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ABSTRACT

In a previous memorandum (TM=-69-2034-7) a procedure was
discussed for deriving optimum linear phase-locked loop (PLL) FM
receivers that demodulate Unified S-Band type signals with minimum
mean square errors. However, the subcarrier signals were assumed
to be non-overlapping in the subcarrier frequency band, and the
optimization was constructive in that the PLL forms for the demod-
ulators were presupposed by experience. ‘ '

The following report presents the derivation of an opti-
mum demodulator that produces minimum mean square error estimates
of interfering subcarrier signals that are phase modulated as a sum
on a carrier. These subcarrier signals are interfering in that
they overlap in the subcarrier band. The derivation presented here
is nonconstructive in that no a priori knowledge of the form the
demodulator should have is assumed. The approach taken here is
considerably more general than that in the previous memorandum men-
tioned, and can be applied to find receivers for signals that are
more complex than interfering frequency multiplexed FM or PM sub-
carrier signals.

An example is considered where there are two PM subcarrier
signals that overlap in the subcarrier band. One has a broadband
video spectrum and the other has a narrow bandpass spectrum centered
about a subcarrier frequency. The spectra for these subcarrier
signals is chosen to simulate the problem of simultaneously demod-
ulating interfering TV and bandpass voice signals. This problem
is encountered in the system used to transmit Apollo color TV from
moon to earth.
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TECHNICAL MEMORANDUM

1.0 INTRODUCTION

A well known method for transmitting N signals aﬁ(t),

i=1l,...,N using a single carrier v2P sin w,t is to frequency

multiplex the N signals and phase modulate the carrier with the

N
sum X = 8, Y a; (£). The resulting transmitted waveform is
i=1

s(t) = V2P sinfw_t+x(t)]. In frequency multiplexing aj (t),
i=1l,...,N, sufficient subcarrier bandwidth must be allocated if
there is to be no interference of the subcarriers. For this
restraint on the subcarriers, Si(w)Sj(w)E 0 for all w and i#j
where 1,3=1,2,...,N.

In a previous memorandum a procedure was discussed
for finding an optimum linear demodulator in the minimum-mean-
square error sense for demodulating ai(t), i=1,...,N, when the
spectra Si(w)” i=1,...,N, did not overlap in the subcarrier
frequency band (ref.l). With this demodulator, estimates were
made of a;(t) at time t given s(t)+n(t),~»<t<t where n(t) was
white Gaussian noise. For a sufficient input SNR, the demodula-
tor was realized as a phase locked loop and the solution for the

components of this loop was performed by considering each sub-

carrier independently of the other N-1 members of x(t).
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An example where the subcarrier spectra are orthogonal
such that Si(w) Sj(w) 20 for i#j 1is the original television
system used on the lunar surface. The design provided a 0.5 MHz
bandwidth TV subcarrier signal that was transmitted to earth by
the Lunar Module's S-Band system. Frequency multiplexed with
this TV signal were two subcarriers at 1.024 MHz and 1.25 MHz
carrying pulse code modulation telemetry and voice and biomedical
telemetry (ref.2).

In some systems the orthogonal property of the sub-
carrier spectra may not hold. This was the situation when the
S-Band television signal was changed from a 0.5 MHz black-and-
white to 2.0 MHz color baseband signal. With this change some signal
processing after demodulation is required to reduce the inter-
ference in the TV signal caused by the voice and telemetry sub-
carriers around 1 MHz. The amount of interference between the
overlaying subcarriers is a function of the positions of the
voice and telemetry subcarrier spectra with respect to the color
TV spectrum and the phase modulation indices of the subcarriers.

In the present memorandum a demodulator is derived
for estimating subcarrier signals ai(t), i=1,...,N, given
s(t)+n(t), -~<t<t, where the modulation components interfere in
the subcarrier band. The noise n(t) is assumed to be white and
Gaussian with a two-sided spectral density NO/Z watts/Hz. The
demodulator derived is asymptotically optimum with respect to
mean square error for large values of the carrier power~to-noise

density ratio 2P/Nb. Expressions are obtained for the performance
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of the demodulator above threshold. This performance is
measured in terms of the mean square errors in estimating ai(t),

i=l,...,N, as functions of 2P/NO and the carrier phase modula-

tion index Bc'

2.0 DISCUSSION

2.1 System Assumptions

In this section an optimum demodulator is derived for

estimating subcarrier signals ai(t), i=l,...,N from an input

signal-plus-noise of the form s(t)+n(t) = V2P sin[mcr + x(1) I14n (1)
N

where x(t) = 8, Z: a; (t), and -»<t<t. The requirement -«<1<t
i=1

means the estimator will be realizable in that only past knowledge
of s+n is used to estimate ai(t) and no knowledge of the future
of s+n is necessary.
The following assumptions will be made in the deriva-
tion of the optimum demodulator.
(1) The received waveform is s(t)+n(1), ==<tt,

where s (t)=vY2P sin[wcr+x(r)] with P and W

constants and x(t) = B

a.(t). The inter-
c i

1

}-l.
1™z

ference is n(t), an additive white Gaussian
noise, with zero mean and a two-sided power
spectral density equal to NO/Z watts/Hz.

(2) In x(t), B is a positive constant and each

ai(t) is a stationary Gaussian process with
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(3)

zero mean and an autocorrelation function
Ri(r). The Gaussian assumption for the
ai(t) is not unrealistic for some communi-
cation problems, but there are many cases
where its use is guestionable. The Gaussian
assumption is no more restrictive than
assuming knowledge about only the mean and
autocorrelation function of a random
process. Working only with the mean value
and autocorrelation function is often the
only useful approach in nonlinear modulation
problems. The poWer spectrum of ai(t) given
by Si(w)=F[Ki(T)] has frequency components
that are very low compared to W That is,
%x(t) has a video spectrum with an upper cut-
off frequency that is small compared to Wy
Usually the signal spectra Si(w) are

assumed to be rational. Any signal model
with a non-rational spectrum can normally be
approximated by a signal that has a rational
spectrum (réf.B).

The interference n(t) and the ai(t), i=1l,...,N,
are mutually independent random processes.

tz) for

Then Kain(tl,tz) = 0 = K (tl’

a.a.
]

i
1<i, j<N and i#j. Of course, the spectra Si(w)
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may overlap in the subcarrier band even

though the ai(t) are independent processes.
(4) The criterion for optimization is the

minimization for each i=l,...,N of the mean~

square error (MMSE) aei(t) between the true

value ai(t) and the estimate éi(t) made with
the demodulator. In other words the expecta-

tions E[(éi(t) - ai(t))2

1, i=1,...,N, are
minimized. This is a point estimation criterion
in that the past and present values of s+n are

processed to give a MMSE estimate of ai(t),

i=1,...,N at the present point in time t.

2.2 Optimum Demodulator For ai(t)

The problem posed here is one of multidimensional
waveform estimation at time t where the modulation technique is
nonlinear but without memory. If a(t) and a_(t) define the

column vectors

r'al(t)'- a

e~
{

al(t)“1

a(t) = . and gg(t) = . (1)

LaN (t)
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the received waveform to be demodulated is a scalar function

of af(t),

il

r(t) s(t,a(t)) + n(t)

]

— N
V2P sin[?ct + By }: ai(t{} + n(t) , (2)

i=1
and the mean square error in estimating a(t) at time t is
- T
e(t) = Ela_(t) a_(£)] , (3)

where T denotes the transpose of a column vector.

