General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

EVALUATION OF A LIGHT-GAS GUN HYPERVELOCITY AUGMENTATION TECHNIQUE FINAL REPORT

MAY 1970

LIBRARY COPY

JUN 21970
MAHIUED SPACELKAR I CEMIER

$$
\begin{aligned}
& \text { HOUSTON, TEXAS } \\
& \text { ก N70-33\%3 } \\
& \text { Prepared under Contract No. NAS9-9312 } \\
& \text { by McDonnell Douglas Astronautics Company-Western Division } \\
& \text { Huntington Beach, Calfomia } \\
& \text { for }
\end{aligned}
$$

MC G0596

EVALUATION OF A LIGHT-GAS GUN HYPERVELOCITY AUGMENTATION TECHNIQUE FINAL REPORT

MAY 1970
by
R. N. TENG

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides with the author or organization that prepared it.

Prepared under Contract No. NAS9-9312
by McDonnell Douglas Astronautics Company-Western Division
Huntington Beach, California
for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

PRECEDING PAGE BLANK NOT FILMED.

PREFACE

This report was prepared by the McDonnell Douglas Astronautics Company--Western Division, under NASA Contract NAS 9-9312. The investigation was initiated by the Manned Spacecraft Center of NASA, Houston, to evaluate a light-gas gun hypervelocity augmentation technique. This work was administered under the direction of the Meteoroid Science Branch, B. C. Cour-Palais, Project Manager.

The report covers the complete work period from 24 March 1969 through 23 May 1970. It is submitted in partial fulfillment of Contract NAS 9-9312 and is cataioged by McDonnell Douglas as MDC G0596.

At McDonnell Douglas, Dr. J. L. Waisman, Director of Research and Development, and Dr. H. H. Dixon, Chief Engineer of the Advance Structures and Mechanical Department provided technical direction; G. L. Roark acted as program manager, and R. N. Teng was study director.

At the Douglas Aerophysics Laboratory, M. Hahner directed the light-gas gun operation and R. C. Curtis supervised the instrumentation.

The analysis of the constant base-pressure launch-cycle was the contribution of Dr. R. S. Hickman.

PRECEDING PAGE BLANK NOT FILMED.

Abstract

An analysis of the interior ballistics of a constant base-pressure (CBP) gun is made, relating the muzzle velocity to pertinent initial conditions in the gun. The specific chamber volume history required for the CBP launch cycle and the method of approximating the chamber volume are presented. Fifty-two runs have been made with the light-gas gun at the Douglas Aerophysic Laboratory to verify the theory and to identify the important parameters which may affect its performance. The departure of the CBP theory from the experimental results has been identified as the friction between the piston and the high pressure section walls. Four types of collapsible pistons have been developed to meet the requirements of the CBP launch cycle. The collapsible-piston designs have been demonstrated to be particularly effective in damping out sharp pressure peaks during maximum performance runs.

CONTENTS

Section 1 INTRODUC TION 1
Section 2 THEORY OF CONSTANT BASE-PRESSURE GUN 3
2. 1 Similarity Solution 3
2. 1. 1 Similarity Barrel Flow 3
2. 1.2 Barrel Entrance Conditions 4
2. 1. 3 Sonic Conditions at Barrel Entrance 5
2. 1. 4 Barrel Conditions After Sonic Flow 6
2. 2 Similarit;-Unsteady Solution 10
2. 2. 1 Barrel Conditions for Isentropic Constant Base-Pressure Flow 10
2.2.2 Barrel Entrance Conditions for the Coupled Similarity - Unsteady Cycle 14
2. 2. 3 Mass Flow Into the Barrel ($\mathrm{T}<\mathrm{T}_{\text {sonic }}$) 15
2. 2. 4 Mass Flow Into the Barrel for Similarity - Unsteady Cycle ($\mathrm{T}>\mathrm{T}_{\text {sonic }}$) 15
2.2.5 Chamber Conditions 19
Section 3 DESCRIPTION OF EXPERIMENTAL APPARATUS 29
3.1 Ballistic Range A 29
3.1.1 Powder Chamber 29
3.1.2 Pump Tube 29
3.1.3 Taper Section 31
3.1.4 Launch Tube 31
3.1.5 Blast Receiver 31
3.1.6 Instrumentation Section 31
3.1.7 Impact Chamber 32
3.2 Range "A" Instrumentation 32
3.2. 1 Model Detection System 32
3.2.2 Flash X-ray System 32
3.2.3 Superducer 34
Section 4 DISCUSSION OF EXPERIMENTAL PROGRAM 35
4. 1 General Discussion 35
4.2 Piston Velocity Calibration 38
4.3 Constant-Pressure Launch-Cycle 38
4.4 Maximum-Performance Launch- Cycle 42
4. 4. 1 Aluminum Collapsing Mechanism 43
4.4.2 Glass-Reinforced Epoxy (Scotchply) Collapsing-Mechanism 43
4.4.3 17-4 PH Stainless-Steel Collapsing- Mechanism 44
4.4.4 Variable Recessing-Rate Collapsing- Mechanism 44
4. 5 Miscellaneous Runs 46
Section 5 CONCLUSIONS AND RECOMMENDATIONS 47
Section 6 REFERENCES 49

NOMENCLATURE

a Non-dimensional sound speed, C / C_{s}
A Area
C Sound speed
G_{F} Constant of integration
L Length of piston collapse
M Mach number or measure of sabot
P Pressure
R Gas constant
S Entropy
T Non-dimensional time $P_{s} A_{s} t / M_{s} C_{s}$, or temperature
t Dimensional time
U Dimensional velocity
V Non-dimensional velocity U / C_{s}, or chamber volume
V Chamber volume
v Specific volume
W Mass of gas
w Mass, rate of flow
$\mathrm{X} \quad$ Non-dimensional distance $=\frac{\mathrm{P}_{\mathrm{s}} \mathrm{A}_{\mathrm{s}}}{\mathrm{M}_{\mathrm{s}} \mathrm{C}_{\mathrm{s}}{ }^{2}} \mathrm{x}$
$x \quad$ Dimensional distance
$\mathrm{Z} \quad \frac{\mathrm{T}^{2}}{2}-\mathrm{X}$, or $\sqrt{\frac{\gamma^{-1}}{2}} \mathrm{~V}$ always a dummy variable
$\phi \quad \sin ^{-1} \mathrm{Z}$
ρ Mass density
$\theta \quad T / T_{s}$, temperature ratio
$\pi \quad \mathrm{P} / \mathrm{P}_{\mathrm{s}}$
$\gamma \quad$ Specific heat ratio

Subscripts

i Initial loading conditions

- Original chamber conditions
s Initial sabot conditions
r Recession of collapsing piston
e Barrel entrance
P P characteristic, or piston velocity
c Chamber
L Local position of gas which first became sonic
$q \quad Q$ characteristic
$\mathbf{r} \quad$ Required for constant base pressure operations
g Gas
u Required times for constant base pressure

Superscripts

* Sonic conditions

1 Intermediate stations

Section 1
 INTRODUCTION

Laboratory simulation of high velocity meteoroid impact against spacecraft plays an important role in the design of space hardware. The combination of a light-gas gun and a ballistic range provides an excellent facility for impact date acquisition. Unfortunately, the maximum projectile velocity obtainable from such a facility falls far short of that of a real meteoroid in space. For this reason, considerable attention has been paid to the development of the light-gas gun to achieve higher velocity.

A light-gas gun usually consists of a pump tube containing a piston, a taper section, and a launch tube holding a model cradled in a sabot (Figure 1-1). Gun powder is used to accelerate the piston which in turn compresses and heats the pump-tube gas (usually hydrogen). When the desired pressure is achieved in the taper section, a diaphragm at the launch-tube entrance breaks and the sabot is sent down the launch tube. After the sabot leaves the muzzle it is separated from the model by various stripping techniques and the model continues into the impact area.

To obtain maximum velocity the model should be subjected either to the maximum pressure (or acceleration) tolerable for structural integrity of the sabot and model, or the taper-section pressure should be held at its maximum allowable value. In the case in which the model base pressure must be limited, it is clear that for a given barrel length a maximum velocity will be obtained when the base pressure is held constant at its maximum value. The gun cycle which accomplishes this has been given the name constant base pressure cycle (CBP). (References 1, 2, and 3.)

If the breech pressure is limiting instead of the base pressure it is equally clear that ma:cimum velocity will be achieved by holding breech pressure constant. This will result in an unsteady model-base pressure and a variable acceleration.

Figure 1-1. Hypervelocity Light-Gam Oun
Probably the most important and practical cycle is that in which the model pressure and the breech pressure must be held within specified limits so that during the early portion of the cycle the base pressure is held constant and later the breech pressure is constant.

This report describes a method of approximating the constant base pressure launch cycle by various piston designs.

For the purpose of simplifying discussion, the pump tube and the taper section will be designated as chamber. The launch tube will be represented by the barrel.

