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I, INTRODUCTION
A. Summary of Research
The primary purpose of the research reported herein was to.
investigate the possibilities of using satellites to obtain in-
dependent and more precise measurements of continental drife,
polar wandering, and irregular variations in the earth's speed
of rotation, than have been chtained by other means. An addi~
tional objective was to develop an active attitude control logic
for contrelling the attitude of spin—-stabilized spacecraft. A
final objective was to investigate the feasibilitf of using laser
range measurements Lrom a space base for satellite orbit deter—
mination.
B. Report‘Format
Several papers have been prepared as part of this program;
some have been accepted for publication in the professional
journals or for presentation before the professional societies
while others are in the process of being submitted for publication.
These papers form the basis of this report. Brief summaries of
the éesaarch accomplishments are presented prisr to the papers.
IT. SUMMARIES OF RESEARCH ACCOMPLISHMENTS
A. Geodesy
It had been proposed to examine the uwse of a synchronous
controlled satellite and precise laser range measurements for
the determination of polar wandering, continental drift, and

variations in the earth's rotation rate. Development of the
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basic functional relationships between range and geodetic para-
meters‘has been completed and was based on one controllable
synchrcnﬁus satellite (the Benchmark Satellite} and one freely
drifting synchronous satellite. The controllable satellite would
be forced to remain earth-fixed by active thrustiﬁg and laser
ranging to ground stations and therefore could sérve as a known
position or benchmark in space., The analysis developed in terms
of ranging between a benchmark satellite and a.freaiy drifting
satellite was general and may be applied directly to ground based
observations., Analysis of ground based observations has been
initiated but no results can be reported at this time. The
analytical development is presented in the paper on polar wandering.
An independent means for determining continental drift was
also investigated. This technique involves the use of laser range
data to subsynchronous satellites and it is demonstrated.that the
accuraby is- essentially independent of satellite ﬁaight beyond one
eafth radius and of ground station locations. .Thig research is
described in.the paper on continental érift.
Research Accomplishments in Attitude-Control of Spimning Spacecraft
The ac;ompli$hments of this program include the following
developments:
(a) A completely active control logie has been developed for
contrélling the attitude of a spin-stabllized axisymmetric

spacecraft hav?yg arbitrary (but non-spherical) inertial
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characteristics. The developed control logic is formilated
from & direction-cosine kinematic model, and is accordingly
not restricted by either small angle assumptions or by
kinematic sinéniarities. The formulated control logic can

be reslized by means of one body-fixed reaction jet, and

maﬁes use of existing semsor systems. Details of this de~
velopment ar; included in the two enclosed papars: (i)
Optimal Direction-Cosine Attitude-Control Logic for Spin-
Stabilized Awisymmetric Spacecraft (submitted to ATAA Journal
of Spacecraft and Rockets 15 May 1970}, and (ﬁi} Direction~
Cosiﬁa Attitude—Cont;ol Logic for Spin-Stabilized Axisymmetric
Spacecraft (accepted for publication in ATAA Journal of Space-
Eraft and Rockets 14 April 1970).

(b} A considerable gquantity of work has been expended towards the
davelopment of an active control system for a moderately
asymmetric spimming body. The enclosed report ocutlines an
improved analytical solution for the torque-iree motion of &
spinning asymmetric body. This solution should be of con-
siderable value in the development of impuls%ve control logie,
since it is valid for large angles, and allows a time-varying
spin~speed, Details of“this.analysis ave included in the
encloged paper.

C. Space-Based Orbit Determination
Techniques involving range only data for orbit determination

have been investigated in the past but have not included space-based
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range data to arbitrary satellites. The purpose of this research
was to develop an orbit determination program for arbitrary orbits
using range only data obtalned from a space-based tracking satellite.
A program has been developed and 1s discussed, along with some
results, in the paper bn orbit determination. The tracking procedure
has been simulated for various orbits and the program has converged
to the orbit parameters to an accuracy of 1}{10"6 within at most three

iterations in all cases examined.
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ABSTRACT

A mgthod iz presented for measuring the motion of the Earth
with respect to its rotation axis using two synchronous satellites
Laser rangé measurements are made between a free satellite and a
controlled satellite which is forced to maintaln its position
relative to the Earth by active- thrusting. Additional laser rang-
ing between the contrelled satellite and three gr;)und stations is
requiréd. The amplitude of polar motion can be calculated to

within 0.0001 seconds of are.



IT. POLAR WANDERING
Introduction

It is well known that the Earth's rotation axis undergoes a pre-
cossion and nutation due tolgravitational torques exerted by the sun and
moon. In addition to this motion, the Earth has been observed to shift
or wobble with respect to its axis of rotation. Evidence for such a
motion comsists primarily of astronomical observations conducted by the
International Latitude Service (ILS) since the turn of the century.
Sinece 1962, the International Polar Motion Service {IPMS) has ;arrieé on
the work of the ILS, and an independent detefmination of polar motion
has been made bﬁ the Buresu Internation de 1'Heure (BIH) in Paris since
1955.

