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ABSTRACT

Applications of the principle of microscopic reversibility are
considered for rates of reactions measured in experiments that reveal
some of the dependence on the rotational, vibrational, and/or translational
states of the reactants or products. Each type of meagurement establisghes
a characteristic set of quantum states for the reactants and products,
suggesting the removal of trivial statistical factors (densities of
states) from the data to retrieve a purely dynamical quantity W (E),
the state-to-state reaction rate suitably averaged over the initial and
final sets of states at fixed total energy E. This quantity is fully
symmetric with respect to the direction of the reaction--either the
forward or reverse rate coefficient can be obtained by multiplying w
with the proper demsity of final states. Thus  reflects the
intrinsic probability of the process, disregarding the statistical
bias introduced by the nature of the experiment itself. Methods of
accurate computation of state-densities appropriate to several kinds

>f detailed kinetic measurements currently feasible are given.



I. Introduction

Despite the impressive successes of traditionsl chemical kinetics
in accounting for the gross features of chemical reaction rates such as
their variation with temperature, our understanding of the relative
importance of translational, rotational, and vibrational degrees of
freedom in reaction processes has remained highly speculative. It was
realized early, to be suré, that unimolecular processes require the
‘participation of internal degrees of freedoml, but the implications of
this fact have been extensively exploited only in models adopting a
statistical viewpoint at the outset to avoid consideration of fine-
grained detailsz. The difficulty in establishing experimentally the
effects of the different degrees of freedom originates in the indeterminacy
of the initial and final molecular states in most experiments: The
reactant states are usually unspecified except as they aré weighed by
the Boltzmann distribution, and the product states are restricted only
by the conservation of energy.

Experimental techniques capable of resolving the states of the
reactants and/or products are needed to expose the more detailed aspects
of the reactions. Although the reactant translational motion can be
well controlled in molecuiar beam experiments and widely varied with the
uge of gpecial techniques such as supersonic or charge-exchanged beamss,
there is no useful method at the present time for selecting internal
states of the reactants over a wide range of internal energies. Results
have, however, begun to appear on partially resolved analyses of the

states of the products of bimolecular reactions studied by (a) infrared



chemiluminescence4, (b)Y chemical laser555 and (c¢) veloecity~ or state-
analysis of the products in crossed molecular beam reactionsGB

The reactions studied by these techniques are typically quite
exoergic, so that any of the contributions to the total energy of the
products is free to range over a span much larger than the variation
allowed by the experimental conditions in the total energy itself. One
of the infrared chemiluminescence reactionsac, CIHI~HCI+L, serves
as an example. If a crude line~of-centers model is used to account
for this reaction's roughly 0.7 kecal/mole Arhennius sctivation energy,
it is predicted that over 90% ofvthe reactions oceur with reactant
energies (translational plus rotatiomal) in the range 2.5+1.5 kecal/mole.
Relative to the product ground state, which lies 31.7 kcal/mole below
that of the reactants, the energy is therefore 34.2+1.5 kcal/mole.

The principle of microscopic reversibility7 permits the trans-—
formation of data on product state distributions into information about
the dependence of the rates of the reverse (endoergic) processes on
the division of the available energy among rotational, vibrational,
and translational modes. This is not merely an academic¢ exercise
giving nothing more than a different representation of the same data:
In general only "atypical" reactions (low thresholds, large cross-sections)
can be studied by these new techniques. The reverse reactions, having
thresholds at least equal to their endoevgicities, are much more likely
to be representative of the majority of chemical processes. Data on

unusual reactions are thus exchanged for data on more ordinary ones.



Each experimental technique reveals different aspects of the
distributions, some of them more detailed than others. In applying
the micro-reversibility principle to the best advantage, it is im-
portant to incorporate all the details produced by a given experiment
while excluding all those that are not. The purpose of this paper is
to outline these considerations for a number of experimentally interesting
cagses, and to derive working equations for each. The fully resolved
infrared chemiluminescence experiments have already been analyzed in
two papers by Anlauf, Maylotte, Polanyi, and Bernsteiégand by Polanyi

and Tardyg, but will also be included here.

II. Microscopic Reversibility

Symmetries in the equations of motion of a dynamic system
generate restrictions on the solutions of these equations, usually
in the form of conservation laws. The power of these relations lies
in their general ability to limit possible kinds of solutions or to
establish relationships between solutions even though none of the actual
solutions may be known. When the Hamiltonian is invariant to time-
reversallo a second solution to the time-dependent Schrodinger equation
(or classical equations of motion), differing only in the direction of
the motion, can be immediately obtained from any given solution by the
operation of time-reversal on the original state-vector (or trajectory)ll,
The expression of the consequences of time-reversal symmetry in terms
of transition rates is known as the "principle of microscopic reversibility".

Although such a principle can be formulated for any kind of process, our



discussion will be restricted to binary collisions:

A+B = C+D

The "products" C and D can either be the same chemical species as the
"reactants" A and B (inelastic scattering) or different from them
(chemical reactions}).

