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PREFACE
 

There are a number of challenging problems facing the aerospace engineer
 

in the area of spacecraft tracking and guidance. One requirement for the solu

tion of these problems is the development of mathematical techniques which are
 

computationally efficient and accurate. This study is concerned with the de

velopment of an analytical solution to a modified set of Lagrange's planetary
 

equations. These solutions describe the variations with time of a spacecraft's
 

orbit which is perturbed by an arbitrarily shaped primary body and a point mass
 

third body. Analytical solutions are of value for their computational rapidity
 

and for the insight which they provide into the behavior of the dynamic system.
 

The analytical solutions also are incorporated into an orbit determination pro

gram which is of value as a research tool. Its value is demonstrated by using
 

it for a study of several problems associated with orbit determination.
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CHAPTER I
 

INTRODUCTION
 

GENERAL
 

The advent of spaceflight has presented the engineer with many new
 

and exciting challenges. A number of these lie in the field of spacecraft
 

tracking and guidance. One fundamental requirement for spacecraft guidance
 

is the accurate and rapid prediction of the spacecraft's trajectory. This
 

necessitates the development of mathematical techniques which are computa

tionally efficient while maintaining a high degree of accuracy. The develop

ment of analytical solutions to the spacecraft's equations of motion is use

ful in that the state vector may be generate d at any desired time without in

termediate numerical extrapolation. The study described here develops such
 

a solution and applies it to the problem of lunar satellite orbit prediction
 

and near-earth satellite orbit determination.
 

PROBLEM TO BE STUDIED
 

General Perturbation theory is concerned with the development of
 

analytical solutions to the equations of motion of a satellite moving under
 

the influence of an arbitrary gravitational force. In this study a first
 

order general perturbation solution is developed for the motion of a satel

lite under .the.influence of an arbitrarily shaped primary body and a point
 

mass third body. A set of nonsingular orbit elements is used to describe the
 

satellite's motion and, therefore, the results are valid for all circular and
 

alliptical motion. The solutions utilize the development of the disturbing
 

function interms of the Keplerian elements as given by Kaula. They are
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obtained by extending the previous work of Ingram to include the third body
 

effects.
 

Next, the general perturbation solutions are incorporated into an
 

orbit determination scheme. The result is an accurate and rapid orbit deter

mination program which is valuable for doing preliminary design work. Its
 

value as a research tool is demonstrated by using it for a study of several
 

problems associated with orbit determination.
 

OUTLINE OF STUDY
 

Chapter II develops a modified first order general perturbation solu

tion for the motion of a point mass satellite under the influence of an arbi

trarily shaped primary body and a point mass third body. Results obtained with
 

these solutions are compared with numerically integrated trajectories for vari

ous orbital configurations. It is shown that the analytical solutions are both
 

accurate and amenable to computer evaluation.
 

In Chapter III linear estimation theory is reviewed., and a technique
 

for recudsively estimating the observation error covariance matrix is developed.
 

The analytical solutions are used as the basis for an orbit determination scheme
 

which compares favorably with an orbit determination program utilizing numerical
 

integration. A brief study of the accuracy of transition matrices formed by
 

numeric partial differentiation is made in order to justify' its use intne ana

lytical program. A numerical comparison of the effects of the coordinates used
 

in the estimation process is made by using both Keplerian elements and Cartesian
 

coordinates to determine the orbit of a near-earth satellite. In addition the
 

recursive scheme for estimating the radar covariance matrix is tested by using
 

the same sample problem.
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The numerical studies were made by considering the problem of estimating
 

the orbit-of a near-earth satellite under the influence of the gravitational har

monict J20, J30, and J40 . Observation data of range, azimuth and elevation
 

from four tracking stations was simulated and corrupted with normally distributed
 

random noise.
 

A summary of results and a list of possible extensions to this work are
 

presented in Chapter IV.
 



CHAPTER II
 

DERIVATION OF THE GENERAL PERTURBATION SOLUTION
 

INTRODUCTION
 

From the time of the first satellite launching in 1957 there have been
 

numerous papers dealing with analytical solutions to the equations of motion
 

of a satellite under the influence of a noncentral gravitational force field.
 

Generally, these .papershave considered the satellite's motion as perturbed by
 

the zonal harmonics of the earth's gravity field.
 

The objective of this chapter is to develop an analytical solution to
 

the equations of motion of a satellite moving under the influence of an aspher

ical primary and a perturbing third body. The third body disturbing function
 

developed by Kaula
( ) 

will provide the basis for including the third body ef7
 

(2 3) 
fects. These results will be combined with Ingram's , solution for the pri

mary body effects. It will be shown that the resulting analytical solution is
 

both accurate and amenable to computer evaluation.
 

('4) (5 ) ()(6)
Kozai , Brouwer and Garfinkel published the classical studies
 

of the motion of a satellite influenced by the zonal harmonics. They used the
 

methods formulated by Hamilton, Jacobi, Delaunay and Von-Zeipel. In a later
 

paper, Kozai
(7) 

presented a solution which included second order periodic per

turbations and third order secular perturbations for satellite orbits influenced
 

by only the zonal harmonics. The classical method of Hansen has been modified
 

by Musen
(B 

to give a theory which can be used to compute semi-analytically the
 

perturbations up to any order. Vinti's theory
(9) 


uses spheroidal coordinates in
 

place of conventional spherical coordinates 
to obtain a closed form solution for
 

(10 )
the effects of oblateness. Lorell et al., used the Method of Averages to
 

4
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develop the second order long period and secular effects of oblateness. More
 

recently, the effects of the sectorial and tesseral harmonics have been studied
 

( )(11) (12)
by Garfinkel " and Vagners
 

A paper by Kaula which developes the primary body disturbing func

tion in terms of the classical Keplerian orbit elements has provided the basis
 

for several papers on general perturbation theory. Kaula also presents a first
 

order theory for the variations of the classical orbit elements under the in

fluence of an aspherical primary. In addition Kaula gives second order effects
 

for the interaction of the oblateness with the other terms in the disturbing
 

(2 3) 

function. Ingram et al., use Kaula's development of the primary body dis

turbing function as a basis for the first order solution of a set of orbit
 

elements which have been modified to eliminate the singularities of the clas

sical Keplerian elements. Ingram presents a first order solution for the
 

elements which includes the influence of any harmonic in the primary body po

tential function as well as the first term in a binomial series expansion of
 

the third body disturbing function. Results are presented which show the de

viation of this solution from a numerically integrated trajectory.
 

(1'4)
A paper by Tapley and Born shows the results of numerically inte

grating Lagrange's planetary equations for various Apollo-type lunar orbits in
 

addition to comparing these results with those obtained from a first-order
 

averaged solution.
 

(1 5) 

Arsenault et al., have surveyed published general perturbation
 

solutions for satellite motion about an oblate planet. They have programmed
 

several of the techniques and present data comparing the accuracy of the
 

schemes for computing earth satellite motion as influenced by the dominant
 

zonal harmonics. Results are presented for various inclinations and eccen

tricities.
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Previously there have been relatively few papers dealing with the
 

third body effects on artificial satellite motion. This is because lunar
 

and solar effects are of second order for near earth satellites, and it is
 

only recently that the study of lunar satellite motion has become signifi

cant. Although the related problem of planetary motion has been studied by
 

astronomers for a number of years, the classical theories. 16 such as those
 

of Hansen, Delaunay, Hill and Brown,are concerned only with long term plane

tary ephemeris predictions. Therefore, they are net well suited for the pre

diction of short term lunar satellite orbits of current interest.
 

(17 )

Kozai gives the long term and secular effects for the node and
 

argument of pericenter for the first term in the third body distrubing func

tion. These results are obtained by integrating the disturbing function over
 

(1 8)
 
the satellite's period, thus eliminating the short term effects. Later Kozai


extended this work to include short period lunar-solar perturbations.
 

9 (20 ) 
Anderson(i ) and Lewis present the long term and secular effects for all
 

six classical orbit elements under the influence of the first term in the
 

third body disturbing function. Lidev
(2
1
) 
uses averaging techniques to study
 

the third body effects.
 

Kaula
( ) 

has developed an infinite series form for the third body
 

disturbing function in terms of the classical Keplerian elements. The results
 

are quite similar to the corresponding expansion of the primary body disturb

ing function. As will be shown in the following discussion,Kaula's development
 

of the primary and third body disturbing functions may be combined to obtain an
 

approximate analytical solution for Lagrange's planetary equations.
 

In view of the advantages of analytical over numerical solutions, it is
 

desirable to have an analytical solution to the equations of motion when dealing
 

with the problem of orbit prediction and determination. If a satisfactory
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analytical solution cannot be found, the equations of motion must be integrated
 

numerically. 
In addition to being time consuming, numerical integration also
 

is subject to truncation and roundoff errors which tend-to invalidate the re

sults whenever a large number of integration steps are requited. Analytical
 

solutions are not subject to errors of this type; furthermore, they allow the
 

state vector to be computed at any desired time, thus eliminating the stepwise
 

extrapolation required by numerical integration. 
 In addition, examination of
 

the analytical solution yields general characteristics of a satellite's motion
 

under the influence of a given perturbing force.
 

LAGRANGE'S PLANETARY EQUATIONS
 

(16 ) 
Lagrange's planetary equations describe the variations with time
 

of a satellite's orbit elements and will provide the basis for the analytical
 

solution developed here. 
This set of six first order nonlinear differential
 

equations is given by Eq. (2-1) through Eq. (2-6)
 

da 2 DR (2-1)
dt na DM(-) 

de = 2 2 DR DR 
_dT 2 [1-a - t-(-2na a 

dI - csc I [Cos I DR DR
dt na[2 e - - ] (2-3) 

dQ - csc I DR (2-4)

dt-na2Y -e 324
 

dw 1-a [-cot I SR 1 SR]

-

d n2 L 2 D + e (2-5)na 1-a
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2dM i F1-e 3R R] 
(2-6)na 'Leae + 2 a 


The elements a , e , and M are the dynamical elements; hence, they are 

invariant under coordinate transformation. The elements Q , w and I
 

describe the orbit's orientation with respect to a specified Cartesian co

ordinate system as shown in Figure C-1 of Appendix C. The quantity R is
 

the disturbing function and represents the portion of the potential function
 

which causes deviation from two-body motion. The mean motion is denoted by
 

n. 

An examination of Lagrange's planetary equations reveals that the
 

equations for five of the six elements will be singular if the eccentricity
 

and inclination are zero. It can be seen from Fig. (C-1) that as the incli

nation approaches zero the node becomes completely arbitrary. Similarly the
 

argument of pericenter and mean anomaly become aribtrary when the eccentric

ity approaches zero. Since the eccentricity and inclination are well de

fined even when they are zero, it is clear that the singularities in and 

I are mathematical. Furthermore, the singularities in A , j , and M are 

geometrical since they may be removed by a coorindate transformation. The 

mathematical singularities in & and i can be removed by simply rearrang

ing the differential equations as follows 

de A -a 2jjJ2 R aR
 e - 2 - - (2-7) 
na 

sin I d dt 2(/2-8)m os I R (2-8)
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Even though the node, argument of pericenter and mean anomaly become arbitrary
 

under certain conditions, the position of the vehicle with respect to the X

axis is still well defined, and the geometrical problems associated with the
 

definition of ? , a , and M may be resolved by the redefinition of these
 

orientation angles. It is clear that for elliptical motion the angle a + M +
 

Q always will be well defined even though the individual quantities may be
 

poorly defined. The differential equation for w + M + Q becomes
 

d 1 sin I DR
 
dt Ca+M+Q) 2 2
n + na Vi-e (i+ces I) SI
 

2+ ./Ie SR (2-9)

2 


na 3a h(1( -l) De 

Although it appears that the above equation is singular when I = , for the 
DR 

cases of interest =0 when I = 0 or I =w . However, any numerical 

difficulties can be eliminated by using a + M - P when I approaches w
 (2)
 

Hence, the differential equation may be written as
 

d1~d (w+M+Na) 
dt-

= n + 1 
[Fs
[F(.) 

R 
'-
313 

SR 
2a

a S 

i+K e- (2-10) 

where a = 1 for 0 s I s 175' and a = -1 for 175' < I 180' and 

K = -e 

F(=) a sin I
i+e cos I
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The nonsingular elements are defined as follows (2):
 

h = sin I sin Q 

k = sin I cosn 

A = e sin (w + e) 

B = a cos (w + n) 

6 = W+ M+e . 

The sixth element is the semimajor axis, a . The associated differential
 

equations are
 

da d- na2 3RM (2-11) 
dT na 3 

dh d + cos I sin Q dI (2-12) 
dT dt2 T 

dk dO d 

d-k 
dt 

= -h -- + os 
dtd 

I Cos dl 
(2-13) 

dt = B dw + a + sin (+a ) -de (2-14)
 

dB [d dO] de (2-15)
dt = -Ad + a + Cos (w+aQ) 

d6 d = -do + dM- +0- dO (2-16) 
dt dt dt dt 

d(cos I) 1 F- cs 3

/_/- a.]a2 I (2-17) 

na 1 L
 

The equation for cos I is used to determine I since 0 :sI _<a and cos 

uniquely determines the quadrant. 

I 



In order to obtain an analytical solution to the above set of
 

differential equations, it is necessary to express the disturbing function
 

in terms of the orbit-elements. The required results for the primary body(22)
 

(1 )
and the third body disturbing function have been developed by Kaula. The
 

transformations from polar spherical coordinates to the orbit elements for
 

the primary body and the transformation from rectangular cartesian to the or

bit.elements for the third body disturbing function are quite involved. These
 

references are-rather brief; however, a detailed description of both these
 

(23)
transformations is given by Born and Hildebrand . A derivation of Hansen's
 

coefficients which are required for the transformations also is given.
 

THE PRIMARY BODY POTENTIAL FUNCTION
 

, 23)
The potential function for the primary body is
(22
 

=9z Sm 0)V e P(I, e) C, , e, (2-18) 

a + mpq
k=0 rO 


The potential function reduces to that of a point mass for Z=m=O . If the 

origin is located at the center of mass as is assumed for this investigation,
 

V = 0 for t = I . The portion of V for which k2 2 is known as the
 

primary body disturbing function.
 

In Eq. (2-18) a is the mean radius of the primary body and
e 


P(I, e) = Z Z Fmp(I) G pq(e) (2-19)
 
p=0 q=- m
 

where
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F Cmp()= Z (22-2t)! 2 .a -m-2t I
t t(at)!(a£m_2t)!2 ( a_2t)
 

mt 

s( cos I Z -m2t+ -S (- 1 )c-k (2-20) 

k is the integer part of (Z-m)/2 , t is summed to the lesser of p or 

k , and c is summed over all values which make the binomial coefficient
 

nonzero.
 

2
The function G pq(e) is defined as follows: if £ - p + q = 0 

p'pq 

G pq(e) 2 d=O (2 2) d+-2p') (2-21)(1_e2)_ P 2d (

in which 

p' = p for p -a k/2 
(2-22)


p' = i-p for p £/2 

For £ - 2p + q / 0 

G0Ce(a) I (I + oI Pqpqk Qipq (2-23)(i)IqI $2) k=O 02k 

where 

= e (2-24) 

h (2p'-211 (-1)r ( Z- 2
_P_ 
 e


Pr 2E (2-25)

±g',r= !
h k O 0 h0
 

h = k + 'q', q' > 0; h = k, q' < 0;
 



and 

h~q p j 1 F(22ptqer 
2q = r=0L 2 j (2-26) 

h = k, q' > 0; h = k - q', q' < 0 

P' = p, q' = q for p Z/2;
 

P' = 2-p, q' = -q for p > k/2
 

also, in Eq. (2-18)
 

N, , - even 

Simpq(w, M, Q8) = 2-is od cos
XSm oddco] [(-2)-m 


-rn
even 
+ (2-2p+q)M + m(Q-0) +
 

I9mJ 2-m odd
 

sin [(Z-2p)e + (2-2p+q)M + m(S2-8)] (2-27)
 

where 8is'the anglb measured in the equatorial plane eastward from the inertial
 

X-axis to the prime meridian. The quantity S2 mpq also may be written as
 

follows: if k - m is even,
 

S ampq,(,
M, S, 8) 
= Jtm cos 2 mpq (2-28)
 

and if Z - m is odd,
 

S (mpq(,
M, 0, 8) 
= Jkm sin 2 mpq (2-29)
 

where
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0Pmpq = (Z-2p)e + (Z-2p+q)M + m(--Xm) (2-30) 

The sets [C m, S m] and [Jzmt' A2m 
] 

are constants determined by the shape
 

and mass distribution of the body and are related by
 

2


C9m = Jpm cos m X m 

Skm = Jzm sin m X9m"
 

The G pq(e) functions are the coefficients of'the Fourier series expansion
 

of the functions
 

r sin mf and n cos mf (2-31) 

2
(23)
in terms of the mean anomaly . A recursive relationship for the G pq(e)
 

functions is developed in Appendix B.
 

THE THIRD BODY'-JSTURBINGFUNCTION
 

The notation for the 'third body disturbing function is identical to
 

that used for the primary except that the quantities associated with the third
 

body's orbit are designated by 4sterisks. The third body disturbing function
 

is(1,23)
 

R= K C(I, I*, e, e*) (2-32)
 
rn0m m (2-+m)!
9=2 


TimpsqjCMQa*,H*,o*) 

where
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C(I, I*, e, e*) = E E s E F (I) H (e) F (IC) G s(e*) 
p=O q=-- sO j=_ imp ipq ims isj 

(2-33)
 

The functions F (I), F ms(I*) and G sj(e*) are defined exactly as they
 

were for the primary body. Also = 1 and K = 2 for m $0.
 K0 m 

The function H (e) is defined as follows: if i - 2p + q = 0 
ipq
 

(-a)i-2P' p2k 
E (,-pp'+i)34
H Ce) P'


ipq (1+82 )+i kO I 220 +kk (2-34) 

where
 

p = p for p Z/2 and p' = - p for p Z/2 

When i - 2p + q / 0 , H pq(e) is defined as 

Hipq(e) = (_l)IqI (+8 ) s 8lq j Pipk ipqk 2k (2-35)
9pq 

2

~~k=0 pk ~q
 

where
 

h j2p+l) (_)r [_2p,+q,)el -
ipqk r=0 hh-r ! 2P2$ r 

ipqk = Z(2p'+) 
 I [i-2+] 
 r (2-37)
 

The definitions for the indices are the same as those given for G pq(e)
 

Also,
 

T .mpsqj(, , 4, = [(i-2p)e + (i-2p+q)M
M, W M*, C*) cos 


- (i-2s)w* - (i-2s+j)S* + m(-*)] (2-38) 
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The lead terms ip bath the G pq(e) and H pq(e) functions are of order
 

q

ea , and since they are power series in e , only a few terms need be 

considered for near circular orbits. Kaula (22) gives tables of the FxmpI) 

and G pq(e) functions for several values of the indices £ m p q . Ap

peidix A presents the table of H pq(e) functions for the same values of the
 

indices presented in Ref. (22). These results were generated by the IBM 7094
 

computer using the symbolic manipulation language FORMAC.
 

