

PHASE CHANGE SOLIDIFICATION PHENOIENA
 FOR THERIIAL CONTROL

by
A. O. Ukanwa
F. J. Stermole
J. O. Golden

Annual Summary Report iNo. 1
21 November 1968 - 31 December 1969

Contract NAS 8-30511

for

National Aeronautics and Space Administration
George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812

PREFACE

This report was prepared by Colorado School of Mines, Golden, Colorado, under Contract NAS 8-3051l, "Research in Phase Change Thermal Control Technology" and under Colorado School of Mines Foundation Contracts F-6911 and F6915. The work was administered under the direction of the Space Sciences Laboratory, George C. Marshall Space Flight Center, with Mr. T. C. Bannister acting as the contracting officers' technical representative.

This report covers work from 21 llovember 1968 to 31 December 1969.

The work at Colorado School of Mines was carried out by Mr. A. O. Ukanwa under the direction of Dr. F. J. Stermole and Dr. J. O. Golden, Principal Investigatcrs:

ABSTRACT

The goal of this investigation was to contribute to tine understanding of solidification as it affects the performance and the suitability of pinase-change materials in thermal control devices. A unidimensional mathematical model was established for the solidification of a liquid paraffin of finite geometry, The method was based on the numerical solution by computer of the two-phase heat-conduction equations with moving interiace and variable boundary conditions. Constant properties were assumed for each phase although the properties varied from one phase to the other. The model assumed that internal convective effects could be neglected. Super-cooling and nucleation were also assumed to be insignificant.

An experimental system was set up to verify the theoretical analysis and results. The system consisted of a rectangular cell which was filled with a paraffin, n-hexadecane $\left(n-C_{16}{ }^{\mathrm{H}} 34\right)$. The cell itself was cooled from below by a coolant which was circulated by a refrigerator. The solidification process was studied by reading temperatures at different points in the cell by means of copper-constantan thermocouples.

A comparis on has been made between results obtained from theoretical-analysis computer solutions and those obtained experimentally. Good agreement was obtained between the
experimental results and those from theory, although the numerical results of the mathematical model indicate a faster rate of solidification than that observed experimentally. Data for comparison between experimental and theoretical results are presented under each experimental run in the form of tables and graphs.

CONTENTS

Page
LIST OF TABLES vi
LIST OF FIGURES vii
INTRODUCTION 1
LITERATURE SURVEY. 4
THEORETICAL ANALYSIS 13
Formulation of the Problem. 13
Finite Difference Formulation of Governing Equations 29
Stability Criteria for Governing Finite Difference Equations 66
EXPERIIEINTAL EQUIPMEIST AND PROCEDURE 70
Equipment 70
Experimental Procedure 89
COMPARISOIV OF EXPERIMENTAL AND THEORETICAL RESULT'S 95
CONCLUSIONS. 145
NOIEENCLATURE 149
LITERATURE CITED 154
APPENDICES
FORTRAN IV Computer Program for obtaining ?xponential fits to experimentally-measured temperatures of the bottom and the top plates 158
FORTRAN IV Computer Program for solving the pre-solidification problem. 162
FORTRAN IV Computer Program for solving the solidification problem. 165

LIS' OF TABLES

Table Page

1. Temperature profiles obtained using l-sec and 2-sec time steps. 102Polynomial fits to bottom and top-platetemperatures:
2. Run 2 103
3. Run 2 110
4. Run 3 117
5. Run 4 124
6. Run 5 131
7. Run 6 138

LIST OF FIGURES

Figure Page

1. Axial section of test cell 14
2. Moving interface from tim 22
3. Axial section of test cell showing space grids and nodes 27
4. Two-dimensional innite elements in time and space coordinates 31
5. Case A: Interface does not cross a space grid line 40
6. Case $B:$ Interface crosses one space grid line 40
7. Case C: Interface crosses two space grid lines 44
8. Case $D:$ Interface crosses three or more space grid lines 44
9. Test cell. 71
10. Exploded view of test cell 73
11. Cooling chamber 75
12. Plexi-glass chamber for test material 78
13. Diagram of top copper plate 81
14. Thermocouple arrangement 84
15. Block diagram of assembly of main experimental equipment 87
16. Temperature profiles for the pre- solidification problem: Run 1 104
17. Temperature profiles for an entire run: Run 1. 106
18. Height of solid n-hexadecane as a function of time: Run 1 108
Figure Page
19. Temperature profiles for the pre- solidification problem: Run 2 111
20. Temperature profiles for an entire
run: Run 2. 113
21. rieight of solid n-hexadecane as a function of time: Run 2 115
22. Temperature profiles for the pre- solidification problem: Run 3 117
23. Temperature profiles for an entire run: Run 3. 120
24. Heigint of solid n-hexadecane as a function of time: Run 3 122
25. Temperature profiles for the pre- solidification problem: Run 4 125
26. Temperature profiles for an entire run: Run 4. 127
27. Height of solid n-hexadecane as a
function of time: Run 4 129
28. Temperature profiles for the pre- solidification problem: Run 5 132
29. Temperature profiles for an entire
run: Run 5 134
30. Height of solid n-nexadecane as a function of time: Run 5 136
31. Temperature profiles for the pre-
solidification problem: Run 6 139
32. Temperature profiles for an
entire run: Run 6 141
33. Height of solid n-hexadecane as a function of time: Run 6 143

IHTRODUCTIOIS

Phase-change pienomena have received wide scientific attention for some time and are of significant importance in many :echnical problems such as solidification of a billet, formation of snow, solidification of an asphalt layer, formation of smog, melting of metals and alloys, and growth of crystals. However, it has been only in very recent years that phase-change materials have been seriously considered for spacecraft thermal control. In concept, such materials would be used in passive systems that employ the process of melting or solidification to remove or add thermal energy from or to a system. With the advent of spacecraft applications and space travel, the technology of phase-change phenomena is getting renewed scientific attention.

Presently, space vehicles lose heat to the environmental vacuum of space mainly by radiation. This may be an inefficient method of thermal control during high-energy dissipation periods, even if "heat-pipes" or other improved heat transfer systems are employed. Similarly, temperaturecontrol systems based on liquid-vapor phase change may be inefficient, besides involving sophisticated irreversible fluid loop circuits. Systems based on solid-liquid phase change have many advantages which make them very useful for certain applications. They are light, easy to handle, and
easily used as wall-lining elements around electronic equipment. Moreover, they are essentially passive. One disadvantage that solid-liquid phase change materials have when compared to the liquid-vapor phase change materials is that the former heve lower heat-elinination capacities. Fusible materials can be used to store the energy evolved during high-density dissipation periods. The stored energy can then be released continuously into space or to the system during low-temperature conditions. This cycle is pertinent in the case of space vehicles moving in extremes of temperature from the earth into space and from space to earth during rementry.

The present solidification research program was mainly devoted to study of one-dimensional systems with timedependent boundary conditions. It must be emphasized that the principal goal was not the study of the performance of fusible materials as actual phase-change temperature controllers, but the development of a reasonably accurate, simplified model for the solidification of a fusible material of finite rectangular dimensions under variable boundary conditions as would be the likely situation in an actual thermal controller.

Although from the theoretical standpoint almost any material would perform equally satisfactorily, it was preferred to selest the fusivle material from those generally accepted in current theimal-control research. Normal paraffins with even numbers of carbon atoms are those
materials most widely used because they satisfy most of the requirements of acceptable phase-change materials. They have meiting or solidification points close to the acceptable range for the design media of electronic equipment, $40^{\circ} \mathrm{F}$ to $150^{\circ} \mathrm{F}$, with phase-transition enthalpy changes higher than or, at least, equal to 100 Btu per pound. They are also noncorrosive, non-toxic, chemically inert and stable, as well as having low vapor pressures, small volume changes, ard negligible sub-cooling. In the present research proigram, n-hexadecane ($n-C_{10}-\mathrm{H}_{34}$) was the material studied.

LITERATURE SURVEY

Much theoretical rork has been done in the literature on problems which are direcily or indirectly related to physical change of state. The basic feature of such problems of change of state is the existence of a moving boundary or surface between phases. Therefore, the problem that is most often considered is how to determine the way in which this surface or boundary moves. Heat may be liberated or absorbed on the surface; there may be volume change accompanving the change of state, and the thermal properties of the phases on either side of the interface may be different for the phases and nay vary as the change of state proceeds. Therefore, the problem is essentially non-linear in nature and general analytical solutions for it may be wanting. Some exact solutions for models that mathematically approximate the real problems have been obtained, mostly for infinite or semi-infinite geometry.

Carslaw and Jaeger ${ }^{(1)}$, who were among the first to give in-depth treatment of melting and solidification problems, comment on the need for numerical methods for solving these problems waicia are often rendered more complex by cylindrical, spherical, and other finite geometric configurations. Carslaw and Jaeger maxe no attempt to give any exact solutions for the phase change problem when finite geometries are involved. However, they do give a series solution for the
ordinary transient heat-transfer problem with no phase change. This is particularly useful in determining the temperature profile of a substance, which is subjected to heat change, for the interval beginning uith the initiation of the heat change and ending with the initiation of chanse of state. Another good quality of the series solution that they give is that it takes into account time-dependent initial and boundary conditions.

Many of the solutions presented in the literature concerning phase change problems are valid only if the material under study is initially at its equilibrium temperature for change of state. These solutions ignore the more-frequentlyencountered case in which the material under study may be initially at a temperature, ay room temperature, that is quite different from its equilibrium phase-change temperature and may have to de brought to this equilibrium temperature from its initial temperature by some heat input, withdrawal, or generation.

Stefan ${ }^{(2)}$ was the first to give a published discussion of a one-dimensional transient conduction problem with phase change, for a single component or eutectic composition with constant properties. Thus, the term "Stefan's Problem" came to be used to describe a one-dimensional conduction problem in which a semi-infinite slab initially at a constant temperature, T_{0}, has one face maintained at zero temperature for time greater than zero. For the solution to the problem
to satisfy the conditions for all times, the interface position as a function of time has to be proportional to the square root of the product of time and the thermal diffusiv1ty of the material of tiac slab.

Si:to ${ }^{(3)}$ considered the problem of a semi-infinite solid in contact with a semi-infinite ilquid. The resultant solidified liquid was regarded as having different properties from the initial solid. Saito tried to incorporate the latent heat as superheat. His results disagreed with later works. Pekeris and Slichter ${ }^{(4)}$ obtained a series solution for the solidification of ice on an infinitely long cylinder.

Danckwerts ${ }^{(5)}$ presented a system of equations in terms of arbitrary initial and bcundary conditions for the temperature distribution in a semi-infinite solid. The equations were solved by trial and error. Booth ${ }^{(6)}$, like Danckwerts, was more concerned with mass transfer problems, and the tarnishing reaction in particular. He approximated the position of the moving boundary by an infinite power series.

Kreith and Romie ${ }^{(7)}$ presented solutions which applied to either solidification or melting and which gave the position of the phase front and the temperature profile for a sphere, cylinder or semi-infinite solid initially at the fusion temperature. They assumed constant temperature gradient and velocity at the interface. The temperature was determined In a dimensionless series form by a method of iterative approximations. The assumption of constait velocity was
valid only at the early stages of solidification.
Chambre (8) gave a complete solution for a Prandtl number equal to one for the growth of a solid starting from negligible initial dimensions with a plane, cylindrical or spherical boundary. Convection in the fluid was attributed to the unequal but assumed constant densities in the two phases and was studied with the incompressible Navier-Stokes equation. An ordinary differential equation which is a function of the quadrature of time was obtained for the solidification velocity and it was only partially solved. Chao and Weiner ${ }^{(9)}$ investigated the temperature in a solid and liquid while the liquid was being poured. The latent heat was treated as a "pseudo" specific heat and the solution, obtained by a Laplace transform technique was an integral that was solved numerically.

Many authors have applied the variational technique to heat conduction. The Onsager theorem (10), which was a reciprocity law of coupled phenomena, permitted certain irreversible processes to be expressed in terms of a variational principle. Chambers ${ }^{(11)}$ was the first to show the applicability of the variational technique to heat conduction. Biot and Daughaday (12) used the variational technique to study heat conduction in a melting semi-infinite solid with constant properties. The heat input was assumed to be constant and the problem treated was an ablation problem in which the melt was removed as it was formed. It is characteristic of "reaentry" problems caused by aerodynamic heating
in hypersonic missile flight such as occurs during the reentry of a space vehicle into the earth's :tmosphere.

The heat-balance integral technique, an analyifcal method that gives approximate solutions to a wide variety of heat transfer problems, is used in many papers in the ilterature. It is mostly used for non-linear problems that must be solved either numerically or approximately. Its big advantage is that it changes the energy equation from a partial differential equation to an ordinary differential equation. This method as formulated by Goodman ${ }^{(13)}$ is dependent upon the definition of a thermal layer, which is analogous to the hydrodynamic boundary layer in fluid flow. It assumes that, beyond the thermal layer, there is temperature equilibrium and no heat transfer. One disadvantage of this method is that the heat conduction equation is satisfied only on the average and this average equation is analogous to the von Karman and Pohlhausen ${ }^{(14)}$ momentum integral equations for boundary-layer theory. Usually, a general polynomial form of the temperature profile is assumed and substituted into the governing equation of the heat transfer problem, which is integrated over the thermal layer. The result is a heat-balance integral. Goodman and Shea ${ }^{(15)}$ used this technique in examining the melting of a finite slab initially below the melting temperature, one face of which is subjected to a constant heat input while the other face 1s insulated or at a constant temperature.

Poots ${ }^{(16)}$ used the integral method to study a movingboundary, two-dimerisional problem in which he treated the inward solidification of a uniform prism, which had a square cross-section and was filled with a liquid initially at the fusion temperature. The integrals were solved by numerical methods.

In the literature, there are many other analytical approaches and techniques, many of which apply to special phase-change problems such as the study of phase change in alloys. In alloys, the complexity of finding the temperature distribution and the phase front velocity is increased by the fact that the latent heat effect no longer occurs at a single temperature, but over a range of temperatures.

Weiner ${ }^{(27)}$, Rubinshtein ${ }^{(18)}$, and Adams ${ }^{(19)}$ are some of the men who have studied phase changes in alloys. For an alloy, the latent heat of fusion was mostly treated as an increase in the apparent specific heat of the metal between the liquidus and solidus temperatures. The curve of apparent specific heat versus temperature was approximated by two intersecting straight lines. The temperature corresponding to the point of intersection was used to divide the phase change region into two zones for analysis.

In order to obtain solutions for more general cases for phase change problems, numerical analysis may be the only reasible technique available. Dusinberre ${ }^{(20)}$ has outlined an iteration method which involves laying out the region of
conduction in a grid system and considering the center of each grid element as a node point. By making the grid element small, only the temperatures of points adjacent to a node point and the temperature of the mode point itself need to be considered in calculating the change in temperature of the node point during a small time interval. Miller ${ }^{(21)}$ used the "surplus temperature" technique in an attempt to improve the predictions of the phase front. To account for the heat absorbed at the phase front using this method, the calculated temperature was permitted to exceed the actual melting temperature until an arbitrarily selected maximum value above the melting temperature was reached. When this maximum value was reached, the grid element containing this particular node point was considered to have melted, and the phase front was shifted to the next node. Ehrlich ${ }^{(22)}$ gave tire implicit finite difference equations for the one-dimensional melting problem with a variable heat flux or heat input specified as a function of time. The implicit equations were then put into tridiagonal matrix forms for solution by Gauss elimination and by back substitution. Special modified equations were given for nodes near the freezing front. In the present study, the method used by Enrlich to formulate finite difference equations to be solved implicitly was used to find the governing finite difference equations for the solidification of n-hexadecane.

Pujado ${ }^{(23)}$ did theorecical and experimental studies on the melting of n-octadecane under adiabatic conditions. For the theoretical model, he used a unidimensional model and f.gnored convective effects in the liquid phase. He developed finite difference equations which were then solved by iterative methods.

The Northrop Corporation reports $(24,25)$ presented a survey of the phase change problems invoiving selection of the proper compounds, evaluation of properties, experimental study of different test cells, and theoretical study by means of a hybrid system composed of a finite-difference electric analog and a digital computer. The study was concerned principally with thermal control in spacecraft by means of the phase change of fusible materials. Some of the physical property data given in the Nortirop reports was used in the present study.

Considerations concerning the melting-solidification problem were summarized by Bannister ${ }^{(26)}$ in a NASA Technical Memorandum. This memorandun gives emphasis on the study of nucleation theory as a basis for the study of sub-cooling phenomena in solidification problems. Bannister and Bentilla ${ }^{(27)}$ presented an introductory paper which combined the basic results found in tine Northrop reports and the NASA technical memorandum.

Sharma, Rotenberg, and Penner ${ }^{(28)}$ also have studied analytically phase-change problems with variable surface
temperatures. They assumed different temperature profiles and assumed that physical properties were constant.

One of the most recent publications on phase-change phenomera is the interim report on space thermal control study which was presented by Grodzka ${ }^{(29)}$ of Lockheed Missiles and Space Company and carried out under NASA sponsorship in a program directed by T. C. Bannister. It includes effects of gravity, magnetic and electric fields, and convective currents on solid-liquid phase change. The study points out that the pure conduction problem with phase change is valid as long as the liquid phase remains stable and that natural convection has to be considered after the Rayleigh number reaches a critical value of about 1720 for a layer of fluid either heated from below or cooled from above.

Many other papers besides those already mentioned are available on the subject of phase change. Some of them are of epecial analytical interest for they attempt to solve some specially defined problems of phase change. A full review of these papers can be found in many places in the literature and especially in a ilterature sarvey presented by Muehlbauer and Sunderland ${ }^{(30)}$ on "Heat Conduction with Freezing or Melting."

THEORETICAL ANALYSIS

Formulation of the Problem

The problem to be studied is the solidification of n hexadecane in a cell of height h and constant cross-sectional area in the plane perpendicular to the axis y of the cell (Fig. 1). The temperature profile and the rate of solidification of hexadecane are to be determined using a onedimensional model along the y axis. iNon-steady-state conm ditions with respect to time are assumed. Note that, for a one-dimensional model along the y axis, the shape of the crossosectional area perpendicular to the y axis of the test cell is immaterial, provided this cross-sectional area remains constant throughout the height h of the cell. However, if the cross-sectional area varies with y, the shape of local cross-sections must be included in the theoretical analysis of the problem and two or three-dimensional models would be much better in such cases. Even in a problem such as thi: one that is being considered here, in which the crosssectional area of the cell remains constant for all h, a solution based on a one-dimensional model does not approximate the true solution as closely as a solution based on two- or three-dimensional model definitely would. However, the difficulty of solving this problem has dictated that the first attempts at solving it be made using the simpler

Figure 1. Axial section of test cell.

DIAGRAM OF AXIAL SECTION OF
TEST CEIL SHOWING ITS CONTENTS
Ai $t>t^{*}$ or $\tau_{0}>\tau_{0}^{*}$ or $\tau=\tau_{0}-\tau_{0}^{*}>0$
one-dimensional model. Later studies may then be made using the more accurate two- or three-dimensional model and starting off from the valuable information which this onedimensional study will furnish.

The cell which is completely filled with liquid nhexadecane, is sealed at both ends by copper plates and has its bottom plate cooied by a coolant circulated by a refrigerator. A detailed description of the setup is given under "Experimental Equiprent and Procedure." The eifects of convection are assumed to be negligible. This is a reasonable assumption, since convective mixing tiat occurs when solidification is taking place is minimized by having the cell cooled from the bottom so that the solid formed at the bottom of the ceil remains at the botton. Another source of convection in the cell is the movenert of the interface between the solic and liquid phases. When this interface advances a distance $d Y$ in the y direction, the mass of solid formed per unjt cross-sectional area of cell, $\rho_{s} d Y$, is derived from an equal mass of liquid which has disappeared. This corresponds to a thickness $\left(\rho_{s} / \rho_{L}\right) d Y$ of liquid which has disappeared. Thus the liquid moves with a net velocity $u_{y}=\left(1-\rho_{\varepsilon} / \rho_{L}\right) \frac{d Y}{d t}$ alon $\bar{\delta}$ the y axis. If there is no change in volume during solidification, $u_{y}=0$, and convective effects may be neglected. Also, if the density ρ_{s} of solid is close to the density ρ_{L} of liquid, then u_{y} is approximately
equal to zero and convective effects may be neglected. This later case holds for n-hexadecane, and neglecting convective effects for this one-dimencional model should not introduce high errors into tize solution.

It is further assumed that the cell and its contents are initially at ambient temperature and that as time increases, the temperatures of the inside faces of the bottom and top plates of the cell are functions, $f_{1}(t)$ and $f_{2}(t)$, of time respectively. The height h of the cell is defined as the distance alons the y axis from the inside face of the bottom plate to the inside face of the top plate. The origin of the y axis is $y=0$ at the inside face of the botton plate and the positive y direction is towards the top plate. Note that, by these definitions, knowledge of the temperature profiles of the inside faces of the bottom and top plates of the cell, say by polynomial fits of experimentally-determined temperatures of these faces, makes f t unnecessary to write energy balances on the copper plates themselves in order to solve the problem for n-hexadecane. The top plate is exposed to room temperature at all times.

