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ANALYSIS OF LIMITED MEMORY ESTIMATORS AND THEIR APPLICATION
TO SPACECRAFT ATTITUDE DETERMINATION

by

Edwin C. Foudriat

INTRODUCTION

The concept of limited memory has been proposed as a method by
which the insensitivity problem in Kalman filtering applications

can be alleyiated. 1,2,3,4

Insensitivity results after a large num-
ber of measurements when the noise disturbance to the states are in-
significant. The effect of the number of measurements and state

noise can be shown to be counteractive, that is, each measurement re-
duces the covariance matrix while the effect of noise is to in-
crease the state uncertainty and hence the covariance matrix. If the
noise is insignificant then the covariance matrix, after a large
number of measurements becomes vanishingly small and the filter be-
comes insensitive to errors.

The vanishing of the covariance matrix would not, in itself,
result in an unsuitable estimation of the states. However, in the
usual, non-linear, real-world estimation problem, the system modeled
in the computer is generally simplified since many of the states
and forces of the real system neglected or approximated. The result
of the insensitivity is that these neglected state and forces may
create errors between the real and modeled systems and if the filter
is insensitive, these errors can exceed the desired estimation ac-
curacy.

The determination of spacecraft attitude is an excellent example
of the insensitivity-modeling inaccuracy problem. First, high ac-
curacy is desired over long periods of time. Second, disturbances
in the form of earth and solar environmental torques are small. How-
ever, these torques with the exception of micrometeorites, should not
be considered random disturbances and hence, should not be modeled
as noise. Since the effect of micrometeorites on spacecraft motion
is considerably less than other torque sources, it is usually neglected.

Hence, the noise disturbance to the state are negligible. Finally,



the equations for the modeling magnetic field, aerodynamic, and gravity
gradient torques are not exact resulting in errors between the real-
world spacecraft and the computer model. As a result, the altitude
determination problem when Kalman estimation techniques are used is a
classic example of the insensitivity problem and is particularly suited
to the use of limited memory techniques.

The study discusses the general problem of state estimation and
develops four methods for achieving limited memory. These include the
Schmidt gain 1,2 which adds an additional term to the covariance weight-
ing matrix, the addition of noise effects to the covariance matrix (with-
out equivalent noise added to the states), the limited memory, maximum

likelihood estimation (M.L.E.) concept of Jazwinski,3 and a nonlinear ver-

sion of the least-squares limited memory concept as developed in Appendix IV.

A similar concept for linear systems was developed independently by Lee
Using a special set of time-averaged equation55 it was found that

three of the limited memory methods were computationally feasible

(the M.L.E. concept was eliminated) for the attitude determination

problem. These were programmed for computer analysis so that comparison

between the concepts could be made. The report presents the computer

program and the comparative results of the three limited memory con-

cepts for a typical spacecraft subjected to earth environment torques.

LIST OF SYMBOLS

a. = rth slit unit normal! vector
B = earth’s magnetic field vector in angular momentum
coordinates, gauss
L - LZ
b = T
z
b = T 5; = transformed star vector
bl’b2’b3 = components of b
C2 = constant (eq. 12)
< = £ b = tranformed star vector
CysCp,C3 = components of ¢
E = Euler angle transformation (angular momentum to body axes)
Eij = ijth term of E
f(x) = general function of x
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H(x,t)

ILq,p]

Ki 2K

Bgl
Jacobian matrix ————
X

J
ijth ferm of G
differential function (see eq. !)
measurement model equations
identity matrix
interval of time from q to p
satellite orbit inclination
spacecraft eddy current damping coeff-icien‘l',#—f'l’—sec/gauss2
earth magnetic field constants
Schmidt gain factor, (eq. 9)
times of occurrance of measurements
spacecraft x- and y-body axis inertias, slug-ffz
spacecraft z-~body axis inertia, slug—f'r2
spacecraft z-axis magnetic dipole constant, #-ft/gauss
magnitude of measured star
+1 magnitude
number of states
covariance matrix of i
probability density function of x
probability density function of kth measurement noise
most recent measurement time considered in limited memory
system noise covariance
earfiest measurement +ime considered in limited memory
measurement noise covariance
magnitude of angular momentum
ith star unit normal vector
inertial-to-angular momentum transformation
ijth term of T
measured time, sec

true time, sec
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x(p) Hx,k) | _ = gradient of measurement vector

zo(k)

/2y

vR!
measurement noise

diagona! matrix of additive noise (see eq. 33)
system noise

magnitude of comparative function (see eq. 32)

augmented state vector

initial (before addition of newly processed data) estimate
of state

improved estimate of state
measurement

{%pacecrafT orbit position angles refated

to earth's magnetic field, deq.
deviation in x
noise in time measurement, sec.
cone angle (eq. 18), deg.
argument of latitude, deq.
angle defining direction of angular momentum (eq. 18), deaq.
standard deviation of +| magnitude star
standard deviation of measured star
angle defining direction of angular momentum (ea. 18), deaq.
state transition matrix
spin angle (eq. 18), deg.
precession angle (eqg. 18), degq.
longitude of ascending node, degq.

spacecraft orbital rate



LIMITED MEMORY SEQUENTIAL FILTER SYSTEM

Sequential Filtering System

The model for the dynamic system and the measurement equations are

given by
X = gt + oW
y(k) = H(x(k),k) + v(k) ()
k = 1, «.oc, P
where x = augmented state vector model of the system
y{(K) = measurement equation
H(x) = measurement model
w = system noise
v(k) = measurement noise

It is assumed that the noise is white, gaussian with
Efw] = E[v(k)] = 0

Evv']

R(k) 8(t-k) (2)

Q(T) 6(+-1)

ELww' ]

In many attitude determination problem cases the additive noise, w, Is
zero or at least the neglected torgues should not be represented as
gaussian white noise.
The weighted least-squares solution* for an improved estimate for
x(p) given an initial estimate Xo(p) is
- - Pa a7 -1
x(p) = x {p) + | z V(xIV (k)
“o
k=q
(3)

P - -1/2 -
T V(KR (k) (y(k) - H(x ,k))
k=q L ~ 20

*See Appendix IV for detailed derivation.



where

V) = v 1/

H{x{(k),k)R™
x(p) =

2
(k)]x G0 (4)
el

Equation (3) assumes that only the measurements k e I[q,p.] are employed,
and hence, can be classified as a limited memory system.

To obtain a seduenfial filter algorithm, it is necessary io formulate
a method for including new measurements as they are taken and, if one is
to maintain a Iimited memory concept, for eliminating old measurements.

6,7
along

The most common method uses the standard matrix inversion lemma
with the assumption that only The new measurement is used to approximate
the error term of equation (3). The filter formula adding a new measure-
ment at k = p+| based upon the nonlinear version by Cox,8 becomes

- - - -1
XpHi) = x (o) P ViprD) R (prD)

P
(5)

(y(p+1) - ﬁﬂio(p+l),p+l))

As noted, the second summation Term in equation (3) has been truncated to
contain only the last term. The covariance matrix, (the first summation

term in equation (3)) becomes

-1
P I LT (6)
slg = | EVGVIGO |
Pt | k=g _go(p+l)

Equation (6) can be determined from

PR ’ oT -1
P = |P +1) + V(p+1) V (ptl)
pti,q l_p,q tpl ' P ]
(7)
= p - p va+vr e
P59 p,q p,q P»q
where Pp q is "theoretically" evaluated using the initial estimate,
go(p+|). tn practice P q is accumulated by subsequent application of
’

equation (7) and extrapolation using the P matrix Riccatl equation or

equivalent,and hence may not represent the true summation inverse as shown



in equations (6) and (7). However, in a number of practical applications
the technique used above has lead to a successful although "sub-optimai'
nonlinear filter.

To complete the algorithm the system requires a method for extrapola-
ting the estimate and the covariance matrix to the new measurement point,
that is, calculating io(p+l) and Pp,q (p+1) given io(p) and Pp,q (p). For

the nonlinear case (again an approximation from the linear case) the

equations developed by Cox8 and others appear to be adequate. They are

x(p) = g(x(p),p)
.
P (pHl) = a(pri,p) P (p) & (pti,p)
p,q © PTIPY Tp,q P7 B IPTLP (8)
+ Q(p)

The equations are based upon approximating the term, E[g(x{(p))] by the
first term in tThe Taylor series expansion and by assuming that terms in
the probability density function of higher order than the second central
moment (covariance) are negligible. The Term Q represents the result of
the noise w in the system equations.

Equations (5), (7) and (8) are the nonlinear Kaiman filter system.
Limited Memory Concepts

In general the nonlinear Kalman filter shown above has been used
successfully in a number of aerospace applications. However, when the
disturbing noise, w, is small or when the neglected terms within the model
do not have a character which can be readily approximated by white noise
the filter has given Inaccurate results. This is mainly due to the fact
that the covariance matrix terms become small sc that the filter becomes in-
sensitive to small errors. Concepts for alleviating this problem have

become known as |imited memory filters.

Limited memory filters have been studied mainly by Schmid‘r,l’2
Jazwinski,3 and Lee.4 These three concepts will be outlined in this
section.

The limited memory concept proposed by Schmidt adds a term to the
equation which attaches more weight to the most recent measurement. For

the scalar measurement the second term in equation (8) becomes



sk = [P v v+ v T2 vae !
= P,4 =~ P,q— oty — P
- -7 (9)
R12 (g - e

where the gain factor Qsis used to weight the present measurement. Note
that the first term in the brackets in equation (9)is an alternate method
for writing the measurement weighting term of equation (5).
The effect of weighting factor K,can be seen by multiplying equation (9)
T :
by V' fo give

AL
Visx = |8 T SE (y(pH) - Hix(p+IN)) (10)
+

§ <>
-
| <>

Since yTaﬁ_is the first term in the Taylor series expansion of the measure-

ment error, then equation (10) can be related to the amount of the measure-

ment error incorporated in the new estimate. With Kq = | the weighting

Is very large; with KS << | and noting that for small covariance matrix
terms, QTPP q 2 << | then the weighting on the present measurement becomes
small.

A conceptualiy similar weighting procedure can be evolved by assuming
that sufficient noise is added to the covariance matrix between measurement

points p and p + | such that Pp q(p+l) satisfies the relationship

»

VTP Vo>
- P,9 -
Using this relationship, and equation (5) with the alternate form of the
Kalman gain, the term !Téﬁ becomes identical to condition in equation (10)
with Ks = |. Hence,the use of the Schmidt gain coefficient is conceptually
equivaient to the addition of noise in that present measurement is given
additional emphasis in formulating the new estimate of the state.*

While the two different forms of limited memory have similar effects,
a difference between them exists. The weighted measurement using ﬁsdoes not
affect directly the values of the covariance matrix in that the weighting
is added to the new estimate equation directly. On the other hand the
addition of noise directly to the covariance matrix does affect its future

values.

*An alternate approach to demonstrating the effect of noise is to examine
the solution matrix of the Ricatti differential equation.

8



The limited memory concept developed by Jazwinski is formulated from
the maximum |ikelihood technique and Bayes es‘l’ima'l'ion.9 Jazwinski3 proves
that

Prix|y )

Prox | 1Y, ol =¢, 5F?2Fﬁ;Lf7 (12)

where Y indicates the sequence of measurements from m to n and the term

on the left indicates the density function dependent upon the sequence only
and not upon the apriori estimate Pr(x(o)}. Hence 02 = f(x). Note that

equation (12) can be obtained directly from Bayes rule for the additive

noise filter problem, equation (I}, and the assumption that w Is zero as

Prix,Y )
Pri(x | Yp,l) =
p,!
p
Pr(xo)'nPrV(X}k) - H{x(k),k))
= it (13)
Proycry, ..., Y(p))
with the constraint equation i = g(x,t). By formulating both numerator

and denominator, equation (12) becomes

P
o Pr, (y. - H(x))
=g+l —k

Prix | |Y [
= +
Poatl o1 Yq,0
The limited memory system of Jazwinski requires the operation of fwo
simultaneous Kalman filters to satisfy the estimation and as a result a
"batch-type" process is necessary. Consequently, the numerical solution
on a digital computer for an attitude determination problem might be as

10 and hence

involved as the least-squares batch program used for NAS{-6010
undesirable from a computer usage standpoint.

Another method for limited memory is based upon the least-squares estima-
tion procedure. The linear case was originally developed by Lee4. The nonlinear

procedure, an extension of the least squares approach in Appendix IV, can



be evolved from equation (3) by considering the two portions of the second
term separately. The covariance term can be treated by repeated application

of equation (7) where

_ 1o a7 -1
Potl, gl = [Pp_'_l’q VgV (g)]
which becomes
P = p + P G -'p HtiTe (15)
p+l,qtl pti,q p+l,q ptl,q ptl,q

using the matrix inversion lemma.