The amplitude of the wobble (Termed the Chandler Wobble) is on t?e
order of 0''.1 to 0''.2, and the period is approximately 14 months. The
most precise observatory instruments presently in use for latitude and
sidereal time determinatioms are the photographic zenith'tube_(PZT} and
the Danjon impersonal prismatic astrolabe. These instruments have a
standard deviation of 0''.075 from 14 - 15 star observations during one
night or 07'.2 from a single determination [Maeller, 1969}. Monthly
averaging of such astronomical ohservations theoretically results in a
probable error on the order of 0''.01 [Markowitz, 1968]. However,
systematic differences of up to 0''.1 are present when the ILS-IPMS data
are compared with results obtained by the BIH [Smylia‘and Manshina, 1968].
In addition to the Chandler Wobble, it is suspected that a secular shift
in the mean pole position occurs at a rate of about 0''.002 - 0''.003

along a meridian 60° - 70° West. [Markowitz, 1968; Yumi and Wako, 1968).
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1t has been suggested that the motion of the po}e is sustained by
seasonal variations in the Earth's mass distribution [Munk and Macdonald,
1960] and by earthquakes [S@ylie and Manshina, 1968], but the observa-
tional data presently available are of insufficient accuracy to allow
proper investigation of éuch phenomena. It wéuld be desirable to obtain
more accurate data from ‘an independent experiment.

A method of measuring the motion of the Earth with respect to its
axis of rotation by means of two synchronous satellites is currently
being investigated. The technique involves laser ranging between a con-
trolled or’prgog satellite and a freely drifting satellite. The proof
satellite is forced to maintain its position relative to the Earth by
means of active thrusting and laser ranging to three ground statioms.

The free satellite is unaffected by small changes in 'the Earth's orienta-
tion. Therefore, intersatellite range measurements provide an indication
of the motion of the Earth. Perturbations of the satellite orbits and
the movement of the Earth's rotation axis in space are accounted for so
as to permit calculation of the amplitude of any shif£ of the peole with

respect to the rotation axis to within 0'7.0001.



Polar Motion Coordinates

The pole of epoch is defined as the point of intersection of the
Farth's axis of rotation with its surface at a particular time, called
;poch. The polar axis of epoch is defined to be a geocentric axis pass-
ing through a fixed point on the Earth's surface corresponding to the
pole of epoch. The term “polar motion'" refers to a change in the posi-
tion of the polar axis of epoch relative to the axis of rotation. Great
circles normal to the polar axis of epoch -and to the axis of rotation
are called the earth~fixed equator and the rotatien equator respectively.
The position of the earth-fixed equator relative to the rotation equator
is specified by the angle o between the two equatoriai planas and the
east longitude I' of the ascending node of the earth-fixed equator with
respect to a reference point P! on the rotation equator. The polar

motion. coordinates ¢ and I are shown in Figure 1.

4 axis of rotation

polar axis
of epoch

Barth-fixed
A equator

rotation
equator

Fig. 1. Polar Motion Coordinates.
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Relationship to Traditional Polar Motion (oordinates

Traditionally, the position of the axis of rotation relative to the
polar axis of epoch is gpecified by the rectangular coo?ﬁinates (xl, x;)
as shown in Figuwe 2. The polar axis ch;sen as a reference is known as
the Conventional Internaticnal Origin (CIQ), and corresponds to a mean pole
of 1900—1905.‘ It will prové advantageous in the following kinematical de-
velopment to define a new pole of epoch to be the position of the spin
axis at the time of initiation of a particular experiment. The change te
a new pole of epoch involves a simple translatiom of the coordinate axes
shown in Figure 2, As a consequence of the small magnitude of x%; and x4
(a few tenths of an arc second) it makes very little difference whether
they are taken to be angles, as suggested by Figure 2, or direction
cosines of the Earth's spin awis. The direction cosine interpretation
is used in the following development of equations which relate x, and
x, to the nodal coordinates o and T.

Let X5 Ky and x, be direction cosines of the spin axis with respect to
an Earth-fixed coordinate system having its x, y, and 2 axes through the

Greenwich meridian; 90° past longitude, and the pole of epoch respectively.

x, 8 90° East

&

\ Greenwich.
{
o
?0le of I X
1
spoch

Fig. 2, Rectangular Polar Hotion Coordinates.



Polar axis Axis of rotation

of epoch

Greenwich meridian

Earth-fixed
equatoer

Rotation
equator

0° longitude

Fig. 3. Nodal Coordinates and Polar Motion Direction Cosines.