Our system will be assumed tc be encloged by a finite container,
but one whose size is large enough that the allowed translational
energies are essentially continuous. Presently, in fact, we shall
adopt a continucus description of the translational motion, which is
equivalent to allowing the container to become infinite. It is con-
venient, however, to be able initially to specify unambiguously a
normalizable state of the reactants or products by a composite discrete
label vy . vy includes a set of internal quantum numbers n
describing the electronic, vibrational, and rotational state of the
pair of molecules and three tramslational quantum numbers 7T describing
their relative translational motion. This description is appropriate

for the observable states of the system, i.e., before or after a

;collision has occurred, but since it does not take the interaction
into account it cannot properly describe the system during a collision.
Hence, the states so déscribed are not stationary states of the
Hamiltenian. 1If the system is prepared at time =0 in one of these
states Yy its wave function will evolve in time, developing amplitudées
in other states Y' having the same total energy. The squares of the

amplitudes are the probabilities for transitions from Y to v',



p(y*y';t). The principle of microscopic reversibility requires that
. - N N' ~ o . .
at all times p{(Y->Y';t) = p(y'+ Y;t), where Y 4is the state obtained

by time-reversal of Y , etc. This relationship obviously also holds

for the tramsition rate, w = (dp/dt) o
fras

[ A

(1) wY=v" = w¥"-M

I.e., the rate of transition between two given states in the forward
direction is the same as the rate of tranmsition in the reverse

direction for the time-rveversed states. It is essential to include the
operation of time reversal of the states for the reverse process. Therae
is no necessary relation between w(Y=>7VY) and w(Y'=+7Y) unless required
by additional symmetry properties. TFigure 1, following a similar figure
of Blatt and Weisskopflz, illustrates the distinction between the two
different inverse processes.

Although the complete symmetry of Eq. 1 is extremely appealing,
it implies a perfect knowledge of the initial and final states, including
their translational quantum numbers. For all experimentally interesting
situations, however, the translational states are so closely spaced in
energy that their complete quantum specification is out of the question
. and, what is more serious, our knowledge of the internal states is also
usually incomplete. We wish to construct velationships that reflect
the exact state of our knowledge so that all the known details can be
utilized without resorting to guesswork on the undetermined ones. A
measurement that fails to provide & complete quantum specification of

the state of the system establishes instead a set of states, any one



of which may be the real state of the system. Such a set of states

would contain all the fully described states whose properties are

consistent with the measurements. Since all the information about
the state of the system should be incorporated into the description
of the set of states, no distinctions are possible among the members
of the set.

We will denote by I' the set of initial (reactant) states
and by I'" the set of final (product) states established by any ex-
_periment. Since a given molecule can be in only one of the initial
states at time t=0 (even though we have no way of knowing which one)
.but develops simultaneously amplitudes into all the final states, the
physically meaningful rate is the average over the initial set [ and
the sum over the final set [''. This sum-average will be indicated by

a superior bar:

@ w=N, 27 W= Y')
Y v
The sum extends over all values of Y in ' and of Y' in T'. N
is the number of values of Y in the set I'--the "size' of the set.
For the reverse process the roles of the two gets are interchanged:
we must average over ['' (now the initial states) and sum over T

(now the final states). In terms of W the law of microscopic

reversibility becomes

(3) W(P»P')/Nn, = ﬁ(ﬁ%ﬁ)/ww



Since time-reversal symmetry guarantees a one—to-one correspondence
between each state and iis time-réverse no distinction is needed
between NP and Nﬁ, ete.

For an arbitrarily large container the translational states
approach a continuum. This allows the convenience of treating the
translational motion in terms of continuous variables, but at the cost
of the ability to distinguish individual states and hence of the
ability to count states. Instead, the number of tramslational states
included within given intervals of the chosen varisbleg must be
obtained from the product of the density of states with respect to
these variables times the differential ranges of all the variables:
dNT=PT(m,B,...) dadB. . .

The expression for the density of states PT depends on the
particular choice_of independent variables, but in any case it is
proportional to the volume of the container. For a given density of
particles the total transition rate is also proportional to the
container's size. Hence, it is customary to use, rather than the

(divergent) density of states or transition rate for all space, the

density of translational states per unit volume uf% and the transition
rate per reactant pair per unit volume ﬁ . ki= v 0 is the product
of the relative speed v and the cross-section O of the process

of intevest. Averaging of !ﬁ over a Boltzmann distribution of
initial states and summing it over all possible final states produces
the thermal rate coefficient k(T).

The independent variables to be used in our description of



the translational motion are the ralative kinetic energy ET and the
direction 3“ of the relative velocity. The number of translational
states per unit volume within the ranges dET and d2§ is independent
of the direction. Hence it is given by the fraction of a sphere

~

occcupied by the incremental solid angle dZQ times the total number
of translational states in the interval dET : dSNT = {d Q/&W)fo%dET).
Here‘f%(ET) is the density of translational states with respect to ET

.. . : , . . A
irrespective of the direction of the relative motion 3:

SV g -3 '
(4) 33@(5?)=ﬁg/z#/zé-?% =AfE¢{z

where U dis the reduced mass of the colliding molecules. The quantity
AT, defined by Eq. 4, is introduced to simplify expressions appearing
below.

