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ABSTRACT

The goal of this investlgation was to contribute to tne
understanding of solidification as 1t affects the performance
and the suitability of pnase-change materials in thermal
control devices. A unidimensional mathematical model was
established for the solidification of a liquid paraffin of
finite geometry. The method was based on the numerical solu=-
tion by computer of the two-phase heat-conduction equations
with moving interface and variable boundary conditions.
Constant properties were assumed for each phase although the
properties varlied from one phase to the other. The model
assumed that internal convective effects could be neglected.,
Super-cooling and nucleation wers also assumed to be insignifi-
cant,

An experimental system was set up to verify the theoret-
ical analysls and results., The system conslsted of a
rectangular cell which was filled with a paraffin, n-hexadecane
(“'016H3n)' The cell itself was cooled from Pelow by a cool-
ant which was circulated by a refrigerator. The solidifica=-
tion process was studied by reading temperatures at different
points in the cell by means of copper-constantan thermo-
couples.,

A comparison has been made between results obtained from
theoreticalwanalysis computer solutibns and those obtained
experimentally. Good agreement was obtained between the

114



experimental results and those from theory, although the
npumerical results of the mathematical model indicate a faster
rate of solidification than that observed experimentally.
Data for comparison between experimental and theoretical

results are presented under each experimental run in the form

of tables and graphs.
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INTRODUCTION

Phase=chanige pnenomena have received wide sclentific
aqtention for some time and are of significant importance in
many ‘:echnical problems such as sollidification of a billet,
formation of snow, solidification of an asphalt layer,
formation of smog, melting of metals and alloys, and growth
of crystals., However, it has been only in very recent years
that phase-change materials have been seriously considered
for spacecraft thermal control, In concept, such méterials
would be used in passive systems that employ the process of
melting or solidification to remer or add thermal energy
from or to a system. With the advent of spacecraft applica-
tions and space travel, the technology of phase=~change
phenomena is getting'renewed scientific attention.

Presently, space vehicles lose heat to the environ-
mental vacuum of space malnly by radlation. This may be an
inefficlient method of thermal control during high-energy
dissipation periods, even if "“heat-pipes" or other improved
heat transfer systems are enmployed. Similarly,-temperature-
control systems based on liquid-vapor phase change may bhe
inefficlent, besides involving sophisticated irreversibls
fluid loop circuits. Systems based on solid-liquid phase
change have many advantages which make them very useful for

certain applications. They are light, easy to handle, and
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easily used as wall-lining elements around electronic equip-
ment. loreover, they are essentially passive., One disad-
vantage that solid-liquid phase change materials have when
compared to the liquid-vapor phase change materlals 1s that the
former heve lower heat-elimination capacities. Fusible
méterials can be‘used to store the energy evolved during
high=density dissipation periods. The stored energy can then
be released continuously into space or to the system during
low-temperature conditions. Thils cycle is pertinent in the
case of space vehicles moving in extremes of temperature

from the earth into space and from space to earth during
re-entry.

The present sclidification research program was mainly
devoted to study of one-~dimensional systems with timew-
dependent boundary conditions. It rmust be emphasized that
the principal goal was not- the spudy bf the performance of
fusible materials as actual phase=change temperature con-
trollers, but the development of a reasonably accurate,
simplified model for the solidification of a fusible material
of finite rectangular dimensions under variable boundary
conditions as would be the likely situation in an actual
thermal controller,

Although from the theoretlcal standpoint almost any
materlal would perform equally satisfactorily, it was pre-
ferred to selezt the fuslible material from those generally
accepted in current thermale-control research. HNormal

paraffins with even nunbers of carbon atoms 2re those



materials most widely used because they satisfy most of the
requirements of acceptable phase-change materials, They have
melting or solidification polnts close to the acceptable
range for the design media of electronic equipment, 40°F to
150°F, with phase-transition enthalpy changes higher than or,
at least, equal to 100 Btu per pound. They are also none-
corrosive, non-toxic, chemically inert and stable, as well

as having low vapor pressures, small volume changes, ard
negligible sub=cooling. In the present research prcgram,

n-hexadecane (n-=C ) was the material studied.
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LITERATURE SURVEY

Much thecretical work has been done in the literature
on prcblems which are directly or ilndirectly related to
physical change of state. The basic feature of such problems\
of change of statez 1s the existence of a moving boundary or
surface between phases. Therefore, the problem that is most
often considered is how to determine the way in which this
surface or boundary moves. Heat may be lliberated or absorbed
on the surface; there may be volume change accompan;ing the
change of state, and the thermal properties of the phases on
eitﬁer side of the interface may bé different_for the phases
and may vary as the change of state proceeds. Therefore, the
problem 1s essentlally non-linear in nature and general
analytlcal solutions for it may be wanting. Some exact'
solutions for models that mathematically approximate the
real problems have been obtained, mostly for infinite or
semi-infinite’geomét?y.

(1',_who were among the first to give

Carslaw and Jaeger
in=depth treatment of melting and solidificatlion problems,
comment on the need for numerical methods for solving these
proolems wnlcin are often rendered more complex by c¢ylin-
drical, spherical, and other finite geometric configurations.
Carslaw and Jaeger maxe no attempt to give any exact solu-

tions for the phase change problem when finite geometries are

involved. However, they do give 'a series solution for the
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ordinary transient heat-transfer problem with no phase change.
This 1s particularly useful in determining the temperature
profile of a substance, which 1s subjected to heat change,
for the interval beginning with the initiation of the heat
cﬁﬁnge and ending with the lnitiatlion of change of state.
Another good quality of the series solution that they gilve

is that it takes into account time-dependent initial and
boundary conditions,

Many of the solu;ioné presented in the literature con-
cerning phase cnange problems are valid only if the material
under study is initially at its equilibrium temperature for
change of state. These solutions ignore the more-=frequently=-
encountered case in which the material under study may be
initially at a temperature, csay room temperature, that 1s
quite different from its equilibrium phase-chénge temperature
and may have to pe brought to this equilibrium temperature
from its initial temperat;re by some heat input, withdrawal,
or generation.

Stefan(z)

was the first to give a published discussion
of a one=dimensional transient conduction problem with phasé
change, for a single component cor eutectic composition with
constant properties. Thus, the term "Stefan's Problem" came
to be used to describe a one-dimensional conduction problem
in which a semi-infinite slab initlally at a constant

temperature, T,, has one face maintained at zero temperature

for time greater than zero., For the solution to the problem



to satisfy the conditions for all times, the interface posi-
tion as a function of time has to be proportional to the
square root of the product of time and the thermal diffusiv=-
ity of the material of the slab.

Szlto(3) consldered the problem of a semi-infinite
solid in contact with a seml-infinite liquid. The resultant
solidified liquid was regarded as having different properties
from the 1nitial solid, Salto tried to incorporate the latent
heat as superheat. His results disagreed with later works.,
Pekes,ls and Slichter(u) obtalned a series solution for the
solidification of ice on an infinitely long cylinder.
(5)

Danckwerts presented a system of equations in terms
of arbitrary inltlial and bcundary conditions for the tempera-
ture distribution in a semi~-infinite solid. The equations
were solved by trial and error, _Booth(s), 1ike Danckwerts,
was more concecrned with mass transfer problems, and the
tarnishing reaction in particular. He approximated the posi-
tion of the moving boundary by an infinite power series.
Kreith and Romie(7) presented solutions which applied to
elther solidification or melting and which gave the position
of the phase front and the temperature profile for a sphere,
cylinder or semi-infinlite solid initially at the fusion
temperature, They assumed constant temperature gradlent and
velocity at the interface. The temperature was determined

in a dimensionless series form by a method c¢f iterative

approximations. The assumption of constant veloclty was



valid only at the early stages of solildification,

Chambre(B)

gave a complete solution for a Prandtl
nunber equal to one for the growth of a solid starting from
negligible initial dimensions with a plane, cylindrical or
spherical bcundary. Convection in the fluld was attributed
to the unequal but assumed constant densities in the two
phases and was studied with the incompressible HNavier-Stokes
equation. An ordinary differential equation which is a
function of the quadrature of time was obtained for the
solidification velocity and 1t was only partially solved.
(9)

Chao and Weiner investigated the temperature-in a
solid and liquid while the 1iquid was being poured. The
latént heat was treated as a "pseudo" specific heat and the
solution, obtained by a Laplace transform technlque was an
integral that was solved numerically.

Many authors have applied the variational technique to
(10)

heat conduction. The Onsager theorem , Which was a
reciprocity law of coupled phenomena, permitted certain
irreversible processes to be expressed in terms of a varl-

(11)

ational principle. Chambers was the first to show the

applicablility of the variational technique to heat conduction.

(12) used the varliational technlque to

Biot and Daughaday
study heat conduction in a melting semi-infinite solid wicth
constant properties. The heat input was assumed to be con-
stant and the problem treated was an ablation problem in

which the melt was removed as it was formed, It 1s charac=

teristic of "re-entry" problems caused by aerodynamic heating



in hypersonlc misslle flight such as occurs during the re-
entry of a space vehicle into the earth's ..tmosphere,

The heat=balance integral technique, an analytical
method that glves approximate soluﬁions to a wide variety of
heat transfer pfoblems, is used in many papers in the litera-
ture, It is mostly used for non-linear problems that must
be solved either numerically or approximately. Its big
advantage 1s that it changes the energy equation from a
partial differential equation to an ordilnary differential
equation, This method as formulated by Goodman(13) is
dependent upon the definition of a thermal layer, which is
analogous to the hydrodynamic boundary layer in fluid flow.
It assumes that, beyond the thermal layer, there 1ls tempera=-
ture equilibrium and no heat transfer, One disadvantage of
this method 1s that the heat conduction equation 1s satisfied
only on the average and this average equation is analogous
to the von Karman and Pohlhausen(lu) momentum integral
equations for boundapy-layer theory. Usuélly, a general
polynomial form of the temperature profile is assumed and
substituted into the governing equation of the heat transfef
problem, which 1s integrated over the thermal layer. The

result 1s a heat-balance integral. Goodman and Shea(15)

used
thls technique in examining the melting of a finite slab
1nitiaily below the melting temperature, one face of which

is subjected to a constant heat input whlle the other face

is insulated or at a constant temperature,



(16) used the integral method to study a moving-

Poots
boundary, two-dimerisional problem in which he treated the
inward solidification of a uniform prism, which had a square
cross=-section and was fllled with a liquid initlally at the
fusion temperature. The integrals were solved by numerical
methods.

In the literature, there are 'many other analytical
approaches and techniques, many of which apply to special
phase=change problems such as the study of phase change in
alloys. In alloys, the complexity of finding the temperature
distribution and the phase front velocity is increased by
the fact that the latent heat effect no longer occurs at a
single temperature, but over a range of temperatures.

Weiner(17), Rubinshtein‘lB) (19)

» and Adams are some of
the men who have studled phase changes in alloys. For an
alloy, the 1ateht heat of fusion was mostly treated as an
increase in the apparent specific heat of.the metal beﬁween
the liquidus and solidus temperatures. The curve of apparent
specific heat versus temperature was approximated by two
Intersecting straight lines. The temperature'corfesponding
to the point of intersection was used to divide the phase
change reglion into two zones for analysis.

In order to obtain solutions for more general cases for
phase change problems, numerical analysis may be the only

(20)

feasible technique avalilable. Dusinberre has outlined an

iteration method which involves laying out the region of
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conduction in a grid system and considering the center of
each grid elenent as a node point. By making the grid
element small, only the temperatures of polnts adjacent to
a node point and the temperature of the mode polnt itself
need to be considered in calculating the change in tempera-
ture of the node point during a small time interval.

Mi11er (L)

used the "surplus temperature" technique in
an attempt to improve the predictions of the phase front. To
account for the heat absorbed at the phase front using this
method, the calculated temperature was permlitted to exceed the
actual melting temperature until an arbitrarily selected
maximum value above the melting temperature was reached,

When this maximum value was reached, the grid element con-
taining this particular node point was considered to have
melted, and the phase front was shifted to the next node.

Ehrlich(zz)

gave the implicit finlte difference equa=
tlons for the one=dimensional melting problém with a variable
heat flux or heat input specified as a function of time,

The 1mplicit equations were then put into tridiagonal matrix
forms for solution by Gauss elimination and b& back sub=- |
stitution. Special modified equations were given for nodes
near the freezing front. In the present study, the method
used by shrlich to formulate finlte difference equations to

be solved implicitly was used to find the governing finite

difference equations for the solidification of n-hexadecane,
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(23) did theoretical and experimental studles on

Pujado
the melting of n-octadecane under adiabatic conditions., For
the theoretical model, he used a unidimensional model and
lgnored convective effects in the 1liquid phase. lle developed
finite difference equations which were then solved by
iterative methods.

The Northrop Corporation reports(2“.25)

presented a
survey of the phase change problems involving selection of
the proper compounds, evaluatlon of properties, experimental
study of different test cells, and theoretlcal study by means
of a hybrid system composed of a finlte~difference electric
analog and a digital computer., The study was concerned
principally with thermal control in spacecraft by means of
the phase change of fusible materlials. Some of the physical
property data given In the Northrop reports was used in the
present study.

Considerations concerning the melting-solidification

(26) in a NASA Technical

problem were summarized by Bannister
Memorandum. This memorandum gives emphasis on the study of
nucleation theory as a basis for the study of sub~cooling '
phenomena in solidification problems. Bannister and Ben=
.tilla(27) presented an introductory paper which combined the
basic results found in the Northrop reports and the NASA tech=-
nical memorandum.

(28)

Sharma, Rotenberg, and Penner also have studied

analytically phase-change problems with variable surface
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temperatures, They assumed different temperature profiles
and assumed that physlcal properties were constant,

One of the most recent publications on phase-change
phenonena 1s the interim report on space thermal control
study which was presented by Grodzka(zg) of Lockheed Missiles
and Space Company and carried out under NASA sponsorship in
a program directed by T, C. Bannister, It includes effects
of gravity, magnetic and electrlc fields, and convective
currents on solid=-liquid phase change. The study poeints out
that the pure conduction broblem with phase change 1s valld
as long as the liquid phase remains stable and that natural
convection has to be consldered after the Rayleligh number
reaches a criftical value of about 1726 for a layer of fluid
either heated from below or cooled from above.»_ -

Many other papers beslides those already mentioned are
avallable on the subject of phase change. Some of them are
of speclal analytical interest for they attempt to solve
some speclally defined problems of phése change. A full
review of these papers can be found in many places in the
literature and especlally in a literature survey presented

(30)

by Muehlbauer and Sunderland on "Heat Conduction with

Freezing or Melting."