Section \angle
 THEORY OF CONSTANT BASE-PRESSURE GUN

2. 1 SIMI_ARITY SOLUTION

2. 1. 1 Similarity Barrel Flow

The first launch cycle to be presented (References 1 and 2) is one in which the gas in the barrel moves exactly in step with the piston, and gaseous, elements de not undergo any change in pressure or temperature. This cycle is called the similarity solution (Reference 3). Since the velocity is assumed to be only a function of time and since the base pressure is required to be constant, for the sabot or for any gas particle

$$
\begin{equation*}
V=T \tag{2-1}
\end{equation*}
$$

where

$$
\begin{aligned}
V & =U / C_{s} \text { and } \\
T & =P_{s} A_{s} t / M_{s} C_{s}
\end{aligned}
$$

The sabot position in the barrel is

$$
\begin{equation*}
X=T_{2} / 2=\frac{P_{8} A_{s}}{M_{8} C_{s}^{2}} x \tag{2-2}
\end{equation*}
$$

Now, in orde that no compression or expansion waves change the base pressure in fact, compression waves do reach the s,it, t, but are continuously cancelled by the expansion fan emanating fros it), the entire column of gas in the barrel must experience the same velocity given by Equation (2-1) and must experience an acceleration $P_{s} A_{s} / M_{s}$. Using this fact, the pressure distribution in the barrel can be obtained by using either Curtis' argument
(Reference 1) (an analogy with an isentropic atmosphere subjected to an acceleration of gravity $-P_{s} A_{s} / M_{s}$), or with the aid of the equation

$$
\begin{equation*}
-\frac{1}{\rho} \frac{\partial P}{\partial x}=\frac{d u}{d t}=\frac{P_{s} A_{s}}{M_{s}} \tag{2-3}
\end{equation*}
$$

and the isentropic condition $P \sim \rho^{\boldsymbol{\gamma}}$ so that

$$
\begin{equation*}
-\left(\frac{P_{\varepsilon}}{P}\right)^{\frac{1}{Y}} d P=\frac{P_{s} A_{s} \rho_{s}}{M_{s}} d x \tag{2-4}
\end{equation*}
$$

which yields for any position \mathbf{x}.

$$
\begin{equation*}
\left(\frac{P}{P_{s}}\right)^{Y}=\pi=\left[1+(Y-1)\left(X_{s}-X\right]^{\frac{Y}{Y-1}}\right. \tag{2-5}
\end{equation*}
$$

where

$$
\pi=P / P_{s}
$$

This equation will hold as long as the gas is isentropic. The temperature of the gas in the barrel is

$$
\begin{equation*}
\theta=\frac{T}{T_{s}}=\frac{C^{2}}{C_{s}^{2}}=\left(\frac{P}{P_{s}}\right)^{\frac{\gamma-1}{\gamma}}=1+(\gamma-1)\left(X_{s}-X\right) \tag{2-6}
\end{equation*}
$$

where the sound speed variation is also indicated.

2.1.2 Barrel Entrance Conditions

At the barrel entrance, $x=0$ so that Equations (2-5) and 2-6) become

$$
\begin{equation*}
\pi_{e}=\left[1+(Y-1) X_{s}\right]^{Y / Y-1} \tag{2-7}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{e}=\frac{C_{e}^{2}}{C_{s}^{2}}=1+(\gamma-1) x_{s} \tag{2-8}
\end{equation*}
$$

The velocity here (and everywhere in the barrel) is still given by Equation (2-1).

We can calculate the Mach number at the barrel entrance using Equations (2-1) and (2-8) to yield

$$
\begin{equation*}
M_{e}=\frac{U_{e}}{\sqrt{Y_{R T}}}=\frac{T}{\left[1+(\gamma-1) \frac{T^{2}}{2}\right] \frac{1}{2}} \tag{2-9}
\end{equation*}
$$

2.1.3 Sonic Conditions at Barrel Entrance

The time when the flow is first sonic at the entrance is given by Equation (2-9) with $M_{e}=1$, hence

$$
\begin{equation*}
T^{*}=\left(\frac{2}{3-\gamma}\right)^{\frac{1}{2}} \tag{2-10}
\end{equation*}
$$

The velocity at which the flow is sonic at the entrance is just

$$
\begin{equation*}
\mathrm{V}^{*}=\mathrm{T}^{*}=\left(\frac{2}{3-\mathrm{Y}}\right)^{\frac{1}{2}} \tag{2-11}
\end{equation*}
$$

and the location of the sabot when sonic flow is achieved is

$$
\begin{equation*}
X_{s}^{*}=\frac{1}{3-Y} \tag{2-12}
\end{equation*}
$$

Finally, the pressure at the barrel entrance is, using Equation (2-7) and (2-12)

$$
\begin{equation*}
\pi_{e}^{*}=\left(\frac{2}{3-\gamma}\right)^{\frac{\gamma}{\gamma-1}} \tag{2-13}
\end{equation*}
$$

Observe that for large time, Equation (2-9) yields for $\gamma=7 / 5$

$$
\begin{equation*}
\operatorname{Lim}_{T \rightarrow \infty} e=\sqrt{\frac{2}{Y-1}}=2.24 \tag{2-14}
\end{equation*}
$$

So that for isentropic flow, the flow at the barrel entrance must eventually be supersonic. In the case of a fixed- geometry chambered gun this is impossible with an area decrease since when $M_{e}=1$ the flow will choke.

2.1.4 Barrel Conditions After Sunic Flow

For similarity flow, after the flow at the barrel entrance becomes sonic, the flow will choke and sonic conditions will be maintained thereafter. Now the question is how the gas in the chamber must be processed to maintain the required steady acceleration in the barrel and at the same time produce sonic flow at the entrance.

The flow between the chamber and the barrel entrance will still be isentropic so that, once the barrel conditions are found, the chamber conditions will follow.

For the similarity solution it still is required that the velocity everywhere be given by Equation (2-1); however, now the barrel entrance temperature must be

$$
\begin{equation*}
\theta_{e}=\frac{T_{e}}{T_{s}}=v^{2} \tag{2-15}
\end{equation*}
$$

In order that the flow at the entrance be sonic.

Using Equation (2-1) we have

$$
\begin{equation*}
\theta_{e}=T^{2} \tag{2-16}
\end{equation*}
$$

Consider a small element of gas which sntered the barrel at an arbitrary time, T^{\prime}, where $T^{\prime}>T$ (Figure 2-1). The distance, X^{\prime}, traveled into the barrel by that element of gas is just

$$
\begin{equation*}
X^{\prime}=\int_{T^{\prime}}^{T} V d t=\frac{T^{2}-T^{\prime 2}}{2} \tag{2-17}
\end{equation*}
$$

The temperature of the element of gas at X^{\prime} is given by Equation (2-16) with $T=T$. The temperature of the gas must not change since the flow is assumed similar and $V=V(T)$ only. If the pressure (hence temperature) of a gas element were to change because of a compression or expansion wave, the local acceleration would change and $V=V(T, x)$. Therefore, we can find the temperature in the gas at the point X^{\prime}. This is done by observing that the gas element at X^{\prime} entered the barrel at T^{\prime} and the required value of θ is from Equation (2-16).

$$
\begin{equation*}
\theta^{\prime}\left(X^{\prime}\right)=T^{\prime^{2}} \tag{2-18}
\end{equation*}
$$

Using Equation $(2-17)$ for $\mathrm{T}^{, 2}$, Equation $(2-18)$ becomes

$$
\begin{equation*}
\theta^{\prime}\left(X^{\prime}\right)=T^{2}-2 X^{\prime} \tag{2-19}
\end{equation*}
$$

or

$$
\begin{equation*}
\theta(X)=2\left(X_{s}-X^{\prime}\right) \tag{2-20}
\end{equation*}
$$

The pressure gradient along the tube still must produce the required acceleration so that Equation (2-3) still holds, and using the ideal gas law, $P=\rho R T$, Equation (2-3) and the ideal gas law can be combined to yield

$$
\frac{d P}{d X}=-\frac{P_{s} A_{s}}{M_{s}} \frac{P}{R T}
$$

and then using Equation (2-20) and using nondimensional variables

$$
\begin{equation*}
-\frac{d \pi}{\pi}=\frac{\gamma d x}{2\left(X_{s}-X\right)} \tag{2-21}
\end{equation*}
$$

and we can finally write

$$
\begin{equation*}
\int_{\pi}^{\pi^{*}} \frac{d \pi}{\pi}=-\frac{\gamma}{2} \int_{0}^{X_{L}^{*}} \frac{d X}{\left(X_{s}-X\right)} \tag{2-22}
\end{equation*}
$$

where the limits express the fact that only the gas entering the barrel after $T=T *$ obeys Equation (2-20). The notation X integrate only to the local position of the gas which first became sonic. Note that if X_{s} were left in the terms of T that Equation (2-22) is independent of T and the same results would hold. The pressure gradient between fluid elements is independent of T or X_{s}. Equation (2-22) is easily integrated to yield

$$
\begin{equation*}
\frac{\pi_{e}}{\pi_{*}^{*}}=\left[\frac{x_{s}}{\overline{X_{s}}-X_{e}}\right]^{\frac{\gamma}{2}} \tag{2-23}
\end{equation*}
$$

We know from Equation (2-2) that $X_{s}=T^{2} / 2$ and from Equation (2-15)

$$
\pi^{*}=\left(\frac{2}{3-\gamma}\right)^{\gamma / \gamma-1}
$$

Of course, the position of the gas exhibiting this pressure will move down the barrel.

Finally, we need X_{L} •

$$
\begin{equation*}
X_{L}=\int_{T *}^{T} \operatorname{VdT}=\frac{1}{2}\left(T^{2}-T *^{2}\right) \tag{2-24}
\end{equation*}
$$

Then

$$
\begin{align*}
& \frac{X_{s}}{X_{s}-X_{L}}=\frac{T^{2}}{T_{*}^{2}} \tag{2-25}\\
& \frac{X_{s}}{X_{s}-X_{L}}=\frac{T^{2}(3-Y)}{2} \tag{2-26}
\end{align*}
$$

Finally, the pressure at the barrel entrance is obtained by combining Equations (2-26), (2-2), (2-15) and (2-23).

$$
\begin{equation*}
\pi_{e}=\left(\frac{2}{3-\gamma}\right)^{Y / \gamma-1}\left(\frac{T}{T *}\right)^{\gamma} \tag{2-27}
\end{equation*}
$$

and since $V=T$

$$
\begin{equation*}
\pi_{e}=\left(\frac{2}{3-\gamma}\right)^{\frac{Y}{Y-1}}\left(\frac{V}{V^{*}}\right)^{\gamma} \tag{2-28}
\end{equation*}
$$

Combining Equations (2-15) and (2-11) we get

$$
\begin{equation*}
\theta_{e}=\left(\frac{V}{V^{*}}\right)^{2} \frac{2}{3-\gamma} \tag{2-29}
\end{equation*}
$$

The entropy of a perfect gas may be written as

$$
\begin{equation*}
\frac{S_{e}-S_{s}}{\bar{R}}=\frac{\gamma}{\gamma-1} \ln \theta-\ln \pi \tag{2-30}
\end{equation*}
$$

hence, using Equations (2-28) and (2-29)

$$
\begin{equation*}
\frac{S_{e}-S_{s}}{\bar{R}}=\frac{\gamma}{\gamma-1} \ln \left[\left(\frac{V}{V^{*}}\right)^{2} \frac{2}{3-\gamma}\right]-\ln \left(\frac{2}{3-\gamma}\right)^{\frac{\gamma}{Y-1}}\left(\frac{V}{V^{*}}\right)^{\gamma} \tag{2-31}
\end{equation*}
$$

$$
\begin{equation*}
\frac{S_{e}-S}{R}=\gamma \frac{3-\gamma}{\gamma-1} \ln \frac{V}{V_{*}^{*}} \tag{2-32}
\end{equation*}
$$

Now $V>V *$ and $\gamma\left(\frac{3-\gamma}{Y-1}\right)>0$, hence, the specific entropy at the barrel entrance and, hence, in the chamber, must increase in time after $V=V *$ for the similarity cycle. Thus, for a chambered gun it is impossible to construct a constant base-pressure similarity cycle unless the entropy in the chamber grows in time after sonic flow is first achieved at the barrel entrance.