Equation (15) can be evaluated at + = p by noting that equation (4) can

be written (for the scalar measurement) as

rRVY2(0% (k0 = @ H(x(K) , k)
3
. 3 axi(k)
axi(k) axl(p)
aH axi(k)
Bx](k) an(pn
= v, TR, k) 8k, p) (16)
?i(k) o ’ ’p

where &(k,p) is the state transition matrix contained in equation (8).
Note that in evaluating equation (16) at k = g it is necessary to

integrate both state and state transition backwards from t+ = p+l. In

this process it becomes feasible to evaluate measurement error portion,

that is, the second term in equation (3)

ptl _
z Vo R1/2

(k) (y(k) = H(x_(k),k)) an
k=qg+| B ©

at all points within the interval I e [q,p+1] at which the time corresponds
to a measurement point. These terms can be used to reinforce the error and

hence conceivably obtain improved convergence and accuracy.

10
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In this section the general sequential filter system and four concepts
for limited memory; additive noise, Schmidt gain weighted measurement,
maximum likelihood estimation using limited statistics with no apriori
estimate, and least-squares addition and subtraction of data points have
been outlined. These concepts differ substantially in their effects on
the various functlions within the filter. As noted previously, the noise
addition affects only the covariance matrix which after a time period should
stabliize to a speclific value mostly dependent upon added magnitude of
nofse assuming the measurement sequence is repeated. Conversely, the
covariance matrix for the Schmidt gain concept should continue to decrease
since the weighting does not affect this factor. Both of these techniques
rely upon processing the present measurement error only.

The maximum |ikelihood |imited memory reflects the optimum filter and
the covariance should indicate the accuracy of the estimate. As noted,
this procedure is relatively difficult to program requiring two Kalman
filters and a "batch-type'" process even for the linear case. For the

nonlinear problem a process similar to the NASI-—6OIOIo

least-squares
estimate might result and hence be impractical.

The limited memory least-square technique employs a concept, which
like noise addition, maintains affter stabilization a relatively fixed
covariance matrix. This should reflect to some degree the accuracy of
the unbiased estimate. The technique has the additional feature that
past data points within the span can be included if desired to augment
accuracy. [t requires extrapolating the present estimate and its state
transition matrix to the end points of each memory span. |f date within the
memory span is used the state and state transition matrix at each measure-
ment point must be evaluated. This is only practical when a rapid integra-
tion solution for the system of state variables is available. This latter
condition exists for the spinning body attitude determination problem by
use of the time-averaged perturbation equaﬂons.5

in the remainder of the report the three sequential filtering tech-
niques, noise addition, weighted measurements and i|east-squares sequential
limited memory will be developed for the attitude determination problem

and test results discussed.

11



APPLICATION OF LIMITED MEMORY SEQUENTIAL FILTER TO
THE ATTITUDE DETERMINATION PROBLEM

In the above section four limited memory concepts were formulated.
The maximum {ikelihood concept appeared to be impractical and the least-
square concept was dependent upon a rapid integration procedure for
extrapolating the estimate over the memory interval. The following
section of the report develops the specific equations for the attitude
determination problem and presents the computer programs necessary to
simulate the three limit memory concepts. |In the first section the vehicle
equations of motion and the auxiliary equations necessary to generate the
earth's field environment for a spinning satellite are formulated. These
are followed by the measurement equation. The resultant computer programs
necessary to obtain the star sighting and the limited memory sequential

estimation are then formulated.
Vehicle Equations of Motion

The spinning body dynamics assumed for the problem are described by
a set of time-averaged perturbation equations. The body is assumed to
be symmetric and influenced by earth magnetic field forques only. The

six state equations are

KB B_ (Il +p cosze) cot 1
y z

r
¢ = T * T
B M. cos 8 cot T B M cos 6
+ Xz - zz
r r
B M
. r
Vo= b cos ] " zr z * (18)
b K sin 20 (B + B_%)
5 =- z
4L
KB B_ (I +b cosze) B M_ cos 6
. X Z y 2z
T__ —
L r

*Note that the term in 6(o) has been neglected.

12



KB B_ (I +b cosze) B M_ cos ©
y z X z

= - + -
& LsinTt rsin-T

r K(BZ2 - 8%)(1 + b cos2e)

ro- L
where ¢ = spin angle, first rotation-about angular momentum z axis

@ = cone angle, second rotation-about once displaced momentum x axis

Y = precession angle, third rotation about once displaced z axis

T = angle defining inclination of angular momentum direction
relative to inertial Z-axis

£ = angle between X inertial axis and Z-z plane

r = magnitude of angular momentum

L = spacecraft x- and y~axes inertia (assuming symmetric body)

Lz = spacecraft z-axis inertia
L - LZ

b = _.-LZ--—

K = spacecraft eddy current damping constant

Mz = spacecraft z-axis magnetic dipole constant

B = earth's magnetic field vector in angular momentum
coordinate system

s’ = e

The derivation of equations (18) can be found in ref. 5. A unique
feature of the equations is the fact that a!l short period cyclic variations
have been eliminated by time averaging. Since the remaining state
variables 8, t, &, and r change extremely slowly* it is feasible to inte-
grate the equations using extremely long time intervals. This feature
permits the successful implementation of the least-squares !imited memory
concept.

The accuracy of these set of equations is also indicated in ref. 5.

In that report a typical comparison shows the states remain within a few
seconds of arc of the exact equations over periods of time as long as

1000 sec. Thus these equations are capable of representing, with a high

¥This fact is demonstrated in the simulation results.

13



degree of accuracy, the true attitude motion of a symmetric spin stabilized
vehicle in an earth's field environment. Reference 5 gives a method for obtaining
a similar set of equations for the nonsymmetfric vehicle and the inclusion
of gravity gradient torque effects.
In addition to the six states certain of the spacecraft parameters
may be uncertain before the flight or change siightly during flight.
Hence b, K,and Mz can be used in an augmented state system and estimated
also.
A dipole magnetic field mode! has been used assuming that the space-
craft is in a circular orbit. With this model the inertial components of

the magnetic field become

BX = KI sin 2 o cos B
BY = KI sin 2 a sin 8 (19)
BZ = KI (K2 - cos 2 a)

The constants K| and K2 are functions of the spacecraft orbital altitude.

The angles a and B are functions of the orbital elements® and are given by

sin ¢ = sin v sin i
cos | sin v (20)
tan B = ———F-——
cos v

With a circular orbit
v = v o+ w t (21)
The relationships for the magnetic field are derived in ref. I1!.

The inertial components of magnetic field are transformed to the

angular momentum axes by

CoS T COS & cos T sin § -sin 1
T = -sin & cos £ 0 (22)
sin T cos § sin T sin g cos T

*The longitude of the ascending node, @, can be assumed to be zero.

14



In addition to the inertial-to-angular momentum axes transformation, the
Euler angle (angular momentum-to-body axis) transformation is required.

This is

cocy - cOspsy s¢cy + clcosy sOsy
E = {-cosy - cOsocy -s¢sy + cBcocy sfcy (23)
s0s¢ -s0c¢ ch

Equations (18) - (23) define the motion of the spinning spacecraft in an
earth's magnetic field environment.

Measurement System

A measurement is taken when the slit plane of a body mounted telescope

12 The time of occurrance of this event is

and the star are coincident.
recorded and it is this time which is employed to determine the precise
vehicle attitude.

The geometric condition of the measurement is satisfied when

T

Hix(t),t) = 3 ET s; = 0 (24)
where a. = r th slit normal vector
s. = | th star vector

Besides the measurement equation, the measurement gradient, vx(p) H(x(k),k)

is required in equations (4) and (16). The gradient function

Tty HOXOK s

3H(k) T 3E

ENGE a3 ' %

aH (k) _ T 8E

NI T

(25)

AH(k) _ T 3E

axz(K) a 38 ' 5

BH(K)  _ T ¢ aT

3%, (k) S B At 3

15



BH(K) T . oT
(K  Zr T

IH(K)
axi(k)

The state-transition matrix as indicated in equations (8) and (16) is
needed both for the measurement equation and to update the covariance

matrix. |t can be obtained in differential equation forms as

Bxi(k) agi axk

= = §—=— = LG
k

¢ — (26)
ij ax. (p) X, 90X,
J iP J

k k
or in matrix form
& = Go 8(0) = I

The actual terms used in equations (25) and (26) for the attitude determina-
tion problem of equations (18) - (23) are given in Appendix |I. The

H{x(k),k).
x(p) =

In addition to the gradient, the covariance of the additive noise in

results of eguations (25) and (26) can be used to obtain V

the measurement equation is required. The actual measurement equation (24)
does not contain time explicitly but time is the quantity recorded at each
measurement event. While this factor does not affect the measurement
equation (24) since the states at the specific time instant are required,
the additive noise term in the measurement equation is not readily

available. An approximation to the additive noise can be made by con-

sidering
Hix(H,0) ~ Hix(e )y + 38 (27)
2y v T dt ,r”
m
where Tm = measured time
++ = true time
n = random time error

16



3H

Noting that 3% 0 so that
dH  _ T:
& = LH X

the additive noise term is VxHT x |+n

m
Assuming E[n] = 0 and uncorrelated with 2) then the measurement noise
covariance Rk is given by

R(KD = EQ(VH X | Im?) (28)

+
m

Assuming é, %, é, and 5 are negligible in comparison to $ and i and that

the first terms in equation (18) predominate then

2
_ T 3E T 3E 2.2 r 2
R(k) = E{(a ﬁ T _S_i + ir -a—w— T _S_I k cos™8) ? n~ 1} (29)
x (k)

I f one further assumes that the random variables 5(Tm) can be replaced by
their present estimates and the covariances are negligible in comparison
to the means then

T 3E

2..2r
.+ —
3% T S; a 50 T si k cos 96)

o 2k (30)
n

~

R(K) = (al 2

NN

o
White it is true that the measurements noise in above form are correlated
the use of R(k) as the weighting matrix is more desirable than attempting
to process an alternate form of the measurement equation.

The value used for o, is determined from the work of Ostroff and
Romancyzk,'3 who show both analytically and experimentally that the

standard derivation o for estimating the center of the star corresponds

0
10 >.02 31

Assuming a +1 magnitude star has angular error with a 10 Sec. standard

to the equation

o) = 0
n o]

deviation, equation (31) is used to dgenerate the standard deviation used

in equation (30).

17



Computer Simulation

A computer simulation using equations (10) - (26) and (30) - (31) has
been developed for an iBM 7040 in order to study fthe effectiveness of the
limited memory procedures for precise attitude determination. The simula-
tion consists of two programs, the first to generate star sightings and
the second to employ the various nonlinear limited memory estimation
concepts in determining the attitude of typical spacecraft.

The computer program flow diagram for the instrument simulation,
that is, the generation of star sighting data is shown in Fig. |I. The
program consists of two main branches. The first integrates the equations
of motion to null the error between the slit plane and the star vector
in order to satisfy the measurement, equation (24). This branch interlaces
the actual differential equations along with the angle transforms since
the angular momentum transform data is required for both the differential
equations and the measurement equations. In addition the star vector
misal ignment data in the body axes can be used to obtain a simple but
accurate estimation of the rotation angular error — - hence, the time
interval required if the null condifion is not satisfied. To preserve a
sighting accuracy of | Sec., the states, the differential equations for P
and é, and the measurement times are carried out in double precision.

The second branch is used when the measurement equation is satisfied
to within | Sec. A gaussian random noise generator is used to add a zero

mean time error proportional to the star magnitude,

where o9, is the time error noise selected using equation (31). The data
are then recorded on tape, including the star and slit, the true and measured
time, the six state variables, and the vector components of the instrument
axis (assumed to be y-body axis) in Inertial space. The program can
generate data over any period but does not have the capability fto add or
drop stars.

A computer listing of the program is shown in Appendix Il. Note that
the comment cards in the listing correspond blocks on Fig. | to simplify

understanding of the program.
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D:TA INPUT CUNSTANTS, INITIAL STATESIVAL)CUNTROL
NUMBERS,ETC .y STAR ANGLES(SIGMA,GAMA),
MAGNI TUDES{SMAG) +SLIT ANGLES{ALAMD,ALPHL), ETC.