When the disturbing potential is written in this form it is easy to 

isolate the short period, long period and secular portions by selecting the 

proper indices. For example, the short period effects, those periodic in 

M , may be eliminated by letting k - 2p + q = 0 in the primary and third 

body disturbing function. 

The disturbing function, R , which appears in Lagrange's planetary 

equations is the sum of the primary and third body disturbing functions, i.e.,
 

R = E E Vkm + E R (2-39) 
k=2 m=O Z=2 

The derivatives of R with respect to the orbital elements required by
 

Lagrange's planetary equations are obtained easily by differentiating Eq.
 

(2-39).
 

THEORY OF THE PERTURBATION SOLUTION
 

Lagrange's planetary equations are of the form
 

dx. 
t S fi(x, t) i, j = I.. .6 (2-40) 
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and subject to the initial conditions
 

xi(to) = ai i = 1.. .6 (2-41) 

The quantity e is a small parameter proportional to the magnitude of the
 

perturbing force. A standard precedure originating with Euler is to express
 

the solution of (2-40) as a power series in s
 

xi(t) a. + e x1)Ct)(
+ 2 X(2)(t) + ... (2-42) 

where the x.J(t) are to be determined.
 

Following the procedure of Chapter III in Ref. (24), Eq. (2-40) is
 

expanded in a Taylor's series in x. - a. as follows,

]3]
 

dx. 
S f(i(, t) 

6 
ES 

2f. 
- (x.-c.) 

j=l 1 

1 
6 @2 

1 (x-a.) 2 

+]2 ] (2-43) 

6 6 2f. 

+ 	 I E ax x Cx,~j (x k +..
 
j=1 k=l j k
 

j k 

If Eq. (2-42) is substituted into Eq. (2-43) and terms with corresponding
 

powers of E 
are equated, an infinite series of systems of differential
 

equations is obtained:
 

(

dx
dt
1) 

= f.(ai, t) 

(2)

dx n 3f.
 

1 Z @ x(1) (2-44)
dt - j=i 3x- j 
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d×( ) 
 n Df" x(2) 1 61 2f.1 x(1) 2 +6 6 32fi x( )

it = x + (
( X . x 1 )
dta J ' -- 72 ~ ax-xx j k

DxI× j=1! k=1 

d(k) (k - )di - p(k) (x(1) + x 2 ) (1)4 

dt i j ' t) (2-44) 

share the pk ..
 

i are polynomials in the 
(1) 


x x(k-i)
 
ii 
 -


Since the fi(ai, t) are continuous functions of time, the set of
 

differential equations, x
( ) 

, may be solved directly by quadratures to 
i
 

yield
 

(1)
x = fi(o., t)dt = F.I (o., t) + C. (2-45) 

whare the C. are arbitrary constants.
 

Now Eq. (2-45) may be substituted into the second of Eqs. (2-44)
 

whose right-hand member will now be a known continuous function of time.
 

(2) (k)
Consequently, the xi and similarly all the x. may be obtained
 

sequentially by quadratures. A general term of the solution is
 

pk) 
x(k = ( x........ )dt = F Ca t) + C'. (2-46) 
x(k) C (1) x(k-1))d F(k)Ck
 

i J i x 3 i 3j i 

share the Ck) are arbitrary constants.
 

The sets of constants C(k) may be determined in terms of the a.
 

Dy substituting Eq. (2-46) into Eq. (2-42) and evaluating the results at
 

t = t . The result is
 

1i ai P( I 0o .. .. 0 .
a. = ± 
+ 

t) 
+ 

l)) + pk(Fi(ail t0)Ci(k)) . .+ (aC + 
( 

+ (2-47) 
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Since c has been assumed nonzero, its coefficients must vanish. Consequently
 

the C(k) have the values C
(1 ) 

= -F(1) (aio t) . , C. = -F(k) (a. t 
1 i 0 1 j 0 

k
Therefore, the function x.1 are the uniquely determined definite
 

integrals
 

t 

x. = .k) Cx..) x.k-1)dT (2-48)

i 
t 0 

where
 

i = 1. 6, j = , ... 6, k = 1, 2... 

(24 )

Moulton discusses conditions under which the series (2-42) converges to
 

a solution of Eq. (2-40) and presents a proof of convergence.
 

Since the perturbing forces associated with the orbit of either an
 

earth or a lunar satellite are quite small in comparison to the central
 

force, the equations of motion are well suited to solution by a perturbation
 

technique. However, since the labor associated with a secend order solution
 

is prohibitive and the solution itself is so lengthy and cumberseme as to be
 

impractical, only a first order solution will be considered here. The first
 

order solution will be modified somewhat in order to include some terms
 

which would ordinarily be considered second order.
 

The first order solution for Lagrange's planetary equations involves
 

the solution of the first set of Eqs. (2-44) which has been modified to in

clude the linear dependence of the mean anomaly on time:
 

(

dx ')

dt - fi(al M 

+ 
nt, t) j = ... 5 

i = I . . 
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where n is the mean motion given by
 

1/2
 
n a3/2
 

a
 

and the a. are the epoch values of the elements.
 

When this assumption for the elements is substituted into the right

hand side of Lagrange's planetary equations, the equations are both linear
 

and independent. This allows them to be integrated individually to obtain
 

the first order solution. However, it is advantageous to allow for the sec

ular variations (rates) of Q , a and M in evaluating the first-order
 

(16 )
 perturbations arising from a given term in the disturbing function . By
 

including these secular rates, terms which ordinarily would come from a
 

second order solution are obtained from a first order solutio ')Also, com

bining the secular rates due to the primary and third body couples these
 

effects and increases the accuracy of the solution. This modification of
 

the first order equations still leaves them linear and independent. In
 

addition, it is still .permissible to deal separately with each term or
 

group of terms of the disturbing function. The solutions obtained from the
 

primary and third body disturbing function still may be superimposed.
 

SECULAR RATES OF THE ELEMENTS
 

If the argument of the trigonometric function vanishes, the only
 

elements of the satellite's orbit which the disturbing function is depen

dent on are a , e and I . This portion of the disturbing function
 

causes the elements to vary in a secular manner; consequently, it is desig

nated as the secular portion of the disturbing function. The only elements
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which will have secular variations are Q , w and M since the differential
 

equations for the remaining elements do not contain the partial derivative of
 

R with respect to a , e or I .
 

Now-it will be convenient to separate the disturbing function into its
 

secular and periodic portions. Let
 

R = R + Rt (2-49)
e 


where Rc is the secular portion of the disturbing function. Note that Rc 

contains all of the terms of the primary body disturbing function for which
 

£-m is even, t-2p = 0 
(2-50) 

-2p+q = 0 , m = 0 

plus that portion of the third body disturbing function for which
 

£ is even, £-2p = 0
 

Z-2p+q = 0, X-2s = 0 (2-51)
 

i-2s+j = 0, m = 0
 

The quantity Rt is the periodic portion of the disturbing function and
 

contains all remaining terms.
 

The general expressions for the secular rates of the orbit elements
 

are derived by substituting R into Lagrange's planetary equations. The
 

results for the primary body distrubing function are:
 

= ae = I = 0 (2-52)c c c 
£
 

p a
 
= csc I P(I, )(2-53)
 

c £ na£+?wKI £0
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: 	Ec =1 a cot I + -e - - 1 (2-54) 

Z na L 3e J0 

3P(I, e) I 3P(I, e) 

2 

2 	 a'-an 3P(I, e) 2(1+) P(I, e (2-55)ea£naZ2 ae 

The secular rates due to the third body disturbing function are
 

c 	= ac = i = 0 (2-56) 

P* -2 csc I D,(i,I*,e,e*) (2-57)
 

c Z a*P+l nK 31
 

9-2
 
-


= a K F-cot I 3C(I,I*,e,e*)
a9£ n L K2 31 

+ 	Ia3C(I,I,e,e*)]
-e 	 (2-58)( 2 -5 8
 

= n-S Z i a-
2 
[K

2 
C(II*,e,e*)Mc c Za*,Z+! n e@
 

+ 	22 C(I,I*,e,e*)] (2-59)
 

where the conditions given for R. in Eqs. (2-50) and (2-51) must be satis

fied by the summation indices.
 

The secular rates due to the oblateness and the first term in the
 

third body disturbing function are given below for convenience. For the
 

oblateness,
 
2
 

r-3/2 J a2
 
n a2 20 ae cos 	 (2-60)1 


3	 4 a 2K2 
F / a (5 cos 2-) 

Cc20n ae 
 (2-61)

C ~ a K2 I1 
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3/4 J 2 

N = n + n a2 ' (3 cos2 -1 (2-62) 

For the first term in the third body disturbing function 

c 
3/4 2 

n 

c'oCOs I 

K 

2(i+3/2 e ) 

(0-e, 
2 
) 
3 
/2 

(3/2 sin21*-1) (2-63) 

di = 3/4 n" (3/2 sin2*-i) 5/2 sin2, _ e--- (2-64)
 

2 3
 n (l-e* ) /2 K 
 2
 

c =n -3/ (7/3+e2)2
 

S= n-3/4 n (7 23/2 (3/2 sin2I-i) 
- C n (l-e*2)3/ 

(3/2) sin2I-i) 
 (2-65)
 

where
 

n*= /1L. 

and n is the value of the mean motion based on a mean value of the semimajor
 

axis.
 

SOLUTION OF LAGRANGE'S PLANETARY EQUATIONS
 

A first order solution of the nonsingular set of Lagrange's planetary
 

equations may now be obtained by holding 
a , e I, a* , e* , I* ,O 

and w* constant when they appear on the right-hand side of the equations and 

by substituting for the remaining elements the expressions, 

= o + (t-to)
0 C 0 
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W = W + C(t-t ) 
o c 0 

M = M + n(t-t ) (2-66)
o o 

M* = -M* + n*(t-o ) 

With these substitutions the nonsingular set of Lagrange's planetary equations
 

are linearized and independent end may be integrated individually. A simpli

fied example showing the general procedure for the integration is given:
 

assume
 

a = a0 + &t 

then
 

d 
K - sin e = K cos & 

since it has been assumed that & is constant
 

f F K 
K jcos a dt : -r sine 

and
 

K sin a dt = - cos a
 

Here a represents the argument of the trigonometric term in the disturbing
 

function and K is a function of a , e and I which are held constant
 

during the integration.
 

To further illustrate the method of solution, consider the equation
 

for the semimajor axis:
 

a = a + M dct . (2-67)t 2
it ne 2W
o
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Substituting Eqs. (2-18) and (2-32) for R yields
 

I 2 
a = a. + -- P(I, e) dT 

t k2 m=0 na 33M 

t £ (-m)!+ 	 M (I+m)! e,eK_
 
ft 1=2 m=O na--'
 

3
 
Tjmpsqj dT 	 (2-68)
 

3M
 

The arguments for S mpq and TPmpsqj are
 

5 1
' mpq = lmpq (Q0' W0 , M0' 
O0) + ;Uimpq (t-t 0)
 

and
 

t
 * *
Ylmpsqj = Y mpsqj (0'' M0, 0 , 
s , M ) + %impsqj (t-t0 

respectively, where
 

+ (

$9mpq = (9 - 2p) c P - 2p + q) n + m( )
e 


and
 

+ (

Y mpsqj= (Z - 2p) &oc - 2p + q) n + m
 c
 

-	 (k - 2s + j) n*
 

The integral for Eq. (2-68) now may be written directly:
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k 2vtae 

(I
+ E ----+2 P(, e)a° 0 2m n a 

1
S £ 2v,- t 

(t-2p+q) .apq + E E 
IDmpq £2 m=0 n 

Km (i-+m)! ____ t 
e) 


(£-m! IeC( e (-2p Q) s£psqj J 
t 

Next, consider the differential equation
 

A = k 2 + cos I sin Q I 

If the expression for 2 is written as
 

2= 2i±2ti
 
C p
 

where. 2c is the secular portion and 2 is the periodic portion, then
 

+ + 

= k (Q' 2) cos I sin I 

c p 

The homogeneous portion of the differential equation is 

h= kc (2-69) 

The solution of Eq. (2-69) for the initial conditions 

I = I 0 , 2 = for t =tn 0 o 

is
 

h = sin I0 sin [20 + 6c(t-t 0)]
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The total solution is
 

h = sin I0 sin [Q0 + kc(t-0
 

+ J (k S + cos I sin Q I)dT 

t0 

Since the solution of the particular integral involves a large number of
 

terms, it is presented in the list of solutions. In order to illustrate
 

several important points, the solutions for the nonsingular elements in
 

terms of the partial derivatives of the disturbing function are given:
 

a a + ft 2 DR dx (2-70)

o na Dm
 

h = sin I sin (Q + S (t-t + 
0 o c o na2K (2-71) 

t (CosQDR R aR
 
+ cot I sin Q (cos I 2- - ) 

k = sin 1° cos (S + hc(t-to))
 

+ aI
2

[- sin S DR + cot I cos Sna 2K ft
o
 
0
 

(cos I - - )]d- (2-72) 

A= e cos [so + ano + (6c + a C) (t-to)]
 

t
I -F(o)e sin (s+aQ) 3R 

+ -- t [ KjI 

na to
 K
 
0
 

- K sin (+aS) 3Rae
 

+ K cos (-+a) (K -R - -ldT (2-73)
a 3m 3s
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B= e sin [so + ao + ( e+a c) (t-to)]
 

+ t F(a) e cos (s+o) DR 2Rc%(w+Ot)
FJo) K S-T + Kecos 

na to KD
 

K DR SR
+ e sin (w+aQ) (K -g - O(2-74) 

aa
 

S~~~ +6tt± iR1[f222 ft [FS - 2a D o e o na t K SI @a
o 

0 

t 
e K San+ e d + i Aa dT (2-75) 

1 t~ [SR SR

Cos I = Cos 0 + f -es-2 I dr (2-76) 

na K 

The final integral in the solution for 6 is the second order effect of the
 

(13)
variation of a on M as given by Kaula
( 

. Since the semimajor axis is 

subject to short period variations only, this second order variation in M
 

is considered when the short period terms are computed.
 

1 1
 
In the above equations terms such as and I still exist.
 

e sin I
 
(2)
However, these are really not singularities since
 

2 
T-DR '5-SRl_ ee (2-77) 

and
 

(cos I S-R - S) sin i (2-78) 

Consequently, any numerical difficulties are eliminated since mean values
 

are used for e and I and they will never be zero.
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List of Solutions
 

The solutions for the variations of the nonsingular orbit elements
 

under the influence of an aspherical primary body and a perturbing third
 

body are: t
 

a =2oa (Z-2p+q)P E
 

[j2o* .J! --- (9t-2p+q)C E1"(2-79) 

t
0 

91 na
 
h sin I sin (Q +O (t-t)) + E
 

o o c 0 
£,m 	Ka
 

m]E4}

LB + P cot T [(k-2p) cos T-

1 


-i-2 
r;
 
E7
+ z E a Ym E 

+ 
C cotI 

Z m nK
 

[(-2p) cos f- m]4,E 	 (2-80.)
 

t6
 

+
k = sin I cos (0o -(t-t ))+ E -
o o c 0 ' 

Z,m Ks 

E2 + P cot I [(U-2p) cos Ym] E3) 

- -2 -0 
++ * a Ym [- E8 C cotT 

K
9 m 


[(Z-2p) cos I - m] E91 (2-81)
 

0 
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+
A 	= eo sin [so + ano (toc+a-c)(t-to )] 

E 	 nak F -F(n) P e+ -pe + K 
 E1
 

+ 	 K P -(kI-2p) +S i1 1 lL 	 I+K 41e 4 

L 	 -
P 	 m n YT[[Ke +K E7 

+ KC L( -2p) + K E it (2-82)L luK - 104t 

B 	 = cos [w + o +(6c + nOc)(t - to)]e° ° 


+ 	 Z a F() 9P K 1P
 

1,m - -- K I-
3 ej 2
 

+ 	KP + e E E3] '
 

- o~i
 
a -- Ym t[-7 ~ aC. KK -- 8F(.) 	 2C ]E 

+ KC [ !;+K + --	 (2-83)
e 


} 
Ito 

+ (t-t + -F L= o ~(-)o Z, -Z [F -- I) 2(1+1) P
 

31 
 t
 
K 
-

0c0 
eK DP 
 3- i2pg
 

. 4)mpq 

- tao 

LY 	 +-K
+~~~ -m-2 	 [ tF()mT ~" aC -2 C +eT K -3C

3nC 	 E (2-84)
 

0 
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Cos =Cos 1 - E 
,mI (K 

-Y-2a_ _ 
E Z a nK 
2m 

e- P[(2-2p) cos I - m] Ea9' 

Ym C[(-2p).cos -m] L2 
12 

t 

0 

t 

o 

(2-85) 

where 

K 

F(a ) 

A -2 

a sin 
1+a cos I 

Z 

y 

= lI 

a,+ 1 

= K ( -m)! 

m (2-n)! 