If, instead of maintaining a constant entrance barrel area, the area of the barrel at its entrance is decreased by some mechanical means, it is coneivable that the isentropic condition could be maintained, especially in light of the fact that the isentropic barrel entrance Mach number exhibits a limit of 2.24. (Even though the Mach number exhibits a limit, both the velocity and the chamber temperature increase without limit). The required entropy behavior was first pointed out in Reference 3.

2. 2 SIMILARITY-UNSTEADY SOLUTION

2.2.1 Berrel Conditions for Isentropic Constant Base-Pressure Flow

As was shown in Section 2.1.4, the specific entropy of the gas entering the barrel after sonic flow is achieved must increase if a similarity solution is to be followed. If the entropy is specified to be constant the similarity solution must be abandoned and the properties of fluid elements must be allowed to change after entry into the barrel. Figure 2-1 is an X, t, plot for a constant base cycle. The sabot curve is, of course, a parabola. As the sabot moves to the right in the barrel it creates expansion waves which travel to tive left. At the sabot's rear face, compression waves must be arriving in just the proper fashion to reflect in a way that will maintain constant basepressure. In fact, in the similarity solution, any element of gas has passing through it infinite trains of right running and left running waves which accelerate it unsteadily without changing the fluid elements, temperature, or pressure.

Figure 2-1. Relationship between Sabot and Gaseous Elements After Choking Occurs

It is possible to achieve constant base-pressure at the sabot if the flow field is governed by the similarity solution until sonic flow is achieved, and if the sonic entrance condition is coupled to a critical characteristic by an unsteady expansion in which fluid elements do not experience constant acceleration or pressure. We will choose to maintain the flow between the sabot and the Q characteristic which passes through the sonic point on the $X-T$ diagram and which bounds an unsteady expansion thereafter.

For a Q characteristic we nave

$$
\begin{equation*}
\left.\frac{d X}{d T}\right|_{q}=V-a \tag{2-33}
\end{equation*}
$$

and along the limiting characteristic we know that

$$
\begin{equation*}
V=T \tag{2-34}
\end{equation*}
$$

since the flow to the right is in the similarity zone, and the nondimensional sound speed is

$$
\begin{equation*}
a=\left[1+(y-1)\left(\frac{T^{2}}{2}-x\right)\right]^{\frac{1}{2}} \tag{2-35}
\end{equation*}
$$

hence,

$$
\begin{equation*}
\left.\frac{d X}{d T}\right|_{q}=T-\left[1+(Y-1)\left(\frac{T^{2}}{2}-X\right)\right]^{\frac{1}{2}} \tag{2-36}
\end{equation*}
$$

Now, if

$$
\begin{align*}
Z & =\frac{T^{2}}{2}-X \\
\frac{d Z}{d T} & =T-\frac{d X}{d T} \\
\frac{d Z}{d T} & =(1+(\gamma-1) Z)^{1 / 2} \tag{2-37}
\end{align*}
$$

which integrates readily to

$$
\begin{equation*}
\frac{2}{Y-1}\left[1+(Y-1)\left(\frac{T^{2}}{2}-X_{q}\right)\right]^{1 / 2}=T+G \tag{2-38}
\end{equation*}
$$

where G is a constant of integration.

For the Q characteristic passing through $X=0$ when sonic flow begins, we have $T=\left(\frac{2}{3-Y}\right)^{1 / 2}$ and Equation 2-38) can be arranged to yield the equation for the critical characteristic

$$
\begin{equation*}
X_{q}=\frac{1}{\gamma-1}\left[1-\left(\frac{Y-1}{2} T+\sqrt{\frac{3-Y}{2}}\right)^{2}\right]+\frac{T^{2}}{2} \tag{2-39}
\end{equation*}
$$

This characteristic is plotted in Figure 2-2.

Figure 2-2. X-T Diagram of Sabot Launched with Similarity-Unstaady Cycle
The flow in the region between this limiting characteristic and the origin must be obtained using unsteady characteristics. The characteristic solution need be solved only once since X and T are nondimensionalized to include $P_{s} A_{s} / M_{s}$. The characteristic field in the unsteady zone of Figure 2-1 has boen computed on an IBM 1620. The desired result is the barrel entrance velocity (or sound speed, since the flow is choked) as a function of time. This, coupled to the similarity solution for the subsonic flow, provides a time history of entrance velocity which will provide constant sabot base-pressure.

The details of the unsteady flow computations are quite straightforward. Suitable increments in time are chosen, and the Riemann invariants for left waves (P wave) are computed along the critical Q characteristic separating the similarity and unsteady zones. The first point on the sonic entrance is computed by averaging the physical slope of the first P wave from the first point on the Q characteristic computed at the Q wave, and at the origin. Since the common value of P is known, and since at the entrance $V=a$, the slope of a P wave at that point is easily computed. Once the first sonic
point is known, a Q wave is generated in the unsteady region. The first point on this Q wave to the right of the origin will give the values at $X=0$ for the next time calculated as above. This procedure is followed until a sufficient history of the flow at $X=0$ is, known.

Figure 2-3 is a plot of the entrance conditions as a function of time. For $T<T *$ the flow is governed by similarity equations. After $T>T *$ the unsteady-characteristics solntion holds. As can be seen in Figure 2-3, the unsteady effect requires slightly higher oound speed, and considerably lower velocity at the inlet. The gas entering after T* accelerates unsteadily in the barrel.

2.2.2 Barrel Entrance Conditions for the Coupled Similarity - Unsteady Cycle

For $T<T *$ the barrel entrance velocity is given by Eyuation (2-1) and the entrance sound speed by Equation (2-8). For $T>T *$ the entrance velocity is given from the numerical solution shown in Figure 2-2.

The reyuired entrance conditions are shown in Figure 2-3.

Figure 2-3. Required Barrel Entrance Conditions for Fixed-Geometry Chambered-Gun Constmet Bese-Presure Leunch Cycles

2. 2. 3 Mass Flow Into the Barrel ($T<T_{\text {sonic }}$)

The mass flow rate into the barrel is

$$
\begin{equation*}
w=p_{e} e_{e} A_{s} \tag{2-46}
\end{equation*}
$$

and the total mass flow into the barrel is

$$
w=\int_{0}^{t} w d t
$$

which, using Equations $(2-1)$ and $(2-5)$ with $X=0$, becomes

$$
\begin{equation*}
\frac{W}{M_{g}}=\int_{0}^{T} Y\left[1+\frac{Y-1}{2} T^{2}\right]^{\frac{1}{\gamma-1}} T d T \tag{2-41}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{W}{M_{s}}=\left[1+\frac{\gamma-1}{2} T^{2}\right]^{\frac{\gamma}{\gamma-1}}-1 \tag{2-42}
\end{equation*}
$$

Note that this can be written using Equation (2-7) as

$$
\frac{W}{M_{s}}=P_{e} / P_{s}-1
$$

2.2.4 Mass Flow Into the Barrel for Similarity - Unsteady Cycle (T>Tsonic

Equation (2-40) still holds for mass flow into the barrel after $T=T *$. However, the quadrature

$$
\begin{equation*}
w=\int_{0}^{t} w d t \tag{2-43}
\end{equation*}
$$

cannot be solved in closed form since $U_{e}=U_{e}(t)$ is not in closed form. We can relate P_{e} / ρ_{s} to V since, in this cycle, the flow is atill isentropic and ρ_{e} / ρ_{s} is equal to $e^{\frac{2}{Y-1}}$.

Then, using the fact that $V_{e}=a_{e}$

$$
\begin{equation*}
\frac{W}{M_{s}}=\frac{W^{*}}{M_{s}}+\gamma \int_{T *}^{T} V_{e}^{\frac{\gamma+1}{\gamma-1}} d T \tag{2-44}
\end{equation*}
$$

where V_{e} is obtained from Figure 2-3. Figure 2-4 is a plot of the mass required for the similarity-unsteady composite cycle assuming that all the gas is in the barrel at T. For $Y=7 / 5, \frac{Y+1}{Y-1}$ is 6 , so that $\frac{W}{M_{s}}$ grows rapidly with V_{e}.

It is of interest to note that even though the entrance velocity after sonic conditions is lower for the composite cycle, the density is higher, and the required mass for a given time of constant base pressure will be higher than for the similarity cycle.

The time of disturbance arrival at the sabot can be calculated by considering the path of a P wave in the similarity region. In this region

$$
\begin{align*}
\frac{d X_{p}}{d T} & =a+v \\
& =T+\left[1+(Y-1)\left(\frac{T^{2}}{2}-X\right)\right]^{\frac{1}{2}} \tag{2-45}
\end{align*}
$$

or, again letting $Z=T^{2} / 2-x$ and performing the required integrations for a P wave,

$$
\begin{equation*}
T_{P}+\frac{2}{Y-1}\left[1+(Y-1)\left(\frac{T^{2}}{2}-X\right)\right]^{\frac{1}{2}}=G_{p} \tag{2-46}
\end{equation*}
$$

where G_{p} is a constant for any P wave and Equation (2-46) describes the trajectory on the X-T plane of a P wave.