PARAMETER INITIALIZATION
SLIT VECTUR COMPONENTS
STAR VECTOR COMPONENTS

TAPE INITIALIZATION

INERTAL-ANGULAR MOMENTUM AXES
TRANSFORM

TEST FOR INTEGRATION TIME INTERVAL
COMPLETED

EULER TRANSFORM

(ANGULAR MOMENTUM-BODY AXES)

STAR VECTOR TRANSFORMED TO
BODY AXES

RANDOM NOISE GENERATOR TEST FOR ORTHOGNAL SLIT AND
SUBROUTINE CALL STAR VECTORS

MAGNETIC FIELD INTENSITY
COMPUTE MEASUREMENT TIME COMPONENTS

OPTICAL AXES COMPONENTS

DIFFEKRENTIAL EQUATIONS
IN INERTIAL SPACE

H[s] TEST FOR INTEGRATION TIME INTERVAL
WRITE DATA ON TAPE

]

COMPLETED

INDEX TD NEXT STaR ANGULAR ERROR IN SPIN AND
AND/OR SLIT
PRECESSION PLANE
TEST FOR STAR 5IGHTING COUNT
INTEGRATION TIME INETERVAL TO
"o NULL ERROR
YES ———_._____1

STOP )
o CALL [NTEGRATION SUBROUTINE

FIGURE | PROGRAM FOR DETERMINATION OF STAR SIGHTINGS AND PREPARATION OF
TAPES FOR LIMITED MEMORY FILTER
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The computer flow diagram for the second program, the |imited memory
estimation system, is shown in Fig. 2. This program is relatively straight-
forward in that it follows a fairly standard pattern for sequential
filtering with a few exceptions. The first, is the method for storing star
data in the memory and the method by which new data is added and old
deleted. Due to the fact that the IBM 7040 was limited fo 16,000 words of
storage, it was decided to read a segment of stars into the memory from
tape and process these stars. When the sequential filter needed a new star
not in the memory then those stars no longer needed in the filter are
eliminated, the set of stars in the memory but still required by the filter
are shifted and new stars read in. The tape is then reindexed back to the
proper point.

The second is the method by which stars can be seiected for processing
within the next data cycle for the least-squares |imited memory system.

Two alternatives which both use random selection are available. The first
uses an ordered sequence, and the second selects fixed step sizes and then
selects a particular star within a band of 5 - 10 stars about that fixed
point. This latter technique leads to a somewhat more uniform selection
of stars across filter memory length.

The integration of the state and the solution of the state transition
matrix use a fourth order Runge Kutta routine. The state transition matrix
is used fo extrapolate the covariance matrix but not exactly as indicated in
equation (8). Instead the Pl/2 concept as reported in ref. 14 is used.
This latter procedure eliminates the need for double precision in the
calculation of P while at the same time assuring a positive definite
covariance matrix.

The processing of star data for a particuiar measurement update is
straightforward. The newest star is processed first as in the Kalman
filter and then if the teast-squares [imited memory procedure is being used
any additional previously measured stars are processed unti! all selected
stars within the memory window have been included.

Once all star points within the window have been processed the new
covariance matrix is calculated. Ref. | presented a method for processing
both the addition and subtraction to the covariance matrix simultaneously.

Due to the fact that this solution may cause difficulties because of large
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4o CALULATE GRADIENT OF H(IXI(X))
WITH RESPECT TU X(K) AND
l MEASUREMENT COVARIANCE

INVERSE

5. UPDATE GRADIENT AND MEASURE -
MENT USING STATE TRANSITION
MATRIX

6. ACCUMULATE WEIGHTED ERROR

L

TEST FOR FIRST(NEW) OR LAST
(OLDEST) STAR IN WORKING CHART
{MEMORY WINDOW!
NO
YES

STORE GRADIENT DATA FJOR
FIRST AND LAST STAR TO BE
USED IN P®%x1/2 UPDATE

NO
TEST FOR LAST STAR
YES
YES

CALCULATE NEW P*%x1/2 MATRIX

{

CALCULATE NEW ESTIMATE

TEST FOR STAR POINTS AT
WHICH TO PERFORM ACCURACY
ANALYSIS AND DATA PRINT

NO

YES

READ TRUE STATES AND DIRECT =
ION OF INSTRUMENT AX1S VECTOR

COMPARE STATE AND [NSTRUMENT
AX1S POINTING TO DBTAIN

ERRORS

WRITE EVALUATION OF
ESTIMATION ACCURACY

INDEX FOR NEwW DATA PUINT AND
TEST FOR RUN COMPLETION OR
NONCONVERGENCE

T

YES

——
|
[
I—

FIGURE 2 LIMITED MEMORY FILTER PROGRAM
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subtractive changes in P, the computer augments P in two steps, first
adding the new data and then subtracting the old data. Before the subtrac-
tion to P is accomplished its effect is tested by the equation

~ ~

VIP Vo< wt ' (32)
P,q

It this condition is not satisfied p'/2

old data.

Using the new P matrix, the new estimate is obtained and at specific

is not augmented by deletion of the

points, the accuracy of the estimate is compared fo that of the exact
solution.

The estimation program with instructions on how to contro! the options
is listed in Appendix Ill. The comment statements in the program correspond

to the blocks in Fig. 2.

SIMULATION RESULTS

The two computer programs described in the previous section have been
used to study the various concepts of sequential and limited memory filters
for the attitude determination problem of a spin-stabilized vehicle in an
earth-field torque environment. The specific capabilities of each system
to obtain the correct estimate in the case of measurements corrupted by
noise is presented.

The results of the star generation program are shown in Figs. 3-5 for
the cases with eddy current only and eddy current plus magnetic dipole

torques. The nominal spacecraft has the following conditions

$(o) = P(o) = 0 deg.

8o) = 1.5 deg.

t(o) = -87.5 deg.

£(o) = 85 deg.

rio) = 20. #-ft-sec

L = 56.68 slug. ff.z

L~ = 65.62slug. ft.°

K = ,1427 x IO'-4 #—ff—s/gauss2
M = .5105 x 1077 #-ft/gauss

z
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The orbital characteristics which affect the magnetic field are identical
to those given in Ref. Il. With the assumed conditions the spin axis
(angular momentum direction) is within 10° of the inertial X-Z plane and
within 15° of a nominal sun synchronous orbit with an orbital inclination
i = 97.38°.

The placement of the stars shown in Table | would be similar to those
in a typical low altitude orbit where earth blockage might eliminate stars
within a 140° portion of a revolution for a vehicle with its nominal spin

axis normal to its orbital plane.

Table 1
Star Mag. Az. Elevation
! +1.5 10° 0°
2 +2.5 =59 70°
3 +1.0 10° 165°
4 +3.0 0° 225°

The star magnitudes were used to weigh the accuracy of the sighting data
according to equation (31) with a +1.0 nominal magnitude star assumed to
have a 0 = |0 Sec. The estimation program assumed that all stars were
+1.0 magnifude.

Figs. 3-5 show the effect of the eddy current and magnetic dipole
torques. As noted in equation (18) the magnetic dipole torques do not
affect cone angle and angular momentum. Conversely the results of Fig. 3
indicate that the eddy current torques have negligible affect on the motion
of the angular momentum éxes in comparison to the magnetic dipole effects.
Hence the ability to estimate MZ, the maaqnetic dipole, will depend on the
ability to determine the angles t and & accurately, whereas the eddy
current coefficient, K, will be primarily dependent upon the accuracy of
r. Although K effects 8, the change in cone angle is in the order of
IO—5 degs. over the half orbit. One can conclude from Figs. 3-5 that the
torque coefficients, Mz and K, can be adequately determined if T and £ can
be estimated with an accuracy the order of .01° and r to within .0001 #-ft-s,

In the following three sections the results for the convergence and

estimation accuracy for a typical spacecraft initial condition are presented.
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The various cases use identical noise added to the star time measurement in
order that the capabilities of each sysfem may be compared. The initial

conditions are:

¢(o) = |°

w(o) = ~I°

6(o) = 2°

(o) = -80°

£E(o) = 85°

r(o) = 21 #-ft-sec.

K = 35 x 1077 #-ff—sec/gauss2

In both the nominal spacecraft and the estimation simulations the magnetic

dipole, Mz’ was zero.

The initial covariance matrix for each run was given as:

.004  -,0008 0 0 0 o 0
-.0008 .004 0 0 0 0 0
0 0 .004 O 0 0 0
P = 0 0 0 .004 0O 0o 0
0 0 0 0 .004 0 O
0 0 0 0 0 60
L O 0 0 0 0 0 .4x|o‘7j

While the capabilities of one particular form of filter might be emphasized
if other initial conditions had been taken or might be changed somewhat if
another sighting error sequence had been used, the comparison of filter
capabilities based upon identical runs seems to be a reasonably valid
procedure, at least initially to indicate the more gross effects of each

filter system.

Limited Memory Filter Using Schmidt Gain

This section discusses the results of the attitude determination study
using the Schmidt gain limited memory concept by presenting the convergence
and accuracy obtained for relevant states of the attitude determinaticon
problem using the above conditions and various gain values, KS.

Fig. 6 shows the effect of change in Schmidt gain on the accuracy of
the estimate of vehicle orientation in the inertial X-Z plane. This factor

is used since the nominal spin plane is within 10° of the X-Z plane so that
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its accuracy is equivalent to the estimation of the spin orientation.

This fact was also indicated numerically by the high degree of correfation
between the X-Z plane error and the term, (¢ —% + ¢ —$ ), which for small
cone angles, 6, is also the nominal spin plane accuracy.

Fig. 6 illustrates both the speed at which the estimate of spin error
converges and maintenance of accuracy for the various gain values. The
standard nonlinear Kalman filter, Ks = 0, converges most rapidly with the
larger values of KS converging more slowly. However, once convergence
has taken place, (between 100 and 200 stars depending on gain) then the
affects of insensitivity can be noted. For example, the KS = 0 error
slowly increase after about 200 stars, relative to the KS = .0l. After
350 stars all Schmidt gains accuracies are better than the Kalman filter.
However in all cases the Schmidt gain shows a degree of insensitivity
since the estimate error remains biased in that all errors remain positive.

Similar results appear in some of the other state variables as
illustrated in Figs. 7-10. In the case of angular momentum, Fig. 7, the
value for Schmidt gain, KS = .01, converges more rapidly than either larger
values or KS = 0. As previously all values of gain eventually exceed the
accuracy of the KS = 0 system. |In considering the angular momentum
direction angle, t, shown in Fig. 8, all values of gain KS improve both
convergence and accuracy over the basic Kalman filter. Surprisingly, all
Schmidt gain estimation errors are opposite for this state in sign from
the KS = 0 case. Again, KS = .01 appears to give slightly superior results.
Figs. 9 and {0 demonstrate the ability of the Schmidt gain system to
determine the cone angle and correct value of eddy current torque coeffi-
cient, respectively. Again, in Fig. 9 the estimation error is opposite
in sign and the gain value KS = .0l provides slightly superior results.

The results of Fig. 10 indicate the ability to adequately determine the
eddy current torque coefficient. This fact could have been assumed from
Fig. 6 since the accuracy of the anguiar momemtum estimate was about

.00002 #-ft-sec whereas the torque affects,Fig. 4, were about .000| #-ft-sec.
One can assume from Fig. 7 that a fair measure of maanetic dipole torque,
Mz’ could be obtained since the estimation accuracy is .0005° whereas

.002° is needed in order to separate the affect of MZ.
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The-study results indicate that a nominal Schmidt gain of Ks = .0}
will give adequate performance. However, it might be desirable to alter
the gain factor, that is, maintain a low value during convergence and
increase its value after a fairly accurate estimate has been obtained.

It should be noted that the results of Schmidt gain study indicate
the estimation system tends to be nonoscillatory, that is, it does not
reach a nominal zero mean error and then distribute the residual errors

about the zero mean. This is probably due to insensitivity of the system

to small errors. It can be concluded, however, that the Schmidt gain I|imited

memory should be adequate for the attitude determination problem.

Limited Memory Using Noise Added to the Covariance Matrix

The second form of l|imited memory was to add noise to the covariance
matrix to maintain a nominal value even when there is no comparable noise
added to the system. The estimation accuracies for the same typical case
as above for the noise aided limited memory filter cases are shown in
Figs. I1-15.

The noise amplitude additions were selected by trial and error.

High values for noise were selected, that is, those which gave an accurate
but osciilatory converged estimates. These values were then reduced by an
order of magnitude. The two estimates were then compared for various
state errors in order to select a nominal (in between) value.

The noise was added to the P'/2 equation in the form

pl/2 _ pl/2 (33)

with W a diagonal matrix; for the high noise W has elements

Wiy = .4 x 1077

11 -5
W22 = . x 10 6
W33 = dx 10 6
W44 = 3 x 10 6
Wes = .1 x 107
55 -
w66 = .2 x 10 7
w77 = . x 10
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Examination of Figs. t1-15 show that for the high noise the spin plane
error, the angle t, and the torque coefficient K, oscillate about the
zero error with a rather large amplitude. The accuracy for cone angle
seems adequate and could possibly be improved for angular momentum. As a

result a nominal noise matrix

Wy, = .7x107°
Woog = .7 X T
Wiz =Ll X |o‘i
Wgp = 3% 10

Wes = .3 X T
Weg = -1 |o:;
Woq = 2 x 10

was selected.