The set of initial or final states distinguished by any measurement
process will consist of certain combinations of continuous translational
states and discrete internal states. The appearance of the translational
variables always removes the possibility of counting the states in the
sets, so that densities of states are called for. With the incorporation
of internal states into the description, however, the total energy E
(relative to the reactant ground state) becomes a more convenient
continuous variable than ET since the various sets do not neccessarily
span simply-connected intervals in the translational variables. In

Equation 3 N, must be replaced by dNT = $3FdE where ﬁ?F(E) is the

r
density of states (per unit volume) in the initial set with respect to
E. Similarly, Np o becomes dNP' &= 53P'dE' (where E' is the total

energy of the preoducts relative to theilr ground state), so that the



law of microscopic reversibility becomes:
— 7 e /w’ rmzo /
5 3 = -
) K(rem )/ﬁﬁ, ;y(ﬁ—-?ﬁ)/ﬁ_, & (ra’)

The differentials dE and dE', which must be equal to satisfy energy
conservation, have been cancelled out of Eq. 5. Egquation 5 relates
the forward and reverse ;? s only at a fixed total energy and cannot
be expected to say anything about the dependence of either coefficient
on the total energy.

The fully symmetric quantity wW(T,I'") = W({IT',I), defined in
Eq. 5, is the state~to-state transition rate W (per unit volume for
each reactant pair) averaged over both the initial and final sets of
states. It is a fundamentally dynamical quantity, not presently

calculable theoretically. The densities of states, on the other hand,

are purely static entities determined only by the spectroscopic
properties of the reactants or products and the precise descriptions
of the sets of states. In the following sections we show how they can
readily be computed to a high degree of accuracy for several currvently
feasible experiments, and how they are to be used in connection with
existing experimental dats to extract information about the W's.
From Eq. 5 we can see that the ambiguities inherent in the

initial and final sets of states in any experiment effect the observed

'%: in two essential ways: (1) Any variation of the basic

dynamical quantity ® within these sets is obscured by the averaging

over both sets. (2) The measurable quantity ;; is proportional to
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the density of final states. In some cases the latter statistical
effect is sufficient to bias measurements towards predetermined
qualitative trends almost independent of the variation of w. The
following section, where specific examples are considered, should

clarify these effects.

ITI. Definitions of State Densities for Specific Setg of States

A. Completely Determined States

In the ideal collision experiment, we would know asverything
possible within the limits imposed by quantum mechanics about the
initial states and learn everything possible about the final states.

The internal states of the reactants and products would be fully
determined, even to substate within a degenérate level; the relative
incident translational kinetic energy ET would be specified to within
a small range dET; and the direction of the relative momentum would

be known to within a small solid angle dzﬁ. This ideal has actually
been approached in the preparation of state- and velocity-selected beams
of CsF in one set of experimentsl4 and in the analysis of CsF
products from the reaction Cs + SF6 in another studyls. The extremely
difficult internal state determination was accomplished by simultaneous
use of inhomogeneous electric fields to focus given J,M states (certain
values of M only) then microwave or RF resonance to "flop-in" or
"flop—~out" molecules in definite vibrational states (as in molecular
beam electric resonance experiments). At this early stage in the

development of these arts for collision studies, it is difficult to
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foresee how widely the techniques will be applicable.

In this type of determined situation, the only density functions

A

needed would originate in the impossibility of making dET or dZQ

exactly zero, i.e., the density of translational states defined in Eq. 4,

fT(ET)'

B. Temperature or Total Energy Determined

At the other extreme in resolution are experimental situations
in which only the temperature is known. If the reaction proceeds
slowly with respect to all other relaxation processes, equilibrium
Boltzmann distributions apply to all degrees of freedom of the reactants
and productsl6. In this case the thermal rate coefficient k(T) dis given

by:

22 ‘
) kiry= 7 G 2P TR ”S AR TR e
AT Q@ (1) qWEe,
M QI(.T) 3 E. ' N

where g, is the degeneracy of the internal state 1, and En its
enerey. QI(T) = Ein.gn exp(—BEn) is the internal partition function;
f% is the density of translational states (Eq,‘4)? and QT(T}‘= (ZﬂukBT)3/2 h“3
_i§ the translational partition function (per unit v¢lume)i,,6. ié‘(kBT):l
where k, 1s the Boltzmann constant. Final state variables have been

left out of the notation for ii to simplify the expressiop. Eq. 6

involves two different kinds of averaging--one in which some experimental
influence can be exerted by varying the temperature and another, involving

averages of terms with the same Boltzmann factor, that cannot be externally

varied. This distinction becomes more anpparent if the total enevrgy E = ET o+ En
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is used as the independent variable and Eq. 6 is writtenm as
. | o
7 ( = = (g)L - £
kR gdt: Qmﬁe) Pm- ) xp( BE) HIE)

Here S}TOT(E) is the total density of states at (total) energy E:

(8) ﬁ‘_OT(.E) = J %m ft(-E ~Ey, )

The sum in Eq. 8 runs over all n for which EnﬁE pan& ﬁ is
defined below. Figure 2 indicates the contributions from rotational
sublevels of a particular vibrational state to the total density at
energy E . QTOT(T) = QI(T)QT(T) is the total partition function,
and E (E) is defined by

A

_ 420 Ay
©FeE =2 H g £ (E- ) 1, E-En, 2)

(20145 prrew]