We can find G_{p} from the equation for the Q wave bounding the similarity region from the unsteady region. Using Equation (2-39)

Figure 2.4. Gas Required to Provide Constant Base Presuure

$$
\begin{equation*}
\left[1+(Y-1)\left(\frac{T_{q}^{2}}{2}-X_{q}\right)\right]^{\frac{1}{2}}=\frac{Y-1}{2} T_{q_{i}}+\sqrt{\frac{3-\gamma}{2}} \tag{2-47}
\end{equation*}
$$

and upon substitution into Equation ((-45) and using the observation that at the sabot $\frac{1}{2} T_{s u}^{2}=X_{p}$, we have

$$
\begin{equation*}
T_{p}=2 T_{q}+\frac{2}{Y-1}\left[\sqrt{\frac{3-\gamma}{2}}-1\right] \tag{2-48}
\end{equation*}
$$

This equation allows one to relate the time of constant pressure behavior T_{p}, to the time that matched inlet conditions are required. In other words, to maintain constant base for T_{P} time, Equation (2-48) provides the value of T_{q} which then can be found from the numerical solutions. The time required to maintain the entrance conditions to achieve a time T_{p} of constant basepressure is shown in Figure 2-5.

Figure 2-5. Constont Base Pressure Duration Vs Duration of Required Entrance Conditions

2.2.5 Chamber Conditions

2.2.5.1 Chamber Temperature and Pressure (T < T *)

It is assumed that the flow between the chamber and the barrel is isentropic and quasi steady with $A_{c} \gg A_{s}$. Then the steady energy equation yields

$$
\begin{equation*}
C_{p} T_{c}=C_{p} T_{e}+\frac{1}{2} U_{e}^{2} \tag{2-49}
\end{equation*}
$$

Note that this equation covers both the similarity and similarity - unsteady cycles.

Now divide Equation (2-49) by $\mathrm{C}_{\mathrm{p}} \mathrm{T}_{\mathrm{s}}$ and limit the discussion to isentropic barrel flow ($\mathrm{T}<\mathrm{T} *, \mathrm{X}_{\mathrm{s}}<\mathrm{X}_{\mathrm{s} \text { sonic }}$) and

$$
\begin{equation*}
\theta_{c}=\theta_{e}+\frac{\gamma-1}{2} v_{e}^{2} \tag{2-50}
\end{equation*}
$$

and from Equation (2-8) and the fact that $X=v^{2} / 2$,

$$
\begin{equation*}
\theta_{c}=1+(\gamma-1) v^{2} \tag{2-51}
\end{equation*}
$$

or

$$
\begin{equation*}
\theta_{c}=1+2(\gamma-1) x_{s} \tag{2-52}
\end{equation*}
$$

Using the isentropic condition,

$$
\begin{equation*}
\pi_{c}=\left|1+2(\gamma-1) x_{s}\right|^{Y / \gamma-1} \tag{2-53}
\end{equation*}
$$

The gas within the chamber is assumed to behave isentropically. Then

$$
\begin{equation*}
P_{c} v_{c}^{\gamma}=P_{s} v_{o}^{\gamma} \tag{2-54}
\end{equation*}
$$

where v_{0} is the specific volume in the chamber when the sabot is released. Let the initial charge of gas in the chamber be W_{0}. Then $\mathrm{v}_{\mathrm{o}}=\overline{\mathrm{v}}_{\mathrm{o}} / \mathrm{W}_{0}$, $v_{c}=\nabla_{c} / w_{c}$, and

$$
\begin{equation*}
\frac{W_{c}}{M_{s}}=\frac{W_{o}}{M_{s}}-\int_{0}^{t} w \frac{d t}{M_{s}} \tag{2-55}
\end{equation*}
$$

where the last term on the right is given by Equation (2-41). Then we see that

$$
\begin{equation*}
\pi_{0}=\frac{P_{c}}{\bar{P}_{s}}=\left(\frac{\bar{V}_{0}}{\bar{V}_{c}} \frac{M_{c}}{W_{o}}\right)^{\gamma}=\left(\frac{\bar{V}_{0}}{\bar{\nabla}_{c}}\right)^{\gamma}\left[1-\frac{M_{s}}{W_{0}} \int_{0}^{t} \frac{w}{M_{s}} d t\right]^{\gamma} \tag{2-56}
\end{equation*}
$$

or, using Equations (2-42) and (2-53)

$$
\begin{equation*}
\frac{\overline{\bar{V}}_{o}}{\overline{\bar{V}}_{c}}=\frac{\left[1+(\gamma-1) \mathrm{T}^{2}\right]^{\frac{1}{\gamma-1}}}{\left\{1-\frac{M_{s}}{W_{o}}\left[\left(1+\frac{\gamma-1}{2} T^{2}\right)^{\frac{\gamma}{\gamma-1}}-1\right]\right\}} \tag{2-57}
\end{equation*}
$$

2.2.5.2 Chamber Volume Behavior ($\mathrm{T}>\mathrm{T}$)

For the combined cycle the flow at the entrance is sonic and

$$
\begin{equation*}
\frac{T_{c}}{T_{e}}=\frac{\gamma+1}{2} \tag{2-58}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{P_{c}}{P_{s}} \cdot \frac{P_{s}}{P_{e}}=\left(\frac{\gamma+1}{2}\right)^{\gamma / \gamma-1} \tag{2-59}
\end{equation*}
$$

or

$$
\begin{equation*}
\pi_{c}=\pi_{e}\left(\frac{\gamma+1}{2}\right)^{\gamma / \gamma-1} \tag{2-60}
\end{equation*}
$$

The velocity at the entrance is given by Figure 2-3 and is equal to the sound speed hence we write Equation $(2-60)$ as

$$
\begin{align*}
& \pi_{c}=\left[\theta_{e} \frac{\gamma+1}{2}\right]^{\gamma / \gamma-1} \tag{2-61}\\
& \pi_{c}=\left[\mathrm{v}_{\mathrm{e}}^{2} \frac{\gamma+1}{2}\right]^{\frac{\gamma}{\gamma-1}} \tag{2-62}
\end{align*}
$$

since $a^{2}=v^{2}=\theta_{e}$. The term $\int_{0}^{t} w \frac{d t}{M_{s}}$ is obtained from Figure 2-4.
It should be noted at this point that the ratio $\frac{\mathrm{M}_{8}}{\mathrm{~W}_{\mathrm{o}}}$ appears as a free parameier and may be varied. Note that $\frac{2 \gamma}{\gamma-1}$ for $\gamma=7 / 5$ is 7 and the chamber pressure grows rapidly with $V_{e^{-}}$. The behavior of $\overline{\mathrm{V}}$ is then for $\mathrm{T}>\mathrm{T}$ *

$$
\begin{equation*}
\frac{\bar{V}_{c}}{\overline{\mathrm{~V}}_{0}}=\frac{1-\frac{M_{s}}{W_{c}} \int_{T *}^{T} \frac{w d t}{M_{s}}-\frac{M_{s}}{W_{o}} \int_{0}^{T *} \frac{w}{M_{s}} d t}{\left[\left.\bar{V}_{c}\right|^{\frac{2}{\gamma-1}}\left(\frac{\gamma+1}{2}\right)^{\frac{1}{\gamma-1}}\right.} \tag{2-63}
\end{equation*}
$$

It is also of interest to compute the rate of chamber volume decrease. Then from Equation (2-56)

$$
\begin{equation*}
\frac{d\left(\frac{V_{c}}{\vec{V}_{o}}\right)}{d T}=-\left(\frac{P_{c}}{P_{s}}\right)^{-\frac{1}{\gamma} M_{s}} \frac{W}{W_{o}} \frac{W}{M_{s}}-\frac{1}{\gamma}\left(\frac{P_{c}}{P_{s}}\right)^{-\frac{1}{\gamma} \frac{P_{c}}{P_{s}}} \frac{M_{s}}{d T}\left[1-\frac{M_{s}}{W_{o}} \int_{0}^{t} \frac{w}{M_{s}} d t\right] \tag{2-64}
\end{equation*}
$$

and for $T<T *$

$$
\begin{equation*}
\frac{P_{c}}{P_{s}}=\left|1+(\gamma-1) T^{2}\right|^{\gamma / \gamma-1} \tag{2-65}
\end{equation*}
$$

The variations of P_{c} / P_{s} is plotted in Figure 2-6.

Then

$$
\begin{equation*}
\frac{\mathrm{d}_{\mathrm{c}}}{\mathrm{P}_{\mathrm{s}}} \mathrm{dT}_{\mathrm{T}}=2 Y \mathrm{~T}\left[1+(\gamma-1) \mathrm{T}^{2}\right]^{1 / Y-1} \tag{2-66}
\end{equation*}
$$

hence, for $T<T *$

$$
\begin{align*}
\frac{\bar{\nabla}_{c}}{\frac{\bar{\sigma}_{c}}{\nabla_{0}}} & =-\left[1+(\gamma-1) T^{2}\right]^{-\frac{1}{\gamma-1}} \frac{M_{s}}{W} \frac{W}{M_{0}} \\
& -2 T \frac{\bar{V}_{c}}{\nabla_{0}}\left[1+(\gamma-1) T^{2}\right]^{\frac{2-\gamma}{\gamma-1}} \tag{2-67}
\end{align*}
$$

Equation (2-67) indicates that the rate of volume decrease must begin at zero and increase thereafter. This behavior also is apparent in Figure 2-7 which is a volume time history for two cases of $W_{0} / M_{s}=\infty$ and 7.5. The curves differ little except that the finite mass case terminates. Equation (2-67) holds for $T<T *$. The complete similarity - unsteady cycle volume behavior must be obtained from Equation (2-63) for $T>T *$. The fact that the rate of volume decrease begins at zero indicates a fundamental difficulty encountered in real two-stage light-gas guns, if these guns achieve their initial pressure, P_{s}, by compressing initially cold gas with a moving piston. For true constant base-pressure operation, this piston must follow the curves in Figure 2-7 by coming to a halt, then reaccelerating and finally slowing during the final stage. For a fixed geometry piston the volume history curve must be approximated by a single line starting at $\nabla_{c} / \nabla_{0}=1$ and decreasing in an approximately linear fashion. This behavior is shown in Figure 2-8. Although no specifically mentioned by early authors, the tapered chamber to barrel transition section probably allows the rate of volurne decrease to change at the end of the stroke. If the piston can be

Figure 2.6. Chamber Promure History for Similarity-Unsteady Cycle

Figure 2-7. Chamber Volume Vs Time
constructed so that its forward face recedes for a nondimensional time T of about 0.15 and then stops collapsing and proceeds at a constant $\nabla_{c} / \nabla_{0} / d T$ of 0.589 until the taper is encountered at T of 1.5 , a close approximation of the constant base-pressure cycle car be achieved. As yet, we have not prescribed the initial piston velocity. This can be obtained and the initial gas loading is known.