The use of this latter set of noise values indicate excellent estima-
tion of all the states illustrated in Figs. I!1-15, HNote that with the
exception of 1, the estimations do not appear biased (as does the Kalman
filter)in that errors tend to be distributed about zero. Note that the
spin plane accuracy for the system is excellent, with errors affter 300
stars remaining within 3 Sec.

The undesirable feature of the noise addition appears to be its
reduced rate of convergence. This is readily evident when comparing noise
added results with the no noise Kalman filter typically as shown for spin
plane accuracy in Fig. Il. Here, the high noise case did not attain an
error less than .005 deg until after the 200th star.

Again the most useful situation might be to eliminate noise additions
until after cornvergence has taken place. For example, noise might be
added only affer the 200th star. Also the initial data may be rerun
affer a good estimate has been obtained.

I+ can be concluded that with the proper value of noise added to the
covariance matrix that an acceptable attitude determination system can be
obtained. At present there does not seem to be a method, other than trial

and error, for the selection of acceptable nolse magnitude quantities.

36



LE

POINTING ERROR IN X-Z INERTIAL PLANE, DEG.

.005
.004
.003
.002

.001

.00!
.002
.003
.004

.005

FIGURE |1 SPIN ANGLE ESTIMATION ERROR FOR NOISE AIDED LIMITED MEMORY.

QO
0 o °
© o o8
. o . 09 0
o 0 0 A A o ¥
Q Y A X A o O
X 0 A A
T (\> AZI a) T = K A 4%
100 00 300 A
NUMBER OF STAR S1GHTINGS
- ) )
Q
O O
O o NOISE ADDED

() - NO NOISE
O - LOw NOISE

(O - HIGH NOISE

A - NOMINAL NOISE



8¢

ANGULAR MOMENTUM ESTIMATION ERROR, #-ft-sec

.00012

1

.00010

.00008

.00006

.00004

.00002

.00002

.00004

.00006

.00008

.00010

.00012

FIGURE 12 ANGULAR MOMENTUM ESTIMATION ERROR

FOR NOISE AIDED LIMITED MEMORY. -
O
O
© ()
o & 0 o)
A ¢ 9 8
¢ 0
O @ 0 0 0 0
AL R 2 O &
T AI | = T
100 200 300 A A '0) 6 gox
NUMBER OF STAR SIGHTINGS A
A A
NOISE ADDED
() - NO NOISE
O - LoWw NOISE
() - HIGH NOISE )

A A\ - NominaL noisE



6¢

T ANGLE ESTIMATION ERROR, DEG.

.0l

.008

.006

.004

.002

-.002

-.004

-.006

-.008

-.01

FIGURE 13 ESTIMATION ERROR FOR ANGLE t FOR MOISE AIDED LIMITED MEMORY.

0 O a Q
O
© &0 Ooog 0o

a OOOOOOO© @)
=1 & 1 —N—© T 84|00
oo O 200 300 o
NUMBEROF STAR sicfrines ZX Z& Z& ZS Z& ZS

A
Aooooooo

<>

A
0

A
0

A

0

A Ay
o 0 ¢ 9

o o
A A

NOISE ADDED
O - No NOISE
O - LOW NOISE

) - HIGH NOISE

Z& - NOMINAL NOISE



oy

CONE ANGLE ESTIMATION ERROR, DEG.

.005

.004

.003

.002

.001

.001

.002

.003

.004

.005

FIGURE 14 CONE ANGLE (6) ESTIMATION ERROR FOR NOISE AIDED LIMITED MEMORY.

O
O o
O o
O
@)
a) © o0
) ) @) O Q
o O o)
@)
AA @ A A 88 o0
a) A o A
A A A N A A A A
% T et T = T
100 200 O @ ‘K}OOA 400
NUMBER OF STAR SIGHTINGS _ ()
o 00 ©F
o 0 0 0 Y NOISE ADDED
O A 0 0 O - No NOISE
A O - LOW NOISE
0
() - HIGH NOISE

NOMINAL NOISE



157

EDDY CURRENT TORQUE COEFFICIENT ESTIMATE, #—f'l'-sec/gauss2

.00008

.00007

.00006

.00005

.00004

.00003

.00002

.00001

Z o
ey A & 8 xR $-3-8-00 .4

0

FIGURE 15 TORQUE COEFFICIENT ESTIMATE FOR NOISE AIDED LIMITED MEMORY.

O
O

)
P

I
200 300 400

NUMBER OF STAR SIGHTINGS NOISE ADDED
Q - No NOISE

100

O - LOW NOISE
) - HIGH NOISE

A A - nominat noise



Least-Squares Limited Memory

In this section a comparison of the capability of least-squares
I imited memory filter considering various factors such as memory length and
number of stars processed at each estimation point is made.

As noted in equation (17), it is feasible to incorporate within the
filter additional measurements since the augmentation of the covariance
matrix requires the integration of the state backwards in time to the gth
measurement. Equation (17) considers the summation from time q+! to p+i
but the incorporation of the gth measurement error (instead of q+l) does

not seem to be a serious alteration of the least-squares procedure. (It
should be noted that the gqth measurement error is always available but

the gq+! may not.) The positive welghting of the gth measurement is
different from the Ilimited memory scheme of Lee4 who showed that this
measurement error should be subtracted. White the computer program allows
for any weighting to be used with the gqth measurement all the results here
treat It according to equation (17) |ike it were the g+l measurement.

Actually this study did not investigate what method should be used to
weight the terms of equation (17). When the model and system are identical
equation (17) Is correct but when mode! and true system differ, the method
of weighting and for that matter the method for error comparison (i.e. what
is meant by best fit) are no longer straightforward.

With these considerations in mind, Figs. 16-20 present the estimation
errors for the same states as considered in previous sections. Considered
are estimates wlith a memory length of 100 and 200 stars and an Inclusion
of either 5 or 8 stars within the memory band. These results are compared
to the nonlinear Kalman fllter. In most cases the results are substantially
improved both in terms of more rapid convergence as well as better accuracy.
For example, the system with memory length of 200 and 5 stars maintains a
spin angle accuracy of |0 Sec after 75 star sightings and an angular
momentum accuracy of .00002 #-ft-sec after 114 star sightings. This
latter is a considerable improvement over the Kalman filter which barely
reaches .00002 #-ft-sec at 399 sighting. These results are displayed con-

sistently over the whole group of limited memory conditions with the
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possible exception of cone angle. 1In addition the estimation errors tend
to be more randomly distributed and not subject to the bias error displayed
by the Kalman and Schmidt systems.

The system with 5 stars and 200 star memory length appears to give the
best results. However, since a random selection of stars within the
memory window was used, the results may differ depending upon the exact
stars used. To show the true effects of differences in the number of stars
and memory length a Monte Carlo simulation and a statistical analysis of
the results would be required.

However, It [s possible to show separately the effectiveness of
processing additional stars at each measurement point in reducing the
state error. This may be shown by considering the condition with measure-
ment noise but with no data elimination from the covariance matrix.
Essentially the system uses the Kalman weighting gain but uses more than
the last measurements at each point.

Fig. 21 shows the effect of using one and 5 measurement stars across
a 100 star length band on the precession angle error, y. Fig. 22 shows
estimation errors for the angular momentum direction angle £ for the same
conditions as above except that two different measurement noise sequences
have been Included. Finally, Fig. 23 shows results similar to Fig. 22 but
for cone angle, 6, and Includes a condition where 12 stars are taken across
a 100 star length band. In all these cases it can be seen that the
convergence and accuracy considering additional measurements Is greatly
improved over the single measurement condition. The difference between 5
and |2 stars is not great, however. This result would indicate that the

considerable improvement of the least-squares |limited memory fiiter over

the Kalman filter is due to the inclusion of additiona! measurements.
CONCLUDING REMARKS

A comparison study of the three |imited memory filter systems, Schmidt
gain, noise added, and least-squares, has been made. The study indicates
1. The three limited memory systems show a distinct improvement in
accuracy after 400 stars over the Kalman filter when no system

noise Is present. Any of the filters would be feasible for use
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ANGLE 1 ESTIMATION ERROR, DEG.
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CONE ANGLE ESTIMATION ERROR, DEG.
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FIGURE 21 EFFECT OF ADDITIONAL MEASUREMENTS ON THE ESTIMATION ACCURACY OF
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with a precision attitude determination system (10 Sec.accuracy)
assuming a basic star mapper precision of 10 - 30 8ec.

The Schmidt gain limited memory exhibits a tendency to insensi-
tivity in a manner similar to the nonlinear Kalman filter in

that the state estimates appear biased and do not oscillate
randomly about a zero mean error. The convergence of the Schmidt
gain system is somewhat slower than that of the Kalman filter

for some state variables. The gain value chosen appears to be a
compromise befween convergence and ultimate system accuracy.

The noise added limited memory filter exhibits an excellent
sensitivity for the correctly selected values of noise effect
added to the covariance matrix. However, trial and error must

be used for the selection of the noise value and an incorrect
selection can lead to either highly oscillatory or biased, low
sensitivity state errors. The convergence of the noise added
system is considerably worse than that of the Kalman filter for
some state variables and again is dependent upon the noise values
selected. An aliternative to improve convergences might be to add
noise in only after a sufficient number of stars have been
processed.

The least-squares limited memory filter exhibits both excellent
convergence and sensitivity for the various values of the memory
length and the number of star measurements included. The con-
verged error tends to oscilliate about the true estimate with an.
accuracy of 3 - 6 Sec for spin error and is consistently within
tolerance for the other states. The convergence is consistently
better for most states than the Kailman filter. Results of studies
on the convergence and accuracy indicate that the use of additional
data points within the memory band contribute significant

improvements over just processing the last data point.
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APPENDIX | MEASUREMENT AND GRADIENT EQUATIONS

The measurement system equations for the attitude determination
problem becomes quite complex and hence have been listed in this appendix
as opposed to the main body of the text. There are also some simplifica-
tions which can be employed in some of the equations to reduce the compu-

tational difficulties.

MEASUREMENT AND GRADIENT EQUATIONS

The measurement equation (24) is a straightforward scalar product.
However, when the matrix multiplications are performed, some of the gradient
equations can be wriftten in ferms of the vector and matrix components of

the scalar product. Defining

b)
t_)_ = b2 = T §|
b3
and (Al)
oy
¢ = e = ED
€3

as the transformed star vector in each frame, the gradient equations (25)

can be written as

122 F By

T oE T .
355 'S 3| E22Py * Epby
“E3pby + Egby
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2
T EE-T s = aT -C
1 =i - |
o}
c,sv
T EE—T = aT 3c
—r 36 i -r €3 v
ce(b|s¢ - b2c¢) - b356
(A2)
“Byibs T B3Py
T T _ T
3 Egr 5 = 3 | “Eybs t Eysby
“E3ybg + Egsby
“Si T2 ¥ SoTyy
T aT T
. Egp sy 7 2 B S Ty T 8,0y,
SiT3p * 8575
where Eij = 1j the component of E
i = ij the component of T
SJ = jth component of S;

The differential equation for calculating the state transition matrix

uses the Jacobian matrix given by

ij X .

~-K b By BZ sin 28 cot t

Gz = T
_ =-brsins
Cp3 = C
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" -p K cos 28 (82 + BD)

G - z_ 26 cos 26
33 2L sin 26
-p K B_ B_ sin 26 B M_ sin 8
G - X Z R A -
43 L T
~-b K By Bz sin 26 Bx MZ sin 8
G535 = Lsin t - rsin t (A3)
~r Kb (8% - 8% sin 20
Ce3 = C
Gi3 = 0 i = 17, , N
3g,
In Taking the 5;-for T and § it is necessary to take into consideration

that Bx’ By’ an_dUBZ are functions of these variables. Hence

G = K(I + p cosze)(B 8 cott-BB csczr)
4 Xy Yy z
L
M_ cos © 2
- —— (B_ cot t + B csc't + B )
r z X X
Bx Mz
GZ4 = r
b Ksin 26 Bx BZ
K(I + b cosze)(B 2 _ B 2)
G - X z
44 L
2 B B
- Kl + b cos™8) X ¥
G54 = C STn T By BZ csc 1 cot 1
MZ cos 0
- ——— {B, csc T + B csc 1 cot T}
z X
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25

35

45

55

2 r bl + k cos2 e)

T (Bx BZ)

0 i = 7, «.., n

K(I + b cosze)
L

cot 1 {(B 2 _ B 2) sin t
v z
- BX BZ cos T}

B8 MZ cos ©
+ —lL——qr————~ (cos t cot t - sin 1)
B M_sin 1t
vy z

r

Kbsin28B B_ sin=t
Yy 2
2L

(A4)
cont'd.