The heat transfer problens for n-hexadecane are divided into two parts, arbitrarily, as follows:

1) "Pre-solidification" problem; it considers heat transfer in liquid n-hexadecane 1 rom the time $(t=0)$ when cooling of the bottci: plate is initiated to the time ($t=t^{*}$) when the equilibrium temperature of solidification of n-hexadecane is reached at the bottom plate.
2) "Post-solidification" problem; it considers heat transier in solid and ifquid n-hexadecane and the rate of formation of solid n-hexadecane from the time ($t=t^{*}$) when the equilibrium temperature of solidification of $n-$ hexadecane is reached at the bottom plate to a later lime when the entire content of the cell is frozen.

Pre-solidification problem

Since convective effects are neglected and a onedimensional model is considered, the governing equation, initial and boundary conditions are for $0 \leq t \leq t^{*}$,

$$
\begin{equation*}
\alpha_{L} \frac{\partial^{2} T_{L O}(y, t)}{\partial y^{2}}=\frac{\partial T_{L O}(y, t)}{\partial t},(0<y<h) \tag{1}
\end{equation*}
$$

(1) $T_{L O}(0, t)=f_{1}(t)$ when $y=0$
(11) $T_{L O}(h, t)=f_{2}(t)$ when $y=h$
(1i1) $T_{L_{0}}(y, 0)=T_{a} \quad$ at $\quad t=0$, for $0 \leq y \leq h$.
T_{a} is ambient or room temperature which is assumed to be constant. α_{L} is thermal diffusivity of liquid n-hexadecane and is given by $\alpha_{L}=K_{L} / \rho_{L} c_{p L}$. Sutscript L refers to ilquid n-hexadecane, and subscript o refers to the pre-solidification problem. Thus $T_{\text {Lo }}$ is the temperature of liquid n-hexadecane for the pre-solidification problem. K_{L}, ρ_{L}, and $c_{p L}$ are the thermal conductivity, density, and specific heat, respectively, of liquid n-hexadecane.

Conditions (1) and (11) state that the temperatures of the bottom and top plates are some functions of tine. The initial condition (iii) states that, at the time that cooling of the bottom plate is just about to be initiated, i.e. at $t=0$, the temperature of the ilquid hexadecane in the cell is the same as the ambient (room) temperature for the entire height of the cell. Thus, the temperature profile T To (y, t) may be obtained for $0 \leq t \leq t^{*}$ and $0 \leq y \leq h$ by analytical or nunerical integration, once $T_{a s} f_{1}(t)$ and $f_{2}(t)$ are known. Note that, at $t=0, f_{1}(t)=f_{2}(t)=T_{a}$; at $t=t * f_{1}(t)=T_{e}$, where T_{e} is the equilibriun temperature of solidification of n-hexadecane. $f_{1}(t)$ and $f_{2}(t)$ may be obtained by doing least-squares-polynomial fits of temperatures of the inside faces of the bottom and top plates as measured with respect to time by copper-constantan thermocouples, with time set equal to zero at the start of cooling of the bottom plate. As will be shown when the results of the present study are discussed, $f_{1}(t)$ and $f_{2}(t)$ turn out, for this particular study, to be exponential functions of the type $A+B e^{-(c(t) t)}$, where A and B are constants tiat add up to the ambient temperature; A equals the steady state temperature of the coolant which is circulated by a refrigerator to cool the bottom plate. The function $c(t)$ is a polynomial of degree less than or equal to 5 which is determined by the fitting computer program.

Post-solidification problem

At time $t=t *$, the temperature of the bottom plate is
equal to the equilibrium temperature of solidification of n-hexadecane, i.e., $f_{1}\left(t^{*}\right)=T_{e}$ and the n-hexadecane is still all liquid. Its temperature profile at this particular instant is $T_{L O}\left(y, t^{*}\right)$. For $t>t^{*}$, the heat transfer problem becomes

$$
\begin{align*}
& \alpha_{s} \frac{\partial^{2} T_{S}(y, t)}{\partial y^{2}}=\frac{\partial T_{S}(y, t)}{\partial t} \text { for } 0 \leq y \leq Y(t) \tag{2a}\\
& \alpha_{L} \frac{\partial^{2} T_{L}(y, t)}{\partial y^{2}}=\frac{\partial T_{L}(y, t)}{\partial t} \text { for } Y(t) \leq y \leq h \tag{2b}
\end{align*}
$$

subisct to the following conditions:
(1) $T_{s}(Y, t)=T_{L}(Y, t)=T_{e}$ when $y=Y(t)$
(ii) $K_{s} \frac{\partial T_{S}}{\partial y}-K_{L} \frac{\partial T_{L}}{\partial y}=H_{f} \rho_{s} \frac{d Y}{d t}$ when $y=Y(t)$
(iii) $T_{L}\left(y, t^{*}\right)=T_{L o}\left(y, t^{*}\right)$ at $t=t^{*}$
(iv) $Y(t *)=0$ at $t=t *$
(v) $T_{s}\left(0, t^{*}\right)=f_{1}\left(t^{*}\right)=T_{L O}\left(0, t^{*}\right)=T_{e}$ at $t=t^{*}$, $y=0$
(vi) $T_{L}\left(h, t^{*}\right)=T_{L O}\left(h, t^{*}\right)=f_{2}\left(t^{*}\right)$ at $t=t^{*}, y=h$
(vil) $T_{s}(0, t)=f_{1}(t)$ at $y=0$ for $t \geq t^{*}$
(vili) $T_{L}(h, t)=f_{2}(t)$ at $y=h$ for $t \geq t^{*}$
$Y(t)$ is the height of solid which has been formed from time $t=t *$ to time $t=t$ and is measured from the inside face of the bottom plate up along the y axis to the interface separating liquid and solid hexadecane. Conditions (i), (ii) and (iv) describe the interface. Condition (i) says that, at
the interface, the temperature of the solid phase equals the temperature of tine liquid phase for all t. Condition (11) states that the rate of heat liberation at tae interface by freezing must equal the net rate at which heat is conductied away into solid and liquid piases. H_{f} is the heat of fusion of solid nexadecane per unit mass. Subscripts s and L refer to the proverties of solid and ifquid phases respectively. Condition (iv) states that at time $t=t *$ when tine temperature of the cooled bottom plate first reaches the equilibrium freezing temperature of n-hexadecane, the amount of solid present is zero, i.e., tise liquid hexadecane is still all liquid. Conditions (iii) to (vi) mean that the temperature profile in the liquid hexadecane during the pre-solidification problen still exists at time $t=t *$. Conditions (vii) and (viii) state that the temperatures of the bottom and the top plates are functions of time which are also continuous with the temperature profiles that are obtained at these boundaries for the pre-solidification problem; in other words, the process of solidification does not introduce any discontinuity between tine temperatures that are obtained for these boundaries for the pre-solidification problem and for the postsolidification proilem.

Condition (1i) may be derived as follows. In a time dt let dL be tijckness of liquid that has solidified to produce a solid of thickness dY. Let H_{3} and H_{L} be the enthalpies per unit mass of the solid and liquid phases respectively. Therefore $H_{f}=H_{L}-H_{s}$. A mass balance at the interface, (Fig. 2), gives $\rho_{S} d Y=\rho_{L} d L$. Energy balance gives

Figure 2. Moving interface from time to time $t+d t$.

$\rho_{s} H_{s} d Y-\rho_{L} \dot{H}_{L} d L=q_{s} d t-q_{L} d t$, where q_{s} and q_{L} are heat fluxes per unit time per unit cross sectional area of soild and liquid phases respectively. All these equations have been written independent of the cross-sectional area because the cross sectional area of the cell is constant and is the sane for both the solid and liquid phases. When the definition of H_{f}, and the mass-balance equation re introduced into the energy-balance equation, the following equation is obtained:

$$
\begin{equation*}
-\rho_{s} H_{f} \frac{d Y}{d t}=q_{s}-q_{L} \tag{3}
\end{equation*}
$$

By Founier's law of conduction, $q_{s}=-K_{s} \frac{\partial T_{s}}{\partial y}$ and $q_{L}=-K_{L} \frac{\partial T_{L}}{\partial y}$. Putting these defiritions for q_{s} and q_{L} into equation (3) and rearranging it, we get $K_{s} \frac{\partial T_{S}}{\partial y}-K_{L} \frac{\partial T_{L}}{\partial y}=H_{f} \rho_{s} \frac{d Y}{d t}$, which is condition (11).

The following dimensionless variables are defined.

$$
\begin{aligned}
& \theta=T(y, t) / T_{e} \\
& z=y / h \\
& S=Y / h \\
& \tau_{0}=\left(\alpha_{L} / h^{2}\right) t \\
& \tau=\left(\alpha_{L} / h^{2}\right)\left(t-t^{*}\right)=\tau_{0}-\tau_{0}^{*} \\
& \tau_{0}^{*}=\left(\alpha_{L} / h^{2}\right) t^{*}
\end{aligned}
$$

The subscripts 0 , L, and s still apply as previously defined. In dimensionless form, the governing equations of the presolidification problem become, for $0 \leq \tau_{0} \leq \tau_{0}^{*}$

$$
\begin{equation*}
\frac{\partial^{2} \theta_{L_{0}}\left(z, \tau_{0}\right)}{\partial z^{2}}=\frac{\partial \theta_{L_{0}}\left(z, \tau_{0}\right)}{\partial \tau_{0}} \text { for } 0 \leq z \leq 1.0 \tag{4}
\end{equation*}
$$

(1) ${ }^{\theta} L_{0}\left(0, \tau_{0}\right)=f_{1}\left(\tau_{0}\right) / T_{e}$ when $z=0$
(11) ${ }^{\theta} L_{0}\left(1, \tau_{0}\right)=f_{2}\left(\tau_{0}\right) / T_{e}$ when $z=1.0$
(1i1) $\theta_{L_{0}}(z, 0)=T_{a} / T e^{\text {at }} \tau_{0}=0$, for $0 \leq z \leq 1.0$
Also the governing equations for the post-solidification problem become, for $\tau>0$ (or equivalentily, for $\tau_{0}>\tau_{0}^{*}$),

$$
\begin{align*}
& \lambda \frac{\partial^{2} \theta_{S}(z, \tau)}{\partial z^{2}}=\frac{\partial \theta_{S}(z, \tau)}{\partial \tau} \text { for } 0<z<S \tag{5a}\\
& \frac{\partial^{2} \theta_{L}(z, \tau)}{\partial z^{2}}=\frac{\partial \theta_{L}(z, \tau)}{\partial \tau} \text { for } S<z<1.0 \tag{5b}
\end{align*}
$$

sutject to the following conditions:
(1) $\theta_{\mathrm{g}}(\mathrm{S}, \tau)=\theta_{L}(S, \tau)=2.0$ at $z=S$ for $\tau \geq 0$
(11) $M \frac{\partial \theta_{s}}{\partial z}-J \frac{\partial \theta_{L}}{\partial z}=\frac{d S}{d \tau}$ at $z=S$ for $\tau \geq 0$
(iii) $\theta_{L}(z, 0)=\theta_{L O}\left(z, \tau_{0}^{*}\right)$ at $\tau=0\left(\right.$ at $\left.\tau_{0}=\tau_{0}^{*}\right)$
(iv) $S(0)=0 \quad$ at $\tau=0$
(v) $\theta_{s}(0,0)=f_{1}(\tau=0) / T_{e}=1.0$ when $\tau=0$, at $z=0$
(v1) ${ }_{\theta_{L}}(1,0)=f_{2}(\tau=0) / T_{e}=\theta_{L_{0}}(1.0,0)$ when $\tau=0$
where $\lambda=\alpha_{B} / \alpha_{L}$
$n=\left(\frac{{ }^{c} p_{s}{ }^{T} e}{H_{f}}\right)\left(\frac{\alpha_{s}}{\alpha_{L}}\right)$

$$
J=\left(\frac{c_{p_{L}}{ }^{T} e^{\prime}}{H_{I}}\right)\left(\frac{\rho_{L}}{\rho_{s}}\right)
$$

The dimensionless equations are now to be put into fiaite difference forms. The method of L. W. Ehrlich ${ }^{(22)}$ is used to do this.

Figure 3. Axial section of test cell showing space grids and nodes.

DIAGRAM OF AXIALSECTION.OF TEST CEILSHONING SPACE GRIDS ANO NODES

Finite Difference Formulation of Governing Equations

The Taylor series expansion of a function $f(x+a, y+b)$
about a point (x, y) is

$$
\begin{align*}
& f(x+a, y+b)=f(x, y)+\left(a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}\right) f(x, y)+\frac{1}{2!}\left(a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}\right)^{2} f(x, y) \\
& \quad+\frac{1}{3!}\left(a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}\right)^{3} f(x, y)+\ldots+\frac{1}{(n-1)!}\left(a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}\right)^{n-1} f(x, y) \\
& \quad+R_{n} \tag{6}
\end{align*}
$$

where $R_{n}=\frac{1}{n!}\left(a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}\right)^{n} f(x+\zeta a, y+\gamma b)$, with $0 \leq \zeta \leq 1$ and $0 \leq r \leq 1$, i.e. $R_{n}=0(a+b)^{n}$. The symbol $O()$ means "of the order of what is enclosed in the brackets." For this problem, we impose a mesh on the test cell; such that the space grid is vertical along the height of the cell and time grid is horizontal; that is, the time grid is perpendicular to the space grid. On the (z, τ_{0}) or the (z, τ) cooidinates, the following are defined (see Fig. 3 and Fig. 4):

$k_{a}=\Delta \tau_{j}=\Delta \tau=$ mesh size in the time coordinate
$p=k_{a} /\left(h_{a}{ }^{2}\right)$
$\left({ }_{L O}\right)_{1, j}=\theta_{L o} \cdot\left(1 h_{a}, j k_{a}\right)$
$\left(\theta_{s}\right)_{1, j}=\theta_{s}\left(i h_{a}, j k_{a}\right)$
$\left(\theta_{L}\right)_{i, j}=\theta_{L}\left(1 h_{a}, j k_{a}\right)$

Pre-solidification Prijlem

The following approximations will be used for the partial derivatives.

$$
\begin{align*}
& \left(\frac{\partial^{2} \theta_{L O}}{\partial z^{2}}\right)_{1, j+1} \simeq \frac{1}{h_{a}{ }^{2}}\left\{\left(\theta_{L o}\right)_{1-1, j+1}\right. \\
& \left.-2\left(\theta_{L O}\right)_{1, j+1}+\left(\theta_{L O}\right)_{i+1, j+1}\right\}+0\left(h_{a}^{2}\right) \tag{7}\\
& \left(\frac{\partial \theta_{L O}}{\partial \tau_{0}}\right)_{1, j} \simeq \frac{1}{k_{a}}\left\{\left(\theta_{L O}\right)_{1, j+1}-\left(\theta_{L O}\right)_{1, j}\right\} \\
& -\frac{k_{a}}{2}\left(\frac{\partial^{2} \theta_{L O}}{\partial \tau_{0}{ }^{2}}\right)_{1, j}+O\left(k_{a}{ }^{2}\right) \tag{8}\\
& \left(\frac{\partial^{2} \theta_{L O}}{\partial z^{2}}\right)_{1, j}=\frac{1}{h_{a}{ }^{2}}\left\{\left(\theta_{L O}\right)_{1-1, j}-2\left(\theta_{L O}\right)_{1, j}+\left(\theta_{L O}\right)_{1+1, i}\right\} \\
& +O\left(h_{a}{ }^{2}\right) \tag{9}\\
& \left(\frac{\partial \theta_{L O}}{\partial \tau_{0}}\right)_{1, j+1}=\frac{1}{k_{a}}\left\{\left(\theta_{L O}\right)_{1, j+1}-\left(\theta_{L O}\right)_{1, j}\right\} . \\
& +\frac{k_{a}}{2}\left(\frac{\partial^{2} \theta_{L O}}{\partial \tau_{0}{ }^{2}}\right)_{1, j+1}+0\left(k_{a}{ }^{2}\right) \tag{10}
\end{align*}
$$

The difference equations are to be derived in the implicit form so that they may be solved using tri-diagonal matrix, Gauss elimination and back-substitution. On substituting equations (7) and (10) into equation (4), we get

$$
\begin{align*}
& \frac{1}{k_{a}}\left\{\left(\theta_{L O}\right)_{i, j+1}-\left(\theta_{L O}\right)_{i, j}\right\} \\
& \quad=\frac{1}{h_{a}^{2}}\left\{\left(\theta_{L O}\right)_{1-1, j+1}-2\left(\theta_{L O}\right)_{1, j+1}+\left(\theta_{L O}\right)_{i+1, j+1}\right\} \\
& \quad+0\left(n_{a}^{2}\right)+0\left(k_{a}\right) \tag{11}
\end{align*}
$$

Figure 4. Two-dimensional finite elements in time and space coordinates.

On substituting equations (8) and (9) into equation (4), we get

$$
\begin{align*}
& \frac{1}{k_{a}}\left\{\left(\theta_{L O}\right)_{1, j+1}-\left(\theta_{L O}\right)_{1, j}\right\}=\frac{1}{h_{a}{ }^{2}}\left\{\left(\theta_{L O}\right)_{i-1, j}-2\left(\theta_{L O}\right)_{1, j}\right. \\
& \left.+\left(\theta_{L O}\right)_{1+1, j}\right\}+0\left(h_{a}^{2}\right)+0\left(k_{a}\right) \tag{12}
\end{align*}
$$

Addition of equations (11) and (12) yields

$$
\begin{align*}
& \frac{2}{k_{a}}\left\{\left(\theta_{L O}\right)_{1, j+1}-\left(\theta_{L O}\right)_{1_{1}}{ }^{\}}=\frac{1}{h_{a}^{2}}\left\{\left(\theta_{L O}\right)_{1-1, j+1}\right.\right. \\
& -2\left(\theta_{L O}\right)_{1, j+1}+\left(\theta_{L O}\right)_{1+1, j+1}+\left(\theta_{L O}\right)_{1-1, j} \\
& \left.-2\left(\theta_{L O}\right)_{1, j}+\left(\theta_{L O}\right)_{1+1, j}\right\}+0\left(k_{a}{ }^{2}\right)+0\left(h_{a}{ }^{2}\right) \tag{13}
\end{align*}
$$

Using the definition for p in equation (13), we get

$$
\begin{align*}
&-\frac{\mathrm{P}}{2}\left(\theta_{L O}\right)_{1-1, j+1}+(1+\mathrm{p})\left(\theta_{L O}\right)_{1, j+1}-\frac{\mathrm{Q}}{2}\left(\theta_{L O}\right)_{1+1, j+1} \\
&=\frac{\mathrm{P}}{2}\left(\theta_{L O}\right)_{1-1, j}+(1-p)\left(\theta_{L O}\right)_{1, j}+\left(\frac{\mathrm{p}}{2}\right)\left(\theta_{L O}\right)_{1+1, j} \\
&+0\left(k_{a}^{3}\right)+0\left(k_{a}{ }_{a}^{2}\right) \tag{14}
\end{align*}
$$

The local error term in equation (14) is $0\left(k_{a}{ }^{3}\right)+0\left(k_{a_{a}}{ }^{2}\right)$. Therefore the governing pre-solidification equations become, for $0 \leq \tau_{0} \leq \tau_{0}^{\prime}$,

$$
\begin{align*}
&-\frac{\dot{p}}{2}\left(\theta_{L O}\right)_{1-1, j+1}+(1+p)\left(\theta_{L O}\right)_{1, j+1}-\left(\frac{p}{2}\right)\left(\theta_{L O}\right)_{1+1, j+1} \\
&=\frac{p}{2}\left(\theta_{L O}\right)_{1-1, j}+(1-p)\left(\theta_{L O}\right)_{1, j}+\frac{p}{2}\left(\theta_{L O}\right)_{1+1, j}+0\left(k_{a}^{3}\right) \\
&+0\left(k_{a} h_{a}^{2}\right), \quad 1 \leq 1 \leq j-1 \tag{15}
\end{align*}
$$

subject to the following conditions:
(1) $\quad\left(\theta_{L O}\right)_{O, j}=\frac{\left(r_{1}\right)_{j}}{T_{e}} ;\left(\theta_{L O}\right)_{0, j+1}=\frac{\left(f_{1}\right)_{j+1}}{T_{e}}$, at $1=0$
(11) $\left(\sigma_{L O}\right)_{N, j}=\frac{\left(f_{2}\right)_{j}}{T_{e}} ;\left(\theta_{L O}\right)_{N, j+1}=\frac{\left(f_{2}\right)_{j+1}}{T_{e}}$, at $1=$ it
(1i1) ($\left.\theta_{L O}\right)_{i, 0}=T_{a} / T_{e}$ at $j=0$ for $0 \leq 1 \leq N$
where N is the total number of nodes in the space direction with the first node on the bottom plate and the in $\mathrm{i}^{\text {th }}$ node on the top plate.

