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A GENERALIZED UNIMODALITY

Richard A. Olshen, Stanford University ,
and
Lecnard J. Savage, Yale Universityl

1. Introduction.

Khintchine (1958)_ showed that a real random variable Z hss a
unimodal distribution with ﬁode at 0 iff Z ~ UX (that is, Z is dis-
tributed like UX), where U is uniform on [0,1] and U end X are
independent. Isii (2955, p. 1;(5) defines a modified Stieltjes trans-

form of a distribution function- F for w coumplex thus.
. e |
I(w;F) = [(w-t) "aF(t) .

Apparently unaware of Khintchine’s work, he proved (pp. 179-180) that
F is unimodsl with mode af 0 . iff there is s distribution function ¢
for which I(w;®) = -w dI(w3;F)/dw . The equivalence of Khintchine's
and Isil's results is made vivid by a procf (due to L. A. Sheyp) in the
next section.

This paper introduces {Section 2) a definition -- more exactly, a
one parameter family of definitions -- of unimodality for random objects
taxing values in a finite dimensional vector space. The possibility of
a more general range space is briefly mentiorned, and some special atten-
tion is given to the one dimensional case and its connections with
ordinary unimodality (also Section 2). Two characterizations, or alter-

native definitions, of q-unimodality are given (Section 3). One of these

1. The work of Savage on this paper was supported in part by the Army, Navy
Air Force, and NASA under Office of Naval Research Contract Norr-509(52)
and in part by the John Simon luggenheim Foundation.




is an extension of Khintchine's theorem to a-unimodality. The other is
related to an inequality discovered by Anderson (1955, pp. 170-17) for
a type of unimodality egtricter then n-unimodality for an n-dimensional
vector space,

In more then one dimension, the distribution of an CG-unimodal vector
can be completely singular, but also it can bé absolutely continuous.
The densities of absolutely contimuous G-unimodsl random vectors are
characterized (Section 4). The notion of Q-unimodality permits a litﬁle
to be salvaged from the known disaster that sums of real, independent,
unimodal random numbers need not be unimodal (Section 5).

We thank David Freedman and L.A. Shepp for their friently help and

shall mention instances of it as they arise.

2. Preliminaries.

Ordinarily, a real random variable Z is said to he unimodal with
a mode at x * if its distribution function is convex to the left and
concave to the right of x. This; of cdurse, implies the existence of
a density, except possibly at x, which can be taken io be nondecreas-
ing to the left and nonincreasing to the right of x.

According to an easy calculation, for suck a 2, tE(£(t(Z-x)) is
nondecreasing in t for t > 0 for every bounded, nonnegative, Borel
messureble T3 and in consequence of the later Theorem 3, the coandition
is also sufficient for Z +to be unimodal with & mode at x . This
motivates s more general definition of unimodality.

Definjtion 1. A random variable Z with values in a vector space

Y of dimension n is Q-unimodal (about O} iff




S(t; &,f,2) = 40 t%B(£(t2))

is nondecreasing in ¢t Ffor +t >0 for evefy bounded, nonnegative,‘Borel
messursble f defined on V.

Ordinary unimodality with a mode at O occurs when @ =1 and
n'=1l., To insure a-unimodality, it evidently’sufficés to require '
8(t; a,f,Z) to be nondecreasing for an appropriate sﬁbclass of f's
such as ¢ fun;tioﬁs ;1th compact support or even a countabie, denseT
sdbset of them.

In defining a-unimodality, we have formally taken V to be a finite
dimensional vectofrspace, tecause that is the possibility of principle
interest to us, and because some of the topics to be discusged are genu-
inely vectorial. waevef, the definition and many conclusions about it
are immediately seen to extend to & much more general sort of V.

Namely, let V; cousist of a direct product of any measurable space

with the positive reals, together with one additional point, writtem "O".
If t>0, then t x (9,r) is to be (g,tr); and O x (g,r) = t X0 = O.
The possibility of so0 generalizing V is mentioned not for generality's
seke but to underline that -unimodality is not a thoroughly vectorial,
..or affine, concept. This contrasts with a definition (to be mentioned
again) thet calls a vector valued 2Z unimodal iff the density of 2
with respect to some translation invariant measure has convex level sets.

For éne elegant proof of the result oerhintchine mentioned in the
previous section due to L.A. Shepp see (Feller 1966, pp. 155-6).