Iz LP is the east longitude of reference point P (Figﬁre 3) and FG denotes
east longitude of the spin axis relative to Greenwich, then

I=Tg = (L + 7). (1)

Since X5 X, and x, are direction cosines, they satisfy
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In view of the two preceding relationships, o and T are related to X,

and x, by observing that

(2)

Rotation Axis Coordinates

The axis of rotation of the Earth does not remain stationary in space.
The motion of the rotation axis is described as a precession and nutation
relative to some inertial coordinate system. The precession is a coning
motion with amplitude equal approximately to the obliquity of the ecliptic,

N

23°.5, and a period of about 25,800 years. The nutation is a relatively
short periodic motion with an amplitude of about 9'' and a period of about
18.6 years. The position of the reotation axis and rotation equator at
time of epoch serves as an ingrtial coordinate system to which subsequent
motion of the rotation axis can be referred. The vernal equinox of epoch,

YE’ represents a fixed direction in space. Referral of longitude to an

~

inertial axis x 90° eastward from Y_, insures that the longitude Q of

E’
%

the ascending node of the rotation:equator will be a small angle, The

inclination of the rotation equator with respect to the inertial equator

of epoch is denoted by i. Note that i > 0 by definition, The rotation

axis coordinates are shown in Figure 4.

*
The rotation axis tips in the general direction of a moving vernal
equinox, which progresses at about 50''.3 per year westward.
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axis of rotation
of epoch

axis of
rotation

T

Fig. 4. Rotation Axis Coordinates.

Orbit of the Free Satellite

The ground track of a synchronous satellite resembles a figure
eight as shown in Figﬁre 5. The actively controlled proof satellite
remains in the immediate vicinity‘of an arbitrary point P above the
Earth-fixed equator. The fre; satellite is injected into a synchronous

orbit whose ground track is centered over point P at the time of initia-

tion of the experiment. This initial time is taken as the time of epoch.



a Latitude

)
b

Fig., 5. CGround Track of a Synchronous Satellite.

Subsgatellite
Point

Longitude

Hear circﬁiarity of the free satellite orbit permits aspecification of
gatellite positions at any time subsequent to epoch in terms of the
four elements 2, p, n, and A of a3 circular reference orbit and pertur-—
bations &), 84, and 8p measured from & nominal point'§é which moves in
the reference orbit as shown in Figure 6. 1In order to insure that the
free satellite remains in the viciqity of point f& during the extended
period of time subsequent to epoch (possibly tens of years), it is
necessary to regard the elements of the reference orbip as slowly oscu-

lating parameters with values { 2 Np» and AE at epoch. Point P

g’ g E

corresponds to polnt 5% at epoch, and lE is the argument -of Eﬁ measured

from the node X.. The fate of change of A, with respect to time is de-
*E £

fined to be



Rotation 5 Rotation axis
axis e of epoch

Polar axis
of epoch

Earth-fixed
A—equator

Rotation
equator

i Rotation
% of epoch

equator T

1 4
\P P

|

X

Fig. 6. Coordinate Systems.
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Ay Eowp (3)

where wE is the Earth's absolute rate of rotation at epoch. A is then
specified by assigning a value to the slowly osculating parameter A,

where

RE)\E—FA. (&)

Pg is defined to be the radius resulting in an orbital period equal to
the period of the Earth's rotation at epoch. The parameters Mg and QE
specify the size of the free satellite ground track and the initial
orientation of the orbit plane in space. The point P is defined to
travel around the rotation equator of epoch, always being located at an
angle AE eastward from the inertially fixed axis Eﬁ. The angle § is de~-

fined as

o
1l

A - (8- ). (5)

Point P! is defined to correspond with P at epoch and to be located along
the rotation equator O + © radians eastward from the node X, where O

is a small, slowly varying parameter which takes into account any changes
in the Earth's rotation rate subsequent to epoch. It will be shown later
Lhat proper orientation of the free satellite orbit renders the final
results insensitive to 0.

éround—to—Satellite Ranging

I An Earth-fixed rectangular coordinate system may be established as
shown in Figure 7 with the origin at the center of the Earth and the x
axis passing through point P on the Earth-fixed equator. Three ground

stations are used having geocentric radius, east longitude, and north
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latitude denoted by Rh’ En’ and Nn; (n = 1,2,3) respectively. The

rectangular coordinates, Xn’ Yn, and Zn of the nth ground station are

given by
X = R_ cosN cosE .,
T n n n
Y = R cosN_ sink ., (6)
n o3 n n
Z = R ginN .
i n n

If x, ¥y, and z denote rectangular coordinates of either the free satellite

or the preof satellite, and if the column vectors ﬁn and x are defined as

and

by

- 1y (8)

‘then the three ground—-to—-satellite range vectors are given by

- > -
r = - Rh +x (n=1,2,3). (9)

The ground ranging equation,
N

2 _ 2 el ) -
r R 2+ || ~2@F x4 Yy 4z oz, (10)
follcws directly from équation 9, and is applicable to either the free
satellite with coordinates (xF, Vs ZF)’ or to the proof satellite with

caardinates.(xP, ¥po ZP).
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62 Satellite

Earth—-fixed
equator

nth ground
station

\\\;(n=l,2,3)

Fig. 7. GHarth-tixed Coordinates.

The proof satellite is to be actively controlled in such a way that
it remains in:the vicinity of a peint PL which is.located at synchronous
radius Py and at a specified east longitude 1 from p?int P on the
Earth-fixed eduator. L can be chosen 80 as to insure that the satellites
do not collide. Deviation of the proof satellite from its nominal posi-
tion is'expressed in‘térms of the perturbgtions €1,_é2, and €3 shown in

Figure 8.
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bz

Earth-fixed
equator

Proof satellite

= 7
Fig. 8. Proof Satellite Coordinates.-
The rectangular coordinates of the proof satellite are
x, = (pE + £3) cos éz cos(L + 1) ,
yp = (pE + g£3) cos g5 sin(L + 1) , (11)
zp = (pE + g£3) sin g5 .