THEORKTICAL ANALYSIS

Formulation of the Problem

The problem to be studied 1s the solidification of n-
hexadecane in a cell of height h and constant cross-sectional
area in the plane perpendicular to the axls y of the cell
(Fig. 1). The temperature profile and the rate of solidifica=-
tion of hexadecane are to be determined using a one-
dimensional model along the y axis, Non-steady-state cone
ditions with respect to time are assumed, Hote that, for
a one-dimensional model along the y axis, the shape of the
cross-sectional area perpendicular to the y axis of the test
cell is immaterial, provided this cross-sectional area
remains constant throughcut the height h of the cell. How=
ever, 1f the cross-sectlonal area varies with y, the shape
of local cross-sections must be included in the theoretical
analysis of the problem and two=- or threeQdimensional models
would be much better in such cases. Even in a problem such
as ti~ one that 1s being considered here, in which the cross=-
sectional area of the cell remains constant for all h, a .
solution based on a one-dimensional model does not approxi-
mate the true solution as closely as a solution based on
two= or three-~dimensional model definitely would, However,
the difflculty of solving this problem has dictated that the

first attempts at solving it be made using the simpler

13
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Figure 1, Axial section of test cell.
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one-dimensional model. Later studlies may then be made using
the more accurate two- or three-dimensional model and
starting off from the valuable information which this one-
dimensional study will furnish,

The cell which is completely filled with liquid n-
hexadecane, 1s sealed at both ends by copper plates and has
its bottom plate cooled by a coolant circulated by a
refrigerator. A detalled description of the setup is given
under "Experimental Equipment and Procedure." The effects
of convectlion are assumed to be negligible. This 1é a
reasonable assumption, since convective mixing that occurs
when solidification 1s‘taking place is minimized by having
the cell cooled from the -bottom so that the solid formed at
the bottom of the cell remains at the bottom. Another source
of convection in the cell is the movement of ‘the interface
between the solid~and liquid'phases. When thils interface
advances a distance dY in the y direction, the mass of solid
formed per unit cross-sectional area of cell, pgdY, 1is
derived from an equal mass of liquid which has disappeared,
This corresponds to a thickness (ps/pL)dY of liquid which
has aisabpeared. Thus the 1iquid—moves with a net veloclty
uy = (1 - ps/pL)%% alongz the y axis. I{ there 1s no change

in volume during solidification, u, = 0, and convective

y
effects may be neglected. Also, if the density pg; of solld

is close to the density PL, of liquid, then u, is approximately

y
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equal to zero and convective effects may be neglected., Thils
later case holds for n-hexadecane, and neglegting convective
effects for this one-dimencional model should not introduce

high errors into tihe solution.

It 1s further assumed that the cell and 1ts contents are
initially at ambient temperature and that as time increases,
the temperatures of the inside faces of the bottom and top
plates of the cell are functipns,.fl(t) and fz(t), of time
respectively. The helght h of the cell 1s defined as the
distance along the y axis from the inside face of the bottom
plate to the inside face of the top plate. The origin of
the y axis is y = 0 at the inside face of the bottom plate
and the positive y direction 1s towards the top plate. iote
that, by these definitions, knowledge of the temperature
profiles of the inside faces of the bottom and top plates of
the cell, say by pelynomial fits of experimentally-determined
temperaturés of these faces,'makes .z unnecessary to write
energy balances on the copper plates themselves in order to
solve the problem for n-hexadecane. The top plate is exposed
to room temperature at all times.

The heat transfer problems for n-hexadecane are divided
;nto two parts, arbitrarily, as follows:

1) "Pre-solidification”" problem; it considers heat trans-
fer in liquid n-hexadecane i1rom the time (t = 0) when cooling
of the bottc.: plate is initlated to the time (t = t*) when
the equllibrium temperature of solidification of n-hexadecane

is reached at the bottom plate.
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2) "Post=solidification" problem; 1t considers heat
transier in solld and liquld n-hexadecane and the rate of
formation of solid n~-hexadecane from the time (t = t#¥)
when the equilibrium temperature of solidification of n-
hexadecane is reached at the bottom plate to a iater time
when the entire content of the cell is frozen.

Pre-~solidification problem

Since convective effects are neglected and a one-
dimensional model 1s considered, the governing equation,

initial and boundary conditions are for 0 < t < t¥,

2

3°T. _(y,t) 3T, (y,t)
« Lo s L0 » (0 <y <h) . (1)
L 3y2 2t

(1) TLO(O,t) = fl(t3 when y = 0
(11) TLo(h,t) » ?Z(t) when y = h

(111) TLo(y,O) = T at t =0, for 0 <y < h,

a

Ta is ambient or room temperature which is assumed to be con-
stant, ay is thermal diffusivity of liquid n-hexadecane and
is given by ap = KL/chpL. Sutscript L refers to liquld
n-hexadecane, and subscript o refers to the pre-solidificaticn
problem. Thus T o iz the temperature of liquid n-hexadecane

L

for the pre=solidification problem. K and c_. are the

L* Pr’ pL
"~ thermal conductivity, density, and specific heat, respectively,

of liquid n-hexadecane,
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Conditions (1) and (11) state that the temperatures of
the bottom and top plates are some functions of time. The
initial condition (i1ii) states that, at the time that cooling
of the bottom plate 1s just about to be initiated, i.e. at
t = 0, the temperature of the llquid hexadecane in the cell
is the sanme as the amblent (room) temperature for the entire
height of the cell. Thus, the temperature profile TLo(y,t)
may be obtained for 0 < t < t* and 0 <y < h by analytical or
numerical integration, once T,; f,(t) and fp(t) are known.

Note that, at ¢t = 0, fl(t) n f2(t) = T at t = t¥, fl(t) = Te’

a’
where T, is the equilibrium temperature of solldification of
n-hexadecane. fl(t) and fz(t) may be obtained by doing least-
squares=polynomial fits of temperatures of the inside faces of
the bottom and top plates as measured with respect to time by
copper-constantan thermocouples, with time set equal to zero
at the start of cooling of the bottom plate. As will be

shown when the results of the present study are discussed,
fl(t) and rz(t)_turn out, for this particular study, to be
exponential functions of the type A + Be-(c(t)t), where A and
B are constants that add up to the amblient temperature; A .
equals the steady state temperature of the coolant which 1s
circulated by a refrigerator to cool the bottom plate. The
function c(t) is a polynomial of degree less than or equal

to 5 which is determined by the fitting computer program.

Post=solidification problen

At time t = t¥%, the temperature of the bottom plate is
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equal to the equilibrium temperature of solidification of
n-hexadecane, 1l.e., fl(t*) = T and the n-hexadecane is still
all liquid, 1Its temperature profile at this partlcular
instant is TLo(y,t*). For t>t%*, the heat transfer problem

becomes

2
3°T_(y,t) aT_(y,t)
a 57 a =3 d for 0 <y < ¥(%) (2a)

2

aaTL(y,t) _ AT (y,t)

a
L 3y2 At

for Y(t) <y < h (2b)

subjcct to the following conditions:
(1) TS(Y,t) = TL(Y,t) = T, when y = Y(¢t)

3T 3T
(11) K35 - K 3;2 = Hop_ %% when y = Y(t)

(111) T (y,t*) = T  (y,t*) at t = t*

(iv) Y(t*) = 0 at t = t*

(V) Tg(0,u¥) = £(t*) = T, (0,t¥) = T, at t = t¥,
y=0

(vi) T (h,t*) = T (h,t¥) = £,(t¥) at t = t*, y = h
(vii) T.(0,t) = fl(t) at y = 0 for t > t#

(viil) TL(h,t) = fz(t) at y = h for t > t#

Y(t) 1s the height of solid which has been formed from
time t = t* to time t = t and is weasured from the inside
face of the bottom plate up along the y axls to the 1lnterface
separating liquid and solid hexadecane., Conditions (1), (1i1)
and (1v) describe the interface. Condition (1) says that, at



21

the interface, the temperature of the solid phase equals the
temperature of thne liquid pnase for all t. Condition (11)
states that the rate of heat liberation at tane interface by
freezing must equal the net rate at which heat is conducted
away into solid and llquld pnases, Hg 1s the heat of fusion
of solid hexadecane per unlt mass. Subscripts s and L refer
to the properties of solld and liquid phases respectively.
Condition (iv) states that at time t = t* when the temperature
of the cooled bottom plate first reaches the equilibrium
freezing temperature of n=hexadecane, the amount of solid
present is zero, 1.e., the liqulid hexadecane is still all
liquid. Conditions (iii) to (vi) mean that the temperature
profile in the liquid hexadecane during the pre-solidification
problem still exists at time t = t¥, Conditions (vii) and
(viii) state that the temperatures of the bottom and the top
plates are functlions of time which are also continuous with
the temperature profiles that are obtalned at these boundaries
for the pre-solidification problem; in other words, the pro-
cess of solidification does not introduce any discontinulty
between tne temperatures that are obtained for these bound=-
arles for the pre-solidification problem and for the post-
solidification problen, |
Condition (1i) may be derived as follows. In a time dt
let dL be thickness of 1ligquid that has solidified to produce
a solid of thickness dY. Let Hy and H; be the enthalples per

unit mass of the solid and liquld phases respectively.

Therefore Hp = Hy - Hg, A mass balance at the interface,

(Fig. 2), glves pgdY = ppdL. Energy balaace gives
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Figure 2. .Moving interface from time t to time t + dt.
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pgHgdy = pLHLdL = qgdt - q;dt, where q_ and q; are heat
fluxes per unit time per unit cross sectional area of soild
and liquid phases respectively. All these ejuations have
been writtern independent of the cross-sectional area because
the cross sectional area of the cell is constant and is the
same for both the solid and liquid phases. When the defini-
tion of Hy, and the mass~balance equation .re introduced into

the energy-balance asquation, the following equation is

obtained:
dy
LTl P O (3)
oTg oTy
” t &5 ek Cm— 3 = -. —
By Fourler's law of conduction, Qg Ry 3y and qp hL 3y
Putting these definitions for q  and q; into equation (3) and

ing 1 %8 L Y ich 1
rearrangling it, we get Ks 3;- - KL 3;- = prs I whic s

condition (ii).
The following dimensionless vériables are defined.

8 = T(y,t)/T,

z = y/h
S = Y/n
2
T, " (aL/h )t
T = (aL/hz)(t - t¥#) = T, - T;
L P
LI (a; /h)t* .

The subscripts o, L, and s still apply as previously defined.

In dimensionless form, the governing equations of the pre-

solidification problem become, for 0 < T o

<
O""T
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20

e?

(z,7.) 96, (z,1.)
o ‘o ._Lo 9o ro 0 <z<1,0 (4)

3z’ 3T,

(1) GLO(O,TO) = I‘l('ro)/'l‘e when z = 0
(11) OLo(l,To) = rz(ro)/Te when z = 1,0

= 0, for 0 <z £ 1.0

(111) o, (2,0) = T /T  at 1,

Also the governing equations for the post-solidificatlon

problem become, for v > 0 (or equivalently, for TO>T:),
2%0,(2,7)  20,(z,7)

A 5 - - for 0 < z < S (5a)
9z T
329L(z,1) aeL(z,t)
5 - = for S < z < 1,0 (5b)
02

suhject to the following conditions:
(1) 64(8,7) = 6;(S,7) = 2,0 at z= 35 for 1 20
20 307 g |
(14) M 3;2 - J 3;2 =4qratz=Sfort>0

(111) OL(z,O) = eLo(z’T;) at v = 0 (at T, ® 1;)

(iv) S(0) = 0 at T =0

(v) 04(0,0) = £,(t = 0)/Ty = 1.0 when 1 = 0, at z = 0

(vi) ©;(1,0) = £,(v = 0)/Tg = 6, ,(1.0,0) when 7 = 0
where = A = o /o
cpsTe Q

) (=)

M o= (S
He' " ap
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c..T [
3 = (BLey D
r Ps

The dimensionless equatlions are now to be put into fialte

(22)

difference forms. The method of L. W. Ehrlich is used to

do this.
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Figure 3.

Axial section of test cell showing space grids
and nodes,
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Finite Difference Formulation of Governing liquations

The Taylor series expansion of a function f(x+a,y+b)

about a point (x,y) is

3 2
f(x+a,y+b) = f(x,y) + (a %; +0b sy)f(x,y) + %T'(a %g +b %y) f(x,y)

? Nn=-1l

-37) £(x,y)

1 3 3,3 1 3
+ §'§' (a’é'x"" b 'a-;) f(X,y) + seee * (n-l—y! (a X +b

+ R (6)

1,23 ,,3,0
where Rn a nz(a'ii + b ay) f(x+za,y+Yb), with O £t <1 and

0<Y<1, i,e. R, = 0(a+b)". ‘The symbol 0( ) means "of the
order of what is enclosed in the brackets." For this problem,
we impose a mesh on the test cell, such that the space grid
is verticalhalong the height of the cell and time grid 1is
horizontal; that is, the time grid is perpendicular to the
space grid. On the (z,to) or the (z,1) coordinétes, the
following are defined (see Fig. 3 and Fig. 4):

ha = Az = mcsh size 1n the space coordinate

ka = 41, = At = mesh size in the time coordinate

P = ky/(h,°)

(QLo)i,J = eLociha’Jka)

(33)1,3 = 6,(ih_,Jk,)

(60,5 = 8,(ih,,0ky) -

Pre-solidification Preblen

The following approximations will be used for the partial

derivatives.
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9 O
Lo 1
( ) 3—'-{(6 )__
32° i1,J+1 haz Lotdml, g
2
- 2(6Lo)1,3+1 + (eLo)1+1,J+1} + 0(hy ) ()
a6
Lo . -
(3T°) J ka {(6L0)1)J+1 (OLO)i.J}
2
k, 390 2
a Lo ;
T2 (at 2 1,5 " 0k, ) (8
co.
326Lo 1 { ) 2(6. ) + (6..) }
W SUPRE LR
2 |
+ o(ha ) (9)
00
it 7 . - ~ (o
(BTO‘ 1,341 K, {(6L°)1o3+1 ( LO)i,J}_
k, 220 2
+ 22 (2 °Lo, + 0(k") (10)
2 Targ? 1,341

The difference equations are to be derived in the implicit
form so that they may be solved using tri-diagonal matrix, .
Gauss elimination and back~substitution. On substitutihg

equations (7) and (10) into equation (4), we get

-

1
k. (001,541 = (Oroly, 4!
= -1 (0. ) - 2(0. ) + (6. ) }.
ha2 Lo 1-1,3+1. Lo'1,3+1 Lo’1i+1,3+1
| (11)

+ 2(hy%) + 0(ky)

-
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Figure 4, Two-dimensional finive elements in time and
space coordinates. '
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On substituting equations (8) and (9) 4into equation (4), we

get

1 a ol -3
kg 180y, 541 = (OLoly, ) ﬁ;? 10p0)5a,5 = 2000)a g

2
+ 8,05, 4} + 0, 5) + 00k, (12)

Addition of equations (1ll) and (12) yields

2. {(e

-
k, Loy, ge1 ~ (PLody ot " h,° e %

1,2 Lo"i=1,3+1

(6 )

- 2(8,) 1-1,

1,001 ¥ Cnodaen,ge1 * (Op

2

)iy o} * 00k,%) + 0(n%) (13)

~2( Lo'1+1,)

°Lo)1,,j_+ (¢

Using the definition for p in equation (13), we get

E ¢

1,5+1 = 2 (00

- B .
> (8r0) + (1+p) (6 %o 141,541

Lo'1=1,j+1 )

Lo

. s
B iyt PO+ Bl

3 2
+ 0(ka ) + 0{k,h ") (14)

The local error term in equation (14) 1is b(ka3) + 0(kaha2)..

L4

Therefore the governing pre-solidification equations become,

.
for 0 < t_< 1

(o} o? .
- P (6, ) + (1+p) (e, ) - &)(e. )
2 " Lo"lel,j+] Lo’1,3+1 2" " Lo"i+l,j+1

-2 P
3(000) 4oy, gt AmPY(Br )y g # 3opg)yyy o 0Cie?)