Another proof, which we learned largely from Shepp follows, with the

“only if" implication proved first.
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Assume for the moment that F 1s twice continuously differentiable
and that F' (=f) has compact support. It is easily verified that
-xf'(x) is nonnegative. Integration by parte shows that it is a density,

and therefore that

G(x) = F(x) - xf(x)

1s a distribution function. (It serves as ® in Isii's criterionm.)
Let X be distributed sccording to G and calculate the distribution

of UX +thus.

P(UX < z)

1
j P(uX < z)du
0 -

]

rl
j G(z/u)du
0

1 Vd
]0 o uF(x/u)du

]

F(x) .

In view of the fact that limits of unimodal distributions are unimodal, a
transparent approximation argument completes this half of the proof.

To see the reverseJimplication, let Z~ UX, with U and X heaving
the prescribed properties. Let Fn be a sequence of purely discrete dis-
tribution functions converging to the distribution function of X. Then
the distributioﬁ of Z 1is seen as a limit of unimodal distributions.

From another point of view, the result is an immediate consequence
of the integral formulation of the Krein-Milman theorem (Phelps 1966, p. 6).

The set of probabilities on [-o,»] whose distribution functions are convex




on (~»,0) ‘and concave on (0,2) 1is convex and weakly compact. Tts
extreme points are eaéily seen to be the closed set consisting of the -
uniform distributions with ore endpo‘int at the origiﬁ together with
point masses at 0; +m,r and -», whence Khintchine's theorem follcws
once more.

Return now to the more generélfexploration of Q-unimodality. Taking
£ to be the constant 1, Yyou see that no 2 is o-unimodal for a < 0.
And taking £ to be the,indicatdr of a neighborhood of 0, you see that
Z 1is O-unimodal iff Z =0 Vw‘:lth‘ probebility 1. From now on, let
@ > 0 be understood unless exeept}on is explicitly made for o = 0. An
exsmple ¢f a random varisble that is not G-unimodal for any Q& and cannot
be translated so as to be 1s one whose distribution is éoncentrated at

exactly two points.

Lemma 1. The sef; {a: Z:is cx-unimodal}: is either vacuous or of the
form [B, ) for some B > 0. All these cases &re possible.
Proof. Obviously for @ >a' >0, «a'-unimodality implies Q-unimodality.
The converse is fulse, and there are raﬁdom variables for every £ > 0,
as is shown by the following class of éxamples suggested by Khintchine's
theorem. For P >0 1e1;, Z = Ul/Bx, w}zere U 4is unifcrmly distributed

on [0,1] a&nd «x 1is a nonzero constant vector. In t.is case,

taE(f(tUl/ﬁx))

[t /8., a-p +° 1/p
ta] £(tu Bx)du =t ] f(v' "x)dv
0 0

s(t; 2, £,2)

]

t
Bta'ﬁ] 'wsmlf(wx)dw .
0



This is nondecreasing in t for all nonnegative f iff a > B, as
considération of £ wiﬁhrbounded carrier shows.,

The topological ciosure of {a: Z is o-unimodal) 1g evident from
the definition of S. <

For fixed B, the example ranges with x over the extreme points
" of the set of PB-unimodal distributions, as later paragraphs will make
clear.

| By replacing ta in Definition 1 by a more general nondecfeasing

funcﬁion o(t) ‘and,definiﬁg'G-unimodality‘1n the obvious way, can the
'notion of «a-unimodality Be generalized? Not really. For X is '
®-unimodal iff pX 1s O-unimodal for every real p. Assume ~E(f(tpX))
* can be differentiated with respect to t under the integral sign; then
:set o= i/t. This shows that when & is differentiable, ®-unimodality

asmounts to «a-unimodality, where

d¢£t2

n _ 1
(2.1) a = i:f m e .

When ¢ is not differentidble, slightly more delicate reasoning shows
that (2.1) still holds, with &(t) replaced by &(t+0), and ad(t)/dt
by the lower right Dini derivate of o at t.

The following lemma, whose proof is an almost immediate consequence
of Definition 1, will be importent in one characterization of

a~unimodality.

Lemma 2. If Z dis 1-dimensional, and Pr(Z >0) =1, then 2
is @-unimodal for positive « iff Za is l-unimodal, that is, unimodal

about O.



This lemma can be giver a more pat expression thus, For all
nonzero Q, z% 1s unimodal 1ff (signum a)s(t; o,f,2) 4s nondecreasing
1n. t. For pegative Q, +this fact suggests a definition of a-unimodyality
at «, which will not be further pursued here.