Post-solidification Problem

$$
\begin{align*}
& \left(\frac{\partial^{2} \theta_{s}}{\partial z^{2}}\right)_{i, j+1}=\frac{1}{h_{a}{ }^{2}}\left\{\theta_{s_{i-1, j+1}}-2 \theta_{s_{i, j+1}}+\theta_{s_{i+1, j+1}}\right\} \\
& +O\left(h_{a}{ }^{2}\right) \tag{16}\\
& \left(\frac{\partial \theta_{s}}{\partial \tau}\right)_{1, j+1}=\frac{1}{k_{a}}\left\{\theta_{s_{1, j+1}}{ }^{-\theta_{s_{1, j}}}\right\}+\frac{k_{a}}{2}\left(\frac{\partial^{2} \theta_{s}}{\partial \tau^{2}}\right)_{1, j+1} \\
& +O\left(k_{a}^{2}\right) \tag{17}\\
& \left(\frac{\partial^{2} \theta_{s}}{\partial z^{2}}\right)_{1, j}=\frac{1}{h_{a}^{2}}\left\{\theta_{s_{i-1, j}}-2 \theta_{s_{i, j}}+\theta_{s_{1+1, j}}\right\}+0\left(h_{a}{ }^{2}\right) \tag{18}\\
& \left(\frac{\partial \theta_{s}}{\partial \tau}\right)_{1, j}=\frac{1}{k_{a}}\left\{\theta_{s_{1, j+1}}{ }^{-\theta_{s_{1, j}}}\right\}-\frac{k_{a}}{2}\left(\frac{\partial^{2} \theta_{s}}{\partial \tau^{2}}\right)_{1, j}+0\left(k_{a}{ }^{2}\right) \tag{19}\\
& \left(\frac{\partial^{2} \theta}{\partial z^{2}}\right)_{1, j+1} \approx \frac{1}{h_{a}^{2}}\left\{\theta_{L_{1-1, j+1}}{ }^{-2 \theta} L_{i, j+1}+\theta_{L_{1+1, j+1}}\right\} \\
& +O\left(h_{a}{ }^{2}\right) \tag{20}
\end{align*}
$$

$$
\begin{align*}
& \left(\frac{\partial \theta_{L}}{\partial \tau}\right)_{1, j}=\frac{1}{k_{a}}\left\{\theta_{L_{1, j+1}}^{-\theta_{L_{1, j}}}\right\}-\frac{k_{a}}{2}\left(\frac{\partial^{2} \theta_{L}}{\partial \tau^{2}}\right)_{1, j}+0\left(k_{a}^{2}\right) \tag{21}\\
& \left(\frac{\partial^{2} \theta_{L}}{\partial z^{2}}\right)_{1, j}=\frac{1}{n_{a}{ }^{2}}\left\{\theta_{L_{i-1, j}}{ }^{-2 \theta} L_{1, j}+{ }_{L_{i+1, j}}\right\}+0\left(n_{a}{ }^{2}\right) \tag{22}\\
& \left(\frac{\partial \theta_{L}}{\partial \tau}\right)_{1, j+1}=\frac{1}{k_{a}}\left\{\theta_{L_{i, j+1}}{ }^{-\theta_{L_{1, j}}}\right\}+\frac{k_{a}}{2}\left(\frac{\partial^{2} \theta_{L}}{\partial \tau^{2}}\right)_{1, j+1}+0\left(k_{a}^{2}\right) \tag{23}\\
& \left(\frac{\partial^{2} \theta_{s}}{\partial z^{2}}\right)_{R, j+1}=\left\{\frac{2}{h_{a}^{2}\left(1+x_{j+1}\right) x_{j+1}}\right\}\left\{1-\theta_{s R, j+1}+x_{j+1} s_{R-1, j+1}\right. \\
& \left.-x_{j+1}{ }^{\theta} s_{R, j+1}\right\}+O\left(h_{a}\right) \tag{24}\\
& \left(\frac{\partial \theta_{\mathbf{s}}}{\partial \tau}\right)_{R, j+1} \approx \frac{1}{k_{a}}\left\{\theta_{\mathbf{s}_{R, j+1}}{ }^{-\theta_{S_{R, j}}}\right\} \cdot n\left(k_{a}\right) \tag{25}\\
& \left(\frac{\partial^{2} \theta_{L}}{\partial z^{2}}\right)_{R+1, j+1} \approx \frac{2}{h_{a}^{2}\left(2 \cdots x_{j+1}\right)}\left\{\frac{1-\theta_{L_{R+1}, j+1}}{1-x_{j+1}}+\theta_{L_{R+2, j+1}}\right. \\
& \left.-{ }^{\theta} L_{R+1, j+1}\right\}+O\left(h_{a}\right) \tag{26}\\
& \left(\frac{\partial \theta_{L}}{\partial \tau}\right)_{K+1, j+1}=\frac{1}{k_{a}}\left\{\theta_{L_{R+1, j+1}}{ }^{-\theta} L_{R+1, j}\right\}+0\left(k_{a}\right) \tag{27}\\
& \left(\frac{\partial^{2} \theta_{s}}{\partial z^{2}}\right)_{R-1, j+1}=\frac{1}{h_{a}{ }^{2}}\left\{\theta_{s_{R-2, j+1}}{ }^{-2 \theta_{R-1, j+1}}+\theta_{R, j+1}\right\} \\
& +O\left(h_{a}{ }^{2}\right) \tag{28}
\end{align*}
$$

$$
\left(\frac{\partial \theta_{s}}{\partial z}\right)_{\text {interface }, j+1} \simeq \frac{1}{h_{2}}\left\{\frac{x_{j+1}}{1+x_{j+1}} \theta_{s_{R-1, j+1}}-\frac{1+x_{j+1}}{x_{j+1}} \theta_{s_{R, i+1}}\right.
$$

$$
\begin{equation*}
\left.+\frac{1+2 x_{j+1}}{x_{j+1}\left(1+x_{j+1}\right)}\right\}+0\left(h_{a}^{2}\right)=\sigma_{s} / h_{a}+o\left(h_{a}^{2}\right) \tag{33}
\end{equation*}
$$

$$
\begin{align*}
& \left(\frac{\partial \theta_{\mathrm{s}}}{\partial \tau}\right)_{R-1, j+1} \approx \frac{1}{k_{a}}\left\{\theta_{s_{R-1, j+1}}{ }^{-\theta_{s_{R-1, j}}}\right\}+\dot{j}\left(k_{a}\right) \tag{29}\\
& \left(\frac{\partial \theta_{s}}{\partial \tau}\right)_{R, j+1} \approx \frac{x_{j+1} \theta_{R, j+1}^{-1}}{a_{R}^{k_{a}}}+0\left(k_{a} j\right. \tag{30}
\end{align*}
$$

$$
\begin{align*}
& \left(\frac{\partial \theta_{L}}{\partial z}\right)_{\text {interface }, j+1}=\frac{1}{h_{a}}\left\{\frac{2-x_{j+1}}{1-x_{j+1}} \theta_{L_{R+1, j+1}}\right. \\
& \left.-\frac{1-x_{j+1}}{2-x_{j+1}} \theta_{L_{R+2, j+1}}-\frac{3-2 x_{j+1}}{\left(1-x_{j+1}\right)\left(2-x_{j+1}\right)}\right\} \\
& =\sigma_{L} / h_{a}+O\left(h_{a}{ }^{2}\right) \tag{32}
\end{align*}
$$

$$
\begin{align*}
& \left(\frac{\partial \theta_{g}}{\partial z}\right)_{1 \text { nterface }, j+1}=\frac{l-\theta_{s_{0, j+1}}}{h_{a}^{x_{j}}, 1}=\frac{l-\left(f_{2}\right)_{j+1} / T T_{e}}{h_{a} x_{j+1}}+0\left(h_{a}\right) \tag{36}\\
& \left(\frac{\partial \theta_{L}}{\partial z}\right)_{\text {interface, }} j+1=\frac{{ }^{\theta} L_{L_{N, j+1}}}{h_{a}\left(1-x_{j+1}\right)} \\
& +O\left(h_{a}\right)=\frac{\frac{1}{T_{e}}\left(f_{2}\right)_{j+1}^{-1}}{h_{a}\left(1-x_{j+1}\right)}+O\left(h_{a}\right) \tag{37}\\
& \left.\left(\frac{\partial \theta_{L}}{\partial z}\right)_{\text {interface, }} j+1 \times \frac{\theta_{L_{N, j+1}}}{n_{a}\left(2-x_{j+1}\right.}\right)+0\left(i_{a}\right) \\
& =\frac{\frac{1}{T_{e}}\left(f_{2}\right)_{j+1}^{-1}}{h_{a}\left(2-x_{j+1}\right)}+O\left(h_{a}\right) \tag{38}\\
& \left(\frac{d S}{d \tau}\right)_{j+1}=\frac{S_{j+1}-S}{k_{a}} \mathcal{L}=\frac{h_{a}}{k_{a}}\left\{\left(R_{j+1}+x_{j+1}\right)-\left(R_{j}+x_{j}\right)\right\}+O\left(k_{a}\right) \tag{39}
\end{align*}
$$

The governing equations for the post-solidification problem apply for $\tau_{0} \geq \tau_{0}^{*}$ or for $\tau \geq 0$. Equations (16) through (39) are obtained by Taylor series expansion around the points where the derivatives are to be found. Equations (16) through (23) apply to the solid and liquid phases for nodes not near the solid-liquid interface. For regions near and on the interface, these equations have to be modified. Equations (24) through (31) are such modified equations that apply near the interface. Equations (32) to (38) apply at the solid-liquid interface itself. Equation (39) describes the rate at which solid of dimensionless height S is formed. Equations (16) to (23) are obtained by exactly the same
operation that yiclded equations (7) to (10) and when they are substituted into equations (5a) and (5b) in the same way that equations (7) to (10) were substituted into equation (4) the following equations result:

$$
\begin{align*}
& -p / 2 \theta_{L_{i-1, j+1}}+(1+p) \theta_{L_{i, j+1}}-p / 2 \theta_{L_{i+i, j+1}} \\
& =p / 2 \theta_{L_{i-1, j}}+(1-p) \theta_{L_{1, j}}+p / 2 \theta_{L_{i+1, j}} \\
& \quad+0\left(k_{a}^{3}\right)+0\left(k_{a}^{h_{a}}{ }^{2}\right) \tag{40}\\
& -\lambda p / 2 \theta_{s_{i-1, j+1}}+(1+\lambda p) \theta_{L_{1, j+1}}-\lambda p / 2 \theta_{L_{i+1, j+1}} \\
& \quad=\lambda p / 2 \theta_{s_{1-1, j}}+(1-\lambda p) \theta_{s_{i, j}}+\lambda p / 2 \theta_{s_{i+1, j}} \\
& \quad+0\left(k_{a}^{3}\right)+0\left(k_{a}^{h 1}{ }^{2} \lambda\right) \tag{41}
\end{align*}
$$

It is to be emphasized again that these equations are good for nodes not near the interface.

For nodes near the solid-liquid interface, we proceed as follows. Suppose that the distribution of temperature and the position of the freezing front are known for the f th time step. Suppose also that the position of the freezing. front for the ($j+1)$ st time step has been estimated; the section under "Solutions of Governing Finite Difference Equations" will indicate how this estimation is done. Define R as that space node on the moving interface or just below it, for a given time step. R varies with time step. Thus R may be better labelled as R_{j} for the $j^{\text {th }}$ iime step or R_{j+1}

E- ae $(j+1) s t$ time iep. R curresponds to the numiver of Iull space nodes that have solidified for a given time step. The following cases, each of which is illustrated by figures (5) to (8), can occur.
A) The freezing front does not cross a space grid line, that is, the freezing front lies entirely between two space grid lines
B) The freezing front crosses one space grid line
C) The freezing front crosses two space grid lines
D) The freezing front crosses three or more space grid .ines.

Each case requires special equations for the points near the interface, that is, for the points marked with min in figures (5) to (8). Let x_{j} be the fractional part of the space mesh between the freezing front and the node $1=R$ during the $f^{\text {th }}$ time step. As was stated earlier, R may vary with the time step since it is always the noie at or nearest the freezing front in the solic phase during a given time step. Let $a_{R} b=$ the fractional part of time grid that lies between the point ($R, j+1$) and the intersection of the freezing front with the space grid line at $1=R$ during the ($j+1)$ st time step.

Case - : Pigure (5) illustrates this case. Equations (24) and (25) obtain at ($\Gamma, j+1$). On substituting equations (24) and (25) into equation (5a), we obtain

Figure 5. Case A: Interface does not cross a space grid line.

Figure 6. Case B: Interface crosses one space grid line.

$$
\begin{align*}
& -\frac{2 \lambda p x_{j+1}}{T+x_{j+1}} \theta_{s_{k-1, j+1}}+\left(2 \lambda p+x_{j+1}\right) \theta_{s_{R, j+1}}=x_{j+1} \theta_{s_{R, j}} \\
& \quad+\frac{2 \lambda I}{1+x_{j+1}} \tag{42}
\end{align*}
$$

$$
\text { Error } \approx 0\left(k_{a}^{2}\right)+0\left(\lambda k_{a}^{h_{a}}\right)
$$

which is the modified equation for the solid phase for nodes near the interface and it holds good for $R \geq 1$. On substituting equations (26) and (2?) into equation (5b), we obtain

$$
\begin{align*}
& \left(2-x_{j+1}\right)\left(1+2 p-x_{j+1}\right) \theta_{L_{R+1, j+1}}-2 p\left(1-x_{j+1}\right) \theta_{L_{R+2, j+1}} \\
& =\left(2-x_{j+1}\right)\left(1-x_{j+1}\right) \theta_{L_{R+1, j}}+2 p \tag{43}\\
& \text { Error } \simeq 0\left(k_{a}^{2}\right)+0\left(h_{a} k_{a}\right)
\end{align*}
$$

which is the modified equation for the liquid phase for nodes near the freezing front and it holds good for $0 \leq R \leq N-2$.

Case B: Figure (5) illustrates Case B. On substituting equations (28) and (29) into eq tion (5a), we get

$$
\begin{gather*}
-\lambda p \theta_{s_{R-2, j+1}}+(1+2 \lambda p) \theta_{S_{R-1, j+1}}{ }^{-\lambda p \theta_{S_{R, j+1}}=\theta_{S_{R-1, j}}} \tag{44}\\
\text { Error } \simeq 0\left(k_{a}^{2}\right)+0\left(\lambda k_{a}^{h}{ }_{a}^{2}\right)
\end{gather*}
$$

On substituting equations (24) and (30) into equation (5a), we get

$$
\begin{equation*}
-\frac{2 \lambda p x_{j+1}}{1+x_{j+1}} g_{s_{R-1, j+1}}+\left(2 \lambda p+\frac{x_{j+1}}{a_{R}}\right) \theta_{s_{R, j+1}}=\frac{x_{j+1}}{a_{R}}+\frac{2 \lambda p}{1+x_{j+1}} \tag{45}
\end{equation*}
$$

$$
\text { Error }=O\left(k_{a}^{2}\right)+O\left(\lambda k_{a} h_{a}\right)
$$

where a_{R} has the definition that has already been given and for this case it has a magnitude

$$
a_{R}=x_{j+1} /\left(1-x_{j}+x_{j+1}\right)
$$

obtained by the theorem of similar triangles and the geometry of figure (6). Equations (44) and (45) apply to the solid phase near the interface. Equation (43) still holds for the liquid phise in this case.

Case C: Figure (7) illustrates Case C. On substitut.. ing equations (28) and (31) into equation (5a), we get

$$
\begin{gather*}
-\lambda a_{R-1} 1^{p \theta_{s_{R-2, j+1}}}+{ }^{+\left(2 \lambda a_{R-1}\right.}{ }^{p+1) \theta_{S_{R-1, j+1}}}{ }^{-\lambda p a_{R-1}}{ }_{s_{R, j+1}}=1 \tag{46}\\
\text { Error } \simeq 0\left(k_{a}^{2}\right)+0\left(k_{a} h_{a}^{2} \lambda\right)
\end{gather*}
$$

On substituting $1=R-2$ into equation (16), we get an equation for $\left(\frac{\partial^{2} \theta_{s}}{\partial z^{2}}\right)_{R-2, j+1}$. Also on replacing R by $R-2$ in equation (25) we get an equation for $\left(\frac{\partial \theta_{s}}{\partial \tau}\right)_{R-2, j+1}$. When these two equations are substituted into equation (5a), we get

$$
\begin{gather*}
-\lambda p \theta_{s_{R-3, j+1}}+(1+2 \lambda p) \theta_{s_{R-2, j+1}}-\lambda p \theta_{s_{R-1, j+1}}=\theta_{s_{R-2, j}} \tag{47}\\
\text { Error }=0\left(k_{a}^{2}\right)+0\left(\lambda k_{a} h_{\varepsilon}^{2}\right)
\end{gather*}
$$

Equations (43) and (45) still apply to the liquid and solid phases, respective $1 y$. For Case $c, a_{R}=x_{j+1} /\left(2-x_{j}+x_{j+1}\right)$ and $a_{R-1}=\left(1+x_{j+1}\right) /\left(2-x_{j}+x_{j+1}\right)=$ fractional part of the

Figure 7. Case C: Interface crosses two snace grid lines.

Figure 8. Case D: Interface crosses three or more space grid lines.

tine grid between the point ($\mathrm{R}-1, \mathrm{~J}+1$) and the intersection of the freezing front with the space isrid line through R-l, during the $(j+1)$ st time 3 tep. R is an integer such that $0 \leq R \leq W$.

Case D: Figure (8) 1llustrates this case. When this occurs, the time step is first reduced to half its normal value and the estimated position of the freezir 6 front is now checked to see if any of cases A to C occurs, in which case the appropriate equations under cases A to C are used. If the interface still crosses three or more grid lines, the time step is still reduced further by a half. The new freezing front is checked against cases A to C. This process is repeated until one of cases A to C is obtained, after which the regular full time step is returned to again.

Special approximations must be used to obtain the derivatives to be used in the interface condition of equation (5) (il) which is satisfied at the interface. Equations (32) to (39) are these special approximations. They are obtained by appropriate combinations of Taylor series expansions of Semperatures at the interface for the ($j+1$)st time step. When they are applied to equation 5(ii), under conditions dictated by the vaiues of R and x_{j+1}, the height s_{j+1} of solid formed at any given ($j+1$)st time step may be obtained.

The foregoing finite difference equations which have been obtained for the post-sclidification problem will now
be arranged according to the groups in which they are used to obtain the post-solidification temperature profiles of solid and liquid n-hexadecane: For the solid phase the following grouping holds good:
(i) If $R(j+1)-R(j)=0$, (this corresponds to Case $A)$,
(a) if $R(j+1)=1$, the governing equation is
$-\frac{2 \lambda p x_{j+1}}{1+x_{j+1}} \theta_{s_{K-1, j+1}}+\left(2 \lambda p+x_{j+1}\right) \theta_{s_{R, j+1}}$.
$=x_{j+1} \theta_{c_{R, j}}+\frac{2 \lambda p}{1+x_{j+1}}$,
(b) if $R(j+1) \geq 2$, the governing equations are
$-\frac{\lambda p}{2} \theta_{s_{i-1, j+1}}+(1+\lambda p) \theta_{s_{i, j+1}}-(\lambda p / 2) \theta_{s_{i+1, j+1}}$
$=\operatorname{li}_{2} \lambda p \theta_{s_{i-1, j}}+(1-\lambda p) \theta_{s_{i, j}}+\frac{1}{2} h p \theta_{s_{i+1, j}}$ for $1 \leq 1 \leq R-1$
$-\frac{2 \lambda p x_{j+1}}{1+x_{j+1}} \theta_{\mathbf{s}_{R-1, j+1}}+\left(2 \lambda p+x_{j+1}\right) \theta_{s_{R, j+1}}$ $=x_{j+1} \theta_{s_{R, j}}+\frac{2 \lambda p}{1+x_{j+1}}$.
(i1) If $R(j+1)-R(j)=1$, (this corresponds to Case B), then
(a) if $R(j+1)=1$, the governing equation is

$$
\begin{align*}
& -\frac{2 \lambda p x_{j+1}}{1+x_{j+1}} \theta_{s_{R-1, j+1}}+\left(2 \lambda p+\frac{x_{j+1}}{F_{R}}\right) \theta_{s_{R, j+1}} \\
& \quad=\frac{x_{j+1}}{a_{R}}+\frac{2 \lambda p}{1+x_{j+1}} \tag{51}
\end{align*}
$$

where $a_{R}=x_{j+1} /\left(1-x_{j}+x_{j+1}\right)$,
(b) if $R(j+1)=2$, the governing equations are

$$
\begin{gather*}
-\lambda p \theta_{s_{R-2, j+1}}+(i+2 \lambda p) \theta_{\mathbf{s}_{R-1, j+1}}{ }^{-\lambda p \theta_{\mathbf{s}_{R, j+1}}=\theta_{\mathbf{s}_{R-1, j}}} \tag{52}\\
-\frac{2 \lambda p x_{j+1}}{i+x_{j+1}} \theta_{\mathbf{s}_{R-1, j+1}}+\left(2 \lambda p+{\left.\frac{x_{j}+1}{a_{R}}\right) \theta_{\mathbf{s}_{R, j+1}}}_{{ }^{a_{R}}+\frac{2 \lambda p}{1+x_{j+1}}}\right.
\end{gather*}
$$

where a_{R} still has the same value as in part (a) above.