(2-86) 

and C) denotes mean value. For 2  m even, the E.'s 
.3

are, 

Bl =~ reinsin ! 2p + 
sin_2-mpg (281

(2-87) 

E2 = 
J9m 

£mpq 

cos 8-9p 
*.-82mpq 

cos -

2mpq 

cos 0p 
$+ 
impq 

cos t+ 

(2-88) 
( 

E3 = 2 

. mpq 

i+ "pg 

2mpq 

(2-89) 

Jm 
Bq 

= JAm 

tsin 8-

t 2'mpg 

si Pmpq 

5E5 

sin 0+m 
+~ 8k!2±mp 

2mpg 
(2-90) 

(2-91) 

2mpq 

E6 = Jm mp 

2mpq 

(2-92) 
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If 

E4 

E12 

8  m is odd, E1 is replaced by 

by E2 , E5 by -E6 and E6 by 

are defined as follows: 

-E 3 

E5 

, E 2 by -E4 , 

The quantities 

E3 

E7 

by E1 

through 

B7 = 1/2 
sin y 

'tmpsqj
Y2mpsqj 

+ 
sin ypsj 

apsqj
Y mpsqj 

(2-93) 

E = 1/2 
9 

psqj 

SY'mpsqj 

c 5'psqj 

. mpsgi
9 'mpsqj (2-94) 

E 

E 

El 

= 

= 

Cos Yzmpsqj 

1/2 

YZmpsqj 

sin y-1/2 ai Xmpsqj1 

0L Y mpsqj 

sin Ysmpsqj 

sin y 

impsqj 

+ 

CS+YImpsqj 

Ykmpsqj 

sinsy.+ Zn4 

Y mpsqj 

(2-95) 

(2-96) 

(2-97) 

El2 = cos Ympsqj 

\tmpsqj 

(2-98) 

The 8 and 8 functions are defined by 

8 mpq = (Z-2p)w + (2-2p+q)M + m(S-e-A m) (2-99) 

8mpq = (Z-2p)6c + (Z-2p+q) + m(oc-6) (2-100) 

(+ 
Pmpq 

= (Q-2p+b)w + (Z-2p+q)M + (m+a)0  m(e+ m) 
km 

(2-101) 
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6 

pq = (Z-2p+b)V + (Z-2p+q)n + (m+e) c - ms (2-102)

c 


4Pmpq (k-2p-b)e + (Z-2p+q)M + (m-a)Q - m(O+i ) (2-103) 

6
'mpq (Q-2p-b)c + (-2p+q)W + (m-a) - m (2-104)
e 


The y and y functions are defined by
 

Ykmpsqj = (Z-2p)s + (-2p+q)M - (Z-2s)w* - (Z-2s+j)M* + M(-Q*) (2-105) 

= (Z-2P)Cc + (2-2p+q)K- (2-2s+j)n* + me (2-106)
c 


yZmpsqj = (i-2p-h)w + (Z-2p+q)M - (Z-2s)w*'- (Z-2s+j)M* + (m-c)Q - mQ0,
 

(2-107)
 

Yimpsqj = (Z-2p-b)&c + (Z-2p+q)K- (Z-2s+j)n* + (m-a) c (2-108)
 

Y+mpsqj = 
 (Z-2p+b)e + (t-2p+q)M - (Z-2s)w* - (2-2s+j)M* + (m+)Q mQ*-

(2-109)
 

= (1-2p+b)de + (i-2p+q)o- (Z-2s+j)n* + (m+) c (2-110)
e


In Eqs. (2-79) through (2:81) a = +1 and b = 0 . In Eqs. (2-82) through
 

(2-85) h = 1 and
 

° 

a = -1, for 175 < 1 < 180
 

(2-111)
 
a = +1 , for 00 < I S 1750 
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For the primary body solutions the symbol E represents the summation
 
km
 

over a specified set of harmonics. For the third body solutions, the
 

indices m , p and s are summed from zero to k , and 
k is summed
 

from two through the number of terms desired in the third body disturbing
 

function. The indices q and j are summed between limits dependent on
 

the satellite and third body orbit's eccentricity.
 

The assumption that w* and n* are constant leads to numerical
 

difficulty in the solution for the third body effects. First, when the
 

indices assume the values
 

£ m p s q j 

2 0 1 0 0 -2 

2 0 1 2 0 2 

then
 

Y20100-2 = 2w* and = -2w* (2-112)Y201202 


but
 

Y20100-2 Y201202 = 0 . (2-113) 

Consequently, E,, and E12 have zero divisors; however, this is no
 

problem, since these coefficients are always multiplied by G sj(e*) and
 

G20-2(e*) G222(e*) 0
 

Unfortunately, the other troublesome terms are not handled this
 

easily. When the indices assume the values
 

Z m p s q j
 

2 1 1 1 0 0
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and b = 0 , then 

Y211100 = -a* and Y211100 = 0 . (2-114) 

Now , , E. and El0 have zero divisors, and the solutions for 

h and k given by Eqs. (2-80) and (2-81) must be modified.. Actually
 

these elements are periodic in Q* for this set of indices and since
 

0' has been assumed constant the variations in h and k will be secu

lar. Consequently, the solutions for these indices must be obtained
 

separately. The solutions are
 

E7 E8 


(h)211100 6 F211 (1*) H210 (') G210(e*)
-


@F21 [sin M2-o1*) + (Cos Q*) t] (15 
H 
 -c 


1 .'Ito
 
*
 

211 (Y) cot T [sin 
(2M-Q ) + (cos Q*)T It 

+F 


2c
 

(k)211100 6 211(1*) H210(e) G210(e*)
 

t 
9jF
2 1 1 (f), [ -cos (22-S2*) + (sin Q*)r] (2-116)
 

c t0 

F211( ) cot T[cosC20Q0 ) + (sin Q*)] t 

where the terms in (cos Q*)i and (sin R*)T are the secular contributions
 

to h and k respectively. For the indices
 

£ m p s q j
 

3 1 2 2 1 1
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and b = 1 

Y312211 = C1 + o)0 - 0* + o* 

Y312211 = Cl + a)B 
(2-117) 

Y312211 = (1 - o)0 - 2w - 9* + 0* 

Y312211 = - ) £ -22 

If 175* < I C 1800 then a = -1 and y = 0 ; therefore, at least four 

of the E. coefficients in the solutions for A and B will have zero 

divisors. The solutions for this set of indices are:
 

A2- 312(, 321(a FF() @F312 (T) 

312211 3 a F31 3 K 3I 321
 

- 321 in [2(Q-w)_______+ KF 312C) e cos ( *- *)]r + sin [2(C - c)+- ] 

e K
"F312 Y)H321 LK' + j 

x [co COaW*-0*Y - Sin [2(2 O+w*--*]]2 ) 
(2-118)
,
-
-os 


( )
3 a F 3 -a F(a) "312 (

B312211 2 312 321 L k SI H321() 

KF3 1 2 () 321 () [[sin (W*-2*)]T 

(2-119)

cos [2(0-w) + 0* - 0*]] 

2( e- j3 te ) 


0
 

+K31 2 CI 32 1 C) 
 + Ke 
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x [(csin (wt*-Q))T . cos [2(9-w) + w -* 1 (2-119)2(04-6)i 
 I 
Also, when the indices assume the values
 

£ m p s q j 

4 1 2 2 0 0 

the solutions for h and k again have zero divisors, and the solutions
 

for these indices must be written explicitly in order to avoid numerical
 

problems. However, since the third body disturbing function through three
 

terms is seldom required, the results are not given here.
 

It should be noted that the first order solutions presented here do
 

not contain first order long period terms proportional to J20 * These
 

terms would come from a second order perturbation solution; however, the
 

algebra involved in generating the second order solutions for the nonsing

ular elements is prohibitive. These first order terms are presented by
 

(5 )
 
Brouwer , page 394, for the Keplerian elements. An examination of these
 

terms 	reveals that they can be neglected for satellite orbits which are
 

near circular and have low inclinations.
 

COMPUTATIONAL PROCEDURE
 

The computational procedure for applying the analytical solutions to
 

the prediction of a lunar satellite orbit will be presented here.
 

A. 	Coordinate System
 

The inertial coordinate system used in this study is the selenographic
 

(2 5)
 system fixed at epoch. The selenographic system is fixed with its x-axis
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directed toward the earth at the moon's apogee or perigee; its z-axis is
 

directed along the moon's spin axis, and its y-axis completes a right

hand triad. This system is fixed at the initial time and is the frame in
 

which perturbations dhe to both the primary and third body are computed.
 

B. 	Computational Algorithm
 

-The computational algorithm for computing the elements of a lunar
 

satellite under the influence of an aspherical moon and a point mass earth
 

will be presented.
 

Given a set of initial conditions the procedure for computing post
 

epoch values of the orbit elements is as follows:
 

1. 	determine the orbit elements of the third body's orbit,
 

2. 	determine the mean values of a , e , and I and the mean motion,
 

3. 	determine the secular rates for Q and a , and
 

4. 	using the analytical solutions given in Eqs. (2-79) through (2-85),
 

compute the perturbing effects due to the primary and third body.
 

The earth's orbit elements in the selenographic system may be ob

2
(26)
tained from the JPL ephemeris tapes . These tapes give the position
 

and velocity of the earth-moon-sun system in the interval of time from
 

June 1, 1950 through July 31, 1999. The coordinate system to which all
 

data is referenced is geocentric and is defined by the mean equator and
 

ecliptic at the nearest beginning of a Besselian year, which differs from
 

the beginning of the calendar year of the same number by only a fraction
 

(27 )
 
of a day . However, for the application desired here it is necessary
 

to have the position and velocity of the earth with respect to the moon in
 

the selenographic of epoch system. The precession-nutation-libration matrix
 

for transforming from the reference geocentric system to the selenographic
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of epoch system is available also on the ephemeris tapes. Once the seleno

graphic position and velocity of the earth are obtained, the orbit elements
 

(
(28)
are readily available by well known transformations . The transforma

tions for obtaining Cartesian coordinates from the nonsingular orbit ele

ments are presented in Appendix C.
 

The mean values of a , e and I are obtained from the analytical
 

expressions for these elements. The analytical expressions in an abbrevi

ated form are
 

a = a° A'(s,r)dT (2-120)
 
t
 o
 
0
 

e" = e + J E'(a,T)dT (2-121)° 

t
 o
 
0
 

Cos I = Cos I0 + I'(a,T)dT (2-122)
 

0
 

where A'(a,T) represents the integrand in the solution for a , and 

E'(o,T) and I'(o,T) have corresponding definitions for e and cos I
 

If the values of the integrals at the lower limits are combined with
 

the epoch values of the elements, Eqs. (2-120) through (2-122) may be writ

ten as
 

a = K + [A(a,t)] (2-123) 

e = K + [E(a,t)] (2-124) 

cos I = + [I(a,t)] (2-125)
KI 


Since A(a,t) , F(a,t) and G(a,t) are almost periodic, they will oscil

late about the values of Ka , Ke and KI respectively. Hence K , K
a e
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and cos-IK will be good approximations to the mean values of a , e
 

and I . This is an iterative procedure, and for the first iteration the
 

epoch values of the elements are used on the right-hand side of Eqs. (2-123)
 

through (2-125). It was found that one iteration was sufficient to converge
 

to the mean elements.
 

The calculation of the proper mean motion, n , is very important
 

because any error in n will appear as a secular error in the mean anomaly.
 

If the satellite's motion is perturbed only by the zonal harmonics, the
 

total energy will be conserved since the potential function is independent
 

of time.
 

For a satellite moving in a conservative force field, the mean value
 

of n is given by
(
2)
 

n = //a3 (2-126) 

where a = a0/[l + (2Ra0/p)] . If the satellite's orbit is perturbed by
 

sectorial or tesseral harmonics or by a third body, the potential function
 

will be an explicit function of time and the energy is no longer conserved.
 

In this case, it is necessary to use the secular portion of the differential
 

equations for M to compute the mean motion.
 

In general the value of the mean motion, n , is obtained by evaluat

ing the equations for M , i.e. 
c
 

2

P ae K P 2(9<+i) p 

H n = n- I Ic Z +2 [a 3e - ZO 
K2 3'- +2(2-127) 

+1 
X a n e
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The quantity n is based on the mean value of a , as given by Eq. (2-123),

1
p/2
 

i.e. n /2 , and the calculation of n is included in the iteration 

loop for the mean elements. 

The secular rates for 0 and w may now be obtained by substituting
 

n along with the mean values of the elements into Eqs. (2-53), (2-54), (2-57)
 

and,(2-58). The final values of the rates are obtained by summing the primary
 

and third body contributions. The inclination functions, F(I) and F(I*)
 

and the eccentricity functions, G(e) and G(e*) , may be generated and
 

stored at the same time the secular rates and mean values are computed. The
 

symmetry properties for the eccentricity functions developed in Appendix B
 

should be used to reduce the number of computations.
 

Given the mean values and secular rates of the elements, then at time 

t the quantities 8 , 8 , y and y may be computed according to Eqs. 

(2-99) through (2-110). The values for the elements may now be obtained by 

evaluating Eqs. (2-79) through (2-85). The solutions are well suited for 

computer programming since they may be rearranged so that all quantities which 

are functions of the summation indices are grouped inside the initial summa

tion. 

Since the perturbations in the elements are essentially a product of
 

combinatorial functions, F(I) and G(e) and their derivatives, the per

turbations apart from the divisors behave as G(e) which is order ejq.
 

Hence, for small values of eccentricity only a few terms need be carried in
 

the q summation. For the primary body the limit on q is chosen so that
 

mql 2
-JIm 5 20 (2-128)
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2
 
since terms in J2 have not been included in the solution and J2 is


20 20
 

the largest of the harmonics. The same reasoning applies to the q summa

tions in the third body solutions; i.e.
 

e aS- <
P (2-129)
 

For near-lunar satellite orbits or for preliminary design work it may be
 

feasible to eliminate the short period effects due to the third body per

turbations. This is accomplished easily by letting q = 2p-t thus elim

inating the summation on q from the third body solutions. The number of
 

summations required to evaluate the system of equation for the third body
 

effect is
 

2
(Z - 1)(k + 1) (t + 1) (k + 1) ( .qmax + 1) (2-jmax + 1) 

Consequently, if the summation on q is eliminated there will be a sig

nificant reduction in the number of computations required.
 

The number of terms carried in the third body disturbing function
 

will depend on the satellite's altitude as well as the accuracy desired.
 

In general for Apollo-Type orbits the first term will be sufficient; how

ever, if the ephemeris is desired for times greater than three or four days,
 

it may be desirable to retain two terms in order to minimize long period
 

errors in the position and velocity. These long period errors are discus

sed in the section on results. If more than one term is carried, the
 

limits on q and j should be lowered for the second term since the per

turbations for the higher values of these indices are insignificant.
 

Normally the equation for cos I is used to determine I since
 

cos I is unique. However, for values of I within about .03' of 0' or
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-l
 
1800, single precision arithmetic is inadequate to determine cos
 

since
 
12
 

cos I - +.
 

will be ±.999... to a large number of places and the computer will in

terpret this as ±1 and I as 0' or 1800. However, sin I given by
 

sin I = I - I3/3! +-... 

will be well defined for single precision arithmetic. Consequently, for
 

this range of I the equations for h and k should be used to determine
 

the inclination and the sign of cos I used to determine its quadrant.
 

If the solution for the orbit elements is desired over a period of
 

time greater than one day, accuracy may be improved slightly if the third
 

body's orbit elements are updated periodically. This requires the use of
 

the JPL ephemeris tapes to obtain an updated set of selenographic orbit
 

elements for the earth. Then these elements are used to determine new con

stants of integration for the analytical solutions. The updating procedure
 

is equivalent to a piecewise integration of Lagrange's planetary equations.
 

Consider as an example the solution for the semimajor axis at time t which
 

has been updated at time :
tI 


a(t) = + F'(a,T)dT + G'(,T)dT (2-130)
 
to t1
 

a° 


where F'(e,r) is dependent on the original third body elements and G'(o,T)
 

is a function of the updated elements. Equations (2-130) may be written as
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a(t) = a(tI ) + G'(,r)dr t~t1 . (2-131' 
t1 

a similar procedure may be sed for updating the other orbit elements.
 

It may be desirable also to update e and I of the satellite's
 

orbit if the long term effects alter these elements significantly. This
 

could be done simultaneously with updating the third body's elements.
 

Although the computational algarithm for the nonsingular elements
 

has been set up with the earth as the only secondary body, the first order
 

effects of the sun probably should be included whenever the satellite's
 

semimajor axis is large enough to require two terms of the earth's dis

turbing function. The sun's effects may be included by performing an
 

additional summation over the third body solutions evaluated for the sun's
 

orbit elements.
 

A potential computational problem which should be considered is the
 

resonance phenomena. Recall that the form of the analytical solution is
 

Cos
 

ai = 0 + &c t-+ K sn 

where a represents one of the Keplerian elements and 4 is of the form
 

(

'mpq = (k - 2p) de + Z - 2p + q) +m(-) 

For some orbital-configurations it is possible that the secular rates of
 

the arguments for some of the surface harmonics may approach zero. Con

sequently, the periodic variations of the arguments will be more signifi

cant than their secular variations. In other words, a resonance condition
 

exists in which there will be libration rather than secular motion. The
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resonance terms in the analytical solutions are those for which

• =0 

0 .
Zmpq 


The classical example of resonance is that associated with the
 

-
critical inclination. Whenever the inclination approaches I = cos ' A/5
 

or 63.4350 the value of e due to the oblateness approaches zero (see Eq.
 

(2-61)). The analytical solutions will have zero divisors when the indices
 

Z , a , p , q assume values so that 

ttmpq = i(2-132)
 

where i is an integer. For Eq. (2-132) to be true the form of ; mpq
 

imposes the following restrictions on X , m , p , q 

m 0
 

(2-133)
 
Z-2p+q = 0
 

Since m = 0 , only terms in the analytical solutions associated with the
 

zonal harmonics are effected by the critical inclination. It is easily
 

demonstrated that no resonance conditions exist for terms associated with
 

the oblateness in the analytical solutions presented here. For £ = 2
 

and m = 0 Eq. (2-133) requires the limits on q to be ±2 and the only
 

allowable values of £ , p and q are 2 , 0 
, -2 and 2 , -2 , 2 

However, G pq(e) = 0 for these values and any potential resonance terms in
 

J are eliminated.
 

Terms in the analytical solution most effected by the critical in

clination are those in J30 ' the pear shape effect. These terms may be
 

expanded using a technique suggested by Ingram(29) so that the zero divisor
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is eliminated. However, the critical inclination in reality is no problem
 

whenever a realistic model of the disturbing function is used since there
 

will be contributions to oc from the third body effect as well as from
 

higher harmonics in the primary body's disturbing function. If only the
 

secular effects of the oblateness are considered, an expansion technique
 

must be used in the vicinity of the critical inclination.
 