K{ +b cosze)

O {By(Bx sin T + BZ cos 1)}

(B. sin 7+ B_ cos 1) M_ cos 6
z X z

+ =
7

K({ +b cosze) 2

{(B- -8B 2) sin T - B B_ cos 1}
y z X z

LsinTt

B M cos 8 cos 1
y z

r

2 rK (Il +b cosze)

B B_sin1t
y z
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=

I B M_ cos 6 cot t B_M_ cos ©
6 N X Z + Z 2z
16 L 2 2
r
G - kcos 6 B, My
26 [ 2
r
G36 = 0
B Mz cos 6
G,, = + L2 (A4)
46 r cont'd.
B M_cos 6
G - X z
26 r2 sin T
k(8.2 - B9 (1 + b cos’0)
6., = z
66 L
Gi6 = 0 i =7, ese, N

Adding the parameters K, Mz’ and b give

B B_ (I +b cosze) cot T
y 2

17 L
627 = 0
: b sin 26 (B + BZZ)
637 = - L (A5)
2
B B_ (1 + b cos"8)
G - X Z
47 L
2
B B_ (I + b cos™8)
6y = —LZ
57 Lsin T
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1

B cos 8 cot 7
X

B_ cos 8
z

-

B
Y4
-

B cos 8
Y

B cos 6
X

rsin-t

KB B cosze cot T
y z

r

L

5]
| @

K sin 26(B% + B

2y

4L

KB B c0526
X Z

L

KB B cosze
y z

Lsint
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r K(BZ2 - Bz) cosze

For the instrument simulation runs, both K and MZ could be set equal to a
nonzero value. For the estimation program, MZ = 0 was assumed. Hence the

above equations were used with n = 7 and where applicable the MZ term

el Iminated.
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APPENDIX 11 STAR SIGHTING COMPUTER PROGRAM

PROGRAM FOR DETEMINATION OF STAR SIGHTINGS AND PREPARATION OF
SIGHTING TAPES FOR UNIVERSAL FILTER PROGRAM

DIMENSION BMG(3),TMAT(3,3),BMAG(3),SVEC(3,6)+AEVEC(3),AETVE(3),
IVAL(6),SIGMA(6) yGAMA(6) 2 DERL{4),DER2{2)ANS(6),ERTIA(3),CVAL(6),
2SVAL(6),IR(2)4SMAG(6)+ET(3+43),SLIT(3,3),ALAMD{(3),ALPHL1(3),CALAM(3)
33SALAM(3)

DOUBLE PRECISION VAL,TO»T,DERZ2,yANS

COMMON VAL ,DER1yDER2,DELTA,T,ANS

DATA INPUT,CONSTANTS,INITIAL STATES(VAL),CONTROL NUMBERS,ETC.,
STAR ANGLES(SIGMA,GAMA),MAGNITUDES(SMAG),SLIT ANGLES{ALAMD,ALPHL),
ETC.

DATA C2yWO,VIE,VND,ERTIA,TyMy INTER,C3/ .375,.001106,97.38,0.0,
15668356.687,6546270.0515152333/,NAT,LGAUS,ISLIT/1,2,1/
READ(5,100)VAL,SIGMA,GAMA,SMAG

READ(59102)ALAMD,ALPHL
READ(54101)C1, AMAG, VAR KSTOP s ITST IR, ITSL 4K

WRITE(6,203)

TAPE INITIALIZATION

REWIND 4

READ(5,103) KAPPA,A1,A2,A34A4,A5,A6
WRITE(4,201)KAPPAyALYAZ24A343A44A5,A6y VAL

PARAMETER INITIALIZATION

IT =0
CVIE = COS(VIE/57.29578)
SVIE = SIN(VIE/57.29578)

DO 26 I = 246
VALII) = VALII)/57.29578
TMAT(2,3) = 0.0

SLIT VECTOR COMPONENTS

DO 3 I=1,ITSL
CALAM(I)=COS(ALAMD(I)/57.29578)
SALAM(I)=SIN(ALAMDI(I)/57.29578)
SLIT(I1)=CALAM(I)*COS(ALPHL1(I}/57.29578)
SLIT(I,2)=CALAM{I)I*%SIN(ALPHL(I)/57.29578)
SLIT(I,3)=SALAM(I)

STAR VECTOR COMPONENTS

DO 4 I = 1,ITST
SVEC({1,1)=COS{(GAMA(1)}/57.29578)*%COS(SIGMA(I1)/57.29578)
SVEC(2,1)=COS(GAMA(I1)/57.29578)%SIN(SIGMA(I)/57.29578)
SVEC(3,1)=SIN(GAMA(1)/57.29578)

DO 14 I=1,4
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OO0

[N eXe]

OO0

[aNglg]

[eNaNe]

14

25

27

28

69

SMAG(I) = 10.0*%%({SMAG{I)-1.0)/5.02)

INERTIAL~-ANGULAR MOMENTUM AXES TRANSFORM

DO 27 I = 244

CVAL(I) = COS(VALI(I))
SVAL(I) = SIN(VALI(I))
TMAT(1,1) = CVAL{4)*CVALI(3)
TMAT(1,2) = CVAL(4)*SVAL(3)
TMAT(1,3) = —-SVAL(4)
TMAT(2,1) = =SVAL(3)
TMAT(2,2) = CVALI(3)
TMAT(3,1) = SVAL(4)#*CVALI(3)
TMAT(3,2) = SVAL(4)*SVALI(3)
TMAT(3,3) = CVAL(4)

TEST FOR INTEGRATION TIME INTERVAL COMPLETED
IF(INTER.NE.L)GO TO 6

EULER TRANSFORM{ANGULAR MOMENTUM-BODY AXES)
IF(VAL(6).6T.6.2831835) VAL(6) =VALI(6) ~6.2831853

IF(VAL(S).LT. -6.2831853) VAL(5) =VAL(5) + 6.2831853
DO 28 1 546

CVAL(I) = COS(VALI(I))

SVAL{(I) = SIN(VAL(IL))

ET(Lly1) = CVAL(D)*CVAL(6) — CVAL(2)%SVAL(6)}%SVAL(5)
ET(1l42) = CVAL(5)%SVAL(6) + CVAL(2)*CVAL(6)%*SVALI(5)
ET(1,3) = SVAL{(5)}*5VALI(2)

ET(241) = —SVAL{5)*CVAL(6) ~CVAL(2)*SVAL{6)%CVALI(5)
ET(24,2) = -SVAL{(5)%SVAL(6) + CVAL(2)*CVAL(6)*CVALI(S)
ET(2,3) = CVAL(5)*SVAL(2)

ET(3,1) = SVAL(2)*SVALI(6)

ET(3,2) = —=SVAL(2)*CVAL(6)

ET(3,3) = CVAL(2)

STAR VECTOR TRANSFGRMED TO B80ODY AXES

Home o= f] o O =

- * -

[ EVEC({I)I+SVEC{JyM)*TMAT(1,J)

i~ i~

AETVE(I) -0
DO 8 U =

AETVE(I)

-

3
0
3
A
3
0
3
AETVE(I)+ ET(I,J)*AEVEC(J)

TEST FOR ORTHOGNAL SLIT AND STAR VECTORS
EVAL=SLIT(ISLIT,1)*AETVE(L)+SLITHISLIT,,2)*%AETVE(2)+SLIT(ISLIT,3}*

LAETVE(3)
IF(ABS{EVAL).LT.0.5E-6) GO TO 40
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[aNeNe]

[aNaN el

[aNeNe]

OO0

OO0

[N eXel

30

10

MAGNETIC FIELD INTENSITY COMPONENTS

VNU =VNO +WO*T

BETA = ATAN2(SIN(VNU)I*CVIE,COS(VNU)}
ALPHA = ARSIN(SIN(VNU)*SVIE)
BMG({1)=BX BMG(2)=8Y BMG(3)=BZ

BMG(1) = C2*SIN(2.%ALPHA)*COS(BETA)

BMG(2) = C2*SIN(2.*ALPHA)*SIN(BETA)

BMG(3) = C2%(C3 — COS(2.%ALPHA))

DA 30 1 = 1,3

BMAG(I) = TMAT(I,1)%BMG(1) + TMAT(I,2)%BMG(2) + TMAT(I,3)*BMG(3)

DIFFERENTIAL EQUATIONS

ARTIA =(ERTIA(L)-ERTIA(3))/(ERTIA(3)*ERTIA(L1})

DRTIA = CLl*(1.0/ERTIA(Ll}) + ARTIA%*(CVAL(2)*%%2}])

DERL(1)= —DRTIA*VAL(1)*(BMAG(L1)**2 + BMAG(2)*%*2)

DERL(2)= —CL*ARTIA®CVAL(2)%SVAL{(2)*(BMAG(1)**2 + BMAG(2)%%2 +
L2.%{BMAG(3)*%2)})/2.

DERL1(3) = DRTIA*BMAG(2)*BMAG(3)/SVAL(4) + BMAG(1)*AMAG*CVAL(2)/
LIVAL{1L)*SVAL(4))

DER1{4) = DRYIA*BMAG(L)*BMAG(3) - BMAG(2)*AMAGXCVAL(2)/VALI(1)
DER2(1)= ARTIA®*CVAL(2)%VAL{1l) + BMAG(3)*AMAG/VALI(1)

DER2(2)= VAL(1)/ERTIA(1l) + ORTIA%*BMAG(2)*BMAG(3)*CVAL{4)/SVAL(4)
1+ BMAG(L1)*AMAG*CVAL(2)*¥CVAL(4)/(VAL{1)*SVAL(4)) - BMAG(3)*AMAG*
2CVAL(2)/VALC(L)

TEST FOR INTEGRATION TIME INTERVAL COMPLETED
IF(INTER.NE.1) GO TO 10
ANGULAR ERROR IN SPIN AND PRECESSION PLANE

Al = AETVE({1)*CALAM(ISLIT)

A2 = AETVE(2)*CALAMUISLIT)

A3=AETVE(3)*SALAM{ISLIT)

ARGL= (—A2%A3 + Al* SQRT(ALl¥%2 + A2%%2 — A3%%2))/{Al*%2 + A2%%*2)
ASARG = ARSIN{ARG1)
IF{AETVE(Ll)eGTe0s0.ANDLAETVE(2).GT.0.0)ASARG
IF(AETVE(1).LT.0.0.AND.AETVE(2).GT.0.0)ASARG
ASARG=ASARG—ALPHL({ISLIT)

3.14159 — ASARG
3.14159 + ASARG

INTEGRATION TIME INETERVAL TO NULL ERROR

DELTA = ASARG/(DERZ(1)+DER2(2)}
WRITE(64200) ARG1 yASARG,EVAL,DELTA

CALL INTEGRATION SUBROUTINE

CALL RKUTTA[INTER)
GO TO 25
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OO0 0 (g N el

OO0

40

110

50

100
101
i02
103
200
201
202
203

RANDOM NOISE GENERATOR SUBROUTINE CALL

CALL GETRAN(IRyNAT LGAUS+RNyY1l,Y2}
NAT = 2

COMPUTE MEASUREMENT TIME

TO =T +RN*VAR¥SMAG(M)
CHAT = FLOAT{1O0*ISLIT + M)

OPTICAL AXES COMPONENTS IN INERTIAL SPACE

DO 110 1 =1,3

AEVEC(I) = 0.0

DO 110 J =1,3

AEVEC (1) = AEVEC(1) + TMAT(J,I)*ET(2,J)

WRITE DATA ON TAPE...STAR COUNT,STAR AND SLIT,MEASUREMENT TIME,
TRUE TIME,OPTICAL AXES COMPUNENTS,AND STATES

WRITE(4,201) K,CHAT,TO,TyAEVEC,ANS(6) ,ANS{5),ANS(2),ANS{4),
LANS(3) 4 ANS(1)

WRITE(6,202)ISLITsM,T0,T,ANS,AEVEC

K=K+l

INDEX TO NEXT STAR AND/OR SLIT

IF(ISLIT.EQ.ITSL) GO TO 50

ISLIT=ISLIT+1

GO TO 69

ISLIT=1

M = M+l

IF(M.GTLITST) M=1

IF{K.GT.KSTOP) STOP

GO TO 69

FURMAT(6EL0.59/6E10.5,/6E10.5,/6E10.5)

FORMAT (3E10.54615)

FORMAT{6E10.5)

FORMAT(I5,F3.0,2D20.12/3E16.8)

FORMAT(4E16.8)

FORMAT(I5,F3.0,2D20.1243E16.8/76D20.12)

FORMAT(215,2D20.12+/6D19.11/3EL6.8//)

FORMAT (2X4HDATA/5HISLIT2X5H STAR2X10HMEAS. TIME6X9HTRUE TIME/
12X8HMOMENTUMIXS5HTHETALLX4HZETAL2X3HTAUL3X3HPSI13X3HPHI/
22X3BHOPTICAL (Y-AXIS) COMPONENTS 0OX, QY, DZ/)