+ 0(kgh,2)y 1S gi-l (15)



subject to the following conditlions:

)
895 0 . NS LITS! -
(1) (eLo)o,J = T H (eLo)o,J+1 T , at 1 =0
(f;) (f2) 441 X

e

(111) (s T/T at J =0 for0<i<H

Lo)i,o = talte
where N is the total number of nodes in thé space direction
with the first node on the bottom plate and the N1 node on
the top plate.

Post-solidification Problem

2%0, N
(=—37) === {0 -20g + 64 }
9z° 4,3+1 hy 511,341 1,+1 1+41,3+1
. 2
+ 0(h.") (16)
,
26 k. 30
(—=2) «L (o -0, M 52—
ot 1,31 k. By g4 %,y 2 a1t 1,54
+ 0k %) (17)
2
%6
1 2
(==s2) e == {0 -20. 40 } + 0(h.°) (18)
az° '1,J  n, ®1-1,5 51,5 S1+1,) a
2
20 k, 20 .
8 1 a s 2
— = {0 -0 }o =2( ).+ 0(k.) (19
o G,y kg Sg,41 S1,3° 2 Tar? 1, a '
2
%8
(—2) « =15 {0, -20, 48y }
3z° '1,J+1 h, 11,541  “1,J41 141,341
+ 0(h_2) (20)



2
26 k. 990
L 1 a L 2
9T '1,§ Ky Dy,541 Ly, 7 e 1, a
2
3°8
3z 1,§ hy i-1,3 71,5 i+l
26 k. 3°6L >
L 1 a +0(k_.“)
T 01,901 " 0L Lm} 5 ‘a; 1,941 @
2
2°6
s 2
(=3 = { }{1=-6 +x,,.90
2 SRyj+l “Jj+1's
3z~ R,j+1 hy (1**J+1)x5+1 R=1,J+1
X 0 + 0(h:
341 SR,J+1} ( a)
26
1
(—2) x &= {9 -6, )} n(k)
3t "Ry J+1 Ky ""Sg 441 SR,y a
2%0, ) 161 .1 g4 .
3z° R+1,j+1 ha'(z“xg+1) 1=X441 R+2,J+1
-0 "} + 0(h.)
LR+1,,J+1 a
30
L 1
(377) = {0 . =0 } + 0o(k.)
3T 'Rel, g+l Ky Dped jel URel, a
(3268 1
220 Rel g+l h 2  CRe2,g+1  Rlhdtl Rt

35

(21)

(22)

(23)

(2b)

(25)

(26)

(27)

(28)
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368 l '

(52 = = {0, -85} + 00k (29)
T 'R=1,J+1 X5 PRe1l,J+1 "R-1,J

00 X ) -]
8 "j+1 R, j+1 + s 0

96 0 -1
8 R=1,3+1

(377) = . + 0(k,)) (31)
T 'Re1,3+1  2R-1%a 2

aeL 2-x1+1

1
— )
9z ‘interface,j+l i} H; {l‘xJ+1 LR+1,,j+1

- E:flil or, - 3-2%34) }
2=X541 R¥2,J+1 (1'x3+1)(2'x3+1)
2
= aL/h_a + 0(h,") (32)
(i?.s.) ~ 1 {xj"'l 0g - }_"..}:ﬁ'.ﬂ Bg
9z “interface,j+1 hy, 1+x'j...1 R=1,J+1 X441 R,J+1
1+2x :
x 2;i-?* )}+0(ha2) = 0g/hy * O(haz) (33)
LLS Rt L1
28, 1
0z )interface, J+1 - 2h, {-(S-ZXJ"'I)eLR+1’J+1+u(2—xJ*1)
2
8 - (3-2x,..)6 } = ol/h_+0(h_°)  (34)
LRre2,3+1 J+1" "Lpy3 441 L'7a "Ta
26 )
. r -t
(32 interface,j+1 2h, {(1*2XJ+1)GSR.2,J+1
2
- 4(1+x, )0 +(3+2x 0 } + 0(h
3#°% 1 3+17%p 400 a’

= as'/ha + O(haz) (355
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- f
32 interface,J+1 D%y haxJ+1
-1
(aeL oLy 41
9z “interface, J+1 h (1-xd+17
+0ng) = = )y =1 4 oy (37)
al T, 23+l a 37
h (1 - xJ+1)
6 -1
(3-31‘-) = LN"‘L” — + 0(h,)
3z ‘interface, J+1 ha(z'xj+l) a
1
(£.) -]
y :I:;(z2 L2+ oty (38)
a -xJ'O'l

das +1 |
(3?)4+1 _i__..l -2 {(RJ+1 Xgp1)=(Rydxg) Y + 0(k)  (39)

The governing equatiocns for the post-solidification
problem apply for r; > T; or for T > 0. Equations (16)
through (39) are obtained by Taylor series expansion around
the points where the derivatives are to be found. Equations
(16) through (23) apply to the solid and liquid phases for
nodes not near the solid-liquid interface. For regions neér
and on the ihterrace, these equations have to be modified,
Equations (24) through (31) are such modified equations that
apply near the interface. Equatiohs (32) to (38) apply at
the solid-1liquid interface itself. Equation (39) describes
the rate at which solid of dimensionless height S is formed.

Equations (16) to (23) are obtained by exactly the same
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operation that yiclded equations (7) to (10) and when they
are substituted into equations (5a) and (5b) in the same way
that equations (7) te (10) were substituted into equation (4)
the following équations result:
-p/26j, +(1+p)o -p/26
1-1,)+1 Ly,s41 Livi,i41

= p/26 +(1-p) o +p/26
a1, Li,s Mg,y

+0{k.3) + 0(k,n,?) (40)

-Ap/26g +(1+3\p)6L -Ap/zeL

= Ap/26, +(1-Ap)6g  +Ap/28y
1"1:3 1oJ i"'loJ

+ 0k 3) + o(kanazx) (1)

It 1s to be emphasized again that these equatlions are good
for nodes not near the interface, |

For nodes near'the solid=1liquid interface, we proceed
as follows., Suppose that the distribution of temperature
and the position of the freezing front are known for the Jth
time step. Suppose also that the position of_the freezing_.
front for the (J + 1)st time step has been estimated; the

section under "Solutions of Governing Finite Difference

Equations" will indicate how this estimation is done, Define

R as that space node on the moving interface or just below
it, for a given time step. R varies with time step. Thus R

may be better labelled as RJ for the Jth vime step or RJ+1
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. ae (J+l)st time cep. R corresponds to the nuuwver of
Jull space nodes that have solidified for a given time step.
Thne following éases, each of which is illustrated by figures
(5) to (8), can occur.

A) The freezing front does not cross a space grid line,
that 1s, the freezing front lles entirely between two space
grid lines

B) The freezing front crosses one space grid line

C) The freezing front crosses two space grid lines

D) The freezing front crosses three or more sﬁace
gric nes.

Each case requires special equations for the points near
the interface, that 1s, for the points marked with "#" in
figures (5) to (8)., Let X3 be the fractional part of the
space mesh between the freezing front and the node 1-ﬁ during
the Jth time step. As was stated earlier, R may vary with
the time step since it 1s always'the node at or nearest the
freezing front in the solid phase during a given time step.
Let ag bz the fractional part of time grid that lles between
the point (R, J+1) and the intersection of the freezing
front with the space grid line at i=R during the (J+1)st time
step. . }
Case \: Figure (5) illustrates thils case. Equations
(24) and (25) obtain at (I, j+1). Or substituting equations

(24) and (25) into equation (5a), we obtain
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Figure 5. Case A: Interface does not cross a space grid
line.

Figure 6. Case B: Interface crosses one space grid line.



Top of JTcell

Interf uce T R+.‘
.-:::'".'_.
x/// "f "g
T = ho X
"cxj ‘jol
' e R

Tor of cetl

1 ‘ R+2
l »
Liquid
F R 'l«l»l
1 Iinterface
hg -¥
l ".xjd
! ' J[ R
/L‘Gukc >
- _ | ha
b.XJ / '
1 e R-1
Sol id
R-2
r~ kg >



42

Apx N
- 3___111 e +(2Ap+x )0 s X ..

+ 2AL (42)

. - 2

Error = 0(ka ) + O(Akaha)
which 1s the modified equation for the solld phase for nodes
near the interface and it holds good for R > 1. On substitut-

ing equations (26) and (27) into equation (5b), we obtain

(2-xJ+1)(l+2p—xJ+l)eL -2p(1-xJ+1)0L

R+1,j+1 R+2,3+1

= (2-xJ+1)(l-xj+1)6LR+l’J+29 (43)

2
Error -.O(Ra ) + O(haka)

which is the modified equation for the liquid phase for nodes
near the freezing front and it holds good for 0 < R £ N=2,
Case B: Figure (h) 1llustrates Case B. On substituting

equations (28) and (29) into eq ¢tion (5a), we get

-Apo +(1+21p) 6 ~\p@ = @

(uy)
SR-2,J+1 Re=1,j+1 SR,J+1 °R-1,4 ‘

2

- 2
Error = O(ka ) + O(Akaha )

On substituting equations (24) and (30) into équation (5a),

we get
ZAPX X Xis 2
- il 9 +(2p+ -i-tl)es - i Ly ;ii (45)
1+XJ+1 R=1,J+1 8  “R,J*1 R j*1



43

. 2
Error = 0(ka ) + 0(kkaha)

where ap has the definition thatAhas already been given and

for this case it has a magnitude

ap = xJ+1/(l-xJ + xJ+1)

‘obtained by the theorem of similar triangles and the geometry
of figure (6). Equations (44) and (45) apply to the solid
phase near the interface. Equation (43) still holds for the
liquld phise in this case.,

Case C: Figure (7) illustrates Case C. On substitute

ing equations (28) and (31) into equation (5a), we get

-XpaR_ e 1 (46)

=Aa 0 +(2\a +1)6 o
R-lp 83-2.3.',1 ( R—lp ) SR-],’J-{-I 1 SR’J‘F]_

2 2
Error = 0(ka ) + 0(kaha A)

On subgtituting i=R-2 into equation (16), we get an equation
226,

for (—= . . -
(322 )Rp2,3+1 Also on rgglacing R by R=2 in equation

r — Y
(25) we get an equation for (aT )R-2,J+l' When these two

equations are substituted into equation (5a), we get

=Ap6 1+(1+2kp)es “(UT)

~=~Ap06 = 0
SRa3, J+ Re2,J41 © SRe1,J+1  SR-2,]

_ 2, 2
Error = o(ka ) + o(Akaha )

ps

Equations (43) and (45) still apply to the liquid and solid

1 -
phases, respectively. For Case C, ap = xj+l/(2 xJ + XJ+1)

and ap.q"® (l+xJ+l)/(2'xJ + xJ+l) s fractional part of the
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Flgure 7. Case C: Interface crosses two snace grid lines.

Figure 8. Case D: Interface crosses three or more space
grid lines.
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time grid between the point (R-1, J+1) and the intersection
of the freezing frent with the space grid line through R-l,
during the (J+1l)st time step. R is an integer such that

0 <R <il |

Case D: Figure (8) illustrates thnis case. When this
occurs, the time step 1s first reduced to half 1%s normal
value and tne estimated poslition of the freezirg front is now
checked to see if any of cases A to C occurs, in which case
the appropriate equations under cases A to C are used., If
the interface still crosses three or more grid lines, the
time step 1is still reduced further by a half. The new
freezing front 1s checked agalnst cases A to C, This process
is repeated until one of cases A to C ;s obtained, after which
the regular full time step is returned to again.

Special approximations must be used to obtain the deriva-
tives to be used in the interface condition of equation (5)
(11) which is satisfied at the interface. Lquations (32) to
{39) are these speclal approximations. They are obtained by
appropriate combinations of'Taylof series expansions of
cemperatures at the interface for the (j+1l)st time step.

When they are applied to equation 5(11), under ccnditions

dictated by the values of R and x the height S of

J+1? J+l
solid formed at any given (J+1l)st time step may be obtailned.,
The foregoing finlte difference equations which have

been obtained for the post-sclidification problem will now
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be arranged according to the groups in which they are used to
obtain the post-solidification temperatﬁre profiles of solid
and liqulid n-hexadecane: For the solld phase the following
grouping holds gbod:

(1) If R(J+1)=-R(J) = 0 , (this corresponds to Case A),

(a) 1f R(J+1) = 1 , the governing equation 1s

2Apx :
SOPXI+1 +(2Ap+x

)0y

X541 %Re1,341 J*1778g,302
- 2Ap ___
| xJ+1°sR.J M WK ’ (48)

(b) if R(J+1) > 2, the governing equations are
- Ap g

2 P8yoy, g P ey geyn AP 0ey )
- gkpesi-l’3+(l-Ap)681’q+%kp681+1.3 for 1<i<R-1  (49)
- ;;;fiil esR_l,J+l+(2kp+xJ+1)GSR’J*I._ 
= xJ+1°SR,J + %%%;:I . (50)

(11) If R(J+1)-R(J) = 1, (this corresponds to Case B),
then

(a) if R(J+1) = 1, the governing equation is

X
1+x Re=1l,J+1 “R °R,j+1
J*1
. X341 + 2AP (51)
aR l+xJ+1
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),

= - +
where aR xJ+l/(1 xJ X

J+l

(b) if R(J+1) = 2, the governing equations are

~Ap® +(1+2Ap) 6. -Ap@ =0 (52)
2Apx X
- _—;——11’-1 es +(21p + "'g'ﬂ) 63
1 xJ+l Rel,J+1 R R,j+1
X
. i¥l o, 23p (53)
aR ;+x

Jel

where ap still has the same value as in part (a)
above,

(c¢) if R(J+1)>3, the governing equatlions are

=3Ap6g +(1+Ap)8g -35Ap0g
1-1,3+1 1,3+1 1+1,3+1

= 3Apog +(1=Ap) 64 +%Apes'
i-1,J i, i+1,]

for 1 < 1 < R=2 (54)

-Apes +(1+2)p) 6, -Apfg

= (55)
®Re1,J

2Apx b 4
- +1 +1
T O +21p + -,

x
J¢1 , _2)p (

- 56)
8p Xy
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ap still has the same value as in parts (a) and
(b) above.

if R(J+1)=R(J) = 2, (this corresponds to Case C),
then R(J+1) > 2.

