
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 

https://ntrs.nasa.gov/search.jsp?R=19700023257 2020-03-11T23:25:34+00:00Z



Y
ii o^y

^r `v

I

i

"^ a
^^^ W +b10

N
CL

 I K

	

\.l W	 1 ^ Q

	

I, v	 ^^ I^ x

	

a	 V

la

Z09 v4r03 All V i



A GLVSRALIZ,ID UND ODALITY

by

Richard A. Olshen and Leonard J. Savage

TKMCAL R3PORT NO. 143
April 1,, 1969

PREFEW UM CONTRACT Nonr-2?5(52)

(NR-342-022) FOR

OFFICE OF WZAL RBSEMM,

Reproduction in Whole or in Part is Permitted for
any Purpose of the United States Government

DEPARTMENT OF STATISTICS
STANF-00 UNIVERSITY
STANMRD, CALIFORNIA



A GENERALI= UNMDALITY

Richard A. Olshen, Stanford University

and

Leonard J. Savage, Yale Universityl

1. Introduction.

nintc:hine (1938) showed that a real random variable Z has a

unimodal distribution with mode at 0 iff Z N UX (that is, Z is dis-

tributed like UX), where U is uniform on [0,1] and U and X are

independent. Isii (2955, P. 173) defines a modified Stieltjes trans-

form of a distribution function- F for v complex thus.

I(w;F) = f(w-t)-1dF(t)

Apparently unaware of Khintchine's work, he proved (pp. 179-180) that

F is unimodal with mode at 0. iff there is a distribution function 0

for,which I(w; ,D) = -w dl(w;F)/dw . The equivalence of Khintchine's

and Isiz's results is made vivid by a proof (dare to L. A. Shepp) in the

next section.

This paper introduces (Section 2) a definition -- more exactly, a

one parameter family of definitions -- of unimodality for random objects

taring values in a finite dimensional vector space. The possibility of

a more general range space is briefly mentioned, and some special atten-

tion is given to the one dimensional case and its connections with

ordinary unimodality (also Section 2). Two characterizations, or alter.-

native definitions, of a-unimodality are given (Section 3). One of these

1. -The work of Savage or, this paper was supported in part by the Army, Navy
kir Force, -and NASA under Office of Naval Research Contract Tlorir-609(52)
and in Part by the John Simon G'uggbnheim-Foundation.



is an extension of Khintchine's theorem to a-unimodality. The other is

related to an inequality discovered by Anderson (1955) PP. 170-171) for

a type of unimodality etricter than n-unimodality for an n-dimensional

vector space.

In more than one dimension, the distribution of an a-unimodal vector

can be completely singular, but also it can be absolutely continuous.

The densities of absolutely continuous a-unimodal random vectors are

characterized (Section 4). The notion of a-unimodality permits a little

to be salvaged from the known disaster that sums of real, independent,

unimodal random numbers need not be unimodal (Section 5).

We thank David Freedman and L.A. Shepp for their friently help and

shall mention instances of it as they arise.

2. Preliminaries.

Ordinarily, a real random variable Z is said to be unimodal with

a mode at x 'if its distribution function is convex to the left and

concave to the right of x. This, of course, implies the existence of

a density, exce-pt possibly at x, which can be taken to be nondecreas-

ing to the left and nonincreasing to the right of x.

According to an easy calculation, for such a Z, tE(f(t(Z-x)) is

nondecreasirg in t for t > 0 for every bounded, nonr_egative, Borel

measurable f3 and in consequence of the later Theorem 3, the condition

is also sufficient for Z to be unimodal with a mode at x . This

motivates a more general definition of unimodality.

Definition 1. A random variable Z vitr. values in a vector space

V of dimension n is a-unimodal (about 0) iff

2
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is nondecreasing in t for t > 0 for every bounded, nonnegative, Borel

measurable f defined on V.