To find the demodulator that minimizes (3), a direct
approach could be taken analogous to the approach that leads to
the Wiener-Hopf integral equation in linear modulation problems
(ref.4, sec.6.1). A direct approach has been used by Snyder
(ref.5). Alternately in this memorandum the MMSE demodulator is
found indirectly by first obtaining the maximum a posteriori
(MAP) interval estimator for a(t) on the interval (-=,t] (ref.4,
chapt.5). This indirect approach is easier to follow than that
taken in reference 4. A discussion of MAP interval estimators
and the derivation of the estimator for the received waveform (2)
are provided in Appendix I. From Appendix I the MAP interval

estimates are

t

) 5 9s (z,a(z)) .
a; (') = ¢ K, (t'-2z) [r(z) - s(z,a(z))]dz (4)
od ., " 38, (2)
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for -~<t'<t and i=1l,...,N. Here r(z) is the received waveform

and

3s(z,a(z))

= sc/zp coslw z + x(2)] , i=1,...,N . (5)
~ C
Bai(z)

The estimate a, (t'), -=<t'<t is the convolution of a filter
impulse response Ki(t'), -e<t'<t and an input signal. Since
Ki(T) is the autocorrelation function of ai(t) where Si(w) has
frequency components that are very low compared with Wi éi(t'),

-=<t'<t, is also given by the convolution

4o
s ] — 2 " _ - é
ai(t ) = ﬁ; I Ki(t z) u_l(t z) Xeff(z) dz , (6)

where i=l,...,N and -~<t'<t.

In (6) Xeff(z) is the effective input to the filter

given by (1-33)

X gel2) = ﬁl B;{P sin[x(z) - %(z)] + /P n,(z)sin x(z)

o]

+ VP n, (z)cos x(z)} . (7)

The two terms n, and n, are derived from the additive noise n(t).
N

Since n(t) is assumed white with density T;” ny, Ny and x are
independent, and sin X and cos % have lowpass spectra; n; sin X +

N

n, cos X = n' is also white noise with the density 2? (ref.4).
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Rgquations (6) and (7) may be represented by the block diagram
shown in Fig. 1.

Fig. 1 is similar to the lowpass equivalent model of
a multi-filter phase locked loop used to obtain point estimates
of phase modulation components (ref. 1, Fig. 4). There are two
main problems to consider with respect to Fig. 1. First the
filters in Fig. 1 have the impulse responses Ki(t') for ~=<t'<t.
But since Ki(r) is an even function of 1, the filter response
at t' to an impulse applied at z can be nonzero when t»>z>t'.
This implies that the N loop filters in Fig. 1 are unrealizable
and that the MAP interval estimator cannot be constructed.

Since lim Ki(r) = 0 for the ai(t) of interest, one might con-

T+t

sider introducing time delay into the unrealizable filters to
get realizable approximations for them. Unfortunately the
unrealizable filters are present in a feedback path, and this
means that time delay cannot be tolerated. The second prob-
lem is to derive from Fig. 1 an optimum point estimator for
the vector a(t) that gives the MMSE estimate.

2.3 A Realizable Approximation of the Optimum Demodulator

Let each unrealizable filter Ki(r) be replaced by a
realizable filter hri(r) interior to the loop and an unrealizable
filter hui(r) exterior to the loop as shown in Fig. 2. Since
hui(r) is exterior to the feedback path, time delay can be intro-
duced to get a realizable equivalent with delay for hui(T). The

model in Fig. 2 is an approximation of the model in Fig. 1. Thus
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the estimates of ai(t) are shown as éi(t) in Fig.2 rather than

éi(t) as in Fig.l. For Fig.2 the reference is

R(0) = ) A (6) . (8)

This does not equal the sum of the éi(t) in general since the
éi(t) are obtained by filtering the éri(t) with delay. If x(t)
is a sufficiently close estimate of x(t) so that sin[x(t)-x(t)]
#x (t)~%X(t) most of the time, the system in Fig.2 is approximately
linear. If the sine operation can'be replaced by its argument
(see Appendix II, Equation (2-2)) the mean square errors in mak-
ing point estimates of x(t) and ai(t), i=l,...,N, at time t
given r(tr), -w<t<t, can be found for any hri(r) and hui(r)
selected. If these 2N filters are derived by first finding the
optimum linear MMSE transfer functions from x(t) to x(t) and
x(t) to éi(t), i=1l,...,N, using Wiener-Hopf integral egquations;
the mean squaré errors in estimating x(t) and ai(t) will be the
minimum possible for the structure in Fig.2.

A lower bound B(a(t)) on mean square error in estimat-
ing al(t) given r(rt), -~<1<t, can be found for the class of all
possible point estimators of a(t) (see Appendix II). If the
input SNR is sufficiently large such that the linearity condit-
ion holds in Fig.2, and if hri(r) and hui(r), i=1,...,N, are
derived using Wiener-Hopf integral equation solutions in Fig.2;

the error E[(a(t)-a(t))  (a(t)-a(t))1=B(a(t)). Therefore, for




BELLCOMM, INC. - 10 -

large SNR into the demodulator the realizable approximation
shown in Fig.2 is the optimum point estimator of a(t) in the
MMSE sense.

2.4 Derivation of Optimum hri

If h i=l,...,N are chosen to make x(t) the linear

ri’
MMSE estimate of x(t) given x(t) and n'(t) for -«<t<t; it is
assured that the linear assumption for Fig.2 is justified for
sufficiently large SNR at the demodulator input. When
sin[x(t)-%(t)] can be replaced by x(t)-%(t) in Fig.2, the white
noise n'(t) can be transferred to the input as a white noise
added to x(t). This translated noise is denoted by n"(t), and
has the two sided power spectral density N"=No/2P Bz watts/Hz.
The linear relationship between x(t)+n"(t) and x(t) is shown in

Fig.3. The parallel combination of hr' i=l,...,N, is defined

ll

by fo (). If hoz(t) defines the linear realizable filter that

2

gives the MMSE estimate of x(t) given x(t)+n"(t), -=<t<t; then

the optimum foz(t) follows from

KF_,(Ju) = Hy, (Juw) /11 - H o (Ju)l (9)
where FO2 and HO2 are the Fourier transforms of fog and hoz’
N
respectively, and K=2P Bi/NO. Since £_, = )3 h_;
i=1
N
N 1 . _ .
Y Hp (Ge) = KT H Gl /I = (G0 ] (10)

i=1
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If each ai(t) has a rational power spectrum, it is of the form

Sy () = [N, () |?/]D; ()] (11)

where Ni and D, are polynomials in w with real coefficients.
Since x(t) is the sum of the independent components ai(t),

i=l,...,N; the spectrum of x(t) is just
N
B 2 2
O E:]Nil /Ip 1?2 . (12)
i=1

The optimum realizable linear filter hoz is the solution of the

Wiener-Hopf equation (ref.6, sec.5-5, eq.5.73)

-+ o0
Rx('r) = N"hog,(T) + I hoﬂ,(z) RX(T"’Z)dZ ' O<t . (13)
0

For the rational spectra Si(w) of interest, the solution of (13)

is

H,(3u) = 1 - 1/[1 + S ()/N"1" (14)

where | ]+ represents the upper w-plane poles and zeros
of the rational function within the brackets (ref.6, sec.5.6,

eq.5.99). Then if (14) is substituted in (10)

N
Y HpGu) o= NI+ S @)/ -1 (15)
i=1




BELLCOMM, INC. - 12 -

If Di(w) and Ni(w) yield the upper w—-plane poles and zeros of

Si(w) while Dz(w) and N;(w) are their conjugates, respectively,

then

N N N N +
E:H&i(jw) = N" [T“T lDiIZ.y E:lNlIZ . TnT IDjlz]
i=1 i i i#3
N N
)/
i i
N
= ) k(@) /D (w) (16)
i=1

where a partial fraction expansion is used to get the second

equality, and [[Di{2]+ = [Di(m)Di*(w)]+ = Di(m). For the MMSE

estimate of x(t) using a realizable linear filter, the choice of
Hri i=l1,...,N, are arbitrary as long as the sum satisfies (16).

The logical choice for each Hr'

; is H_; (ju)=k, (w) /D, (w). That is,

the i—ii—lrl filter corresponds to the poles of the iEE-component

spectrum of Sx(m).

