and

$$
\begin{equation*}
y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1){\mu_{n}}^{n-2} \tag{8}
\end{equation*}
$$

Aesuic that λ and f are repracented by power meries in T, aleo, i.e.

$$
\lambda=\sum_{n=0}^{\infty} b_{n^{2}}
$$

and

$$
\begin{equation*}
t=\sum_{n=0}^{\infty}{\underset{n}{n}}^{\mu^{n}} \tag{10}
\end{equation*}
$$

Bubstituting into the hargepeous equation corresponding to equation (3) gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} n^{n-2}+\sum_{n=0}^{\infty} b_{n^{2}} n_{n=0}^{\infty} \sum_{n^{2}}=0 \tag{12}
\end{equation*}
$$

Equating cosfficiants of eagh powner of 2 to sero cives the mit_ of equations

$$
\begin{gathered}
2 a_{2}+b_{0} a_{0}=0 \\
3 \cdot 2 a_{3}+b_{0} m_{1}+b_{2} a_{0}=0 \\
4 \cdot 3 a_{4}+b_{0} c_{2}+b_{1} a_{2}+b_{2} a_{0}=0
\end{gathered}
$$

$$
k(k-1) a_{k}+b_{0} a_{k-2}+b_{1} a_{k-3}+\cdots \cdots+b_{k-2} a_{0}=0
$$

a 1 and a. may be chosen arbitrarily (they will be determined, of course, by the initial conditions) so that two linearly independent solutions wide result if H_{1} and a are alternately equated to sore. if $\mathrm{a}_{1}=0$, the rent of equations (12) becomes:

$$
\begin{gather*}
a_{2}=-\frac{b_{0} 0}{2} \\
a_{3}=-\frac{b_{1} a_{0}}{3 \cdot 2} \\
a_{4}=-\frac{a_{0}}{1-3}\left(b_{2}-\frac{b_{0}^{2}}{2}\right) \tag{13}\\
(x+2)(k+1) a_{k+2}^{2}=-\sum_{j=0}^{b_{k-1} a_{j}}
\end{gather*}
$$

If $n_{0}=0$, equations (22) become

$$
\begin{aligned}
& a_{2}=0 \\
& a_{3}=-\frac{b_{0} a_{1}}{3 \cdot 2}
\end{aligned}
$$

$$
a_{4}=-\frac{b_{2} a_{1}}{4^{\frac{b^{3}}{3}}}
$$

$$
-340
$$

$$
(k+2)(x+1) a_{k+2}=-\sum_{j=0}^{k} b_{k-j} a_{j}
$$

Iat

$$
\begin{gather*}
y_{1}=1-\frac{b_{0}}{2} \frac{1}{2}^{2}-\frac{b_{1}}{3 \cdot 2} T^{3}+\left(\frac{b_{0}^{2}}{403 \cdot 2}-\frac{b_{2}}{4 \cdot 3}\right) T^{4}+\cdots \\
y_{2}=T-\frac{b_{0}}{3 \cdot 2} r^{3}-\frac{b_{1}}{4 \cdot 3} 2^{4}+\cdots \tag{15}
\end{gather*}
$$

Asave the particular solution is of the form

$$
\begin{equation*}
y_{y}=x_{1}(x) y_{1}+x_{2}(x) y_{2} \tag{16}
\end{equation*}
$$

Then

$$
\begin{equation*}
y_{p}^{\prime \prime}=z_{1}^{n} y_{1}+\bar{z}_{2}^{n} y_{2}+2\left(x_{1}^{\prime} y_{1}^{\prime}+x_{2}^{\prime} y_{2}^{\prime}\right)+y_{1} y_{1}^{n}+\dot{x}_{2}^{\prime} y_{2}^{n} \tag{17}
\end{equation*}
$$

Tupose a cecond condition on the K'n, VIs. $:$

$$
\begin{equation*}
x_{1}^{\prime} y_{2}+x_{2}^{\prime} y_{2}=0 \tag{28}
\end{equation*}
$$

This implies

$$
\begin{equation*}
x_{1}^{\prime \prime} y_{1}+x_{2}^{\prime \prime} y_{2}=x_{1}^{\prime} y_{1}^{\prime}-x_{2}^{\prime} y_{2}^{\prime} \tag{19}
\end{equation*}
$$