Incidentaliy, according to the lemma together withKhintchine's
theorem, the density of a one-dimensional Q-unimodal rendom variable for

@ <1 is unbounded near G.

3, Characterizations of Q-unimodality.

Definition 2. If Z~ Ul/“x, where U and X are independent,
U is uniform on [0,1], and X has its values in V, then Z is
an a;_gg_a_x_' variable on V and the distribution of X 1is a point dis-
tribution for it. '

As motivation for this terminology, consider an X concentrated
at & finite number of points. The a-star variables will ultimately be
ldentified as the a—ﬁnimdal distributions. Each g-star distribution,
as such, has but one point distribution, as will also be shown. But
each G-star distribution is also &'-star for all @' in [B,») for
some P <0O; for each such Q' there is (unless B = 0) a different
point distribution.

If Z 1is an o-star distribution with point distribution that of

X, then



(3.1) 8(t; @,f,2) = (2w %)
1 o 1/
- L E(£(+%)™ %)t au
, . | ‘
- [ (2 (v %))av
0 ,

=0 It VQ']'E(f(wX))dw , |
Y -

which 1s indeed nondecressing in t for t >-0. The proof of the next

- result is now obvious.

Tenma 3. If Z 48 g-star it is also G-unimodsl, and S is not

only nondecreasing in t (t > 0) but also absolutely continuocus; and

(3.2) % s(t; a,f,z) = at®1g(2(x))

almost everyvhere on (0, w). Further, if f is coucimuous, (3.2)

holds for all positive t.

Definition 3. Jf the real function £ on V has a continuous
gradient and is constant off some compact set, then f is said to be
smooth, or f € ,3 .

According to an easy application of dominated convergence,

£ E(2(12)) = E(% £(tz))

for every £ in .-L and every random varieble Z on V. (What is used
here is only contimuity of df(tw)/dt in t and its boundedness in w

for each t.)

il ek Bt i R
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Definition 4. The not necessarily nonnegative Forel measure &
on V 1is an g-partner of the random variable Z on V 1iff
-1 a
(3.3) ] £(x) 40(x) = & T 8(t; o,f,2) 1
| t=

for every f in A«.

Theorem 1. Each Z has at most one Q-partner. 1If Z 1is C-unimodel,
it does have an O:-partner; and the G-partner is a probad’lity measure. If
Z 1s a-star with point distribution &, then & 1s also the a-partner

Of Zc :

Proof. According to an easy approximation based on the left hand
side of (3.3), any two G~partners of a random varisble Z must assign
the same measure to parallelepipeds, and hence they must be equal.

Now» an g-unimodal Z will be shown to have an Q-partner that is a
probability. To begin 1-'th, the right hand side of (3.3) defines a
linear functional I, on the vector space ,31 . According to the defini-
tion of Q~-unimodality, I 1s nommegative, that is, fe A and ¢ >0
together imply L(f) > 0. Moreover, L(1) = 1. According to Krein's
extension theorem (Hewitt and Stromberg 1965, pp. 219-220), L admits
extension to a nonnegative linear functional on the space of continmuous
functions on the one point compactification of V. Hence the Riesz
representation theorem insures the existence of an G-partner that is a
probability

Lemma 3 delivers the required conclusion s™™ut a-sta,i' variables. <

In applying Theorem 1 it will be helpful to notice another version ’

of (3.3), namely.

A



1,1 4d

(5.'3:} J f(tx)ae(x) =a "t Fry s(t; a,£,2)

for all smooth f and positive t..

Theorem 2. If 2 is «a-unimodal, it is also G-star with its @~

vartner & as its point distribution.

Proof. Let X be distributed according to ®. et 2z* = UM%
vhere U is independent of X atﬂ:unif‘orm on [0,1], gtﬂ compare
- S(t; @,£,2) wvith S(; Q,£,2%) for smooth £. According to (3.2) and
(3.4

(3.5 £ s(t; a,2,2%) = ot™ B(£(2x))
l ' - ata‘la-'ltl'“a% s(t; @,f,2)
d

3t s(t; a,£,2) .

Therefore, for smooth ¢,

E(£(z®)) = 53(2; a,f,2*) = 8(1; ,£,2) = E(£(2)) .