The base pressure, P_{s}, and temperature, T_{s}, are determined by structural limitations on the sabot. If a maximum value of T_{s} and P_{s} are selected as well as the final sabot velocity, the initial chamber conditions can be determined. If the gas in the chamber is compressed isentropically from room temperature we have

$$
\begin{equation*}
P_{i}=P_{s}\left(T_{i} / T_{8}\right)^{Y / Y-1} \tag{2-68}
\end{equation*}
$$

The minimum mass of gas in the chamber can be obtained from Figure 2-4 for a given $V(V=T)$ and using the ideal gas law

Figure 2-8. Approximate Chember Volume Vs Time

$$
\begin{equation*}
P_{i} \nabla_{i}=W R T_{i} \tag{2-69}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\nabla_{i}=\frac{W^{\prime} r_{i}}{P_{i}} \tag{2-70}
\end{equation*}
$$

The chamber volume at the release of the sabot is

$$
\begin{equation*}
\nabla_{0}=\nabla_{i}\left(\frac{T_{i}}{T_{B}}\right)^{\frac{1}{\gamma-1}} \tag{2-71}
\end{equation*}
$$

The required piston velocity is obtained from the requirement that $d \overline{\mathrm{~V}}_{\mathrm{i}} / \overline{\mathrm{V}}_{0} / \mathrm{dT}$ be -0.589. Then, since

$$
\begin{equation*}
\frac{d \nabla_{c}}{d t}=-U_{p} A_{c} \tag{2-72}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{d \bar{V}_{c} / \bar{V}_{o}}{d T}=-\frac{U_{p} A_{c} M_{s} C_{s}}{V_{o} P_{s} A_{s}} \tag{2-73}
\end{equation*}
$$

$d\left(\nabla_{c} / \nabla_{o}\right) / d T$ is -0.589.

All terms except U_{p} are known. When U_{p} is found, the distance of front face recession is

$$
\begin{equation*}
L=U_{P} \cdot{ }^{t_{r}} \tag{2-74}
\end{equation*}
$$

where

$$
\begin{equation*}
t_{r}=T_{r} \cdot \frac{M_{s}}{P_{s} A_{s}} \tag{2-75}
\end{equation*}
$$

and

$$
T_{r}-0.15
$$

Table 2-1 contains some typical calculations.

Table 2-1
2 IN. PUMP TUBE, 5/16 IN. BARREL

PRECEDING PAGE BLANK NOT FILMED.

Section 3
DESCRIPIION OF EXPERIMENTAL APPARATUS

3.1 BALLISTIC RANGE A

The DAI Ballistic Range A is a two-stage light-gas gun coupled to a blast receiver, an instrument section, and an impact chamber. A discussion of each component of the A range follows, beginning with the powder chamber and ending down range at the impact chamber. Figure 3-1 shows the general arrangement of the DAL Ballistic Range A.

3.1.1 Powder Chamber

The A-Gun powder chamber is a thick-walled cylindrical high-pressure vessel with an inside diameter of 4.25 in . and $11.5-\mathrm{in}$. long. This gives an internal volume of approximately 163 cu in . A central rod supports the powder bag, a muslin container for the gun-powder and the initiating squibs. Electrical connectors pass through the breech plag providing a trigger circuit to fire the gun.

3.1.2 Pump Tube

Two interchangeable pump tubes are available with the A-Range. These tubes are identical except for inside diameter. The larger of the two has a 2 -in. ID, the other a $1.5-\mathrm{in}$. ID. Both tubes are heavy-wall high-pressure tubes $\mathbf{2 0 - f t}$ long. At the upstream end these tubes have provision for installing a Lexan diaphragm to separate the powder chamber from the pump tube. The strength of the diaphragm helps control the powder chamber combustion pressure. There is a provision in both pump tubes for measuring the piston velocity by using a shorting pin technique. Both pump tubes share a common purge and gas-fill system. Connector flanges are common to both pump tubes.

Figure 3-1. Light-Gua Gun-Bellistic Range A

3.1.3 Taper Section

Two interchangeable high-pressure taper sections are available for A-gun use. These taper sections match the corresponding 1.5-and 2-in. ID pump tubes. The larger 2-in. ID taper section is made of two individual pieces. The twopiece feature facilitates piston removal after a shot. Both taper sections have a liner insert in the high pressure region. When the interior of the high pressure region erodes beyond use, the liner insert is machined out and a new one installed. This liner-insert feature eliminates replacement of the entire taper section as the erosion progresses. Both taper sections have a converging conical ID in the high pressure region. The apex or the converging cone terminates at an ID of . 375 in. There is provision at the downstream end of the taper section for a high pressure diaphragm. The bursting strength of this diaphragm is the major control on model acceleration.

3.1.4 Launch Tube

The DAL A-Gun uses a split-clamp-and-liner configured launch tube. New liners may be installed by unbolting the halves of the split clamp. This provides a relatively easy way to change launch tube C^{2} imeter and also to replace eroded launch tubes. The launch tube ID can be varied from. 2 in. to .375 in. depending upon which liner is used. Nominal launch tube length is 12 ft .

3.1.5 Blast Receiver

The A-Range blast receiver is made of 12 -in. nominal diameter standard pipe. The blast receiver is approximately 9 ft long. Access to the inside of the blast receiver is through three 12 -in. dia hinged closures. Instrumentation ports are provided at two stations in the blast receiver. One station is nominally used for flash X-ray and the other is used for a phototube pickup.

3. 1.6 Instrumentation Section

The instrumentation section is fabricated from 12 in. nominal diameter standard pipe. The instrumentation section is approximately 9 ft long. There are six instrumentation stations within this section. These stations will accommodate $3 X$-ray stations, 3 photo-tube model detector stations, and 2 shadowgraph stations. All instrumentation ports are fabricated from standard pipe flanges.

3.1.7 Impact Chamber

The impact chamber is an octagonal tank of approximately 18 in . dia and 35 in. long. Windows are fitted to each of the flats of the impact chamber wall. The windows are used for X-ray or optical study of target impact. The impact tank is connected to the instrument section with a quick-disconnect coupling. This coupling and a hinged closure at the downstream end of the impact chamber allow easy access to the target. Vacuum connections on the impact chamber provide a means of evacuating the impact chamber, instrument section, and blast receiver. A thick removable catcher is fitted to the downstream end of the impact chamber to stop the model flight.

3.2 RANGE "A" INSTRUMENTATION

3.2.1 Model Detection System

The range " A " instrument section contains three model detection stations spaced at intervals of 3.5 ft . A set of $6-i n$. dia windows immediately downstream from each model detection station provide access to the flight corridor for optical or radiographic instrumentation. For this particular test, flash X-ray was positioned at stations one and three to provide accurate velocity measurement and model integrity information.

The model detectors are elcctro optical devices that sense light from the luminous gas cap, when present, or from reflected light supplied by an auxiliary light screen. A photomultiplier views the model corridor through an optical system that limits sensitivity to a region $1 / 4$-in. thick across the flight path. As the projectile crosses this l/4-in. screen, light from the projectile reaches the photomultiplier, generating an electrical pulse. This pulse passes through a wideband line-matching amplifier and then on to the control room. Position accuracy of the system is $\pm 1 / 4-i n$., and the rise time of the electronics is 50 nanoseconds. Figure 3-2 shows a typical record LI the outputs of the model detection system

3.2.2 Flash X-ray System

Radiographs at stations one and three are accomplished with field-emission type flash X-ray equipment operating at 105 kv with a duration of 70 ns . Film casettes are placed against the window on one side of the instrument

RUN NO. B42-23
SWEEP SPEED 50μ SEC/CM
DETECTOR SPACING 3.5 FT
PROJECTILE VELOCITY $=27,500 \mathrm{FT} / \mathrm{SEC}$

Figure 3-2. Oscilloscope Record oî Model Detection System
section, with an X-ray head at the center of the window opposite, and spaced away two feet. A reference line on the X-ray film serves as a position reference (Figure 3-3 shows typical X-ray record).

X-ray triggering is accomplished by the pulse from the adjacent model detector via a delay unit which delays the triggering signal the proper number of microseconds to allow the projectile to travel from the model detector to the center of the X-ray viewing window (about 10 inches). The X-ray flash records on film the exact position of the projectile while an electronic timie interval meter records the exact tin e of the flash (to $\pm 0.1 \mu \mathrm{sec}$). The duration of the flash is sufficiently shrrt to stop the motion of the projectile which, at a speed of $30,000 \mathrm{fps}$, moves approximately. 020 inches during the 70 nanosecond exposure.

The velocity of the projectile is determined by dividing the distance traveled (established from the X-ray films) by the elapsed time between the two exposures. The accuracy of these measurements is such that velocity is determined to $\pm 0.2 \%$.