The integral Sgdzﬁllm is unity, so the denominator of Eq. 9 is
FTOT(E)' ﬁ (E) is the average of Iﬁ (n,ET,EB) over the set
of all states whose total energy is E. It is possible (in principle)
to extract the energy dependence of 6 (E) from knowledge of the
temperature dependence of QTOT(T) and k(T)7, but the relative
contributions to ;7’ (E) from different subsets of states zt that

total energy are not obtainable even in principle without additional

information.
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For most physically reasonable ways in which ﬁ? (E) depends
upon E, the strong damping of the Boltzmann factor forces all the
appreciable contributions in thermal averages such as Eq. 7 to come
from energies within a range of at worst a few times kBT of an
energy closely related to the energy ghfeshold of the reaction. In
these cages the total energy of the reactants (and hence of the products)
can be regarded as determined to within that accuracy. For highly
experglc reactions, this can mean a gmall fractional uncertainly in
the total energy as measured from the ground state of the products
ag oyr CI+HI example above demonstrates. Two recent papersls have
examined, under the assumption of no participation of internal degrees
of freedom, the relationships between the Arrhenius activation energy
and the excitation function U(ET) = (u/ZET)l/2 E;(ET)f. For a Wide
variety of functional forms for o , the activation energy is approximacely
the threshold energy when kBT does not exceed the threshold energy by
a large factor. The qualitative results of these studies also support
the assertion at the beginning of this paragraph that most of the |
contributions to k come from a small range of energies, and it is
" reasonable to presume that this would also be true for systems where

the internal states also participate.

C. Intermediate Resolution

Assuming the total energy to be known, we can consider a
number of possibilities for intermediate resolution between the two

extremes just discussed. For simplicity, our treatment will be
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restricted to collisions in which the reactants as well as the products
consist of an atom and a diatomic molecule. The variables needed to
describe the reactants or products are then the vibrational and
rotational quantum numbers of the diatomic molecule (V and J), the
projection of the molecular angular momentum on an external axis (M),

the relative kinetic energy ET’ and the direction of the relative

momentum {2.  Although directional variation of rate coefficients can

be measured in molecular beam experiments, this presentation will assume
in the interest of simplicity that all quantities are averaged over
angles, so that { can be dropped from consideration. Each of the

cases described below corresponds to definite assumptions about the
measuvement process, i.e., which of the remaining varisbles are deter-
mined in an experiment and which are not. The correct density accompanying
any given description of a set of states is, of course, independent of
whether these are the initial or final states in a process. In dis-
cussing specific experiments, however, it is sometimes necessary to
distinguish between the reactant and product states. Therefore, where

it is appropriate to make such distinctions, the initial state variables
will appear unprimed and the final state variables primed. E and E' will

denote, respectively, the total energy relative to the reactant and

prodyct groynd states: E'=E*ADQ, where eADO is the ground-state to

ground-state exoergicity of the reaction.
For each of the cases discussed a correct quantum mechanical
expression will be given for the state density. In practical

applications, however, it will quite often be true that such a preQ
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scriptipn cannot be followed, either because the energy-level spectrum
ig insufficiently well-known or because the experimental energy reso-
lution is not sharp enough to warrant a fully discrete description of
the internal states. For these instances, it is desirable to have
approxiﬁate expressions obtained from continuous approximations to the
rotational and/or vibrational levels.

Within the continuous assumption itself several levels of s
approximation can be distinguished for the densities of rotatiomal/
vibrational states. Even when the internal levels are all known .
accurately, smoothly varying "average" densities may be desirable for
treating experimental data taken_at such low resolution that the
quantum spikes in the true densities are unresolvable. These densities
¢an be obtained by differentiation of surfaces (or curves) through. .
the ,EI(V,J) points as functions of V and J. (EI is the internal .
energy relative to the ground state.) In this approximation the

density of rotational states for a fixed V, jD‘](V) would be given hy

_.$ ks Y
(10) 531 (V,Ep) = (.z:’+n(‘83'/b€1 )\/ - % 17/@[3'(3'1‘!)]}\/

aﬁd the density of vibrational states for a fixed value of J, 13 v(J),

would be

-1
(11) jbv (3,€7) = (RET /'2’3‘)\,
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Figure 3 shows the rotational densities of Eq. 10 for the

various vibrational states of the electronic ground state of H All

5
the rotation-vibration states are known in this case from exact
numerical solution of the Schrodinger equation19 for a highly accurate
interatomic potential functionzo. The 3 to 1 ortho/para weighting
factor arising from nuclear spin statistics is absent in the figure.

It can be taken into account for treating ortho-para HZ mixtures
simply by multiplying the densities shown by a factor of three for

the odd rotational levels (dark circles in the figure).

Except for a few molecules contéining hydrogen or deuterium,
there are insufficient data on the energy levels for application of
formulas such as Eqs. 10 and 1l. For many molecules, however, the
interatomic potentials may be well established from Rydberg-Klein-Rees
fits to spectroscopic data or less well from some other source. Usefyl
and highly accurate densities can be obtained in these cases from semi~
‘elassjcal theory. All these expressions originate in the WKB equation
relating V, J, and the corresponding energy level é?I(V,J)° Derivar
.tions of expressions for the various densities in the WKB approximation
are given in the Appendix. The symbol E; is used here and in the
fcllow%ng energy levels rather than E to indicate that they are
measyred relative to the minimum in the potential rather than from the
quantum-mechanical ground state, i.e., the zero-point vibrationai
energy is included in fa .