Ordinary unimodality with a mode at 0 occurs when a = 1 and

n 1. To insure a-unimodality, it evidently suffices -to require

_S(t; a,f ) Z) to be nondecreasing for an appropriate subclass of fts

such as C functions with compact support or even a countable, dense

subset of them.

In defining a-unimodality, we have formally taken V to be a finite

dimensional vector space, tecause that is the possibility of principle

interest to us, and because some of the topics to be discussed are genu-

inely vectorial. However, the definition and many conclusions about it

are immediate],y seen to extend toa much more general sort of V.

Namely, let V consist of a direct product of any measurable space

with the positive reals, Together with one additional point, written 11011.

If t > 0, then t X (e, r) is t0 be (9,tr)9 and 0 X (A, r) = t X0 = 0.

The possibility of so generalizing V is mentioned not for generality's

sake but to underline that a-unimodality is not a thoroughly vectorial,

or affine, concept. This contrasts with a definition (to be mentioned

again) that calls a vector valued. Z unimodal iff the density of Z

with respect to some translation invariant measure has convex level sets.

For one elegant proof of the result of Khintchine mentioned in the

previous section due to L.A. Shepp see (Feller 1966, pp. 155-6).

Another proof, which we learned largely from Shepp follows, with the

"only if" implication proved first.

3



Assume for the moment that F is twice continuously differentiable

and that F' (=f) has compact support. It is easily verified that

-xf'(x) is nonnegative. Integration by parts shows that it is a density,

and therefore that

G(x) = F(x) - xf(x)

is a distribution function. (It serves as 0 in Isii's criterion,)

Let X be distributed according to G and calculate the distribution

of UX thus.

(1	 -
P(UX < Z) = J P(uX < Odu

0

r1

- 1
G(Z/u)du

0

1

0
I-

 uF(x/u)du

= F(x) .

In view of the fact that limits of unimodal distributions are unimodal, a

transparent approximation argument completes this half of the proof.

To see the reverse implication, let Z - UX, with U and X having

the prescribed properties. Let Fn be a sequence of purely discrete dis-

tribution functions converging to the distribution function of X. Then

the distribution of Z is seen as a limit of unimodal distributions.

From another point of view, the result is an immediate consequence

of the integral formulation of the Krein-Milman theorem (Phelps 1966, p. 6).

The set of probabilities on [-W,-] whose distribution functions are convex

4
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on (-00,0) and concave on (0,00 ) is convex and weakly compact. Its

extreme points are easily seen to be the closed set consisting of the 	 -

uniform distributions with one endpoint at the origin together with

point masses at 0, +00, and -00, whence Khintchine's theorem follows

once more.

Return now to the more general exploration of a-unimodality. Taking

f to be the constant 1 1 you see that no Z is a-unimodal for a < 0.

And taking f to be the indicator of a neighborhood of 0, you see that.

Z is 0-unimodal iff Z = 0 with probability 1. From now on, let

a > 0 be understood unless exception is explicitly made for a = 0. An

example of a random variable that is not a-unimodal for any a and cannot

be translated so as to be is one whose distribution is concentrated at

exactly two points.

Lemma 1. The set (a: Z is a-unimodal) is either vacuous or of the

form (p, 00) for some P > 0. All these cases are possible.

Proof. Obviously for a > a' > 0, a'-unimodality implies a-unimodality.

The converse is false, and there are random variables for every P > 0,

as is shown by the following class of examples suggested by Khintchine's

theorem. For 0 > 0 let Z = U ) X,, where U is unifc;rmly distributed

on (0,11 and x is a nonzero constant vector. In t.is case,

0(t; a, f , Z ) = taE(f(tTi /0x))

(1 
= to J f(tul/ox)du = to-^

J	
f(v1/Px)dv

0	 0
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This is nondecreasing in t for all nonnegative f iff a > A, as

consideration of f with bounded carrier shows.