END

SUBROUTINE GETRAN(TIRyN,LsRN,Y1l,Y2)

RANDOM NOISE GENERATION SUBROUTINE
DIMENSION [A2(35,2),IA3(35,2),1A5 (35,2),1A1(35,2),1IR{(2),1A(35,2),

1BUNNY({35)
CON = 6.28318530717959
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Yl 0.0

Y2 0.0
IF{N.GT.1)GO TO 22
DO 75 I = 1435
BUNNY(I) = .5%*]

DO 2 M = 1,L
DO 1 I = 2’3412
IA2(IsM) =1

DO 9 I = 1433,2

TA2(I,M) = O

TA2(35,M) = 1

N1 = 35

DO 21 MI= 1,L

DO L7 I = 1,35
IF(I.EQ.L)YITEMP= TA2(34,MI)
IF(I.EQ.2)ITEMP= [A2(35,M])
IF(1.GT.2)ITEMP= TA3{I-2,MI)
[IA3(I,MI) = ITEMP + TAZ(1,MI)
IF(IA3(I,MI).EQ.2) IA3(I,MI) = 0O

17

19
33

49
21

22

26
25

TAL(T,4MI) = TA2(1,MI)
IA2(I,MI) = TA3{I,MI)
MAX= 35 + [R{MI)-1

N1 = N1 + 35
IF(N1.GE.MAX)GO TO 3

GO TO 18

N2 = N1 - MAX
N3 = 35 - N2
IZ = 0

N4 = N3 + 1

IFIN2.EQ.CIGO TO 33
DO 19 I = N4,35

1Z = 12 + 1

IA(IZ,MI) = TAL(I,MI)
CONTINUE
IF(N3.EQ.0)GO TO 21
DO 49 I = 14N3

1Z = 12 + 1

IA(IZ,MI) = TA3(I,MI)
N1 = 35

60 TO 25

DO 26 M = 1,L

DO 26 T = 1435
IF(IEQ.L)ITEMP = TA(344M)
IF{I.EQ.2)ITEMP = TA(354M)
IF(I.GTL2)ITEMP = TAS{1-2,M)

IAS(I,M) = ITEMP + IA(I,M)

IF(TAS(IM).EQ.2)IAS(TI M)
IA(IsM) = TAS(1,M)
IF(L.EQ.1)GO TO 60

DO 28 J = 1435

Jl = 36 - J

=0

IF(TA(J1+1).EQ.1)Y1=YL1+BUNNY(J)
IF(TIA{J1,2).EQs1l) Y2=Y2+BUNNY(J)}
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28 CONTINUE
RN = SQRT(-2.%ALOG(YL1) )*SIN{CON%*Y2)
GO TO 62

60 DO 61 J = 1,435
Jl1 = 36 - J
IFLIA(JL,1).EQ.L)Y1=YL+BUNNY(J)

61 CONTINUE

62 RETURN
END
SUBROUTINE RKUTTA(INTER)

INTEGRATION SUBROUTINE

DIMENSION DERL(4)4DER2{2}yVAL(6),PL(4),P2(2),R1(4),R2(2),Q1{4),
1Q2(2),51(41,52(2),ANS{6)
DOUBLE PRECISION DER2,VAL,P2,R2,Q2+452,T,ANS
COMMON VAL,DERL,DER2,DELTA, Ty ANS
GO TO (20530,40450),INTER
20 DO 1 [I=1+4
ANS({I)= VAL(I)
PLII) = DELTA*DERI(1)
1 VAL(I) = .5%PL(I1)+ ANS(I])
DO 11 I=1,2
ANS{I+4)=VAL(1+4)
P2(1) = DELYA%DER2(I)
11 VAL(I+4)=.5%P2(I)+ANS(1+4)
T=T+.5%DELTA
INTER=2
RETURN
30 DU 2 I=1,4
Ql(I) = DELTA#*DER1(I)
2 VAL(I)= .5%Q1(I)+ ANS(I)
DO 22 I=1.,2
Q2(I)=DELTA%*DER2(I)
22 VAL(I+4)=.5%Q2(1)+ANS(T+4)
INTER=3
RETURN
40 DO 3 I=14+4
R1(I)= DELTA%DERL1(I)
3 VAL(I)= R1{I)+ ANS(I)
DG 33 [=1,2
R2(I)= DELTA*DER2(1I)
33 VAL(I+4) = R2(I)+ANS(I+4)
T=T+.5*%DELTA
INTER=4
RETURN
50 DO 4 I=1+4
S1(I)Y=DELTA*DERL(I)
4 VAL(I)= ANS(I)+(PL(I)+2.%(QLII)+RL(I))I+SL(I})/6.
DO 44 1=1,2
S2(1)= DELTA%DER2(I)
44 VAL{I+4)=ANS(I+4)+(P2(I)+2.%(Q2(1)+R2(1))+S2(1))/6.
DO 5 I= 216
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S ANS{I)= VAL(I)*57.29578
INTER=1
RETURN
END
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APPENDIX 111 LIMITED MEMORY FILTER PROGRAM

LIMITED MEMORY FILTER PROGRAM
DIRECTIONS FOR OPTIONS

OPTION 1. NONLINEAR KALMAN FILTER
SET K = =1,W(I) = 0.0,I=14NyAND SGAIN.LT.0.0

OPTION 2. LIMITED MEMORY USING SCHMIDT GAIN
SET K = ~1l4W(I) = 0.0,I=1y,N,AND SELECT VALUE FOR SGAIN.GT.0.0
AND «LT.+1.0 (NOMINAL SGAIN VALUE = +.01)

OPTION 3. LIMITED MEMODRY USING NOISE ADDED TO COVARIANCE MATRIX
SET K = -1 AND SGAIN.LT.0.0. SET NOISE TO BE ADDED TO STATES
BY W(E) AND IF NOISE COUPLING EXISTS BY Q(I,J)MATRIX EQUATION
FOR NOISE ADDITION IS P¥%1/2 = P#%%1/2 + Q%W

OPTION 4. LIMITED MEMORY USING INTERMEDIATE STAR SIGHTINGS AND
ADDING AND SUBTRACTING DATA FROM COVARIANCE MATRIX
SET W{l) = 0.04I=1,N AND SGAIN.LT.0.0. SET K.GTe.-1l. IF K=0 ONLY
END POINT MEASUREMENTS ARE USED.K.GT.O0 WILL INCLUDE K INTER-
MEDIATED STARS. MEMORY LENGTH IS SET BY NP - NQ.EXAMPLE,NP=1,
NQ=-99, LENGTH WILL BE 100.{NOTE—-- NEGATIVE STARS ARE NOT
CONSIDERED).SET SH BETWEEN -1.0 AND +1.0 FOR WEIGHTING LAST
POINT IN MEASUREMENT EQUATION. SET WT BETWEEN 0.0 AND +1.0
FOR COVARIANCE WEIGHTING SUBTRACTION. {ELIMINATES LARGE SuB-
TRACTIONS FROM COVARIANCE MATRIX WHICH COULD CAUSE NONPOSITIVE
DEFINITE EFFECTS)e IF WT.LT.0.0 THE ESTIMATION BECOMES A KALMAN
FILTER WITH PAST MEASUREMENT POINTS INCLUCED.

DIMENSTION RAN(1O)sNTIM(12),SSL(500),STRCH(500),SSTCH(12),STAR(3,6)
LyMAG(O) o SLIT(3,3)yAMT(3,3),B(3,2) HERR(T) ¢X(T)AMTEM(T)ET(3,3) ,
IP(T4T)sPHI(T» 7)o TPHI(T 7)) AMAT(2,7),TERR(7)4GRAD(T)+»Q(T+7)y W{T),
BISCHT(12),CX{5)sSX(5),Y{T)e2Z(6),ERR(3)

REAL INRTZ, INERTyMAG

COMMON/BLKL/X/BLK2/PHI 4 ITIMX,T/BLK3/SSTCH,CVIE,SVIE/BLK4/CX4SX,
1AMT,LET

DOUBLE PRECISION X,Y9sT9STRCHySSTCH,TEM,2Z

DATA AMT(2,3)/0.0/

DATA INITIALIZATION FOR EACH RUN. STATE,STAR POSITIONS AND
MAGNITUDES »SLIT ORIENTATION,NOMINAL MEASUREMENT VARIANCE,SCHMIDT
GAIN, INITIAL TIME,NOISE EFFECTS,INERTIAS,ORBIT CONDITIONS,AND
CONTROL NUMBERS.INITIAL COVARIANCE MATRIX(P*%*1/2)

WRITE INTIAL DATA TO RECORD INPUT CONDITIONS

43 READ(5,4100) Xy (HERR({I)sI=146),(RAN(I),I=2,7)
LoMAG (TERR(I) gy I=193)y{(GRAD(I)yI=143)9yVARsSGAIN,T,W
100 FORMAT(7E10.6/12F6.0/6F6.2y6F6.0/2E10.5
19yE16.8/7E10.5)
READ(5,103) INERT,INRTZySPANyVIE,VNOyWO,C24RAN(1),IMAXT,
LTALTRyNOISE NPRNT yNQyKyNP yNTOTLyNSUMyNT, TAT,NSPNTySHyWT
103 FURMAT(5F7.2y2E10.59E16.8/12154F5.04F5.3)
WRITE(6,100) Xy (HERR(I)¢I=196)y(RAN(I),I=2,7

67



OO0

OO0

105

i01

220
102
221

313

300

301

303

201

371
370

1)y MAGH({TERR(I)yI=143)s(GRAD(I)sI=143)yVAR,SGAIN,T W
WRITE(6,103) INERT,INRTZ,SPAN,VIE,VNO,WO3C2,RAN{1), IMAXT,
ITALTRyNOISEsNPRNT s NQyKy NP ¢y NTOTL yNSUMyNT o IAT o NSPNTySHo WT
READ(55105) ((P(14J)3sd=1sT)sl=1,7)
FORMAT(5E14.8/5E14.8/5€E14.8/5E14.8/5E14.8/5E14.8/5E14.8/5E14.8
1/5€E14.8/5€E14.8)

WRITE(64390) ((PlIsJd)sd=1sT7)y1I=1,7)

IAT = 0O

EVAL = 0.0

READ STAR CHART FROM TAPE

REWIND 4

[F(NOISE.EQ.1l)} GO TGO 220
READ(44101)(SSL(I),STRCH{I),Z(1),1I=1,NTOTL)
FORMAT(5XF3.0,D20.12/D20.12)

GO TO 221

READ{49102)(SSLII),STRCH{TI)4yZ(1),1=1,NTOTL)
FORMAT(5XF3.0,20XD20.12/D20412)

CONTINUE

REWIND 4

DO 313 I=1,NT
READ(4,+361) KAT,Z({1)
NT = NT +1

NSUM = NSUM + NTOTL

SLITySTAR,AND CONSTANT PARAMETER INITIALIZATION

DO 300 I=1,3
SLIT(1,I)=COS{TERR(I)/57.29578)}*COS{GRAD(I)/57.29578)
SLIT(2,1)=COS(TERR{I)/57.2957T8)*SIN(GRAD(I}/57.29578)
SLIT(3,1)=SIN(TERR{I)/57.29578)

DO 301 I=1+6

MAG(I) = 10.0%%{(MAG(I) -1.0)/5.02)
STAR{1,1)=COS(HERRI(I)/57.29578)*COS(RAN(I+1)/57.29578)
STAR(2,[)}=COS(HERR{II/57.2957T8)*SIN{RAN(I+1)/57.29578)
STAR{3,T1)=SIN(HERRI{I)/57.29578)

DO 303 I=1,7

DC 303 J=1,7

TPHI(I+J)=0.0

DG 303 L=1,7

TPHI(IZJ)=TPHI(I,d) + P(I,L)%*P{J,L)

WRITE(6,201) T,X,TPHI

FORMAT(3H T=4El6.8/3H X=4,TE16.8/3H P=,7TE16.8/3XTEL16.8/3XTEL6.8/
13X7E16.8/3XTE16.8/3X7EL16.8/3XTEL6.8)

DO 370 I=1,7

DO 371 J=1,7

Q{I,J) =0.0

Q{I,I) =1.0

CVIE = COS(VIE/S57.29578)

SVIE =SIN(VIE/57.29578)

KAM = NP - NQ

DO 302 I=1,5
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X(I)= X(I)/57.29578
NP=NP+1
NQ=NQ+1

TEST FOR EXCEEDING STAR CHART IN MEMORY
IF{(NP.LT.NTOTL.OR.NP.EQ.NTOTL) GO TO 93
UPDATE STAR CHART TO ELIMINATE OLD DATA AND READ IN NEW

DO 41 I=1,KAM

KAT = NQ - 1 + 1

SSL{I)=SSL(KAT)

STRCH(I)=STRCH(KAT)