For many purposes a crude, easily computable approximation is
sufficient. Such an approximation is obtained by a "continuous rigid-

yotor-harmonic-oscillator" (RRHQO) model, assuming the internal levels
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to be given by
(12) 81(\/,:1‘): hy,V + he Be T(T41)

with V and J regarded as continuous rather than discrete variables.
Again, éaIf denotes the energy relative to the potential minimum. In
this approximation the density of rotational states §3 7 has the same
value (the)hl, for all vibrational states. The density of vibrational
states is also a constant: j3 v = (hvo)_l for all values of J. The
density of internal states (both rotational and vibrational) at a given

. Inteynal energy is, in this approximation, given by

as) £ (&) = ( he, Be )“81

Expressions for the other various densities are easily derivable from
these apd will be given in the appropriate section below. Although the
RRHO estimates are crude, they give the correct general trends, and
gven the quantitative agreement is acceptable for many molecules. In
the sections below where individual experimental cases are discussed
many of the state densities will be reported in the form of a correction
factor ja* that must be applied to the RRHO estimate to give the
gorrect walues: J-" * P(actual)/ \P(RRHO) .

Figure 4 shows the corrections to the total density of states,
jD *TOTAL for H2 in the true quantum case and in the WKB apprcximaiiqn

and the WKB result for the Rydberg-Klein Rees 12 potentialZI, The
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ordinate is the ratio of the total energy to the dissociation energy

(both measured from the potential minimum).

1. V,J, and Er Known but not M: Infrared Chemiluminescence

Over the past dozen years or so J. Polanyi and co~workers have
£

4

perfected the techniques for observation of infrared chemiluminescence
to the point that now they can cbserve the radiation emitted from newly-
formed chemical products before their vibrational or rotational dis-
tributions are appreciably relaxed. The reactants (atom + diatemic mcleﬁule}
. in these experiments issue from a pair of mixing jets piving essentially
thermalvdistributions for the reactant variables. The reactions studiad
are mostly quite exoergic, so that the total energy of the products is
known to reasonably good fractional accuracy as previously discussed.
The measurements determine the relative rates of formation of the
various rotational and vibrational states of the products (J' and V',
but not M'). The relative kinetic energy can be obtained (with some
uncertainty) by difference: E'T = E'~E£(V',J')o These medsurements
on the product states represent the closest approach accomplished at the
present time to the ideal of complete determination. They do not,
however, give any information about the angular distribution of
products.

Since no details are known about the reactant states, the appro-
priate density of states for them is the total density of states at
energy E (relative to the ground state of the reactants). The observed

rate coefficients are averages over all reactant states having the given
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energy (see Eq. 9). For the products, the:only unspecified variables
are the angular momentum projection quantum number M and the direction
af the relative momentum vﬁ. Therefore the density of the final set

of states is the product of the translational density at each internal

level and the degeneracy of that level
/ / )
(14) Sbni(E/,V’, )= (23+11) £, le—erv, 3]

‘EI(V',Jf) is the internal energy of the V',J' wvibration-rotation
state relative to the ground state of the. products.

Figure 5 shows W values for the reaction - CL+HIHCI+I as
functions of the fractions of the total energy of the products in-
translational, rotational, and vibrational degrees of freedom at the
fixed value of the total energy corresponding to average thermal
internal and translational energies above the threshold. These values
were obtained from Eq. 5, using the demsity of states defined in Eq. 14
with the data of Maylotte and Polanyiéc. The quantities displayed in
this figure are the same as are shown in a different method of pre-
sentation in figure la of ref. 8a. Since there was only a single set
of initial states for these experiments the W's are proportional to

the rate coefficients for the reverse process.

2. E and V known but not E, J, or M: Chemical Lasers and Early

Infrared Chemiluminescence

Rotational relaxation usually occurs two or three orders of

: £ A9 ] 4 — et e
magnitude mare rapidls than vibrational relaxaticon. This makes it
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possible to observe reaction products with essentially completely
relaxed rotational degrees of freedom but with the vibrational
populations unaltered by relaxation. This was the case in infrared
chemiluminﬁscenceéa experiments prior to the most recent improvements
in techniques, and is the current capability of chemical laserssu
In both these types of experiments the reactants are thermal (internally
and translationally).

This situation differé from the one previously discussed only
in the loss of knowledge of the product rotational state distribution.
Therefore the density of the product states is the sum of the denéitias
given in Eq. 16 over all rotational states with the given vibrational
quantum number that are accessible at the existing total energy E':

3*
a» P (e'v)= Z Qrio p e~ @]
o ! s 7

/ *
where J* 1s defined by EL(V,J*1)>E>E/(V,J).  In the RRHO

approximation, this becomes:
, - 2B (e 2 (e )T 4-8) T
(16) f;(EIV)-‘3 ¢ Be. ° = 3 \NC0eg yd 4

%
where £, =hv V/ =7V/V' is the fraction of the total energy &€ inm

vibration. Fig. 6 illustrates the dependence on fv of the quantity

° ~34 , , , ]
fﬂ'c' = 3/2 ,‘\C Be & »Pri (g) vV ) + The solid curve is the RRHO

3/2

value (l—fv) » and the points are for HF at two different

energies, computed with diserete rotational-vibrational energy levels
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obtained from the spectroscopic constants given by Webb and Raozz.

The RRHO approximation is seen to be quite good for this case.