Another case of resonance is that related to a satellite whose period
 

is an integer multiple of the period of the primary body such as the communi

cations satellites. Since 6c and c are small compared to H and
 

they may be neglected. Then
 

; mpq = (- 2p + q) c - m6 

Since k , m , p and q are integers, $ will be zero for certain com

binations of these indices whenever Hc is an integer multiple of 8 . If 

only zero order terms in e are considered (i.e., q = 0), the condition for 

resonance is
 

k - 2p m
 

or
 

Z - m = 2p 

Hence Z - m must be even and the satellite's period must be equal to that
 

of the primary body. Furthermore, the general (k, m) term in the disturbing
 

-
function depends on the radial distance as r ; consequently, the reson

ance term Vm with the lowest value of Z will be dominant. The tesseral
 

harmonic which will dominate the resonance effect is , the equatorialJ22 


ellipticity.
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This type of resonance will be insignificant for lunar satellites
 

since the minimum distance for a synchronous orbit is the earth-moon dis

tance. There is a resonance condition associated with a satellite located
 

at the earth-moon libration points; however, this situation will not be
 

considered in this investigation. For an earth satellite the minimum dis

tance for a synchronous orbit is about 6.6 earth radii. For a mare detailed
 

discussion of resonance see Ref. (30) or (31).
 

The resonance phenomena will not be considered further since the
 

problem of critical inclination is eliminated by other terms in the disturb

ing function while the altitude required for synchronous orbits is greater
 

than that of interest in the present study.
 

RESULTS
 

The accuracy of the analytical solutions was evaluated by comparing
 

results obtained with these solutions with those obtained by numerically in

tegrating the equations of motion for various orbital configurations. The
 

numerical integration was done with the ESPOD Program developed by TRW 

Systems(2) . The analytical and numerical results were compared for various 

initial conditions for time periods up to eight days. Comparisons were made 

for orbits perturbed by the primary body only, the third body only and the 

combined effects of the primary 'and third body disturbing functions. The 

nansingular elements were converted to Keplerian orbit elements in order to
 

give more physical insight into the error propagation and also to allow
 

comparison with the Keplerian elements given by the numerical integrator.
 

The results presented here are for a typical Lunar Orbiter and Apollo or

bit. The Apollo orbit has approximately a 100 n.mi. altitude, it is near
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circular and has a near equatorial inclination, while the Lunar Orbiter, as
 

is shown later, has a higher altitude and higher eccentricity. The results
 

for the Apollo orbit were compared over an eight day period and the results
 

for the Lunar Orbiter over a four day period. To demonstrate the character

istic and magnitude of the errors, they are plotted at fifteen minute in

crements for the Apollo orbit over a period of two days or about twenty

four satellite revolutions. Similarly, the errors for the Lunar Orbiter's
 

elements were plotted at thirty minute increments for a two day time span.
 

The disturbing function included Ji0 and J22 for the primary body and
 

either one or two terms in the third body disturbing function.
 

The epoch date and initial conditions for the Apollo orbit are
 

EPOCH DATE INITIAL CONDITIONS (Selenographic)
 

Year - 1969 a0 = .61 x i07 ft
 

Month - 7 = .01
e0 


Day - 7 = 177'
I0 

Hour - 2 0 = 450 

Min - 0 = 100W0 


Sec - 0 = 0
M0 

6 = 0o 
0 


The limits on the q summation for both the primary and the third body so

lutions were chosen as +2 , while the limit on the j summation for the
 

third body solution also was chosen as ±2 .
 

The results for the Apollo-Type orbit are presented in Figs. (1)
 

through (4). It is known that the variation in a is short period only;
 

consequently, the errors in a also exhibit a short period variation as
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shown in Fig. (1). The errors in a have a bias of about five feet because
 

a set of mean elements for the earth's orbit over the eight day period was
 

used. Ideally the values of the earth's orbit elements at epoch should have
 

been used initially and periodic updates made of these elements. However,
 

since the earth's orbit elements are practically constant, a mean set was
 

used to simplify programming and conserve computer time. The set of mean
 

elements will yield an error bound which will include that of true elements.
 

When the true set of earth's orbit elements at epoch was used this bias
 

disappeared.
 

The errors in I and Q are presented in Fig. (2). They can be
 

explained by examining the long period effects on I and 2 due to J22
 

(14)
 

These are
 

2
 
dI -ae
d - a 22 sin I sin 20 (2-134) 

p
 

2 
= a 0 I cos 20 (2-135) 

du -2 22 cos 
p
 

-2

2


where p = a(l-e ) and u is the argument of latitude. 

The notation of Ref. (14) has been altered slightly to agree with
 

that used here. From Eq. (2-134) and (2-135) it is seen that both I and
 

9 will have long period variations on the order of one-half the period of
 

the primary body. For a lunar satellite this will be slightly less than
 

two weeks. Even though the long period terms in J22 are included in the
 

solution, the errors in Q also exhibit this two week periodicity as the
 

following table demonstrates:
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Time (Days) AD (Degrees)
 

1 -.00104
 

2 -.00670
 

3 -.0151
 

4 -.0230
 

5 -.0270
 

6 -.0244
 

7 -.0138
 

8 +.00541
 

TABLE I - Errors in Node
 

The errors in I do not exhibit this two week period and are dominated by
 

other effects.
 

The neglected first order long period effects in the oblateness, which
 

(5)
exist for all the elements except the semimajor axis , will be small for
 

near-circular, low-inclination orbits and should have a negligible effect on
 

the elements of the Apollo orbit.
 

Figure (3) presents the errors in a and M . Since the eccentricity
 

is small, both a and M have large short period variations which are re

flected in the large short period errors shown in Fig. (3). The short period
 

variations in w + M are small for all values of eccentricity, and it is
 

seen that adding the errors in a and M will result in very small errors
 

in this quantity. Consequently, even for low eccentricity orbits, the po

sition of the vehicle is still well defined by the analytical solutions even
 

though the individual quantities w and M may be poorly defined. It was
 

found that the long term errors in a and M are inversely proportional to
 

the magnitude of the eccentricity and are primarily due to the omission of
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the second term in the earth's disturbing function. The result of including
 

the second term in the earth disturbing function is plotted in Fig. (3) for
 

the last two satellite revolutions of the second day.
 

Carrying the second term in the earth disturbing functions also re

duces the errors in a , e and I ; however, the improvement in these
 

elements is small, therefore it is not shown on the plots.
 

An examination of the long period effects in the analytical solution
 

reveals that there are terms with eccentricity divisors for both a and M
 

for the second term in the third body.disturbing function. Consider the
 

differential equations for a and M given by Eq. (2-5) and (2-6). Both
 

contain the term
 

f(a,e,n) 2R _ 2 R (2-136) 
e na alj .e 

2
The requirement for long period terms i6 that Z - p + q = 0 or 

2 
q = p - k . For k = 3 , q must be oddand when q= 1, the lead term 

in H1(e)
in @H ) will be a constant', therefore, the resulting terms in the analyt

ical solutions will have e as a divisor. Consequently, for low eccentric

ity orbits omission of the second term in the third body disturbing function 

results in large long period errors in w and M as demonstrated by Fig. 

(3). The solutions for a , e , I and Q do not have terms of this na

ture. 

The errors in position and velocity magnitudes versus time for one 

term in the third body disturbing function are shown in Fig. (4). Also 

shown is the envelope of the errors in range and velocity whenever two terms 

in the earth disturbing function are retained. Since the errors in the dy

namical element, M , are significantly reduced by including two terms in 
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the earth disturbing function the errors in range and velocity also will
 

be reduced because these quantities are functions of the dynamical elements.
 

Table 2 presents the errors at fifteen minute increments for the last
 

satellite revolution of the eighth day for both one and two terms in the
 

third body disturbing function. This table demonstrates the magnitude of
 

the errors in the elements over longer periods of time. From this table
 

it is seen that the analytic solutions are still in excellent agreement with
 

the numerically integrated ephemeris. The result of carrying the second
 

term in the earth disturbing function as demonstrated by Table 2 is that the
 

error reduction in a , I and Q is significant while errors for the
 

other quantities are reduced by more than fifty percent.
 

A set of initial conditions for Lunar Orbiter I was obtained from the
 

Mission Planning and Analysis Division of the Manned Spacecraft Center. The
 

epoch date and initial conditions are:
 

EPOCH DATE INITIAL CONDITIONS (Selenographic)
 

Year - 1966 a = 9106683.9 ft
o 


Month - 8 e0 = .30543108
 

Day - 14 1 = 12.0901350
 

Hour - 16 20 = 325.79860'
 

Minute - 31 aO = 180.47295'
 

Second - 52.013 M = .997841970
0 


6O = 0.0
 

The initial conditions correspond to aposelene and periselene altitudes of
 

about 1500 and 400 nautical miles respectively.
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ONE TERM IN THIRD BODYPOTENTIAL FUNCTION
 

Time, Aa Ae AI AO Ac AM AR AV 
Min. (ft) (deg) (deg) (deg) (deg) (ft) (ft/sec) 

-4 
11400 -.4 -.19380 -.00583 +.00231 -.112 +.143 +187.6 -. 165 

11415 -3.7 -4 -.20610 -.00582 +.00274 =-.115 +.147 +165.3 -. 146 

11430 -9.6 -4 -.20210 -.00583 +.00327 -.127 ±.159 +40.1 -.0391 

11445 -6.2 -.200l0-4 -.00586 +.00330 -. 128 +.160 -115.5 +.0940 

11460 -. 5 -.20510-4 -.00587 +.00317 -. 130 +.162 -202.8 *+.1759 

11475 -3.4 -4 -.19310 -.00584 +.00356 -. 125 +.158 -177.4 +.153 

11490 -9.1 -4 -.19910 -.00585 +.00414 -. 114 +.148 -51.8 +.0519 

11505 -6.3 -. 20210-4 -.00589 +.00420 -. 111 +.146 +101.2 -.0919 

11520 0 -4 -. 19710 -.00587 +.00510 -.110 +.143 +190 -.167 

TWO TERMS IN THIRD BODY POTENTIAL FUNCTION 

11400 -.4 -. 97810 -.0058 +.0027 -.0201 +.0517 +81.3 -.0715 

-4 
11415 -3.1 -. 10710-4 -. 00581 +.00316 -.0230 +.0553 +63.3 -.0564 

11430 -9.2 -. 10410 -. 00582 +.00370 -.0322 +.0641 +2 -.006 

11445 -6.1 
-4 

-. 1001 
0 
-4 -. 00584 +.00372 -.0321 +.0640 -63 +.0525 

11460 +.1 -. 1131 
0 

-. 0058 +.00359 -.0328 +.0656 -96 +.084 

-4 
11475 -3.3 -.10310 -. 00582 +.00399 -.0284 +.0617 -73 +.0623 

-4 
11490 -9.2 -. 10710 -. 00584 +.00458 -.0194 +.0539 -11 +.062 

-4 
11505 -5.8 -. 10510- -. 00587 +.00464 -.0186 +.0453 +106 -.0492 

11520 0 -.9910-5 -.00586 +.0054 -.018 +.051 +82 -.0725 

TABLE 2 

ERRORS IN THE ORBIT ELEMENTS FOR ONE SATELLITE 

REVOLUTION OF AN APOLLO ORBIT 
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The limits on the q summation for the primary body solutions are
 

±8 while those on the q summation for the third body solutions are ±4
 

The limits on the j summation associated with -the eccentricity of the
 

earth's orbit are ±2 . Two terms were carried in the earth disturbing
 

function, and for the second term the limits on q and j were reduced
 

to ±2 and ±1 respectively.
 

Figures (5) through (8) present the deviations in the orbit elements
 

and the position and velocity magnitudes of Lunar Orbiter I at thirty minute
 

increments for a duration of two days.
 

Because Lunar Orbiter I has a higher eccentricity orbit than the
 

Apollo, the short period errors in 0 , a and M are considerably smaller.
 

The long period deviations in w and M , shown in Fig. (7), are not of the
 

same magnitude. Note that these deviations are considerably smaller then
 

the corresponding ones for the Apollo orbit and as a result are exaggerated
 

somewhat by the plots.
 

The neglected first-order long period variations due to J20 in the
 

remaining elements will be more significant for Lunar Orbiter I than for the
 

Apollo orbit. However, an examination of the results presented here reveals
 

that for short-term ephemeris prediction the analytical solutions are in
 

good agreement with numerical integration.
 

Additional possibilities for improving the accuracy of the analytic
 

ephemeris generator were considered. The most obvious of these would be to
 

include the first order long period effects of oblateness. Because of the
 

algebra involved in generating these terms from a second order solution, the
 

(5 ) 

possibilities of using Brouwer's results should be considered. For long

term ephemeris generation the second order secular effects of oblateness also
 



4O'30 -

" 

20 

10

0o. 
-10 

-20 

-30 

-10 4 8 12 16 20 24 

TIME-HOURS 

28 32 36 40 44 48 

ERROR IN SEMIMAJOR AXIS AS A FUNCTION 
FOR LUNAR ORBITER 

OF TIME 

-40 I I ' I I I I I I 

F.2G 

-.4

S-6 

-1.0 4 8 12 

ERROR IN 

16 2'0 24 28I 32 

TIME-HOURS 

ECCENTRICITY AS A FUNCTION 

FOR LUNAR ORBITER 

FIGURE 5 

36 40 

OF TIME 

44 48 



1.0 

.8 

o .6 

(3.4 

-.2 

-.4 8 12 16 20 24 28 32 

TIME HOURS 

ERROR IN INCLINATION AS A FUNCTION 
FOR LUNAR ORBITER 

36 40 

OF TIME 

44 48 

o0 

-4 -1.2 

-16- 4 8 12 16 20 24 28 32 36 

TIME-HOURS 

ERROR IN NODE AS A FUNCTION OF TIME 

FOR LUNAR ORBITER 
FIGURE 6 

40 44 48 



.008.. ,.,. 

, 006 

40 o004 ........o.............I 

-.002
-.004 

4 8 12 16 20 24 28 32 36 40 44 48 

TIME-HOURS 

ERROR IN MEAN ANOMALY AND ARGUMENT 
PERICENTER AS A FUNCTION OF TIME 

FOR LUNAR ORBITER 
FIGURE 7 

-

OF 

M 

Sw 



-40U 

-80 

-120 4 8 12 16 20 24 28 32 36 40 44 48 

TIME-HOURS 

ERROR IN RANGE AS A FUNCTION 
FOR LUNAR ORBITER 

OF TIME 

1.2 

.8 

S.4 

x 

4 8 

I L L L L I 
12 16 20 24 28 32 

TIME HOURS 

ERROR IN VELOCITY AS A FUNCTION 
FOR LUNAR ORBITER 

FIGURE 8 

ILj 
36 

OF TIME 

40 
I 

44 48 



63 

should be included. The ratio of first order to second order secular effects
 
1 

of oblateness is proportional to - . Therefore, these effects would heJ20
 

negligible for the time periods considered here.
 

Next an attempt was made to improve accuracy by doing all calculations
 

in double precision. However, it was found that the errors inherent with
 

this perturbation solution are larger than the changes that double precision
 

arithmetic makes in the results.
 

It was found that the accuracy of the solutions was about the same
 

whether the perturbing force was assumed to be an aspherical primary, a
 

third body or the combined effects of the primary and third body. In sum

mary, it may be said that the analytical solutions presented here are an
 

accurate and efficient means of predicting the ephemeris of a satellite
 

moving under the influence of an aspherical primary and a third body. In
 

the following chapter the analytical solutions will be incorporated into an
 

orbit determination scheme for planetary satellites.
 



CHAPTER III
 

ON ORBIT DETERMINATION
 

INTRODUCTION
 

Having developed the general perturbation solution in Chapter II,
 

now it is possible to demonstrate its application to the problem of orbit
 

determination. A linear sequential estimator is derived in detail by using
 

the maximum likelihood (abbreviated M. L.) method. The least squares and
 

minimum variance methods for deriving linear estimators are discussed brief

ly, and their similarities are noted. In particular it is demonstrated that
 

the general perturbation solution derived in Chapter II can be used as the
 

basis for a preliminary design orbit determination program which is both ac

curate and computationally efficient. As a result of the reduction in com

putation time over programs which employ numerical integration, this program
 

is useful for studying problems associated with orbit determination. Also,
 

a realistic perturbing force model may be used rather than the two-body model
 

used in most preliminary design programs.
 

By using the M. L. principle a theory of sequential estimation is
 

derived for use when the radar covariance matrix is unkown. Application of
 

this scheme to a specific example demonstrates that good results may be ob

tained if a reasonable guess for the covariance matrix is available.
 

In addition, the problem of estimating the classicalKeplerian ele

ments is considered, and a comparison of the efficiency of the process for
 

estimating Cartesian coordinates and Keplerian elements is made. A brief
 

study of the accuracy of a state transition matrix generated by numeric par

tial differentiation is made in order to justify use of this method in the
 

orbit determination program.
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Historical Background
 

Historically, one of the fundamental preblems of astronomy has been
 

(32 ) 
orbit determination. As early as 1875 Gauss proposed the method of least
 

squares which is still the most widely used technique for fitting observation

al data. The classical method of least squares makes no use of statistical
 

knowledge about the measurement errors in the data, but merely chooses! as the
 

best estimate of the parameter vector the one which minimizes the norm of the
 

observation error vector.
 

R. A. Fisher was largely responsible for the introduction of statisti

(33
cal concepts into the field of estimation theory. In 1922 Fisher ' 34) in

troduced the concept of maximum likelihood. This technique requires a priori
 

knowledge of a likelihood function and chooses as the best estimate of the pa

rameter vector the one which maximizes the likelihood function. The M. L.
 

principle is intuitively appealing. Also, the procedure for deriving the es

timater is straight forward, and the estimator has several desirable statis

(35) 

tical properties. Swerling used the M. L. principle to develop the first
 

sequential differential correction procedure for satellite tracking.
 