(a) If R(J+1) = 2, then the governing equatlons are

-Apag_,9 +(2Apa, ,+1)6 :
- ApaR-leSR,J"’l = ) (57)
2A X
o oPXv) o +(2apr =) g
14X Re1,3+1 R  SR,J+1
J+l
X +1 2Ap
= -1 + 1+x (58)
8 J+1
where ag_q, = (1+xJ+1)/(2-xJ+xJ+l) and

(b) if R(J+1) = 3, the governing equations are

-Apog, +(1+2Ap) 64 -Apo,
= 6, | (59)
R=2,J
wld, PO +(2\pa_ .+1)6 |
R-1 SRe2,3+1 R-1 SRe1,j+1
-xpaR_le -1 (60)

SR,J+1
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=2 X
i L +(2ap + tye,
1+XJ+1 R=1,J+1 aR R,j+1
o X441 + -2Ap (61)
&p 1+xJ+1

where 2Rl and ap have the same values as in urt {(a)
above,

(c) 4f R(J+1) > 4, the geverning equations are

=3}Ap@ +(1+Ap) 84

§i-1,+1 1,3+1

’ t ]

» 6 +(1=- + R~ 6
kkpusi 1,3 (1 Ap)Q81 p kxpesi+l,J for 1<i<R=3 (62)

«ADO +(1+2Ap) o ~-Ap0 0, (63)
P SR=3,J+1 ( p) SRw2,j+1 P SRel,j+1 SR=2,J

=Apa +(2\pap_,+1)8

R-1%3R.2, 541 SR=1,J+1

~

- ApaR_lasR,J."1 s ]

(64)

2\ x' x +
- LS L2 T 0g . #{2ap + -%—l)e
1+x Rel,J+1 R

41 SR,j+1

- f%*l + 2AP (65)

R l+xJ+l

where ap.1 and ag still have tne same values as in parts (a)
and (b) above,

(iv) If R(J+1l) - R(J) > 3 (this corresponds to Case D),
we halve the time step, make a new estimate of R(J+1) and
check if R(J+1) « R(J) has a value that will satisfy one of
cases (A) to (C) which we have already treated. If one of

these cases applies, we use the corresponding group of
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equations for it. If none of the cases has occurred yet, we
again halve the new time increment and continue doing this
until one of cases A to C has occurred., After using the
appropriate equations to calculate temperature profiles, we
return to the regular time increment fbr the next tlme step.
For each of the groups of equations above, the follow-

ing boundary and initial conditlons apply:.

eso.J+1 RS LITSTAN (66

For 1 = 0, eso,o = 65(0,0) = 1 when =0 or To'Tg (67)
. e

For i > 0, es(iha,o) = 681’0 = 0 at =0 or T Tq (68)

For the liguid phase, no matter the value of R(Jj+1l) - R(J),
the following groupings hold,

(2) If 0 < R(J+1) < ii=3 where N is the total number of
space nodes (from 0 at the bottom plate to il at the top plate),

then the governing equations are

2~ 1+2p- 8 -2p(1- 8
¢ xJ+l)( P x:+l)_LR+1,J+1 P x3+1) LR+2,J+1
= (2'xd+l)(l'xJ+l)eL3+1,J+2p (69)
~%p6 + 0 Y
P Lio1,342 (1+p) L, 341 ® Li+1,g+.
- 30 +(1-p)o +%p0
%p Li-l,J (1-p) Li,J 3P Li"‘l,J
for R¥2 < 4 < N-1 (70)
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Equation (71) is a boundary condition which is satisfied at

the top plate.
(b) If R(J+1l) = -2, the governing equations are

(2mx 02 (920240 )00,y 5 2P U000 Oy g
- (2mxgy ) (g, Do 420 (72)
Oy ey " (T2) g4y e (73)

(c) If R(j+1) = N-1, the governing equation is

= (f,) (74)

eL’N,Ju 41 e

(d) If R(J+1) = I, then the entire content of the cell
has solidified with the top plate just at the equilibrium
temperature of solidification. The initial condition for all

the foregoing groups of equations 1s

0 = 8;.(1h_,7%) for 0 <41 <N (75)
Li,O Lo a’ o )

0 = 6. (o T*)' = ] at the bottom plate. (76)
Lo,o Lo*"? 0o | P

For the calculation of SJ+1, the helight of solld which
has formed at the (J+1l)st time step, the following equations

apply:
For 0 < X443 £ 1 and 0 <R < N, equation (77) applies
Sy = Da(RUIFL) + x4,,) (77)

Also vhen the appropriate derivatives from equation (32)
through equation (39) are substituted into condition (51ii)

of the post=solidification problem, equations which apply



for certain values of R(J+1l) and x

Thus

(a) 1f 1/4 < x

SJ+1

and SJ+1

and SJ+1
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J+1 are obtained for SJ+1'

j+1 S 3/4, we get

=S+ hp(Mo_=Jdo;), for 1 < R g N-2 (78)
=5y ¢+ hap{(M/xJ+l)(l-Gso’J+l) - Jo;}, for R=0  (79)
- sJ + hap{Mast(eLN.J+l-1)/(1-xJ+l)}, for R=il=1 (80)

The limits of 1/4 S Xy41 £ 3/4 were set so as to avoid dividing

by numbers close to or equal to zero which would make the

results blow up.

(b) I 0 < x

< 1/4, we use

J+l
Sy41 = Sy + hgp(Moy = Jo;), for 2 < R < i-3 (81)
or  Sy,, = S5 + hp{(i/b)(1-04 ’J+1) - Jop}, for R=0
where b = 1/4 (82)
or when R = 1, (sgi)interface,J+1=(l-eso,J+l)/(1+xJ+l) (83)

80 that

Sye1
or

Sie1
or

S‘“‘1

(c) If 3/4 < x

- sJ + hap{M(l-eso +1)/(1+x ) - JGL}, for R=1 (84)

oJ J+l

- ¢ >
= 54 + hgplifog - J(elﬂ,J+l-1)/(2-xJ*1)}' for R=i=2 (85)

L) .

J+1

J+1 £ 1, we use



S441 = Sy ¥ hgplitog - Jo;}, for 2<R<H-3 (87)
or

3 = - - ! =

bJ+l Sy + hap{(M/xJ+l)(1 eso,J+l) JoL}, for R=0  (88)
or

]

SJ+1 = SJ + hap{“(1‘680,3+1)/(1+x3+1) - JcL}, for R=1 (39)
or

SJ+1 = SJ + hap{i’ios - J(eL;q,Ja,fl)/(a'fo%'l)}’ for R=i=2 (90)
or _

SJ+1 =Sy ¢+ hap{Hos f J(GLN,J+1-1)/b}’ for Resii=1 (91)

where b = 1/4

Tridlagonal Matrix or Jacobl Forms of Finite Difference

Equations for Temperature

Each of the groups of finite difference equations for
temperature that describe both the pre-solidification and the
post=solidification problems can be arranged in Jacobl or

tridiagonal matrix equations of the form

Bo°o,3+1+coel,3+1 - do
A1®1a1,g+1%B101,541%Ce01 4y g4 = 9y » for 121 <W-1 (92)
AnCie1, 341 B0, 041 " %

410 and d1 are constants obtalnatle from tne

difference egquations themselves, Note that in using equation

where Ai’ Bi’ c

(92), we are calculating 6 for the (Jj+l)st time step

1,5+l
1, for the jth time step is known
»

for every 1. Thus, for the pre-solidification problem,

with fhe assumption that 6



55

equation (15) and its boundary and initial conditions 15(1)
to 15(i11) can be rearranged into equation (93)
(Orodo,ge1 = (105417
S0 0) 4y, 541 (IPICOL) g g0 ) 44 90
= *&p(GDLC,)L__;;J*(l-p)(BLC,)i’Jﬂ:/z(eLo)i‘_ﬂ.J

for 1 <1 < N-1 (93)

(f

2)J+1/Te

(eLo)N,Jﬂ
so that for the (J+l)st‘time step, the coefficients of equation
(92) take on the values in equation (93) of

B,=1
C,=0;d,= (fl)J+l/Te
Ay = -3p , for 1 <1 < Q-1
By = 14p, for l <1 < N=1
Cy = =¥%p, for l <1 <R-1

dg = oy ), , .+ (1-p)(6 )

OJ Lo 1:J

+ for 1 <1 < Nl

W0 441,

d, is easily cbtained since (6, ) is known for every 1

i Lo’1,)

for the Jth time step. The above equations apply for 0§r<r;.
For the post-solidification problem, we consider the

equations according t» the way in which they were grouped

in the previous section. Thus for the solid phase, for 1033*

o
or 1>0,(1) 1f R(J+1) = R(J) = 0, then



(a) 4f R(J+1) = 1, equation (48) and the boundary con-

dition (66) give

B_6, = g
© %o,j+1 °

AL© + B.6 = d
R'Sp-1,5+1 R'Sp,y+1 R

where Bo s ]

Co = 0

do = (£3)441/Te

A Eigili} B 2Xp + x

R" - =3 PR " +1

1+xJ+1 J

and

4 0 2Ap

= X,,. +
R Jti sR,j l+xJ+l‘

(b) if R(J+1) > 2, the boundary condition (66) and
equations (49) and (50) give

B 6 ' - = d
-0 %0,3+1 °

c,6

A0 +B, 0 +
178g00,941 1784 ,541 1

= d for 1 < 1 < R=-1
Si+1,541 1’ =" =

A0 +B_0 = d
R sR"l,J"'l R SR’J+1 ) R

where Bo = ], Co = 0, d

Ay = -Ap/2 for 1 <1 < R-l

(o]

By =1+ Ap for 1 <1 < R=1
= -Ap/2 for 1 <1 < R-l

= XApo +(1=Ap)#o +%Apo
1 81'103 sioJ 81+laJ

for 1 < 1 < R-1

A" -2Apx1+1
R T¥x
J+1

56

(94)

(95)
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+2Ap/(1+x,, )

d j+1

By, ® 2Ap+x

3 s X ]
R J*¥1 * "R J+l SR,J

(14) if R(J+1) = R(J) = 1, then
(a) if R(J+1) = 1, boundary condition equatlon (66) and

equation (51) glve

B_6 = d
° sohj"'l °

A0 + B0 d
R'SR.1,j+1 R 5R,j+1 R

/T, € =0 (96)

where Bo =1, d e? o

o (f1)3+1

-2\ p 4
A, = 2 pflil, B, = 2Ap + Sl = 2ap+1-x +x
R l+xJ+1 R ap J TJ+l

X
m 2AR o ZJ¥Y o 2AR . gy 4x
R + +1
1+xJ+l ag 1 xJ+1 J

(b) if R(J+1) = 2, equations (52) and (53) together with
the boundary condition give

d

BOBSO,J+1 ® %

A 6 +B ¢ +C 6 = d
R-1 S8R.2,j+1 R-1 SR=1,j+1 R=l SR,J+1 R-1

A}

A6 +B.0 d
R'8R.1,J+1 R °R,j+1 R

where B = 1; d, = (fl)J+l/Te; C, =0 (97)

Ap_1==APs Bp_y=1#2hp; Cp.y=-APi dp_"0sp; 4

AR = fi;;;;l H BR = 2\p + oy = 2Ap+l xJ+xJ+l
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2\p__ X141 e« 2AD 41 - x 4+ x

R " 1+x3+1 ap l+xJ+1 J J+l

d

(¢) 4f R(J+1) > 3, equations (54), (55), and (56) together
with the boundary condition glive
B 6 s d

© 50,441 °
A, O +B,0 +C, 0 a d, for 1 <1 < R=2
i Siwl,j*#1 181,341 1 8i+1,4+1 1 -
+ + a2
Ap-1%pe2,5+41*PR-1%p01 541" CR-1%R, 541 ¥ 9R-1 (98)
A0 +B.6 = d
R'Sp-1,5+1 R9R,y+1 R
where B_, Co, dos Ap_ys Bp_ys Cpoqs dpoys Aps By and dp
have tne same values as in part (b) above and
Ay = -%Ap for 1 <1 < R-2
By = 1#Ap for 1 <1 < R=2
Cy = =3Ap for 1 <1 < R=2
d, = k\pb6 +(1=Ap)e +%Ap0, for 1 < 1 < R=2
1 11,3 51,J 81+41,] - =
(111) If R(J+1) - R(J) = 2, then
(a) if R(J+1) = 2, equations (57), (58), and (66) give
B 6 u g
0 '50,J+1 o
AR“198R-2,J+1+BR-105R-1,J+1+CR-1933,J+1 - dR.l (99)

where B,, d,, and C, have the same values as 1ln part (11)

above;
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Ag.y *® -aR_lkp = -lp(1+xJ+l)/(2-xJ+xJ+l)

B = 1+2ipap_, *® 1+2Ap(1+x,,,)/(2=x )

Re1 J+1 PRRTS!

-2}\px + X
P > N L P

R-1 1+xg,q R J i+l
22 X3¢l _ _2\p

d, = S2— = +2 =%, b x,

R 1+xJ+l ag | 1+xJ+1 J J*l

(b) 1f R(J+1) = 3, equations (59) to (60)‘p1us.the

boundary condition equation (66) give

Boeso,J-l-l = %
AR—205R-3,J+1+BR-2est2,J+1+CR-263R-1.J*1 a YR-2 (100)
AR'leSR-z,J+1+BR-1683,1,J+1+CR~163R,J+1. = dp o
AR%sp.1, 541 PR, g1 | = IR

same values as in part (a) above,
Apaa = =Ap; Bp_p = 1¥2xp; Cp_p = =AP: dp_p = O5p,
(¢) 4if R(J+1) > U, equations (62) to (65) and equation
(66) give

B_0s, - d

R (o]
+ + -
A8y 1,541% 1%, 542" C10%y,y 4y "4 121 2R3
+B, .6 s =
AR-2%sp-3,5+1*PR2%5Ra2, 541 OR=2%8R1, 541 7 YR (101)
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A, .6 +B_ .0 +Cp 40
"R=1"8R.2,j+1 B=1SR~1,j+1 R=1"Sp.) 44

A8 + B.6
R"8R-1,J4+1 R™SR,j+1

where B, C,, dgs Ag_ps Bpops Craps dions Apnys Broys Cpays

dR.ys Ags 7, have the same values as in part (b) above, and

Ay = «3Ap for 1 < 1 < R=3
By = 1+2Ap for 1 <1 < R=-3
C; = ~¥Ap for 1 <1 <R-3

d; = %Ap#d +(1=Ap)o +%Apo for 1 <1 < R=3
1 S1-1,J 84,3 S1+1,3

For the liquid phase, 1if
(a) 0 < R(J+1) < N=3, then equations (69) to (71) give

B,,.0 +Cp, - 6 = d
R+1°LR+1,.4+1 “R+1°L R+l
1,3+1 R+2,J+1 (102)
A, 9 +B, 6 +C, 0 = d, for R+t2 < 1 < N-l
170g03,541 17,041 L hed g1 L =- ="
where Brey ® (2°XJ+1)(1+2p'xJ)
Crer = =2p(1-x4,,)

dR'i'l = (2-xJ+1)(l-xJ+1)9LR+1’J+2p
Ay -%p for R+2 <1 < N=-1

34 = 1l+p for R#2 <1 < il=-l
Cy s «kp for R#2 < i < N-l
By = 1

du " (f2)3+1/Te

(b) 1if R(J+1) = il=2, equations (72) and (73) give
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+ d
Bpe1%pey 542 FR*leLR+2,J+1 R+1

(103)

BudL,, 541 "

where BR+1’ CR+1' dR+1’ BN and dN have the same values as in
part (a) ‘above,
(c) if R(J+1) = =1, then

(£5),,,/Te (104)

] -
Ly, g+ J+1

and the temperature profile for 0 £ 1 < N-1 i1s obtained from

the solid phase.