Linearization of Equation (10) about the nominal point PL’ corresponding

to g1 = €2 = €3 = 0, results in



r - . - -
6]’.‘1 de,
Brn
Sl = v deq (12)
k P
L
-(SII'.':-;.I 5 J -683-
Where
ar o)
(_n_ S - [X sinL - Y¥_ cosL] ,
%1 /p . (x )p n n
L L -
MY o fs
90 - (r ) n °’
PL al PL
(13)
Brn 1 .
EE;-P = .?;;7;—-EQE ~ X cosL =¥ sinL ]
L L
- 2 _ : .
and (rn)PL =~ R 204 an cosL + Y sinL]

for {(n = 1,2,3). Inversion of equation (12) giwves the deviation of the
proof satellite from point PL in terms of the ground-station range
residuals 8ry, 6rz, and 8r3, and therefore provides information necessary

to control the proof satellite.

Intersatellite Réngiﬂg
The range D between the free satellite and the proof satellite is

given by
2 _ B 2 _ 2 _ 2
DY = (xp = %p)" F (yp = vp) " + (25— 2p) (14)
The coordinates (xF, Vo zF) of the free satellite in the Earth-fixed

coordinate system of Figure 7 are obtained by first expressing the free

satellite's position in terms of p, §), 8¢,. and §p using the coordinate
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system of Figure 9, and then performing seven consecutive coordinate
rotations ending with the Earth-fixed system of Figure 8.

The pogition 6f the free satellite is given by

Vil - (o + 6p) cos §¢ cos SA ,
y;ii = (p .+ 8p) cos 8¢ sin SA , (15)
;ii = (p-+ 8p) gin &¢

vii

&Z

Free satellite

vil

Osculating
reference
orbit

Fig. 9. Coordinates of the Free Satellite.

svii +vi .
If x; 1, xFl, T, §;, Xp denote 3 x 1 component vectors in the respective

coordinate systems, the rotations are expressed by
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X
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cos) -sin) 0

sini COSA 0 xvid

0 0 1 s
i 0 o

¢ cosnt  —-sinn §;1

0 sinn  cosn s

cos (G-0) sin(@-0) 0
-sin(-Q) cos (§-0) 0 §;

Q 0 1 s
1 0 0
. . +iv
0 cos ‘i sin 1}
0 -sin i cos i s

cos(AE—ﬁ+QE+6+P) sin(AE-§+QEH@+P)

0
1 0
0 casg

| 0 —sinul

-cosP —s;nP
sinl cosl

0 0

-sin(AEﬁQﬁQE+®+T) cos(lEfﬂ+QE+@+F)

0
0
sing §ii
F.
coso .
0 .
-1
0 xF
1

0

0

+iid

These rotations are combined to yield a functional relétionship of the form

>

7

- N ~
XF(G: ;s 2, n, A, ps 2, 13 lE: ©; 8A, 6¢9 Gp)-

{16)
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Sensitivity of Range to Geodetic Parameters
The kinematical relationships which have been developed are quite
general and can, in fact, be applied to ground-based observations of
a free satellite in an arbitrary orbit as well as to space-based ob-
servations. In order to see thig, assume for a moment that the position
of the proof satellite has been established in an Barth-fixed reference
frame by means of monitoring the range residuals of Equation (12) and
active thrusting. Such a satellite serves as a known reference point
or "benchmark" in space and can be thought of as ancther tracking station.
In order to formulate these generalizations more precisely, let us
identify the coocrdinates (XP, Yp» zP} of the benchmark satellite with
the coordinates (Xﬁ, ?n, En} of the nth ground station and dencte the
coordinates of the satellite being observed by (%,¥,2) in place of
(xF, Y zF). ﬁquaticns (10) and (14) are replaced by the single re-

lationship

AL N C RS HLE R R SLE N CIES S L (19)

where r is the range from a general observer with coordinates <Eh’ Yn, Zn)
to a satellite being observed. Nowhere in the range relationships and
coordinate transformations has it been necessary to assume that the reference
orbit of the satellite being observed is_in fact eircular. If p 4in Ecuation
{18) is replaced by semimajor axis a, eccentricity e and longitude of perigee
KD using

.a(l - e®)
1+ e cos(h—kp)

(20)
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then a general reference orbit with elements £, n, A, a, e, and hp can be
considered.

The functional dependence associated with Equation'(19) is expressed
by

r = rn(Xn, Yn’ Zn; X, X 38, N, A, a8,

(21)
e, kp; Q, i, H; AE; 8, 6, Gp) .