The chemical laser results of Parker and Pimentel5 for the
relative rates of formation of HF in different vibrational states
from the reaction F%H2+HF(V')+H are k(V'=2)/k(V'=1)45.5,k(v'=3) /k(V'=2)%1.6.
Assuming the total energy of the products to be the sum of the reaction
exoergicity, the Arrhenius activation energy, and average thermal con-
tributions from translation and rotation (E'=Apo+Ea+5/2RT=34.8 kealfnol ] s
and using the RRHO values for the densities of states, we can estimate
that w(V'=2)/W(V'=1)Al4 and w(V'=3)/B(V'=2)&20. The first of
these ratios follows much more reliably from the Parker and Pimentel data
than the second because the V'=3 level has such a large fraction of
the total energy in vibration that estimates of the density of states
for product molecules with that vibrational quantum number are extremely
sensitive to the value of the total energy assumed. The data themselves
may be questionable. Polanyi and Tardy9 have studied the same reaction
by infrared chemiluminescence. They find the same qualitative trend in

vibrational populations but their ratios are quantitatively different.

3. Er and E Known but not V,J, or M: Molecular Beam Velocity Analysis

Since the actual internal levels of a given molacule are
separated by discrete intervals, it is, strictly speaking, only
possible to have at any given total energy those values of ET for
which the difference E -~ ET corresponds to one of the internal

energies. The joint density of states per unit volume (with respect
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to both E and ET) is given by:

(17) dz/Vﬂ(E; Er)ﬁiEdET = L&) Z @i le-E - E‘I(Vﬁ)]
V)7 ’
(units carg—2 cm—S). For an absolute evaluation of the density of states
with respect to E alone, it would be necessary to integrate Eq. 17
over a range of translational energies (dictated by the experimental
conditions) while holding the total energy constant. For relative
evaluations, however, the average of d2N /dEdET over the range of ET

suffices:

(18) ﬂ(E’ E’C) = <95'(ET)EL’Q (E_E‘C') >E%Av7ﬂ.,

where fDIQ(EI) is the quantum density of internal states (the delta-
function sum of Eq. 17).

If the experimental resolution were good enough to distinguish
the contributions from the individual internal levels,a knowledge of
the spectrum of the molecule would allow assignment of V,J quantum
numbers to the states and only M would remain undetermined. This
case has been treated in the discussion of the infrared chemiluminescences
experiments. In practice, however, measurements of ET even at the bast
resolution presently attainable call for averaging over a large number
of internal levels. Within the range of translational energies of the

averages .f)T does not change appreciably, but the spiky structure in
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JDIGI is smoothed out, giving

P (6 E)= LE)R(E-E,)

where 53:[ is the average density of internal states, smoothed
over several internal levels.

Since the translational density of states can always be expressed
exactly, the reliability of any evaluation of Eq. 19 depends upon the
estimate used for SDI' The RRHO expression for the internal state
density is, as previously noted, (hzcvoBe)—lgI. Fig. 7 shows some
correction factors fD: = j’I/SDI(RRHO) as functions of the ratio of
the internal energy to the dissociation energy (from the potential minimum).
The values shown are for the exact HZ levels19 smoothed over rotational
but not vibrational states, WKB wvalues for the true H2 potential, WKB
values for a Morse function fit to the H, potential and WKB for the

12 RKR potent13121. The WKB expression for the internal state density
WK 2 5 ’eg,Qz[g 'é(ﬂ)]%dﬁ
e g e = srp [ KIE 4

is discussed in detail in the Appendix. It reproduces the trend of
the correct result even for as strongly quantum a molecule as HZ'
For diatomic molecules with reduced masses greater than a few atomic

mass units, the WKB approximation is probably quite good at all energies

above the ground state.

Use of the RHHO expression for j)I gives the following
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estimate for the density defined in Eq. 19:

=3/ 4 2 o
(21) P(E Ep)=3 ,Z/; TﬁéPCTmus-vwr)

where A_ 1is the quantity defined in Eq. 4, and JO" (TRANS~INT) is
a factor containing the dependence on fT = Er/g" the fraction of the

total energy in translation:

(22) f(mws WT) = 3 “/z 7£ (1- £ )

This quantity is shown in Fig. 8. Although the figure is not to ba
believed in detail owing to the crudeness of the RRHO approximation,
its qualitative features are correct: the density ‘ﬁ;(éiET) will

be small when fT is near either zero or unity and its maximum will
OCCUY near fT = 1/3. Here we have a good example of a statistical
bias introduced by the experiment. Whatever the dependence of W on ET
for a given reaction, the measurable rate coefficient %T in velocity
analysis experiments, being the product of ® and the density of final
states)(see,Eq. 5) will tend to peak at intermediate values of £
Reduction of the data to W thus has two virtues: It gives a fully
symmetrical quantity from which either the forward or reverse rate can
be obtained simply by multiplying by the appropriate density of states,
and it extracts from the measurements a purely dynamical quantity from

which the trends forced by the nature of the experiment have been removed.