Soluticris of Governing Finite Difference Equations

Each of the tridiagonal matrix equations (93) to (103)
has a solution given by the solution of equation (92) as

follous:

ON,s3#¢1 = 9y .
01’J+1 = qq - b191+1,3+1 for 0 <1 < N=-1 (105)
do
where q, = g: : bo = CO/Bo

qy = (4, = Aja,_;)/(By=Asby ) for 1 <1 <N

and b, = C,/(B, = A,b, ;) fer 11 <H-1

Equation (105) applies as it is to the pre-solidification

problem for 0 £ 1 < 1:. For the post-solidification problem,

equation (105) becomes for the solid phase

8. =
SR,j+1 R

q for 0 < 1 < R-l (106)

0 = q, - b,0
81,341 1 T178443 541"
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where q =g~ =d, ; b, = CO/Bo = 0

q = (di'Aiqi-l)/(Bi'Aibi-l) for 1 <1 <R

and for the liquld phase, it becomes

oLy g1 N (207)
] = q,=b,0. for R+1 < 1 < N-1
i, 41 1710y, -

where q (£3) 441/Ts

by = cil(Bi'Aibi-l) for R¥2 < 1 < R=-1

d c

QR+l rRe1/Bre1 39 PRy ® Cpti/Brea

We start at time 1t = 0 to solve the pre-solidification

o

problenn, Thus, for.:j=0, (GLO) = Ta/Te for 0 < 1 < N,

i,o0
Thus we can find thé tempcratur; profile, (eLo)i,l’ for every

i by using equation (105) since all the constants are now

known. For the next time step (i.e. J=1), we calculate (61-_'0)1.2
by using the values of (eLo)i,l' which we have fognd, to cal=-
culate the constants to be used in equation (105). Thus we
continue calculating (9L0)1,3+1’ (for 0 < 1 < N), for each

given J until J = j¥* such that, at the bottom plate,

(e, ) > 1,0 and (GLO)

0,J* = 0,d#+1 ©

reached 1;. After J* is located, we calculate t;'by the

Lo l. At such a time we have

equation
(]

=
o

T ka(J' +r) (108)
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- 100
R approximates the fraction
Lo 0,5 ¥+1

(o

)
: %
where r = 1 Lo 0,)

eLo)o,J* -

of full time increment, which 1s needed to cool the tempera-
ture of the bottom plate from (eLo)o,j* to 1.0, HNote that

the dimensionless equillbrium temperature of solidification

of n-hexadecane is equal to 1l.0. To find the temperature pro-
file of the liquid at T:, we take the temperature of the
bottom plate to be 1.0 at T;, i.e. eLb(O’T:) = 1,0 and instead
of taking time increment to be ka, we take the fractlion

k,new = k. & < k_ to be our new time step, and therefore the

new value for p for this step is pnew = pr. The value for r

and the known temperature profiles (eLo)i j# are now used in
]
equation (109) to calculate eLo(iha, 1:):
-2
(eLo)i,J+1 s rp(GLo)i_l’Ji + (1 rp)(eLO)i.J,
+ rp(eLo)i+l,J* (109)

We now know 1: and the temperature profile eLo(iha,To) f'or

o

the pre-solldification problem for 0 <1 < W and 0 < 1, < T

We now start the calculations for the post-solidification

problemn,
To start, set t=0., This corresponds to 1 = T, " T: = 0
at To * T:. We start off again at § = 0 corresponding to At

increments. The first time step for the poste-solidification
problem is a full time step. Also the flrst value used for p
corresponds to a full time step. These values, together with

OLo(iha,T:) which we have calculated are used in the first
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calculations. The temperature of the bottom plate is taken
as the temperature of the solid phase at 1 = 0, We thus

have the first estimates of temperature profiles in the
liquid and sdlid phases at 1 = 0. We now proceed to estimate

R(J+1) and x and to calculate SJ+l as follows.

J+l

Estimation of Ry,4y, Xj43 and Calculatlon of S44,.

= 0, R(J) = 0, x, = 0, at § = 0.

First of all, we set SJ

J

Next we assume,

S' = X nh

41 a (110?

S! is the first approximation of S Since R(J+1) 1s an
J+1

j*l°

integer and 0.0 < x < 1.0, we can find R(J+1) and x

] L
j41 since SJ+1 ha(Rj+1 + xJ+1

J+1 J+1

). (77)

from S

We now have R(Jj+1l) and x to use in starting our more

J+l
. ' '
accurate calculations. We may now rename SJ+1 as SJ+1(01§).
Using the values of R(J+1l) and xJ+l whlch we now have, we can
go back to calculate new temperature proflles employlng which-
ever of equationi (94) to (102) applies,-as determined by the
values of R(Jj+1)=R(J), X5410 and R(Jj+1l). We also calculate ' a
new value for SJ+1, (which we will call SJ+1(new)), by using
whichever of eduations (78) to (91) that applies as deter-

minea by values of R(Jj+1), x 1 and of R(Jj+1)-R{Jj). We check

J+

S. (0ld) and if the absolute value of their

Jtl J+l
difference exceeds a certain number, €, determined by error

(new) against S

t
analysis, we set SJ+1 . a{SJ+l(old)+SJ+l(new)}. Again vwe use
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J+1 in equation (77) to find R(Jj+1) and xJ+l which are to be

used to find new temperature profiles and new SJ+1' Thus in

S

summary, the steps are outlined below.
(1) Use equation (110) to find 83+1 for the first
full time step.

(2) .=t equal to SJ+l(old).

!

(3) Use equation (77) to calculate R(J+1l) and x noting

J+1

that R 1s an integer between 0 and N and that 0 5-xj+l L 1.

(4) Use values which have been found for R and xJ+l

in the appropriate equations to calculate new temperature
profiles. |

(5) Calculate SJ+l(new) using whichever of equations (78)
to (91) that applies.

(6) If abs{SJ+l(old) - (new)} > €, set S;+l equal to

SJ+1
k{SJ+1(new) + S l(old)} and repeat steps (2).to (6) until

abs {S

J+

(old) = S, ,(new)} < €. Sy, is now known for this

J*+l J+l
time step and Sgy) = SJ+1(new), and 55,1 = Sy49 = Sy.

The first time step is now taken as fully calculated. We
return to mo-re time steps. € 1is calculated from analysis of
truncation errors of the finite difference equations.

For the second time step, set AS found from the pre-

j+1’

3° and let the new ASJ+1 te

S
be used for our new time step be ASJ+1 = (%;)Jka. Also set

vious time step, equal to AS

the S from the first time step equal to SJ’

3410 X340 Byn

x,, and RJ, respectively., Therefore, for the second time

J’
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step, the first approximation for SJ+1 is 83+1 = SJ + ASJ+1.

35+1 is now used to repecat steps (2) to (6) stated previously
until the second time step 1is fully calculated., For more
time steps, we proceed as before by setting the SJ+1, xj+l’

and RJ+1 from our previous time step equal to SJ' xj, and RJ,

respectively, and by obtaining our new ASJ+ from the relation

1

magnitude of new time lIncrement )
ASJ+1 = (ASJ) (magnitude of previous time increment”’’

Then 83+1 = SJ + ASJ+1, which we then use in steps (2) to (6)
outlined previously. We continue this sort of calculation
until the entire content of the cell is frozen, when SJ+1 = 1,0,
Thus SJ+1 1s calculated by iteration. SJ+1 and the temperature
profiles are dimensionlegs, but are easily converted into

dinensioned values.

Stability Criteria for Governing Finite Difference Equations

By definition R(J+1) is a non-negative integer between
0 and N where N is the total number of nodes 1n the space
direction along z. Thus R(J+1) is an integer such that

0 <R <N. Also xJ+l is by definition a fraction between

0 and 1, It is also non-negative. Therefore, must lie

xJ+l

in the region 0 < Xy41 < 1., R(J+1l) and x must satisfy

J+1
these conditions lest there arise instabllity in the solution

of the difference equations. R(J) and Xy must also satisfy

the same conditions as R(J+l1l) and x If the coefficient

J+1’

of any temperature 6 or ei’J+1 were to oscillate freely

i,J
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between positive and negative values, the solutions to the
difference equations would become unstable. Thus, for stabil-
ity, we insist that the coefficieﬁts of ei.d or 61.J+1 retain
the same sign tiaroughout the solution. Thus if the coef-
ficient of 91,3 is positive for any i,;jJ, 1t must stay greater
than or equal to zero for any other i,J. If it 1s negative

for any 1,J, it must stay less than or equal to zero for any

" other 1,3, These conditions must be particularly so since

the temperatures T and Tefwhich-give 6 by the equation 6 = T/Te
are defined on the absolute temperature scale and must there-

fore each be non-negative for any 1,j. Thus 6 must be

i
non=-negative, With these points in mind, we ch;ik each of
the equatlions that give the temp&rétgre profiles ei’J+l and
impose on it the conditlion that none of the coefficients may
change sign. On checking equations (48) through (91) we find

that for stable solutions the following conditions must be

satisfled:
0<xy <1 (111(a))
. 0 < Xspq & 1 (lll(b?)
R must be an integer such that 0 < R(J) < N (112(a))
and 0 < R(J+1) < N (112(b))
028 51 (113)
1« Ap 20 (114)
l- p >0 (115)

s‘“,1 - sJ > 0 (116)
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Equation (116) merely states that if a position node, 1,
has solidified at the j*N time step, it should stay solidified
during the (Jj+1l)st time step since net heat 1s being removed
all the time from the system. p = ka/ha2 and p is positive
for positive time step. From equation (109), 1 - 2rp > 0 (117)
for stable solutions. Since 0 < r < 1, the maxlmum value 1is
r = 1, Therefore, equation (117) 1is satisfied if

l1-2p20 (118)
Therefore, the maximum value of p above which the solutions
become unstable and below which the solutlions are stablé is
given by equating the left hand side of either equation (114)
or equating (118) to zero., Which of the two values of p to
accept as the acceptable maximum depends on the value of A,

A 1s non-negative since A = as/aL. Thus,

Ppax,1 = /A 119(a)
and Ppax,2 = 1/2 -~ 119(b)

Thus, if A 1s less than 2, then p is greater than % and

max,1l

is the acceptable p since 1t satisfies both equation

pmax,2 max

(114) and (118). If A is greater than 2, then p is the

max,1l
acceptable Prax since 1t satisfies both equations (;14).and
(118) in this case. Having selected Ppax® W€ now know that
any value of p that satisfies the inequality equation

0 <p3< Phax wlll give stable solutions, Thus if ha has
been chosen and fixed, the ka's that wi;l give stable solu-

tions are given by the inequality equation,



0 <k_ 2k, where kg is given by
a max max
k, s h 2/A or ka = %haa, depending on whether A is
max a max

greater than 2 or lecs than 2.
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EXPERIMENTAL LQUIPMENT AND PROCLDURE

A short description of the maln components of the experi-
mental equipment and an account of the experimental procedure

are given in this section.

Equipment

The principal element of the equipment was the test cell,
The auxiliary elements were thermocouple assembly, one U=
channel-continuous-temperéture recorder, a power-driyen.pump
and a refrigerator. Each element 1s glven é conclse descripe-

tion below,

Test cell: The test cell (Fig. 9) had a constant square
cross-section of externai dimensions 5 in. and overall height
of 3=-15/32 ;n. It was composed of a cooling chamber which
was sealed with soft solder to one face of an 1/8-in,.-thick
copper plate (the bottom plate or cold plate); a plexi-glass
frame 1~15/32 in. high which was sealed with epoxy to -the
bottom plate to form the chamber in which the test material,
n-hexadecane, would be contalned; and another_1/8-in.-thick
copper plate (the top plate) which was in turn attached to
-the other end of the plexi-glass frame by means of bolts and
screws, Figure (10) shows the exploded view of the test cell,

Tﬁe cooling chamber (Fig. 11) was constructed from

k-in.-thick copper plates. The void of the cooling chamber

had a square base of li-in, sides and a height of 1% in.

70
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Flgure 9., Test cell.
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Figure 10,

Exploded view of test cell.,
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Figure 11l.

Cooling chamber,
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Externally, the cooling chamber had a square base of 5-in.
sides and a height of 1-3/4 in., On each of its vertical
sides and very close to the bottom plate, the cooling chamber
carried two equally spaced 3/8-in.~external-diameter copper
tubes which served as outlets for the coolant. Each tube

was 1 1n. long. Thus, there were eight of these side tubes
in all. Also, at thLe center of its base, the cooling chamber
had one 3/8=-in.-external-diameter copper tube which served

as inlet for the coolant. This last tube was also 1 in. long.
Thus, the chamber made it possible for a coolant for the
bottom plate to flow 1n through the base tube and flow out
through the elght slide tubes. The coolant used was liquid
methanol.

Ti.e bottom plate (Fig. 12) was simply a 5-in.-square _
copper plate of 1/8-1n: thickness. It was soldered to the coole
ing chamber on cne face and glued to the plexi-gzlass frame on
the other. On the center of the face which was soldered to
the plexi=glass frame. 1t carried a copper-constantan thermo-
couple. The thermocouple was admitted through a hole which
had been drilled on a side of the plexi-glass frame and whi?h
was thereafter sealed with epoxy resin,

The plexi-glass framc (Fig. i2) was macnined out of a
thick plexi~glasé slab., The frame was %-in; thick,
l-15/32-in, high and had é 5=in.=-square ouyside cross=section,
It was glued at one end to the slide of the bottom plate

that carried a thermmocouple, with the resulting formation of
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Figure 12. Plexi-glass chamber for test material.
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a chamber of l-in,-square cross-section and 1-15/32-in,
helghnt. This chamber would contain the test material and
its helgnt of 1-15/32 in. would be the height referred to as
n in the present study. At the other end, thc plexi-glass
frame had elght screwed-in bolts with one at each corner and
one at the middle of each edge. The top copper plate would
be attacned to the test cell by means of these bolts. Tae
frame carried two copper-constantan thermocouples on its
side at distances of 14/32 in. (or 14h/47) and 30/32 in.
(or 30n/47) from the bottom plate, |

The top platg (Fig. 13) was another 5-in.-squafe copper
plate of 1/8-in, thickness. At the corners and the centers
of each of its four edges, holes were drilled to receive the
bolts from the plexi-glass frame., Screws would then be used
to bolt the plate down on the plexi-glass frame. There were
two main reasons for using bolts and screws here instead of
solder seal., The first reason was that trying to seal a -
copper plate on to the plexi=-glass frame was very difficult
since the plexi-glass tended to melt before the copper plate
could be hot enough to give a good seal. Although it was
relatively easy to attach a copper frame by soldering
on to a hot copper plate, it was not as easy to attach a
copper blate by soldering it on to a hot plexi-glass frame.
The second reason for using screws and bolts was to facilitate
the filling and emptying of the test cell, The top plate
also carried, at the center of its face, a 1-3/4-in, long

copper tube of 1/16-in. internal.diameter and 1/8-in. external -
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Figure 13. Diagram of top copper plate,
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diameter. This acted as an expanslon chamber in case there
was a volume increase of the test materlal during phase
change. A copper-constantan thermocouple was passed through
a hole drilled iInto the top plate and 1ts Junction was
affixed to the inside facze of the plate by 2oldering.

Thermocouple assembly: As was shown in the description

of the test cell, the cell carried four copper-~constantan
thermocouples located as follows: one each at the 1lnslde
faces of the bottom and top plates, a third at 14/32 in. or
14h/47 from the bottom plate, through the plexi-glass walls
and the fourth at 30/32 in. or 30h/47 from the bottom plate,
also through the plexi-glass walls. The other ends of the
thermocouples were appropriately Jjolned by soldering and the
Junctions were immersed in a mixture of ice and water in a
Dewar flask to form cold junctions at 0.0°C (Fig. 14). The
free ends were then connecced to plugs that led into a four-
channel recorder. Each of the four channels was connected tc
a single thermocouple. |

Temperature recorder: The recorder was a 4d=channel

Sanborn(3l) continuous recorder, Model 150-1500. Thus, eéch
channel could record the temperature profile sensed by one
thermocouple continuously on a chart as a function cf time.
Thus the four channels allowed the use of four thermocouples
only. .The Sanborn Low Level Preamplifier, Model 150-1500,
whicn formed each channel of the recorder, was a chopper type
of anplifier for measuring slowly varying direcct voltages or

measuring slowly varying currents by adding an external shunt
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Figure 14.