3.2.3 Superducer

Progress in improving the performance of a light-gas gun would be enhanced if it were possible to measure the breech pressure during the complete launch cycle. To this end DAL designed and built a Superducer capable of linear response to 290,000 psi without damage. The device is basically a highpressure tapered-seal fitting with two coaxial stems housing the quartz pressure sensing elements at the tip. This transducer was completed late in the program and installed on the gun for run No. 14. Pressures were higher than anticipated (above $300,000 \mathrm{psi}$) and the transducer failed internally during the launch. Within its intended range the device worked well.

Figure 3-3. Typical X-Ray Record

Section 4

DISCUSSION OF EXPERIMENTAL PROGRAM

4.1 GENERAL DISCUSSION

In the conventional two-stage light-gas gun, the gas driving the projectile is brought to its final high pressure and high temperature through the use of a single moving piston. This piston travels down a pump tube containing a low-molecular-weight driver gas, such as hydrogen or helium, initially at low pressure. The piston compresses the gas raising both its temperature and pressure. Attached to the downstream end of the pump tube is a launch tube containing the projectile which is subsequently driven by this compressed gas.

Once the projectile moves down the launch tube, the pressure behind it will remain at a near constant level only if the pressure of the gas in the pump tube continues to increase at a certain rate. The rate must be properly adjusted for a given gun and projectile, otherwise, either the pressure behind the projectile will decrease, resulting in failure to achieve desired velocity, or the pressure may become too high, resulting in model and/or gun structural failure. Obviously, when the projectile is still near the breech, the pressure of the pump tube must rise slowly. Later, when the projectile is farther along the launch tube and is moving faster, the pressure must rise more rapidly. For a given piston kinetic energy, a jight piston moves at a relatively high speed, such that the projectile will experience too high a pressure at the beginning of the launch cycle. This can be corrected somewhat by decreasing piston velocity and increasing piston mass, but then, although the model feels the correct pressure at the beginning, the piston will be stopped too quickly and the pressure behind the model will be too low at the far end of the barrel.

In the theory developed in Section 2, constant base-pressure launch cycle may be approximated if the chamber volume history can be produced as required by Figure 2-8. The requirement dictates the movement of the front end of the piston.

At the beginning of the launch cycle (immediately after the diaphragm rupture) the piston should have zero velocity. After the projectile is set into motion, the piston is required to travel at a given near-constant speed for a period as indicated in Figure 2-8. The history of piston deceleration on projectile velccity after the constant speed period is very small.

Figure 4-1 depicts a piston satisfying the above requirements. The operating principle is as follows: in place of the conventional, single, heavy piston used in two-stage light-gas gun operation, a variable-speed piston assembly is used. As the piston assembly travels down the pump tube, the gas pressure in front of the piston assembly continues to rise until the diaphragm at the breech ruptures and launcing of the projectile commences. The shear disc assembly which pushes against the front section of the piston will then fail at a designed stress level along a controlled failure area. The failure of the shear disc temporarily disconnects the front piston from the rear one which comprises the majority of the total piston weight. A short timr later, the rear piston catches up with the front piston to further compress the driving gas. Thus, the ideal piston time-position relationship can be approached.

Figure 4-1. Piston Assembly With Typical Collapsible Mechanism

To illüstrate the concept of a collapsible piston further, a family of hypothetical chember pressure histories is shown in Figure 4-2. It can be shown for a given light-gas gun, projectile, and propellant the obtainable muzzle velocity is a function of the projectile base-pressure (which is directly related to the chamber pressure). The values identified in Figure 4-2 are believed to be typical in a two-stage light-gas gun operation.

Line 1 represents the reservoir pressure history of a constant projectile base pressure ($12,000 \mathrm{psi}$) launch cycle. The muzzle velocity achieved is 23, 000 fps. Line 2 is the pressure history of a non-constant base-pressure solid-piston shot. The peak pressure experienced by the projectile is $30,000 \mathrm{psi}$ and the muzzle velocity is $31,000 \mathrm{fps}$, Line 3 represents a potentially maximum velocity solid-piston launch cycle of $40,000 \mathrm{fps}$. Characteristically, a sharp pressure spike occurs at the early part of this type of launch cycle. This spike can permanently damage the gun components as well as fracture the projectile.

To minimize the pressure spike and yet retain a sufficiently high pressure of long duration in the chamber so that a high muz:sle velocity can be achieved without damaging the gun, lines 4 and 5 musc be followed. The level portions of the lines 4 and 5 show the effects of using a collapsing mechanism in the piston assemblies (Figure 4-1). In the above case the collapsing mechanism portions are made of aluminum glass-reinforced epoxy (Scotchply) and steel with the respective collapsing pressures at $24,000 \mathrm{psi}, 20,000 \mathrm{psi}$, and 50,000 psi. Line 4 yields a muzzle velocity of 26,000 fps, line (5) yields 32,000 fps.

The dashed lines $3 *$ and $4 *$ in Figure $4-2$ represent families of pressure histories for which various collapsing times are incorporated. The collapsing times decrease toward the left while the muzzle velocities increase toward 40,000 and $31,000 \mathrm{fps}$ respectively.

The expesimental program described in the following sections was specifically designed to verify the constant base-pressure launch-cycle and the cycles as indicated in Figure 4-2.

4.2 PISTON VELOCITY CALIBRATION

In order to control the experiment, piston velocities must be held within a close tolerance (± 5 percent). Runs No. 1 through 8 (Table 4-1) were fired to calibrate the piston velocity under various loading conditions. After run No. 4 it was discovered that the piston, ballasted by a lead cylinder (3180 gm) had rebounded into the purnp tube. This phenomena, coupled with a measured low muzzle-velocity, caused considerable concern.

In runs 4 through 8, lead siurries (wax plus lead pellets) were substituted for the lead cylinder. Although the muzzle velocities were still far below computed velocities, the piston rebounding was comparatively less than in the first three runs.

4.3 CONSTANT-PRESSURE LAUNCH-CYCLE

To verify the theory developed in Section 2, calculations similar to those tabulated in Table 2-1 were developed. The desired projectile velocity was $30,000 \mathrm{fps}$. Other loading parameters can be found in Table 4-1 (runs 9 through 12). The muzzle velocities in this series never excee led 20,000 fps.

$\begin{aligned} & \text { Run } \\ & \text { No. } \end{aligned}$	Date	$\left.\begin{gathered} \text { Launch } \\ \text { rube } \\ \text { rid (in. } \end{gathered} \right\rvert\,$	$\begin{gathered} \text { Pump } \\ \text { Tube } \\ \text { TD (in. } \end{gathered}$	$\underset{(p s i n)}{\boldsymbol{H}_{2}}$	$\left\{\begin{array}{l} \text { Powiter } \\ \text { (xamin } \end{array}\right.$	Piston			Projectile					est Objective	comments
						$\sqrt{\begin{array}{c} \text { Mans } \\ \text { Mrami } \end{array}}$	[/esign	$\begin{aligned} & \text { Velocity } \\ & \text { \|fps) } \end{aligned}$	Mass	Material	$\begin{array}{\|c} \substack{\text { Leensth } \\ \text { inn., } \\ \text { (in. }} \end{array}$	$\begin{aligned} & \text { Dia } \\ & \text { (in. } \end{aligned}$	$\begin{array}{\|l} \hline \text { Velocity } \\ \text { (fps) } \end{array}$		
1	i0-8-69	0.517	2.00	50	150	${ }^{5} 5$		2,100	0.85	Po'vethylene	0.259	0.517	24,000	- I's shake down : he ก. : xun - To measure piston velocivy	yroiectile intact Fiston veiocity obrained
2	10-17-69	0.517	2.00	50	150	3.180	Same as Run No.	--	0.85	Polvethylere	0.259	0.517	15.000	To calibrate proiectile vilocity with piston veloesty Fo callhrate piston velocitv against gun pander	Only projectite veloci: obtainert No piston velocirv
3	10-21.69	0.517	2.00	50	150	3.180	Same as Run No. 1	245	0.85	Polycthvlene	0.259	0.517	14,503	Sameas Run No. 2	Obtainect all fata
4	10-21-69	0.517	2.00	50	250	3,180	Same as Rufi No. 1	590	0.85	Polycthylene	0.259	0.517	16,700	Same as Run No. 2	$\begin{aligned} & \text { Obrained all data } \\ & \text { Pisten rebounded } \end{aligned}$
5	10-23-69	0.517	2.00	50	350	3.180	Same as Run No. 1	1,390	0.85	Pt, y thylene	0.259	0.517	21.000	Sameas Run No. 2	$\begin{aligned} & \text { Obtained all fata } \\ & \text { taper seetion crackem } \\ & \text { ne.ar pressurn- } \\ & \text { transeucer nount } \\ & \hline \end{aligned}$
6	10-31-69	0.517	2.00	50	250	3,180	$\sum \text { Lead and wax }$	520	0.85	Polyethylene	$0.25{ }^{17}$	0.517	16,700	- Same as Run No. 2 - T. resolve the 'slen of pisten rebound by adfing ata to learl blast meight	$\begin{aligned} & \text { Obtained all dita } \\ & \text { I.-ss piston remound } \end{aligned}$
i	11-6-69	0.517	2.00	50	300	3,180	Same as Run No. 6	1,280	0.85	Poly thylene	0.254	0.517	19,700	Same as Run. Vc . -	$\begin{aligned} & \text { obtained all rasa } \\ & \text { Pressure-t instucer } \\ & \text { mount cracker aksin } \end{aligned}$
8	11-7-69	0.517	2.00	50	300	3.180	Same as Rur No. 6	:. 225	0.85	Polyethylene	0.259	0.517	14.500	- Same as Run No. - To checrou* taper section intexrity atter repair	$\begin{aligned} & \text { Obrained all fita } \\ & \text { Taper section intact } \\ & \text { atter run } \end{aligned}$
9	11-17-69	0.312	2.00	15	230	3,180		1,110	0.20	Polyethylene	0.312	0.161	17,500	To checkout :heorerical constont biste-pressure launch-cycle. Vefoce ity objective: 30,000 fps	Low velocity sus pected due to lead n:ovemient durine parto cycle
10	11-18-69	0.312	2.00	15	230	3,180	$\sum \square_{\square}^{-1 L-1} \square \square \square \square$	1,550	0.195	Polvethylene	0.312	0. 161	16. 300	- Same as Run No. - To checkout effec tiveness of b:ra:s ballast-weight	Piston reboundert trar sieced in purmp tube
11	11-21-69	6.312	2.00	30	230	3.180		1.180	0.195	Folyethylene	0.312	0.101	17.300	- Same as Run No. - Lead pieces and waxcaster! in polyethylemen hin wall tube	$\begin{aligned} & \text { Piston rebounded } \\ & \text { Pressure seal filert } \end{aligned}$
12	11-25-69	0.312	2.00	15	230	3.180	Same as Run No. 11	1.190	0.195	Polyethylene	0.312	0. 161	--	- Sa \qquad Io derermine cause of piston rebound - En chetrout mou pressure-seal design	Piston rebounded arr! seal failed again
13	11-25-69	0.312	2.00	15	180	454		2,600	0.20	Polyethylene	0.319	0.161	20.000	To , heck sun performance with nem-constamit batse pressurf ryminisy $28.000 \mathrm{f}_{\mathrm{p}} \mathrm{F}$	Taper section crackeri.
14	1-14-70	0.385	2.00	50	200	1.100	$\left.\sum\right]_{\mathrm{L}=1.0 \mathrm{in} .}^{-1 \mathrm{~L} \mid-} \mathrm{L}$	2,300	0.340	Polyethylene	0.385	0.190	27.000	To de: mine maximut. pertortaty, launch. crecle limat:	Fil tapornery
15	1-15-70	$0.38=$	2.00	40	200	1,.60	Same as Run No. 14 L. -0.75 in .	2,400	0.340	Polvethviene	0. 385	0.190	27,500	$\begin{aligned} & \text { Same as Yun } \\ & \text { No. } 14 \end{aligned}$	$\begin{aligned} & \text { A11 data ob ingery } \\ & \text { Less piston ruthont } \end{aligned}$
'6	1-10.70	0.385	2.00	20	240	1,100	Same as Run No. 14	2,t00	0.340	Poly	0.385	0.190	28.500	Same as Run	All 4 ra mbuner!