$$
\text { (c) if } R(\{+1) \geq 3 \text {, the governing equations are }
$$

$$
-{ }^{\frac{m_{2}^{2}}{2} p \theta_{s_{1-1, j+1}}}{ }^{+(1+\lambda p) \theta_{s_{1, ~}}}{ }^{-\xi_{2} \lambda p \theta_{s}}{ }_{i+1, j+1}
$$

$$
={\frac{1}{2} 2 \lambda p \theta_{s_{i-1, j}}+(1-\lambda p) \theta_{s_{i, j}}+\frac{1}{2} \lambda p \theta_{s_{i+1, j}}}
$$

$$
\begin{equation*}
\text { for } 1 \leq 1 \leq R-2 \tag{54}
\end{equation*}
$$

$$
\begin{aligned}
& -\lambda p \theta_{s_{R-2, j+1}}+(1+2 \lambda p) \theta_{s_{R-1, j+1}}{ }^{-\lambda p \theta_{s_{R, j+1}}} \\
& \quad=\theta_{s_{R-1, j}}
\end{aligned}
$$

$$
-\frac{2 \lambda p x_{j+1}}{1+x_{j+1}} \theta_{s_{R-1, j+1}}+\left(2 \lambda p+\frac{x_{j+1}}{a_{R}}\right) \theta_{s_{R, j+1}}
$$

$$
\begin{equation*}
=\frac{x_{j+1}}{a_{R}}+\frac{2 \lambda p}{1+x_{j+1}} \tag{56}
\end{equation*}
$$

a_{R} still has the same value as in parts (a) and (b) above.
(iii) if $R(j+1)-R(j)=2$, (this corresponds to Case C), then $R(j+1) \geq 2$.
(a) If $R(j+1)=2$, then the governing equations are $-\lambda p a_{R-1}{ }^{\theta} s_{R-2, j+1}+\left(2 \lambda p a_{R-1}+1\right) \theta_{s_{R-1, j+1}}$

$$
\begin{equation*}
-\lambda p a_{R-1} \theta_{s_{R, j+1}}=1 \tag{57}
\end{equation*}
$$

$$
\begin{align*}
& -\frac{2 \lambda p x_{j+1}}{i+x_{j+1}} \theta_{s_{R-1, j+1}}+\left(2 \lambda p+\frac{x_{j+1}}{a_{R}}\right) \theta_{s_{R, j+1}} \\
& =\frac{x_{j+1}}{a_{R}}+\frac{2 \lambda p}{1+x_{j+1}} \tag{58}
\end{align*}
$$

where $a_{R-1}=\left(1+x_{j+1}\right) /\left(2-x_{j}+x_{j+1}\right)$ and

$$
a_{R}=x_{j+1} \prime\left(2-x_{j}+x_{j+1}\right)
$$

(b) if $R(j+1)=3$, the governing equations are

$$
\begin{align*}
& -\lambda p \theta_{\mathbf{g}_{R-3, j+1}}+(1+2 \lambda p) \theta_{\mathbf{s}_{R-2, j+1}}{ }^{-\lambda p \theta_{s_{R-1, j+1}}} \\
& \quad=\theta_{\mathbf{s}_{R-2, j}} \tag{59}
\end{align*}
$$

$$
-\lambda a_{R-1}{ }^{p} \theta_{s_{R-2,1+1}}+\left(2 \lambda p a_{R-1}+1\right) \theta_{s_{R-1, j+1}}
$$

$$
\begin{equation*}
-\lambda p{\underset{R}{R-1}}{ }^{s_{R, j+1}}=1 \tag{60}
\end{equation*}
$$

$\frac{-2 \lambda p x_{j}+1}{1+x_{j+1}} \theta_{s_{R-1, j+1}}+\left(2 \lambda p+\frac{x_{j+1}}{a_{R}}\right) \theta_{s_{R, j+1}}$
$\sim \frac{x_{j+1}}{a_{R}}+\frac{2 \lambda p}{1+x_{j+1}}$
where a_{R-1} and a_{R} have the same values as in art (a) above.
(c) if $R(y+1) \geq 4$, the governing equations are
$-k_{2} \lambda p \theta_{s_{1-1, j+1}}+(1+\lambda p) \theta_{s_{1, j+1}}{ }^{-k_{2} \lambda p \theta_{s_{1+1, j+1}}}$
$=\frac{1}{2} \lambda p \hat{\theta}_{S_{1-1, j}}+(1-\lambda p) \theta_{S_{1, j}}+\frac{1_{2} \lambda p \theta_{S_{1+1, j}} \text { for } 1 \leq 1 \leq R-3}{}$
${ }^{-\lambda p \theta_{s_{R-3, j+1}}}{ }^{+(1+2 \lambda p) \theta_{s_{R-2, j+1}}}{ }^{-\lambda p \theta_{s_{R-1, j+1}}}{ }^{-\theta_{S_{R-2, j}}}$

$-\lambda p a_{R-1}{ }^{\theta_{S_{R, j+1}}}{ }^{=1}$
 $=\frac{x_{j+1}}{a_{R}}+\frac{2 \lambda p}{1+x_{j+1}}$
where a_{R-1} and a_{R} still have tine same values as in parts (a) and (b) above.
(iv) If $R(j+1)-R(J) \geq 3$ (this corresponds to Case D). we halve the time step, make a new estimate of $R(j+1)$ and cherk if $R(j+I)$ - $R(j)$ has a value that will satisfy one of cases (A) to (C) which we have already treated. If one of these cases applies, we use the corresponding group of
equations for $1 t$. If none of the cases has occurred yet, we again halve the new time increment and continue doing this until one of cases A to C has occurred. After using the appropriate equations to calculate temperature profiles, we return to the regular time increment for the next tine step.

For each of the groups of equations above, the following boundary and initial conditions apply:

$$
\begin{align*}
& \theta_{s_{0, j+1}}=\left(f_{1}\right)_{j+1}^{/ I_{e}} \tag{66}\\
& \text { For } 1=0, \theta_{s_{0,0}}=\theta_{s}(0,0)=1 \text { when } \tau=0 \text { or } \tau_{0}=\tau_{0}^{* /} \tag{67}\\
& \text { For } 1>0, \theta_{s}\left(1 h_{a}, 0\right)=\theta_{s_{1,0}}=0 \text { at } \tau=0 \text { or } \tau_{0}=\tau_{0}^{*} \tag{68}
\end{align*}
$$

For the liquid phase, no matter the value of $R(j+1)-R(j)$, the following groupings hold.
(a) If $0 \leq R(j+1) \leq i N-3$ where N is the total number of space nodes (from 0 at the bottom plate to il at the top plate), then the governing equations are

$$
\begin{align*}
& \left(2-x_{j+1}\right)\left(1+2 p-x_{i+1}\right) \theta_{L_{R+1, j+1}}-2 p\left(1-x_{j+1}\right) \theta_{L_{R+2, j+1}} \\
& =\left(2-x_{j+1}\right)\left(1-x_{j+1}\right) \theta_{L_{R+1, j}}+2 p \tag{69}\\
& { }^{-\frac{1}{2} p \theta_{L_{1-1, j+1}}}{ }^{+(1+p) \theta} L_{1, j+1}{ }^{-\frac{1}{2} p \theta} L_{1+1, j+\ldots} \\
& ={ }^{1}{ }^{2} p \theta_{L_{1-1, j}}+(1-p) \theta_{L_{1, j}}+{ }^{1}{ }^{2} p \theta_{L_{1+1, j}} \\
& \text { for } R+2 \leq 1 \leq N-1 \tag{70}\\
& { }^{\theta_{L_{l N}, j+1}}{ }=\left(I_{2}\right)_{j+1} / T_{e} \tag{71}
\end{align*}
$$

Equation (71) is a boundary condition which is satisfied at the top plate.
(b) If $R(j+1)=i v-2$, the governing equations are

$$
\begin{align*}
& \left(2-x_{j+1}\right)\left(1+2 p-x_{j+1}\right) \theta_{L_{R+1, j+1}}-2 p\left(1-x_{j+1}\right) \theta_{L_{R+2, j+1}} \\
& \quad=\left(2-x_{j+1}\right)\left(1-x_{j+1}\right) \theta_{L_{R+1, j}}+2 p \tag{72}\\
& \theta_{L_{N, j+1}}=\left(f_{2}\right)_{j+1} / \Gamma_{e} \tag{73}
\end{align*}
$$

(c) If $R(j+1)=N-1$, the governing equation is

$$
\begin{equation*}
{ }^{\theta} L_{i v, j+1}=\left(f_{2}\right)_{j+1} / T_{e} \tag{74}
\end{equation*}
$$

(d) If $K(j+1)=i$, then the entire content of the cell has solidified with the top plate just at the equilibrium temperature of solidification. The initial condition for all the foregoing groups of equations is

$$
\begin{align*}
& { }^{\theta_{L_{1,0}}={ }^{\theta_{L O}}\left(1 h_{a,} T_{0}^{*}\right) \text { for } 0 \leq 1 \leq N} \tag{75}\\
& { }^{\theta_{L_{0,0}}={ }^{\theta}{ }_{L O}\left(0, T_{0}^{*}\right)=1 \text { at the bottom plate. }} . \tag{76}
\end{align*}
$$

For the calculation of S_{j+1}, the height of solid which has formed at the $(j+1)$ st time step, the following equations apply:

For $0 \leq x_{j+1} \leq 1$ and $0 \leq R \leq N$, equation (77) applies

$$
\begin{equation*}
S_{j+1}=h_{a}\left\{R(j+1)+x_{j+1}\right\} \tag{77}
\end{equation*}
$$

Also when the appropriate derivatives from equation (32) through equation (39) are substituted into condition (5ii) of the post-solidification problem, equations which apply
for certain values of $R(j+1)$ and x_{j+1} are obtained for j_{j+1}. Thus

$$
\begin{align*}
& \text { (a) if } 1 / 4<x_{j+1} \leq 3 / 4 \text {, we get } \\
& S_{j+1}=S_{j}+h_{a} p\left(M \sigma_{s}-J \sigma_{L}\right), \text { for } 1 \leq R \leq N-2 \tag{78}
\end{align*}
$$

and $S_{j+1}=S_{j}+h_{a} p\left\{\left(M / x_{j+1}\right)\left(1-\theta_{S_{0, j+1}}\right)-J \sigma_{L}\right\}$, for $R=0$
and $S_{j+1}=S_{j}+h_{a} p\left\{\operatorname{Ma}_{s}-J\left(\theta_{L_{N, j+1}}-1\right) /\left(1-x_{j+1}\right)\right\}$, for R=iv-1
The limits of $1 / 4 \leq x_{j+1} \leq 3 / 4$ were set so as to avoid dividing by numbers close to or equal to zero which would make the results blow up.
(b) If $0 \leq x_{j+1} \leq 1 / 4$, we use

$$
\begin{equation*}
S_{j+1}=S_{j}+h_{a} p\left(M \sigma_{s}^{\prime}-J \sigma_{L}\right), \text { for } 2 \leq R \leq i N-3 \tag{81}
\end{equation*}
$$

or $\quad S_{j+1}=S_{j}+h_{a} p\left\{(M / b)\left(1-\theta_{S_{0, j+1}}\right)-J \sigma_{L}\right\}$, for $R=0$ where $b=1 / 4$
or when $R=1,\left(\frac{\partial \theta_{s}}{d z}\right)_{\text {interface }, j+1}=\left(1-\theta_{s_{0, j+1}}\right) /\left(1+x_{j+1}\right)$
so that

$$
\begin{equation*}
S_{j+1}=S_{j}+h_{a} p\left\{M\left(1-\theta_{s_{0, j+1}}\right) /\left(1+x_{j+1}\right) \sim J \sigma_{L}\right\}, \text { for } R=1 \tag{84}
\end{equation*}
$$

or

$$
\begin{equation*}
S_{j+1}=S_{j}+h_{2} p\left\{i A \sigma_{s}^{\prime}-J\left(\theta_{L_{N, j+1}}-1\right) /\left(2-x_{j+1}\right)\right\} \text {, for } R=i N-2 \tag{85}
\end{equation*}
$$

or

$$
\begin{equation*}
S_{j+1}^{\prime}=S_{j}+h_{a} p\left\{I I \sigma_{s}^{\prime}-J\left(\theta_{L_{N, j+1}}-1\right) /\left(1-x_{j+1}\right)\right\} \text {, for R=il-1 } \tag{86}
\end{equation*}
$$

(c) If $3 / 4<x_{j+1} \leq 1$, we use

$$
\begin{equation*}
S_{j+1}=S_{j}+h_{a} p\left\{M \sigma_{s}-J \sigma_{L}^{\prime}\right\}, \text { for } 2 \leq R \leq i N-3 \tag{87}
\end{equation*}
$$

or

$$
\begin{equation*}
S_{j+1}=S_{j}+h_{a} p\left\{\left(M / x_{j+1}\right)\left(l-\theta_{s_{0, j+1}}\right)-J \sigma_{L}^{\prime}\right\} \text {, for } R=0 \tag{88}
\end{equation*}
$$

or

$$
\begin{equation*}
s_{j+1}=s_{j}+h_{a} p\left\{M\left(1-\theta_{s_{0, j+1}}\right) /\left(1+x_{j+1}\right)-J \sigma_{L}^{\prime}\right\} \text {, for } R=1 \tag{39}
\end{equation*}
$$

or

$$
S_{j+1}=S_{j}+h_{a} p\left\{i \tau_{s}-J\left(\theta_{L_{i J}, j+1}-1\right) /\left(2-x_{j+1}\right)\right\} \text {, for } R=i j-2 \text { (90) }
$$

or

$$
\begin{equation*}
S_{j+1}=S_{j}+h_{a} p\left\{H \sigma_{s}-J\left(\theta_{L_{N, j+1}}-1\right) / b\right\}, \text { for } R=\{J-1 \tag{91}
\end{equation*}
$$

where $b=1 / 4$

Tridiagonal Matrix or Jacobi Forms of Finite Difference

Equations for Temperature

Each of the groups of finite difference equations for temperaiure that describe both the pre-solidification and the post-solidification problems can be arranged in Jacobi or tridiagonal matrix equations of the form

$$
\begin{align*}
B_{0} \theta_{0, j+1}+C_{0} \theta_{1, j+1} & =d_{0} \\
A_{1} \theta_{1-1, j+1}+B_{1} \theta_{1, j+1}+C_{i} \theta_{i+1, j+1} & =d_{i}, \text { for } 1 \leq 1 \leq N-1 \tag{92}\\
A_{N} \theta_{N-1, j+1}+E_{N} \theta_{N, j+1} & =d_{N}
\end{align*}
$$

where A_{1}, B_{1}, C_{1}, and d_{1} are constants obtainable from the difference equations themselves. Note that in using equation (92), we are calculating $\theta_{1, j+1}$ for the $(j+1)$ st time step with the assumption that $\theta_{i, j}$ for the j th time step is known for every 1. Thus, for the pre-solidification problem,
equation (15) and its boundary and initial conditions $15(1)$ to 15 (iii) can be rearranged into equation (93)

$$
\begin{gather*}
\left(\theta_{L O}\right)_{0, j+1}=\left(f_{1}\right)_{j+1} / T e \\
-\frac{1}{2 p p}\left(\theta_{L O}\right)_{1-1, j+1}+(1+p)\left(\theta_{L O}\right)_{1, j+1}-\frac{12 p p}{}\left(\theta_{L O}\right)_{1+1, j+1} \\
=\operatorname{L2p}\left(\theta_{L O}\right)_{1-1,1}+(1-p)\left(\theta_{L O}\right)_{1, j}+p / 2\left(\theta_{L O}\right)_{1+1, j} \\
\text { for } 1 \leq 1 \leq N-1 \tag{93}\\
\left(\theta_{L O}\right)_{N, j+1}=\left(f_{2}\right)_{j+1} / T e
\end{gather*}
$$

so that for the $(j+1) s t$ time step, the coefficients of equation (92) take on the values in equation (93) of

$$
\begin{aligned}
B_{0} & =1 \\
c_{0} & =0 ; d_{0}=\left(f_{1}\right)_{j+1} / T_{e} \\
A_{1} & =-\frac{3}{2 p}, \text { for } 1 \leq 1 \leq N-1 \\
B_{1} & =1+p, \text { for } 1 \leq 1 \leq N-1 \\
C_{1} & =-\frac{1}{2 p}, \text { for } 1 \leq 1 \leq N-1 \\
d_{1} & =\frac{1}{2 p}\left(\theta_{L O}\right)_{i-1, j}+(1-p)\left(\theta_{L O}\right)_{1, j} \\
& +\frac{3 p}{2}\left(\theta_{L O}\right)_{i+1 ; j} \text { for } 1 \leq 1 \leq N-1
\end{aligned}
$$

d_{i} is easily obtained since $\left(\theta_{\text {Lo }}\right)_{i, j}$ is known for every i for the $j^{\text {th }}$ time step. The above equations apply for $0 \leq \tau<\tau_{0}^{*}$.

For the post-solidification problem, we consider the equations according th the way in which they were grouped in the previous section. Thus for the solid phase, for $\tau_{0} \geq \tau_{0}^{*}$ or $\tau \geq 0$, (1) if $R(j+1)-R(j)=0$, then
(a) if $R(j+1)=1$, equation (48) and the boundary condition (66) give

$$
\begin{align*}
& B_{0} \theta_{s_{0, j+1}}=d_{0} \\
& A_{R} \theta_{s_{R-1, j}} \tag{94}\\
&+B_{R} \theta_{s_{R, j+1}}=d_{R}
\end{align*}
$$

where

$$
\begin{aligned}
& B_{0}=1 \\
& C_{0}=0 \\
& d_{0}=\left(f_{1}\right)_{j+1} / T e \\
& A_{R}=-\frac{2 \lambda p x_{j+1}}{1+x_{j+1}} ; B_{R}=2 \lambda p+x_{j+1}
\end{aligned}
$$

and

$$
d_{R}=x_{j+i .} \theta_{s_{R, j}}+\frac{2 \lambda p}{1+x_{j+1}} .
$$

(b) if $R(j+1) \geq 2$, the boundary condition (66) and equations (49) and (50) give

$$
\begin{align*}
& B_{0} \theta_{3_{0, j+1}}=d_{0} \\
& A_{1} \theta_{s_{1-1, j+1}}+B_{i} \theta_{3_{1, j+1}}+C_{i} \theta_{s_{i+1, j+1}}=d_{1} \text {, for } 1 \leq 1 \leq R-1 \tag{95}\\
& A_{R}{ }^{\theta} \mathbf{s}_{R-1, j+1}+B_{R}{ }^{\theta} s_{R, j+1} \quad=d_{R} \\
& \text { where } \\
& B_{0}=1, c_{0}=0, d_{0}=\left(f_{1}\right)_{j+1} / m_{e} \\
& A_{i}=-\lambda p / 2 \text { for } 1 \leq 1 \leq R-1 \\
& B_{i}=1+\lambda p \text { for } 1 \leq 1 \leq R-1 \\
& C_{1}=-\lambda p / 2 \text { for } 1 \leq 1 \leq R-1 \\
& d_{1}=\operatorname{s}_{2} \lambda p \theta_{s_{1-1, j}}+(1-\lambda p) \theta_{s_{i, j}}+1_{2} \lambda p \theta_{s_{1+1, j}} \\
& \text { for } 1 \leq 1 \leq R-1 \\
& A_{R}=\frac{-2 \lambda p x_{j+1}}{1+x_{j+1}}
\end{align*}
$$

$$
B_{R}=2 \lambda p+x_{j+1} ; d_{R}=x_{j+1} \theta_{s_{R, j}}+2 \lambda p /\left(1+x_{j+1}\right)
$$