Work in the field of communications theory has advanced the state of
 

the art of estimation theory. Transmission of communications signals by elec

trical means is subject to random perturbations or noise from diverse
 

sources such as thermal motion in resistors and galactic and ionospheric noise
 

in propagation. Hence, the communications engineer is concerned with extract

ing the best estimate of the signal from the eiectrical transmission. Much of
 

(36)
the fundamental work in this area was done independently by Wiener and
 
(37) 

Kolmogorov . The result of their work is the Wiener-Kolmogerov filter, 

usually referred to as the Wiener filter.
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(
There are several difficulties associated with the Wiener filter 38)
 

The optimum filter is specified by an integral equation whose solution amounts
 

to specifying the optimum filter by its impulse response. However, there gen

erally is no simple method for synthesizing a filter with a prescribed impulse
 

response. Furthermore, the numerical determination of the optimum impulse-re

sponse is ill-suited to computer solution. In addition, the classical Wiener
 

filter is valid only for stationary processes.
 

Kalman and Bucy
(
3
9) 

recognized the desirability of converting the
 

integral equation of Wiener's into a nonlinear differential equation whose so

lution yields the covariance matrix of the estimation error. This matrix con

tains all the necessary information for the design of the optimum filter. The
 

computation of the optimum filter is much simpler than that of Wiener, and the
 

more general equations cover either stationary or time-varying situations. In
 

addition, the theory accommodates both discrete-time and continuous-time linear
 

systems. The Wiener-Kalman filter is used extensively in the field of orbit
 

determination and celestial navigation and guidance.
 

To this point only linear estimators have been discussed, however, the
 

dynamical equations describing a satellite's motion are nonlinear. Since the
 

estimators used in orbit determination generally require linear state and ob

servation relations,the equations of motion and the equations relating the
 

observations to the state are linearized by expanding about a reference tra

jectory. It would be desirable to have an estimator capable of handling non

(4 )
linear'systems, and some work has been done in this area. Morrison 0 con

siders an iterative scheme for estimating the state of a nonlinear system.
 

Opah and Stubberud(4i) discuss a technique for using the Kalman filter in con

junction with quasilinearization to do nonlinear estimation.
 

It is known that when only noise corrupted observation data are avail

able, all of the information about the state of the system is contained-in the
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probability density function of the system state conditioned on all the past
 

(42)
measurements. Fisher and Steer . derive a dynamical equation for the condi

tional-density function when the system disturbances and the measurementnoise
 

are bath jointly Gaussian and white. Their work is applicable to nonlinear
 

systems and both generalizes and unifies the results of previous work in this
 

area.
 

Generally, it is assumed that the statistical model associated with the
 

random noise in the observation data is known. The noise usually is assumed to
 

be described by a normal distribution with a known mean and variance. Little
 

work has been done on the problem of orbit determination when the statistical
 

model of the noise is unknown. The usual procedure in this situation is to use
 

(4

a classical least squares estimator. Smith 3 has used a sequential form of
 

(4 4) 

Bayesian estimation theary given by Raiffa t al., to develop a method for
 

relaxing the assumption that the distributions of the observation errors are
 

known. His approach is to regard the distributions as normal, but with unknown
 

variances. The unknown variances are represented as random variables having in

verted-gamsa distributions. Applying Bayesian estimation theory in a multistage
 

process then yields recursive equations for simultaneously estimating the system
 

state and the variances.
 

Problem Definition
 

Fundamentally, the problem of-orbit determination may be stated as fol

lows: given observation data related to parameters of the vehicle's trajectory,
 

determine the best estimate of the vehicle's state. The observation data are
 

quantities such as range, range rate, and azimuth and elevation angles. The ob

servation data invariably are corrupted by random and systematic errors. Further
 

errors are introduced by inaccuracies in the mathematical model.
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Random errors are accidental in nature and are caused by innumerable
 

factors beyond the control of the analyst. Usually they are treated as a
 

normally distributed stochastic process. Systematic errors are due to defic

iencies in the tracking equipment. For example, an improperly calibrated
 

radar may yield consistently biased data. In addition to errors of this type,
 

inaccuracies in the mathematical model introduce errors into the system. Ex

amples of model errors are improper station locations or inaccurate knowledge
 

or premature truncation of the gravitational disturbing function. Other ex

amples are improper cerrection for refraction, precession, nutation, or light
 

transit time.
 

Due to errors of this nature the estimate of a trajectory never will
 

agree identically with the true trajectory. Consequently, the process of ob

servation and estimation must be repeated continually in order to minimize de

ficiencies in-the estimation technique.
 

The estimation procedure lends itself naturally to the estimation of
 

parameters such as station locations and values of gravitational constants which
 

may not be known accurately. Biases in the observation data also may be esti

mated. However, when additional parameters are estimated, the state vector and
 

associated matrices must be augmented, thereby increasing the complexity of the
 

problem.
 

Mathematical Preliminaries
 

In general, the problem of orbit determination is formulated by linear

izing the governing equations. This is accomplished-by a Taylor's series expan

sion about a known reference or nominal trajectory. Presupposing knowledge of a
 

nearby reference trajectory is a valid assumption, since present technology makes
 

it possible to determine injection conditions to within a few tenths of one
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percent. Generally, the design trajectory is a sufficient first guess to
 

start the estimation procedure. When-a design trajectory is unavailable or
 

inadequate, one of the classical orbit determination techniques, such as those
 

(46 )
 of Gauss or Laplace , may be used in conjunction with observation data to
 

determine an estimate of the initial conditions.
 

The linearization procedure will be presented briefly. Let C be
 

an n x I vector of state variables. Then, the equations of motion for
 

may be expressed as
 

= F(C, t) (3-1) 

where F is an n x 1 column vector. Now, if x represents the n x 1 vec

tor of deviations of the nominal from the true state, the true state may be
 

expressed as
 

C(t) = COct) + x(t) (3-2)
 

The symbol ( )* indicates that the quantity is evaluated on the nominal tra

jectory. Differentiating Eq. (3-2), and using (3-1) yields
 

t* + k = F(C* + x, t) (3-3)
 

Expanding Eq. (3-3) in a Taylor's series about the nominal at each point in
 

time leads to
 

Ca + * = F(*, t) + (2F X + (3-4) 

If only linear terms are retained, the equation for the state deviation is
 

.tt. x .(3-5)
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Equation (3-5) is a system of linear differential equations with time dependent
 

)
coefficients. The solution to Eq. (3-5) is
(45


x(t) = 0(t, to)x (3-6)
° 


where 0(t, t ) satisfies the differential equation
 

;(tto) (t, t ) (3-7)o 

subject to the initial conditions
 

(to, t) = I 

The properties of the state transition matrix are discussed more fully in the
 

following section.
 

Generally, it is possible to observe quantities which only are related
 

to the state i.e., which are nonlinear functions of the state. Since the ob

servations also contain random noise, they are related to the state by
 

= () + v (3-8)
 

where
 

n isthe. p x I observation vector 

G() is a nonlinear function relating the observation 
and the state 

v is a p x I vector of observation noise 

Equation (3-8) is linearized by expanding about the reference trajectory as.
 

follows:
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n * @G * +.. + V (3-9) 

Using conventional notation and denoting (n - n*) by y , ( - *) by x 

nd() by H , Eq. (3-9) may be written as 

y = Hx + v (3-10)
 

Henceforth, y will be referred to as the observation vector and x as the
 

state vector even though they are actually deviations from the nominal values.
 

Since the state transition process also contains random noise from sources such
 

as modeling errors or random fluctuations of control systems, Eqs. (3-6) and
 

(3-10) usually are written as
 

x = 4(t, t ) x + w (3-li)
o
 

y = Hx + v (3-12)
 

where w is a n x I vector of state noise.
 

Generation of the State Transition Matrix
 

The function of the state transition matrix is to map small deviations
 

in the state forward or backward in time. The mattix differential equation
 

which generates the transition matrix is derived in the same manner as Eq. (3

5) and is given by
 

A=A (3-13)
 

where
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and A (3-14)
 

Equations (3-13) are a set of n x n finear differential equations with time
 

dependent coefficients denoted by the matrix A . This matrix is evaluated
 

on the nominal trajectory. Equations (3-13) may be solved by numerically in

tegrating the set of n x n differential equations n times, subject to the
 

initial conditions
 

D(to, t ) = I (3-15)
o
 

There are alternate techniques for generating the state transition matrix. -If
 

an analytical solution is available, such as the one-presented-in Chapter II,
 

in theory it is possible to form 0 analytically. The analytical solutions
 

were programmed in FORMAC, and an attempt was made to generate 0 analytical

ly. However, the complexity of the solution and the inability of FORMAC to
 

make any significant simplification rendered the generation of 6 in this man

ner infeasible. The major difficulty -lies in the complexity of the short period 

terms in the solution. The transition matrix for the long period and secular
 

terms is relatively simple to obtain.
 

An alternate techni4ue is the generation of the state transition matrix
 

4
(46)
by numeric partial-differentiation . This is a straightforward procedure
 

which may be used with either analytical solutions for the equations of motion
 

or by numerical integration of the equations of motion. Let a and be
 

generic terms representing any of the orbit elements. Then, a(t) = a(no, e
 

... Eo'" Mo, t) , and the partial derivative may be approximated directly by
 

its definition, i.e.
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+ AEo ... Me, t) - ae(ao, eo, ... Me, t) 

0A (3-16)
a(t) a(ao, e., ... 

-

The first term on the right is obtained by incrementing a typical element
 

and evaluating the solution at the desired time either analytically or by nu

merical integration. The corresponding value of E from the nominaltrajectory
 

is then subtracted and the result divided by A~ . The result is an accurate
o 


approximation to the derivative. This process must be repeated n times since
 

each perturbation yields one column of the transition matrix.
 

The technique outlined above worked quite well for the application con

sidered here. Use of the analytical solutions makes this a particularly attrac

tive technique since it is necessary to evaluate the solutions only at the re

-quired times. A study which .was made to determine the accuracy of numeric
 

partials is discussed in the section presenting results.
 

Linear Estimators
 

Given the system of equations (3-11) and (3-12), the problem is to
 

choose an estimation scheme which somehow minimizes the estimation error and
 

yields a best estimate of the state vector. There are several linear estima

tors available to perform this task, and, if all random quantities are assumed
 

to be normally distributed, they all yield the same results.
 

A. Least Squares
 

The best known of all estimators is the least squares estimator. The
 

least squares criterion is to choose as the best estimate of the state vector
 

the one which minimizes the norm of the observation error vector.
 

Consider the case where the state vector, x , is not a random quantity
 

and the observation vector, y , is related to x by Eq. (3-12). The least
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squares criterion requires that x , the best estimate of x , be chosen in 

order to minimize 

Q [V v] (3-17)
 

Assume that k observations have been made. Then, Eq. (3-12) may be written
 

as
 

Yl hhI (tl tk) VI
 

Y2 (t2 ' tk) [xk] + v2
h2 


(3-18)
 

Yk hk (tK' tk Vk
 

Write Eq. (3-18) as
 

+

Yk Hk Xk Vk (3-19)
 

Substituting Eq. (3-19) into (3-17) yields
 

Q = (Yk - Hk xk)T (Y - H Xk) " (3-20) 

For a minimum, the first variation of Q must vanish; hence,
 

T 6 
SQ = 0 = (Yk - Hk xk) Hk Xk - (Hk 6xk)T (Yk - Hk xk) (3-21) 

where xk is the value of xk that extremizes Q . Since the two terms on
 

the right are the scalar transpose of each other, they are equal, Now, since
 

6x is arbitrary,
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HT (Y - ) = 0 (3-22)
k k k
 

or
 

( k •k
Hk )  k
-(HTH)T (3-23)
 

In order to insure a minimum the'second variation must be positive definite.
 

Thus,
 

62Q 6T(H Hk)6x 0 (3-24)
 

The matrix (H H must be positive definite for a unique solution for
 

to exist. It will be assumed here that sufficient independent observations
 

have been made to render (H T Hk) positive definite. Consequently, the
 

second variation will be positive definite.
 

The shortcoming of the least squares method is that all observations
 

are treated equally, and no attempt is made to weight the observations ac

cording to their relative accuracy. The obvious solution to this problem is
 

to introduce a positive definite weighting matrix, W , into the estimation 
(4 8)


in this case is
scheme. The best estimate for x 


t 

= (HT Wk H) HT Wk Y (3-25) 

k k k k k k k (-5 

The disadvantage of weighted least squares is that it gives no criteria for
 

cheosing the weighting matrix. However, the observation error is a random
 

variable. Consequently, the next logical step is to consider estimation as
 

a statistical problem and to invoke the laws of probability and statistics to
 

determine'an estimate of the state. When the problem is treated from a
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statistical viewpoint, the weighting matrix evolves naturally as the observation
 

error covariance matrix.
 

The theory of probability and statistics is considered in the deriva

tion of the minimum variance estimator which is discussed next.
 

B. The Minimum Variance Estimator
 

The principle of minimum variance is to choose x so that the variance
 

of the estimation error,
 

Q = E[(x - x) (x - x)T] (3-26) 

is minimized subject to the constraint that x be a linear unbiased estima

tor. Therefore, an estimator is desired of the form
 

x = By (3-27) 

with the restriction that bhe unbiased, i.e.
 

Ex) = x = E(By) = E[B(Hx + v)] = BHx (3-28) 

It is assumed that the mean of the observation error is zero. Equation (3-28)
 

requires that
 

BH = I (3-29)
 

In order for this to be true both H and B must be of full rank. This is
 
T -1
 

related to the fact that, in the case of least squares, the matrix (H H)
 

must exist.
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Substituting Eq. (3-27) into (3-26), expanding, and utilizing Eqs.
 

(3-29) and (3-1i) yields
 

T
 
- x)
Q(B) = E[(By - x) (By 


= BE[v vT ]BT (3-30)
 

= BRB
 

where R is the covariance matrix of the observation error. Now, it is
 

necessary to minimize Q(B) subject to Eq. (3-29). Adjoining these two
 

equations through the use of a matrix Lagrange multiplier, A , results in
 

Q1 (B) = BRB - BH -- THTBT (3-31) 

Taking the first variation yields
 

6QI(B) = 6B[RB - H] + [BR - X THT]6B
T 

= 0 (3-32) 

Since the two terms are the transpose of one another, it is necessary to deal
 

with only'one of them. Furthermore, since 6B is arbitrary, it is necessary
 

that
 

TFT

BR- X H
 

or
 

B F (3-33)
THTR-1 


Using Eq. (3-29) to determine A results in
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BH = I = ATHTR-1H 	 (3-34) 

or
 

-1
 
1


X (HTR- H) 	 (3-35)
 

Collecting results
 

B = (HT -H) HTR 	 (3-36) 

and
 

-1
 
= (HTR- H) HTR7 y (3-37)
 

It may be shown that the second variation of QI(B) is positive since R is
 

(48)
positive definite 
8 

. Note that the minimum variance estimator requires the
 

weighting matrix to be the observation error covariance matrix. In addition,
 

no assumption was necessary for the form of-the probability distribution of

the observation noise; only knowledge of its mean and covariance is required.
 

The Gauss-Markoff theorem gives the best minimum variance, linear, un

biased, estimator in the form of a theorem. It is essentially a statement of
 

Eq. (3-37). For a detailed discussion and proof of the Gauss-Markoff theorem,
 

see Ref. (49).
 

C. 	The Maximum Likelihood Estimate of.the State of a Linear Dynamic System
 

Consider the situation where x is a n x I parameter vector related
 

to the observation vector by Eq. (3-12). Assume that the measurement noise is
 

described by the joint Gaussian distribution function
 

P(Vk) 	 = v exp [- vT R2/1 k1-k.kv] Vk], (3-38) 
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where JIJ denotes the determinant of and p is the dimension of
Rk 


. In addition assume that every set of measurements is independent. Hence,
 

the joint probability density of the sets of measurement errors .... vk
 

vk 


vI 


is simply a product of k expressions similar to Eq. (3-38). The transforma

tion to the joint probability density function of YI .... Yk is made by
 

substituting
 

Vk = Yk - Hk x (3-39) 

into Eq. (3-38) and noting that the Jacobian of the transformation is 1.
 

.This yields
 

T 1

P(Yk;x) m exp [- (yk-Hkx) RK (YK-Hkx)] (3-40)
 

2 

(27f) IRK[ 

where RK is a block diagonal consisting of R_ i -l and m is the
 

dimension of Yk * The matrix has dimensions m x n .
Hk 


The M.L. principle is to select the x which maximizes P(yk; x)
 

]

when evaluated at the random sample [Yk The heuristic reason for so
 

doing is that, of all possible samples, this is the one actually observed
 

and, therefore, the most likely. Thus, x should be chosen to maximize that
 

probability.
 

The value of x which maximizes P(Yk; x) is the one which mini

mizes the exponent in Eq. (3-40). As shown in the discussion on least squares,
 

this value of x is
 

-1T
 

x (H 
1 

Hk) HT Ry1 (3-41)
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Hence, for Gaussian random variables the methods of maximum likelihood and
 

minimum variance yield the same estimator. Both specify the weighting matrix
 

to be the observation error covariance matrix. For a more detailed discussion
 

of the maximum likelihood estimator see Ref. (34).
 

Now, consider the situation where x is a time dependent stochastic
 

process and a sequential estimator for x is desired. The equation which
 

describes the state propagation is
 

xk+1 = I'(tk+1, tk) xk + wk (3-42) 

and the observations are related to the state by
 

+ 
 (3-43)
Yk = Hk Xk Vk 


The noise or error vectors are assumed to be independent Gaussian vectors with
 

zero means and the following covariances
 

E[w wT] Q j (3-44) 

E v T 

E[v Vk] = R 6jk (3-45) 

E[w Vk] =T (3-46) 

where 6jk is the Kronecker delta. The matrices R and Q are assumed to
 

be positive definite. Both Q and R could have covariance terms (terms
 

which lie off the main diagonal); however, as long as the errors are not time
 

correlated, the form of the maximum likelihood estimator would not change.
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It is assumed also that the initial state, x 
0 

, is a Gaussian random
 

vector with the a priori information
 

E[X = X-47) 

E[(Xo - o) (x. - o)T] =Po (3-48)
 

where P is the covariance matrix associated with the initial estimate of

0
 

the state, x. , and is assumed positive definite. The problem may be stated 

as follows: given the observation vectors yo , yl, ... yn , find the "best" 

estimate of xk . This will be regarded as a filtering problem if k = n , as 

a prediction problem if k > n , and as a smoothing problem if k < n
 

A Bayesian approach to the estimation problem will be used. The
 

Bayesian approach assumes that certain density functions are known a priori.
 