Fig. 9 shows W vs. £ for the reaction K+I,KI+I, obtained using

Eq. 20 (the RRHO expression) with the molecular beam velocity analysis
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data of Gillen and Bernsteinéd, Fig. 10 is a similar graph for the
reaction K+HBr-HBr+H, taken from the data of Gillen,et. a16c. The

K+=I2 results are an example of a stromgly varying & that opposes the
statistical factor contained in the density of states. W for this
reaction is sharply peaked at a small value of fT, but not so strongly
that it keeps the experimental ;f (also shown in the figure) from
going to zero as fT goes to zero. TFigure 9 algo shows the  that
would result from either of two Limicing assumptions, i.e., that all

the internal energy be in the form of either (a) rorational or (b)
vibrational excitation (but not both). (The seeming ability to arrive
at two contradictory W's f£rom the same set of data is not the paradex
it first appears to be. In each case, the average transition probability
of some sets of states Mand r‘lis obtained. The set of product states

agsociated with the more detailed information is smaller in accord with

the more specific description. The average of that @ over all

combinations of product votational-vibrational states having 2 given
internal energy would reproduce the less detailed Ww. Most of the
combinations would, however, have contributed nothing to the average,
since the internal enmergy would not all be concentrated entirely into
the assumed mode.)

The K+HBr reaction (fig. 10) shows a much less dramatically
varying W, so that the dependence of ;? iz largely governed by that
of §3(E,ET). It may even be true that the KHHBr data could have

s

been fit by constraining ﬁ to have the ET dependence of the density

of states (Eq. 21). The blowup at fT+l is associated with the lack

of perfect knowledge of the total energy. The large values arise
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from division of rapidly decreasing experimental values (see fig. 12

of ref. 24) by even more rapidly decreasing state densities.

4. Rotational State Determined: Molecular Beam State Analysis

Static four-pole or ten-pole electric fields can be used to
focus molecular beams of polar distomice in definite J,M si:ates22
Assuming that no further details are known except for the total energy
E, the set of states indicated by the measurement consists of all the
accessible vibrational states (each accompanied By the translational
energy required to keep the total energy fixed at E). The density of

this set of states is defined by

v*’
23 p(E,F M) = ? L. le-Er(v3)]
=0

*
where V  satisfies EI(V*,J)§E§EI(V*+1,J). If M were also undetermined,
the density would have to be summed over all the possible values of

that parameter, giving an additional factor of (2J+1):

29 (B T) = (U+) P(E,IM)

In the RRHO approximation, the densities of Equations 23 and 24 become:

3 ¥
25 p(&,J,M)= ;fz g’é‘[}-—f;m] ‘

. y, 770 2 9& , 3/
o P(E,T)=2A [3hve CheBe Yo ] & F (1- £2) 7
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where fR(J) is the fraction of the total energy in rotation:
fR=theJ(J+1)/g [in Eq. 26, the difference between C}ﬂQz and
J(J+1) has been ignored]. WKB approximations to these densities are
discussed in the Appendix. Fig. 11 shows the fR dependence of Eq. 26,
3§°(v—za = frl/2 [l—fR]3/2 and, in the upper part correction factors
gb* for the actual HF molecule and for a discrete rigid~rotor-
harmonic-oscillator approximation to the HF levels (i.e., using the
B, and Vv _ of HF) at two different energies.
No data are yet available for either of the analyses discussed

in this section, but such measurements are within technical capabilities

and will certainly be reported in the near future.
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Appendix I: Semi-classical Densities of States

In the WKB approximation, the vibrational and rotational
"quantum numbers", V and J, of a diatomic molecule are related to

the internal energy by the following equation
I

Y oy - £, s
(A1) V+JZ:= Z/Lméﬁj; [gx‘”%,(lz)j/égﬁ

¢J(R) is the usual effective interatomic potential, given in

terms of the actual potential ¢ (R) by

W § 2) = PR + K (T44) /3 17m k"

if the Langer correction is made in the WKB approximation, or by

“ b ) = BB +hTT) s m R

if the correction is not made. R, and R, are the classical

1 2
turning points. They depend both on 8 ;and onJ. m is the
reduced mass of the diatomic system. 8 s @8 previously noted,
is measured relati\}e to the minimum of % (R).

For a fixed value of J, the density of vibrational states
can be obtained by differentiation of Eq. Al:
2, Y

Yy =i ) 2
@ p (griy):a@-g‘{z)ahz (zm) QE%*#}(R)] AR
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The expression for the density of rotational states for a fixed value

of V involves two WKB integrals

I

. 2 pk - g -
= &Tm h 2/,; L&-¢,. )] d/?/j; R [&-¢ 0]

The particular value of J at which Eq. (A4) is to be evaluated
must be the one giving the chosen value of V in Eg. Al.

The total density of internal states, rotational and
vibrational, at a given internal energy can be obtained by integrating

( ,J) over all values of J for which it is positive.
vr=1 :

T*
(A5) &(81)2 £fVQgI’3)(n+.) 47
il ;2’
Y,
= [@m{ [, & 40T dx } 47
0 /

*
at J=J ({fI), the minimum of ¢J is 81 above the

minimum of ¢O (R). With some care, the order of integration
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in Eq. A5 can be reversed to produce the following one-dimensional

quadraturg’for SDI:
. 2 5/ _‘3 22 v} . l/z .
“e) P (&)= &M (2m)"* 4 f RLE-b @] dR
Qr