The six elements of the reference orbit, together with the Earth's nominal
angular position AE constitute reference numbers or definitions. The
remaining arguments of expression (21) govern the variation of range r

and range rate én with time. A least squares or minimum variance estima-
tion procedure can be used to converge upon optimum values for these geodetic
parameters. -

The partial derivatives of T, with respect to its various arguments
provide insight regarding the degree to which range is influenced by the
motion of the earth and by the orientation of the freé satellite with
réspect to the tracking station at the time of observation. A system of
rectangular coordinates with origin at the tracking station (ground station

or benchmark satellite) has been introduced in order to- aid interpretation

of the sensitivity formulas which follow. The coordinates RE s RN , and
n n

RR refer to distance of the satellite from the nth observer in the east-

T
ward, nerthward, and radial directions respectively as shown in Figure 10.
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&z = Satellite

S8,
- n
observing
station
3 3E
n

Fig., 10. Rectangular Statign—Centered Coordinates.

The following sensitivity relationships are based upon the consecutive

coordinate transformations preceding Equation 16 together with Equation 19:

Sensitivity of Range to Polar Motion

Brn Rn | e L X
_n__n 2 2
%, T I (1) (x,% + x,?) X%QE cos N
n k=0 - , n
- x 2 ; :
X, _(zEn sin Nn sin En + an cos En)

- xlxz(ngn sin Nn cos En + gNn sin En)

-(% ' 1 2 22
( g sin N sin E + % cos En) (22)

o n
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Brn Rﬁ L i
n__n 2 2 _
- - (kD) (x1 + z, ) xllE cos Nn
2 n k=0 . n
2 ; -
+ %, (QE sin N cos E_ - g, sin E)
n n
+ (EEn sin Nn cos En - RNn sin En)

Sensitivity of Range to Coordinates of the Observer

afn RI].

Ey-m "_E-—Q.E cos Nn
n n n

arn R.n

W T W

. n n n

or zr

. _ o _n

BRh T

Sensitivity of Range to Earth Rotation Rate Correction

Brn Rn
TR ;;- REn sin Nn (x1 cos En +x, sin En)

- X3‘2En cos Nn + QNn (—-x1 s:LnAEn + x, cos En)

Sensitivity of Range to Earth Precession

Brn R.rl .
gﬁ— =';; QEn cos Nn X, (1 - cos i)

(23)

(24)

(25)

(26)

(27)
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2
+ ZEn [cos Nn(xl + X,

-+

-+

Q'N
n

5 Nn-(} - cos i) (x2 sin En + X, cos En)]

QN {1~ cos i) (x1 sin En - x, cos En)

n

k=

QE
n

sin i [sin N sin G+ Q. +H - é + E_ )
n E E n

cos

—-29—

cos En X cos T' sin i cos ¥

2») %

sin 1 cos ¢

1.

sin Nn sin (En -]

g+ FH-Q+E)]

Sensitivity of Range to Earth Nutation

Brn

-

R 1
= ;E- - QE cos (x12 + }:22)/2 sin y
n n .
@ 3 2 2 k [ . .
- (kzl (k) (x,* + %,°)" siny gEn sin N_ sin (En -

+ Ly cos (E;-— ]

+

n

gE
n

gN
n

sin Nn cos (AE + QE +H-8+ En

sin (AE.+ QE +H -8+ En)

bl
/4

; (%) (x 2 4+ x 2)k sin i cos V[% cos (E -1
k 1 2 N n .

n

(28)

(29)
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Y in the above equations is defined by
1!1=‘7\;E'+SBE+H+I‘—Q . (30

The sensitivity relationships can be used as a basis for determining
optimum relative orientations of the free satellite with respect to an
observer. Such considerations should lead in turn to the design of an
optimal orbit orientation for the purpose of determining selected geodetic
parameters.

In order tb_illustrate typical orders of magnitude which might occur
in an application of the sensitivity relationships, two particular numerical

'

examples are presented below. Case 1 involves a ground station with co-

ordinates
|1=_80°
No=  34°
1
R = 6380 KM

o
and Case 2 invc;lves the benchmark satellite with coordinates

- 115°

b=
I

N = . 0°

R, = 42,100 KM
The satellite and station coordinates selected for Case 1 correspond
roughly to a pass of Geos —A over Rosﬁan,N.C. The east longitude of
-115° for the benchmark satellite ‘corresponds to a stable equilibrium
point over the Pacific, A spin axis inclination of 10_4 radians is used

in the calculations. Range is normalized to rn/RE, where RE = 6371 KM.
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The satellite being tracked from the ground station of Case 1 is observed
at an elevation angle of 40° above the horizon. All of the sensitivity
expressions except‘Brn/BR.n approach zero as the elevation angle approaches
90°, and below 40° atmospheric effects on the quality of range data become
severe, Theréfore, valués listed for the sensitivities correspond to the
largest that can be obtained in practice. The results of the example
comput;tions are presented as Figures 11 through 26 following the dis-—

cussion.