Bayes' rule states that
 

P(Xk/Yk) kk-P(XkP(Yk
) (3-49)
 

where Yk denotes the ensemble of the observation vectors, i.e.
 

kk
 
Y2
 

Yk [] 

Using the assumptions on independence given by Eq. (3-46), Bayes' rule may
 

be simplified in the following manner
 

p(xk, = p(yk/xk, Yk-l 
) 
P(xk Yk-l 

) 
. (3-50),
 



82 

Note that
 

Yk = +Hk 'k vk
 

implies that knowledge of Yk-i is not necessary to determine Yk Hence,
 

Eq. (3-50) may be written as
 

Yk) )P(X k ' = P(yk/xk) P(xk/Ykl) p(Yk-l (3-51) 

Substituting Eq. (3-51) into Eq. (3-50) leads to
 

= P(Yk/xk) P(xk/Ykl) P(Yk_1)
p( k/Yk)
 

(3-52)
 

P(Yk/Xk) P(xk/Yk_ 1)
)

P(Yk/Yk-1


The three density functions on the right-hand side of Eq. (3-52) are assumed
 

known. The density function P(xk/Yk) is known as the a posteriori density
 

function of xk . It provides knowledge about the state of the system in 

terms of the observations Yk . By definition, it contains all of the infor

mation necessary for estimation of the state. The M.L. criterion will be
 

used to obtain k from P(Xk/Yk) .
 

It is demonstrated in Ref. (50) that under the Gaussian assumptions 

imposed on wk and vk , the conditional density function p(Xk/Yk ) will 

be of the form 

P(Xk/Yk) ( I exp[-(x k E(xk/Yk))T 

(xk - E(Xk/Yk))] 

where
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cov[xk/Yk] = Uk
 

The M.L. principle requires that xk be chosen so that P(xk/Yk) is maxi

mized. This is equivalent to choosing xk in order to maximize the proba

bility of obtaining the set of observations which were actually obtained.
 

To maximize p(xk/Yk) it is obvious from Eq. (3-53) that :k must
 

be chosen as
 

xk = E(xk/Yk) (3-54)
 

Hence, the principle of maximum likelihood states that for normal random
 

variables the best estimate of xk is the conditional mean, E(xk/Yk )
 

Since the noise vectors v and w are assumed normal and x and 

y are linear combinations of v and w , all density functions in Eq. (3-52) 

will be normal. Thus, it will be necessary to determine the mean vectors and 

covariance matrices in order to specify unique normal distributions. However,
 

it will be convenient to first define the statistics of the estimation error.
 

The estimation error is defined by
 

= - x -xk 3-5 
Xk-l/k-1 xk-1 - k/Yk1] Xk-i k-i/k-I 

Xk/k-i = xk - E[xk/Yk-l] 5 xk - xk/k_1 (3-56) 

with unconditional mean 

E(= Ek-i - k-i/k-i ) . (3-57) 

Substituting Eq. (3-55) into (3-57) yields,
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E( k-i/k- 1 = E(xki) - Ey(Ex[xk-i/Yk- = (3-58) 

The x and y subscripts of E denote the variable of integration. Like

wise,
 

E(xk/k 1) = E(xk ) - Ey [Ex(Xk/Yk)] = (3-59) 

and
 

c k-i/k- = E[Xk-l - k-i/k-i k-i X-i/k-i) Pk-l (3-60) 

In a similar manner
 

c°V(Xk/k- = E[(Xk -k/k-1) (xk k/k-1 Pk/k-i - k 

The mean of xk conditioned on Y is
 

E[xk/Yk-1] = k/k-i 5= k (3-62) 

The covariance of xk conditioned on Yk- is independent of Yk-1 (see
 

page 64 of Ref. 44). Hence,
 

)' 

E[(xk -k/k-l (xk - xk/kl)T/Yk_l]
 

(3-63)
 
T
E[(Xk - xk/k-i) (xk - xk/k-1) ] k
 

A recursive scheme for developing Pk given Pk-1 may be obtained by ex

panding Eq. (3-63) as follows
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Pk = E[(C(tk'tk-1)xk-i + Wk-i  (tk'tk- ) k-1/k-1)((tk' t k-)xk-1 

T ] 
+ Wk 1 - (tk'tk i)Xk-/k-l)


T
= $(tk5tk-i) E[(xk-l- k/k-i)(xkI -ki/kil) ] f(tk'tk 1 ) 

T ^ TE[wkiwkT] + f(tkp-,i1 E[(Xk 1 Xki1/ki)Wki]
 

+ E[w i(xki 1 - k-i/k-
)T ] 

,T(tk'tk-1 ) • 

The last two terms are zero since xk-l is independent of wk_ 1 and
 

Xk-i/k-i = Ex [Xk-i/Yk-
1
]
 

is a function of Y which is independent of w . Hence,
 

k=k (ktk i)Pk-lT(tk,tk-l)+Q (3-64)
 

The density function of y3k conditioned on xk has associated with it a
 

conditional mean
 

Ey[yk/Xk] = Hk x k 5 (3-65) 

and covariance
 

Ey[(yk - Hk xk)(Yk Hk xk)T /xk]
 

(3-66)
 

Ey[ Vk/xk] = R 

The density function of yk conditioned on Yk_1 has associated with it a 

conditional mean
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" 

E[yk/Yk] Hk xk
 

and covariance
 

cov(Yk/Yk_ 1) = E[(Y k - Hk xk)(Yk - k k)T/Yk-] 

(3-67) 

= E[(Hk(xk - x) + Vk)(Hk(X k - xk) + vk)] 

Since the noise, v , is not dependent on the state, all cross products will 

be zero and 

cov(yk/Yk 1 ) = E[(Hk(x k - Fk)xk _) Hk + vk vT 

(3--68) 
Hk HT + R k
k 


kink
 

Substitution of Eqs. (3-62)' through (3-68) into Eq. (3-52) yields 

p H PT + RI -
P(Xk/Y k k 7 expk-[(Yk - H xk)T R 

) 
(2 )n/2 IR k (Yk Hk Xk)] 

+ 	 (-)T - - (xk-m) (3-69) 

T T -1 

+

(Yk - Hk xk)(Hk Tk Hk R) (Yk - Hk Xk)]"
 

Define the following quantities
 

Ax m - Sm 	 (3-70) 

Ay Yk - H k 	 (3-71)
 

-i--- T R-l k.( 2
 
Pk1 P1 + H R H
 

m - km m k 	 3~2 
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Define J to be the exponential term of Eq. (3-69). Adding and subtracting
 

Hk Xk from the first term in J and dropping subscripts leads to
 

J= - [(Ay- H Ax) T 
R- (Ay- H AxT + Ax) TB- Ax 

T -T -t
-Ay(H P H + R) Ay
 

(3-73)
 
-1 T T-l
- T 


- [Ay[R - (H P H + R) :Ay - Ay H Ax 

T 
H

T -
AxT

-Ax R 1 Ay + P-I Ax]. 

It can be shown that
 

- -

R 1 -HT - R) R- - HP HT R 1 (3-74) 

Hence,
 

J = - [Ay R 
-
1 HPH

T 
R- Ay - Ay

T 
R 
-

HAx 
(3-75) 

-Ax
T 

H
T R - I 

Ay + Ax
T 

P-1 Ax]. 

Then, on multiplying the first three terms of J by PP- , the following 

expression is obtained 

- I -I T - T - -I
J = - [Ay R HPP PH R Ay Ay R HPP Ax 

T 
PH

T 
Ax

T-Ax P- R- Ay + P-1 Ax] (3-76) 

T -I T T -I 
= - [(Ax - PH R Ay) P- (Ax - PH R Ay)]
 

Substituting Eq. (3-76) into (3-69) and substituting for Ax and Ay
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T R 
P(k/k) IHk Pk Hk + 1 exp [- ((xk -j - ++PPkHT R-1 

~/ Y ) k (2 ,)/ 2 I[RI c k k( 

(yk - H M) P(x- [x + PH R-(y - H IM ) 

On comparing Eq. (3-69) with Eq. (3-53) it is seen that
 

Uk = Pk (3-78)
 

,and
 
T+
 

IHc 
T kc
HcT+RI1
- kbl kl (3-79)


kPII IRKIT 1k'-


Also, 

X = E[xk/k] = k~ +k Hk R (yk - Hk xk) (3-80) 

An alternate expression for ik written in terms of a recursive relationship 

for P may be obtained by using Eq. (3-72). - Accordingly, 

T - T-1 -lT - I T-l 
PkH k k Hkc (3-81) 

Using the result of Theorem 1-52 of Appendix A of Ref. (48), this may be 

written as 

T R-1 T T -l 
Pk H R = kH (Hk Tk H + R)- a K- . (3-82)

I k.I c -k I k 

Substituting Eq. (3-82) into (3-80) yields 

= xk+ (Yk-Hkxk) " (3-83) 
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Applying the matrix identity (known as the inside out rule) given in Ref.
 

(48) to Eq. (3-72), an alternate expression for Pk may be developed
 

Pk ° - k T-Ikkk(k k 1
PT + R) H P (3-84)
 

The results required for computing xk can be summarized as follows
kJ
 

+
Xk = xk (yk - Hk xk) (3-85a) 

k k k 1 = T~ ± Hk gk H ) (3-8Th)(~R 

+

Pk = D(tk'tk-1) Pk-I 8T(tk'tk-) Q (3-85c) 

xk = f(tk'tk 9 k-i (3-85d) 

Pk Pk KkHk Pk (3-85e) 

Values of x and P are assumed known a priori. This completes the
 

solution to the filtering problem.
 

The prediction problem likewise has, been solved since for any n > k
 

(3-86)
n/k = 0(tn'tk k 


The Sequential Estimator
 

Prior to the introduction of the Kalman filter in 1960, the problem
 

of filtering continuous time signals was characterized by the solution of the
 

Wiener problem. The problem of filtering discrete-time observations was
 

solved by using the technique of weighted least squares or maximum likelihood.
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(35) 

Swirling used the M.L. principle to develop a sequential estimator.
 

Under the proper assumptions, the Kalman filter and Swirling's estimator
 

are identical. Kalman's theory yields a general set of equations which is
 

valid for both continuous and discrete-time filtering problems. For the
 

problem of orbit determination based on discrete observations of a Gaussian
 

random process, the Kalman filter yields the same set of equations given by
 

the M. L. principle in Eqs. (3-85).
 

In order to start the estimation process it is assumed that values
 

for Po and Xo are given. If no initial guess for P is available and
 

the observations are uncorrelated in time, a first guess may be obtained by
 

taking enough observations so that H is of full rank and then using
 

P, = (HT R - 1 
H)-l (3-87) 

If the observations are taken at different times the quantities in Eq. (3-87)
 

must be mapped by the state transition matrix, i.e.
 

H1 0(to't1I T R 1 - H1I (to,t )

1LP'j[1~ 
l[::~lj (3-88)
 

The initial estimate for P0is important since it determines the relative
 

weight that the estimator assigns to the observations and the previous esti

mate of the state. Generally, Xo is assumed to be zero.
 

The Batch Processor
 

The batch processor, as its name implies, processes the observation
 

data in groups or batches to yield a best estimate of the initial state of
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the vehicle. The -batch processor used for this study is a maximum likelihood
 

filter whose governing equation for normally distributed random variables is
 

T -1 -1

X0 = (Hk RK Hk) Hk RK Yk ' (3-89). 

where
 

hlI (to,t)]
 

h2 
 f(to,t ) 

Hk = (3-90) 

D(to,tk)hk 

R
 2
 

R = r (3-92) 

Yk Yk-

The matricies 
 RK1(Hk H) and (HT 
RKY 

) may be augmented as 

K Hk)-1 K 

each observation vector becomes available by noting that 

T -lH T -1 
 T -iH RKI H = H k _R _11 
kRkI

k H k . + h h k ( 3 - 9 3 ) 
HkR H = H R i k hk9 

and
 

2 



92 

T - T -1 T -l
 
k RK Yk = Hkl R-1 Yk- + hk k hk (3-94)
 

Hence, Eq. (3-89) may be formed sequentially and always will be the product
 
of an n x n matrix, (H T , and an n x I matrix, (HT R YK) .
Hk 


(k KB) ,n n x-k k)
 

The major disadvantage of the batch processor is that the inversion of a large
 

order matrix may be necessary if the state vector contains a large number of
 

parameters.
 

It is well known that the recursive formulation of the Kalman filter
 

can be derived from the nonrecursive batch processor by employing a matrix in

(51)
version lemma known as the -inside out rule (see for example Ho)
 

Comparison of the Batch Processor and Sequential Estimator
 

As stated previously, the sequential estimator is a recursive estimator 

that provides an estimate of the spacecraft's current state by processing each 

observation as soon as it becomes available. On the other hand, the batch pro

cessor yields an estimate of the state at some epoch by processing an entire
 

arc of observation data simultaneously. There are.several other noteworthy
 

factors regarding the sequential estimator and the batch processor:
 

a. The sequential estimator substitutes the inversion of a large order n x n
 

matrix for the inversion of a smaller p x p matrix, where n is the number
 

of state variables and p is the dimension of the observation vect6r.
 

b. Beth estimators tend to saturate after a large number of observations have
 

been made. Saturation occurs when the covariance matrices of the estimators
 

become so small that subsequent observations are ignored, i.e., the estimator
 

assumes that it has perfect knowledge of the state.
 



93 

c. The sequential estimator can easily handle state noise as well as time
 

correlated measurement noise. These quantities are much more difficult to
 

include with the batch processor. In fact, state noise is often introduced
 

into the sequential estimator as a means of preventing the estimator from
 

saturating.
 

d. The sequential estimator allows the nominal trajectory to be updated
 

periodically which reduces the size of the deviations between the nominal
 

and the true trajectory and results in an improvement in the linearity as

sumption: Consequently, it is possible for the sequential estimator to yield
 

a better estimate of the state for one pass through the data.
 

a. The sequential estimator lends itself to real time filtering- problems
 

since it provides an estimate of the current state. The batch processor
 

provides an estimate of the state with a minimum of mathematical manipula

tion; hence, it is desirable because numerical errors are minimized. Con

sequently, the batch processor is often used for post flight analysis. The
 

batch processor generally is iterated until there are no changes in the es

timate of the state. The sequential estimator involves more numerical opera

tions than the batch processor; therefore, it may tend to diverge after a
 

(52)
large number of observations have been processed
 

Recursive Estimation of the Observation Error Covariance Matrix
 

In the formulation of the sequential estimator it is assumed that the
 

observation error covariance matrix is known. However, situations may arise
 

where there is substantial uncertainty in the observation error variances.
 

Under these conditions it is desirable to have a recursive scheme which es

timates the observation error covariance matrix as well as the state vector.
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v 

(43 )

Smith develops such a scheme by assuming that the unknown variances can
 

be represented as random variables having inverted-gamma distributions. The
 

.recursive scheme proposed here treats the variances as parameters and makes
 

use of the M.L. estimate of the mean and covariance of a normally distributed
 

observation error vector.
 

The density function of a normally distributed random variable v is
 

f(v) f = T2) p/2 I1 1 exp - [(v--P)
T 

R (v-p)] (3-95) 

Consider a sample of size N taken from the population of v . It may be
 

shown that the M.L. estimate of the population mean and covariance matrix of
 
(54 )
 

is given by


N
 
E1 v. (3-96)


i=1
 

NT
 

R I E (v.- (v.) (3-97)
N in_I 

i.e., the M.L. estimate of the population mean and covariance is the sample
 

mean and covariance.
 

These results now will be applied to the orbit determination problem.
 

The linearized equations are given by
 

= 4(tNtNl) XN-i (3-48)xN 

+ 
 (3-99)
YN = 'NNN N 


Assume that
 



E[vN] = (3-100)
 

E[vNv ] = R (3-101) 

Assume further that R is unknown and that recursive estimators for x and
 

R are desired.
 

Since is not known, vN cannot be determined. The nearest thing
 

which can be obtained from the sampling of yN is
 

xN 


VN = N-H N (3-102) 

Since vN is the best approximation available for vN ,it will he used to
 

develop the estimator for R . The mean of vN is
 

t 1

[ N] = E yN - H E[xN] 

= E[xNJ - Ey Ex[xN/YNI] (3-103)
HN HN 


= HN[E(xN ) -,E(xN)] = . 

Hence, the sample mean is equal to the population mean. According to Eq.
 

(3-97), the M.L. estimate of the population variance will be the sample
 

variance given by
 

I N - TRN I [(y. -Hi xi)(yi -H i xi] (3-104)
 
i=1
 

The expected value or mean of the sample variance is
 

-H X)(yi 
] 


= N .i -Hi - (3-105) 
B[%] i=i B[(y. Hi i 



96
 

Now, add and subtract , and define Ax = xi - xi . Then,Hxi 


E[(y - H x. + Hi Axi)(y i - Hi xi AxiT] (3-106)
 

T T T T TT
 

i + Hi 


SBviv.i] + B[v.iAxi]H i + Hi E[Ax v. + H. E[Ax i Axi]H i
 

Since v. is assumed independent of the state,
 

E[v Ax.] E[v] EAx] (3-107)
 

and 

N 

[RN = R 1 N
Z 

i=1 
H. 

T
H. 
1 

(3-108) 

Therefore, RN is'a biased estimator of R . An unbiased estimator may be
 

obtained by subtracting the bias. Accordingly,
 

'U=1 N -1 - TR N N l [(y, - Hx.)(yi - Hx)- Hi H] (3-109) 

A recursive estimator for R is easily obtained by noting that
 

I N N T T
R =9 S [(vi vi)+1N+I N1i' - H. P. H]i=1 

(3-i0) 

1 T - T+ w (VN+lVN+I) -HN+l PNtl NNi] 

which simplifies to
 

T

N N-Ii N+I N N+ T
 

%+ ++ vN+1 N+I-TNi N+l[NTT YNI-* 
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Equation (3-111) is a recursive, unbiased, M.L. estimator for R . The above
 

results may be combined with the sequential estimator for x given by Eqs.
 