Ard sg Z ~ 2% . : <

Corollary i: If Z is a-unimodal for some @, then E(£(tZ))
is sbsolutely coztinuous in ¢t for every 'boxinfled, real, Borel measur-
eble f. I? £ is also contimmous, then E(f{tZ)) 1is continuously

differentiable for t> 0. If f is nonnegative, then

10



(3.6) oB(£(tZ)) + t % R(£(t2)) > 0

wtenever the derivative exists. And (3.6) for nonnegative, smooth f

cheracterizes G-unimodality.

Proof. Immediate from Theorem 2, Iemma 3, and Definition l. <
Constent Z shows hov important unimodality is for the 1ifferen-
tiability conclusion. 7
In Khintchine's originai work, something close to Coro]lary 1l was'
the bas.c tool in proving his spécial case of Theorem 2. See (Gnedenko
and Xolmogorov 195k, Section 32 as corrected by K. L.Chung i. Appendix
II). | ' |
An Q-star vector Z = Ulla)[ is also B-star if B > Q. As such,
. the point distribution & 7

B

is now easily seen to be characterized by
the Pollowing calculation, applicable to smooth f.

gt ;,%— tﬁE(f(tZ))i
e t=1

/ f(X)é@B(X)

t
¢ 4 .B-0 a-1, :
= = =t o (£(wX) )aw

P at 0 t=1

= FEEE) + (- DE(2(2)) .

So Qﬁ is the welighted mixture of the distributions of X and 32

with wveights @/ and 1-(a/B).. When is 9 = 07 Exactly when X

end U]'/OX have the same distribution. But, as is rether easily seen

. that occurs iff X = 0 with probability 1.



The next corollary, however obvious, is historically important.
It exterds the most popular version of Khintchine's theorem (see Gnedenko
and Kolmogorov 1954, p. 160 and Feller 1966, p. 501, which requires sn

obvious correction), .

Corollery 2. The characteristic function @ is that of an

a-unimodal fandom vector iff it is of the fdrm

L ¥(u aB)du | -

.
i 1 y(way -

vhere ¥ is alsc a characteristic function.

o(8)

The behavior of S for £'s that decrease along rays leads to a
charactenzation of a-unimodality that genexzliizes the usual deﬁnition
of ummodality in one dimension. The basic example of such an f 1is

the indicator of a "star shaped" set.

Definition 5. A real-valued function f on V 1s star ggw_lx_ iff,
for each x in V, #£(tx) is nonincreasing in ¢t in [0, =), and
f 1is bOt;Med and nonegative.

For an q-unimodal 2 and a star down f, comsider Q(t) = E(£(t2))
for t >O0. Evidently Q is nonincreasing. But t.Q = S 1is nondecreasing.

Therefore, except for the trivial possibility that @ =0 for t >0,
a 7 i
e <Qt)/elte) <1

for a11 t in [0,») and @11 € in [0,1]. Or, for 0<® <t,

12



0 < Q(t-8) -Q(t)
= ) ([ER)/a()1- 1)
<Qe)@ - 7.y

= a(e) B+ ae)o(P .

In particular, the above s.gument shows without recourse to Theorem 2

that Q and S are Va'rbsolutely. cc}ntinuoﬁs.

Since Q(te) - q(t) = E{£(tez) - £(t2)), £2(q(te) - Q(t)}) 1is noﬁ-
" oy,

decreasing in t for fixed¢ e in [0,1]. Let K(s) = Q(s 80

that Q(t) = K(t ). X 1is contimuous -- in fact absclutely continuous --

and

(3.7) | kibs) - K(s)

8

is nonincreasing in s for Ffixed b in [1,0). It will be argued now,
in more than one way, that X 1s coacave.

Since- K is a‘bsolutelf continuousA, it ;Ls concave if 1tsr derivative
K' is nonincreasing vhere defined. But this it is according to the
monotony of (3.7), or the preconcavity of K, as we shall momentarily
cell it. PFer iif K 1is differentiable at s, then

K®s) - X(8) _ (1) (s) + o(b-1) .

Concavity quite easily implies preconcavity, and it would be some-
what interesting to know to what extent the converse is true. Certainly,

absolute contimuity is an unnecessarily strong supplementary condition.

i3



Perhaps nore at all is ne~ded, and measurability seems very iikely to be
adequate. We have not resolved these conjectures but can point out that
preconcavity, even much weakened, implies concavity if K 1s- continuous.

To see this, specialize preconcavity to coneclude that, for b > 1,

K(bs) - K(sr) Z% {K(bgs) - X(bs}] .