80 that

$$
\begin{equation*}
y_{p}^{\prime \prime}=x_{2}^{\prime} y_{1}^{\prime}+x_{2}^{\prime} y_{2}^{\prime}+x_{1} y_{2}^{n}+x_{2} y_{2}^{\prime \prime} \tag{20}
\end{equation*}
$$

Substituting into the differential equation (3) gives

$$
x_{1} y_{1}^{\prime}+x_{2}^{\prime} y_{2}^{\prime}+x_{1} y_{2}^{n}+x_{2} y_{2}^{n}+\lambda\left(x_{2} y_{1}+\dot{x}_{2} y_{2}\right)-1
$$

05

$$
x_{1}\left(y_{2}^{\prime \prime}+\lambda y_{2}\right)+x_{2}\left(y_{2}^{n}+\lambda_{2}\right)+x_{2}^{\prime} y_{1}^{\prime}+x_{2}^{\prime} y_{2}^{\prime}=t
$$

08

$$
\begin{equation*}
x_{1}^{\prime} y_{1}^{\prime}+x_{2}^{\prime} y_{2}^{\prime}=t \tag{21}
\end{equation*}
$$

Plut iqquation (18) edres a cecond condition

$$
\begin{equation*}
x_{1}^{\prime} y_{1}+x_{2}^{i} y_{2}=0 \tag{18}
\end{equation*}
$$

Therefore,

$$
\begin{gather*}
x_{1}=\frac{y_{2}}{y} \tag{22}\\
x_{2}=-\frac{y_{1}}{y} \tag{23}
\end{gather*}
$$

where

$$
N=\left|\begin{array}{ll}
y_{2} & y_{2} \tag{24}\\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|
$$

The geveral solution is than

$$
\begin{equation*}
y=y_{1}\left[\int y_{0}^{y_{0}^{\prime}} d t+y_{0}\right]+y_{2}\left[-\int \frac{y_{j}}{y^{\prime}} d x+y_{0}^{\prime}\right] \tag{25}
\end{equation*}
$$

where y_{0} and y_{0}^{\prime} refer to the values of y and y^{\prime} at $T=0$. The resulting expressions may be routively evaluated for findte serias. The rate of convergence of the ceries is related to the ratio of the total change in the inartial parematere to thair indtial valuas. The uoavergence of the cerien solution is cuaranteod by the physion requiremont that the corres (9) and (10) comverge.

8ufficient conditions have been found to grarantes the atability of the librational motion of a setellite with time varying inertia tensor. These conditions involve the initial conditions, the rate of change of the prinoipel moments of inartia, and the total change in these parmmotors. The conditions are easily appliod in prooticel situations. Approximate, soluticas to the equations of motion are. found in the apeaial oasen where the inerticl parameters change rapidif or siowly relative to the idbrational period. The conditions for stability of the solutions to the differentiel equativn of Libretions derived In . these oases are compatible with the stability conditions established in the atebility ancilyais. The approximate colutione may be displayod in olonad form for particuiar caces or integrated numpicully much more sinply than the oxiginal difforeatial oquablons.

1. Leitminn, 0. : "On the stability of solutions of a Nonilnear, Nonautonomous Equation," Int. J. Nonilnear Nechanich 1, pg. 291-295.
2. Bogoliubov, N. N., and Mitropol'akil, Yu. A.: Asymptotic Mothods in the Theory of Nonilneer Ogaliletiong, Gordon and Bramoh, Boienoe Pubilishors, Mew York, 1961.
3. Minoriky, N.: Monlinear Oacillations, D. Van Nostrasd Co., Ino., Prinoaton, 1962.
 Interrels for Engineers and Physicists, BpringerVorlag, Beriln, 2954.
4. Liụ, H, B, and Nitchell, T. P. MThe gtruotural and Librational Dyamion of Betelilte Deploying Fiexible Boome or Antennes," AIAA Paper Ho. ST-43. 1967.

The Librational Dynamics of a Composite Rigid-Elastc Satellite

ABSTRACT

The condition a under which librational and fiexural resonances may be induced in satellite consisting of a rigid central mass from which a lengthy flexible element extend are derived. The influence of the central body on the flexible element ia specifically taken into account. The center of mass of the composite satellite is assumed to move in an elliptic planar orbit.