(ii) if $R(j+1)-R(j)=1$, then
(a) if $R(j+1)=1$, boundary condition equation (66) and equation (Fl) give

$$
\begin{aligned}
B_{0} \theta_{s_{0, j+1}} & =d_{0} \\
A_{R} \theta_{s_{R-1, j+1}}+B_{R} \theta_{s_{R, j+1}} & =d_{R}
\end{aligned}
$$

where

$$
\begin{equation*}
B_{0}=1, \quad d_{0}=\left(f_{1}\right)_{j+1} / T_{e}, \quad c_{0}=0 \tag{96}
\end{equation*}
$$

$$
\begin{aligned}
& A_{R}=\frac{-2 \lambda p x_{j+1}}{1+x_{j+1}}, B_{R}=2 \lambda p+\frac{x_{j+1}}{a_{R}}=2 \lambda p+1-x_{j}+x_{j+1} \\
& a_{R}=\frac{2 \lambda p}{1+x_{j+1}}+\frac{x_{j+1}}{a_{R}}=\frac{2 \lambda p}{1+x_{j+1}}+1-x_{j}+x_{j+1}
\end{aligned}
$$

$$
\text { (b) if } R(j+1)=2 \text {, equations (52) and (53) together with }
$$ the boundary condition give

$$
\begin{aligned}
& A_{R-1}=-\lambda p ; \quad B_{R-1}=1+2 \lambda p ; \quad C_{R-1}=-\lambda p ; \quad d_{R-1}=\theta_{S_{R-1, j}} \\
& A_{R}=\frac{-2 \lambda p x_{j}+1}{1+x_{j}+1} ; \quad B_{R}=2 \lambda p+\frac{x_{j+1}}{a_{R}}=2 \lambda p+1-x_{j}+x_{j+1}
\end{aligned}
$$

$$
\begin{align*}
& B_{0} \theta_{S_{0, j+1}}=d_{0} \\
& \begin{array}{l}
A_{R-1}{ }^{\theta} s_{R-2, j+1}{ }^{+B_{R-1}}{ }^{\theta_{s_{R-1, j+1}}+C_{R-1}{ }^{\theta} s_{R, j+1}=d_{R-1}} \\
A_{R}{ }^{\theta} s_{R-1, j+1}+{ }^{+}{ }_{R}{ }^{\theta} s_{R, j+1}=d_{R}
\end{array} \\
& \text { where } \quad B_{0}=1 ; d_{0}=\left(f_{1}\right)_{j+1} / T_{e} ; \quad C_{0}=0 \tag{97}
\end{align*}
$$

$$
\begin{aligned}
& d_{R}=\frac{2 \lambda p}{1+x_{j+1}}+\frac{x_{j+1}}{a_{R}}=\frac{2 \lambda p}{1+x_{j+1}}+1-x_{j}+x_{j+1} \\
& \text { (c) if } R(j+1) \geq 3 \text {, equations (54), (55), and (56) together }
\end{aligned}
$$ with the boundary condition give

$$
\begin{align*}
& { }^{13}{ }_{0} \mathbf{s}_{0, j+1} \\
& =d_{0} \\
& A_{1} \theta_{s_{i-1, j+1}}+B_{i} \theta_{s_{1, j+1}}+C_{1} \theta_{s_{i+1, j+1}} \text { a } d_{i} \text { for } 1 \leq 1 \leq R-2 \\
& A_{R-1}{ }^{\theta_{S_{R-2, j+1}}}{ }^{+B_{R-1}}{ }^{\theta_{S_{R-1, j+1}}}{ }^{+C_{R-1}}{ }^{\theta_{S_{R, j+1}}}=a_{R-1} \tag{98}\\
& A_{R}{ }^{\theta_{s}}{ }_{R-1, j+1}+{ }^{+}{ }_{R} \theta_{s_{R, j+1}} \\
& -d_{R}
\end{align*}
$$

where $B_{0}, C_{0}, d_{0}, A_{R-1}, B_{R-1}, C_{R-1}, d_{R-1}, A_{R}, B_{R}$ and d_{R} have the same values as in part (b) above and

$$
\begin{aligned}
& A_{1}=-\frac{1}{2} \lambda p \text { for } 1 \leq 1 \leq R-2 \\
& B_{1}=1+\lambda p \text { for } 1 \leq 1 \leq R-2 \\
& C_{1}=-\frac{1}{2} \lambda p \text { for } 1 \leq 1 \leq R-2 \\
& d_{1}=\frac{1}{2}_{2} \lambda p \theta_{s_{1-1, j}}+(1-\lambda p) \theta_{S_{1, j}}+\frac{1}{2}^{2} p \theta_{i_{3}} \quad \text { for } 1 \leq 1 \leq R-2
\end{aligned}
$$

(i11) If $R(j+1)-R(j)=2$, then
(a) if $R(j+1)=2$, equations (57), (58), and'(66) give $B_{0} \theta_{s_{0, j+1}}=d_{0}$

$$
{ }^{A_{R}{ }^{\theta} s_{R-1, j+1}+B_{R}{ }^{0} s_{R, j+1}} \quad \approx d_{R}
$$

where B_{0}, d_{0}, and C_{0} have the same values as in part (ii) above;

$$
\begin{aligned}
& A_{R-1}=-a_{R-1} \lambda p=-\lambda p\left(1+x_{j+1}\right) /\left(2-x_{j}+x_{j+1}\right) \\
& B_{R-1}=1+2 \lambda p a_{R-1}=1+2 \lambda p\left(1+x_{j+1}\right) /\left(2-x_{j}+x_{j+1}\right) \\
& C_{R-1}=-\lambda p a_{R-1}=-\lambda p\left(1+x_{j+1}\right) /\left(2-x_{j}+x_{j+1}\right) \\
& d_{R-1}=1 ; A_{R}=\frac{-2 \lambda p x_{j+1}}{1+x_{j+1}} ; B_{R}=2 \lambda p+\frac{x_{j+1}}{a_{R}}=2 \lambda p+2-x_{j}+x_{j+1} \\
& d_{R}=\frac{2 \lambda p}{1+x_{j+1}}+\frac{x_{j+1}}{a_{R}}=\frac{2 \lambda p}{1+x_{j+1}}+2-x_{j}+x_{j+1} \\
& \text { (b) if } R(j+1)=3, \text { equations (59) to (60) plus the }
\end{aligned}
$$ boundary condition equation (66) give

$$
\begin{array}{ll}
{ }^{B_{0} \theta_{s_{0, j+1}}} & =d_{0} \\
A_{R-2}{ }^{\theta} s_{R-3, j+1}+B_{R-2}{ }^{\theta} s_{R-2, j+1}+C_{R-2}{ }^{\theta} s_{R-1, j+1} & =d_{R-2} \tag{100}\\
A_{R-1}{ }^{\theta} s_{R-2, j+1}+B_{R-1}{ }^{\theta} s_{R-1, j+1}+C_{R-1}{ }^{\theta} s_{R, j+1} & =d_{R-1} \\
A_{R}{ }^{\theta} s_{R-1, j+1}+B_{R} \theta_{s_{R, j+1}} &
\end{array}
$$

where $B_{0}, C_{0}, d_{0}, A_{R-1}, B_{R-1}, C_{R-1}, d_{R-1}, A_{R}, B_{R}, d_{R}$ have the same values as in part (a) above.

$$
A_{R-2}=-\lambda p ; B_{R-2}=1+2 \lambda p ; C_{R-2}=-\lambda p ; d_{R-2}=\theta_{S_{R-2, J}}
$$

$$
\text { (c) if } R(j+1) \geq 4 \text {, equations (62) to (65) and equation }
$$

(66) give

$$
\begin{gather*}
{ }^{B}{ }_{0} \theta_{S_{0, j+1}}=d_{0} \\
A_{1} \theta_{s_{1-1, j+1}}+B_{1}{ }^{\theta_{S_{1, j+1}}+C_{i} \theta_{S_{1+1, j+1}}=d_{i} \quad 1 \leq 1 \leq R-3} \\
A_{R-2}{ }^{\theta_{s_{R-3, j+1}}+B_{R-2}{ }^{\theta} S_{R-2, j+1}+C_{R-2}{ }^{\theta} s_{R-1, j+1}=d_{R-2}} \tag{101}
\end{gather*}
$$

$$
\begin{array}{ll}
A_{R-1}{ }^{\theta} s_{R-2, j+1}+B_{R-1}{ }^{\theta_{s_{R-1, j+1}}+C_{R-1}{ }^{\theta} s_{R-1, j+1}}=d_{R-1} \\
A_{R} \theta_{s_{R-1, j+1}}+B_{R} \theta_{s_{R, j+1}} & \approx d_{R}
\end{array}
$$

where $B_{0}, C_{0}, d_{0}, A_{R-2}, B_{R-2}, C_{R-2}, d_{R-2}, A_{R-1}, B_{R-1}, C_{R-1}$, $d_{R-1}, A_{R},{ }_{R}$ have the same values as in part (b) above, and

$$
\begin{aligned}
& A_{1}=-\frac{1}{2} \lambda p \text { for } 1 \leq 1 \leq R-3 \\
& B_{i}=1+2 \lambda p \text { for } 1 \leq 1 \leq R-3 \\
& C_{i}=-\frac{1}{2} \lambda p \text { for } 1 \leq 1 \leq R-3 \\
& d_{i}=\frac{1}{2} \lambda p \theta_{s_{1-1, j}}+(1-\lambda p) \theta_{s_{1, j}}+\frac{1}{2} \lambda p \theta_{s_{1+1, j}} \quad \text { for } 1 \leq 1 \leq R-3
\end{aligned}
$$

For the liquid phase, if
(a) $0 \leq R(j+1) \leq N-3$, then equations (69) to (71) give

$$
\begin{aligned}
& { }^{B_{R+1}}{ }^{\theta} L_{R+1, j+1}+C_{R+1}{ }^{\theta} L_{R+2, j+1}=d_{R+1} \\
& A_{1}{ }^{\theta} L_{i-1, j+1}+B_{i}{ }^{\theta} L_{i, j+1}+C_{1}{ }^{\theta} L_{i+1, j+1}=d_{i} \text { for } R+2 \leq 1 \leq N-1
\end{aligned}
$$

where

$$
\begin{aligned}
& B_{R+1}=\left(2-x_{j+1}\right)\left(1+2 p-x_{j}\right) \\
& C_{R+1}=-2 p\left(1-x_{j+1}\right) \\
& d_{R+1}=\left(2-x_{j+1}\right)\left(1-x_{j+1}\right) \theta_{L_{R+1, j}}+2 p \\
& A_{1}=-\frac{k_{2 p}}{} \text { for } R+2 \leq 1 \leq N-1 \\
& B_{1}=1+p \text { for } R+2 \leq 1 \leq N-1 \\
& C_{1}=-\frac{1}{2 p} \text { for } R+2 \leq 1 \leq N-1 \\
& B_{N}=1 \\
& d_{l l}=\left(f_{2}\right)_{j+1} / T_{e}
\end{aligned}
$$

(b) if $R(j+1)=i j-2$, equations (72) and (73) give

$$
\begin{array}{ll}
B_{R+1}{ }^{\theta} L_{R+1, j+1}+C_{R+1}{ }^{\theta} L_{R+2, j+1} & =d_{R+1} \\
B_{N} \theta_{L J, j+1} & =d_{l j} \tag{103}
\end{array}
$$

where $B_{R+1}, C_{R+1}, d_{R+1}, B_{i J}$ and $d_{i V}$ have the same values as in part (a) above.
(c) if $R(j+1)=a-1$, then

$$
\begin{equation*}
{ }^{\theta} L_{\mathrm{iN}, j+1}=\left(f_{2}\right)_{j+1} / T_{e} \tag{104}
\end{equation*}
$$

and the temperature profile for $0 \leq 1 \leq N-1$ is obtained from the solld phase.

Solutions of Governing Finite Difference Equations

Each of the tridiagonal matrix equations (93) to (103)
has a solution given by the solution of equation (92) as follows:

$$
\begin{align*}
& { }^{\theta_{N, j+1}}=q_{N} \\
& \theta_{1, j+1}=q_{1}-b_{1} \theta_{1+1, j+1} \text { for } 0 \leq 1 \leq N-1 \tag{105}
\end{align*}
$$

where $q_{0}=\frac{d_{0}}{i_{0}} ; b_{0}=c_{0} / B_{0}$

$$
q_{1}=\left(d_{1}-A_{1} q_{1-1}\right) /\left(B_{1}-A_{1} b_{i-1}\right) \text { for } 1 \leq 1 \leq N
$$

and

$$
b_{1}=c_{1} /\left(B_{1}-A_{1} b_{1-1}\right) \text { for } 1 \leq 1 \leq N-1
$$

Equation (105) applfes as it is to the pre-solidification problem for $0 \leq \tau_{0} \leq \tau_{0}^{*}$. For the post-solidification problem, equation (105) becomes for the solld phase

$$
\begin{align*}
& { }^{\theta_{\sigma_{R, j+1}}=q_{R}} \\
& { }^{\theta_{s_{1, j+1}}}=q_{1}-b_{1} \theta_{s_{1+1, j+1}}, \text { for } 0 \leq 1 \leq R-1 \tag{106}
\end{align*}
$$

where $q_{0}=\frac{d_{0}}{B_{0}}=d_{0} ; b_{0}=C_{0} / B_{0}=0$

$$
q_{1}=\left(d_{1}-A_{i} q_{i-1}\right) /\left(B_{1}-A_{i} b_{i-1}\right) \text { for } 1 \leq 1 \leq R
$$

and

$$
b_{1}=c_{i} /\left(B_{i}-A_{i} b_{i-1}\right) \quad \text { for } 1 \leq 1 \leq R-1
$$

and for the liquid phase, it becomes

$$
{ }^{\theta} L_{\mathrm{Li}, j+1}=q_{N}
$$

$$
{ }^{\theta} L_{1, j+1}=q_{1}-b_{1} \theta_{L_{1+1, j+1}} \quad \text { for } R+1 \leq 1 \leq N-1
$$

where $q_{N}=\left(f_{2}\right)_{i+1} / T_{e}$

$$
\begin{array}{ll}
q_{i}=\left(d_{1}-A_{1} q_{i-1}\right) /\left(B_{1}-A_{1} b_{i-1}\right) & \text { for } R+2 \leq 1 \leq N \\
b_{i}=c_{i} /\left(B_{1}-A_{i} b_{i-1}\right) & \text { for } R+2 \leq 1 \leq N-1 \\
q_{R+1}=d_{R+1} / B_{R+1} \text { and } b_{R+1}=c_{R+1} / B_{R+1}
\end{array}
$$

We start at time $\tau_{0}=0$ to solve the pre-solidification problera. Thus, for $j=0,\left(\theta_{L o}\right)_{1,0}=T_{a} / T_{e}$ for. $0 \leq 1 \leq N$. Thus we can find the temperature profile, $\left(\theta_{L 0}\right)_{1,1}$, for every 1 by using equation (105) since all the constants are now known. For the next time step (i.e. $j=1$), we calculate $\left(\theta_{\text {Lo }}\right)_{1,2}$ by using the values of $\left(\theta_{L O}\right)_{1,1}$, which we have found, to calculate the constants to be used in equation (105). Thus we continue calculating $\left(\theta_{L O}\right)_{1, j+1}$, (for $\left.0 \leq 1 \leq N\right)$, for each given j until $j=j *$ such that, at the bottom plate, $\left(\theta_{L O}\right)_{0, j *} \geq 1.0$ and $\left(\theta_{L O}\right)_{0, j^{*+1}}<1$. At such a time we have reached τ_{0}^{*}. After j^{*} is located, we calculate τ_{0}^{*} by the equation

$$
\begin{equation*}
r_{0}^{\prime}=k_{a}\left(g^{n}+r\right) \tag{108}
\end{equation*}
$$

where $r=\frac{\left(\theta_{L O}\right)_{0, j^{*}}-1.0}{\left(\theta_{L O}\right)_{0, J^{*}}-\left(\theta_{L O}\right)_{0, J^{*+1}}}$ approximates the fraction of full time increment, which is needed to cool the temperature of the bottom plate from $\left(\theta_{\text {Lo }}\right)_{0, j} \neq$ to 1.0 . Note that the dimensionless equilibrium temperature of solidification of n-hexadecane is equal to 1.0. To find the temperature profile of the liquid at τ_{0}^{*}, we take the temperature of the bottom plate to be 1.0 at τ_{0}^{*}, i.e. ${ }^{\theta}{ }_{L \dot{o}}\left(0, \tau_{0}^{*}\right)=1.0$ and instead of taking time increment to be k_{a}, we take the fraction k_{a} new $=k_{a} r<k_{a}$ to be our new time step, and therefore the new value for p for this step is $p_{n e w}=p r$. The value for r and the known temperature profiles ($\left.\theta_{\text {Lo }}\right)_{i, j *}$ are now used in equation (l09) to calculate $\theta_{\text {Lo }}\left(1 h_{a}, \tau_{0}^{*}\right)$:

$$
\begin{align*}
\left(\theta_{L O}\right)_{1, j+1} & =\operatorname{rp}\left(\theta_{L O}\right)_{1-1, j} *(1-2 r p)\left(\theta_{L O}\right)_{1, j^{*}} \\
& +\operatorname{rp}\left(\theta_{L O}\right)_{1+1, j^{*}} \tag{109}
\end{align*}
$$

We now know τ_{0}^{*} and the temperature profile $\theta_{L_{0}}\left(\right.$ in $\left._{a}, \tau_{0}\right)$ for the presolidification problem for $0 \leq 1 \leq N$ and $0 \leq \tau_{0} \leq \tau_{0}^{*}$ We now start the calculations for the post-solidification problem.

To start, set $\tau=0$. This corresponds to $\tau=\tau_{\rho}-\tau_{0}^{*}=0$ at $\tau_{0}=\tau_{0}^{*}$. We start off again at $J=0$ corresponding to $\Delta \tau$ increments. The first time step for the post-solidification problem is a full time step. Also the first value used for p corresponds to a full time step. These values, together with $\theta_{L_{0}}\left(1 h_{a}, r_{0}^{*}\right)$ which we have calculated are used in the first
calculations. The temperature of the bottom plate is taken as the temperature of the solid phase at $1=0$. We thus have the first estimates of temperature profiles in the liquid and solid phases at $1=0$. We now proceed to estimate $R(j+1)$ and x_{j+1} and to calculate S_{j+1} as follows.

Estimation of R_{j+1}, x_{j+1} and Calculation of s_{j+1}.
First of all, we set $S_{j}=0, R(j)=0, x_{j}=0$, at $j=0$. Next we assume,

$$
\begin{equation*}
s_{j+1}^{\prime}=\frac{k_{2}}{2} h_{a} \tag{110}
\end{equation*}
$$

S_{j+1}^{\prime} is the first approximation of S_{j+1}. Since $R(j+1)$ is an integer and $0.0 \leq x_{j+1} \leq 1.0$, we can find $R(j+1)$ and x_{j+1} from S_{j+1}^{\prime} since $s_{j+1}^{\prime}=h_{a}\left(R_{j+1}+x_{j+1}\right)$.

We now have $R(j+1)$ and λ_{j+1} to use in starting our more accurate calculations. We may now rename S_{j+1}^{\prime} as S_{j+1} (old). Using the values of $R(j+1)$ and x_{j+1} which we now have, we can go back to calculate new temperature profiles employing whichever of equations (94) to (102) applies, as determined by the values of $R(j+1)-R(j), x_{j+1}$, and $R(j+1)$. We also calculate a new value for S_{j+1}, (which we will call S_{j+1} (new)), by using whichever of equations (78) to (91) that applies as determinea by values of $R(j+1), x_{j+1}$, and of $R(j+1)-R(j)$. We check S_{j+1} (new) against S_{j+1} (old) and if the absolute value of their difference exceeds a certain number, ε, determined by error analysis, we set $S_{j+1}^{\prime}=\frac{z_{2}}{2}\left\{S_{j+1}(\right.$ old $)+S_{j+1}($ new $\left.)\right\}$. Again we use
S_{j+1}^{\prime} in equation (77) to find $R(j+1)$ and x_{j+1} which are to be used to find new temperature profiles and new S_{j+1}. Thus in summary, the steps are outlined below.
(1) Use equation (110) to find S_{j+1}^{\prime} for the first full time ste...
(2) \sim et S_{j+1}^{\prime} equal to S_{j+1} (old).
(3) Use equation (77) to calculate $R(j+1)$ and x_{j+1} noting that R is an integer between 0 and N and that $0 \leq x_{j+1} \leq 1$.
(4) Use values which have been found for R and x_{j+1} in the appropriate equations to calculate new temperature profiles.
(5) Calculate S_{j+1} (new) using whichever of equations (78) to (91) that applies.
(6) If abs $\left\{S_{j+1}\right.$ (old) $-S_{j+1}$ (new) $\}>\varepsilon$, set S_{j+1}^{\prime} equal to $\frac{z_{2}}{2}\left\{S_{j+1}(\right.$ new $)+S_{j+1}$ (old)\} and repeat steps (2) to (6) until abs $\left\{S_{j+1}\right.$ (old) $-S_{j+1}$ (new) \}$\leq \varepsilon . \quad S_{j+1}$ is now known for this time step and $S_{j+1}=S_{j+1}(n e w)$, and $\Delta S_{j+1}=S_{j+1}-S_{j}$. The first time step is now taken as fully calculated. We return to mone time steps. ε is calculated from analysis of truncation errors of the finite difference equations.

For the second time step, set ΔS_{j+1}, found from the previous time step, equal to ΔS_{j}, and let the new ΔS_{j+1} te be used for our new time step be $\Delta S_{j+1}=\left(\frac{\Delta S}{k_{a}}\right)_{j} k_{a}$. Also set the $S_{j+1}, x_{j+1}, R_{j+1}$ from the first time step equal to S_{j}, x_{j}, and R_{j}, respectively. Therefore, for the second time
step, the first approxination for S_{j+1} is $S_{j+1}^{\prime}=S_{j}+\Delta S_{j+1}$. S_{j+1}^{\prime} is now used to repeat steps (2) to (6) stated previously until tine second time step is fully calculated. For inore time steps, we proceed as before by setting the S_{j+1}, x_{j+1}, and R_{j+1} from our previous time step equal to S_{j}, x_{j}, and R_{j}, respectively, and by obtaining our new ΔS_{j+1} from tine relation

$$
\Delta S_{j+1}=\left(\Delta S_{j}\right)\left(\frac{\text { magnitude of new time increment }}{\text { magnitude of previous time increment }}\right)
$$

Then $S_{j+1}^{\prime}=S_{j}+\Delta S_{j+1}$, which we then use in steps (2) to (6) outlined previously. We continue this sort of calculation until the entire content of the cell is frozen, when $S_{j+1}=1.0$. Thus S_{j+1} is calculated by iteration. S_{j+1} and the temperature profiles are dimensionless, but are easily converted into dimensioned values.