The topological closure of (a: Z is a-unimodal) is evident from

the definition of S. 	 G

For fixed 0 1 --the example ranges with x over the extreme points

of the set of 0-unimodal distributions, as later paragraphs will make

clear.

By replacing to in Definition l by a more general nondecreasing

function 0(t) and defining t-unimodalitr'in the obvious way, can the

notion of a-unimodality be generalized? Not really. For X is

0-unimodal iff pX is 0-unimodal for every real p. Assume E (f(tpX))

can be differentiated with respect to t under the integral sign; then

set p = 1/t. This shows that when 0 is differentiable, 0-unimodality

amounts to a-unimodality, where

(2.1)	 a = inf	
1	 dO t

t tO t	 d`.

When 0 is not differentiable, slightly more delicate reasoning shows

that (2.1) still holds, with O(t) replaced by 0(t+0), and dO(t)/dt

by the lower right Dini derivate of 0 at t.

The following lemma, whose proof is an almost immediate consequence

of Definition 1, will be important in one characterization of

a-unimodality.

Lemma 2. If Z is 1-dimensional, and Fr (Z > 0) = 1, then Z

is a-unimodal for positive a iff Za is 1-unimodal, that is, unimodal

about 0.

if

10
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This lemma can be given a more pat 	 expression thus.	 For all

nonzero	 a,	 Z 
a	

to unimodal iff (sigmm a)S(t; a,f,,Z)	 is nondecreas ing

in	 t.	 For negati-re	 a.,	 this fact suggests a definition of a-unimodality

at	 w.,	which will not be further pursued here.

Incidentally ) according to the lemma together with Khintchine's

theorem, the density of a one-dimensional a-unimodal random variable for

a < 1 is unbounded near	 G.

C,
3.	 Characterizations of a-unimodality.

Definition 2.	 If	 Z — Ul	 Xp	 where	 U	 and	 X are independent,,

U	 is uniform on	 [0,1],	 and	 X	 has its values in	 V,	 then	 Z	 is

an a-star variable on	 V	 and +'he distribution of	 X	 is a point Lis-

fortribution	 it.

As motivation for this terminology ., consider an	 X	 concentrated

at a finite number of points . .	 The a-star variables will ultimately be

identified as the a-unimodal distributions. 	 Each a-star distribution,

as such, has but one point distribution, as will also be shown. 	 But

each a-star	 is also	 alldistribution	 a , -star for	 a'	 in	 (0,M)	 for

some	 P < CX; for each such	 a ,	there is (unless	 0) a different

point distribution.

If	 Z	 is an a-star distribution with point distribution that of

X, then



(3.1)	 s 	 a,f,z) = tc^,(f(tu'jaX))

= r1 E(f(t u)31aX)tCdu

a

s 
rt ^(f(v /ax))dv

0

= 
aJO 

t w lE(f(aX))dw

which is indeed nondecreasing in t for t > -0. The proof of the next

result is now obvious.

Lemma 3. If Z is ci-star it is also a-unimodal, and S is not

only nondecreasing in -t (t > 0) but also absolutely continuous; and

(3.2)	 d S(t) a,f.Z) = ata-lE(f(tX)}

almost everywhere on (0,}. Further, if f is coLcinuous, (3.2)

holds for all positive t.

Definition 3. If tre real function f on V has a continuous
a

gradient and is constant off some compact set, then f is said to be

smooth, or f e ,g .

According to an easy application of dominated convergence,

d E (f (tz)) E( Lf(tz))

for every f in ,L and every random variable Z on V. (What is used

here is only continuity of df(tw)/dt in t and its boundedness in w

for each t.)