2.5 Derivation of Optimum hui

If the demodulator input SNR is sufficiently large,
sin[x-x] = x-x and the system in Fig.2 can be replaced by that of

Fig.4. The function of the system reduces to estimating each
N

ai(t) from the sum ai(t)+nsi(t)+n“(t), where nsi(t) = j—lzg#iaj(t)
- ¥

may now be considered as an additional noise term added to the
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white noise n" (t). Since a,y i=l,...,N, and n"(t) are all
Gaussian processes, the optimum filter that gives the MMSE
estimate of ai(t) is linear (ref.4, sec.6.1l, prop.7). This
filter will be defined by the impulse response hoi(t); or,
equivalently, by the Fourier transform Hoi(jw) of hoi(t)’ If
hoi(t) is allowed to be unrealizable for the moment, the optimum

estimator of ai(t) is (ref.4, eq.119)

N
Hgi(jw) = si(w/Er" + Zsi(w)] . (17)
i=1

The transfer function from the input of Fig.4 to

ari(t) is defined by

H, (Gu) = . A (Ju) /X (Ju) (18)

This transfer function is derived in Appendix III in terms of

the transfer functions Hri(jw), i=1l,...,N. The result is

N
Hi(jw) = K Hri(jw/E + K ZHri(jw)] (19)

i=1

for each i=l,...,N, where K=1/N". Since éi(t) is the response of

the filter hui(t) to the excitation ari(t),

Ho, (Gu) = Hy; (Gu) - Hy (Jo)
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or -

B . (Go) = H_; (Ju) /H; (ju) (20)

This is the desired transfer function of the optimum filter
hui(t) for each i=1l,...,N. The filter is unrealizable when
Hoi(jw) is given by (17). Since the filters hri(t) are realiza-
ble, Hi(jw) is the transfer function of a realizable filter.

Substituting (15) through (19) into (20) gives

Si(w) Di(w)
Hui(jw) = — (21)
kg () [1 + S, (a) /N"]

where Di(w)/ki(w) follows from the partial fraction expansion
(16) and [ 17 is the complex conjugate of [ ]+.

If a delay 6>0 is introduced in each post loop filter
(21) the transfer function becomes Hui(jw)exp[—jwdl. In the
time domain hui(t) becomes hui(t—d) and ai(t) becomes ai(t-s).

The impulse response hui(t) can be nonzero for negative t but

lim hui(t)=0 may be assumed. Then if § is sufficiently large,
to—w

hui(t—ﬁ)zo for all t<0; and the filter with the impulse response
hui(t—a) can be assumed realizable. The advantage of using delay
to get realizable filters from (21) is that the errors in esti-
mating ai(t), i=1,...,N, are the same as for the unrealizable
filters. If Hoi(jw) had been restrained to be realizable, then
(20) would give a realizable filter for each i and there would
be no need for time delay. However, the errors in estimating

the ai(t) would then be increased.
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2.6 MMSE In Estimating x(t) And a, (t)

The error in estimating x(t) from x(t)+n" (1), -=<t:t,

is given by (ref.6, eg.5.100)

40
0(2) - % I In[l + S_(0)/N"]du (22)

where the optimum filter has the transfer function Ho, in (14).
The error in estimating ai(t) given x(t)+n" (1),

-o<t<t, is (ref.6, eg.5.98)

® 8. (w) IS, (w) = S;(w) + N"]
2 ’2‘11?[ 1 X . dw (23)

g . =
o1 s, (w) + N

when the time delay 6++». The error in (23) is just the error

achieved when an optimum unrealizable filter is used to estimate
ai(t) from x(t)+n" (1), -w»<t<+w., It is usually acceptable to let
§ be several times greater than the largest time constant of the

correlation functions Ki(r), i=1l,...,N.

2.7 Examples Where N=2 And Sl(w) sz(w)zo

In Appendix IV an example is discussed where Sx(m) =

Sl(w) + Sz(w) with

s, () = 2a; py/le” + p3] (24)

and

2
5,(0) = ay py/Ilutuy)? + 31 + ay py/lw=uy)? + Pyl
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The filters Hri(jw) and Hui(jw) are derived for i=1,2 and ex-

2 . 2
o2 and P are found for the

pressions for the errors cil, o
optimum estimation of al(t) and az(t) with delay and of x(t)

with no delay. The input used to estimate al(t), a2(t) and

x(t) was x(t)+n" (1), ~w<r<t,

Graphs of Sl’ 82 and N" are shown superimposed in Fig.5
for the values al=pl=l, a2=p2=0.2, N"=0.1 and w2=9.8. Also shown
in Fig.5 is another possible Sl(w) of the form C sin2 (Aw/2)/
(Aw/2)2 where A and C are positive constants. For A=C=0.9 the
total area over (=~<w<+) under the two Sl(w) curves is equal
to al=l, and the area over the interval (-7<w<+7) is 0.91. The
91% power frequency occurs at the first null of the function
C sinz(mA/Z)/(wA/Z)2 . Using alternately the rational and ir-
rational functions for Sl(m) as shown in Fig.5, the errors ogl,

2 2

952 and o, were computed using (22) and (23). The computations

were made for a range of the normalized white noise N" and various
center frequencies w, of Sz(w). The range of N" used varied with

L]
Wy For each w N" was bounded by Nmax and 0.01 Nmax where Nm

2!
gave oi=0.25. This value of loop error was taken to be the thres-

ax

hold of linear operation for the loop as N" increased.
2 2 2 . .
Graphs of al/ool’ az/c02 and o, are plotted in Figs.6-8,
respectively, for the case of Sl(w) and Sz(w) given in (24) and
the specific ay;r ays Pq and Py shown in Fig.5. Since a4 and a,
equal the average powers of the modulating signals al(t) and
az(t), and since Oil and ng are the mean square errors in estimat-

ing al(t) and az(t); the ordinates in Figs.6 and 7 may be defined
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as the output signal-to-noise ratios (SNR's) of the demodulators
for al(t) and az(t}, respectively. Similar graphs are given in

gl’ az/cg2 but cg where the irrational function

Figs.9-11 for C/Ac
shown in Fig.5 is used for Sl(w) and Sz(m) is unchanged. Since
C/A is the average power of al(t) for the case of the irrational
Sl(w), the ordinates in Figs.9 and 10 are again the output SNR's
of the demodulators for al(t) and az(t). All functions in
Figs.6~11 are plotted with respect to 1/N". Hence since
N"=NO/2P Bc the demodulator output SNR's are monotonically
increasing functions of the input signal power-to-noise power
spectral density ratio 2P/NO for a fixed carrier phase modulation
index Bc. For given input signal power P and noise density
NO/Z, the output SNR's also increase with BC. However, any
improvement gained by increasing Bc is accompanied by an increase
in the bandwidth around w needed to transmit s(t,a(t)) with
fidelity. Hence, the size of Bc is bounded by bandwidth restraints.
The rational Sl(w) considered is a decreasing function of
w. Thei. as the center frequency uw, of Sz(w) is increased and all
other parameters are fixed, the errors Ogl and 022 must decrease
for any given N". This follows since the interference between
al(t) and az(t) decreases with increasing w2>0. However, since
the irrational Sl(m) considered has periodic nulls the functions
Ggl and ciz oscillate as Wy increases from zero. These observa-
tions are borne out by the graphs in Figs.6,7,9 and 10. It is

obvious that the estimations of al(t) and az(t) are best in the

MMSE sense when their mutual interference is minimized. For the
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rational Sl(w) example the best performance will occur when

wy>e. For the irrational Sl(w) example the best performance

will also occur as Wyr®, but there are locally optimum values of

woy around the nulls of Sl(w). For the case of two subcarrier
signals it follows from (23) that Ggl and 052 are simultaneously
minimized by minimizing the integral of Sl(w)Sz(w)/[Sl(w)+82(w)+N"].
This integral is minimum, of course, when Sl(w) and Sz(w) are or-

thogonal in frequency.