Stability Criteria for Governing. Finite Difference Equations
By definition $R(j+1)$ is a non-negative integer between 0 and N where is is the total number of nodes in the space direction along z. Tius $R(j+1)$ is an integer such that $0 \leq R \leq N$. Also x_{j+1} is by definition a fraction between 0 and 1. It is also non-negative. Therefore, x_{j+1} must lie In the region $0 \leq x_{j+1} \leq 1 . ~ R(j+1)$ and x_{j+1} must satisfy these conditions lest there arise instability in the solution of the difference equations. $R(j)$ and x_{j} must also satisfy the same conditions as $R(j+1)$ and x_{j+1}. If the coefficient of any temperature $\theta_{1, j}$ or $\theta_{1, j+1}$ were to oscillate freely
between positive and negative values, the solutions to the difference equations would become unstable. Thus, for stability, we insist that the coefficients of $\theta_{1, j}$ or $\theta_{1, j+1}$ retain the same sign tinroughout the solution. Thus if the coefficient of $\theta_{i, j}$ is positive for any i, j, it must stay greater than or equal to zero for any other $1, j$. If it is negative for any 1,j, it must stay less than or equal to zero for any other $1, j$. These conditions must be particularly so since the temperatures T and Te which give θ by the equation $\theta=\mathrm{T} / \mathrm{Te}$ are defined on the absolute temperature scale and must there-
 non-negative. With these points in mind, we check each of the equations that give the temperature profiles $\theta_{1, j+1}$ and impose on it the condition that none of the coefficients may change sign. On checking equations (48) through (91) we find that for stable solutions the following conditions must be satisfied:
R must be an integer such that $0 \leq R(j) \leq N \quad$ (112(a)) and

$$
\begin{array}{ll}
0 \leq R(j+1) \leq N & (112(b)) \\
0 \leq \theta_{1, j} \leq 1 & (113) \\
1-\lambda p \geq 0 & (114) \\
1-p \geq 0 & (115) \\
s_{j+1}-s_{j} \geq 0 & (116)
\end{array}
$$

(111(a))
(111(b))

Equation (ll6) merely states that if a position node, 1 , has solidified at the $j^{\text {th }}$ time step, it should stay solidified during the $(j+1) s t$ time step since net heat is being removed all the tine from the system. $p=k_{a} / h_{a}{ }^{2}$ and p is positive for positive time step. From equation (109), 1-2rp ≥ 0 (117) ror stable solutions. Since $0 \leq r \leq 1$, the maximum value is $r=1$. Therefore, equation (117) is satisfied if

$$
\begin{equation*}
1-2 p \geq 0 \tag{118}
\end{equation*}
$$

Therefore, the maximum value of p above which the solutions become unstable and below which the solutions are stable is given by equating the left hand side of either equation (114) or equating (118) to zero. Which of the two values of p to accept as the acceptable maximum depends on the value of λ. λ is non-negative since $\lambda=\alpha_{s} / \alpha_{L}$. Thus,

$$
p_{\max , 1}=1 / \lambda \quad 119(a)
$$

and

$$
\begin{equation*}
p_{\max , 2}=\dot{1 / 2} \tag{b}
\end{equation*}
$$

Thus, if λ is less than 2 , then $p_{\max , 1}$ is greater than $\frac{1}{2}$ and $p_{\max , 2}$ is the acceptable $p_{\max }$ since it satisfies both equation (114) and (118). If λ is greater than 2 , then $p_{\max , 1}$ is the acceptable $p_{\max }$ since it satisfies both equations (114) and (118) in this case. Having selected $p_{\text {max }}$, we now know that any value of p that satisfies the inequality equation $0<p \leq p_{\max }$ will give stable solutions. Thus if h_{a} has been chosen and fixed, the k_{a} 's that will give stable solutions are given by the inequality equation,

$$
\begin{aligned}
& 0<k_{a} \leq k_{a_{\max }} \text { where } k_{a_{\max }} \text { is given by } \\
& k_{a_{\max }}=h_{a}^{2 / \lambda} \text { or } k_{a_{\max }}={ }_{i s h}{ }_{a}^{2} \text {. depending on whether } \lambda \text { is } \\
& \text { greater tizan } 2 \text { or less than } 2 \text {. }
\end{aligned}
$$

EXPERIMEVTAL EQUIPMLINT AIND PROCEDURE

A short description of the main components of the experimental equipment and an account of the experimental procedure are given in this section.

Equipment

The principal element of the equipment was the test cell. The auxiliary elements were thermocouple assembly, one 4-channel-continuous-temperature recorder, a power-driven pump and a refrigerator. Each element is given a concise description below.

Test vell: The test cell (Fig. 9) had a constant square cross-section of external dimensions 5 in . and overall height of $3-15 / 32$ in. It was composed of a cooling chamber which was sealed with soft solder to one face of an $1 / 8$-in.-thick copper plate (the bottom plate or cold plate); a plexi-glass frame 1-15/32 in. higin which was sealed with epoxy to the bottom plate to form the chamber in which the test material, n-hexadecane, would be contained; and another 1/8-in.-thick copper plate (the top plate) which was in turn attached to the other end of the plexi-glass frame by means of bolts and screws. Figure (10) shows the exploded view of the test cell.

The cooling chamber (Fig, 11) was constructed from k-in.-thick copper plates. The void of the cooling chamber had a square base of $4 \frac{1}{2}-1 n$. sides and a height of $1 \frac{1}{2} \mathrm{in}$.

Figure 9. Test cell.

Figure 10. Exploded view of test cell.

Pigure ll. Cooling cinamber.

COOLIMG Chaiber
Scale 1:2
Dimensions in inches

Externally, tine cooling chamber had a square base of 5-in. sides and a height of $1-3 / 4 \mathrm{in}$. On each of its vertical sides and very close to the bottom plate, the cooling chamber carried two equally spaced 3/8-in, $\in \in t e r n a l-d i a m e t e r ~ c o p p e r ~$ tubes which served as outlets for the coolant. Each tube was 1 in. long. Tinus, there were eight of these side tubes in all. Also, at the center of its base, the cooling chamber had one 3/8-in.-external-diameter copper tube which served as inlet for the coolant. This last tube was also in. long. Thus, tine chamider made it possible for a coolant for the bottom plate to flow in through the base tube and flow out through the eight side tuies. Ihe coolant used was liquid methanol.

Tha bottom plate (Fig. 12) was simply a 5-in:-square copper plate of $1 / 8-1 n$. thickness. It ias soldered to the cooling chamber on one faće and glued to the plexi-glass frame on the other. On the center of the face which was soldered to the plexi-glass frame. it carried a copper-constantan thermom couple. The thermocouple was admitted through a hole which. had been drilled on a side of tize plexi-glass frame and which was thereafter sealed with epoxy resin.

The piexi-glass frame (Fig. 12) was machined out of a thick plexi-glass slab. The frame was $\frac{1}{2}-1 n$. thick, 1-15/32-in. high ard had a 5-in.-square outside cross-section. It was glued at one end to the side of the bottom plate that carried a thermocouple, with the resulting formation of

Figure 12. Plexi-glass chamber for test material.

PLEEIGLASS Chamber for test haterial
a chamber of 4-in.-square crosswsection and 1-15/32-in. heigit. 'Tnis chamber would contain the test material aird its heigit of $1-15 / 32$ in. would be the height referred to as in in the present study. At the other end, the plexi-glass frame had eight screwed-in bolts with one at each corner and one at the midde of each edge. The top copper plate would be attacned to the test cell by means of these bolts. Tire frame carried two copper-constantan thermocouples on its side at distances of $14 / 32 \mathrm{in}$. (or $14 \mathrm{~h} / 47$) and $30 / 32$ in. (or $30 \mathrm{~h} / 47$) from the bottom plate.

Tine top plate (Fig. 13) was another 5-in.-square copper plate of $1 / 8-i n$. thickness. At the corners and the centers of each of its four edges, holes were drilled to receive the bolts from the plexi-glass frame. Screws would then be used to bolt the plate down on the plexi-glass frame. There were two main reasons for using bolts. and screws here instead of solder seal. The first reas on was that trying to seai \vec{a} copper plate on to the plexi-glass frame was very difficult since the plexi-glass tended to melt before the copper plate could be hot enough to give a good seal. Although it was relatively easy to attach a copper frame by soldering on to a hot copper plate, it was not as easy to attach a copper plate by soldering it on to a hot plexi-glass frame. The second reason for using screws and bolts was to facilitate the filling and emptying of the teet cell. Tine top plate also carried, at the center of its face, a 1-3/4-in. long copper tube of $1 / 16-1 n$. internal diameter and $1 / 8-i n$. external

Figure 13. Diagram of top copper plate.

diameter. This acted as an expansion chamber in case there was a volume increase of the tent material during phase change. A copper-constantan thermocouple was passed through a hole drilled into the top plate and its junction was affixed to the inside face of the plate by soldering.

Thermocouple assemply: As was shown in the description of the test cell, the cell carried four copper-constantan thermocouples located as follows: one each at the inside faces of the bottom and top plates, a third at $14 / 32$ in. or 14h/47 from the bottom plate, through the plexi-glass walls and the fourth at $30 / 32$ in. or $30 \mathrm{~h} / 47$ from the bottom plate, also through the plexi-glass walls. The other ends of the thermocouples were appropriately joined bj soldering and the junctions were immersed in a mixture of ice and water in a Dewar flask to form cold junctions at $0.0^{\circ} \mathrm{C}$ (Fig. 14). The free ends were then connecied to plugs that led into a fourm channel recorder. Each of the four channels was connected to a single thermocouple.

Temperature recorder: The recorder was a 4-channel Sanborn (31) continuous recorder, Hodel 150-1500. Thus, each channel could record the temperature profile sensed by one thermocouple continuously on a chart as a function of time. Thus the four channels allowed the use of four thermocouples only. The Sanborn Low Level Preamplifier, Model 150-1500, whicin formed each channel of the recorder, was a chopper type of anplifier for measuring slowly varying direct voltages or measuring slowly varying currents by adding an external shunt

Figure 14. Thermocouple arrangement:

(a) Assemblage showing cold junction and plug for a single thermocouple.
(b) The panel of one channel of the recorder showing a socket for receiving thermocouple plug.

resistor. The signals could be read in circuits removed from the ground by as muci as 300 volts LC. It had a sensitivity of 100 micravolts per centimeter to 0.1 volt per centimeter of chart in ten steps. For instance, when calibrated at 500 microvolts per centimeter, the accuracy in reading the chart was ± 0.025 millivoits. For a copperconstantan thermocouple, this corresponded.to an accuracy of $\pm 0.7^{\circ} \mathrm{C}$. The speed of the chart was in the range of 0.025 millimeters per second to 10 millimeters per second arranged as follows (all units being millimeters per second):

$$
0.025,0.05,0.1,0.25,0.5,1,2.5,5,10 .
$$

Thus, time intervals could be obtained from the speed of the charting paper.

Punp: The pump used to circulate the coolant (methanol) from the refrigerator to the test cell was a Cnemical Rubber Company (32) "ivc-Seal" centrifugal pump, Model ABIP005N\#. It operated on 115 -volts, 60 cycles, alternating current only. It could attain 3000 revolutions per mirute and pump from 420 gillons per hour at a head of 1 ft to 250 gallons per hour at a head of 9 ft under normal atmospheric conditions.

Refrigerator: The refrigerator for the coclant was a Bar Ray of Brooklyn, Jew York, Model 557T refrigerator that operated on a 60-cycle, ll5-volt alternating current. It had a regulator that could be used to adjust the steady state temperature to which the refrigerant is cooled. A schematic picture of tize assembled equipment is shown in Figure (15).

Figure 15. Block diagram of assembly of main experimental equipment.

BLOCK DIAGRAM CP ASSEGBLY OF MAIN EXPERIMENTAL EQUIPIENT

Experimental Procedure

The top plate was removed from the cell, the test cell was coupletely filled with the test material, n-hexadecane and the top plate was replaced and bolted down by screws to seal the cell. The cell was supported on an open cardboard box. The inlet and outlet tubes of the cooling chanber were connected by tygon tubings to the pump and to a methanol reservoir filled with methanol. The methanol reservoir was also connected to the refrigerator by a tygon tubing. The thermocouples were plugged in and the appropriate scales were set on the chart for continuously recording temperatures in the form of voltages. Initially, a two-way tap between the test cell and the refrigerator was used to shut off the flow of methanol from the refrigerator to the test cell and the pump was turned on to circulate methanol only within the rest of the equipment for a few minutes. In this way the temperature of the methancl in the system was made approximately uniform before being led into the cooling chamber of the test cell. It also becane possible to start recording temperatures at the same time that the coolant (metharol) started flowing into the cooling chamber of the test cell. Thus when it was certain that the system was ready, the recorder chart was set in motion, the two-way tap was used to allow enough flow rate of the coolant to ensure turbulent flow into the cooling chamber of the test cell, and the time was noted as $t=0$ at the start of the experiment. The room temperature was also : ?
read with a inercury thermometer at the beginning of the experiment and at regular intervals during the experiment. When all of the n-hexadecane or enougin of it had solidified (sometimes it took more than 90 minutes to solidify about three quarters of the amount of n-hexadecane), the experiment was terminated. The thermocouple readings were then translated from the voltage recordings of the chart to degrees Centigrade by using a table of emf's and temperatures for a copper-constantan thermocouple.

Polynomial fits for $f_{1}(t)$ and $f_{2}(t)$: As was stated in the theoretical analysis, the experimentally-determined temperature profiles of the bottom and the top plates were to be used to obtain polynomial fits, $f_{1}(t)$ and $f_{2}(t)$, respectively, that would act as time-dependent boundary conditions for the theoretical problem.of this study, $f_{1}(t)$ and $f_{2}(t)$ were obtained for each experiment by using exponential fits of the type
$T(t)=A+B \exp (-c(t) t)$ where $c(t)$ was a polynomial of degree 5 or less found by the least-squares fit. "A" corresponded to the final steady state temperature of tine cold bottom plate and the sum of A and B equalled the initial temperature at $t=0,1 . e .$, the room temperature T_{a} which, was fairly constant throughout the particular experimental run. Thus, if the final steady state temperature of the cold bottom plate Wis T cpf, then

$$
A=T_{c p f} \text {, and } A+B=T_{a} \text { or } B=T_{a}-T_{c p f}
$$

Thus, for a particular run, the fit to the temperature of the bottom plate was

$$
\begin{equation*}
f_{1}(t)=T_{c p f}+\left(T_{a}-T_{c p f}\right) \exp \left(-c_{1}(t) t\right)=T(t)_{\text {bottom plate }} \tag{120}
\end{equation*}
$$

and the fit to the temperature of the top plate was

$$
\begin{equation*}
f_{2}(t)=T_{c p f}+\left(T_{a}-T_{c p f}\right) \exp \left(-c_{2}(t) t\right)=T(t)_{\text {top plate }} \tag{121}
\end{equation*}
$$

The use of an exponential fit of this form was prompted by the following reasons. The first reason was that a polynomial fit of degree 5 or less still gave a standard deviatior between fitted temperature and experimental temperature that was too large compared to the error in readir.g the actual temperatures experimentally. A polynomial of degree more than 5 was thought to be unwieldy. Also, the round-off errors from the computing program became significant for deg. zes greater than 5. A different fit had to be found. The second reason was that the experimentally measured temperature of the bottom plate approached the profile of a decaying expcnential. It started off from room temperature and fell to a constant steady state temperature that depended oniy on the setting of tize refilgerator current. Since no part of the cell could be colder than the coolant being circulated by the refrigerator and since at the beginning of the experiment the cell and its entire contents were at a constant room temperature, it was decided that at the final steady state of the entire cell, the temperature would be equal to the steady
state temperature of the bottom plate, which, in turn, equalled the steady state temperature of the coolant as regulated by the refrigerator. Thus, the temperature pros files of the bottom and the top plates sould only differ by the values of the exponents, particularly c_{1} and c_{2}.

A computer program was written that would read in T_{a}, $T_{c p f}, T(t)$ and t, and also calculate $c(t)$ from the equation

$$
\begin{equation*}
c^{\prime}(t)=\frac{1}{t} \ln \left\{\left(T(t)-T_{c p f}\right) /\left(T_{a}-T_{c p f}\right)\right\} \text { for } t>0 \tag{122}
\end{equation*}
$$

where $c(t)$ is a polynomia: fit of $c^{\prime}(t)$ and $c^{\prime}(t)$ is calculated from experimental values by Equation 122. If T(亡) was the experimentally determined temperature for the bottom plate, then $c^{\prime}(t)$ was $c_{l}^{\prime}(t)$; if it was for the top plate, then $c^{\prime}(t)$ was $c_{2}^{\prime}(t)$. At $t=0, T(t)=T a_{a}$ and $\left\{c^{\prime}(t)\right\} t=0$. When $T(t)=T_{\text {cpf }}$ then $e^{-\left\{c^{\prime}(t)\right\} t}=0$. Thus $c^{\prime}(t)$ was calculated by equation (122) only for $t>0$ and for t such that $T(t)<T_{c p} f^{\text {• }}$ The computer program then would obtain a pclynomial fit $c(t)$ for $c^{\prime}(t)$ of degree 5 or less using the least-squared method. The values for $c(t)$ were then put into equation (120) or equation (121) to obtain $T(t)(f i t)=f(t)$. The sum of the squares of the differences between $T(t)(f i t)$ and $T(t)$ (experiment) was then calculated for each degree of $c(t)$. That jegree of $c_{1}(t)$ or $c_{2}(t)$, which gave a standard deviation of $T(t)$ (fit) from $T(t)$ (experimental) such that the standard deviation was minimum and also less than or equal to the error in reading $T(t)$ experimentalily, was taken as the best one to use in equation (120) or equation (121). The computer program has
been included in the appendix. Computer prograns for the pre- and the post-solidification problems have also been included in the appendix.

Estimation of ε : The convergence criteria used in calculating S_{j+1} was that if $\mid S_{j+1}($ old $)-S_{j+1}(n e w) \mid \leq \varepsilon$, then S_{j+1} was taken to have been calculated within the limits allowable by the truncation errors of the finite difference equations which were used. Then $S_{j+1}=S_{j+1}$ (new) for the $(j+1) s t$ time step. ε was calculated by considering the largest absolute value of the truncation errors in each of equations (78) to (9?). The largest truncation errors were

$$
\begin{align*}
& 0\left(k_{a} h_{a}^{2} M\right)+0\left(k_{a} h_{a}^{2} J\right) \tag{123a}\\
& 0\left(k_{a} h_{a} M\right)+0\left(k_{a} h_{a}^{2} J\right) \tag{1230}\\
& 0\left(k_{a} h_{a}^{2} M\right)+0\left(k_{a} h_{a} J\right) \tag{123c}
\end{align*}
$$

The orders of magnitude were replaced by the absolute values of each term in equation (123). Since k_{a} and h_{a} were fractions between 0 and 1 , the largest absolute value of the truncation error in calculating S_{j+1} was obtained irom either equation (123i) or equation (123c) as

$$
\begin{array}{r}
\varepsilon=a b s\left(k_{a} h_{a} M\right)+a b s\left(k_{a} h_{a}^{2} J\right) \tag{124a}\\
\text { or } \quad \varepsilon
\end{array}
$$

depending on the actual magnitudes of M, J, k_{a}, and ${ }^{\prime} a^{\circ}$
However, a value for ε which was larger than that given by either equation (124a) or equation (1240) had to be used so
as to account for rouni-off errors from the computer program for calculating S_{j+1}. The actual value of ε to be used was found by fixing M, J, k_{a} and h_{a}, and assuming smalier and smaller values of ε until such a value that either did not affect the accuracy of tine calculated S_{j+1} significantly or caused the computer to go into an indefinite loop. In the event that the computer went into a loop, the next higher value of ε was used. The value, $\varepsilon=0.0004$, which was used in the computer program for the present study was obtained in this manner. This value corresponded to 1.88% of the magnitude of the space increment h_{a} and to 0.04 , of the total height of n-hexadecane in the test cell. This, when the entire content of the test cell was frozen, the cal"价ated height of solld varied from that predicted by an exact solution of equations (2a) and (2b) by about $\pm 0.04 \%$ of the actual height of solld in the test cell.