S



Definition 4. The not necessarily nonnegative rorrl measure 0

on V is an a-partner of the random variable Z on V iff

(3.3)	 f f(.c) dm(x) = a l 'a S(t; a,f'Z)
I t=1

^.' for every	 f	 in

Theorem 1.	 Each	 Z has at most one ac-partner. 	 If	 Z	 is a-unimodal,

it does have an a-partner, and the a:-partner is a probabUity measure. 	 If

Z	 is a-star With point distribution	 0,	 then	 0	 is also the	 a-partner

of	 Z.-

Proof.	 According to an easy approximation based on the left hand

side of (3.3), any two a-partners of a random -.-ariable	 Z	 must assign

the same measure to parallelepipeds, and hence they waist be equal.

Now an a-unimodal Z will be shown to have an a-partner that Ls a

probability.	 To begin v1thf the right hand side of (3;3) defines a

linear functional 	 L	 on the vector space	 According to the defini-

tion of a-unimodality, 	 L	 is nonnagative, that is, 	 fe ,,j and	 f > 0

together imply 	 L(f) > 0.	 Moreover,	 L(1) = 1. According to Krein's

extension theorem (Hewitt and Strom	 2-22erg . 1965, pp.	 19	 0),	 L	 admits

extension to a nonnegative linear functional on the space of continuous

functions on the one point compactification of	 V.	 Hence the Riesz

representation theorem insures the existence of an a-partner that is a

probability

Lemma 3 delivers the reg7-iired conclusion 9'--xt a-star variables.	 <^

In applying Theorem 1 it will be helpful to notice another version

of (3.3), namely.

f

^
f
1
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(3.4)	 J f( tx)d@(x) = a 1t1^ d S(t; a,f,Z)

for all smooth f and positive t.-

Theorem 2. If Z is a-unimodal, it is also a-star with its d-	 o

partner 0 as its point distribution.

Proof. Let X be distributed according to 0. -Let Z* = T - _x

where U is inderendent of X and uniform on [0,1], and compere

S(t; a,f,Z) frith S (t; a,f,Z*) for smooth _ f. According to (3.2) and

(3.4)

t3.5 j	
t 

S(t; a,f,Z*) = a&1S(f(tX))

a-1 -1 1-a dat a t dt S(t; a, f, Z)

d 8(t, a, f,Z)	 -=
dt.

Therefore, for smooth f,

E(f(Z*)) = S(1; a,f,Z*) = S(l; a, f, Z) = E(f(Z)) -

,And so Z Z*	 0

Corollary 1^. If Z is a-unimodal for some a, then E(f(tZ))

is absolutely continuous in t for every bounded, real, Borel measur-

able f. if f is also continuous, then E(f(tZ)) is continuously

differentiable for t > 0. If f is nonnegitive, then



(3.6)	 cs(f(tz)) + t d R(f(tz)) > 0

whenever the derivative exists. And (3.6) for nonnegative, smooth f

characterizes a-unimWality.

Proof. Immediate from Theorem 2, Loma 3, and Definition 1. 	 O

Constant Z shows how important unimodality is for the 3ifferea-

tinbility conclusion.

in Shintchine's original Work, something close to Corollary 1 Was

the basic tool in proving his special case of Theorem 2. See (Gnedenko

and Kolmogoro` 1954, Section 32 as corrected by K. L.Chung LA Appendix

III

	

	
1

An a-star vector Z = U' `JCIX is also O-star if 13 > a. As such,

-the point distribution 4
13 

is now easily seen to be characterized by

the following calculation, applicable to smooth f.

f f(x)d4,3(x) _ 0 l t t'E(f(tZ))+
II t=l

t
dtO^	 a lE(f (wX) )dw

It=1© 

E(f(X)) + (l - 2)E(p(Z)) .

So 00 is the weighted mixture of the distributions of X and Z

with weights a/13 and l- (a/ j3) .._ When is 013 = 0? Exactly when X

aril dl/aX have the same distribution. But, as is rather easily seen

that occurs iff X = 0 with probability 1.

11

r.-



The next corollary, however obvious, is historically important.