4.0 CONCLUSIONS

An asymptotically optimum (A.0.) phase demodulator
has been derived for recovering MMSE estimates of interfering
frequency multiplexed subcarrier signals. The demodulator
is A.0. since it becomes the best as the input-carrier-power to
input-noise-spectral-density 2P/NO becomes large. In practice,
as 2P/No increases from zero, a value is reached called the
threshold above which the A.0. demodulator applies. This
threshold phenomenon is characteristic of phase or frequency
modulation and results from the nonlinear nature of the modula-
tion. The threshold is easily derived from an upper bound placed
on the phase error oi of equation (22).

Components of the A.0. demodulator are derived as
optimum filter transfer functions Hri(jw) and Huikjw) that
depend on the particular forms of the subcarrier signal spectra
and the value of 2P/No. The impulse functions hri(t) and hui(t),

i=l,...,N, for the filtérs in the A.0. demodulator of Fig. 4




BELLCOMM, INC. - 19 -

are the inverse Fourier transforms of Hri(jw) and Hui(jw).
The interference between subcarrier signals due to overlap
in their power spectra in the subcarrier band complicates the
derivation of the A.0. demodulator components, but only moderately.
The forms of these transfer functions are given in (16) and
(21).

Since the filters hri(t), i=1,...,N, are interior to
the feedback loop in Fig. 4, no time delay can be tolerated
in them, and they are realized as optimum filters that process
inputs up to t for MMSE estimates at t. But the filters hui(t)’
i=l,...,N, are post loop, and the subcarrier signal estimates
at the outputs of the filters can be improved by introducing
time delay into h .(t), i=1,...,N. As the time delay is increased,
the subcarrier signal estimation errors approach the lower bounds
in (23). The filters to be used in the A.0. demodulator are all
realizable, but time delay is necessary for the hui(t), i=1l,...,N,
in order to achieve the irreducible errors in (23). If time
delay cannot be tolerated, the filters hui(t)' i=1,...,N, are
the realizable linear filters that give the MMSE estimates of
the subcarrier signals at time t given inputs at these filters
fcr all time up to t. The estimation errors for this case follow
from (22).

The development through section 2.6 applies to any N
subcarrier signals that may be interfering, but are statistically

independent wide sense stationary Gaussian processes with zero means.
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Examples are discussed in section 2.7 that demonstrate the
theory. For the case of N=2 and overlapping subcarrier signal
spectra, the equations (22) and (23) are applied to find the
total loop tracking error Gé and the MMESE's Gil and 022 in esti-
mating the two subcarrier signals. The performance of the A.O.
demodulator is measured in terms of Ui and the signal-to-noise
ratio (SNR) defined to be the ratio of subcarrier-signal-vari-
ance to subcarrier-estimation-error. The two SNR's and 02 are
plotted vs. BC(ZP/NO) where Be is the carrier phase modulation
index common to all subcarrier signals. The position in fre-
gquency of the two subcarrier signals in the subcarrier band

is used as a parameter. As 2P/NO decreases with Bc fixed, a
line is reached where oi = 0.25. For 2P/NO above this line

oi< 0.25 and the A.0. demodulator is applicable. The line

for oi = 0.25 is defined to be the threshold of the A.O. de-
modulator.

In the examples one subcarrier signal has a broadband
video spectrum while the other has a narrow bandpass spectrum
centered about a subcarrier frequency. In one case the broad-
band video spectrum is C sinZ(Am/2) / (Aw/z)2 with alternating
peaks and valleys similar to the spectrum of a TV signal. As
the center frequency of the narrow bandpass signal is shifted,
the oscillations in the performance of the the demodulator are

determined. More exact but tractable mathematical models egist

for the spectrum of stationary picture TV signals (ref. 9).
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These spectra can be used in the equations derived in this memo-
randum to compute performance of the A.0. demodulator for a
stationary TV signal with an interfering voice subcarrier signal.
4.0 REMARKS

This memorandum has addressed the particular problem
of demodulating interfering subcarrier signals phase modulated
directly onto the carrier. The problem of demodulating inter-
fering subcarrier signals frequency modulated directly onto
the carrier can be solved by a parallel treatment. For the
case éf multilevel phase or frequency modulation of a carrier,
the techniques of this memorandum can be applied to get an A.O.
demodulator for the subcarrier signals in the MMSE sense. How-
ever, there are mathematical difficulties in evaluating the
performance of these demodulators when multilevel modulation
is used and the subcarrier signals are interfering. A com-
plete solution of this more difficult problem is not known at
this time.

. 0. w

2034-WDW-cs W. D. Wynn

Attachments
Pigures 1-15
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APPENDIX T

Interval Estimation of Multidimensional Waveforms

The theory of interval estimation of an N dimensional
waveform a(t) is discussed in reference 4, section 5.4. The
purpose of this appendix is to summarize the results of refer-
ence 4, section 5.4 as they apply to the multisubcarrier phase
modulated signal described in this memorandum.

Notationally, a set of N scalar time functions (messages)
al(r),...,aN(T) defined on an interval tel %,Tf] is represented by

the N-vector

al(r) i
aZ(T)

a(t) = . » (1-1)

—— °

aN(T)

L A

There may be M scalar time functions (carriers) sl(t), sz(t),
-r,sM(t) that depend upon al(r) over [Ti,Tf]. Fach member s
should then be written as si(t,g(T)), T,<t, T<Te. The M functions

s; can be represented as an M-vector
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sl(t,g("r))
s, (t,alt))
S(tIE(T)) = .
] sy (tralt))

A simple example of (1-2) is the case of M carriers each

The iEE member

[

1

modulated by N FM subcarrier messages.

then has the form

Si(tr_a_(T)) =

N
V2P sinljw .t + E: d. a.(t) dr
cl J J
j=1

If each s; in (1-2) 1is transmitted over a channel that

with an additive noise ni(t), the M received signals ry

.,M, can be represented in vector form by

r(t) T, <

s(t,a(r)) + n(t), i <

t, t < T

fl

where the iEE member of this vector equation satisfies

r; (t) si(t,g(r)) + n,; (t),

The waveform si(t,é(r)) can be a nonlinear function of
indicated by (1-3). The significance of 1 in (1-2) is
memory can exist in the operation of modulating s by a.

an example is (1-3). If there is no memory, the value

of (1-2)

(1-3)

corrupts it

(), i=1,

(1-4)

(1-5)

a(r) as
that
Again,

of s at
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time t depends only upon t and a(t). For the no memory case
s(t,al(7)) = s(t,a(t)). An example of no memory modulation is
multiple subcarrier phase modulation of g. Here each si(t,é(t))
would be given by (1-3) if the integral were removed and
replaced by aj(t).

In the following discussion of optimum interval
estimators it is assumed that the messages ai(t), i=1,¢..,N,
are sample functions from continuous, jointly Gaussian random
processes. The components of n(t) are also assumed to have
these properties. Under these restrictions the analysis of
optimum interval estimators of a is tractable. The covariance

functions of a(t) and n(t) can be written

il

Efa(t) a (W] = K_(t,u) ,  (NxN) (1-6)

a
and

E[n(t) ET(U)]

Il

K(t,0) ,  (Mxm) (1-7)

t

The element in the i—g row and jEE column of K_ is E[ai(t) aj(u)]

a
Rij(t’u)’ 1<i, j<N. The element in the iEE ro; and jEE column of
KE is E[ni(t) nj(u)] = jo(t,u), 1<i, j<M. Interdependence could
also exist between n and a, and it is possible to incorporate
this generalization into the analysis, but such will not be done
in this memorandum. If the elements of a and n have non-zero

means the mathematical details are only slightly more complicated

than in the case of zero means. It suffices to consider the case




BELLCOMM, INC. I-4

of zero means for a and n. With these conditions the processes
a and n are completely described by (1-6) and (1-7), respectively.
The vector random process a(t) can be expanded into the

vector orthogonal series (ref. 4, section 3-7)