The Librational Dynamics of a Composite Rigid-Elastic Satellite

Introduction

The geometric configuration of the composite satellite envisaged in the following anclysis is that consiating of a uniform flexible beam attached to a body which can be considered to be rigid in comparison with the beam. The leagth of the beam is assumed to be much greater whan a. characteristic length of the rigid body, and hence the action of this body on the beam is represented by a point load and a point moment. Both the load and the moment are considered to be localized at the center of mass of the rigid body which is taken to lie on the beam axis. The inertial and gravitational loading on the beam during its librational motion in addition to the Joading exerted by the rigid element of the satellite contribute to the deformation energy stored in the beam. The purpose of this paper is to atudy the librational motion making allowance for this onergy of deformation. The paper thua conatitutes generalizetion of earlier work, Liu end Mitchelil, in which the influence of the rigid element of the composite vas specifically ignored. The opportunity is alao takun to correot an omision in the statement of the inertial reaction force used in reference 1. This overaight vaa. pointed out to the athorn by Nr. Sugene eliff to whom ve are greatly indebted.

$$
-41-
$$

The analysis to be presented is restricted to planar libration of the satellite assuming the orbital and librational motions to be uncoupled. The restrictions inherent in this latter assumption have been discussed by Kane ${ }^{3}$ and Breakwell and Cringle ${ }^{4}$. If the satellite were completely rigid, the librational angle ϕ would be determined by the well-known equation

$$
\begin{equation*}
\frac{d^{2} \phi}{d t^{2}}+3 \frac{K}{R_{C}^{3}}\left(\frac{B-A}{C}\right) \sin \phi \cos \dot{\psi}=-\frac{d^{2} \theta}{d t^{2}} \tag{1}
\end{equation*}
$$

where the orbit of the satellite center of mass is given by

$$
\begin{equation*}
R_{e}=p /(1+e \cos \theta) \tag{2}
\end{equation*}
$$

p being the focal parameter and e the orbital eccentricity. In equation (1) K is the gravitational parameter; the elements of the inertia tensor of the entire satellite at its center of mass are A, B about principal axes in the orbital plane and C about the axis normal to it. See figure 1 which also illustrates the coordinate system to be used.

It can be shown directly that the total body force per unit mass acting on the satellite is

$$
f=\frac{1}{4}\left(x P_{1}-y P_{2}\right)+f\left(x P_{3}+y P_{4}\right)
$$

where the notation

$$
\begin{aligned}
& P_{1}=(\dot{\theta}+\dot{\phi})^{2}+\frac{K}{R_{0}^{3}}\left(3 \cos ^{2} \phi-1\right) \\
& P_{2}=\frac{3 K}{R_{c}^{3}}(\alpha+1) \sin \phi \cos \phi
\end{aligned}
$$

$$
\begin{aligned}
& P_{3}=\frac{3 K}{R_{c}^{3}}(\alpha-1) \sin \phi \cos \phi \\
& P_{4}=(\dot{\phi}+\dot{\theta})^{2}+\frac{K}{R_{c}^{3}}\left(3 \sin ^{2} \phi+1\right)
\end{aligned}
$$

and

$$
\alpha=(B-A) / C
$$

is used. The deformation energy created in the beam by this force, the point load reaction F and moment M_{r} originating in the presence of the rigid body part of the composite satellite, vill nov be calculated folioving a method used previously ${ }^{1,2}$.

Elastic Energies

Since the beam is in overall equilibrium, the force of raaction of the rigid body on the beam is, see Fig. 2,

$$
\begin{align*}
& F=-\rho \int_{-L_{2}}^{L_{2}} d x \int_{-a}^{a} d y \int_{-b}^{b} d z\left[j\left(x F_{1}-y P_{2}\right)+j\left(x P_{3}+y P_{a} j\right)\right. \\
& =-\frac{m}{2}\left(L_{2}-L_{2}\right)\left(j P_{1}+j P_{3}\right) \tag{4}
\end{align*}
$$

in which $m=4 p a b\left(L_{1}+L_{2}\right)$ is the mass of the beam, its mass denaity being represented by p its rectangular cross section by $2 a \operatorname{cb}$ and the origin of coordinates coincides with the center of mass of the composite body. The bending moment in the beam is found to be
$M(x)=2 a b \rho \sigma\left(L_{1}-x\right)\left[(\alpha-1)\left(2 L_{1}^{2}-L_{1} x-x^{2}\right)+2 a^{2}(\alpha+1)\right]$