Thermocouple arrangement:

(a) Assemblage showing cold junction and plug
Tfor a single thermocouple,

(b) The panel of one channel of the recoxrder
showing a socket for receiving thermo-
couple plug.
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resistor. The signals could be read in circuits removed
from the ground by as mucn as 300 volts LC. it had a sensi-
tivity of 106G microvolts per centimeter to 0,1 volt per
centimeter of chart in ten steps. For instance, when cali-
brated at 500 microvolts per centimeter, the accuracy 1in
reading tne chart was $0.025 millivolts. For a copper-
constantan thermocouple, this corresponded to an accuracy
of 10.7°C. Tﬁe speed of the chart was in the range of 0,025
millimeters per second to 10 millimeters per second arranged
as follows (all units being millimeters per second):

0;025, 0.05, 0,1, 0.25, 0.5, 1, 2.5, 5, 10.
Thus, time intervals could be obtained from the speed qf the
charting paper. .

Pu.p: The pump used to circulate the coolant (methanol)
from the refrigerator to the tesy cell was a Chemical Rubber:
Company(32) "ic-Seal" centrifugal pump, Model ABIPOOSH#. It
operated on 115-volts, 60 cycles, alternating current only.
It could attain 3000 revolutions per minute and pump from
420 gzllons per hour at a head of 1 ft to 250 gallons per
hour at a head of 9 ft under normal atmospheric conditipns.

Refrigerator: The refrigerator for the coclant was a

Bar Ray of Brooklyn, ilew York, Model 557T refrigerator that
operated on a 60-cycle, 115-volt alternating current. It
had a regulator that could be used to adjust the steady state
temperature to which the refrigerant is cooled, A schematic

picture of the assembled equipment is shown in Figure {(15).
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Flgure 15. Block diagram of assembly of main experimental
equipment.
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Experimental Procedure

The top plate was removecd from the cell, the test cell
was completely filled with the test material, n-hexadecane
and the top plate was replaced and bolted down by screws to
seal the cell, The cell was supported on an open cardboard
box. The inlet and outlet tubes of the cooling chamber were
connected by tygon tubings to the pump and to a methanol
reservolr fllled with methanol. The methanol reservolr was
also connected to the refrigerator by a tygon tubing. The
thermocouples were plugged in and the approprlate scales were
set on the chart for continubusly recording temperatures 1in
the form of voltages. Initlially, a two=way tap between the
test cell and the refrigerator was used to shut off the flow
of methanol from the refrigerator to the test cell and the
pump was turned on to circulate methanol only within the rest
of the equipment for a few minutes., In this way the tempera-
ture of the methancl in tﬁe system was made approximately
uniform before being led into the cooling chamber of the test
cell, It also became possible to start recording temperatures
at the same time that the coolant (methanol) started flowing
into the cooling chamber of the test cell. Thus when 1t was
certain that the system was ready, the recorder chart was set
in motigg, the two-way tap was used to allow enough flow rate
of the coolant to ensure turbulent flow into the cooling
chamber of the test cell, and the time was noted as t=0 at

the start of the experiment. The room temperature was also

-
T T s
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read with a imercury thermometer at the beginnlng of the
experiment and at regular intervals during the experiliment.
When all of the n=hexadecane or enougn of it had
solidified (sometimes 1t took more than 90 minutes to
solidify about three quarters of the amount of n-hexadecane),
the experiment was terminated. The thermocouple readings
were thnen translated from the voltage recordings of the
chart to degrees Centigrade by using a table of emf's and
temperatures for a copper=constantan thermocouple,

Polynomial fits for f;(t) and f5(t): As was stated in

the theoretical analysis, the experimentally-determined
temperature profiles of the bottom and the top plates were
to be used to obtain polynomial fits, fl(t) and f,(t),
respectively, that would act as time-dependent boundary con-
ditions for the theoretical problem of this study. fl(t)
and fz(t) were obtaiﬁed for each experiment by using exponen=
tial fits of the type

T(t) = A + B exp(~-c(t)t) where c(t) was a polynomial
of degree 5 or less found by the least-squares fit., "A"
corresponded to the final steady state temperature of the
cold bottom plate and the sum of A and B equalled the initial
temperature at ¢=0, i.e., the room temperature T, which was
fairly constant throughout the particular experimental run.
Thus, 1f the flnal steady state temperature of the cold

bottom plate waas Tc » then

pf
A= Tcpr. and A+3 = Ta or B = Ta - Tcpf' m
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Thus, for a particular run, the fit to the temperature of the
bottom plate was

rl(t) = Tcpr + (Ta'Tcpf) exp(=-c,(t)t) = T(t)bot;t:om plate

(120)
and the fit to the temperature of the top plate was
f = + - - t) =T
2(8) = Toop + (To=T pp) exp(=c,(t)t) (t)top plate
(121)

The use of an exponential fit of'this form was prompted by

the following reasons. The rirSt reason was that a polynomial
fit of degree 5 or less still gave a standard deviatior
between fltted temperature aﬁd experimental temperature that
was too large compared to the error in reading the actual
temperatures experimentally. A polynomlal of degree more

than 5 was thought to be unwieldy. Also, the round-off

errors from the computing program became significant for

deg. 2es greater than 5. A different fit had to be found.

The second reason was that the experimentally measured tempera-
ture of the bottom plate approached the profile of a decaying
expcnential. It started off from room temperature and fell to
a constant steady state temperature-that depended only on ﬁﬁe
setting of the refrigerator current. Since no part of the
cell coﬁld be colder than the coolant being circulated by the
refrigerator and since at the beginning of the experiment the
cell and its entire contents were at a constant room tempera-
ture, 1t was decided that at the final steady state of the

entire cell, the temperature would be equal to the steady
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gstate temperature of the bottom plate, which, in turn,
equalled the steady state temperature of the coolant as
regulated by the refrigerator. Thus, the temperature pro=
files of the bottom and the top plates would only differ
by the values of the exponents, particulcrly ¢y and c,.

A computer program was written that would read in Ta’

T T(t) and t, and also calculate c(t) from the equation

cpf?

¢'(t) = FIn{(T(8)=To )/ (Ty=To )} for £ >0  (122)

epfl cpf)

where c(t) is a polynomia. fit of c'(t) and c¢'(%) is calcu-
lated from experimental values by Equation 122. If T(%)

was the experimentally determined temperatureAfor the bottom
plate, then c'(t) was ci(t); i1f i1t was for the top plate,
then c'(t) was cé(t). At t=0, T(t)=Ta and {c'(t)}t=0. When
T(t) = Tcpf’ then e-{c'(t)}t=0. Thus c'(t) was calculated by
equation (122) only for t > 0 and for ¢ such that T(t)<Tcpf’
The computer program then would obtain a pclynomial fit c(t)
for ¢'(t) of degree 5 or less using the least=squared method.
The values for c(t) were then put into equation (120) or
equaticn (121) to obtain T(t)(fit)'f(t)' The sum of the >
squares of the differences between T(t)(fit) and T(t)(expefiment)
was then calculated for each degree of c(t). That degree of
cl(t)'or cz(t), which gave a standard deviation of T(t)(fit)

7 such that the standard deviation was

Foim T,(t)(experimental)
minimum and also less than or equal to the error in reading
T(t) experimentally, was taken as the best one to use in

equation (120) or equation (121). The computer program has
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been included in the appendix., Computer programs for the
pre- and the post=sclidification problems have also been
included in the appendix.

Estimation of €: The convergence criterla used in cal=

culating S was that if |S,,.(old) = (new)|< €, then

3+l 3+l Sye1
SJ+1 was taken to have becen calculated within the limits
allowable by the truncation errors of tae finite difference
equations which were used. Then SJ+1 = SJ+1(new) for the
(J+1)st time step. € was calculated by considering the

largest absolute value of the truncation errors in each of

equations (78) to (92). The largest truncation errors were

0k h, %) + 0(kyh %) (123a)
O(RahaM) + 0(kaha2J) (1230)
0k, h,°M) + 0(igh,d) . (123c)

The orders of magnitude were replaced by the absolute values
of each term in equation (123). Since k, and h, were fractions
between 0 and 1, the largest absoliite value of the truncation

error in calculating S was obtained from either equation

J+1
"(123b) or equation (123¢) as

= v | 2
€ abs(kahan) + abs(kaha J) (124a)
2 b
or €= abs(kaha M) + abs(xahaJ) (12ub)
depending on the actual magnitudes of M, J, ka’ and ha.

However, a value for € which was larger than that given

by either equation (124a) or equation (124b) had to be used so
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as to account for rounJ-off errors from the computer program
for calculating SJ+1' The actual value of € to be used was

found by fixing M, J, ka and h and assuming smaller and

a'
smaller vdlues of € until such a value that either did not

affect the accuracy of the calculated S 1 significantly or

J+
caused the computer to go into an indefinite loop. In the
event that the computer went into a loop, the next higher

value of ¢ was used, The value, é = 0,0004, which was used

in the computer program for the present study was obtalned in
this ménner. This value corresponded to 1.88% of the magniltude
of the space incfement ha and to 0.04% of the tctal helght of
n-héxadecane in the test cell, Thus, when the entire content
of the test cell was frozen, the calrlated héight of solid
varied from that predicted by an exact solution of equations

(2a) and (2b) by about £0.04% of the actual height of solid

in the test cell.



COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

The experimental results given in thls sectlion were
obtained for the test cell that was described previously.
The test materlal was practical n-hexadecane (n-016H3u) of
molecular weight 226.45 and it was distributed by the Eastman
Kodak Company for chemical purposes, It had small impuritles
that did not change its properties appreciably. It completely
filled a vold of the test cell of lein,-square cross-section
and 1-15/32-in., héight. The values of the parameters used to
obtair the theoretical results were obtained from dorthrop's
final report(zs). Data from Worthrop's report were:

Denslity

4 3

Solid n~hexadecane pg =1.0772 = 8,41 x 10" T gm/cm

for T < 289.9%
Liquid n-hexadecane pL=0.9726-6.813 X lo'uT gm/cm3
for 289.9% < T < 400.0°K
Specific Heat ‘
Solid n-hexadecane Cog=0+5 cal/{(gm=K;}
for 2509 < T < 289,97k

Liquic n-hexadecane ¢._. = 0.1626 + 1,164 x 10757 cal/(gm~°K)

PL
for 289.9°% < T < 480,0%
Conductivity

6

Solid n-hexadecane Kg=2.390 x 1073 = 3,047 x 107°T watt/(cm-°%)

for 250,0°% < T < 289.9%

95
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Liquid n-hexadecane KL=2.390 X 10'3-3.0N7x10"6Twatt/(cm-OK)

for 289.9°%K < T < 425,0°K
Solidification temperature
T, = 289.9°K = 16.7°C

Latent heat of solidification
Hy = 102.0 Btu/1b = 56,67 cal/gm

Since the theoretical model of the present study assumed con=-
stant but different properties for the solid and theiliquid
phases, constant values were calculated from ilorthrop's report
using average temperatures for those properties that were
temperature dependent. Since the solidification temperature
‘was 289.9°K and the loweit temperature found in the test cell
during a run was approximately 262.2°K, the average of these
temperatures, T av = %(289.9+262.2)°K = 276.1?K, was sube
stitﬁted into the equations for ihe temperature dependent
properties of the solid phase to obtaln average values that
were used as constant properties for the solid phase, Sini-
larly, since the highest temperature encountered in the
experiment was approximately 302,0°K, the average temperature,
TLav = %(302+289.9)°K = 295.9°K, was used to calculate prop-
erties for tne liquid phase. Thus the values of the proper=
ties u§ed fo:* the present study were:

Density

Solid n-hexadecane Py * 0.845 gm/cm3

Liquid n—heiadecane pL = 0.771 gm/¢m3
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Specific heat

Solid n-nexadecane c_. = 0.5 cal/(gm—ox)

ps
Liquid n~hexadecane cPL = 0,507 cal/(gm=°K)
Conductivity
S011d n-hexadecans  Kg = 1.549 x 107watt/(cn-OK)
= 2,22 x 10"%cal/(em=min-°K)

Liquid n-hexadecane K; = 1.488 x 10™3watt/(cm=CK)

2

= 2,13 x 10 “cal/(cr . *n=-9K)

Thermal diffusivity
Solid n-hexadecane asaxs/(pscPs) = 5,254 x ld-zcma/min
Liquid n-hexadecane aL-KL/(chPL) = 5,457 x 102 em®/min
Solidification temperature '
T, = 289.9% .
Latent heat of solidification

He = 56.67 cal/gm

Dimensionless variables

A = ag/a;
a
Moo= () (cpgTe/Hy) = 2,463
J = (pp/pg)(cp T /Hp) = 2,367
2
1, = (a;/h%)¢

0.9627

3,921 x 10”3¢ where t is in min.

h, ~ Az 1747
Other values used were

h = 1-15/32 in. = 47/32 in. = 3.73 cm

Ay = (z)h = (hp)h = 1/32 in, = 7.9 x 1072 cm
t = 255 1, minutes

t = 15, 300 1, seconds
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F ~ owing the argument in the thecoretical analysis eof the
conuitions for stabliity, equation (119b) was used to find

P since A was less than 2. Thus
max

Poax = 05 and p 2 0.5

2

2 -
ka,max = pmaxha = 0,5/(47)° = 2,26 x 10

4

Atmax = 3.5 sec = 0,058 min.

Thus, for the chosen h, = 1/47, any At less than 3.5 sec
satisfied the stabllity criteria., At of 1.0 second and 2.0
seconds were used, Tney corresponded to values of ka of
1/45 300 ~nd 2/15,300, respectively. It was found (as a glance
at Table 1 would show) that there was no stgnificaﬁt differ-
enée between the temperature profiles calculated usi.'g a le
secong time step and those calculated using a 2-second time
step. The two-second time step reduced the computer time reqﬁired
for the calculations without affecting the accuracy of the
‘results. Tables (1) to (7) and Figures (16) to (33) show the
experimental results and the results of the theoretical
analysls corresponding to eacn experimental run.

The only manner in whlch the experimental runs were
different from one another was 1> the values of one or both
of the following two physical conditions: ambilent tempera-
ture, T

and the steady state temperature, T £ to whicn

Al cp

the bettom plafte was cooled. The ea~lier termination of
some experimental runs compared to other runs was mostly

arbitrary and it had nothing to do with operational requirements



or experimental limitations. For instance, the first three
experimental runs (Runs 1, 2, and 3) were terminated soon
after about one=third of the content of the test cell had
solidified, while the remaining three experimental runs
(Runs 4, 5, and 6) were terminated after about two-thirds of
the content of the cell had solidified and before the entire
content of the cell had solidified. The maximum number of
points that could be recorded on a graph of experimentally-
observed height of solid formed versus time was 4 since only
four thermocouples.were used, .