Therefore,

K(bs) + bK(s)
1¥§ - °

K(bs) >

That is, there is a point on each chord of K,V in fact that geometric
mean of the endpcintérof its base. where the chord does not 2xceed the
rfunction. tor a continuous function, this is known to imply éoncavity
(Hardy, Littlewood, and Polya 1934, p. 73). As David Freedman remarked
to>us, aApreconvex K that is monotone -- as is the K in our parﬁicu—
lar application -- is éutomatically7contﬁnuuus.

Several proofs have now been given fcr the next theorem.

Theorem 3. If f is star downand Z is a%unimodalé then

1/

E{f(s— 92)) 1is concave in s. 7

As<ﬁas mentioned in Section 1, Theorem 3 is related to an inequality
of Anderéon (1955, p. 172). He definesr Z in n dimensions to be uni-
modal iff Z has a density h tiat is nonincreasing along rays from
the origin and has convex contours. So. a= is easily verified, his uni-
modality implies n-unimodality but rot conversely. Now let h(v) = h(-u)
for all u, ard let N be a convex neighborhood of the origin for which

ueN iff -u € N. Anlerson proves that as N slides out a ray from

14



the origin, tu.e probebility of N decreases. This conclusion is in
general feise for n-unimodality, yet his and our conclusions are similar.
Both iefer to diminution of probability és certain sets are removea from
the origirn, in his case as spiieres are translated and in ours as shells
are dijated.

In view of Lemma 2, the condition of Theorem 3 characteriées a-
unimodality in case V is l=dimensional, and in the particular‘case
a =‘1 it is comforting to reslize the equivalience of Khintchine's defi-
rnition and ours. This characterization extends to arbitrary V. Im
preparation for proving that, we pfesent an argument, wh&ch incidentally
leads tq 8 nevw prodf of Theorem 2,dﬁe to David Freedman. 7

We assume for clarity that fr(z = 0) = 0; the details thus omitted
would be routine to supply. Introduce an arbitrary Euclidean norm hll
on V and represent 2 as DL, where D = z'llzll is the "direction" of |

Z and L = J|2]l is its length.

Theorem 4. Z is c-unimodsl iff I given D is effectively 1-
dimensional 0-unimodel with probability 1, that is, for s <t and

nonnegative g; defined on [C, «),
(3.8) s"E(g(sL) [D) < +%E(g(tL)|D)

with probabilitv 1. And it is enough that (3.8) hold for all smooth g.

Proof., The “if" implication. For a smooth f, use a regular

_ conditional probability given D +to compute thus.

15



B(t%r(t2) - %f(s2))

= E(E(%f(DLL) - s“f(DsL)lﬁ)} >0 .

The "only if" implication. Suppose (3.8) fails on a set of positive

measure with indicator h(D). Let f£(Z) = h(D)g(L).
(%2 (t2) - s%(s2))

- E(n(D)E(t%g(tL) - %g(sL) (D))
<0. | o

By means of Theorem U4, the assertion in Theorem 2 that an - a-unimodal
.Z 1is necessarily a-star'cén'bé reduced to’Khinfchine's theorem about 1-
unimodality on the line, of which it is of course a-generalization. In the
first place, calculating with a regular ébnditional probability given D,
(3.8) implies that, for almost all D, ﬁaE(g(tL)lD) is nondécreasing for
all smooth 8- ‘That implies that L is 1-;nimodal for almost all D. BSo
according to Khintchire's theorem, L given D is almost surely distributed
like UR where U aﬁd R are independent and £he distribution of R is
a function of D. A distribution for X 1is well defined by the conditions
that X/|K|l ~D and |X|| givea D is distributed like R given D.
This variable does what is required.

Now the converse of Theorem 3 will be established, leaving to the

reader the slight additional complication that arises if Pr(Z = 0) is not

assuined to be 0.

16



Theorem 5. If E(f(t-l/az)) is concave for each star-down f,
then 2 1s ca-unimodal.

Proof. Let &, be the indicator of [O,x] and h any function
of D. Thn f, where £(Z) = h(D)g (L), 1s star down. The con-
cavity of E(f(t'l/ %)) = E(n(D) pr(t V%, < x>|D)) gshows, for the regu-
lar version, that the distribution function of I* 1s concave, that is
unimodal at 0, for almost all D. According to Lemma 2, these con-r
~ditional distributions are therefore G-unimodal. Theorem 4 now appliés

- to show that. Z is c-unimodal. | ' e

k. "Densities.