K
af(t) = 1l.i.m. 2: a gr(t), T
Ko r=1

1A
o+
IA
=1

£ o (1-8)

where l.i.m. means limit-in-the-mean, ¥ _(t) is a nonrandom
N=-vector for each r, and C is a scalar random variable. The
vectors gr(t) are vector eigenfunctions corresponding to the

integral equation

T
£
Mo ¥ (e =[ K (t,u) ¥ (w)du , T, <t < Tg . (1-9)
T, -
i
The scalar random variables a, are given by
T
£ T
a. =I -\{-’-r(t) a(t)dt r=1,2,... (1-10)
T

i

Since the vector a(t) is assumed Gaussian with zero mean, ay and

aj are statistically independent if i#j; and E[ai aj] = uy Gij

where Sij = 1 for i=j and zero otherwise.
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One optimum interval estimate of a(t) on [Ti’Tf] is the

MAP estimate defined as follows. Given any integer K>0, the

N-vector gK(t) is defined by

K
(t) = ) a_ ¥_(t)
ax = ZL a, -r( ' Ti <t < Tf. (1-11)
r=1
This is the KEE partial sum of a(t) in (1-8), where a. and gr
are derived in (1-9) and (1-10). If a, is substituted for a in
(1-4) there results the new M-vector equation
rp(t) = slt,a, (1) + n(t), T, ; t < Te. (1-12)

From (1-12) a MAP estimate of the random variables ay r=1,++-,K,
can be made (ref. 4, section 4.6). With this MAP estimate
denoted by ér, for each r, an estimate of gK(t) in (1-11) is

generated by

K

gK(t) = }: a, gr(t), T, <t < Te. (1-13)

r=1

The MAP interval estimate of a(t) or [Ti,Tf] is defined by

a (t) where
—map

~

Emap(t) = l.i.m. a,(t), T, <t < T.. (1-14)
K>
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I-6

When it is understood that a MAP interval estimate is being made

the "map" subscript is omitted, and é denotes (1-14).

(1-14)

for the no memory modulation case s(t,a(7))

equation 5-160).

a(t)

Here

and

where Q

with

JH
4

T.
1

Jfo
T

T,

1
QE(Z'u) r(u) du ,
Qn(Z,u) s(u,a(u))du ,
K (t,z) Q (z,u)du = 6(t-u)l
L. & I

. and T, £ t, uc T¢

1 MxM

s(t,a(t))

T
£
I K, (t,z) D(z,a(z)) [z (2) - g(z)]1dz,

<t < T..

14

The limit

is known to satisfy the vector integral equation (1-15)

(ref. 4,

(1-15)

(1-16)

(1-17)

(1-18)
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Also, D(t,a(t)) is a matrix with N rows and M columns where the
term in the iEE row and jEE column is asi(t, g(t))/aaj(t).

A system that performs operations on the received
vector waveform r(t) = s(t,alt)) + n(t), T, <tsT¢, is called a
MAP interval estimator of a(t) on [Ti,Tf]. The three equations
are represented by the feedback system in Fig.l1l2, The double
lines indicate vector transfer and the sum and product are
vector operations.

The particular signal demodulator investigated in this

memorandum processes the waveform

r{(t) = s(t) + n(1) (1-19)
N .
= /2P sin[}cr + B }: ai(ri} + n(t) , -—o < T < t,
i=1

where n(t) is white Gaussian noise with the two-sided power
spectral density No/2 watts/Hz. Since the subcarriers ai(t) are
statistically independent, Rij(t’u) = 0, i#j, in (1-6). Also
since n(t) is a scalar white process, (1-7) becomes

1

§NO §(t-u) . (1-20)

il

Kn(t,u)

then from (1-18)

il

Q (t,u) = (t,u) = § (t-u) , (1-21)

OZPQ
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and using (1-19) and (1-21), (1-16) and (1-17) reduce to the

simple forms

_ 2 -
gg(t) = ﬁg r(t) , (1-22)
and
g(t) = = s(t,alt)) . (1-23)
(@]

With s(t,a(t)) a scalar function of the vector a(t),

— -

9s (z,a(z))

aal(z)

D(z,a(z)) = . _ (1-24)

ds (z,a(z))

BaN(z)
From (1-19),
as(z,g(z)) N
= BCVZP cos | v 2 + Bc z: ai(z) . (1-25)
aaj(z) =

This result is the same for each j=1,...,N. Substituting (1-22)

through (1-25) into (1-15) the ji:-2 component of é(t) is

. , [t 3s (z,a(z)) .
a,(t) = T K.(t,2) - [r(z) - s(z,a(z))]ldz ,
J o Jy ] aaj(z)
i

where j=1,...,N and Ti <t < 'I‘f . (1-26)
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The N equations (1-26) can be realized by the feedback
system in Fig.13. The operation in (1-26) is the convolution of

Kj(t,z) with the "signal"

2

5 Bc/§§ cos 6(z) {r(z) - V2P sin 6(z)} (1-27)
o
where
. N
B(t) = uz + 8 z a;(z) = w_z + ¥(z), T, <z T
i=1

Since r(z) = V2P sin 0(z) + n(z), (1-27) is also equal to

2BCP
N
o

A

{%in(@(z) + é(z)) + sin(0(z) - o(z)) - sin(Zé(z))

+ v2/P n{z)cos é(z{} (1-28)

The noise n(t) is defined to be white with a two-sided
spectral density NO/2. This assumption is possible since the
spectrum of n(t) is uniform over a broad band around g in the
channel carrying r(t). The true spectrum of n(t) is not infinite
in width, but this idealization is useful since the correlation
function of n(t) is then singular. The spectrum of n(t) is Sn(w)
depicted in Fig.l4. By physical reasoning, Oijwc. When

Sn(wc+A) = Sn(wc—A) for 0<A<W, there exists the representation
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of n(t) given by

n(t) = /f[nl(t) cos wct - n2(t) sin wct] ’ (1-29)
where

R (1) = 2Ry (1) cos v, T ,
and

R, (1) = E[n, () ng (t+1) ] = Eln,(t) n, (t+t)] = R, (1)

Since n(t) is Gaussian with zero mean, nl(t) and nz(t) are
statistically independent Gaussian processes with zero means.

The Fourier transform of Rn(r) is
Sn(w) = Sl(w+wc) + Sl(w—wc) : (1-30)
where Sl(m) = F[Rl(r)]. Then

rNo/z v ul < W

Sl(w) = Sz(w) = (1-31)
0 , o] >w
The spectra Sl(w) and Sz(w) are also shown in Fig.l4. From

(1-29),

n(z)cos 0(z) = {%l(z) cos (2w z + %(z)) - n,(z) sin(2u_z + x(z))

NIE

+ n,(z) cos x(z) + n,(z) sin i(z)} . (1-32)




BELLCOMM, INC. I-11

The spectra of the sine or cosine of x(t) and x(t) are lowpass
and narrow compared with w and W as indicated in Fig.l4. The
product of Kj(t,z) and any term of (1-28) at 2wc will contribute
insignificantly to the value of the integral in (1-26). The part

of (1-28) that effects the value of the convolution integral is

2P

Xeff(Z) TN

BC{%in[x(z) - x(2z)] (1-33)
o

+ 2 [nl(z) cos x(z) + nz(z) sin §(z)]}.
VP

With the narrowband assumption that gives (1-33), the feedback
connection s(t,é(t)) in Fig.13 can be omitted. Also the term
nl(z) cos x(z) + n2(z) sin %(z) is white Gaussién noise with a
two-sided density spectrum No/2 (ref.6, section 2.7). The system

in Fig.l follows directly from Fig.1l3 in light of (1-33).
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APPENDIX II

Derivation Of The Lower Bound On

Mean Square Error in Estimating a(t)