KAT = KAM +1

IF((IMAXT-NSUM) LT, (NTOTL-KAM)) NTOTL =IMAXT-NSUM+KAM
IF (NOISE.EQ.1l) GO TO 222
READ{445101)(SSLLT),STRCH{I)»Z(1)I=KAT,NTOTL)
GO TO 223
READ{44102)(SSL(I),STRCH{I)»Z (1), [=KAT,NTOTL)
CONTINUE

REWIND 4

DO 122 [=1,NSUM

READ(4,361) KAT,Z(1)

FORMAT(15/D20.12)

NSUM = NSUM+NTOTL-KAM

NP= KAM+1

NGQ= 1

SELECT BY RANDOM NUMBERS THE INTERMEDIATE STARS IN OPTION 4.
ALTERNATES**0RDERED STATISTICS OR STAR WITHIN A SPAN

IF{K.LT.1)GO TO 2
IF{IALTR.EQ.L1) GO TO 30
DO 40 I=1yK

CALL QRANDL(RAN(I))
GENERATE ORDER STATISTIC
IF(K.EQ.1) GO TO 95

LIM1 K-1

LINT 1

DO 97 I= 1l,LIM]
IF(RAN(I+1).GT.RAN(I)) GO TO 97
TEP = RAN(I+1)

RAN(I+1) = RAN(I)

RAN(I) = TEP

LINT = 1

CONTINUE

IF(LINT.EQ.1) GO TO 95
LIMl = -1

GO TQO 96

GENERATE TIME POINTS

DO 94 I = 1,.K

NTIM(I+1) = NP -~ IFIX(RAN{I)*FLOAT{(NP-NQ))
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IF(NTIM{I+1)oLTal) NTIM{I+1) =1

CONTINUE

GO 70 2

DO 39 I=1,K

CALL QRAND1(RAN(I))

NTIM(I+L) = NP—{I®(NP-NQ)/(K+1)+IFIX{SPAN*{RAN(I)~0.5)))
IFINTIM(I+1).LT.1) NTIM{I+1l)=1

CONT INUE

ASSEMBLE WORKING STAR CHART(STARS TO BE USED TO OBTAIN NEW
ESTIMATE)

LIMIL = K + 2

NTIM(LIML) = NQ

IF(NTIM(LIMI)oLTel) NTIMI{LIM1) =1

NTIM(1) = NP

IF(NT.LT.NSPNT+1.0R.MOD(NTyNPRNT)}.EQ.0) WRITE(65401) (NTIM{I)yI=1,

112)

FORMAT(11H STAR NOS.=,1215)
DO 92 I= 1,LIM1

M = NTIM(I)
SSTCH{1)=STRCH(M)
ISCHT(I)=(SSL(M)+.5)

UPDATE STATE AND CALULATE STATE TRANSITION MATRIX TO NEW STAR TIME

ITIMX = 1
CALL DIFF(INERT,INRTZsC2yWOsVNO,IAT,NT)
TEM = T

DO 67 1I=1
Y{I}l =X(1

7
)
CALCULATE COVARIANCE MATRIX{(P*%*1/2) AND ADD NOISE IF ANY

DO 54Jd=1,7

DO 51 I=1,6

TPHI(I»J)=Q(I4J)*W(J)

DO 51 L=1,7

TPHI(I,J) = TPHI(I,J) + PHI(I,L)*P(L,J)
TPHI(74J) = PHI(T T)I%P(TyJ) +Q(TyJ)EW(J)
DO 20 I=1,7

DO 21 Jd=1,17

P{(I,J) = TPHI(I,J)

PHI(I,J) =0.0

TERR(I) =0.0

PHI{I,I)=1.0

GG TO 22

ITIMX = ITIMX + 1

TEST FOR VALID STAR (SINCE NEGATIVE STARS ARE NOT ALLOWED)

IF(SSTCH(ITIMX).LT.(-5.0)) GO TO 80
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INTEGRATE STATE AND STATE TRANSITION MATRIX TO OLD STAR SIGHTING
TIMES

CALL DIFF(INERT,INRTZyC2yWO,VND»IAT4NT)

MEASUREMENT ANALYSIS
1. DETERMINE SLIT AND STAR

22 - ISLIT = 2
IF(ISCHT(ITIMX}.LT.20) ISLIT =1
ISTAR = ISCHT(ITIMX)- 10*ISLIT

2. TRANSFORM STAR VECTOR FROM INERTIAL TO BODY AXES

CALL TRANS(2)
DO 89 I=1,3
B(I,1)= 0.0
DO 89 J=1,3
89 B(Is1)= B(I,1)+AMT(I,J)*STAR(J,ISTAR)
DO 88 1=1,3
B(I,2) = 0.0
DO 88 J= 1,3
88 B(I,2) = B(I1,2) + ET(I,J}*B(J,1)

3. CALCULATE MEASUREMENT EQUATION
H = 0.0
DO 87 I=1,3
87 H = H-SLIT(I,ISLIT)*B(I,2)}
IF(ITIMX.EQ.K+2) H=SH*H
4. CALULATE GRADIENT OF H(X{K)) WITH RESPECT TO X(K)

HERR(1) = 0.0
3

DQ 86 I=1,

86 HERR{1l) = HERR{l) + SLIT(I,ISLIT)*(ET(I,L)*B(2y1)~- ET(I,2)%*B(1,1))
HERR(2) = B(2,23%SLIT(L1,ISLIT) ~ B{142)%SLIT(2,ISLIT)
HERR(3) = B(3,2)%(SLIT(1,ISLIT) *SX(2) + SLIT(2,ISLITI*CX(2))+

LICX{3)*(SX(L)*Bl1lyl)-CX{1)*B(2,1))}-SX(3)*%B(3,1))*SLIT(3,ISLIT)
HERR(4) = 0.0
DO 85 I=1,3

85 HERR({4) = HERR(4)+SLIT(I,ISLIT)*(ET(I,3)*B(1,1)-ET(I,1)%*B(3,1))
DO 84 I = 1,3

84 B{I,1) = AMT{(I,1)* STAR(2,ISTAR)} — AMT(I,2)*STAR(1,ISTAR)
DG 83 I = 1,3
B(I'Z) = 000

DO 83 J = 1,3

83 B(I«2) = B(Is2) + ET(I,J)*B{Jy])
HERR(5) = 0.0
DO 82 1 = 1,3

82 HERR{5) = HERR(5) + SLIT(I,ISLIT)*B(I,2)

5. UPDATE GRADIENT AND MEASUREMENT USING STATE TRANSITION MATRIX

71



OO

OO0 [aNaNe])

OO

N eNeN el

[aNaNel

53

81
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80

117

78

16

75

AND MEASUREMENT COVARIANCE INVERSE

RAN(10)= VAR*MAG(ISTAR}*(HERR(1)+HERR{2)*{INERT/INRTZ-1.)}*

1CX{3))*X(6)/INERT

GRAD(1) = PHI(1ls1)*HERR(L1)/RAN{10)
GRAD(2) = PHI(2,2)*HERR(2)/RAN(10)

DB 53 J=3,7

GRAD(J) = 0.0
D0 53 I = 1,5
GRAD(J) =

6o ACCUMULATE WEIGHTED ERROR

DO 81 1
TERR(I)

1,7

TERR{I)+GRAD(I)* H/RAN(10)

IF(NT.LTANSPNT+1.0R.MODINT,NPRNT)}.EQ.O)

FORMAT(7H ERROR=,EL16.8)
CONTINUE

TEST FOR FIRST(NEW) OR LAST(OLDEST)

WINDOW)

IF(ITIMXaLToK+2, ANDSITIMX.GTL1)

TEST FOR LAST STAR

IF(ITIMX.NE.1) GO TO 78

STORE GRADIENT DATA FOR FIRST AND LAST STAR TO BE USED IN Px¥x]l/2

UPDATE

GA=0.0

DO 77 I=1,7

GA=GA +GRAD(1)**2
AMAT(1,1)=GRAD(I)
GAIN=S5GAIN/GA
IF(K.EQ.(-1})) GO TU 75
GO T0 91

CONTINUE

DO 76 I=1,7
AMAT(2,1)=GRAD(I])

CALCULATE NEW P*%1/2 MATRIX

LI=2

GO T0 91

IF(SSTCHIITIMX) eLTo(-5.0).0R.K.EQa(~-1))

DO 12 M=1,L1
SI=1.0

IF(M.EQ.2) SI=-1.0
B({My,M) =0.0

DC 10 I=1,7
AMTEM(I)=0.0

DU 11 J=1.7
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AMTEM(T)=AMTEM(I)+ AMAT(M,J)* P(J,I)

B{MyM) = B{MyM) + AMTEM(]I)*%2
IFIM.EQ.2.AND.B(2,2):GT.WT) GO TO 12

OE = (1.0-1.0/SQRT(1.0+SI*B{M,M}))/B(M,M)

DO 212 I=1,7

DO 212 J=1,7

TPHI(I,J)=P{1,4J)

DO 212 L=1,7

TPHI(L,J)=TPHI({I,J) — DE*P{I,L)*AMTEM(L}*AMTEM{J)
DO 12 I=1,7

DO 12 J=1,7

PlIoJ)=TPHI(I,J)

CONTINUE
FORMAT{7E16.8/T7E16.8/TE16.8/7TE16.8/7E16.8/TEL16.8/7TE16.8//)

CALCULATE NEW ESTIMATE

DO 14 I=1,7

DO 13 J=1,7

TPHI{I,J) =0.0

DO 213 L=1,7

TPHICLJd)1=TPHI(LJ)4P(1,L)%P(J,L)

Y{I)=Y{(I) + TPHI(I,J)*TERR{J)}

IF(SGAIN.GT.0.0) Y(I)=Y(II+TERR(I)}*GAIN/(1.0 + B(1l,y1))
X{Iy=y{r1)

T = TEM

TEST FOR STAR POINTS AT WHICH TO PERFORM ACCURACY ANALYSIS AND
DATA PRINT

IF(NT.GT.NSPNT.AND.MODINT,NPRNT).NE.O) GO TO 45

READ TRUE STATES AND DIRECTION OF INSTRUMENT AXIS VECTOR
READ(4,360) SSTCHIL1),(GRAD(I},I=143),2
FORMAT(28XD20.12,+3E16.8/6020.12)
X{L)=X{L)+X{(6)*{SSTCH(1)-T)}/INERT
X(2)=x{2)+X{6)*COS(X(3))*k{SSTCH(L)-T)*(INERT-INRTZ)/{INERT*INRTZ)
IF{X(2)eLT.(-6.2831853)) X(2) = X(2} + 6.2831853
IF(X(1).6T.6.2831853) X(1)=X{1)-6.2831853

COMPARE STATE AND INSTRUMENT AXIS POINTING TO OBTAIN ERRORS

CALL TRANS(2)

DC 48 I=1,3
B{I,1) = 0.0
DO 121 J=1,3
B{Is1) = BlIs1) + AMTUJ,II*ET(2,4J)

ERR(I)=B(1,1)-GRAD(I)

EPLAN=(ATAN2{GRAD(3),GRAD(1))-ATANZ2(B(3,1),4B(141)))%57.29578

ENORM={ ATAN2 (GRAD(2),GRAD(1))-ATAN2(B(2,1)¢B(141))}*57.29578
EVAL=SQRT({ERR(1L )} *%2+ERR(2)**2+ERR(3)*%2)%57.,29578

DO 16 I=1,5
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16 X(I)=57.29578%X(1)
DC 161 I=1,46
161 Z(I)=Z(I)-X(1)
E=2{(1)+Z2(2)
EK=X(7)—a1427E-4
WRITE(7,343) NT, SSTCH{(Ll), EPLAN, ENORM, EVAL, Z, E, EK
343 FORMAT(1I5,7(PE10.3)}/5(PEL10.3))

WRITE EVALUATION OF ESTIMATION ACCURACY

WRITE(64200) SSTCH(L)yX,EPLANJENDORM,EVAL,ZyE

200 FORMAT(/43H T=,E16.8//3H X=,T7E16.8//20H SIGHTING ERRORS EP=4E16.8,
14H EN=,E16.8,12H ANG. ERRUOR=,E16.8//14H STATE ERRORS=/3XTEL6.8//)
DO 17 I=14.7

17 X(I)=Y(I)
GO TO 46

45 CALL TRANS(0)
READ(44+361)KAT,Z(1)

46 CONTINUE

WRITE DIAGONSTICS

IF{MODINT495).EQ.0) WRITE(64390) {((P(I9d)sJd=14T7)4I=1,T7)
IF{MOD(NT495).EQ.0) WRITE{(6,390) TPHI
IF{X(1).67.6.2831853)X({1) = X{1) - 6.2831853
TF(X(2)aLT.(—-6.2831853)) X(2) = X(2) + 6.2831853