(3-85) as
 

^ - - T - T -1t 
N± N+1H(RN~j ++ PN+ H T)- v (-11)XN+l XN+1 NP	 1 N+1 HN+1 VN+1
 

Substituting Eq. (3-111) into (3-112) yields the desired relationship
 

- -L- N y -

= 
+ 	 x+1 ++ NN+l RN N+1 + - +xN+ 

(3-113) 
-- T N -- T - 1 _ 

HN+lXN+I 
) -ii 1
(YN+1 - + HN+I N+I1HN+1 (yN+I-HN+1 XN+1 )
 

It was discovered that results given by Eq. (3-113) could be improved by modi

fying the weighting function, TI ". The reason for this, as well as the pro

posed change, is discussed in the section on results.
 

Use of the General Perturbation Solution in the Orbit Determination Program
 

The speed and accuracy of the analytical solutions discussed in Chapter
 

II makes them very attractive for orbit determination studies. Using the ana

lytical solutions to generate the nominal trajectory and the state transition
 

matrix eliminates time consuming numerical integration. This is particularly
 

valuable during intervals of time when the spacecraft is not in view of a
 

tracking station since the analytical solutions need not be evaluated at all
 

during these times. The analytical solutions were used also to generate the
 

simulation data for the numerical results described here.
 

Results of Numeric Partials Study
 

A numerical study was made to determine the accuracy with which the
 

state transition matrix would map initial perturbations in the state to
 



subsequent times in the orbit. 
 The study was made for transition matrices
 

generated by numeric partial differentiation based on both Cartesian coor

dinates and orbital elements. The trajectory of Lunar Orbiter I was chosen 

as a test case since both the primary and third body perturbations have a 

significant influence on it. The following table shows the initial pertur

bations in the state of Lunar Orbiter I which were considered. 

case Ax -ft Ay° Az AAo-ft/sec A9° A£°
 

1 6032 6410 1484 -6.80 2.91 1.85
 

2 -6026 -6421 -1489 
 6.80 -2.91 -1.84
 

3 24178 25581 5901 -27.18 11.71 7.39
 

4 -24058 -25743 -5988 27.24 -11.57 -7.36
 

Table 3
 

Initial Perturbations for Numeric Partials Study
 

Figure (9) presents the position and velocity error metric during
 

the second and fourth revolution of Lunar Orbiter I. The position error
 

metric is defined by
 
2 2
AR = (Ax + Ay2 + Az2 (3-114)
 

where
 

Ax = xT - x (3-115)
 

and
 

xT = true value of x on perturbed trajectory
 

x = value of x computed from transition matrix.
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A similar definition applies for the velocity metric. These results are based
 

on a Keplerian element transition matrix generated by numeric partial differ

entiations. As can be seen from Fig. (9), the transition matrix accurately
 

maps small perturbations in the state. However, as the initial perturbations
 

become larger, nonlinear effects are more significant, and the error metric
 

increases with time. Figure (9) shows the error metric-to be nearly periodic
 

with the maximum error occurring at pericenter and the minimum error at apo

center. This is to be expected since pericenter is the point of maximum ve

locity, and a perturbation of one ft./sec. in velocity has roughly the same
 

perturbing influence as 10,000 ft. in the magnitude of the radius vector.
 

The errors generated by the Keplerian transition matrix were compared
 

with those of a Cartesian transition matrix at the beginning of the fourth
 

revolution (657 minutes). The position and velocity error metrics as well as
 

the percentage of the error is tabulated below:
 

K metric-ft V metric-ft/sec % error inR metric % error inV metric 

case Cart. Kep. Cart. Kep. Cart. Kep. Cart. Kep. 

1 9,306 79.43 8.5 .059 8.6 .074 11.1 .07685 

2 10,460 17.41 8.707 .0119 9.74 .0162 11.35 .0155 

3 43,803 872.8 41.03 .640 10.19 .203 13.38 .209 

Table 4
 

Position and Velocity Error Metrics
 

The percent error gives an indication of the amount of the total perturbation
 

that the transition matrix predicts and is given by
 

2 2 + Az2)
+ Ay= (Ax
error 


2 6

(6x + y2 + 6z2 ) 
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where
 

ax = - xTN 


and
 

xN = value of x from nominal trajectory
 

xT = value of x from perturbed trajectory
 

Reference (47) presents several examples of the error propagation resulting
 

from a state transition matrix generated by the integration of the variational
 

equations in Cartesian coordinates. Several of these cases were computed
 

using numeric partials to form the transition matrix. The errors resulting
 

from the Cartesian matrix were on the same order of magnitude as those shown
 

in Ref. (47).
 

It should be pointed out that a forward differencing technique was
 

used to generate the transition matrix. Accuracy would be increased by using
 

a central differencing technique; however, this would require the generation
 

of another perturbed trajectory, and it is believed that the forward differ

encing scheme gives sufficient accuracy to assure convergence in the estima

tion process.
 

Results of Orbit Determination Study
 

An existing orbit determination program
(54) 

for processing range,
 

azimuth and elevation observations of an earth satellite was modified to ac

commodate the analytical solutions developed in Chapter II. Additional sub

routines were developed to permit the option of doing sequential estimation
 

or batch processing as well as estimating Keplerian elements or Cartesian
 

coordinates. The resulting program was.totally dependent on analytical so

lutions, and no numerical integration was involved.
 



In order to allow comparison with the orbit determination program
 

utilizing numerical integration, an earth satellite whose orbit corresponds
 

to one of the Gemini series of flights was chosen. The initial conditions
 

for this orbit are
 

t 47,349 sec.
o 


a = 21622917.0 ft.
 

= .008769
e0 


= 32.542'
 

0 = 209.391'
 

0O = 69.648
 

M = 369.2220
 

i0 


The satellite was assumed to be tracked by the Bermuda, Carnarvon, Hawaii
 

and White Sands tracking stations. The observation schedule is as follows
 

Time Interval, sec. Observing Station
 

47349-47495 Bermuda
 

47979-48267 Carnarvon
 

50091-50457 Hawaii
 

52425-52647 White Sands
 

Observations of range, azimuth and elevation were taken at 6 second increments,
 

and only those observations which had elevations above five degrees were
 

processed.
 

The satellite's orbit was assumed to be perturbed by the harmonics
 

'
 
U20 J30 ,and J40 * For an orbit of this altitude the moon's influence
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is negligible. While a real time orbit determination program would have to
 

consider atmospheric drag, it was felt that for the preliminary design appli

cations considered here, drag could be ignored.
 

The observation data was generated by using the analytical solutions
 

developed in Chapter II. These observations were corrupted by normally dis

tributed random noise. Hence, no perturbations to the data were considered
 

specifically; it was assumed that the net result of all disturbances was a
 

normally distributed random process. The observation error variances used
 

for the simulation data are
 

2= 400 ft.2 

2 2 -

a = 2 = .625 x 10 
- 3 

deg 
2 

Numerical Results
 

First, the analytical orbit determination program was compared to the
 

program utilizing numerical integration by processing identical observations
 

under identical initial conditions to see if the results were compatable.
 

Figure (10) presents a comparison of a position and velocity variance as ob

tained by the numerical integrator and the analytical program. These results
 

are for one pass over the Bermuda tracking station. The covariance matrix,
 

P , is dependent only on the state transition matrix, 4', the radar covariance
 

matrix, R , and the initial guess for P . Since P and R are identical
 

for both cases, any deviation in P must be due to the state transition ma

trix. Hence, the close agreement between the numerical and analytical results
 

indicates close agreement for the state transition matrix generated by numeric
 

partials and numerical integration. Figure (11) is a comparison of the errors
 

in x and k for one pass over the Bermuda tracking station. These errors
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are the difference between the true and estimated values. 
Once again
 

agreement between the analytical and numerical integration program is very
 

good.
 

The analytical program was 
used next to do a study of the effect of
 

estimating Keplerian elements in place of Cartesian coordinates. Intuitively,
 

it seems possible to estimate the elements more accurately than the Cartesian
 

coordinates since all elements except the mean anomaly are slowly varying
 

functions of time. The mean anomaly essentially varies linearly with time.
 

However, the Cartesian coordinates vary rapidly and nonlinearly with time and
 

it is reasonable to assume that a set of constants could be estimated more ac

curately than a set of rapidly varying quantities.
 

Figures (i2) through (15) are a comparison of the position and ve

locity error metrics obtained by estimating Keplerian elements and Cartesian
 

coordinates. 
 The form of the error metric is given by Eq. (3-14). No ini

tial knowledge was assumed for 
P 
0 

in either case, i.e., P 
0
= . Initial 

errors of 100 feet in each position coordinate and 1 ft/sec in each velocity 

coordinate were assumed. 

As shown by the figures there is very little difference between the
 

position and velocity error metrics for the Keplerian elements and Cartesian
 

coordinates for the first two stations. 
However, these two stations are
 

relatively close together in time and nonlinearities have not influenced the
 

system to a great extent. Figures (14) and (15), which compare the error
 

metrics 
over Hawaii and White Sands, show that the errors in the Keplerian
 

elements are considerably smaller than those in the Cartesian coordinates.
 

In fact, the errors over the White Sands station are about five times smaller
 

for the Keplerian elements. 
Note that the time interval between the Carnarvon
 

and Hawaii stations is about 30 minutes or 1200 of arc. As a result of
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nonlinearities, the errors existing when the satellite left the Carnarvon
 

station have multiplied into much larger errors when the satellite is picked
 

up by the Hawaii station. However, even-significant errors in the coordin

ates will he reflected as only small errors in the Keplerian elements and
 

consequently they can he estimated more accurately. I-norder to improve the
 

linearity assumption, the best estimate of the state was used to update the
 

reference trajectory at the end of each tracking interval.
 

Equation (3-111), which gives the estimate for the observation er

ror covariance matrix, R , was tested with the same sample problem considered
 

for the comparison of the Keplerian elements and Cartesian coordinates. This
 

estimate was incorporated into the estimation scheme through Eq.(3-113). It
 

was found that the estimate of the coordinates was relatively insensitive to
 

errors which increased the variance. However, a decrease in the variance re

duces the value of P and causes premature saturation of'the filter. This
 

may he verified by examining Eq. (3-85). Hence, if the assumption is made
 

that R is smaller than its true value, the estimator will be inaccurate
 

since less emphasis will be placed on the data than should be. On the other
 

hand, if R is selected to be larger than its true value, P will not sat

urate as soon, and the estimator will place more emphasis on the data and
 

less on the previous best estimate of the state. Consequently, the maximum
 

likelihood estimator of R was tested on a case where the initial value of
 

R was chosen much larger than the true value, . The true value is the
RT 

value used to generate the observation data. Several cases were tested, and 

- it was found that for this example R could be three or four times larger 

than KT without altering the errors significantly. The results shown here 

are for R equal to 15 times . The initial conditions were the same as
 

those used for comparing the Keplerian elements and Cartesian coordinates
 

K7 
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except that the initial variances of the estimation error in position were
 

chosen to be .2 x 105 ft. 
2
 
, and the initial velocity variances were chosen 

as 2 210 ft. /sec. . This case was run also with the true value of R and
 

with R assumed constant with a-value 15 times larger than RT
 

Since each tracking station will have a different covariance matrix,
 

this scheme was applied only to the Bermuda statien, and the data was iter

ated to improve the estimate of R .
 

Figures (16) through (18) present the errors in the standard devia

tion of range, azimuth and elevation for five iterations of the data. As 

seen in Eq. (3-111) each correction to R is weighted by the factor N+I 
therefore, as the number of observations becomes larger, the correction to 

R becomes smaller. This is reflected in the figures by the decreasing slope
 

for each iteration.
 

Plots comparing the position and velocity error metrics for the first
 

two iterations of the data are given in Figs. (19) and (20). 
 The results are
 

shown for R equal to RT , for R fifteen times larger than , and for
RT 


R fifteen times larger than B initially, but sequentially estimated by
2 


Eqs. (3-111) and (3-113). These figures indicate that the sequential scheme
 

for estimating R results in considerably smaller errors in position and ve

locity than obtained if R is held fixed with the initial error. 
A large
 

value for 
R causes the estimator to place less emphasis on individual ob

servations, hence the errors for 
R = RT are much more sensitive to the ob

servations than for the other two cases. This is evident by the large varia

tions in the errors from one observation to the next. For the second pass
 

through the data the errors for R = RT do not vary nearly so much as they
 

did during the first pass. 
After two passes through the data its information
 

content has been exhausted, and subsequent iterations failed to reduce the
 

errors.
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After each iteration of the data, the best estimate of the initial
 

state is used to update the reference trajectory thereby improving the
 

linearity assumption. The estimation error covariance matrix also is mapped
 

back to the initial time by using Eq. (3-85c).
 

If the error in the initial estimate for R is known to be small,
 

it may be desirable to place less emphasis on the corrections to R for the
 

first few observations. This modification would give the sequential estima

tor an opportunity to stabilize its estimate of the state before attempting
 

to use this estimate to correct the observation error covariance matrix.
 
• 1 

This could be accomplished by modifying the weighting function, N--1 , by 

which the corrections are multiplied (seeEq. (3-111)). One suitable weight

ing function would be of the form
 

WT = (N-l)(N-2) ... (N-k)
 
(3-116)
Nk+l 


where k is an integer. This weighting function would cause the estimator
 

to ignore the correction for the first k observations and would reduce the
 

influence of the remaining corrections. For k small, this weighting func

tion and' 1 approach-the same value as N becomes large, i.e.,
 

k+
LfI L N 1 1 (-17N N9+_1 N- (N-1)(N-2) ... (N-k) (3-117)
 

Substituting Eq. (3-116) into (3-111) yields the estimator for N+1
 

RN+1 = (I-WT)' + WT[VN+l VN i -N P T (3-18) 
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The weighting function given by Eq.-(3-116) places more or less emphasis on
 

the initial conditions depending on the value chosen for k . For the result.
 

shown here k was chosen to be 2.
 

In a real time tracking situation it may not be feasible to iterate
 

the data. In this instance the covariance estimation scheme would be applied
 

each time the satellite crosses the station with the estimate of R from the
 

previous pass over this station as the initial guess. The most useful appli

cation of this technique probably would be for post flight analysis where
 

there is sufficient time to iterate the data.
 

The results presented thus far all were generated by using the
 

sequential estimation scheme without state noise. A comparison of the result,
 

obtained from the sequential estimator and the batch processor was made. Un

der the same initial conditions both estimators gave the same results for a
 

four station pass of the data. This is to be expected since all matrix oper

ations were performed in double precision, and numerical difficulties should
 

not cause divergence until many more observations have been processed.
 

As stated previously, estimation of the Keplerian elements offered
 

a marked improvement over Cartesian coordinates for the example considered
 

here. Because of the singularities associated with circular and low inclina

tion orbits, the use of Keplerian elements is restricted. Therefore, it
 

would be desirable if an estimation scheme utilizing the nonsingular elements
 

were developed. This problem was considered. However, it appears as if
 

there may be singularities associated with the mapping matrix, H , even for
 

these nonsingular elements. It should be possible to eliminate this problem
 

by rearranging and canceling terms in the elements of this matrix.
 

As an extension of the work associated with estimating the radar
 

covariance matrix, it would be interesting to relax the assumption on the
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distribution of the variances as proposed by Smith and-use an empirical Bayes
 

estimator to estimate both the variances and their distribution functions.
 

(5 )
Empirical Bayes estimation 3 does not require knowledge of the distribution
 

functions for the variances but utilizes the observation data to estimate
 

their distribution functions. Of course, the Bayes estimator will yield bet

ter results if the variances are distributed as inverted gamma; however,
 

there is no guarantee that this is true. If they are not distributed as in

verted gamma, the empirical Bayes estimator may well give much better results
 

than the Bayes estimator. It has been shown that even if the variances are
 

distributed as assumed the empirical Bayes estimator asymptotically approaches
 

(53)
the Bayes-estimator
 

Another area which needs additional study is the assumption of nor

mally distributed observation errors. A test case was run in which the obser

vation noise was assumed normally distributed in the estimator, but the noise
 

in the observations was distributed uniformly with the variance assumed for
 

the estimator. Based on this limited study, it appears that the estimator is
 

relatively insensitive to the assumption of normally distributed observation
 

noise.
 



CHAPTER IV
 

CONCLUSIONS AND RECOMMENDATIONS
 

This study has dealt with the derivation of a first order general
 

perturbation solution and its application to the problem of orbit determina

tion for a near-planetary satellite. A set of nonsingular orbit elements was
 

used; therefore, the solution is valid for all elliptical motion. The per

turbing force was assumed to be the gravitational force due to an arbitrarily
 

shaped primary body and a point mass third body. Results from the general
 

perturbation solution were compared with numerically integrated trajectories
 

to determine their accuracy. Comparisons were made for both lunar and earth
 

satellite orbits with a variety of initial conditions.
 

Based on an examination of the perturbation solutions and the numerical
 

results, the following conclusions may be drawn:
 

1. Kaula's development of the disturbing function in terms of the
 

Keplerian elements allows the primary and third body general perturbation so

lutions to be coupled through the secular rates in the angular quantities.
 

Consequently, the solutions are very accurate for a period of a few days. How

ever, first order long period effects in J20 as well as higher order effects
 

which have not been-considered cause accuracy to degenerate after longer time
 

periods.
 

2. The similarity of the solutions for the primary and third body
 

effects.makes them amenable to computer evaluation.
 

3. An examination of the solutions for the third body effects reveals
 

that long period terms with eccentricity divisors exist for the argument of
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pericenter and mean anomaly for the second term in the third body disturbing
 

function. Hence, inclusion of this term is important for near-circular orbits.
 

This is verified by numerical results.
 

4. A systematic means of generating the mean elements for the perturb

bation solutions is proposed.
 

In Chapter III the general perturbation solutions developed in Chapter
 

II were incorporated with an srbit determination program. Linear estimation
 

theory was reviewed briefly, and a recursive scheme for estimating the obser

vation error covariance matrix was derived and incorporated with the sequen

tial estimator for the state. A comparison also was made of the accuracy of
 

the resulting estimate when Keplerian elements and Cartesian coordinates are
 

used to describe the motion. Based on the results presented in Chapter III,
 

the following conclusions may be drawn:
 

1. Numeric partial differentiation, which is simpler to implement
 

than integration of the differential equations for the state transition matrix,
 

yields a state transition matrix which is in good agreement with the one ob

tained by numerical integration.
 