Discussion

The maximum sensitiviﬁy of range to polar motion is an order of magnitude
greater for the benchmark satellite‘(Fig. 25 and 26) than for the ground
based observations (Fig. 23 and 24). This is due to the "lever arm" effect
resulting from an increased geocentric radius Rn and from the fact tha? an
elevation anglé of 0° is permissible for the benchmafk satellite. The same
remarks hold true regarding sénsitivity to precession and nutation of the
Earth's spin axis.
- In a sense, the benchmark satellite concept represents the ideai situ-
ation for a tracking station. Observations would be made in a vacuum and
a much larger portion of the trajectory of a particular satellite would be
visible. With regard to the polar motion determination, it is expected
that intersgteliite range measurements, together Wiﬁh*éhe ground-to—-satellite
range information, will permit the determination of satellite positions to
within about one centimeter. One centimeter at synchronous altitude corres—

ponds to an angular uncertainty c>f_l+.751«:10—5 arc seconds or within 0''.O00L.
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The ﬁotential of ground based observations for precise determinat’orn
of geodetic parameters ié also clearly indicated by the results which
have been obtained. For example, B(rllRE)/sz reaches approximately
0.8 for an aximuth of 80° (Fig. 24), so that a shift in the pole in the
X, direction by, séy 5 meters, produces a corresponding change of 4 meters

in range. -
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LIST OF TLLUSTRATIONS FOR EXAMPLE COMPUTATIONS

Ground Station, Satellite Being Observed
Due East

Ground Station, Satellite Being Observed
Due North

Benchmark Satellite, Sateilite Being
Observed Due North :

Polar Motion Sensitivity for Ground Station

Polar Motion Sensitivity for Benchmark
Satellite
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DETERMINATION OF CONTINENTAL DRIFT
BY LASER RAMNGING TO SATELLITES#

C. Byron Winn

Associate Professor of Mechanical Engineering
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ABSTRACT

A geometrical technique for determining continental drift from
laser range measurements is investigated. The method involves an
arbitrary number of ground stations with at least four of the sta-
tions making nearly simultaneous range measurements to_a satellite.
The results are shown to Hé essentially independent of the satellite
orbit for satellite altitudes beyond one earth radius. The standard
deviations in interstation distances are calculated and are found to

be approximately 0.5 meters.
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INTRODUCTION

A subject of great controversy for nearly three hundred years was
the flattening of the earth. It was observed by French explorers in
1672 that their pendulum clocks ran more slowly near the equator than
in Paris and this led to a postulated flattening of the eérth and many
subsequent studies to determine the degree of flattening. Many studies
were geometric in nature and involved astronomical measurement techniques,
many were dynamical and made use of observations of the moon, some in-
volved hyd;ostatics and hydrodynamics, and none were in agreement with
one another, In 1948 Sir Harold Jeffries combined the results of many
previous studies and arrived at a value for the flattening that was
generally accepted by geodesists. However, observatiocns of satellites

in 1958 resulted in a slightly different value for the flattening than

was previously accepted. This was of significant importance to geo-

physicists and led to the abandonment of some theories of the earth's
interior [1],

' The purpose of this discussion is to emphasize the role that arti-
ficial satellites have played in resolving a highly controversial problem
in geodesy. We are currently faced with several analogous situations.
These involve the concepts of continental drift, polar wandering, and
variations in the angular speed of the earth. These concepts have been
debated vigorously for many years, many experiments ha;e been pexrformed

to measure the quantities in gquestion, and yet there is still not general

agreement ag to their existence and very little agreement as to their
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cause. The situation is very similar to that of the degree of flattening
and it would be of significant value if an independent experiment could
be devised that would lead to more accurate measurements. The purpose

of this paper is to present some results of an investigation of possible
experiments involving a syanchronous satellite (or satellites) that will
result in precise determinations of continental drift, vériations in

angular speed, and the polar wandering.

CONTINENTAL DRIFT

The possibility that the continents of the earth have been drifting
relative to one another throughout the earth's history has been discussed
for_three hundred years and debated vigorously for the past fifty years
[2]. The hypothesis of continental drift has been strongly supported in
many recent books and papers ({3], [4], [5]) and many estimates have been
presented for the drift rates ([3], EA]). However, its wvalidity is re-
garded with scepticism by many scholars [2] and even denied by some [6].

If the drift rates were accurately determined, substantial questions re-
garding the structure of the earth's upper mantle could be answered and

the cause of drift might be determined. This could lead to a better under-
standing of the origin of the earth and may be of value‘in determining man's
future on the earth.

It is pointed out by Wilson [2] that the arguments about continental
drift resolve themselves into three questions. The first question is
whetﬂer drift has occurred and whether it is still occurring. TIf the
occurrence of drift can be verified, the second question is to determine
the pattern of drift of all the continents that gives a best fit to the

observations. Finally, the third question to be answered is to determine
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the nature of the forces that cause the drift. All three of these

questions are currently unresolwved. The original hypothesis of conti-
nental drift was based on the obvious similarities that exist between

the coastlines of various land masses. This concept has been further
explored recently by using a digital computer to assemble the continents

in a "best fit" manner [8]. However, the primary results in support of
continental drift have been obtained by analysis of palaeomagnetic data.