$$
\begin{equation*}
\text { if } x>x_{0}, \sin \tag{5}
\end{equation*}
$$

$$
\begin{align*}
M(x) & =2 \operatorname{ab\rho } \sigma\left(L_{1}-x\right)\left[\left(\alpha-1 ;\left(2 L_{1}^{2}-L_{1} x-x^{2}\right)+2 a^{2}(\alpha+1)\right]\right. \\
& +\frac{3}{2} N\left(L_{1}-L_{2}\right)(\alpha-L)\left(x-x_{0}\right)+M_{r} \tag{6}
\end{align*}
$$

if $x \leq x_{0}$ where x_{0} represents the abscissa of the point of application of the rigid body reaction load and moment. For conciseness the symbol o denotes the quantity (K / R_{c}^{3}) sing cost: The value of the point moment M is found by invoking the boundary condition $M\left(-L_{2}\right)=0$ which corresponds to the fact that the end $x=-L_{2}$ of the beam is free. clearly $M\left(L_{1}\right)=a$ is automatically satisfied.

Tn physically interestir, cases full be zero if and only if $L_{1}=L_{2}$ ice. if the centers of mass of the rigid body and the bean coincide. Furthermore, M_{r} will vanish if

$$
\alpha=\frac{L_{1}^{2}-L_{1} L_{2}+3\left(L_{1}+L_{2}\right) \dot{x}_{0}^{\prime \prime 2}+L_{2}^{2}-a^{2}}{\left.L_{1}^{2}-L_{1} L_{2}+3 i L_{1}+L_{2}\right) x_{0} / \hat{c}+L_{2}^{2}+a^{2}}
$$

Accordingly, the influence of the rigid body on the beam ia exactly zero only if $L_{1}=L_{2} \in L$ and $a=\left(L^{2}-s^{2}\right) /\left(L^{2}+e^{2}\right)$. The shear $S(x)$ and tension $T(x)$ in the beam are

$$
\begin{aligned}
\varepsilon(x) & =-6 \operatorname{sbo\sigma }(a-1)\left(I_{1}^{2}-x^{2}\right), x>x_{0} \\
& =6 \operatorname{abp} \sigma(\alpha-1)\left(L_{2}^{2}-x^{2}\right), x \leq x_{0}
\end{aligned}
$$

and

$$
\begin{aligned}
T(x) & =2 a b \rho\left[(\dot{\phi}+\dot{\theta})^{2}+\frac{K}{R_{c}^{3}}\left(3 \cos ^{2} \phi-1\right)\right]\left(L_{1}^{2}-x^{2}, \quad x>x_{0}\right. \\
& =2 a b \rho\left[(\dot{\phi}+\dot{\theta})^{2}+\frac{K}{R_{c}^{3}}\left(3 \cos ^{2} \phi-1\right)\right]\left(L_{2}^{2}-x^{2}\right), x \leq x_{0}
\end{aligned}
$$

One can now compute the deformation energy in the beam by determining the contributions of the bending, shear end tension energies respectively. Thus, the strain energy of bending is

$$
\begin{align*}
U_{B} & =\frac{1}{2 E I} \int_{-L_{2}}^{L_{1}}[M(x)]^{2} d x \\
& =\frac{\lambda_{1} \Omega^{4}}{E I}(1+e \cos \theta)^{6} \sin ^{2} \phi \cos ^{2} \tag{7}
\end{align*}
$$

the strain energy due to shear deformation is

$$
\begin{align*}
U_{g} & =\frac{1}{8 \operatorname{sig}} \int_{-L_{2}}^{L_{1}}[B(x)]^{2} d x \\
& =\frac{\lambda_{2} \Omega^{4}}{4 e b \theta}(1+\cos \theta)^{6} \sin ^{2} \phi \cos ^{2} \tag{8}
\end{align*}
$$

and that produce by the tension is

$$
\begin{align*}
U_{2} & =\frac{1}{8 a b} \int_{-L_{2}}^{L_{1}}\left[T(x)-T_{0}\right]^{2} d x \\
& \left.=\frac{\lambda_{3}}{8 \operatorname{sib}} i^{2}+2 \dot{\phi} \theta-38^{2}(1+\theta \cos \theta)^{3} \sin n^{2} \phi\right)^{2} \tag{9}
\end{align*}
$$