In section 2.3 a realizable approximation of the MAP
interval estimator of a(t) was given in Fig.2. For large SNR
into this realizable demodulator the system became linear, and it
was a simple matter to find the system components that gave a MMSE
point estimate of a(t) at time t. It was also stated in section
2.3 that if sufficient delay was allowed in the post-loop filters
hui(t)’ i=1l,...,N; the MMSE achieved with the structure of Fig.2
when the input SNR became large was the smallest possible of any
point estimator of a(t). From 23 the MMSE in the point estimate

of the :i.i:-E component of a(t) at t was

N,j#1
5, (w) Z Sj(w) + N"

+ {
2 1 =1
O’oi = 2_1.T. do . (2"'1)

N

S. + N"
z: ](w)
i=1

It is possible to derive a lower bound on the MMSE in
point estimating a(t) at t that can be achieved with any demodula-
tor, realizable or not. When this bound is computed presently for
the MMSE in estimating each component ai(t) of a(t), the bound

will be equal to (2-1), i=l,...,N. This proves that if sufficient




BELLCOMM, INC. IT-2

time delay is introduced in the filters hui(t), the linear
demodulator in Fig.4 is the optimum point estimator of al(t) at
time t in the MMSE sense when the available input is x(t)+n" (1),
-o<t<t., To invoke Fig.4, however, the input SNR must be large
enough that oi in (22) is small. For small oi, sin[x-x]=x-x in
Fig.2, and Fig.4 results. A frequently used threshold of linear-

ity is the value o§=l/4. For o§<l/4, Fig.4 is assumed to apply.
2

Since the mean square error in estimating x(t) by x(t) is o

the
Chebychev inequality from probability theory states that (ref.7,

page 150)
~ 2,2
Prob{|x(t) = x(t)]| > e} < ol /¢ (2-2)

Then the probability that |x(t) - %(t)| exceeds n/4 radians at

time t is less than n_z when o§<l/4.

The desired lower bound for the mean square error in
point estimating a(t) at t can be found by first deriving a
lower bound for the mean square error interval estimate of a(t)
on an interval [Ti’Tf]' Ti<Tf' The mean square error of the

interval estimate is defined by (ref.4, section 5.4.4)
Tf .
R = 17 T, E ge(t) gg(t)dt ’ (2-3)

where E{ } is the expected value of the vector random variable

generated by the integral operation, and gg(t) is the error
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vector defined by (1). A lower bound matrix R, will be found for

B

R. in the sense that R

R; -R, is nonnegative definite. Referring to

I -B

(2-3) it is seen that the diagonal terms in the matrix EB repre-
sent lower bounds on the mean square errors in estimating
ai(t), i=1,...,N.

The lower bound matrix EB is defined by

Te
— 1 -1 v ¥ ¥ -
Rp = T, - 7,7 ! J T (t',eh)dt (2-4)
T

i

where gﬁl(t',x) is the inverse of the information matrix kernel

J(t',x) and is defined by the matrix integral equation (ref.4,

T

£
I g e )
T,

!E[Q(u,g(u)) Q, (u,z) I_D_T(z,g_(Z)ﬂ K, (z,x)du dz

\

- Ea(t',x), where Ti < t', x < Tf . (2-5)

page 454)

To find lower bounds on the elements of BI’ (2-5) must be solved

and (2-4) must be evaluated with x=t'. For the scalar signal
N
s(t,a(t)) = /2P sin[%ct + B Z:ai(t{} that is a function of the
- i=1

vector a(t), and the scalar additive noise n(t) with uniform
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spectral density NO/2; the inverse kernel vector

Qn(u,z) = (2/NO) §(u=-z), an impulse of weight 2/NO at z=u, and

D(u,a(u)) is the vector,

[ 9s(u,a(u)) ]
aal(u)
D(u,a(u)) = . (2-6)
8s (u,a(u))
i aaN(u) ]
1f 3s (u,a(u))
d_.(u,alu)) =
st = va; (u)
and
- piJ -
E{dsi(u,g_(u)) dsj(z,g(z))} = Rds(u.z) ' (2-7)
then
E{Q(u,g(u)) _D_T(z,g_(Z))} = Rgg (ur2) (2-8)

where the term in the iE-lr—1 row and th column of the NxN matrix
Ris is just Rgg(u,z). Substituting the 2/NO valued impulse for

gn(u,z) and (2-8) into (2-5) gives

T
£
-1
ITh e %)+ —if ghetw) Ry (w,u) K (u,x)du = K (E',%)
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Since

s(t,a(t))
Rég(u,u)

It

I

IT-5

V2P sin|w _t + B
C C

2
P Bc

1 + E{cos| 2u w, + 2BC }i ai(u)

N
Z ai(t) '

i=1

N

(2-10)
i=1

Since cos [wct + x(t)] is assumed to be a narrowband process

centered around w

the contribution of the 2w

c term in (2~10)

can be neglected in comparison to the P Bi term in the integral

of (2-9).

Then in (2-9) the effective part of

. 2 T
Rqg 15 P 8o I T

where I is a unit N-vector, and I ET is a NxN unit matrix (all

ones) .

The elements of a(t) are assumed to be statistically

independent processes with zero means.

(u,x)

g

Kl(u,x)

Then,

(2-11)

KN(u,x)
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The matrix g—l(t',x) is

r

=
|
I
]
I.....l

[K

II-6

0=

.
l._l

4.
bt

o e upﬂz e s

.
1 gy =200
'_J

o
(W
e

o
e
e et

o
=
.

L

Premultiplication of (2-11) by E? gives

Post multiplication of (2-12) by the unit vector I gives

that is an N*XN matrix with all off diagonal terms equal to zero.

(2-12)

(2-13)

(2-14)
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Then the integrand of (2-9) is

Pel 3" (e ,w) 11T K (u,x) = (2-15)
- —a
N N
K. (u,x) E: J l(t' u) e K _(u,x) z: J l(t' u)
1 13 r NS 1 ¢
j=1 j=1
N
2 1
P BC ¢ Ki(u'X) Z Jij(t',u) @ .
j=1
N . N
K. (u,x) E: J'l(t' a) eee K_(u,x) E: oLk,
1 N3 ' N Nj ’
j=1 j=1

The term in the rEE row and pEE column of Ea can be denoted as Krp

and when r=p=i, Krszi‘ From (2-11) Krp=0 if r#p. From (2-9) the

term Krp(t',x) is given by the scalar integral equation

Kr(t',x), r=p

T N

-1, 1 £ -1,

er(t S X))+ 5 Kp(u,x) 5: ‘Jrj(t ;aydu =
T j=1

i 0 ; TEP

for l<r, pgN. and T,<t', x<T¢ . (2-16)
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The set of N2 equations described by (2-16) can be solved

1

simultaneously for J;p(t‘;x)e For fixed r, consider the sum of

(2-16) over all p. This is

N T | N [N

J«l(t‘ + l f —1 1 ]

p %) T Kp(u,X) Z Jrj(t yu) [du = Kr(t P X)
p=1 T. |p=1 j=1

i

for 1l<r<N ; T,<t', xsTg . (2-17)

N
But with h_(t',x) = ), Jré(t',x), (2-17) has the form of the
p=1

Wiener-Hopf integral equation

Tf N
1 " _ v — ' -
WI N"S§ (u-x) + Z Kp(u,x) hr(t ;u)du = Kr(t ,X) (2-18)
T.
i

p=1

for 1srsN , T,<t', x<Tg .

If hr(t',x) is found by solving (2-18), this can be used to find

1

J;;(t',x), p#r, directly from (2-16). In this manner all J;p(t',x)

are found for 1l<r, psN.

