Slowly Varying Discrete System $X_{i+1}=A_{i} X_{i}$
C. A. Desoer

Department of Electrical Engineering and Computer Sciences
 Electronics Research Laboratory
 University of California, Berkeley, California 94720

Abstract. If all eigenvalues of all matrices $A_{i}(i=0,1,2, \ldots)$ lie in a disk of radius <1 and if the matrices A_{i} vary sufficiently slowly, then the system $x_{i+1}=A_{i} x_{i}$ is exponentially stable. An explicit upper bound on the variation rate is given.

The purpose of this note is to prove for the discrete case a result that has been established for the continous case by Rosenbrock ${ }^{1}$ and recently sharpened by Desoer ${ }^{2}$.

Consider the system

$$
\begin{equation*}
x_{i+1}=A_{i} x_{i} \quad i=0,1,2, \ldots \tag{1}
\end{equation*}
$$

where $x_{i} \in R^{n}$ and $A_{i} \in R^{n \times n}$ for all i. $\left(R^{n \times n}\right.$ denotes the class of all n $\times \mathrm{n}$ matrices with real elements). We assume that the sequence of matrices $\left\{A_{i}\right\}_{0}^{\infty}$ is bounded, i.e. there is some finite a_{M} such that

$$
\begin{equation*}
\sup _{i}\left\|A_{i}\right\|=a_{M}<\infty, \tag{2}
\end{equation*}
$$

and that for some $\varepsilon>0$,

$$
\begin{equation*}
\max _{j}\left|\lambda_{j}\left(A_{i}\right)\right| \leq 1-2 \varepsilon<1 \quad i=0,1,2, \ldots \tag{3}
\end{equation*}
$$

i.e. all eigenvalues of all the matrices A_{i} are in the disk of radius 1-2 $\varepsilon<1$. Under these conditions, provided the sequence of matrices \{ A_{i} \} varies sufficiently slowly, i.e.

Besearch sponsored by the National Aeronautics and Space Administration, Grant NGL-05-003-016 (Sup 8) .
$\ldots \sup _{i}\left\|A_{i+1}-A_{i}\right\|$ is sufficiently small,
the system (1) is exponentially stable.
It is well known that without the restriction on the rate of variation, the system may have exponentially increasing solutions.

As a first step in the proof, let us bound A_{i}^{N} where N is a positive integer. Calculate A^{N} by Dunford's integral ${ }^{3}$ using the circle of radius $\rho=1-\varepsilon$ as contour,

$$
\begin{equation*}
A_{i}^{N}=\frac{1}{2 n j} \oint_{c} s^{N}\left(s I-A_{i}\right)^{-1} d s \tag{4}
\end{equation*}
$$

Now Kato ${ }^{4}$ has shown that if one uses the euclidian norms in R^{n} and the induced norm for matrices, then $\left\|M^{-1}\right\| \leq \| M^{n-1} / \mid$ det $M \mid$. So

$$
\begin{aligned}
\left\|A_{i}^{N}\right\| & \leq \frac{2 \pi(1-\varepsilon)}{2 \pi} \quad(i-\varepsilon)^{N} \quad \max _{|s|=1-\varepsilon}\left[\frac{\left\|s I-A_{i}\right\|^{n-1}}{\left|\operatorname{det}\left(s I-A_{i}\right)\right|}\right] \\
& \leq(1-\varepsilon)^{N+1} \frac{(i-\varepsilon)+\left(a_{M}\right)^{n-1}}{\varepsilon^{n}}
\end{aligned}
$$

where we used (2) in the last step. Thus we obtain the bound

$$
\begin{equation*}
\left\|A_{i}^{N}\right\| \leq m \rho^{N} \quad \forall i, \forall N \tag{5}
\end{equation*}
$$

where $\rho=1-\varepsilon$ and m depends on ε, n and a_{M}, but is independent of i.
Now, for the $i^{\text {th }}$ sampling instant pick the Liapunov function

$$
\begin{equation*}
V_{i}(x)=x^{T} P_{i} x \tag{6}
\end{equation*}
$$

Hence, by (1),

$$
\begin{equation*}
v_{i+1}\left(x_{i+1}\right)-V_{i}\left(x_{i}\right)=x_{i}^{T}\left[A_{i}^{T} P_{i+1} A_{i}-P_{i}\right] x_{i} \tag{7}
\end{equation*}
$$