In 1 dimenéion, an Ot-:uni;nodal variable has & densityr except possibly
at 0, as p’revious discussion has made clear. But in higher dimensions,
the existence of 2 density is aﬁypical in that many point distributions --
including all finite ones -- result in singular C-unimodal dist';ributions.
Suppose, though, that 2 | is a-unimodal and does have-a density p,

what can be said about p?

Theorem 5. A provbability demsity p on V is that of an G-unimodal
Z 1ff forall s, t with 0<s8 <t
(L.1) 7 s%% o(s2) > 7% o(tz)

for almost all 7z with respect to a Lebesgue measure.

Proof. The "if" part. Evident, because

(4.2) t%5(2(t2)) = t% [ £(tz) p(z)az

"

%P fe(w) p(w/t)av .

17



The "only if" part. Let f be the indicator of the set in V
whére (4.1) fails and show by applying (4.2) to f that 2 1s not
» a-unimodal. , <S>
For any o there is a smoothed version p¥* such that, for any
s and t for which .(1&.1) hclds almost everywhere for p 1t holds

everywhere for p* . Indeed c&nsider,

T -2)d
(’.;..3) p*(w) = lim sup _"ﬂ_S_}.up_(‘_’_z_).: .

k ez < 222

According to & known fact (Saks 1964, p. 118), the 1lim sup in
(4.3) is almost everywhere actually a limit and equal to p(w). Thus
Vp* is a version of p. If p satisfiesr (4.1) almost everywhere,
then clearly p* satisfies it everywﬁere; iAlso p"f, being a lim sup
of continucus functions, is Borel meggurable. Finally, if wherever. p*
is infinite, except at z = 0, it is changed to O all of the properties

mentioned will persist.

Corollary 5. The random vectbr Z 1is a a-unimodal with an absolutely
continuous distribution iff there is a Borel measurable version p* of
its density for which 20 5*(52) ie nonincreasing in s for each
fixedz eV, z 40,

If 0 is a probability density ou V, the corresponding G-unimodsal
distribution with ¢ as the density of its point distribution has density

p, Wwhere

1 o
p(z) =fo u-n/oz o(u”l/az)du = Ot]l vn'a"l o(vz)dv .

18



In particular,

o ﬁ -1
p(tz) = a/ v O s(tvz)av
- 1
-n s n--1
= qt® [ W ST g(wz)aw .
t N -

So, at least if ¢ 1is continuous,

(4.4 & () - ™% o(te) ,

except possibly at z = 0. In 1 dimension, if o is continﬁous then p
1s‘éontinﬁousiy differentiable, except possibly at d. In 2 or more
dimensions, even if ¢ 1is coutinuous, p might have directional deri-
vatives only along the ray determined by 2z. Of course, under sufficient

regularity, (4.4) becomes
aofz) = (n.- a)e(z) + 2 - W(z) ,
a l-dimensional special éasa;éf which has already been mentioned.

5.

I(D

The convolution ¢f symmetric 1-dimensional, l-unimodal distributions
is also l-unimodal (Wintner 1938, p. 30). The conclusion is not true in
generel if the assimption of symmetry is dropped; see Chung's Appendix IT
of (Gnedenko and Kolmogorov, 1954), also (Feller 1966, p. 164) and
(Ibragimoev 1956, p. 255). Two facts bear on possible extensions of the
first result. First, since Anderson's coneclusion fails for n-dimensional,
absolutely continuous, symmetric, n-unimodal variables, Wintner's result

does not extend to n-dimensional, n-unimodal variables. Second, the uniform

distribution on the unit square in 2 dimensions can be viewed as the
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convolution of a pair of symmetric, 2-dimensional, leurimodal distribu-
tions, but this distribution is, as Corollary 3 shows, only 2-unimodal
and cannot be translated so as to be ®-unimodcl for any Q < 2, The
next, and finsl, theorem offers some solace for the disappointment of

Chung's discovery.

. Theorem T. If Z and Z' are independent and are ¢ and o
unimodal in V and V', then (2,Z') is a + a' unimodal in V X V'.
If further V =V', then Z + Z' is (o + Q')-unimodal. No lower index-

of unimodality can be asserted, even for a new origin.

Proof. Regard Z and Z' without loss as star variables and

compute>thus.

i l t
B(£(t2, t2')) = Ljo E(£(tu axl, i X,) )audv .