The solution of (2-~18) is difficult for most cases. One
class of problems where the solution of (2-18) is direct is where
a(t) is stationary and T -»-« (ref.4, page 444). Then

Kr(t',x)+Kr(t'—x) and hr(t‘,u)+hr(t'—u). If in addition Tf++w,
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the solution of (2-18) is simple, as can be seen by considering

4o N
1 " - - [ —
Sl f \;N § (u-x) + Z Kp(u x)‘Jhr(t u)du = Kr(t'-x) ,
00 p:l
for 1sr<N and ==<t', ycte | J (2-19)

With the change of variables t'-x=t and v=t'-u, u-x=t1-v, u= =

v= +w, u= +o> y= =, and dv= -du. Then (2-19) becomes

Foo N
ﬁ% J‘ N"§(t-v) + z: Kp(r—v) hr(v)dv = Kr(r) ’ (2-20)

—o0 p=l
for - < T < oo,
Since (2-20) is defined for -«=<t<+», the Fourier transform of

each side can be taken, and since the left side is a convolution

integral, the result is

N
H_(j0) = n"s_(w) ] [N+ Z s, () | cocp<to | (2-21)
p=1

where Hr(jw) = F[hr(v)] and Sr(w) = F[Kr(r)] for l<rx<N.
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For the stationary problem with T, ==, Tty t'-x=1

and v=t'-u, (2-16) becomes

+ o
-1 1
rp(T) = - N—-.—,—j Kp(r-v) hr(v)dv ,
for pFEr and ~x<r<to

This can be transformed to give

S (w) S_(w)
-1 _ o) r
F{er(—f)il = . ¢ LFEP
Nll + z Sp(w)
p=1

Since

(2-22)

(2=-23)

the transform of J;i(T) follows by subtracting all F[%;;(r{}, r#£p,

from Hr(jw). Then for 1<rzN,

N, p#r
Sr(w) N" + Z Sp(w)

-1 B p=1
FEI’I'(T)] = 7

N
Nll + Z Sp(w)
p=1

(2-24)
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The value J;i(O) is a lower bound on the error in estimating
ar(t) on the interval (-=,*) given x(1) + n" (1) for -w<t<+o,
If only x(t) +n" (1), —-=<t<t is given, but the estimate is delayed

in time by §, J;i(O) is again the lower bound on estimating ar(t)

on the interval (~«,t] as §-++w., Since

57t = 517".[ FE;_}:uﬂdw , (2-25)

substitution of (2-24) gives

T s (W) [S_(w) ~ S_(w) + N"]
o2 (1) 2 x X x do (2-26)
r - 27T N [Sx(w) + N"} -

N

where ci(l) is the mean square error in the interval estimate of
ar(t) on (-»,t] with delay 6»++~. Since J;i(o) is the same for
cach t, 1t is also equal to the lower bound on the mean sguare

errcr in point estimating ar(t) at t given x(t) + n" (1), —-=<t<t,

and delay &++«., But the MMSE for the point estimation of ar(t)
using the system in Fig.4 was derived in section 2-6 as og in
(23). Since J;i(O) and Ogr are the same, the system in Fig.4 is
the optimum point estimator of a(t) at t in the MMSE sense when

delay &+« is allowed for hui(t), i=1,...,N,
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APPENDIX TIII

Derivation Of The Transfer Function Hi(jm) In Equation (18)

To compute the optimum linear filters hui(t) in Fig.4,
it is necessary to derive the transfer function from the input of
Fig.4 to the point of the response éri(t). By definition this

transfer function is

Hy (Ju) = A, (Gu) /X(Gw) i=1,.0. N, (3-1)

From Fig.4 the Fourier transform of éri(t) is

Ari(jw) = Hri(jw)[X(jm) - Y(jw)l i=1l,...,N ; (3~2)
where
N
K= 1/N" = 2p 82/N_ and Y(ju) = ) A (jw)
i=1

Combining (3-1) and (3-2) gives

N

KH_. (jw)
Loy ri _ . _
H, (30) = 7507 | }: H (Go)| (3-3)
rd k=1,k#i

for i=l,...,N .
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There are N independent equations in the N transfer functions
Hi(jw). This system could be solved directly, but it is
simpler to find the Hi(jm) by the following argument.

The transform Arl(jw) is the response of the feed-
back system in Fig.l15. If (J), J=1,...,N denotes the input of
the ch—;-kl sumning point from the left in Fig.l15, and (N) is the
output point of the amplifier K; the transfer function from

(J) to (0) is a member of the sequence,

(N) to (0): Gy = K/[1 + K HrN] ' (3-4)
(N-1) to (0): GN-—l = GN/[]— + GN Hr(N-—l)] ’

(J) to (0): GJ = GJ+1/[1 + GJ+l HrJ] R

(2) to (0) G2 = G3/[l + G3 Hr2] '

The transfer function from (1) to Arl(jm) is
Hy (Ju) = G, (Jw) Hrl(jw)/[l + G, (Ju) H_;(juw)l (3-5)

Substitution of GN into GN—l’ GN-l into GN—Z’ etc.

gives

N
Hl(jw) = K Hrl(jw>// 1+ K ;Ei Hrl(jw) (3-6)

i=1
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This is (19) for i=1l. By symmetry,

N
Hl(]w) = K Hrl(]w)/ 1 + K Z Hrl(]w) ' (3-7)

Substitution of (3-7) into (3-3) leads to an identity. That 1is,

{(3-7) checks as the solution of (3-3)
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Let Sx(m)

where

and

APPENDIX IV

An Example Where N=2 And Sl(w) Sz(w) # 0

]

Sl(w) + Sz(w)

5, () = 2a; py/(u’+p])

5, (0) = agpy/Llwruy)® + 31 + apy/[(e=uy)® + P31 (4-1)

Then

5 _aq) s

6 +a@2) s?+a3) s®+aw) (4-2)

1 +

where s=juw

A(L)

A(2)

A(3)

A(4)

N 2

[0?+p21 [ (wtu,) 2+ P21 [ (w=u,) %+ p3)

and the A's are as follows,

~1

I

{[pi - 2(w§—p§)] + 2(a; p; + a, py)/N"}

i

_ 2,22 _ 2, 2__2
= -{[(w2+p2) 2pq (u, pz)]
2 2 " 2 2 2 "
- 4al pl(wz"Pz)/N + 2a2 pz(wz + pz + Pl)/N }

2, 2 2.2 2 2.2 .. u 2, 2,2 "
{pl(w2+p2) + 2ay pl(w2+p2) /N"+ 2a, P, pl(m2+p2)/N }

il
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The parameters to be selected are Pir Por @y 855 0y and N",

) . . 2 ,
Since Sx(w) is a function of ", we can write

3
w + Bk
1+ Sx(w)/N" = ¥Y(w) ¥*(w) = ‘ i -3
k=1 ¢ T 'x

where Bk and Vi have positive real parts and ¥ (w) =

T

(w~j8k)/(wwjyk) consists of all factors of l+SX(w)/N" in
k=1

the upper half of the w-plane. The factor ¥*(w) is the conju-

gate of ¥(w). Then ¥(w) = [l+SX(w)/N"]+ and v*(0) = [1+5_(w)/N"]7.

The transfer function of the optimum realizable filter

for estimating x(t) from x(t)+n" (1), t<t, is from (14)

Hog(jm) = 1 -

Then (15) gives

H_y (Gu) + Hy(Ju) = K (¥ (w)=1)
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The poles jy, of ¥(w) follow directly from the guadratic factors
k

in the denominator of l+SX(w)/N"= These are

jyl = jpl' jY2 = jpz - w2 and jY3 = ]p2 + u)2

The zeros jBk of ¥(w) must be found by factoring the sixth order

polynomial in the numerator of l+SX(w)/N".