In general, the experimental results of the tests pere
formed show good agreement with the theoretical results
obtained from the numerical analysls. There was much better
agreement °f experimental results with theoretical results
for the pre-solidification problem than for the poste
solidification probleh. As time elapsed, the experimental
results indicated a much slower dacrease in temperature tnan
that predicted by the taeoretical results. The helght of
golid formed, as indicated by the experiment, agreed well
inltially with that predicted by the theoretical calcula-
tions, but it became smaller than that predicted theoretical
as time elapsed and as the solidification front approached
the top plate of the cell, Thus, the theoretical analysis
predicted, in the early parts of the experiments, about the
same rate of solidification as wes cbserved experimentally,

but it predicted a faster rate of solidification than thnat
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observed experimentally as the freezing front approached the
top of the test cell.

The polynomial fits of the experimentally-observed
temperature profilés of the bottom plate or the top plate
agreed closely with the experimentally-determined temperature
pr:{iles themselves. The maximum standard deviation which
was found between any experimentally-observed temperature
prefile and its polynomial fit was much less than the $l.u’K
which was the estimated error in observing the temperature
proflile experimentally. Similarly, the maximum observea
cdifference between t¥* as found experimentally and t* as foun
by numerical analysis was less than $2.0 seconds. It should
be recalled that t* was defined as the time interval between
the start of cooling of the bottom plate and the initiation
of solidification of n~-hexadecane on the bettom plate. In
each of the graphs of.thé height of solid formed versus time,
t® represents the interval between t=0 énd the point where
the curve intersects the time coordinate,

One reason why the experimental and.theoretical results
agreed during the early stages of solidification, but |
differed during the latter stages was perhaps that the-heat
gained from the surroundings.during the early period of
solidification, when the¢ freezing front was still near the
cold plate, was not yet sufficient to cause any appreciable

change in the rate at whicn heat was belng withdrawn from the



celd plate by the refrigerated coolant. But as time passed
and as the amount of the liquid pnase whicah was left became
sit . ler the heat gained from the surroundings began to have
appreciable ffects on tne cooling process and therefore
slowed down the rate of solidification. However, the one-
dimensional model which was usad to obtain the theoretical
results essentially ignored heat gains or losses in all
directions but that direction in +hich the one-dimensional
model was formulated. Consequently, the theoretical result
predicted a much faster rate of solidification than that

observed experimentally.
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Table 1
Comparison of temperature profiles obtained theoretically
(at t = 48,0 sec) using l.0-sec and 2.0-3ec time steps.
Run 1l: Pre-solidification problem,

Distance from

bottom plate Temperature, °K Temperature, °K
y_cm (l.0-sec time step) (2.0=-5ec time step)
0.00 290.6 290,.6
0.16 296.4 296. 4
0.32 298.7 298.7
0.48 299, 4 299.4
0.63 299.6 299,6
0.79 299.6 299,.6
0.95 299.7 299.7
1.11 299.7 299.7
1.27 299.7 299.7
1,43 299.7 299.7
1.59 299.7 299.7
1.75 299.7 299.7
1.91 299.7 299.7
2.006 299.7 299.7
2.22 299.7 299.7
2.38 299.7 299.7
2.54 299,.7 299,7
2.70 299.7 299.7
2.86 299,7 299.7
3,02 299.7 . 299,7
3.158 299.7 299.7
3.33 299.7 299.7
3.49 299.7 299.7
3.65 299.7 299,17
3.73 299.7 299.7



Run 1
Table 2

Least-squares polynomial fits, f;(t) and f5(t), to experi-

mentally-measured temperatures of the bottom and the t¢p
pia*es respectively: Run 1.

Ta = Ambilent temperature = 299.7°K
Tc ¢ = Final steady-state temperature
P of the bottom plate = 262.7°K

£1(t) = Polynomial obtailned from a
least-squares fit of
experimentally-measured
temperatures of tne bottom -c3t

03

plate = 262.7 + 37.0e — $0.4°K

where c, = 0,14620836 + 0,34113500% - 0.11745415t2 +
1.7961587 x 10=2t3 - 1.3204283 x 10~3t" +

3.8116175 x 107°t%,

and t 1s measured in minutes: 0.0 < t < 17.9

fa(t) = Polynomlial obtalned from a least-squares
fit of experimentally measured temperatures

¢f the top plate = 262.7 + 37.0e
-4

where cz(t) = «7,1034089 x 10

6.4550809 x 10~°t2 + 1.7082712 x 10~°t3,

and t is measured in minutes: 0.0 < t < 17.9

+ 8.5043082 x 10‘"t

+0.1°%K
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Run 1 (cont.)

Figure 16, Temperature profiles (experimental and
theoretical) for the pre-solidification
problem (Run 1).
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Run 1 (cont.)

Filgure 17. Temperature profiles (experimentzl and
theoretical) for the combined pre-solidifi-
cation and poste-colidification problems:

Run 1,
Theoretical
Experimental Theoretical

o 1 Bottom=plate thermocouple

+ 2 Thermocouple at 14h/47 from
bottom plate

A 3 Thermocouple at 30h/47 from
bottom plate

O h Thermocouple at h from

bottom plate

h = 147/32 in. = 3.73 cm,



onraNml ¢ 3 ¢ auIx

9% 8. 0
T . v ‘— OWN
«l'bllll? <~ o — NQNWN
5
1 Q.Nm
o
®
e ”H
262
L°662

g0€



108

Run 1 (cont.)

Figure 18. Height of solid n-hexadecane as a function of
time: Run 1.
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Run 2
Table 3

Least-squares fits, fy(t) and f,(t), to experimentally-
measured temperatures of the bottom and top plates,

respectively:

=)

Tcpf

£,(¢)

£,(t)

263.3 + 37.0e
where c; = 0.12787341 + 0.42T746695¢t =~

where ¢, = -4,7386052 x 10"

Run 2.

Ambient temperature = 300.3°K

Final steady-state temperature of the bottom plate
263.3°%

-Cc.t
1° 4+ 0.5%

0.17143748t2 ¢ 3.0078475 x 10™%¢3 -
2.4362813 x 10™3t" + 7.3510422 x “10™°¢2

and t i1s measured in minutes: 0.0 < t < 23.0

Ozt

263.3 + 27.0e-°%2" & 0.1%

4

" 6.1491732 x 10”7 't -

3.8541947 x 10~°t2 + 8,3964074 x 10™T¢3

and t is measured in minutes: 0.0 £t < 23.0
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Run 2 (cont.)

Flgure 19. Temperature profiles (experimental and
theoretlical) for the pre-solidification
problem: Run-2.
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Run 2, f{cont.)

Figure 20, Temperature profiles (experimental and
theoretical) for the comblned pre=
solidification and post-solidification
problems: Run 2,

Theoretical

Experimental) Theoretical
o 1l Bottom=plate thermocouple

+ 2. Thermocouple at 14h/47 from
' bottom plate

A 3 Thermocouple at 50n/47 from
- bottom plate

O ] Thermocouple at h from
bottom plate

h = 47/32 irn. = 3,73 cm,
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Figure 21.

Run 2 (cont.)

Height of solid n-hexadecane as a functlon
of time: Run 2.
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Run 3
Table §

Least-squares fits, f (t) and f,(t), to experimentally-

measured temperatures of the bottom and top plates,
respectively: Run 3.

*3

cpfl

fl(t)

ract)

Amblent temperature = 301.5°K

Final steady-state temperature of the bottom plate
265. 3%

-Olt o
265.3 + 36,2e 2 0.3K

-2
where ¢, = 0,24807854 + 0,19299560¢t = 5.7222949 x 10 t2

+7.2362357 x 10™3t3 = 4.2584939 x 107 tH +
9.3636101 x 1070¢°

and t 15 measured in minutes: 0.0 < t < 34.3

265.3 + 36.2¢ 2" 1 0.3%

where 02.- -3.1603307 x 10=% + 4.2309680 x 10™ "¢t -
2.8095101 x 10~°t2 + 9,1612643 x 10~ '¢3 -
1.0792678 x 10~ 5¢"

and t is measured in minutes: 0.0 < t < 34,3
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Run 3 (cont.)

Figure 22. Temperature profiles (experimental and
theoretical) for the pre-solidification
problem: Run 3,
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vigure 23.

Run 3 {(cont.,)

Temperature profiles (experimental and
theorctical) ror the comblned pre-
solidification and post-solidification
problems: Run 3.

TheoreticalA

Experimental Theoretical

o

+

1l Bottom=placte thermocouple

2 Thermocouple at lih/47 from
bottom plate

3 Thermocouple at 30h/47 from
: bottom plate

] Thermocouple at h from
bottom plate

h = 47/32 in, = 3,73 cm,
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Run 3 (cont.)

Pigure 24, Helght of solid n-hexadecane as a function of
time: Run 3.
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Run 4
Table 5

Least-squares fits, f;(t) and f,(t), to experimentally-

measured temperatures of the bottom and the top plates,
respectively: Run 4,

T = Ambient temperature = 300.99%

T r = Final steady-state temperature of the bottom plate
Pt = 264,0°%

£1(t) = 264.0 + 36.9e + 0.5%

where ¢ = 0,17001907 + 0.26454099¢t = 7.3114020 X 10"%¢°

+7.9185015 x 10.31:3 - 3.8016733 x 10‘"t" +

6.6739894 x 10~6¢2

and t 1s measured in minutes: 0.0 < t < 61.5
£,(t) = 264.0 + 36.9e $ 0.1°K

b 4

= =3,3089768 x 10" + 1.4827702 x 10" t -

=6

wWhere c2

2.2737729 x 10~6t2 + 1.0374753 x 10~8¢3

and t is measured in minutes: 0,0 < ¢t < 61,5
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Run 4 (cont,)

Figure 25, Temperature profiles (experimental and
theoretical) for the pre-solidification
problem: Run.l,
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Run 4 (cont.)

Figure 26, Temperature profiles (experimental and
theonretical) for the combined pre-
solidification and post-solidification
problems: Run 4,

Theoretical

Experimental Theoretical
o 1 Bottom~-plate thermocouple

+ 2 Thermocouple at 1l4h/47 from
bottom plate

A 3 Thermocouple at 30h/47 from
bottom plate

O ] Thermocouple at h from
bottom plate

h = 47/32 in. = 3.73 cm,
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Run 4 (cont.)

Figure 27. Helight of solid n~hexadecane as a function of
time: Run 4.
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Run 5
Table 6

Least-squares fits, f;(t) and f,(t), to experimentally-

measured temperatures of the bottom and top plates,
respectively: Run 5.

Tcpf

£,(t)

fz(t)

Ambient temperature = 297,8°%K

Finalosteady-state temperature c¢f the bottom plate
262.7°K :

262.7 + 35.1e t 0,4°%

2

where ¢, = 6.5019191 x 10 - + b.ﬂOlN?hth -

6.14185947¢° + 2.2468639 x 10™°¢3 -
1.6686646 x 10~3t" + 4.7213390 x 10°°t5

and t is measured in minutes: 0,0 < t < 61.0

262.7 + 35.1e + 0.1%

where c, = -3.3“3"&03 x 10 4

+ 2. 4737272 x 107 't -

5.7413214 x 10"6t2 + 5.2857290 x 10'8t3

1.7660905 x 10~10¢%

-4

and t is measured in minutes: 0.0 < t < 61.0
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Run 5 (cont.)

Figure 28, Temperature profiles (experimental and
theoretical) for the pre-soildification
problem: Run 5.
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Fun 5 (cont,)

Flgure 29. Temperature profiles (experimental and
theoretical) for the combined pre=-
solldification and post=solidification

problems:

Run 50

Theoretical

Experimental Theoretical

o 1l
+ 2
A 3
0 4

Bottom=plate thermocouple

Thermocouple at 1l4h/47 from
bottom plate

-Thermocouple at 30h/47 from

bottom plate

Thermocouple at h from
bottom plate

h = 47/32 in. = 3,73 cm.
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Run 5 (cont.)

Figure 30. Helght of solid n-nexadecane as a function of
. time: Run 5.
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Run 6
Table 7

Least=-squares fits, fl(t) and fz(t), to experimentally=-

measured temperatures of the bottom and the top plates,
respectively: Run 6.

Tcpr

fl(t)

£,(t) =

Ambient temperature = 298,2%

Final steady-state tempefature of the bottom plate
261.7 _

=C.t |
261.7 + 36.5¢ T t 0.5%

where c, = 6.6373908 x 10'2 + 3.6587915 x 10'1£ -
-]l 2
t

-Rtﬂ

1,1399978 x 10 v 1.4684732 x 10~%¢3 -

8.4706573 x 10 + 1.7879879 x 10™°¢3

and t is measured in minutes: 0,0 < t < 62,0
. -c,t :
261.7 + 36.5¢ ° & 0.3%

Y y

+ 3,7329234 x 10" 't -

1.0960065 x 10™°t2 + 1.3965306 x 10™7t3 -

8.2314786 x 107104 &4 1.8183611 x 10”12¢°

where c, = =3,9221055 x 10"

and ¢ 1s measured in minutes: 0.0 < t < 62.0
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Run 6 (cont.)

Figure 31. Temperature profiles (experimental and
theoretical) for the pre-solidification
problem: Run 6. ‘
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Run 6 (cont.)

Figure 32. Temperature profiles (experimental and
theoretical) for the combined pre-
solidification and post=solidification

problems:

Experimental Theoretical

(o} 1
+ ‘ 2
A 3
O 4

Run 6.

Theoretical

Bottom=plate thermocouple

Thermocouple at l4h/U7 from
bottom plate

Thermocouple at 30n/47 from
bottom plate

Thermocouple at h from
bottom plate

h = 47/32 in, = 3.73 cm.
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Run 6 (cont.)

Figure 33. Height of solid n-hexadecane as a function of
time: Run 6,
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CONCLUSIONS

In general, good agreement between experimental and
theoretical results has been observed. Therefore, it seems
nbvious to conclude that the numerlical analysis developed in
this study has certailn advantageous characteristics that
make 1t extremely sultable for the study of problems involv-
ing unidimensional melting or freezing. However, it has
some dilsadvant:ages, too.

‘The applicability of the numerical method developed
here may be extended to cylindrical and spherical coordine
ates and for other geometric systems for whieh CrossS=-
sectional ereas are functions of the distance from the origin
only. The method aiso reduces the time and the memory bank
used up by the computer program as compared to those used in
explicit finite difference formulations. The use of poly-
nomnial fits of the temperatures of the boundaries, as has
been dcne in this study, makes it unnecessary te calculate
actual heat-transfer rates through the boundaries in order
to solve similar problems with time=-dependent boundary con-
ditions.

However, one obvious dicadvantage of the method used in
this study, 1s that it 1s approximate. Heat gains or losses
were neglected in all but one dimension. The boundary cone-

ditions which wers used to solve the one=dimensional model
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problem were only approximations of the actual boundary con-
ditions or the expefimentally-observed boundary conditlions.
Convection in the liquid phase was also neglected. Trunca=
tion errors in the formulation of the finite differe. ce
equations and the round-off errors in the computer »r =rams
which were used to calculate the theoretical results also
contributed to the errors in the theoretical results.
Average but different physical properties were used for the
liquid and solid phases in the theoretical analysls whereas
the actual pnysical properties of the two phases were tempera-
ture dependent. In addition to all these sources of error,
there was some error in obtailning the experimental data,
mainly due to tullt-in errors in the calibration of the
experimental equipment and the judgement of this experimenter.
Although a good general agreement was obtalned between |
experimental and theoretical results, it must be cautioned
that the numerical treatment used in this Spudy is rather
involved and could hardly be applied to freééing or melting
in systems with more than one coordinate dimension or in
problems in which convective effects are being considered.-
In such cases, the assumption of partially-solidified ele-
ments should be eliminatesd and more conventional procedures
(explicit finite difference formulations, "super-heat"
method, "pseudo-specific heat"™ method, etc.) should be
applied.