In equations (7), (8) and (9) the λ 's represent constants which are functions of $L_{1}, L_{2}, a, b, x_{0}, a$ and ρ. Young's modulus is denoted by E and the modulus of rigidity by G. The values of the λ_{1} in the special case $L_{1}=L_{2}=L_{1}$ $\alpha=\left(L^{2}-a^{2}\right) /\left(L^{2}+a^{2}\right) a r=$

$$
\begin{aligned}
& \lambda_{1}=32 b^{4} \rho^{2} L^{7}(1-a)^{2} / 105 \\
& \lambda_{2}=26 a^{2} b^{2} p^{2} L^{5}(1-a)^{2} / 5
\end{aligned}
$$

and

$$
\lambda_{3}=64 a^{2} b^{2} p^{2} x^{5} / 15
$$

The differential equation describing the librational motion if derived egg, by writing the Lagrangian of the rigid body motion modified by the inclusion ce be re strain energy calculated above. Restricting the analysis to maul values of and expressing the equation in term of the true anomaly θ yields, recalling the assumed independence of the orbital and librational modes, second order differential with constant coefficients. This equation will be written here in the cane wace the bending energy dominates the other alamontes of the train energy, It is

$$
\begin{align*}
& c \frac{d^{2} \phi}{d \theta^{2}}-2 c e \frac{d \phi}{d \theta}\left(\frac{\sin \theta}{2+\cos \theta}\right)+\phi\left[\frac{3(B-A)}{1+e \cos \theta}=\frac{2 \lambda_{1} \Omega^{2}}{2 I}(1+e \operatorname{son} \theta)^{2}\right] \\
& =\frac{2 a c \operatorname{cin} \theta}{1+\theta \cos \theta} \tag{10}
\end{align*}
$$

which, when e o, show that the frequency, w_{i} of oscillation is given by

$$
\begin{equation*}
w^{2}=\frac{u^{2}\left[3(B-A)-2 \lambda_{2} \Omega^{2} / E I\right]}{C} \tag{11}
\end{equation*}
$$

When the orbit in elilptic ice. o< e 1 equation (10) can be treated en follow, Define

$$
y=(1+\cos \theta)
$$

to find

$$
\begin{equation*}
\frac{d^{2} \psi}{d \theta^{2}}+\Psi\left[\frac{3 q+\theta \cos \theta}{1+\cos \theta}-\frac{2 \Omega^{2} \lambda_{1}}{\theta I}(1+\cos \theta)^{2}\right]=2 \theta \sin \theta \tag{12}
\end{equation*}
$$

A general solution to equation (12) is sought in the form of a power series expansion in the orbital eccentricity

$$
\begin{equation*}
\psi=\sum_{n=0} n_{W_{n}} \tag{13}
\end{equation*}
$$

in which ψ_{0} is the solution for a circular orbit and the additive correction in power i of erepreaente the perturbstonal effect of the orbital ecestrioity. To the first order in e there results

$$
\begin{equation*}
\frac{d^{2} \psi_{0}}{d \theta^{2}}+\left(\mu_{2}=\mu_{2}\right) \psi_{0}=0 \tag{14}
\end{equation*}
$$

$$
-47=
$$

and

$$
\begin{equation*}
\frac{d^{2} \Psi_{1}}{d \theta^{2}}+\left(\mu_{1}-\mu_{2}\right) \Psi_{1}-\left(\mu_{1}+2 \mu_{2}-i\right) \cos \theta \Psi_{0}+2 \sin \theta \tag{15}
\end{equation*}
$$

Where $\mu_{1}=3 a$ and $\mu_{2}-2 \lambda_{1} \Omega^{2} /$ CEI.

The solution of equetion (14) is

$$
\psi_{0}=\mu_{0} \sin \left(\mu_{1}-\mu_{2}\right)^{\frac{1}{2}}+B_{0} \cos \left(\mu_{1}-\mu_{2}\right)^{\frac{1}{2}} \theta
$$

vhere A_{0} and B_{0} are arbitrary constinte. The complementary colution of equetion (15) is of identicel form and the partioular solution found by the method of variation of parametera 10