The poles of Hrl+Hr2 are simple. The function Hrl is
associated with the pole jyl and H 5 with the remainder, since
jyl is the only pole arising from Sl(w). Using a partial fract-

ion expansion for Hr1+Hr2 as in (16) gives

Hrl(jm) = kl/(w-le)

and
Ho,(Ju) = ky/(e=dy,) + ky/(e=Jv3)
where 3
""jN"[ (Bk'—pl)
K. = k=1

1 7. 2
(Py=pp) " +

3
k - k=1 - __jNuA
(py=Py=3wy) (=32wy)

3
LANW - :
N kl-»l(Bk p2+jw2)
k3 = — = —jN"A¥
(py=Pp+iuy) (32uy)
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The conjugate relationship between jk2 and jk

property
Pl orn - P - P’
(By=v~) = (BL=v,) = (BL=7v4)
k=1 X 27 p=p K 20 gy k3
Then
. - 2 2. .
H (Quw) =N I:l(ﬁk—pl)/[(Pl-P2) + w51 (Jutp,)
and
_ A A¥
Hrz(jw) = N" : + :
(jw+Y2) (3w+y2)
where

A =T T8 py=Tuy)/(p=py=Fuy) (23u,) .
k=1

The two terms of Ho.o combine to give

HrZ(jw) B N“[ 2 2

(jw)2 Rel[A] + 2 Re[A(pZ—jwz)]]
(jw)2 + 2p2(jw) + Py + W)

where Re| ] denotes the real part.

3 follows from the

(4~4)

(4-5)
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The minimum mean-square error in estimating x(t)
given x(t)+n" (1), t<t, is known from (22) as a function of

Brr Yir and N"., This error is also given by (ref.6, page 146)

3
0,2 = NHX
O

3
(5=1) = N"| ) By = (py+2py) (4-6)
k=1 k=1

The optimum realizable filters with é-sec delay for
estimating al(t) and a2(t) given the input x(t)+n" (1), 715t,

have been derived. For i=1 and 2

H; (GJu) = Hgi(jw) expl-jws]

a Si(w)
where from (17) Hoi(j ) = "
N"¢(w) ¥ (w)
Then
2a, p [w4-F2(p2—w2)w2-F(w2+p2)2]
u . 1 171 2 2 2 72
H l(jw) = o y (4=7)
o P(w)
and
) 2a, p [m44-(w2+p2+p2)w2+ (w2+p2)p2]
U , 1 2 52 2 F2 71 2 T2'F1
Hoz(jo)) = 1\—.]—"— (4"'8)

P(w)

6 4 2

where Plw) = -A(l) w + A(2) w - A(3) w™ + A(4).
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From (23) the lower bounds on the mean-square errors

in estimating al(t) and az(t) with delay are, respectively,

, J{*m S, (W) [S,(0) + S w(w)] 4

o = e (4-9)
ol 8, () + 8,(0) + S w(w) 2T
and
TP s, () 18 (6) + S . (w)]
o2 = I 2 1w (4-10)
o2 Sy () + S,(0) + 8 (@)

= OO

These errors are obtained in the limit as é§+». For sufficiently
large delay, these are the mean-square errors for optimum esti-

mation of al(t) and az(t) at time t+§8 given the input x(t)+n" (1)
for t<t.

Since

Ho, (Gw) = Sy (@) /N ¥(w) ¥*(u)

and Y{w) Y*(w) = 1 + Sx(w)/N",

oo +eo
2 [ B e g g
Oni = 2T oi'J 2w

] N"v(w) ¥* (o)

where Sl(m) Sz(w)/N“ Y(w) ¥*(w) =

2,2, 2

4., 2 2, 2. 2
4a) ay py Pylu + (wytpStpy)e” +py(wytpy)]

N"P (w)
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Then

4
- du [y 4
oo1 = f o {(n 2a; p; + 4a; py a, pylu +

- OO

2, 2, 2 2

" 2_ 2
[N 4al pl(p2 wz) + 4a1 Py 2, pz(w2+p2+pl)]w + (4-11)

2,2 2, 2

A 2 2 '
[N’Zal pl(w2+92) + 4al Py @, Py pl(w2+p2)]}/N‘P(w)

and

_ dw " 4
0oy = j —2—1-1-{(1\1 2a2 p2+4al Py a, pz)w +

." 2 2 2.2 _
[N 2a, p, + 4a; py a, p2](w2+p +pl)w + (4-12)
+ 4a. py a, p.](02+p2)p21/N"P (0)
2 P2 1 Py @ Pl tuy™Ry)Py
If N

1 and N2 are two values of N" the assumption

8. () [Sy(w) + N1 S (w)(S,(w) + Nyl
Sl(w) + Sz(w) + Nl - Sl(w) + Sz(w) + N

2

implies Ny 2 Ny Similarly for the case where the rolls of S, and

: 2 2
S, are interchanged. Hence ©N,2> N, = ool(Nl) > ool(NZ) and

2

oZ(N

OZZ(Nl) > ¢ 5) . The mean square errors are monotonic with N".
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The error integrals have the simple form

e 4 2
2 1 Cl)w + C(2)w™ + C(3)
%1 = ZaN" I P () du (4-13)
and
e 4 2
2 1 D(l)w™ + D(2)w” + D(3)
92 = TaNT J (o) dw (4-14)
6 4 2 39 9
where P(w) = -A(L)w  + A(2)e- - A(3)0“ + A(4) = T (o +8;)
k=1

and the C's and D's are constants. Since P(w) is two orders
greater than the integrand numerator for each integral, the
theory of residues can be used to evaluate Oil and Oi2’ More
specifically (ref.8, page 368) if Q(z) is a function analytic in
the upper half of the z-plane except at a finite number of poles,
none of which lies on the real axis, and if |zQ(z)| converges
uniformly to zero as z+» through values for which 0 < arg 2 < 7,
+-co

then Q0(w)dw is equal to 273 times the sum of the residues at

the poles of Q(z) in the upper half of the z-plane. Letting

. . . 2 2 C L
Qlaw) and Qz(m) be the integrands in 001 and Y it is not
difficult to show that the reguirements of the residue theorem
hold at least for the values of the A's, C's and D's used. Hence
te evaluate oil and 02 the residues of Ql(z) and Qz(z), respect-

o2

ively, are evaluated in the upper half of the z-plane.
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Since

3
P(z) = TMT(Z + jBk)(z - jgk)
k=1

where Re[sk]>0 for k=1,2,3; the roots of P(z) with positive

imaginary parts must be z= +j8k, k=1,2 and 3. Then

B o = c<§>z4 + c(2)z2 + c3)
I:I(z4~j8k)(z— 38,)
and
) 0, = D(§’24 + D(2)2z% + D(3)
l;I(Z+j8k)(z—jBk)

For (1), the residue at jBr, r=1,2,3 is defined by

R =1 im (z- 38 0 (2)
r Z"“'B r
] r
. 4 . 2
c(l) (js) -~ + C(2) (381" + C(3)
- 73 3 ' r=1,2,3
(38_+ 8, ) - (38— j8;)
k=1 r k k=1 r k
k#r
(4-15)
For (2), the residue at jBr’ r=1,2,3 is
) P Ge® + D@ Ge)? + DO
R = v r=l,2,3

r 3 3
izi(38r+'38k) . k=l(38r— ]Bk)

k#r (4-16)
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By the residue theorem
3
2 - J E: (q) - -
Ooq = 3 Rr , g=1,2. (4~-17)
r=1

The transfer function from the demodulator input to

the point of the response éri(t) was found to be
. ~ , , . +
H; (Ju) = A, (30)/X(J0) = H; (Gu) /N[ + 5 () /N"] (4-18)

Assuming a delay of 6>0 sufficiently large, the post loop filter
hui has the transfer function Hui(jw) = Hoi(jw)/Hi(jw) that is
closely approximated by a realizable transfer function. Substi-

tuting Hol(jw) and Hl(jw) gives

2, 2.0, :
2a;p; [(py=py) "+uyl[Ju-py+ju, I [Ju=py=ju,]  expl-jusl]

Hyp ) = 3
N"] I(Bk~pl)(jw-81)(jw-82)(Jw-83)
k=1
(4-19)
Substituting Hoz(jw) and Hz(jw) gives
2a,p, (Ju-py) GurVus+p3) (Ju=Vus+pl)  expl-jus]
. 252 1 2 52 2 72
Huz(jw) = (4-20)

3
N"{2Re[A] (ju) + 2RelA(p,~Ju,)1} T [(Ju-8y)
k=1
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