It extends the most popular version of Shintchine ' s theorem (see Gnedenko

and Kolmogorov 1954, p. 160 and Feller 1966, P. 501, which requires an

obvious correction),.

Corollary 2. The characteristic function qp is that of an

a-unimodal random vector iff it is of the form.

1

qQ) _	 * (u11aS)du

j1p^ a -1 *(v8)dv

where	 is also a characteristic function.

The behavior of S for Vs that decrease along rays leads to a

characterization of a- unimodal ity that geneiaiizes the usual definition

of unimodality in one dimension. The basic example of such an f is

the indicator of a "star shaped" set.

Definition 5. A real-valued function f on V is star down iff,

for each x in V, f(tx) is nonincreasing in t in [0, -), and

f is bounded and nonegative.

For an a-unimodal Z and a star down f, consider Q(t) = B(f(tZ))

for t > 0. Evident	
a

ly Q is nonincreasing. But t Q = S is nondecreasing:

Therefore, except for the trivial possibility that Q a 0 for t > 00

C < Q(t)/Q(t£) < 1

for all t in [0,-) and all a in [0,1]. Or, for 0 < S < t ,

12



0 < Q(t-s) -Q(t)

= Qtt) { [e(tt8)t) /a(t) } -1}

= Q(t) ° + Q(t)o((h

In particular, the above s^gument shows without recourse to Theorem 2

that Q and S are -absolutely.continuous.

Since ,Q(te) - Q(t) = E(f(teZ) - f(tZ)), to{Q(te)- Q(t)} is non-

decreasing in t for fixed E in [0,1). Let K(s) = Q(s 
1/a

), so

that Q(t) = K(t-a K is continuous -- in fact absolutely continuous --

and

(3.7)	
K(bs) - K(s)

s

is nonincreasing in s for fixed b in [1,-). It will be argued now,

in more than one ..way, that K is concave.

Since- K is absolutely continuous, it is concave if its derivative

K' is nonincreasing where defined. But this it is according to the

monotony of (3.7), or the preeoncavity of K, as we shall momentarily

call it. For if K is differentiable at s, then

K(bs) - K(s) 
= (b-1)K'(s) + o(b-l) .

s

Concavity quite easily implies preconcavity, and it would be some-

what interesting to know to what extent the converse is true. Certainly,

absolute continuity is an unnecessarily strong supplementary condition.

13



Perhaps none at all is needed, and measurability seems very likely to be

adequate. We have not resolved these conjectures but can point out that

preconcavity, even much weakened, implies concavity if K is - continuous.

To see this, specialize preconcavity to conclude that, for b > 1,

K(bs) - K(s) > b (K(b`s) - K(bs)) .

Therefore,

K(bs) > K(b
2s) + bK(s )

l+b

}	 That is, there is a point on each chord of K, in fact that geometric

mean of the endpcints of its base, where the chord does not exceed the

function. bor a continuous function, this is known to imply concavity

(Hardy, Littlewood, and Folya 1934, P. 73)• As David Freedman remarked

-to us, a preconvex K that is monotone -- as is the K in our particu-

lar application -- is automatically continuous.

Several proofs hove now been given fcr the next theorem.

Theorem 3.- If f is star down and Z is a-unimodal, then

E(f(s-^aZ)) is concave ins.

As was mentioned in Section 1, Theorem 3 is related to an inequality

of Anderson (1955, p. 172). He defines Z in n dimensions to be uni-

modal iff Z has a density h twat is nonincreasing along rays from

the origin and has convex contours. So .- a- is easily verified, his uni-

modality implies n-unimodality but not conversely. Now let h (u) = h(-u)

for all u, and let N be a convex neighborhood of tae origin for which

u c N iff -u a N. Anderson proves tY_it as N slides out a ray from

14



the origin, t;.e probability of N decreases. This conclusion is in

general feise for n-unimodality, yet his and our conclusions are similar.