The density of vibrational-translational states for a given value of

J (See Eq. 23) can be defined in the semi-classical approximation by:

o
<

“ PV(C(E’,J) ) f

/ ; /
gof;", (£,3)p (e-£) de

There is a finite lower limit in Eq. A7 because the minimum internal
energy is not zero but éfI(V=o,J) = é? o.’ Putting the expression
from Eq. A3 for JD v and that of Eq. 5 for .P’r into A7, and

reversing the order of integration, we obtain
P

K
2 Y2, -t
(A8) ‘ﬁ/r(é:J-)zt/;y—/u/M/”g g [E*@(/Z)]J/C
1

(m is the diatomic reduced mass, /AL' that of the atom-diatom pair).
No correspondingly simple expression has been found for the

joint rotation-translational density for a given V, defined by

(49) (Ev)-= fg / 4
RtV &J%(é’,V)g{Z-éj)
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The semi-classical evaluation of this density can be accomplished either
by determining f) ; as a function of & ' and performing the
integration as written in Eq. A9 or by replacing the summation of
Eq. 17 with integration using WKB values for éf I(V,J)e

The total density of states (translational and internal) of

the atom-diatom system (see Eq. 8) is defined semi~classically by
(A10) Pm (g):fgﬁ (£.) (g- v
o AL I j%; \ éiz ) T

Using PI from Eq. A6, PT from Eq. 5 and, as before,
inverting the order of the & I and R integrations, we cbtain

the following simple form

3 - K‘z 2
(A1) ﬁbr (g)z/éwﬂ(m/‘)/z,% 4/\? [éﬂé)(ﬁ)]&i/z

All the state densities not involving translational energy
have cgs units of erg-l.w When translational degrees are included,

as in Eq's. A8-All, the densities are per unit volume, so that the

cgs units are erg-l cm
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Figure Captions

Figure taken from Blatt and Weisskopf12 showing the
difference between two possible kinds of inverse processes.
The two upper sections illustrate processes that are the
true time-inverses of each other. The lowest section
illustrates a process that is in general unrelated to
the other two.

Schematic illustration of the contributions from the
rotational sub-levels of a particular vibraticnal state
to the total density of states at some total energy E
relative to the groupd state.

Semivlogarithmic’plct of the densities of rotational
states for various vibrational states of the ground
(l:E; ) electronic state of HZ’ computed from Eq. 10.
Open circles are for the evem J states, dark circles
for the odd J states. The energy (given relative to
the ground state) is in units of cm—l, hence the units
of j> are cm.

Correction factor for obtaining the total.density of
states from the RRHO approximation value, plotted vs.
the ratio of the total energy to the dissociation energy
(Boﬁh measured relative to the potential minimum). The
full curve is the quaﬁtum result for HZ’ and the dashed

curve is the WKB approximation to it. The lower (long-
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dashed) curve is the analogous WKB vresult for I,.
&

Trisngular plot of W for the veaction CIHHISHCLHT

as a function of the fractiocns of the total energy iun

rotation (R), vibration (V), and translation (T). The

@ is averaged over all states of the assumed total snergy

for the reactants, and over the M substates for a given
V' and J' of the products. The out-of-plane scale is
linear. The numbars accompanying each cut identdfy the
various vibrational states V' of the HCL wmolecule.

The data used In constructing this figure are those of

- ref. é(c);

Dependence on the fraction of total energy in vibration
on the density of rotational~translational states for
fixed vibrational quantum number. The full curve is the
RRHO result. ‘The open circles are quantum values of
jDéRT (see text) for the HF wmolecule at a total
energy of 20,000 cmml above the ground state, and the
full circles are the quantum results for HF at g total
energy of 40,000 cm"l azbove the ground state.
Correction factors 531* for obtalning densities of
internal states from the RRHO egtimates. The upper

set of curves is for the H, molecule in various

2
approximations as labelled. EXACT means that the exact
levels, smoothed over rotaﬁional but not vibrational

states were used. MORSE-WKB means that a Morse function
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fit to the true H2 potential was used in the WKB
computation. The lower curve shows the WKB result
for the true Iz potential, analogous to the WKB
curve above for Hz.

Fig. 8: Dependence on the fraction of the total energy in trans-
lation of the density of states of Eq. 19 {(the one appro-
priate for velocity anaiysis experiments). The curve shown
is the RRHO approximation, arbitrarily normalized to
unity at its maximum.

Fig. 9: The full curve is the primary ;;. data for the reaction
K+12 > KI+I from ref. 6(d), normalized to unity at its
maximum. The dashed curve is the W obtained from these
data (also normalized to unity at its maximum) using the
density of states of Eq. 21 in Eq. 4. The dotted curve
is the result for W that would Be obtained from the
original data if it were also determined that all of the
internal energy of the products was to be found in either
rotational or vibrational energy, but not both (see
discussion in text).

Fig. 10: w obtained from the molecular beam velocity analysis
experiments of ref. 6(c) plotted vs the fraction of the
total energy in tramslation. The blowup near ET/Ewl
is spurious. It is mainly attributable to uncertainty

in the total energy.
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The lower figure is the RRHO density of states for
experiments in which the rotational quantum number J

is determined but nothing else is known except the total
energy. (The curve is arbitrarily normalized to unity at
the maximum--see Eq. 26). The upper curves are correciion
factors for obtaining the true density for this experimental
situation from the RRHO estimate. Curves A and B awve
for discrete rigid-rotor-hammonic-oscillator levels computac
with the v, and Be for HF at energies, respectively, of
5000 and 20000 em > above the ground state. Curves ¢ and
D are for the true HF lavels at, respectively, 5000 and

20000 cm-_1 above the ground state.
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