By measuring magnetic anomaly patterns along faults various investigators
have determined drift rates between continents. Morgan [3] divides the
earth into twenty blocks, each one bounded by rises, trenches, or faults,

and determines the relative motions of the blocks. It is found, for example,
that the Antarctic block has a maximum spreading rate relative to the Pacific
block of 5.7 £ 0.2 em/year. It should be pointed out however, that the

use of rock magnetic data in investigations of continental drift depends

on postulating a model geomagnetic field because it is not known how the
actual geomagnetic field behaved over long intervals of geological time.

The validity of conclusions drawn from magnetic data depends on the accuracy
of the model geomagnetic field [9]. However, the evidence obtained in this
manner lends strong support to the hypothesis of drift.

Another technique that has proved to be of some consequence is to
employ astronomical evidence. The most satisfaétory results have been
obtained by the International Latitude Service (ILS) by using a chain of
five zenith telescopes around the earth at latitude 39°08' W [10]. Data

have been taken almost continuously since the end of the last century and
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these data have been extensively analyzed [11]. The results indicate
that the observing stations have been fixed in latitude with respect to
the earth within 6.01 seconds of arc over a half century and so secular
motions in the north-south direction appeaf to be less than one centi-
neter per year at the present time [10]. However, this technique does -
not provide adequate information with respect to variations in longitude
and does not excluae the possibility of east-west motions of up.to one-
half méter per year.

The prospects for improvement in determining continental drift are
varied. The astronomical teckniques may be extended to provide coverage
on a more nearly world-wide basis but not without considerable‘expenditures.
The magnetic anomaly approach may be extended by obtaining and analyzing
additional data. However, this is complicated by the fact that measure-

ments over most of Asia are currently denied., Satellites offer the op-

portunity of observing large portions .of the earth's surface simultaneously
and may provide the means of performing independent, and very precise,

experiments to ascertain the current existence of continental drift.

DESCRIPTION OF METHOD

‘It has been estimated that a Q-switched laser with an output pulse
of 10 ns 'can be used to determine the range to a satellite to a precision
of 15 cm or less [12]. By making simultaneous range observations to a
satellite from four ground stations and by repeating this for thirty
satellite positions the interstation distances may be determined to within

an average error of 50 cm. Therefore it should be possible to obtain a
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direct measurement of continental drift rates after only two or three
years of observations. The approach is briefly described below.
Suppose that RJ represents the vector from the origin of some

. . . . .th
arbitrary coordinate system to the satellite at the time of the j

jl

.th
range measurement. Let c¢” vrepresent the vector to the i station

i

J represent the range vector (see Figure 1). The vectors are

and r

related by the following expression:

R R 1=1,7"",4
j=1,""",30

For a given j this provides four equations for five unknowns. In
terms of components there are 120 equations for 126 unknowns (36 sta-
tion coordinates and 90 satellite coordinates). The system can be
made determinate by specifying six of the unknowns. This cannot be
done arbitraril§ but it can be done as follows. Specify the coordi-
nates of one station (arbitrarily), then two components of the direction
of motion of a second station relative to the first, and finally one
component of the reiative motion of a third station. The following

relative displacements were selected for this analysis:

11 10
8ci? = 8c3? = §ei? = 8ci! = Sez' = de3’= 0.
The range equation may be written in terms of components as
i

. 3 .4 3 .. . .
Jy2 52 _ U T [ B -
R+ ki:l(ck )2 -2 R~ [ 2=t =0

z (
k=1 k=1
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Perturbation equations may be written as

3 i

S sd Ly oy s e ke -
b2 {Rk - & 3 5ck - ¥ (Rk - 3 éﬁk + E'f x3¥y=4
k=1 =1

N R Ll
where ® represents the vector {(c,R) about which perturbations ave taken,

The above perturbation equation may be expressed in matrix form as

{51 -

which may be dnverted to give

{gg( - [a]f .

This provides an iterative procedure for locating stations and deter-
mining interstation distances. The iterstive procedure is described as
follows:

1. Guess nominai values for R, c.

2. Obtain a complete set of range measurements r.

3, JIterate to obtain the correct values of R, c.
The interstation distances are obtained {rom

D% (I,J). = g [e(I,R) - c@,R)1?
k=1
where D(L,J) represents the distance between stations I and J.
After once obtaining the interstation distances from one complete
set of measurements additionzal measurements may be taken and the inter-

station distances may bé updated. This will provide a direct measure-

ment of drift rates.
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The ground stations that were selected are listed in Table 1. Ne
attempt has been made to locate the stations at points of maximum velative
movement; rather, they have been selected to be distributed somewhat
uniformly oﬁer the Earth's surface. Tt was found, however, that if the
statlon at Houston is replaced in favor of one at Goddard Space Flight
Center, then the standard deviations in the determination of the interw
station distances increased significantly. Also, it is not required that
12 stations be used; in fact, if L represents the number of stations used
at eaéh observation time, M represents the number of observation times,
and N represents the number of stations, then all that is required is that
IM = 3(¥ + M) - 6, where L S N. For example, the ten stations to be em~
ployed in the current Isogex experiment could be used in the analysis.