Both refer to diminution of probability as certain sets are removed from

the origin, in his case as sp.ieres are translated and in ours as shells

are dilated.

in view of Lemma 2, the condition of Theorem 3 characterizes a-

unimodality in case V is l-dimensional, and in the particular case

a = 1 it is comforting to realize the equivalence of Khintchine's defi-

nition and ours. This characterization extends to arbitrary V. In

preparation for proving that, we present an argument, which incidentally

leads to a new proof of Theorem 2,due to David Freedman.

We assume for clarity that Pr(Z = 0) = 09 the details thus omitted

would be routine to supply. Introduce an arbitrary Euclidean norm

on V and represent Z as DL, where D = Zvi ((ZII is the "direction" of

Z and L = IIZII is its length.

Theorem 4. Z is a-unimodal iff L given D is effectively 1-

dimensional a-unimodal with probability 1, that is, for s < t and

nonnegative g, defined on LrC, -),

(3.8)	 saE(g(sL)iD) < taE(g(tL)IDj

with probability to And it is enough that (3.8) hold for all smooth g.

Proof. The "if'` implication. For a smooth f, use a regular

conditional probability given D to compute thus.

15
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E(taf(tZ) - s f(sZ))

= E(E(zaf(DtL) - saf(DsL)ID)) > 0 .

The "only if" implication. Suppose (3.8) fails on a set of positive

- measure with indicator h(D)- Let f(Z) = h(D)g(L).

E(taf(tZ) - saf(sZ))

= E( h(D)E( tag( tL) - sag(SL)[D))

<0.	 O

By means of.Theorem 4, the assertion in Theorem 2 that an a-unimodal

.Z is necessarily a-star can be reduced to -Xhintchine's theorem about 1-

unimodality on the line, of which it is of course a-generalization. In the

fir9t place, calculating with a regular conditional probability given D,

(3.8) implies that, for almost all D, eE(g(tL)jD) is nondecreasing for

all smooth g. That implies that L is 1-unimodal for almost -all D. So

according to Khintchine's theorem, L given D is almost surely distributed

like UR where U and R are independent and the distribution of R is

a - function of D. A distribution for X is well defined by the conditions

that X/jDCjj - D and JJXJJ given D is distributed like R given D.

This variable does what is required.

Now the converse of Theorem 3 will be established, leaving to the

reader the slight additional complication that arises if Pr(Z = 0) is not

assumed to be 0.

16



or

Theorem 5. If E(f(t-'/aZ)) is concave for each star-down f,
then Z is a-unimodal.

:'roof. Let gx be the indicator of [O,x] and h any function

of D. Thin f, where f(Z) = h(D)gX(L), is star down. The con-

cavity of E(f(t '/aZ)) = E(h(D) Pr(t -l/aL < x1D)) shows, for the regu-

lar version, that the distribution function of La ie concave, that is

unimodal at 0, for almost all D. According to Lemma 2, these con-

ditional distributions are therefore a-unimodal. Theorem 4 now applies

to show that_ Z is a-unimodal.	 O

Densities.

In 1 dimension, an a-unimodal variable has a density except possibly

at 0, as previous discussion has made clear. But in higher dimensions,

the existence of a density is atypical in that marry point distributions --

including all finite ones -- result in singular a-unimodal distributions.

Suppose, though, that Z is a-unimodal and does have-a density p,

*hat can be said about p ?

Theorem 5. A probability density p on V is that of an a-unimodal
Z iff for all s, t with 0 < s < t

(4.1}
	

sn-a p(sz) > to-a o(tz)

for almost all T with respect to a Lebesgue measure.

Proof. The "if" part. Evident, because

(4.2)	 taE(f(tZ)) = to f f(tz) p(z)dz

= to-n ff(w) p(w/t)dw .