Pick P_{i+1} such that

$$
\begin{equation*}
A_{i}^{T} P_{i+1} A_{i}-P_{i+1}=-I \tag{8}
\end{equation*}
$$

By direct substitution, the solution is the symmetric positive definite matrix

$$
\begin{gather*}
P_{i+1}=I+\sum_{k=1}^{\infty}\left(A_{i}^{T}\right)^{k}\left(A_{i}\right)^{k} \tag{9}\\
-2-
\end{gather*}
$$

Note that the series (9) is absolutely convergent in view of (5), and

$$
1 \leq\left\|P_{i+1}\right\| \leq \frac{m^{2}}{1-\rho^{2}} \quad \forall_{i}
$$

where we observed that the induced enclidian norm of A^{T} was equal to that of A. Note that the upper bound does not depend on i; therefore

$$
\begin{equation*}
\|x\|^{2} \leq v_{i}(x) \leq \frac{m^{2}}{1-\rho^{2}}\left\|_{x}\right\|^{2} \quad \forall_{i} \tag{10}
\end{equation*}
$$

We are going to show that if $\sup _{i}\left\|A_{i}-A_{i-1}\right\|$ is sufficiently small, then there is an $\eta>0$ such that

$$
\begin{equation*}
\left\|P_{i+1}-P_{i}\right\| \leq 1-\eta<1 \quad \forall i \tag{11}
\end{equation*}
$$

so that

$$
\begin{equation*}
v_{i}\left(x_{i}\right)-v_{i+1}\left(x_{i+1}\right) \leq-\eta\left\|_{x_{i}}\right\|^{2} \quad \forall i . \tag{12}
\end{equation*}
$$

If (12) holds, then, together with (10), they imply that (1) is exponentially stable.

By subtracting two consecutive instances of (8), we obtain
$A_{i}^{T}\left(P_{i+1}-P_{i}\right) A_{i}-\left(P_{i+1}-P_{i}\right)=-\left[\left(A_{i}^{T}-A_{i-1}^{T}\right) P_{i} A_{i}+A_{i-1}^{T} P_{i}\left(A_{i}-A_{i-1}\right)\right]$

Call the right hand side $-M_{i}$ and note that by (2) and (5)

$$
\left\|M_{i}\right\| \leq 2\left\|A_{i}-A_{i-1}\right\| \frac{m^{2}}{1-\rho^{2}} a_{M}
$$

Solving (13),

$$
P_{i+1}-P_{i}=M_{i}+\sum_{k=1}^{\infty}\left(A_{i}^{T}\right)^{k} M_{i}\left(A_{i}\right)^{k}
$$

so

$$
\begin{equation*}
\left\|P_{i+1}-P_{i}\right\| \leq\left\|A_{i}-A_{i-1}\right\| \frac{2 m^{2} a_{M}}{1-\rho^{2}} \frac{m^{2}}{1-\rho^{2}} . \tag{14}
\end{equation*}
$$

Inequality (14) shows that if

$$
\sup _{i}\left\|A_{i}-A_{i-1}\right\| \leq \frac{\left(1-p^{2}\right)^{2}}{2 m^{4} a_{M}}(1-\eta)
$$

then (11) follows. This concludes the proof.

References

[1.] Rosenbrock, H. H., "The Stability of Linear Time-dependent Control Systems," Jour. E1. and Control, 15, 1, p. 73-80, July 1963.
[2] Desoer, C. A., "Slowly Varying System $\dot{x}=A(t) x, "$ Trans. IEEE CT-14, 6, p. 780-781, December 1969.
[3] Dunford, N. and J. T. Schwartz, Linear Operators, vol. I. Interscience, New York, 1958. (see p. 568).

Zadeh, L. A. and C. A. Desoer, Linear System Theory. McGraw-Hi11, New York, 1963. (siee p. 606).
[4] Kato, T, "Estimation of Iterated Matrices, with Application to the Von Neumann Condition," Numer. Mathem., 2, p. 22-29, 1960.