27	3-1i-7)	1.320	1. 3	20	200	344		2.700	0.19	Pulyetiay	0.326	0.150	27.500	Tumatuar fother ana inur collasible nechanisn desi?n	Al wets ohtine!
28	3-20-70	0.326	1.5	20	200	455		2,380	0.193	Polyetis; lene	0. 326	0. 150	\cdots		
2)	3-23-70	0.326	1.5	20	400	455	5 me as Run No. 28	2,420	$0.11,3$	Polyethylene	0.326	0.150	27.500	$\begin{aligned} & \text { Same as Run } \\ & \text { No. } 28 \end{aligned}$	All cala obtanuc 4ar
3:1	3-15-70	0.326	1.5	20	4.40	155	Sane ats Run Pio. 28	2,600	0.193	Potyethylene	0.326	0.150	--	$\begin{aligned} & \text { sume as Ru:1 } \\ & \text { no. } 28 \end{aligned}$	
31	3-31-70	0.312	1.5	20	180	310	Same as Run No. 1	2,640	0.20	Polyethyirne	0.312	0.150	21,800		
32	+-1-711	0.312	1.5	20	180	310	Same as Run No. 1	2,540	- 0.20	Fohethylene	0.312	0.150	--	$\begin{aligned} & \text { Sama. as Run }^{\text {Ro. } 31} \\ & \hline \end{aligned}$	Xo man browe hirine launch
33	4-2. 6	0. 3.37	1, 3	20	180	310	Sanm as kun No. 1	2,680	0.20	Polyethylene	0.327	0.150	27.300	$\begin{aligned} & \text { lo , heckout new } \\ & \text { launch tube } \\ & \hline \end{aligned}$	$\begin{array}{\|l} \text { All dala obtined } \\ \text { inconel rotated } \\ \hline \end{array}$
3.4	4-3-70	0.327	1.5	20	180	310	Same as Run No. 1	2,670	0.305	Lexan	0.327	0.200	26,300	$\begin{aligned} & \text { To checkout model } \\ & \text { desiqn and effect of } \\ & \text { model mass } \end{aligned}$	All data obtained
35	4-3-70	0.327	1.5	10	200	455	Same as Run No. 1	2,370	0.23	Lexan	0.327	0.200	29,000	$\begin{aligned} & \text { To evaluate pision } \\ & \text { rimass effect } \end{aligned}$	All data obtained
36	$4-6,7$	0.327	1.5	10	240	455	Same as Run No. 28	2,630	0.23	Lexan	0.327	0.200	26,200	$\begin{aligned} & \text { To checkout }{ }^{17-4} \\ & \text { collapsible- } \\ & \text { n chanism with thin } \\ & \text { dianhragm } \end{aligned}$ diaphragm	$\begin{aligned} & \text { All data obtained } \\ & \text { Model partially brote } \end{aligned}$
37	4-10-70	0.327	1.5	10	140	230	Same as Run No. 13	2,700	0.23	Lexan	0.327	0.200	24,600	To check pistorn niass projectile velocity relations hip	111 dala mbtainers
38	4-13-70	0.327	1.5	10	180	310	$\sum>$	2,700	0.33	Lexan	0.327	0.200	26,500	$\begin{aligned} & \text { To check plastic } \\ & \text { column collapsible } \\ & \text { mechanisn: } \end{aligned}$	All dia oltainec
39	4-1,-70	0.327	1.5	20	180	310	Same as Run No. 38	2,670	0.23	Lexan	0.327	0.200	--	To check H_{2} and velocity relationship	Model tunibled oif trajectory
40	4-14-70	0.334	1.5	20	200	310	Same as Run No. 38 Except column length was 0.5 in.	2,740	0.23	Lexan	0.334	0.150	28,000	$\begin{aligned} & \text { To check effect of } \\ & 0.5 \mathrm{in} \text {. column } \end{aligned}$	Mortel tumbled
$+1$	4-20-i0	0.316	1.5	20	180	310	Same as Run No. 1	2,664	0.2	Lexan	0.316	u. 150	27,800	$\begin{aligned} & \text { To cheche new } \\ & \text { launch tube } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cicod latunch, lazi at } \\ & \text { diaphragm: holder } \end{aligned}$
42	4-21-70	0.316	1.5	20	180	310		2,720	0.2	Iexan	0.316	0.150	26,500	- Tofix seal - To reduce colunan distance to 0.25 im .	Model tun bledslightle. still leaked
43	4-21-70	0.316	1.5	10	180	310	Same as Run No. 42	2,620	0.20	Lexan	0.316	0.150	28,000	To fix leak	$\begin{array}{\|l\|} \hline \text { Data obtained } \\ \text { Model } \in 1 \mathrm{izth} \text { ly tmoled } \\ \hline \end{array}$
44	4-22-70	0.316	1.5	10	180	310	Same as Run No. 42	2,710	0.27	Lexan	0.316	0.150	28,200	$\begin{aligned} & \text { Tofix diaphralm } \\ & \text { leak } \end{aligned}$	Found leak due to uneven pressure against di phragm
45	4-23-70	0.316	1.5	10	180	310	Same ar Run No. 42	2,700	0.27	Lexan	0.316	0.150	--	To evaluate double- beat design	No leak-instruntem failed to record
46	4-24-70	0.317	1.5	10	200	310	Same as Ran No. 38	2,800	0.21	Lexan	0.317	0.150	29,200	To determine powher velocit: relationship l-in. colunn length	All data oblained
47	4-24-70	0.317	1.5	20	200	310	Sanie as Run No. 38	2.830	0.21	Lexan	0.317	0.150	20,800	$\begin{aligned} & \text { To det «r mine pre- } \\ & \text { charge H2 ard } \\ & \text { muzzle velocity } \\ & \text { relationship } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Blas lead punched } \\ & \text { througit front piston } \end{aligned}$
48	4-27-70	0.317	1.5	20	240	455	Same as Run No. 42	2,660	0.23	Lexan	0.317	0.150	30,500	$\begin{aligned} & \text { To attempt higher } \\ & \text { velocity } \end{aligned}$	All data oblained
49	4-28-70	0.317	1.5	10	280	455	Sa cick Run No. 42	2,840	0.23	Lexan	0.317	0.150	31.000	$\begin{aligned} & \text { To attempt higher } \\ & \text { velocity } \end{aligned}$	All data ob'ained
50	4-29-70	n. 3 !	:. ${ }^{\text {\% }}$	18	380	310	Sanic as Run No. 42	3,190	0.23	Lexan	0.321	0.150	32,600	$\begin{aligned} & \text { To attempt higher } \\ & \text { velocity } \end{aligned}$	At data obtaine?
51	4-29-70	0.321	1.5	5	280	250	Same as kif: No. 13	3,580	0.23	Lesan	0.3 .1	0.150	--	$\begin{array}{\|l\|} \hline \text { To attempt mavimum } \\ \text { velocity } \end{array}$	$\begin{aligned} & \text { Monel brok. - } \\ & \text { maxinumi a creleration } \\ & \text { exceeded } \end{aligned}$
52	4-30.70	0.321	1.5	10	280	250	Sane as Run No. 13	3.600		Lexan	0.321	0.150	--	$\begin{aligned} & \text { Same as Run } \\ & \text { No. } 51 \end{aligned}$	$\begin{aligned} & \text { Model broke - taper } \\ & \text { section cracked } \\ & \hline \end{aligned}$
Range pressure tor all runs $=11$ Torr daunch tube length for all rurs $=12 \mathrm{ft}$ Diaphrakm rupture pressure $=18,000$ psi (except Run No.															

PRECEDING PAGE BLANK NOT FILMED.