2. The orbit determination program utilizing the analytical solution
 

of Chapter II yields results which compare very well to those generated by a
 

program using numerical integration. The time required to execute the analy

tical program was approximately 1/5 of the time required by the program which
 

used numerical integration to solve the same problem. Consequently, the ana

lytical program is a valuable tool for doing preliminary design studies.
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3. The estimate of the vehicle's state using the Keplerian elements
 

is more accurate than the estimate obtained using the Cartesian coordinates.
 

This was demonstrated by considering a specific example. The superiority of
 

the elements becomes more pronounced with increasing time.
 

4. The recursive scheme for estimating the observation error covari

ance matrix was shown to give good results if a reasonable guess for the radar
 

covariance is available to start the process.
 

5. The assumption of a normal distribution for the observation noise
 

was tested by processing observation data which were uniformly distributed with
 

the same variance which was assumed for the normal distribution. Based on this
 

limited study it was concluded that the estimator is fairly insensitive to the
 

assumption of normally distributed noise.
 

Some of the contributions of this study which the author believes to
 

be original are:
 

1. Inclusion of the third body effect for a set of nonsingular orbit
 

elements in the manner presented here is unique. Previous studies which in

cluded both the primary and third body disturbing functions have considered
 

only long period and secular effects of the first term in the third body dis

turbing function. The first order solutions given here include short period,
 

long period and secular effects for all .terms in the third body expansion.
 

Any one or any combination of these effects may be neglected by the selection
 

of the proper values for the summation indices. Another advantage of this
 

solution is that it provides for coupling of the primary and third body so

lutions through the secular rates of the angular variables.
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2. The importance of the second term in the third body expansion
 

for near-circular orbits had not been evaluated prior to this study.
 

3. Demonstration of the feasibility of using analytical solutions
 

which contain a sophisticated perturbing force model in an orbit determination
 

program is accomplished.
 

4. The recursive form of the maximum likelihood estimator for the
 

observation error covariance matrix and its incorporation with the sequential
 

estimator for the state is original.
 

RECOMMENDATIONS FOR FUTURE STUDY
 

It is believed that further study in the following areas would be
 

profitable:
 

1. The general perturbation solutions should be extended to include
 

first order long period effects of oblateness. Because of the algebra in

volved in generating these terms from a second order solution, the possibility
 

(5 )
of using Brouwer's results should be considered. The second order solution
 

for the third body effect also should be examined for first order long period
 

terms proportional to the mass of the third body. The secular rate for the
 

mean anomaly should be extended to include second order oblateness effects.
 

2. -An 
error analysis should be made of the solutions to determine the
 

importance of higher order effects.
 

3. The general perturbation solutions also could be extended to
 

include effects of atmospheric drag and solar radiation pressure.
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4. The feasibility of using the perturbation solutions as a basis
 

for a modified Encke integration scheme should be examined. This would be of
 

particular interest for a satellite lifetime program in which only long period
 

and secular effects are included.

5. An estimation scheme utilizing the nonsingular orbit elements
 

should be developed. Based on the results shown here for the classical ele

ments, this would be of considerable value.
 

6. Extending the orbit determination program to allow processing of
 

lunar satellite observation data would be worthwhile.
 

7. Relaxing the assumption of knowledge of the distribution of the
 

observation error variance by using an empirical Bayes estimation scheme would
 

be of value.
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APPENDIX A
 

-(e)
The eccentricity function, Hpq is presented here. The results
 . 

are presemted as a power series in the eccentricity for k - 2p + q 0 . For 

- p + q 0 the result is a closed form expression in, 9 • The results* 

e 
were generated by using FORMAC. The quantity 9 is defined as a = +1 . 

9 p q 91 p q H (a) 

222
 

2 0 -2 2 2 2 1002/(1 + 9.
 

2 0 -1 2 2 1 -3e + 1.625e 
3 

+ .02604e
5 
+
 

2 4 6
2 0 0 2 2 0 1 - 2.5e + 1.4375e - .22569e + 

2 0 1- 2-- 2 -1 e - 2.375e + 1.671875e 
5 
+ 

2 4 62 0 2 2 2 -2 e _ 2.5e + 2..1042e +. 

2 1 -2 2 1 2 -.25e
2 

+ .083333e - .010412e
6 

+ 

2- 1 -1 2 1 1 -e + .125e - .005208e +. 

2 1 2 4 62±1 0 = (1 + 9. +-964 + 9. 

3 0 -2 3 3 2 7.125e - 4.0625e - ,01855e
6 

+ . 

3 53 0 -1 3 3 1 -4.5e + 8.25e. - 4.15625e +
 

2 4 6
 
3 0 0 3 3 0 1 - 6e + 9.23437e - 5.453125e 

3 0 1 3 3 -1 1.5e - 7.125e
3 

+ lie
5 

+. 

3 0 2 3 3 -2 1.875e - 8.4375e
4 
+ 13.6475e

6 
+ 

2 4 63 1 
 -2 3 2 2 1.375e + 1.4583e + .086263e + 
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9 q 9 p q H (e)
9.Pq 

3 -1 3 2 1 (1 + 652 + 654 + a ) 

3 1- 0 3 2 0 1 + 2e - .640625e -. 064236e 
3 

+... 

3 1 1 3 2 -1 -.5e + e 
3 

.36458e 
5 

+... 

3 1 2 3 2 -2 -. 
3 7 5 

e 
2 

+ .6875e 
4 

-. 34277e 
6 

+... 

4 0 -2 4 4 2 14e 
2 

-
2 2 

.83333e 
4 

+ 10.6875e 
6 

+ 

4 0 -1 4 4 1 -6e + 23.25e 
3 

- 29.15625e 
5 

+ ... 

4 0 0 4 4 0 1 - Ile 
2 

+ 31.625e 
4 

- 38.4444e 
6 

+ 

4 0 1 4 4 -1 2e - 15.75e 
3 
+ 41.5521e5 .+ 

4 0 2 4 4 -2 3e 
2 

- 21e 
4 

+ 54.375e 
6 
+ ... 

2152 2 1 

4 1 -2 4 3 2 21+2 [1 + 552 + 5a4 + 5 ] 

4 1 -1 4 3 1 -4e - 3e 
3 

+ 1.645e 
5 
+. 

4 1 0 4 3 0 1 + e - 2.6875e 
4 

+ 97222e 
6 

4 1 1 4 3 -1 1.5e - 2.25e 
5 

+ ... 

4 1 2 4 3 -2 -.25e 
2 

+ 1.5417e 
4 

- 2.1719e 
6 

+ 

4 2 -2 4 2 2 .5e - .583333e 
4 

+ .125e 
6 

+ .. 

4 2 -1 4 2 1 -2e - 2.25e 
3 

+ .19792e 
5 

+ ... 

4 2 0 



APPENDIX B
 

Recursive Relation for Hansen's Coefficients
 

Proof of a recursive relation for Hansen's coefficients which is not 

given in any of the references cited here is presented in this appendix. 

The general expression for Hansen's coefficients is given by Eq. 

(A-1) of Ref. (18) as 

121 n 
n" = J c h xms dN (B-i)

0
 

where
 

jf j

x = E , z = e M (B-2)
 

and
 

E base of natural logarithms 

SVT 

The notation is that of Ref. (18).
 

In order to perform the integration indicated in Eq. (B-1) it is
 

necessary to express r and f as functions of M . For the purposes
 

of this proof it is sufficient to indicate this functional dependence sym

bolically. In additian, it will be convenient to use the relations
 

r(M) = r(-M) 
(B-3) 

f(-M) = -f(M) 

129
 



130 

i.e. r(M) is an even function and f(M) is an odd function of M . Eq.
 

(B-3) may be proved intuitively by sketching 
r vs. 'M and f vs. M as'
 

follows
 

0/
 

-27 -7 
 7 27 -2w -sI 2T 

MM
 

From these sketches it is seen that Eq. (B-3) is correct.
 

Substituting Eq. (B-2).into (B-1) yields
 

xn,m 	 - -21T () E~mf E-Ji dM 

i"2-T 0o Ea dM (B-4) 

Now, make the change of variables M -M in Eq. (B-4). 
 Then
 

( _ )(
f - 2 7 ( , (_ M Ejm f -M) + IM ) -S 

1 2 0 a E(-dM)( 

The limits of integration in Eq. (B-5) may be changed to 
0 + 27 by 

using the minus sign inf (-dN) to reverse the limits on the integral.
 

Since the integrand is periodic with period 
2f , the integral -2v -0 

is equal to the integral 0 - 2v . By using this information and Eq.
 

(B-3), 	Eq. (B-5) may be written as
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xn-m_ 12' (_f(M)+i(M)) d. (3-6)1 (r(M))' E 

A comparison of Eq. (B-6) and Eq. (B-1), while keeping in mind that M is
 

a dummy variable, reveals that
 

X m (B-7) 

The recursive relation (B-7) must be related to G pq(e) for the primary
 

body and H (e) for the third body disturbing function. Equation (35)
tpq 

of Ref. (18) relates n , m , i and Z , p , q for the primary body, 

i = Z-2p+q , a= -2p , n = -t-i (B-8) 

Substituting these results into yialds,
 

na = X- k-l'2p = G (e) (B-9) 
i - -p+q - pq 

Given a value of £ , p , and q , Eqs. (B-7) and B-8) are used to determine 

the set of indicies ' , p' , q' which yield the same value for G(e) 

The results are 

£ = I, 

i-2p = -£'+2p' (B-10) 

£-2p+q = -Z'+2p'-q 

Solving Eqs. (B-1) for z' , pI , and q' yields
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p, = -p (B-11) 

q = -q 

Consider, for example, G31_(e) . According to Eq. (B-il), 

2? = 3 , p' = 2 , q' = 1 

Consequently,
 

G31-1(e) G321(e)
 

Equation ,(B-11) also applies for Hpq(e)
 



APPENDIX C
 

Transformation from Nonsingular Orbit Elements to Classical Orbit Elements
 

and Cartesian Coordinates
 

Figure C-i defines the classical orbital elements which orient the
 

orbit with respect to the inertial Cartesian coordinates.
 
z 

satellite orbit plane
 

u pericenter
 

I equatorial plane
 

4 Fig. C-1 

Orientation of the Orbit Plane
 

In Fig. C-i
 

I - inclination
 

- longitude of ascending node
 

w - argument of pericenter
 

f - true anomaly
 

u - argument of latitude.
 

The transformation from classical elements to Cartesian coordinates
 

is given by
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( -i
 
s2cos Ir n=P + sin u cos Q cos I (C-l) 

- L[siniu cos 0 - s in u sin 
Zsin u sin I
 

The transformation from nonsingular elements to classical elements is
 

2 
e = A2 + B (C-2)
 

I = sin-
1 

2 + k2 (C-3) 

_ tan (T) (C-4) 

o = 
-l 

tan 
A 

(A) 
-1 

- tan (h) (C-5) 

M = 6 - tan- (A) (C-6) 
B 

I = cos1 y (C-7) 

where y = cos I 

By defining
 

u' = u + C , (C-8)
 

and using the trigonometric identities for the sine and cosine of the 
sum
 

and difference of two angles, 
 r may be written as
 

r a - /P +BB
2 

9) 
r = + B cosu' + A sin (C-9)
 

Substituting Eqs. (C-2) through (C-9) into Eq. (C-l) yields the transforma

tion from the nonsingular elements to Cartesian coordinates
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cos u V - h +k sin u 

+k__ ' u 7 k 2 2 

S r 2 2 cos u + k 
2 h +k sin u (C-10)
 

X2 k sinU 

If desired, cos u and 
sin u may be written as
 

I
 

cos 

1
u = (k cos u' + h sin u')
 

(C-li)
 

sin u 2 (h sin u' - k cos u')
 

2hsnu
+ 2 


In Eq. (C-10) the positive root of + k always is used, while the sign
 

2 2
of - h + k is chosen to be the same as that of y
 



APPENDIX D
 

Generation of the Mapping Matrix for Cartesian Coordinates
 

The mapping matrix for an observation vector consisting of range, R
 

elevation, E , and azimuth, A ,
will be outlined in this appendix.
 

The tracker coordinate system, (xt, Yt' zt) is a topocentric system
 

with the axis directed along the radius vector of the tracking station,
xt 


its zt axis directed north, and the Yt axis directed east. In this sys

tem R , E and A are given by
 

R x + Yt t (D-1)
/ 2 Y2 , 
+ 

2C-i
 

2-

E = cos R (D-2) 

A = tan-l(it) -CD) 

AYt(D-3) tan I 

Solving Eqs. (D-i) through (D-3) for xt Yt and z yields
t 


xt = R sin E (D-4)
 

Yt = R cos E sin A (D-5) 

zt = R cos E cos A (D-6) 

Now, Eqs. (D-4) through (D-6) are expanded in a Taylor's series about the
 

nominal trajectory resulting in
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Fxt Cos 0.sin Ba j 
= cos E* sin A* -sin E* sin A* cos A* 

CosE* cos A* -sin E* cos A* -sin A*

;Fdfl 
0 RW 0 [dE (D-7) 

0 R* cos E* (-

The first matrix to the right of the equal sign is designated as M . Now, 

the product of the last two matrices will be defined as the observation vec

tor. Then, 

dR 

j 
dx t 

RdB T dyt CD-8) 
Rcos E dA dzt 

The desired state vector is the Cartesian coordinates of the vehicle measured
 

in an inertial geocemtric reference frame. Hence the vector
 

dyt 

must be augmented to include the velocities and then transformed to yield
 
(54 )
 

the inertial coordinates. It is easily shown that


= d yG (D-9) 

.2;]Ldz 
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Here Ad is the local vertical.correction given by
 

[eAn d 0 sin A1
 

= 1 0 (D-10)
 

Lsin A 0 Cos Aj
 

and Ad is the difference between the geodetic and geocentric latitude. The 

matrix, G , is the transformation matrix relating the geocentric inertial 

coordinates to the topocentric tracker system and is defined as
 

[cos os A ens 4 sin A sino 

= -sin X cos 0 (D-i) 

-sin 4 cos X -sin 4 sin X cos4'j 

where
 

- latitude of the tracking station 

A - Greenwich hour.angle plus station longitude. 

The mapping matrix now is defined as
 

H EMT AOG (D-12) 

The quantity 4 is a 3 x 3 null matrix relating the observations to the
 

velocity components.
 



APPENDIX E
 

Generation of the Mapping Matrix for the Classical Orbit Elements
 

The mapping matrix relating the observations to the state vector for
 

the classical orbit elements is derived in this appendix.
 

Consider the classical orbit elements described in Fig. C-1 of
 

Appendix C. They are related to the satellite's inertial Cartesian coor

dinates by
 

X- Fcos u cos Q - sin u sin 0 cos 17 

r cos u sin Q + sin u cos I cos 0 (E-1)
 

[ Lin u sin I
 

The H matrix is defined by
 

DR DR DR
La
Is e M
-


lE aE E
Ia Ie . I (E-2) 

DA IA @A
 

Now,
 

+
R = x + Yt zt) (E-3) 

If s represents one of the orbit elements, then
 

DRIs = 
DR
Ixtt 

axtI IR
+ --

ayt 
aYt 
a 

DR
+Is 

zt 

Dzt 
s 
3E 

xt @xt Yt DYt +z t Dzt(E4 

R ;E: R aE R Da 

/ 
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Similar equations may be written for A and E 
. Using Eq. (E-9), it 

is seen that
 

Yt ACaG j-	 (E-5) 

From Eq. (E-i) it may be shown that
 

ax 	 X ar 
_ r aa 	 (E-6) 

ax 	 x ar 
 -Cisnau
 
e r ae 
 ae
a t- (sin u cos 0 + Cos u sin Q cos I)r a (E-7) 

ax
 a-	 Z sin 2 (E-8) 

ax = 	 -Y (E-9) 

ax
 
ax = -r {Cos 2 sin u + Cos u sin Q Cos II 
 (E-10)
 
aa
 
ax X ar - cos i u+co -- sin o }au 

- - sin rn 03MU 00 a-M CE-il) 

aa 	 y ar (E-12 

aY _Y ar au 
- e + r C-sin u sin U + cos u cos I cos ) (E-13) 

- = -E 005 U Cs-l4
 

aY
 

aY
 
--3-y = ryX C-sinr@ u sin U + cos u cos I cos U) CE-i1)
(E-17) 

aY = 	 Y ar au 
r -M + r (-sin u sin 2 + cos u cos I cos U) a- CE-i7 

aZ Z ar
 
aa r aa
 

az 	 Z ar 
 au
 __ + r cos-u sin I  E-19)
ae 	 r as 
 ae
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= r sin u cos I (E-20)
 

az = 

-- 0 
 (E-21) 

= r Cos u sin I (E-22)
 

3Z Z Dr au 
-m-= - M + r Cos u sin I (E-23) 

The partials of r and u with respect to the orbit elements are given by
 

a- = r/a (E-24)
 

--= -a cos f

3e (E-25)
 

r 
 - a e-sin 
 (E-26)
 
-5M (1 - e ) 

au a(i + e Cos f)
 

M n-  (E-27)
r(1 e2 


2u (2 + e cos f)sin f
@e 2 (E-28)
le (1 - e2) (-8 

From the expressions for R , A and E given in Appendix D, it may be 

shown that 

[IR DR DR [tL t zt] (E-29)
xt Yt -t = R(-9
 

I3E 3E 3] 
 D osE sin E sin A cos A sin EL@x lyt zj = R- - R R i(E-30)
 

FA DA A 
 - 2 
+ 

2 -
+ 
2 j (E-31)

Yt tt zt Yt zt 

Using Eqs. (E-2) and (E-4) the expression for H becomes
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.R DR R - t axaxt t
3x ay Ma D
t t t ..
 

H DE 
t 

DE 
axayt 

DE 
az 

ayt aYt 
e . 

aYt 
aMa 

DA A zzt azt zt 
t 3zt txta ty 

The first matrix is given by Eq. (E-19) through (E-31) and the second by Eqs.
 

(E-6) through (E-28).
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