COMPARISON OF THEORETICAL AND EXPERIMENTAL RUSULTTS

The experimental results given in this section were obtained for the test cell that was described previously. The test material was practical n-hexadecane ($n-C_{16}{ }^{1 \mathrm{H}} 34$) of molecular weight 226.45 and it was distributed by the Eastman Kodak Company for chemical purposes. It had small impurities that did not change its properties appreciably. It completely filled a void of the test cell of 4-in.-square cross-section and 1-15/32-in. height. The values of the parameters used to obtair: the theoretical result; were obtained from Northrop's final report ${ }^{(25)}$. Data from Northrop's report were: Density

Solld n-hexadecane $P_{s}=1.0772-8.41 \times 10^{-4} \mathrm{Tgm} / \mathrm{cm}^{3}$ for $\mathrm{T} \leq 289.9^{\circ} \mathrm{K}$
Liquid n-hexadecane $\rho_{L}=0.9726-6.813 \times 10^{-4} \mathrm{~T} \mathrm{gm} / \mathrm{cm}^{3}$

$$
\text { for } 289.9^{\circ} \mathrm{K} \leq T \leq 400.0^{\circ} \mathrm{K}
$$

Specific Heat

$$
\begin{gathered}
\text { Solid n-hexadecane } \mathrm{c}_{\mathrm{Ps}=0.5 \mathrm{cal} /\left(\mathrm{gm}^{\circ} \mathrm{o}_{\mathrm{K}}\right)}^{\text {for } 250^{\circ} \mathrm{K} \leq \mathrm{T} \leq 289.9^{n} \mathrm{~K}} \\
\text { Liquic n-hexadecane } \mathrm{c}_{\mathrm{PL}}=0.1626+1.164 \times 10^{-3_{\mathrm{T}} \mathrm{cal} /\left(\mathrm{gm}-\mathrm{o}_{\mathrm{K}}\right)} \\
\text { for } 289.9^{\circ} \mathrm{K} \leq T \leq 480.0^{\circ} \mathrm{K}
\end{gathered}
$$

Conductivity
Solid n-hexadecane $K_{s}=2.390 \times 10^{-3}-3.047 \times 10^{-6} \mathrm{~T}$ watt $/\left(\mathrm{cm}-{ }^{-} \mathrm{K}\right)$ for $250.0^{\circ} \mathrm{K} \leq \mathrm{T} \leq 289.9^{\circ} \mathrm{K}$

Liquid n-hexadecane $K_{L}=2.390 \times 10^{-3}-3.047 \times 10^{-6} \mathrm{Twatt} /\left(\mathrm{cm}-{ }^{\circ} \mathrm{K}\right)$ for $289.9^{\circ} \mathrm{K} \leq T \leq 425.0^{\circ} \mathrm{K}$

Solidification temperature

$$
T_{e}=289.9^{\circ} \mathrm{K}=16.7^{\circ} \mathrm{C}
$$

Latent heat of solidification
$H_{f}=102.0 \mathrm{Btu} / \mathrm{lb}=56.67 \mathrm{cal} / \mathrm{gm}$
Since the theoretical model of the present study assumed constant but different properties for the solid and the liquid phases, constant values were calculated from ilorthrop's report using average temperatures for those properties that were temperature depender.t. Since the solidification temperature was $289.9^{\circ} \mathrm{K}$ and the lowest temperature fourd in the test cell during a run was approximately $262.2^{\circ} \mathrm{K}$, the average of these temperatures, T av $=\frac{1}{2}(289.9+262.2)^{\circ} \mathrm{K}=276.1^{\circ} \mathrm{K}$, was substituted into the equations for the temperature dependent properties of the solld phase to obtain average values that were used as constant properties for the solid phase. Similarly, since the highest temperature encountered in the experiment was approximately $302.0^{\circ} \mathrm{K}$, the average temperature, $T_{L} a v=\frac{1}{2}(302+289.9)^{\circ} K=295.9^{\circ} K$, was used to calculate properties for tine liquid phase. Thus the values of the properties used fo: the present study were:
Density
Solld n-hexadecanc $\rho_{s}=0.845 \mathrm{gm} / \mathrm{cm}^{3}$
Liquid n-hexadecane $\rho_{L}=0.771 \mathrm{gm} / \mathrm{cm}^{3}$

Specific heat
Solld n-inexadecane $c_{p s}=0.5 \mathrm{cal} /\left(\mathrm{gm}-{ }^{\circ} \mathrm{K}\right)$
Liquid n-hexadecane $c_{P L}=0.507 \mathrm{cal} /\left(\mathrm{gm}-{ }^{\circ} \mathrm{K}\right)$
Conductivity
Solid n-hexadecane $K_{s}=1.549 \times 10^{-3}$ watt $/\left(\mathrm{cm}-0_{n}\right)$
$=2.22 \times 10^{-2} \mathrm{cal} /\left(\mathrm{cm}-\min -\mathrm{o}_{\mathrm{K}}\right)$
Liquid n-hexadecane $K_{L}=1.488 \times 10^{-3} \mathrm{watt} /\left(\mathrm{cm}-\mathrm{O}_{\mathrm{K}}\right)$
$=2.13 \times 10^{-2} \mathrm{cal} /\left(\mathrm{cr} \cdots \mathrm{n}-\mathrm{o}_{\mathrm{K}}\right)$
Thermal diffusivity
Solid n-hexadecane $\quad \alpha_{s}=K_{s} /\left(\rho_{s} c_{p_{s}}\right)=5.254 \times 10^{-2} \mathrm{~cm}^{2} / \mathrm{min}$ Liquid n-hexadecane $\alpha_{L}=K_{L} /\left(\rho_{L} c_{P L}\right)=5.457 \times 10^{-2} \mathrm{~cm}^{2} / \mathrm{min}$ Solidification temperature

$$
T_{e}=289.9^{\circ} \mathrm{K}
$$

Latent heat of solidification

$$
\mathrm{H}_{\mathrm{f}}=56.67 \mathrm{cal} / \mathrm{gm}
$$

Dimensionless variables

$$
\begin{array}{ll}
\lambda=\alpha_{s} / \alpha_{L} & =0.9627 \\
H=\left(\frac{\alpha_{S}}{\alpha_{L}}\right)\left(c_{P_{S}} T_{e} / H_{f}\right) & =2.463 \\
J=\left(\rho_{L} / \rho_{S}\right)\left(c_{P L} T_{e} / H_{f}\right) & =2.367 \\
\tau_{0}=\left(\alpha_{L} / h^{2}\right) t & =3.921 \times 10^{-3} \quad \text { where } t \text { is in min. } \\
h_{a}=\Delta z & =1 / 47
\end{array}
$$

Other values used were
$h=1-15 / 32$ in. $47 / 32$ in. $=3.73 \mathrm{~cm}$
$\Delta y=(4 z) h=\left(h_{a}\right) h=1,32$ in. $=7.9 \times 10^{-2} \mathrm{~cm}$
$t=255 \tau_{0}$ minutes
$t=15,300 \tau_{0}$ seconds
r wing the argument in the theoretical analysis of the concitions for staililty, equation (119b) was used to find $P_{\max }$ since λ was less than 2. Thus
$p_{\max }=0.5$ and $p \leq 0.5$
$k_{a, \max }=p_{\max } h_{a}^{2}=0.5 /(47)^{2}=2.26 \times 10^{-4}$
$\Delta t_{\max }=3.5 \mathrm{sec}=0.058 \mathrm{~min}$.

Thus, for the chosen $h_{a}=1 / 47$, any Δt less than 3.5 sec satisfied the stability criteria. Δt of 1.0 second and 2.0 seconds were used. They corresponded to values of k_{a} of 1/15. 300 and $2 / 15,300$, respectively. It was found (as a glance at Table 1 would show) that there was no significant difference between the temperature profiles calculated usi:g a lsecond time step and those calculated using a 2-second time step. The two-second time step rediced the computer time required for the calculations without affecting the accuracy of the results. Tables (1) to (7) and Figures (16) to (33) show the experimental results and the results of the theoretical analysis corresponding to eacin experimental run.

The only manner in which the experimental runs were different from one another was 1.? the values of one or both of the following two physical conditions: ambient temperature, $\dot{T}_{p_{p}}$, and the steady state temperature, $T_{c p f}$, to which the bcttom plate was cooltd. The earlier termination of some experimental runs compared to other runs was mostly arbitrary and it had nothing to do with operational requirements
or experimental limitations. For instance, the first three experimental runs (Runs 1, 2, and 3) were terminated soon after about one-third of the content of the test cell had solidified, while the remaining three experimental runs (Runs 4, 5, and 6) were terminated after about two-thirds of the content of the cell had solidified and before tise entire content of the cell had solidified. The maximum number of points that could be recorded on a graph of experimentallyobserved height of solid formed versus time was 4 since only four thermocouples were used.

In general, the experimental results of the tests performed show good agreement with the theoretical results obtained from the numerinal analysis. There was much better agreement σf experimental results with theoretical resulis for the pre-solidification problem than for the postsolidification problem. As time elapsed, the experimental results indicated a much slower docrease in temperature tinan that predicted by the tieoretical results. The height of solid formed, as indicated by the experiment, agreed well initially with that predicted by the theoretical calculations, but it became smaller than that predicted theoretically as time elapsed and as the solidification front approached the top plate of the cell. Thus, the theoretical analysis predicted, in the early parts of the experiments, about the same rate of solidification as was observed experimentally, but it predicted a faster rate of solidification than that
observed experimentally as the freezing front approached the top of the test cell.

The polynomial fits of the experimentally-observed temperature profiles of the bottom plate or the top plate agreed closely with the experimentally-determined temperature preíles themselves. The maximum standard deviation which was found between any experimentally-observed temperature profile and its polynomial fit was much less than the $\pm 1 . v^{3} \mathrm{~K}$ which was the estimated error in observing the temperature profile experimentaliy. Similarly, the maximum observed \&ifference between t* as found experimentally and t* as foun by numerical analysis was less than ± 2.0 seconds. It should be recalled that t^{*} was defined as the time interval between the start of cooling of the bottom plate and the initiation of solidification of n-hexadecane on the bettiom plate. In each of the graphs of the height of solld formed versus time, t* represents the interval between ta0 and the point where the curve intersects the time coordinate.

One reas on why the experimental and theoretical results agreed during the early stages of solidification, but dirfered during the latter stages was perhaps t'aat the neat gained from the surroundings during the early period of solidification, when the freezing front was still near the cold plate, was not yet sufficient to cause any appreciable change in the rate at which heat was being withdrawn from the
cold plate by the refrigerated coolant. But as tine passed and as the amount of the liquid phase which was left becane sir. . ler the heat gained from the surroundings began to have appreciable ffects on the cooling process and therefore slowed down the rate of solidification. However, the onedimensional model which was used to obtain the theoretical results essentially ignored heat gains or losses in all directions but tiat direction in rhich the one-dimensional model was formulated, Consequently, the theoretical result predicted a much faster rate of solidification than tinat observed experimentally.

Table 1

Comparis on of temperature profiles obtained theoretically (at $t=48.0 \mathrm{sec}$) using $1.0-s e c$ and $2.0-s e c$ time steps. Run 1: Preasolidification problem.

Distance from bottom plate y cm	$\begin{aligned} & \text { Temperature, } o_{\mathrm{K}} \\ & (1.0-\mathrm{sec} \text { time step) } \end{aligned}$	$\begin{gathered} \text { Temperature, } o_{\mathrm{K}} \\ (2.0-\text { see time stek) } \\ \hline \end{gathered}$
0.00	290.6	290.6
0.16	296.4	296.4
0.32	298.7	298.7
0.48	299.4	299.4
0.63	299.6	299.6
0.79	299.6	299.6
0.95	299.7	299.7
1.11	299.7	299.7
1.27	299.7	299.7
1.43	299.7	299.7
1.59	299.7	299.7
1.75	299.7	299.7
1.91	299.7	299.7
2.06	299.7	299.7
2.22	299.7	299.7
2.38	299.7	299.7
2.54	299.7	299.7
2.70	299.7	299.7
2.86	299.7	299.7
3.02	299.7	299.7
3.18	299.7	299.7
3.33	299.7	299.7
3.49	299.7	299.7
3.65	299.7	299.7
3.73	299.7	299.7
	$t *=51.0$	t* $=51.0$

Run 1

Table 2

Least-squares polynomial fits, $f_{1}(t)$ and $f_{2}(t)$, to experi-mentally-measured temperatures of the bottom and the top piates respectively: Run 1.
$T_{a}=$ Ambient temperature $\quad=299.7^{\circ} \mathrm{K}$
${ }^{T}{ }_{c p f}=$ Final steady-state temperature
of the bottom plate
$=262.7^{\circ} \mathrm{K}$
$f_{1}(t)=$ Polynomial obtained from a least-squares fit of experimentally-measured $\begin{aligned} & \text { temperatures of tiae bottom } \\ & \text { plate }\end{aligned}=262.7+37.0 e^{-c_{1} t} \pm 0.4^{0} \mathrm{~K}$ where $c_{1}=0.14620836+0.34113500 t-0.11745415 t^{2}+$ $1.7961587 \times 10^{-2} t^{3}-1.3204283 \times 10^{-3} t^{4}+$ $3.8116175 \times 10^{-5} t^{5}$.
and t is measured in minutes: $0.0 \leq t \leq 17.9$
$f_{2}(t)=$ Polynomial obtained from a least-squares f1.t of experimentally measured temperatures of the top plate $\quad=262.7+37.0 e^{-c_{2}{ }^{t} \pm 0.1^{\circ}{ }_{K}}$
where $c_{2}(t)=-7.1034089 \times 10^{-4}+8.5043082 \times 10^{-4} t-$ $6.4550809 \times 10^{-5} t^{2}+1.7082712 \times 10^{-6} t^{3}$.
and t is measured in minutes: $0.0 \leq t \leq 17.9$

Ruṇ l (cont.)

Figure 16. Temperature profiles (experimental and theoretical) for the pre-solidification problem (Run 1).
308

Run 1 (cont.)

Figure 17. Temperature profiles (experimental and theoreticai) for the combined pre-solidification and post-solidification problems: Run 1.

Theoretical

Experimental Theoretical

\circ+	1	Bottom-plate thermocouple
	2	Thermocouple at $14 \mathrm{~h} / 47$ from bottom plate
Δ	3	Thermocouple at 30h/47 from bottom plate
\square	4	Thermocouple at h from bottom plate

Run 1 (cont.)

Figure 18. Height of solid n-hexadecane as a function of time: Run 1.

Run 2

Table 3
Least-squares fits, $f_{1}(t)$ and $f_{2}(t)$, to experimentallymeasured temperatures of the bottom and top plates, respectively: Run 2.
$\mathrm{T}_{\mathrm{a}}=$ Ambient temperature $=300.3^{\circ} \mathrm{K}$
$T_{\text {cpr }}=$ Final steady-state temperature of the bottom plate
$f_{1}(t)=263.3+37.0 e^{-c_{1} t} \pm 0.5^{0} \mathrm{~K}$ where $c_{1}=0.12787341+0.42746695 t-$ $0.17143748 t^{2}+3.0078475 \times 10^{-2} t^{3}-$ $2.4362813 \times 10^{-3} t^{4}+7.3510422 \times 10^{-5} t^{5}$
and t is measured in minutes: $0.0 \leq t \leq 23.0$
$f_{2}(t)=263.3+27.0 e^{-c_{2} t} \pm 0.1^{\circ} K$
where $c_{2}=-4.7386052 \times 10^{-4}+6.4491732 \times 10^{-4} t-$

$$
3.8541947 \times 10^{-5} t^{2}+8.3964074 \times 10^{-7} t^{3}
$$

and t is measured in minutes: $0.0 \leq t \leq 23.0$

Run 2 (cont.)

Figure 19. Temperature profiles (experimental and theoretical) for the pre-solidification proolem: Run..2.

Run 2. (cont.)

Figure 20. Temperature profiles (experimental and theoretical) for the combined presolidification and post-solidification problems: Run 2.

Theoretical

Experimental. Theoretical

```
0 1 Bottom-plate thermocouple
+ 2. Thermocouple at 14h/47 from
    bottom plate
\Delta 3 Thermocouple at j0n/47 from
    bottom plate
    4 Thermocouple at h from
        bottom plate
h=47/32 1n. = 3.73 cm.
```


Run 2 (cont.)

Figure 21. Height of solid n-hexadecane as a function of time: Run 2.

Run 3

Table 4
Least-squares fits, $f_{1}(t)$ and $f_{2}(t)$, to experimentallymeasured temperatures of the bottom and top plates, respectively: Run 3.

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{a}}=\text { Ambient temperature }=301.5^{\circ} \mathrm{K} \\
& { }^{T} \text { cpf } \text { Final steady-state temperature of the botiom plate } \\
& =265.3^{\circ} \mathrm{K} \\
& f_{1}(t)=265.3+36.2 e^{-c_{1} t} \pm 0.3^{o_{K}} \\
& \text { where } c_{1}=0.24807854+0.19299560 t-5.7222949 \times 10^{-2} t^{2} \\
& +7.2362357 \times 10^{-3} t^{3}-4.2544939 \times 10^{-4} t^{4}+ \\
& 9.3636101 \times 10^{-6} 5 \\
& \text { and } t \text { is measured in minutes: } 0.0 \leq t \leq 34.3 \\
& f_{2}(t)=265.3+36.2 e^{-c_{2} t} \pm 0.3^{O_{K}} \\
& \text { where } c_{2}=-3.1603307 \times 10^{-4}+4.2309680 \times 10^{-4} t- \\
& 2.8095101 \times 10^{-5} t^{2}+9.1612643 \times 10^{-7} t^{3}- \\
& 1.0792678 \times 10^{-8} t^{4}
\end{aligned}
$$

and t is measured in minutes: $0.0 \leq t \leq 34.3$

Run 3 (cont.)

Figure 22. Temperature profiles (experimental and theoretical) for the pre-solidification problem: Run 3.

Run 3 (cont.)

Figure 23. Temperature profiles (experimental and theoretical) ior the combined presolidification and post-solidification problems: Ruan 3.

Theoretical

Experimental Theoretical

Run 3 (cont.)

Figure 24. Height of solid n-hexadecane as a function of time: Run 3.

Run 4

Table 5
Least-squares fits, $f_{1}(t)$ and $f_{2}(t)$, to experimentallymeasured temperatures of the bottom and the top plates, respectively: Run 4.
$\mathbf{T}_{\mathbf{a}} \quad=$ Ambient temperature $=300.9^{\circ} \mathrm{K}$
$T_{c p r}=$ Final steady-state temperature of the bottom plate = $264.0^{\circ} \mathrm{K}$
$f_{1}(t)=264.0+36.9 e^{-c} I^{t} \pm 0.5^{0}{ }_{K}$
where $c_{1}=0.17001907+0.26454099 t-7.3114020 \times 10^{-2} t^{2}$ $+7.9185015 \times 10^{-3} t^{3}-3.8016733 \times 10^{-4} t^{4}+$ $6.6739894 \times 10^{-6} t^{5}$
and t is measured in minutes: $0.0 \leq t \leq 61.5$
$f_{2}(t)=264.0+36.9 e^{-c_{2} t} \pm 0.10_{K}$
where $c_{2}=-3.3089768 \times 10^{-4}+1.4827702 \times 10^{-4} t-$ $2.2737729 \times 10^{-6} t^{2}+1.0374753 \times 10^{-8} t^{3}$
and t is measured in minutes: $0.0 \leq t \leq 61.5$

Run 4 (cont.)

Figure 25. Temperature profiles (experimental and theoretical) for the pre-solidification problem: Run. 4.

Run 4 (cont.)

Figure 26. Temperature profiles (experimental and theoretical) for the combined presolidification and post-solidification problems: Run 4.

Theoretical

Experimental Theoretical

0	1	Bottom-plate thermocouple
+	2	Thermocouple at $14!1 / 47$ from bottom plate
Δ	3	Thermocouple at bottomplate
\square	4	Thermocouple at h from bottom plate

$h=47 / 32$ in. $=3.73 \mathrm{~cm}$.

Run 4 (cont.)

Figure 27. Height of solid n-hexadecane as a function of time: Run 4.

Run 5
Table 6

Least-squares fits, $f_{2}(t)$ and $f_{2}(t)$, to experimentallymeasured temperatures of the bottom and top plates, respectively: Run 5.
$\mathrm{T}_{\mathrm{a}}=$ Ambient temperature $=297.8^{\circ} \mathrm{K}$
$T_{\text {cpf }}=262.70_{K}=2 t e a d y-s t a t e$ temperature of the bottom plate
$f_{1}(t)=262.7+35.1 e^{-c_{1} t} \pm 0.4^{0} K$
where $c_{1}=6.5019191 \times 10^{-2}+0.40147416 t-$ $0.14185947 t^{2}+2.2468639 \times 10^{-2} t^{3}-$ $1.6686646 \times 10^{-3} t^{4}+4.7213390 \times 10^{-5} t^{5}$
and t is measured in minutes: $0.0 \leq t \leq 61.0$
$f_{2}(t)=262.7+35.1 e^{-c_{2} t} \pm 0.2^{0} \frac{1}{4}$ where $c_{2}=-3.3434403 \times 10^{-4}+2.4737272 \times 10^{-4} t-$ $5.7413214 \times 10^{-6} t^{2}+5.2857290 \times 10^{-8} t^{3}-$ 2.766090; $\times 10^{-10_{t}{ }^{4}}$
and t is measured in minutes: $0.0 \leq t \leq 61.0$

132

Run 5 (cont.)

Figure 28. Temperature profiles (experimental and theoretical) for the pre-soildification problem: Run 5.
thiperature, $\mathrm{T}_{\text {lo }},{ }^{\circ} \mathrm{K}$
(280

Fiun 5 (cont.)

Figure 29. Temperature profiles (experimental and theoretical) for the combined presolldification and post-solidification problems: Rian 5.

Theoretical

Experimental Theoretical

0	1	Bottom-plate thermocouple
+	2	Thermocouple at $14 \mathrm{~h} / 47$ from bottom plate
Δ	3	Thermocouple at 30h/47 from bottom plate
\square	4	Thermocouple at h from bottom plate

Run 5 (cont.)

Figure 30. Height of solld n-iexadecane as a function of time: Run 5.

Run 6
Table 7

Least-squares fits, $f_{1}(t)$ and $f_{2}(t)$, to experimentallymeasured temperatures of the bottom and the top plates, respectively: Run 6 .

$$
\begin{aligned}
& T_{a} \quad \text { Ambient temperature }=298.2^{\circ} \mathrm{K} \\
& T_{\text {cpr }}=\text { Final steady-state temperature of the bottom plate } \\
& \text { = } 261.7 \\
& \Gamma_{1}(t)=261.7+36.5 e^{-c_{1} t} \pm 0.5^{0} K \\
& \text { where } c_{1}=6.6373908 \times 10^{-2}+3.6587915 \times 10^{-1} t- \\
& 1.1399978 \times 10^{-1} t^{2} \times 1.4684732 \times 10^{-2} t^{3}- \\
& 8.4706573 \times 10^{-4} t^{4}+1.7879879 \times 10^{-5} t^{5}
\end{aligned}
$$

and t is measured in minutes: $0.0 \leq t \leq 62.0$
$f_{2}(t)=261.7+36.5 e^{-c_{2} t} \pm 0.3^{0_{K}}$
where $c_{2}=-3.9221055 \times 10^{-4}+3.7329234 \times 10^{-4} t-$ $1.0960065 \times 10^{-5} t^{2}+1.3965306 \times 10^{-7} t^{3}=$ $8.2314786 \times 10^{-10} t^{4}+1.8183611 \times 10^{-12} t^{5}$
and t is measured in minutes: $0.0 \leq t \leq 62.0$

Kun 6 (cont.)