The piston rebounding becare more pronounced than in the calibration runs. The only difference in piston design was that an aluminum collapsiblemechanism ($0.25-\mathrm{in}$. travel, $12,000 \mathrm{psi}$ fail load) similar to the design in Figure 4-1 was used. One of the collapsible mechanisms recovered after the run is shown in Figure 4-3.

The pistons that rebound into the pump tubes required firing another piston to shoot it out. The galling was quite severe.

At this point it was realized that the friction between the piston and pump tube wall could not be ignored as assumed in the theory. The friction fc: : became great early in the launch cycle when the hydrogen pressure britt to more than $20,000 \mathrm{psi}$. Close examination of the inside walls of the itanpressure components (pump tube and taper section) revealed a thin findeposit of piston material after each run. This suggested that the wa", r $=$. tion actually sheared off the outer layer of the piston like the molting action of a snake.

A rough calculation, based on the shear stress of the piston materials, showed the piston wasted a significant portion of its energy in overcoming the launchcycle friction.

A slow, lengthy (large shear-area) and heavy piston, as required by the constant base-pressure launch-cycle, would prematurely stop. As a result, the base pressure of the model started at the correct level, but declined very rapidly as the piston fell off from the theoretical trajectory. The remaining high-pressure hydrogen in the chamber forced the piston back into the pump tube.

Since the relationship of piston friction and gun-loading conditions is unknown, the pursuance of the constant base-pressure cycle was terminated in favor of the maximum-performance cycle discussed in Section 4.1 and shown in Figure 4-2.

Figure 4-3. Plain Collapsing Mechanism Recover'd After Run
4.4 MAXIMUM-PERFOR MANCE LAUNCH-CYCLE

Since there was no simple theory to govern the maximum-performance launch-cycle, a family of empiricai curves based on the available information was generated. Figure $4-\hat{2}$ presents one of the typical families of curves. To verify these curves experimentally, two alternative approaches can be taken. For example:
A. The gun may be luaded to follow the curve 2 without employing any collapsible mechanism on the first attempt. The subsequent runs will incorporate cnllapsible mechanisms of various shear loads and cullapse distances to map out curves 4 .
B. On the first attempt the gun may be loaded with a collapsible mechanism of sufficient shear strength and maximum collapse-distance so as to follow curve 5. The subsequent runs would incorporate identical loading parameters except for the collapse diztances. This procedure is particularly preferred for runs near gun-rupture loading conditions.

In this program the A approach was used for runs of moderate loading conditions, and the B approach for maximum loading conditions.

4.4.1 Aluminum Collapsing Mechanism

It was established in the constant base--pressure launch-cycle tests that the friction between the plain-aluminum collapsing-mechanism and the walls of the high-pressure components was so great that the piston always retarded prematurely. As a result, the aluminum collapsing-mechanisms were modified as shown in Figure 4-4. The outer rings sheared off when the friction on the wall became great, leaving the center core to continue compressing hydrogen in the chamber at the desired rate。 $7075-\mathrm{T} 6$ Aluminum was used for the collpasing mechenism with the shear disc designed to fail when chamber hydrogen pressure reached 24,000 psi. Two series of tests were conducted; the first, runs 14 through 20 (Table 4-1), with a 2 -in. ID pump tube and 0.385 -in. ID launch tube; the second series, runs No. 26 and 27 (Table 4-i), with a l. 50-in. ID pump tube and 0.326 -in. ID launch tube.

4.4.2 Glass-Reinforced Epoxy (Scotchply) Collapsing-Mechanism

Scotchply has good shear strength due to the orientation of its glass filaments. The friction coefficient is lower than aluminum under high temperature.

Figure 4-4. Modified Aluminum Collapsing-Mechanism,

Hence, runs No. 23, 24, and 25 were devoted to evaluating the material as a candidate for the collapsing mechanism (shear disc designed to fail at $20,000 \mathrm{psi}$) (Figure 4-5). No piston rebound was observed during any of the three runs, thus verifying the low-friction characteristic assumption. However, severe material delamination of the mechanisms was noticed.

4.4.3 17-4 PH Stainless-Steel Collapsing-Mechanism

To meet design requirements for the shear disc to fail at $50,000 \mathrm{psi}$ chamber pressure, high strength steel must be employed. 17-4 PH stainless steel, heat-treated to 900 H , was chosen for its strength. However, the metal was too hard for the gun components so that ring-groove design similar to the aluminum collapsing-mechanism was not feasible. To prevent scoring, Lexan sleeves were threaded over the 17-4 PH stainless steel mechanism (Figure 4-6). Runs No. 28, 29 and 30 (Table 4-1) were made to evaluate the effectiveness of this design. It was found that the high-shear design performance approaches -1at of the piston with no collapsing mechan: ;m. This is to be expected.

4.4.4 Variable Recessing-Rate Collapsing-Mechanism

Evaluation of performance of the previous piston designs indicated one fault common to all previous piston designs might exist without detection. It was the movement of the front polyethylene piston (Figure 4-1) during the period of disconnecting from the rear assembly through the recessing of the collapsing mechanism. Should the front piston exhaust its energy during this period, it might reverse its course causing a sudden drop in chamber pressure. Thus, a variable recessing-rate collapsing-mechanism capable of retarding the push of the rear piston assembly, but continuously exerting a mild pressure on the front piston during the period of retardation, was highly desirable.

Several mechanisms were proposed and statically tested. A simple Lexan cylinder drilled with a given number of holes along its longitudinal axis fitted the requirement. For example, a $2-\mathrm{in}$. dia cylinder of 5 -in thick material drilled with 24 evenly spaced $0.312-\mathrm{in}$. holes along its longitudinal axis, started to displace under static axial load equivalent to $5,000 \mathrm{psi}$ at the ends. The test specimen was contained in a heavy-walled steel pipe while

Figure 4-5. Glass-Reinforced Epoxy Collapsing-Mechanism

Figure 4.6. 17-4PH Stainless Steel Collapsing Mechanism
subjected to this load. The displacement did not stop until the load rose to a pressure of $30,000 \mathrm{psi}$ on the ends.

Twelve shots have been run to verify the variable-recessing rate collapsingmechanisms. The results have been very promising. Figure 4-7 shows a typical piston of this type. The center piece had been subjected to a static load equivalent of 20,000 psi on its ends.

4.5 MISCELLANEOUS RUNS

Many runs were made during the piston design evaluations to establish base lines and to remove uncertainties such as effects of leaks, component deformation, and instrumentation failures.

Figure 4.7. Variable Recessing-Rate Collapsing-Mechanism

Section 5
CONCLUSIONS AND RECOMMENDATIONS

The concept of approximating the constant base-pressure launch-cycle in a light - gas gun has been demonstrated to be feasible both theoretically and experimentally. However, during the early portion of the program some significant discrepancies between the theory and the experiment were found. Physical evidences such as the phenomena of the piston rebounding into the pump tube during some of the runs, the difficulties encrountered in piston removal after the runs, and the appearance of the pistos assembly after being freed from the pump tube all indicated the dominance of friction, which, in the theory of the constant base-pressure launch-cycle, was assumed to be: small. A rough calculation using the shear stress value of the piston material to approximate the friction between the wall of the chamber and the piston assembly confirmed the conclusion derived from the physical evidences. The modified piston designs (Figures 4-3 thfough 4-7), employing the principle of molting, successfully overcame the problem of friction and yielded much higher muzzle velocities.

Unfortunately, there is no simple mathematical model for friction that can $b=$ included in the analysis of the launch cycles. But, it is believed that there exists a piston whose kinetic energy (correct mass and and velocity combination), together with the collapsing mechanism, is optimum to produce a near constant base-pressure launch-cycle. This optimun piston velocity is always higher than the theoretical value because of the friction. The smaller the piston friction the closer the constant base-pressure launch-cycle can be approached.

The collapsible-piston mechanism functioned as expected. For a given loading condition, the muzzle velocity increases as the collapsing distance decreases. Zero collapsing distance corresponds to a solid piston. It was concluded that for an identical life span of the gun components, launch cycles
incorporating the collapsible piston assemblies yielded higher muzzle velocities than the solid pistons. Also, the maximum muzzle velocity achievable by a given gun can be extended by incorporating a collapsible piston of proper design.

In the routine operation of an ordinary two-stage light-gas gun, the piston is often ballasted by weights to achieve proper mass. The weight housings usually contain voids which in some ways function similarly to the variablerecessing rate collapsing-mechanism to effectively damp out the sharp pressure peaks.

The very high rupture pressure of the launch-tube diaphragm (over $30,000 \mathrm{psi}$) has an important effect on the gun performance (Figure 4-2). Higher diaphragm burst pressure yields higher muzzle velocity. However, ordinary projectile materials suc'h as Lexan and polyethylene cannot survive extremely high shock-loading conditions. It is recommended that an experimental investigation of stronger projectile materials such as magnesium lithium be conducted. Since friction of the piston has been identified as the main obstacle to the successful operation of the constant base-pressure light-gas gun, it is recommended that an experimental program be initiated to develop a piston with either negligible or predicatable friction.

The sound speed of the hydrogen, an important factor in gun performance, may se significantly in error with the ideal gas assumption. Hence, it is further recommended that a real gas model, coupled with the collapsible piston concept, be incorporated into the analysis of the constant basepressure launch-cycle. This improved theory should yield higher muzzle velocities and lower peak pressures in the gun than those simplified analyses employing either an iceal gas with collapsible piston or a real gas with solid siston.

Section 6

REFERENCES

1. J. S. Curtis. An analysis of the Interior Ballistics of the Constant Base Pressure Gun. Proceedings, Third Hypervelocity Techniques Symposium, Denver Research Institute, University of Denver, Denver, Colorado, March 1964, pp 423.
2. G. Witenius, M. Cloutier, and P. L. Cowan. A Theoretical Analysis of a Constant Base Pressure Light Gas Gun. Canadian Armament Research and Development Establishment, TM 703/62, Valcartier, Quebec. October 1962.
3. J. Lukasiewicz. Constant Acceleration Flows and Applications to High Speed Guns. AIAA Journal 5 No. 11 p 1955.