INDEX FOR NEW DATA PUINT AND TEST FOR RUN COMPLETION OR
NONCONVERGENCE

NT = NT + 1

IF(EVAL.GT.20.0) GO TU 43

IFINT.GTLIMAXT) GO TO 43

GO 101

END

SUBROUTINE DIFF(INERT,INRTZ,C2yWO,VNO,TAT,NT)

SUBROUTINE TO CALCULATE DIFFERENTIAL EQUATIONS

DIMENSION BM(3)yBMAG(3)4DX1(2)4DX2(4)DPHI(T+7),G(747),
1X{T7)sPRILT47)4ySSTCHIL12)4,CX(5)4SX(5),AMT(3,3),ET(3,3)
REAL INRTZ, INERT,MAG
DOUBLE PRECISION X,T,DX1,SSTCH
COMMON/BLK1/X/BLK2/PHI» ITIMX,T/BLK3/SSTCH,CVIE,SVIE/BLK4/CX4SX,
LAMT,ET/BLK5/DX14DX2,0PHI 4 INTER,DELTA
DATA G{492)3G14y7),G(592)9G(5,7)9G{6353),G(654)3G(645)3G16,57),
1G(7+42)9GUT7457)9G(3,7)/11%0.0/

47 TF(ITIMX.GT.1) GO TO 81
DO 83 I = 1,7

DO 82 J 1,7
82 PHI(I,J) = 0.0
83 PHI(I,I) = 1.0
81 DELTA = SSTCH(ITIMX)-T
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INTER = 1

IF(IAT.EQ.1)GO TO S50

IAT = 1

CALL TRANS{O)

COMPUTE MAGNETIC FIELD

VNU=VNO+WO*T

TMP1=SIN{VNU)*CVIE

TMP2=COS(VNU)

TMP3=SQRT(TMPL**2+TMP2%%2)
ALPHA=ARSIN(SIN{VNU)*SVIE)

BMIL) = C2%SIN(2.*¥ALPHA)*TMP2/TMP3

BM(2)= BM(1)%TMPL1l/TMP2

BM(3)=C2%(.333-CO0S{2.%ALPHA))

COMPUTE MAGNETIC FIELD TRANSFORM

BMAG{Ll)= AMT(l,1)%BM{L)+AMT(1,2)%BM(2)+AMT(1,3)%BM(3)
BMAG(2)=AMT(2,1)%BM(1}+AMT(2,2)*BM(2)+AMT(2,3)%*BM(3)
BMAG(3)=AMT(3,1)*BM(L)+AMT(3,2)*BM(2)+AMT(3,3)%BM(3)
BM{1)=BMAG(1)*BMAG(2)

BM{2)=BMAG({2)*BMAG( 3)

BM(3)=BMAG(3)*BMAGI(1)

BMAG(1)=BMAG(1)*BMAG(1)

BMAG(2)=BMAG(2)*BMAG(2)

BMAG(3)=BMAG(3)*BMAG(3)

COMPUTE DIFFERENTIAL EQUATIONS

$2X3=SIN(2.%X(3}))

TMPL=(INRTZ-INERT)/(INRTZ*INERT)}
TMP2=X{7)*{1./INERT-TMP1#CX{3)1%CX(3}))

DXL(1)= X(6)/INERT + BM(2)*TMP2*CX(4)/SX(4)

DX1(2)= TMPL1*X(6)*(-CX(3) )

DX2(1)= X{T7)*TMPL%S2X3%(BMAG(1)+BMAG(2)+2.%BMAG(3)) /4.
DX212)= TMP2*BML3)

DX2(3)= TMP2%BM(2)/SX(4)
DX2{4)==X(6)%TMP2*(BMAG(1)+BMAG(2))

COMPUTE PARTIAL DERIVATIVES

G(3,1) X{T)Y®RTMPL#BM(2)%S2X3*CX{4)/5X4)

G(3,+2) X(6)%TMPL1%SX(3)
G(393)=2.%DX2{1)*C0OS(2.*%X(3))/52X3

G(344) X(7)*TMP1%xB8M(3)%*52X3

G(3,5)=G(3,1)/CX(4)

G(346) =~X{6)1EX{T)%S2X3%TMP1*(BMAG(1)+BMAGL2))

Glayl) = TMP2*BM(L)*CX(4)/SX(4) - DX2(3)/SX(4)
G(4+¢3) = G(3,4)/2.0
Glbay4)=TMP2%(BMAG{1)-BMAG(3))

Gl4,5) = TMP2*BMIL}/SX(4) — DX2{3)*CX{(4)/SX(4)

G(4y6)= 2.0%TMP2%X(6)%BM(3)

G(5s1)=TMP2%( (BMAG(2)-BMAG(3) }*CX{4)-BM(3)*CX{4)*CX{4)/S5X(4))
Gi543)= X(T)*=TMPL¥BM(2)%S2X3*5X(4)/2.0

G(544)=TMP2% (BM(1)*SX(4)+BM(2)*CX(4))

G{545) = TMP2%(BMAG(2)-BMAG(3)-BM(3)*CX(4)/SX(4))
G(5y6) = 2.0%X(6)*TMP2%BM(2)%5X(4)
Gl6,1)=1./INERT

G(6,2) = DX1(2)/X(6)

Gl6,6) =DX2(4)/X(6)
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OO0

52
51

10

11

61

20

22

62

G(T+1) DX2(3)*CX{4)/X(7)
G(T7+3)= DX2(1)/X(7)

G(T7s4) = DX2(2)/X(7)
Gl7,5) =DX2(3)/X(7)
G(74+6) = DX2(4)/X{(7)
MO=0

IF(INTER.EQ.1.AND.MOD(NT,100).EQ.0)} MO=1
COMPUTE STATE TRANSITION MATRIX DIFFERENTIAL EQUATIONS
DO 52 1 = 147

DO 52 J = 147

DPHI(IyJ) = 0.0

DO 52 K=3,7

OPHI(1,J) = DOPHI(I+J) + GIKyI)% PHI(K,yJ)
CALL RKUTTA

IF(INTER.EQ.5) RETURN

GO T0 99

END

SUBROUTINE RKUTTA

RUNGE KUTTA INTEGRATION SUBROUTINE

DIMENSION ANSI(6),A1(2),A11(4),A2(2),A22{(4)4A3(2),A33(4),A4(2),
1A44(4) yPANS( T3 T7) g APLIT 274 AP2( T T)9AP3( T3 7)sAP4(T437)+sDX1(2)+,DX2(4)
CrDPHI(T2T) 9 X{T)PHI(T4T)

COMMON/BLKL/X/BLK2/PHI,ITIMX,T/BLK5/DX1,D0X24DPHIZINTER,DELTA

DOUBLE PRECISION ANS,A1,A2,A34A4,4DX14TyX

GO TO (10+20930440),INTER

DO 1 I= 1,2

ANS(I)=X{(1I)

Al(I)= DELTA*DXL(I)

X(I)Y=.5%A1(])+ANS(I)

DO 11 I =3,6

ANS(TI)=X{I)

All{I-2)= DELTA*DX2(1-2)

X{I)= 5%A11(I-2)+ ANS(I)

DO 61 I=1,7

DO 61 J=1,7

PANS(1,J)= PHI(I,J)

AP1(I,J) = DELTAXDPHI(I,J)

PHI(I,J3) = .5%AP1(1,J) + PANS(1,J)

T=T+.5%DELTA

IiNTER=2

RETURN

DO 2 I=1,2

A2(1) = DELTA®DX1(I)

X{I) = 5%A2{(1)+ANS(I)

DO 22 1I=3,6

A22{1I-2)= DELTAXDX2{1-2}

X{I) = 45%A22([-2)+ANS(])

DO 62 1 =1,7

DO 62 J=1,7

AP2( 1,3}

PHI(I,J)

DELTA* DPHI(I,J)
«5¥AP2(1,J}+PANS(I,J)
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OO0

30

33

63

40

44

64

99

5

INTER=3

RETURN

DO 3 I=1,2

A3(I) = DELTA%DXL(I)

XU{I) = A3(I)+ANS(I)

DO 33 I=3,6

A33(I-2) = DELTA*DX2(I1-2)

X(I) = A33(I-2)+ANS(I)

DO 63 I=1,7

DO 63 J=1,7

AP3(I,4) = DELTA%*DPHI(I,J)

PHI({I,J)= AP3(I,J)+PANS(I,J)

T=T+.5%DELTA

INTER=4

RETURN

DO 4 I=1,2

A4(1)=DELTA%*DXL{I)

X(I)= ANS(EI)+(AL(I)+2.%(A2(1)+A3(1))+A4(1))/6.

DO 44 [=3,6

A44(1-2)= DELTA%DX2(I1-2)
XUI)=ANS(I)+(ALL(I-2)+2.%(A22(1-2)+A33(1~2))+A44(1-2))/6.
DO 64 [=1,7

DO 64 J=1,7

AP4(1,J)
PHI(I,J)
16.0
INTER =5

RETURN

END _
SUBROUTINE TRANS (M)

DELTA*DPHI(I,J)
PANS{I ) +(APL{T,0)+2.%(AP2(],J)+AP3(1,J)})+AP4(]I,J))/

SUBROUTINE TO CALCULATE THE ANGULAR MOMENUTM AND EULER ANGLE
TRANSFORMATIONS

DIMENSION X{7), CX{5),SX{5)sAMT(3,3),ET(3,3)
COMMON/BLKL/X/BLK&4/CXySXyAMTLET
DOUBLE PRECISION X

IF(M.EQ.1) GO TO 5

COMPUTE ANGULAR MOMENTUM TERMS
DO 99 I=3,5

CX{I)= COS{X{(I))

SX(I)= SIN{X(I)})}
AMT(1,1)=CX{4}*CX{(5)
AMT({1,2)=CX{4)*SX(5)
AMT(1,3)=-SX{4)

AMT{2,1)=-SX(5)

AMT(2,2)=CX(5}

AMT (3, 1)=SX{4)*CX(5)
AMT(3,2)=SX(4)*SX(5)

AMY (3,3)=CX{4)

IF(M.EQ.QO)RETURN

COMPUTE EULER ANGLE TERMS

00 90 I=1,2
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30

CX{I)=COSI(X(I})
SX{I)=SIN(X(I))

ET(1,1)
ET(1,2)
ET(1,3)
ET(2,1)
ET(2,2)
ET(2+3)
ET(3,1)
ET(3,2)
ET(3,3)
RETURN
END

RANDOM

L T T A T B T T 1}

NUMBER SUBROUTINE

CX{L)*CX(2)- CX{(3)*SX(1)*SX(2)
CX{2)*SX(1)+ CX(3)%CX(1)*SX(2)
SX(3)*SX(2)
=SX(2)*CX{1)-CX(3)*SX(L)*CX(2)
=SX{1)*SX{2)+ CX{3)*CX{1)%CX(2)
CX{2)*5X(3)
SX{3)*5X{1)
=SX{3)*CX(1)
CX(3)
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APPENDIX IV - WEIGHTED LEAST SQUARES FORMULATION FOR FILTER SYSTEM

A least-squares approach to the filter problem is suggested since
the probability density function for the system need not be known or
assumed as would be required for a maximum likelihood estimation.
Assuming P measurements have been taken, one seeks an estimate of

the states such that

P -
J=8 e R e

k=1
D1)
is a minimum where
e(k) = y(k) - H(x(), k) D2)

The weighting factor need not be selected as R_l(k) but it has been
shown that such a weighting function leads to the Kalman filter for
the linear problem, and it seems intuitively logical to weigh measure-
ments based upon the inverse of their covariance since it effectively
states the quality of each measurement.

An extremal for a well behaved function satisfies the condition

p(-y + mRT R

X D3)

The solution for equation D3) is 3: Since an explicit , solution

. ~ . . . . - . .

in terms of X is generally impossible an iterative technique is
usually employed. Assume go is a good estimate; then the first ap-

proximate correction to this term is given by

+ 86X D4)

[%>
1

éx>
!

Substituting in equation D3), assuming Taylor series expansion of
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the nonlinear terms about gsgives
-
oH T, - H' -
o=z TRy =m+ (Brt Ml
X X ox | T
D5)
and all applicable terms have been evaluated at Xx,- In evaluating
equation D5) it is necessary to assume the procedure equation 8)
is used in obtaining io[k) for the K measurement times considering
EO(P) is known.
The correction &x is obtained by solution of equation DS5) as
-1
v - H)
D6)

Equation D6} is the standard iterative weighted least-square solution
to the estimation problem. The new estimate can be formed by equation
D4) as shown in equation 3). The summation terms in equation D6} can
be identified as
sH(x k), k) R™Y2 @) . -1/2
o | = Vx(PH &) KR (k)

~ ~
3x(p) x (k) EINEY

V() =

as noted in equation 4.
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