$$
\begin{align*}
& \Psi_{1}-\frac{2 \sin \theta}{\mu_{1}-\mu_{2}^{-1}}+\frac{\mu_{1}+2 \mu_{2}-1}{4\left(\mu_{1}-\mu_{2}\right)^{2}}+\left(-1+\frac{1}{2\left(\mu_{1}-\mu_{i}\right)^{2}+1}\right) \mu_{0} \operatorname{in}\left[\left(\mu_{1}-\mu_{2}\right)^{\frac{1}{4}+1}\right] \theta \\
& +\left(1+\frac{1}{2\left(\mu_{1}-\mu_{2}\right)^{2}-1}\right)_{0} \operatorname{in}\left[\left(\mu_{2}-\mu_{2}\right)^{\frac{1}{2}}=1\right] 0 \\
& +\left(-1+\frac{1}{\left.2\left(\mu_{2}-\mu_{2}\right)^{\mu_{+1}}+B_{0} 000\left[\left(\mu_{1}-\mu_{2}\right)^{\mu_{1}}+1\right] 0.000\right]}\right. \tag{16}\\
& +\left(1+\frac{1}{2\left(\mu_{1}-\mu_{2}\right)^{\frac{1}{2}-1}}\right) B_{0} \cos \left[\left(\mu_{1}-\mu_{2}\right)^{\frac{1}{4}-1}\right] \theta
\end{align*}
$$

Gquation (16) olegrly exhibits the pousibilities of paremetrio resonance in the libretionel motion, feconanoemay ocour when the ceometry and Esterial propertisa of the satelifte are auch
that oither

$$
\begin{equation*}
\frac{3(B-A)}{C}-\frac{2 \lambda_{2} \Omega^{2}}{C B I}=1 \tag{17}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{12(B-A)}{C}-\frac{8 \lambda_{1} \Omega^{2}}{C I}=1 \tag{18}
\end{equation*}
$$

In the pecial case there $L_{1}=L_{2}-L \operatorname{cota}=\frac{L^{2}-s^{2}}{y^{2}+n^{2}}$, this reduces to

$$
\frac{3(B-A)}{C}=\frac{160^{2} b L^{7}\left[C^{2}-(B-A)^{2} 1 \Omega^{2}\right.}{35 R a C^{3}}=1
$$

and

$$
\frac{1 R(B-A)}{C} \cdot \frac{64 D^{2} B L^{7}\left(C^{2}-(B-A)^{2} 1 \Omega^{2}\right.}{35 E C^{3}}-2
$$

Equations (17) and (: ${ }^{q}$) expresuresonance conditions aorrect to the firat pover in the ocentricity vith otner resonances to be expeoted from higher order corractive terms in -quation (13).

Struoturel resonenoes may oocur if the lomd distribution on the elestio elemente contain periodic terma with requenoien alose to the natural frequancief of the elastio olements. The ecoentrioity of the orbit provides atruotural resonsice condition

$$
\begin{equation*}
V_{m}=\frac{2 \pi}{7} \tag{19}
\end{equation*}
$$

and the libretioncl. wotion providen the additional oonditions
, -

$$
\begin{equation*}
\left(\mu_{1}-\mu_{2}\right)^{\frac{1}{2}}=\frac{1}{n} \quad \text { or } \quad\left(\mu_{1}-\mu_{2}\right)^{4} \geqslant 2=\frac{1}{n} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
Y_{m}=\frac{2 \pi}{n T} \tag{21}
\end{equation*}
$$

Where V_{m} is natural frequenoy for the olantic elementa. These strutural resonance conditiona are, of course. reatrioted to the first power of end mall values of and glantio-rigid coupling too amall to mppeoiably alter the natural frequoncien of the oleatio elements.

1. Liu, H. $\mathrm{B}_{\text {, and Mitchell, T. P. "Reaonant Oaciliationa of a }}$ Flexible setellite in en Elifiptic orbit." AIAA J. 2. 12691272 (1967).
2. Mitohell, T. P. and Liu, H. S., "The Influence of Material Elastioity on Eatelilte Motiona," Proo. XVIth International Astronautioal Federation Congrese (Gant'iera-Villara, Paria, France, 1966).
3. Kane, T. R., "Attitude 8tability of Earth Pointing gatellites," AIAA J. 3. 726-731 (1964).
4. Braakwell, J. V. and Pringle R., "Noni inear Resonancea Affeoring Gravity-Gradient stebility," Proo. XVIth Internationel Astronautionl Federation Congress (Ganthier-Viliara, Paris, Franee, 296\%).

Figure 1. Ooerdinate Syateme to Dotornine Iody Foroe.
\because

Figure 2. Rigid Body With Flexible Uniform Bean