More accurate results and better theoreti.al models
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would be obtained if heat gains, convective effects, inter-
face area effects and other sources of error could be

included in the theoretical analysis. Two or three-dimensional
models should also be studied in order to obtain better
theoretical results., It would also be extremely convenient

to develop a more refined method of measuring heat inputs

and losses and of establishing the actual time-dependent
boundary conditions,

A study that included the study of convectlve effects as
the test cell was tilted at various angles would be desirable,
since convectlion definitely affects the solidification
phenomena, In such a study it would no longer be necessary
to minimize convectlon in the liquld phase by cooling the
test cell from below. In the same catzgory as a study of
convectlive effects would be a study of the effects of mechan=-
ical shaking or vibrations on the solidification process,

It is evident that the rate of heat transfer 1s the limiting
factor for the practical applications of fusible materials
as thermal controllers, Thus efforts should be made to
increase the heat-transfer area and to improve the perform;
ance of the cell as a whole,

HNucleation was negligible in the present study, but it
would be of interest to study the solidificaticn of materials
in whicn the effects of nucleation are appreciable,

Since outer space 1s virtually a vacuum, a study of the

solidification process in situations in which the test cell
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is kept in a vacuum could be useful in predicting the per-
formance of the test material in outer space as a thermal
controller. In such an experiment, care should be taken to
prevent leaks from developlng in the test cell. Radiation
would be the main mode of free heat transfer between the
test cell and its surroundings, besides the forced heat

trans fer due to the circulating coolant,
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NOMIENCLATURE

Text Computer

A AO Constant term 1n an exponential equation

Ay Coefficient of 61_1’J+1 in a tridiagonal
matrix equation

o Liquid-phase thermal diffusivity

Og Solid=phase thermal diffusivity

ap Fraction of a time step between the point

(R, j+1) and the intersection of .the inter-
face with the R'P space grid line

B Al Constant 1n an exponential equation

4 Coefficlent of G 1,3+1 in a tridiagonal
matrix equation

b1 SMALLB(I) A term in the solution to a tridiagonal
matrix equation for the ith space node

Cy Coefficient of ei+l L+l in a tridiagonal
matrix equation

c(t) Coefficient of the exponent in an exponen-
tial equation; a value obtained by a least-
squares fit of c'(t)

c'(t) Coefficlent of the exponent in an exponen=
t1lal equation as calculated directly from

experimentally-measured temperatures

cl(t) c(I) Coefficient of the exponent in a least-
squares exponential fit of the temperatures
of the bottom plate |

cz(t) c(I) Coefficient of the exponent in a least-
squares exponential fit of the temperatures”

of the top plate
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Text Computer

oL, Liquld-phase specific heat

cps Solid=-phase speciliic heat

dy D(I) Right-hand side of the 1*P triciagonal

matrix equation

AT,ATO AK Dimensionless time increment

At Time increment (sec)

Az AH Dimensionless spatial increment

Ay Spatial increment (cm)

£y(t) g%%,g%, Polynomial fit to experimental’y-measured
: temperature profile of the bottom plate

£,(t) g%%,gi, Polynomial fit to experimentally-measured
’ temperature profile of the top plate

He Heat of solidification

h Total helght of n-=hexadecane 1n a test cell

at the start of an experiment

h, AH Magnitude of finite dimensionless spatial
gtep

J AJ Dimensionless constant

KL Liquid-phase thermal conductivity

Kg Solid-phase thermal conductivity

oK , Degree Kelvin

ka AK Magnitude of finite dimensionless time step

L° Subscript referring to the liquid phase in

the pre-solidification problem

L Subscript referring to the liquld phase in
the solidification problem



Text

Z = >

Tcpf

Lo

Computer

GA
Al
N

Q(I)

Dimensionless constant, ag/aj
Dimensionless constant

Total number of spatial nodes, with the

first node numbered '0!

"Of the order of k"

kg/h,°

Heat flow per unit area per unit time

A term in the solution to a tridiagonal
matrix equation for the it spatial node

Number of the spatial grid line (in the
solld phase) which is on or next to the

interface of solidification
Liquid=phase density
Solid=phase density

BIGESS,S2, Dimensicnless height of the solid phase

S3,S4

TA
AO

T

Td
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which has been formed up to the dimension-

less time, <t

Subscript referring to the solld phase in

the solidification problem
Temperature '
Ambient temperature

Final steady-state temperatdre of the
bottom plate

Liquid-phase temperature in the pre=
8olidification problem

Liquid-phase temperature in the solidifica=-

tion problem
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t #

Computer

TS

TE
TIME
TIMST

TTP

TETAZ@
TZ¢ , TLY

TSS,TS
TAUZRY

TAUOST

TAU
X1
X

Y(I)
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Solid=-phase temperature
Equilibrium temperature of solidification
Time (sec or min)

Time interval from the start of cooling to
the start of solidiflication at the bottom
plate (sec)

Last experiment time at which a computer
program should end

Dimensionl:ss temperature for node located

on spatial coordinate 1 and time coordinate J

Dimensionless liquidephase temperature in

the pre=solldification problem

Dimensionless liquld~phase temperature for
the solidification problem

Dimenslionless solld-phase temperature

Dimensionless time for the pre-solidification
problem

Dimensionless time interval from the start
of cooling to the start of solidification at
the bottom plate

Dimenslionless time for the solidification
problen

Fraction of a spatial element that has
solidified by the (j+l)st time step

Fraction of a spatial element that has
solidified by the J*P time step

Spatlal coordinate
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Text Computer

Y(t) Yl Height of the solid phase formed up to
time ¢t

z Z(I) Dimensionless spatial coordinate

€ Ch Maximum error in calculating the dimension-
less height of the solidephase during a
dimensionless time step

Subindices Subscripts

i I Identifying number for finite spatial
increment

J J Identifying number for finlte time

increi-»nt
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APPLENDI X

FORTRAN IV Computer Program for obtaining exponential fits
to experimentally-measured temperatures of the bottom and
the top plates,

Tne subroutine which was called in this program had been
written by A.R. Brown, Jr.(33) for obtaining ordinary poly=-
nomlal fits by the least-squares method. The subroutine was

modified before belng used in this particular progran,
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APPENDIX

FORTRAN IV Computer Program for solving the pre-solidification

problem,
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23 TZ0(ID)=(VIH*TETALO(TI=1)) ¢+ ((1e=2e®VI)H*TETAZO(L) )+ (VIRTEYAZO(1+1))
TAUZRND=(] ,=V)#AK

TAUDST=

TINST=)5300¢0*TAUOST

e  — — mn — B

S=0,0_

DN 17 1=04K2

e RAEKT=]

17 S=S*#TAUOST+H (K4122)
T20(*)1)=(AO+AL*EXPF (-S#TAUQST) )/ TE

DO 50 I=)4Nl
50  TO(I)=TE*TZU (1)

PRINT 699 TAUAST e TIMST

PRINT

7

DO 18
18 PRINT

I=; ’N’Z
Be2 (1) e720(1)oY(1)sTO(])

PRINT

ReZ(NL) s TZOINL) o Y(NL) s TO(N])
I=XEX1IIF (D)

END

ERASARLE STCRAGE

1 2200 TO 1 5143

AP NGl i S b il e

S S R

A

'
. ]
kil e e

TTTAY SUB ZERO =

e65359477E=04 |, TIME

«10000000€E 01

TAU SuUB ZEROD = «00000000F 00 TIME = «V000QUUO0OE 00

VA 1ETa Su 7EpRO Y TEMPERATURE

« 00000 1.0362243876 v 0000000000 «3003600E 03

« 04255 10362243876 ¢ 158749994 «3003600t 03

208511 1:0362243876 03174999975 23003600E 03

012766 1403622436706 04762500018 ¢3003600E 03
217021 1. 0362243676 06369999949 23003600E_ 03 _

212177 140362243876 01937499993 «3003600E 93

25532 140362243676 09524999931 +3003600F 03

029787 160362243876 11112499948 ¢3003600E 03
034043 1036224387176 12699999884 2300360Q0E_ 03 _

e 38298 1e03622413b676 )e42876459860 ¢3003600E 03
042553 1e 0362243876 15874999985 23003600E 03 -

46809 10362243876 1e74624998)2 «3003600E 03
051066 ) e 03622438176 169050000086 «3003600E 03 i

«55319 1:0362243b76 2.063749963Y 30036007 03

259574 100362243876 Ceg224995415 02003600k 03

e 63830 140362243876 24381249979 «300360GE 03

4680085 1. 0362243876 245329099764 2 3003600L 03

e 712340 l1e036224B76 206987500042 «3003600E 93

0 76596 160362243876 2485749499720 «3003600E 03

0 8UES] 160362243176 3.016249977) ¢3003600E 03

_ 85106 1e03062243876 301750000045 23003600E 03
89362 10362243876 303337499723 03003600E 03 ;
29361/ 1e036b2243876 304924999699 2300360GE 03 i
9782 10362243870 3065126499675 ¢300360UCE 03 ;

.._le00000 100362243816 307306249663 23003600E_03_
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4 3 FURNMATI(2FL1T,.,10)
LY o FURAATUIFEN,2) R
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- 16 113 FORMAT(//3XAHAG 30FG 413X 4+ A1 25E1648)
17 o FURMAT(OELL44) e e
; 20 COREAD 1aK1sK2sw
i 24 READ 2,40,5A1 3 _ o
2h REAY HsTTP .
. 26 VK=K ]+1 _ -
” 27 rd 12 I=145 -
30 12 READ 3s3(lsl)ati(1s2) . e
32 PEAL DaTA
__ 33 TE=279.05 3 e
34 AK=2, /15’u0
25 tdsl,/4,
- 36 PaAL/(Ri¥%2)
| 37 Blen+l L o
- 46 TAUZP U0,
¥ 41 Tiar 0 R e
£ 42 rUoLe Is1pN] o o
L 43 TETAZU(])=TA/TE
44 TOUIYsIE*TETAZO(T)
45  fRE] B B e
: 46 o .ICPI.O
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i 52 19 T1=2%5,03TAJZRE ) o
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54 TQELEQ_Iﬁkéﬁff“b
lf‘ 55 TIMeTAUZPUX 15300, 0 T
56 9 34)sf L0 I e e
57 TdTl:O o) B
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61 td 13 lsfyv) -
62 MREKYel e
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E 115 2V 0 2Y lgi,H} e
116 TETATUCIY)=TZIN])
117 24 TUl[ysTexikTAZU(T) e
E 121 U Tr 19
- 2e MeUIFTAZO(1)=1s)/(TETAZU(L)-TZ0(L)) o
123 Yl=yap
[ 124 T20(1)=1.0
125 "d 27 1=2,N
126 23 TAM(T)E(UIMTETAZC(I=1)) 4+ ((14m2 #¥VI)RTETAZOLL)) $(VIXTETAZO (141
13¢ TAUQSTE TAUZRU= (1, = 71¥AK
. 1?2 TI1"ST=15200,0%TA00ST
¥ €=0,0 ) T T
133 B0 17 120,K2 o
E 134 ¥4 Tl
135 17 < SvTALO§T+b(K 4420 _ - L
137 TIC(V L) a (LOFELREXP (~SHTAUOGSTY)/TE
I L SN R T 5.0 ¥ 212 ) _ e e
141 4 TU(]):TE*TZ*J(I)
143 fJGESS=u,0 -
- 144 LG
145 . MNl=np,0 L ~ o
146 Yi=0.0
147 Yatlzn, 0
[ 150 ' Y;]S'.)UO sy T e
— 150 TIPE=TIAST S B
152 IR{sr
[ 153 TS()1y=12N¢(1)
1564 T T T YETArSULYSTSTLIRTE o T e
155 ") 3 1s2,N1 :
P~ TS(Ys0,n T T T T T T

L 186
l_m,_.mlﬁlnm,mli___
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SR SIaTesEsT

FORTRAN SOURCY LICT Thavi

o K S0

163
164
165
166
167

AKK e 'K

. "‘2'('(\3
rJEd 30T L
ORI GT 130, Xu» 1Py AN
PRINT S,TAL,T)ME

1746
171
172
1764
17%
176

126

PRINT 25

rijy 176 lal!.N1
DRIGT 14200 oY (T 1272001 aTul ), TSOIYTETASSC])
CRINT 2406 1GESS, !
PRINT 25,Y1,01

| =)

177 R
CLenNo_ o KEY . p

201 64  TAU]=TAU+AY

.. 2D2 B (0 L T LU
203 TAD[2B3M&60,0)
204 gyl _
2nsy TIMESLDINU, G (THIV]+TALOST)

— 206 L Xs2hR 0% TAJL+TAUEST) -
207 CUNE0,0
- YV M”TQIEC.Qm”_“_“m__w~mm”_mW_,*m.““m~“M“_“ e

211 N0 37 1ansK]
22 KR=KV el _ o
212 23 SUMacUMRT+B(VK,))

2 - rd 34 J=2CpK2 o
2le UPaKTwl]
217 36 TUTeTOUTRTHB(KFas2) . - e
221 TFCYv,EQ, 1000 TD 213
224 60 _1C 217
225 213 CUSEYPlaSUMET)

220 TRl r=D,10E=12)2032203,202 _ o

227
2390

N3

JR=E4
fd Tr 217 e

23}

204

Flear+A]l*CD “ '5

232 ni) 1N 206 R

233 2171 Fl3afn %

234 204 F@iﬁﬂ+ﬂlﬁEXP(‘TUT*73 s

235 FSS(VIRFI/TE J
. 236 o TLnr.y=Fe/IE e

227 A(1yaTSS() !

240 N(NLYaT (M) o

241 n(N1 =D (1) 3
e R%2  ___a(l)Eotly e e

243 SAALLB(1)=0,D §

244 TFUTRUIL00s2V4,218 p

245 214 Tg33a0/7 0 §

246__ 6U Ir 35 S f

247 216 S3sy1GFSS+NS] :
o @30 3> Mds§3/Ay I

251 110 TkEpn R
... 852 Pali R

253 Y1=AF"H )

256 227 11=]T+) L

255 12s]1+1

256 S 13 V4 2 N . — -
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LS SR STALRACT e e e
257 NELRTS

260 A Ny

26} 'i4e -3 , , :

262 N(12)80 (240Xl )%{Lle0=XY)RTZI][2))4(2,0%P)

263 2= ((2.0%P)201.06=X1)) ]
266 FRTIZ(200mR1)¥(1,GaX]4(2,0%P))
265 TR =N2)36,35,40
266 25 SHALLbU]2)=C/uk]
- 261 _n(l2ysD (1) /0RY -
270 ru 27 lsi3s4 °
271 SHALLBUIIS(en/2, )/l P ((P/2, )48 LLBI]=1))).
272 NI R IP /2 ) TZL L= I (L e=P)RT7 LI DR (P2, )3T 200141
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313  TF(IK)101042250
34 1 6=, O]
315 PRINT 1020465 1K.
316 GO TN 100
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