_ (o )[ta[ o E(f(ul/axl, Vl/a'XQ))dudv .
0o Jo

The assertion about the sum follows frow specializing f to a function
of Z + Z'. Unimprovability in 2 and therefore higher dimensions has been
discussed; the result in 1 dimension is easily seen by varying the two
point support of the point distribution of Chung's example. <

Tt is well known that in 1 dimension the sum of two independent,
l-unimodal, random numbers, one of which has a symmetric dirtribution,
can fail to be l-unimodal for any origin. Perhaps, however, in this
context the indev of Theorem 7 can be improved. We have not explored

that question.

20



References

Anderson, T.W. (1955) The integral of & symmetric unimodal function.

Proc. Amer. Math. Soc. 6, 170-176.

Blackwell, David (1955) On a class of probability speces. Proc. Third

Berkeley Symp. Math. Statist. Prob. 2, 1-6. U. of-Calif. Press.

Feller, William (1%66) An Introduction to Probability Theory and its

Applicatious Voi. II. Wiley, New York

Gredenko, B.V. and Kolmogorov, A.N. (1954) Limit Distributions for

Sums of Independent Random Varisbles (translated and annctated by 7

K. L. Chung and with an Appendix by J. L. Doob). Addison-Wesley,
Cambridge, Mass.

Hardy, G.H., Littlewood, J.E., and Polya, G. (1934) Inequalities.
Cambridge at the U. Press.

Hewitt, Edwin and Stromberg, Karl (1965) Real and Abstract Analysis.

Springer; New York.
Toragimov, I.A..{1956) On tne composition of unimodal distributions.

Theory Prob. Appl. (Translation) 1, 255-260.

Isii, K. (1958) Note on a characterization of unimodal distributions.

Anna Insto Stat- mtho H, l73'18’+.

Khintchine, A. Ya. (1938) On unimodal distributions (in Russian). Izv.

Nauchno-Issled. Inst. Mat. Meh. Tomgk. Gos. Univ. 2, 1-7.

Thelps, Robert R. (1966) Lectures on Choguet's Theorem. Van Nostrand,

Princeton.

Suks, S. (1964) Theory of the Integral 2nd Revised Ed. (translated

by L.C. Young). Dover, New York.

Wintner, Aurel (1938) Asymptotic Distributions and Infinite Convolutions.

Edwards Brothers, Aun Arbor.

21



 Unclassified - S s
s&cu‘gﬁsiﬁnm, 5 B L -

1. mmnmcacmwtc-m“d o T , ¢ ; g
-Statistics Department - - R S
Stanford University = - Lo o S -
~ } Stanford, Mifornia B L i e
: 3. ntmvmi :‘:‘7 Sl : ST ’: S B T

)

A‘- DBCNPTWG mmaa’ﬁﬂmm

,‘*,t‘ - e "—’ e Em L s ‘z‘ ! mm . - = SR
SRR . llogistics am Mathematical Sc1encez= Branch”
1 ',:f‘f R ‘_— "7 - i ““loffice of Waval Research - -
= b‘ B X R -T :? ’ = ‘7 . ; washington’ D’Co T N j— = B
i Aesruct; I B S - o
R - This Taper intzoduces. (Sect:i.on 2) a definifion <-_more exact],y a one mtﬂ i

. ,-e_'gily of definitions -- of un.mdality for randm _objects taking vmlues ina
_} Tinite dixensional vector: spce. " The pcssjbi}.ity of a more general range space is .|
] unef‘ly mentioned, and some special attention is Ziven to the one dimensional case
and its connections with orlinarv unimndality (aiso Section 2). Two characteriza- |
i} tions; or altermtive.@efinitions, of q-unimodelity are giver (Section 3). One of
j these is an ex“ension of Khintchine's theorem to'o-wnimodality. The other is = .

related to an inequality discovered by Andersor: . for a iype of un:hnodality stncter -

| than n-unimodality for an u-dimensional vector space, } -

. In more.than one dimension; the distribution of an ~unimodal vector can be
completely singilar, but also it can be absolutely continuous. The densities of
atzolutely continuous a-unimodal random vectors are characterized (Section h)
The notior of G~unimodality permits a little to be salvaged from the known
dizaster that sums of real, :lndependent, unimoaal random mmbers peeéd not be uni-
moual (Section 5). - : 4

DD ok, Té 13 o e T Unclassified
) ‘ : Security Classification



Unclassified

Security Clescification

XEY WORDS

LINK A LINK B LINK C

ROLE ROLE ROLE wT

(=unimodal . by

Star variable
Point distribution
Star down

Preconcavity

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate author) issuing
the report.