17



The "only if" part. Let f be the indicator of the set in V

where (4.1) fails and show by applying (4.2) to f that Z is not

a-unimodal.	 p

For any p there is a smoothed version p* such that, for any

s and t for which (4.1) hclds almost everywhere for p It holds

everywhere for p* 	 Indeed consider,

(4.3)	 P*(w) = lim sup f l- L S 111p (w z )dz

k	 f llkz < llldz

According to a known fact (Saks 1964, p. 118), the lim sup in

(4.3) is almost everywhere actually a limit and equal to p(w). Thus

p* is a version of p. If p satisfies (4.1) almost everywhere,

then clearly p* satisfies it everywhere. Also p*, being a lim sup

of continuous functions, is Borel-measurable. Finally, if wherever •. , p*

is infinite, except at z = 0, it is changed to 0 all of the properties

mentioned will persist.

Corollary 3. The random vector Z is a a-unimodal with an absolutely

continuous distribution iff there is a Borel measurable version p* of

its density for which sn p*(sz) is nonincreasing in s for each

fixed z e V. z 4 0.

If a is a probability density oil V, the corresponding a-unimodal

distribution with a as the density of its point distribution has density

p, where

P(z) = t 1 u 
n/a a(u-l/az)du = af^ vn-a-1 a(vz)dv .

0	 1

18



In particular,

P(tz) = o f vn-a-1a ( tvz)dv
1

-n ^00 n--1at a ^ w c. Q(wz)dw .
t

So, a+ least if v is continuous,

(4.4)	
dt t

o-a
P(tz) = -atn,a-la(tz)

except possibly at z = 0. In 1 dimension, if a is continuous then p

is continuously differentiable, except possibly at 0. In 2 or more

dimensions, even if a is continuous, p might have directional deri-

vatives only along the ray determined by z. Of course, under sufficient

regularity, (4.4) becomes

-aa(z) = (n a)P( z ) + z - VP(z)

a 1-dimensional special caste of which has already been mentioned.

5. Sums.

The convolution of symmetric 1-dimensional, 1-unimodal distributions

is also 1 -unimodal (Wintner 1938, p. 30). The conclusion is not true in

general if the assrmption of symmetry is dropped; see Chung ' s Appendix II

of (Gnedenko and Kolmogorov, 1954), also (Feller 1966) p. 1(4) and

(Ibragimov 1956, p • 255 ) • Two facts bear on possible extensions of the

first result. First, since Anderson's conclusion fails for n-dimensional,

absolutely continuous, symmetric, n-unimodal variables, Wintner's result

does not extend to n-dimensional, n-unimodal variables. Second, the uniform

distribution on the unit square in 2 dimensions can be viewed as the
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convolution of a pair of symmetric, 2-dimensional, 1-u nimodal distribu-

tions, but this distribution is, as Corollary 3 shows, only 2-unimodal

and cannot be translated so as to be a-unimodal for any a < 2. The

next, and final, theorem offers some solace for the disappointment of

Chung's discovery.

Theorem 7. If Z and Z'' are independent and are a and a'

unimodal in V and V', then (Z,Z') is a + a' unimodal in V X V'.

If further V = 9', then Z + Z' is (a + a')-unimodal. No lower index

of unimodality can be asserted, even for a new origin.

Proof. Regard Z and Z' without loss as star variables and

compute thus.

E(f (tZ, tZ') ) = V J 1 E(f (tul/aXV tv Val X2 ) )dudv
0

t-(a+at }f
o
fof

o
 
ta, R(f(ul/a, 

y / (`^X2 ))dudv .

The assertion about the sum follows frou, specializing f to a function

of Z + V. Unimprovability in 2 and therefore higher dimensions has been

discussed; the result in 1 dimension is easily seen by varying the two

point support of the point distribution of Chung's example. 	 O

It is well known that in 1 dimension the sum of two independent,

1-unimodal, random numbers, one of which has a symmetric distribution,

can fail to be 1-unimodal for any origin. Perhaps, however, in this

context the index of Theorem 7 can be improved. We have not explored

that question.
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