Figure 31. Temperature profiles (experimental and theoretical) for the pre-solidification problem: Run 6.

Run 6 (cont.)

Figure 32. Temperature profiles (experimental and theoretical) for the combined pre. solidification and post-solidification problems: Iun 6.

Theoretical

Experimental Theoretical

0	1	Eottom-plate thermocouple
+	2	Thermocouple at $14 \mathrm{~h} / 47$ from bottom plate
Δ	3	Thermocouple at 30h/47 from bottom plate
\square	4	Thermocouple at h from bottom plate

Run 6 (cont.)

Figure 33. Height of solid n-hexadecane as a function of time: Run 6.

CONCLUSIOiNS

In general, good agreement between experimental and theoretical results has been observed. Therefore, it seems obvious to conclude that tine numerical analysis developed in this study has certain advantageous characteristics tinat make it extremely suitable for the study of problems involving unidimensional melting or freezing. However, it has some disadvant:ages, too.

The applicability of the numerical method developed here may be extended to cylindrical and spherical coordinates and for other geometric systems for which crosssectional areas are functions of the distance from the origin only. The method aiso reduces the time and the memory bank used up by the computer program as compared to those used in explicit finite difference formulations. The use of polynonial fits of the temperatures of the boundaries, as has been done in this study, makes it unnecessary to calculate actual heat-transfer rates through the boundaries in order to solve similar problems with time-dependent boundary conditions.

However, one obvious dicadvantage of the method used in tinis study, is that it is approximate. Heat gains or losses were neglected in ail but one dimension. The boundary conditions which wers used to solve the one-dimensional model
problem were only approximations of the actual boundary conditions or the experimentally-observed boundary conditions. Convection in the liquid phase was also neglected. Truncation errors in the formulation of the finite differe. ce equations and the round-off errors in the computer pr sraras which were used to calculate the theoretical resuits also contributed to the errors in the theoretical results. Average but different physical properties were used for the liquid and solid phases in the theoretical analysis whereas the actual physical properties of the two phases were temperature dependent. In addition to all these sources of error, there was some error in obtaining the experimental data, mainly due to built-in errors in the calibration of the experimental equipment and the jucgement of this experimenter.

Although a good general agreement was obtained between experimental and theoretical results, it must be cautioned that the numerical treatment used in this study is rather involved and could haraly be applied to freezing or melting; in systems witn more than one coordinate cimension or in problems in which convective effects are being considered. In such cases, the assumption of partially-solidified elements should be eliminater and more conventional procedures (explicit finite difference formulations, "super-heat" method, "pseudo-specific heat" method, etc.) should be applied.

More accurate results and better theoretival models
would be obtained if heat gains, convective effects, interface area effects and other sources of error could be included in the theoretical analysis. 'Iwo or tiree-dimensional models should also be studied in order to obtain better theoretical results. It would also be extremely convenient to develop a more refined method of measuring heat inputs and losses and of establishing the actual time-dependent boundary conditions.

A study that included the study of convective effects as the test cell was tilted at various angles would be desirable, since convection definitely affects the solidification phenomena. In such a study it would no longer be necessary to minimize convection in the liquid phase by cooling the test cell from below. In the same category as a study of convective effects would be a study of the effects of mechanical shahing or vibrations on the solidification process. It is evident that the rate of heat transfer is the limiting factor for the practical applications of fusivle materials as thermal controllers. Thus efforts should be made to increase the heat-transfer area and to improve the performance of the cell as a whole.

Nucleation was negligible in the present study, but it would be of interest to study the solidification of materials In which the effects of nucleation are appreciable.

Since outer space is virtually a vacuum, a study of the solidification process in situations in which the test cell
is kept in a vacuum could be useful in predicting the performance of the test material in outer space as a thermal controller. In such an experiment, care should be taken to prevent leaks from developing in the test cell. Radiation would be the main mode of free heat transfer between the test cell and its surroundings, besides the forced heat transfer due to the circulating coolant.

NORENCLATURE

Text	Computer	
A	AO	Constant term in an exponential equation
A_{1}		Coefficient of $\theta_{i-1, j+1}$ in a tridiagonal matrix equation
α_{L}		Liquic-phase tizermal diffusivity
α_{s}		Solid-phase thermal diffusivity
$\mathrm{a}_{\text {R }}$		Fraction of a time step between the point ($R, j+1$) and the intersection of the interface with the $R^{\text {th }}$ space grid line
B	Al	Constant in an exponential equation
B_{1}		Coefficient of $\theta_{i, j+1}$ in a tridiagonal matrix equation
b_{1}	SMALLB (I)	A term in the solution to a tridiagonal matrix equation for the $i^{\text {th }}$ space node
c_{1}		Coefficient of $\theta_{i+1, j+1}$ in a tridiagonal matrix equation
$c(t)$		Coefficient of the exponent in an exponential equation; a value obtained by a leastsquares fit of $c^{\prime}(t)$
$c^{\prime}(t)$		Coefficient of the exponent in an exponential equation as calculated directly from experimentally-measured temperatures
$c_{1}(t)$	C(I)	Coefficient of the exponent in a leastsquares exponential fit of the temperatures of the bottom plate
$c_{2}(t)$	C(I)	Coefficient of the exponent in a leastsquares exponential fit of the temperatures ${ }^{\circ}$ of the top plate

Text	Computer	
${ }^{\text {p }}$ pL		Liquid-phase specific heat
${ }^{\text {cps }}$		Solld-phase specific heat
d_{1}	$D(I)$	Right-hand side of the $1^{\text {th }}$ tribiagonal matrix equation
$\Delta \tau_{,} \Delta \tau_{0}$	AK	Dimensionless time increment
Δt		Time increment (sec)
Δz	AH	Dimensionless spatial increment
Δy		Spatial increment (cm)
$\mathrm{f}_{1}(\mathrm{t})$	$\begin{aligned} & F 11, F 1, \\ & F(I, 1) \end{aligned}$	Polynomial fit to experimentally-measured temperature profile of the bottom plate
$\mathrm{f}_{2}(\mathrm{t})$	$\begin{aligned} & \text { F21,F2, } \\ & F(I, 2) \end{aligned}$	Polynomial fit to experimentally-measured temperature profile of the top plate
H_{f}		Heat of solidification
h		Total height of n-hexadecane in a test cell at the start of an experiment
$h_{\text {a }}$	AH	Magnitude of finite dimensionless spatial step
J	AJ	Dinensionless constant
K_{L}		Liquid-phase thermal conductivity
$\mathrm{K}_{\text {S }}$		Solld-phase thermal conductivity
${ }^{0} \mathrm{~K}$,	Degree Kelvin
$k_{\text {a }}$	AK	Magnitude of finite dimensionless time step
L_{0}		Subscript referring to the liquid phase in the pre-solidification problem
L		Subscript referring to the liquid phase in the solidification problem

Text	Computer	
λ	GA	Dimensionless constant, α_{s} / α_{L}
M	AM	Dimensionless constant
N	N	Total number of spatial nodes, with the first node numbered ' 0 '
$0\left(k_{a}\right)$		"Of the order of k_{a} "
p	P	$k_{a} / h_{a}{ }^{2}$
q		Heat, flow per unit area per unit time
q_{1}	$Q(I)$	A Lerm in the solution to a tridiagonal matrix equation for the $i^{\text {th }}$ spatial node
R	R	Number of the spatial grid line (in the solld phase) which is on or next to the interface of solidification
ρ_{L}		Liquidi-phase density
ρ_{s}		Solld-phase density
S(τ)	$\begin{aligned} & \text { BIGESS,S2, } \\ & \text { S3,S4 } \end{aligned}$	Dimensicnless height of the solid phase which has been formed up to the dimensionless time, τ
s		Subscript referring to the solid phase in the solidification problem
T	T	Temperature
Ta	TA	Amident temperature
$\mathrm{T}_{\text {cpf }}$	AO	Final steady-state temperature of the bottom plate
T_{L}	$T \varnothing$	Liquid-phase temperature in the presolidification problem
T_{L}	T®	Liquid-phase temperature in the solidification problem

Text	Computer	
$\mathrm{T}_{\text {s }}$	TS	Solld-phase temperature
Te	TE	Equilibrium temperature of solidification
\pm	TIIE	'rime (sec or min)
t*	TIMST	Time interval from the start of cooling to the start of solidification at the bottom plate (sec)
	TTP	Last experiment time at which a computer program should end
$\theta_{1, j}$		Dimensionless temperature for node located on spatial coordinate 1 and time coordinate j
${ }^{\text {L }}$ O	TETAZø	Dimensionless liquid-phase temperature in the pre-solidification problem
${ }^{\boldsymbol{L}} \mathrm{L}$	TZø,TLø	Dimensionless liquid-phase temperature for the solidification problem
$\boldsymbol{\theta}_{s}$	TSS,TS	Dimensionless solid-phase temperature
τ_{0}	TAUZRø	Dimensionless time for the pre-solidification problem
τ_{0}^{*}	TAUOS'T	Dimensionless time interval from the start of cooling to the start of solidification at the bottom plate
τ	TAU	Dimensionless time for the solidification problem
x_{j+1}	x 1	Fraction of a spatial element that has solidified by the $(j+1)$ st time step
x_{j}	Xø	Fraction of a spatial element that has solidified by the $j^{\text {th }}$ time step
y	Y(I)	Spatial coordinate

Text	Comp	
$\mathrm{Y}(\mathrm{t})$	Y1	Height of the solld phase formed up to time t
2	Z (I)	Dimensionless spatial coordinate
ε	CD	Maximum error in calculating the dimensionless height of the solid-phase during a dimensionless time step

Subindices Subscripts

| 1 | IIdentifying number for finite spatial
 increment |
| :--- | :--- | :--- |
| j | $J \quad$Identifying number for finite time
 increl ?nt |

LITERATURE CITED

1. Carslaw, H.S., and Jaeger, J.C., Conduction of heat in solids: Oxford Univ. Press, 2nded., p. 282-296 (1959).
2. Stefan, J., Uber die Theories der Eisbildung insbesondere über die Eisbildung in Polarmere: Annalen der Physik und Chemie, v. 42, p. 269 (1891).
3. Saito, S., On the distribution of temperature in steel ingots during cooling: Tohoku Imperial Univ. Science Reports, v. 10, p. 305 (1921).
4. Pekeris, C. L., and Silchter, L. B., Problem of ice formation: Jour. Applied Physics, v. 10, p. 135 (1939).
5. Danckwerts, P.V., Unsteady-state diffusion or heat conduction with moving boundary: Trans. Faraday Soc., v. 46, p. 701 (1950).
6. Booth, F., A note on the theory of surface diffusion reactions: Trans. Faraday Soc. (London), v. 44, p. 796 (1948).
7. Kreith, F., and Ronie, F.E., A study of the thermal diffusion equation with boundary conditions corresponding to solidification or melting of materials initially at the fusion temperature: Proc. Phys. Soc., v. 68, p. 277 (1955).
8. Chambre, P.L., On tie dynamics of phase growth: Quarterly Jour. of Mect.. and Applied Math., v. 9, 224 (1956).
9. Chao, C.C., and Weiner, J.H., Heat conduction in semiinfinite solid in contact with linearly increasing mass of fluid: Quarterly of Applied Math., v. 14, F. 214 (1956).
10. Onsager, L., Reciprocal relations in irreversible processes: Physical Review, v. 37, p. 405 (1931).
11. Chambers, L.G., A variational principle for the conduction of heat: Quarterly Jour. of Hech. and Applied Math., v. 9, p. 234 (2956).
12. Biot, M. A., and Daughaday, H., Variational analysiu of ablation: Jour. Aerospace Sciences, v. 29, p. 227 (1962).
13. roodman, T.R., The heat-balance integral and its application to problems involving a change of phase: Trans. A.S.M.E., V. 80, p. 335 (1958).
14. Karman, T. von, and Pohlhausen, K., Zur naherungsweisen Integration der Differentialgleichungen der laminaren Grenzscilcht: Zeitschrift fur Angewandte Math. und Mech., v. 1, p. 252 (1921).
15. Goodman, T.R., and Shea, J.J., The melting of finite slabs: Trans. A.S.M.E., Jour. Applied Mech., v. 27, p. 16 (1960).
16. Poots, G., As approximate treatment of a heat conduction problem involving a two-dimensional solidification front: Int. Jour. Heat and Mass Transfer, $\dot{\text { v. 5, p. }} 339$ (1962).
17. Weiner, J.ll., Transient heat conduction in multiphase media: Brit. Jour. Applied Physics, v. 6, p. 361 (1955).
18. Rubinishtein, L.I., Cn heat conduction in a multilayer medium with phase transitions: Doklady Akzdemile Nauk Novala Serles, v. 79, p. 221 (1951).
19. Adams, C.M., Thermal considerations in freezing: Liquid metals ard solidification: Am. Soc. for Metals, p. 187 (1958).
20. Dusinberde, G. M., Numerical methods for transient heat flow: Trans. A.S.M.E, v. 67, p. 703 (194
21. Miller, M, L., Transier'i one-dimensional heat-conduction analysis for heterogeneous structures including an aviating surface: A.S.M.E. Paper ivo. 59-1HT-22. (1959).
22. Ehrlich, L.W., A numerical method of solving a heat flow problem with moving boundary: Jour. Assoc. Computing Machinery, v. 5, no. 2, p. 161-176 (1958).
23. Pujado, P.R., Melting of a finite paraffin slab: Master of Science Thesis no. T-1215, Colorado School of Mines, Golden, Colorado (1968).
24. Shlosinger, A.P., and Bentilla, E.W., Thermal control by use of fusible materials: Interim Report, Northrop Corporation, HSL65-16, Contract IJAS8-11163 (1955).
25. Bentilla, E.W., Sterrett, K.F., and Karre, L.E., Thermal control by use of fusible materials: Final report, Northrop Corporation, NSL65-16-1, Contract NAS8-11163 (1966).
26. Bannister, T.C., Space thermal control using phase change: NASA Tech. Memo., iNASA TMX-53402 (1966).
27. Bannister, I.C., and Bentilla, E.W., Study on thermal control by use of fusible materials: Inst. Environmental Sci., Ann. Tech. Mtg. Proc., p. 593-607 (1966).
28. Sinarma, O.P., Rotenberg, M., and Penner, S.S., Phasechange problems with variable surface temperatures: A.I.A.A. Jours, v. 5, no. 4, p. 677-682 (1967).
29. Grodzka, P.G., and Fan, C., Thermal control by freezing and melting: Interim report, Lockheed Missiles and Space Company, HREC-il23-1, LMSC/iARECA 791342, Contract NAS 8-21123 (1968).
30. Muehlbauer, J.C., and Sunderland, J.E., Heat conduction with freezing and melting: App?ed Kechanics Review, y. 18, no. 12, p. 951-959 (1965).
31. Sanborn Company, Sanborn low level preamplifier, kodels 150-1500, 150-1500A instruction manual: Sanborn Company, Waltham 54, Massachusetts.
32. Chemical Rubber Company, CRC lab apparatus: The Chemical Rubber Co., Cleveland, Ohio, p. 20 (1959).
33. Brown, Jr., A.R., Subroutine Fit ($X, i, i f, K, B, I P$), Colorado School of Mines, January 1967.

APPLENDIX

FORTRAN IV Computer Program for obtaining exponential fits to experimentally-measured temperatures of the bottom and the top plates.

The subroutine which was called in this program had been written by A.R. Brown, Jr. (33) for obtaining ordinary polynorial fits by the least-squares method. The subroutine was modified before being used in this particular program.

APPENDIX

FORTKAis IV Computer Program for solving the pre-solidification problem.

20 ルO $211=1$ •N1
TETA／O（1）$=T / 0$（1）
2l TO（I）＝T（＂TFIへZO（I）
GOTO 19
$2.2 \quad v=(T E T A / O(1)-1) /.(T E T h 70(1)-120(1))$
$v 1=v+!$
r20（1）＝1．0
DO $23 I=2$ on
23 T $70(I)=(V) * T E T A L O(I-1))+(1--2 . * V 1)$＊VETAZO（I））＋（VI＊TFYAZO（I＋1））
TAUOST $=$ TAUZHO－（1．$-V) * A K$
IIAST＝36300．0＂TAUOST
$S=0.0$
D） $171=0, \mathrm{~K} 2$
$K 4=K T-1$
17 S＝S＊TAUNST＋日（K．4，2）
TZO（：91）$=(100+11$ \＆EXPF $(-S * T A U O S T)) / T E$
$0050 \quad I=1, N 1$
$50 \quad T 0(1)=T E * T Z O(1)$
PRINT GY，TAUNST，TIMST
PRINT 7
UO LH I＝2，Noz
1H PRINT $H \cdot 2(1), 110(1), Y(1), T O(I)$
PRI：NT $8, Z(N 1), T Z O(N 1), Y(N 1), T O(N 1)$
$I=X E X I T F(O)$
ENU

ERASARLE STCRAGE 12200 TO 15143			
TAU SUB ZERO＝		OOOF OU TIM	． 000000000 E
2	TETA SUB ZEPO	Y	TEMPERATURE
.00000	1．0362243876	． 0000000000	$.3003600 E 03$
$\begin{array}{r} .04255 \\ .08511 \\ \hline \end{array}$	1.0362243876	． 1587499984	． 3003600 E 03
	1.0362243876	． 3174999975	． 3003600803
$\begin{array}{r} 12706 \\ .17021 \\ \hline \end{array}$	$1.0362243 \times 1 \%$	．4762500018	$.3003600 E 03$
	1．0362243676	． 6344999949	． $3003600 E 03$
$\begin{array}{r} .21277 \\ .25532 \end{array}$	1.0362243876	． 7937499993	． $3003600 E 03$
	1.0362243676	． 4524999931	． 3003600 F 03
$\begin{array}{r} .29787 \\ .34043 \\ \hline \end{array}$	1.0362243876	1.1112499908	． 3003600 O 03
	1.03622438376	1.2699999384	－3003600E O3
$\begin{array}{r} .38298 \\ -42553 \\ \hline \end{array}$	1.0362243876	J．4287499860	． 3003600 E 03
	1.03306243876	1.5874999985	$.3003600 E 03$
． 46809	1.0362243876	1.7462499812	． 300.3600 E 03
． 51064	1．03622434316	1.9050000086	． 3003600 E 03
． 55319	i $=0362243076$	2.0637449839	． 300360 VE 03
． 59514	1.0362243876	2.2224990825	．3003600t 03
$\begin{array}{r} 63430 \\ .68085 \end{array}$	1，0362243676	2．3812499191	－30036UCE 03
	1.03622434376	2．5394099768	．3003600L 03
． 72340	1．0362243876	2．6967500042	． 3003600 E 03
． 76590	1.0362243876	2.8574949720	－3003600E 03
－80851	1.036224 .3676	3.0102499771	． $3003600 E 03$
． 851010	1.0302243876	3.1750000045	$.3003600 E 03$
$\begin{array}{r} .89362 \\ .93611 \end{array}$	$1.036{ }^{\prime 2} 243876$	3．3331499723	． 3003600 E 03
	1.036 C 243676	3.49249996 .49	．300360CE 03
． 918372	1.0362243870	3.6512449675	－30036UCE 03
1.00000	1.0362243816	3.72106249663	． 30036000

APPEENDIX

FORTRAi IV Computer Program for solving the solidification problem.

\qquad

15,1


```
-ini.
```


 $15:$ SMEGSSIMIETRTI


```
776 TETッSS(1)この。"
```



```
1001 4s! :SEAV
```



```
\(1003 \quad\) SEPP
\(1004 \quad\) Sla(10S \(\# 4 K) / 1.5\)
1005 475 "אTaTan-TAMI
1006 It(a'S(ispl)-N.011250216je101
1007 liv Li=1
1010 rivin 162
\(1011 \quad 111 \quad 1 k=3\)
1012 1:2 If(b"。EU.D) 万Li TV 93
1015 RUTr. 64
1016 C3 FRIHT I3N, XJ,IF(i, AWJ
\(1017 \quad\) RKINT 9 TAU,T1एE
1020 FRIiAT 2́
\(1021 \quad\) il 3 ? \(1=1, \mathrm{Nl}\)
2022 FRIMT lo, L(I)!Y(I),TZU(I), TJ(I),TS(I),TETAES(I)
1024 - PKINT 24, 己lGRSS,U
1025 FRINT 25,VI,lid
\(1026 \quad y=5\)
\(1027 \quad L M=L^{++1}+1\)
1030 IF (TIME-TTP) 64,64,525
1031535 RKIITT 526.
1032526 FOK, 1 ATI//10HTHF DEED 15 CONEI
1033 LOC S10p
1034 END
```

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