22. REPORT SECURTY CLASSIFICATION: Enter the over
a!! security clasaification of the report. Indicate whether
“Restricted Dste” is included Marking is to be in accord-
ance wath appropriate securily regulations.

26. GROUP: Automatic downgrading is specified in DoD Di-
reciive $200.10 and Armea Forces Industrial Manual, Enter

!so, wien applicable, show that optional
s have been used fcr Group 3 and (roup 4 as suthor-

3 R ’"CZ‘.T TITLE: Eater the conplete roport title in all
..u:; in a!l cascs should b . urclassified.
xingf iris canuot be selected without classifica-
tion, show tite clessification in all cepitals in parenthesis

immediately 'owing the title.

4. DESCRIFPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annusi, of final.
Civa the inclusive dates when a specific reporting period is
~overed.
S. AUTHOR(S): Enter the name(s) of euthor(s) as shown on
or in the report.  Enter last neme, first nome, middle initiel,
If military, show rank and brench of scrvice. The name of
the principal wuthor is an sbsolute minimum requirement.
6. REPORT DATE: Enter the dcte of the report as day,
month, year; or month, y~ar. If more than one dete appears
on the report, use Jdate of publication.
72. TOTAL NUMSER OF PAGES: The total page count
should follow normal pazinstion procedures, i e., enter the
number of pages containing infonmnation
76. NUMBER OF REFERENCES: Enter the total number of
-eferences cited in the report.
8a. CONTRACT OR GRANT NUMBER: [f sppropriate, enter
the applicable number of the contract or grant under which
the report was written.

8z, & 8d. PROJECT NUMBER: Enter the appropriate
military deperiment identification, such as project number,
subproject number, system rumbers, task nmber, etc.
9a. CRIGINATOR’S REPORT NUMBER(S): Enter the offi-
cial report number by which the dccument will be identified
wnd contsolled by the originating activity, This number must
be uanique to this report.
5. OTHER REFPORT NUMBER(S): If the report has been
asslgned ony other report numbers (either by the originctor
or by tho zponsor), aluo enter this number(s).
10. AVAILARILITY/LIMJTATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than those|

INSTRUCTIONS

imposed by security classification, using standard statementa
such as:

(1) ““‘Qualified requesters may obtain copies of this

report from DDC.”’

“Foreign announcement and dissemination of this
report by DDC is not authorized.”’

“U. S. Government agencies may obtain copies of
this report directly f~om DDT., Other qualified DDC
users shall request through

2
(&)

*‘U. S. military ageacies may obtain copies of this
report directly from DDC. Other qualified users
shall request through

(O]

“All distribution of this report is controlled Qual-
ified DDC users shall request through

()

If the repoit has been furnished to the Office of Technical
Servicen, Department of Commerce, for sule to the public, indi-
cate this fact and enter the price, if known

1L, SUPPLEMENTARY NOTES: Use for additional explane-
tory notes.

12. SPONSORING MILITARY ACTIVITY: Eiter the name of
the departmental project office or laboratory sponsoring (pay~
ing for) the research and development. Include address.

13. ABSTRACT: Eater an abstracl giving a brief and factual
summary of the document indicsative of the report, even though
it may also appear elsewhere in the body of the technical re-
port. If additiona! space is required, a coatinvation sheet shall
be avtached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragruph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, repzesented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract.
ever, the suggested length is from 150 to 225 words.

How-

14. KEY WORDS: K.y words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such as equipment mode! designation, trude name, military
project code name, geographic location, may be used as key
words but will be foliowed by an indication of technical con-
text. The assignment of links, rales, and welghts is optional.

FORM
T JAN 84

DD 1473 (BACK)

Unclassified

Security Classificaticn



	GeneralDisclaimer.pdf
	0042B02.pdf
	0042B02_.pdf
	0042B03.pdf
	0042B03_.pdf
	0042B04.pdf
	0042B05.pdf
	0042B06.pdf
	0042B08.pdf
	0042B09.pdf
	0042B10.pdf
	0042B11.pdf
	0042B12.pdf
	0042B13.pdf
	0042C01.pdf
	0042C02.pdf
	0042C03.pdf
	0042C04.pdf
	0042C05.pdf
	0042C06.pdf
	0042C08.pdf
	0042C09.pdf
	0042C10.pdf
	0042C11.pdf
	0042C12.pdf
	0042C13.pdf
	0042D01.pdf
	0042D01_.pdf
	0042D02.pdf
	0042D02_.pdf