This is currently being examined,

ORBIT SELECTION

The technigue requires that the satellite pass approximately over
the midpoint of each great circle arc commecting all of the ground
stations. It was considered to be desirable to maximize the number of
times that the satellite passes near the required points in order to
increase the opportunities for making the range measurements.

The problem is to determine‘tha orbit parameters that result in
maximizing the opportunities for observation. Two analytical formula-
tions of the problem are described below.

Let ﬁk, 6k represent the longitude and latitude of the particular

points of Interest. Let L{t), 8(t) represent the longitude and latitude
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of the satellite at any time (t) and let Lo’ 60 be the initial values
of longitude and latitude. The problem may then be stated as a param-
eter optimization problem ag follows. Determine LO, 50, and the orbit
inclination and period to minimize the cost function

T

N
J ==,[ T {(2k - L(e)? + (8, - §(t))?} dt

k=1
o.

where N represents the number of regions of interest and T represents some
specified time. A somewhat simpler formulation would be to define ¢k(t)
as the great circle arc between the ground point and the projection of the

4
satellite on the ground. Then let ¢; = min ¢k(t) and find the orbit param-

N,
eters to minimize J = I ¢ .
k=1 k

The expressions for latitude, longitude, and miss distance are given

for a circular orbirt -as

-] .
L(t) = Lo - met + tan [cos i tan § t]
A(£) = A+ sin [sin i sin B t]
and ¢k(t) = cos—l{sin 6k siﬁ[lo + gin | (sin 1 sin B t)]

. —1 - .
+ cos[6k cos A + sin (sin i sin B t)] cos[Lo -t

+ tan_l(cos itan B t) i Ek]},

where B = (u/ra)%.

In either approach an infinite number of points would have to be
examined unless the time is restricted to be in some finite interval.
Therefore it is reasonable to examine situations in which the ground

track is periodic, Let the subsatellite trace repetition parameter [13]
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be defined as

360

o)
It
g

where S we P_ - AQ

N

and w, is the earth rotation rate, P is the nodal period, and AQ is the

N
inertial rotation of the line of nodes (measured positive westward) during
one nodal period. Then Q may be approximated to firxst order in (g), where

R is the earth's mean equatorial radius and a is the semi-major axis, by

7/2

_26 -3/2§ 0 . LR -
Q_ k a | {1+36(a) cos 1

where K = 2.77x10'.'6 and a is measured in kilometers. The significance
of Q is that it represents the nuwber of satellite revolutions that
occurs during one rotation of the earth relative to the osculating orbit
plane. The procedure was to select Q, which determines the number of
revolutions required before the trace is repeated, and then examine

the miss distances ¢z for various values of a and 1. The orbit that

was selected on that basis is a direct circular orbit at 285 NM alti-
tude with Q@ = 15.5 and at an inclination of 70 degrees and launched from
the Western Test Range. For Q of 15.5 the trace repeats after every

31 revolutions. The approximate minimum miss distances (in degrees)

are shown in Table 2.

SENSITIVITES AND STANDARD DEVIATTIONS
The precision of the determination of the interstation distances

(and hence continental drift) is dependent on the precision of the range
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measurements. The expression for the Interstation distances in terms of
station coordinates was given earlier. The variation in D(I,J) due to
a variation in the station coordinates may be written as
3 .
D(L,Y) = % [e@K) - c3,K)]1[6e(L,K) - 6c(I,K)]
k=1
or 8D = BSe .
The variations in coordinates with respect to variations in the range

measurements may be written as

where B(1I,J) = i bI,KaK,Jr

The standard deviations in the interstation distances are given by

g@(I)) = I, )2 o(x)

3 I,J
where g(r) represents the standard deviation in the range measurements.
The standard deviations are show in Table 3 and are based on a standard
deviation g(r) of 15 em. This value of g(r) is subject to question and
is being examined currently at the Wave Propagation Laboratory of the
Environmental Sciences Services Administration at Boulder, Colorado.

Sensitivities were also calculated based on a common error of 15 cm.

in all range measurements. These were all less than 10 centimeters.
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It 1s apparent on examination of the standard deviations for this
orbit that they are too large to alloﬁ for a direct measurement of
continental drift rates, An investigation of the effect of orbit alti-
tude on the standard deviations resulted in the curve shown on Figure 2,
where G represents the average of the standard deviationé in the inter-
station distances. In order to keep the standard deviations small and
also increase the opportunities for observations an orbit having a/R ~ 2
should be selected., Choosing Q = 6, a/R = 2.015, and i = 65 degrees
provided the miss distances and standard deviations shown in Tables 4

and 5.

DISCUSSION

The analysis has indicated the feasibility of ob£aining direct
measurements of continental drift by laser ranging to satellites. The
results of this experiment would also serve_for mapping purposes, as
has been pointed up in many papers. The method is not actually depen-
dent upon having a satellite pass directly over the midpoints of the
arcs joining the ground stations and could be implemented with currently

existing satellites having corner reflectors.
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Table 1

STATION LOCATIONS

Station Number Latitude (W) Longitude (E)

Location

1

2

Ut e

10
11

12

29°30"
14%s5¢
36°15°"
31%3"
20°43¢
-25° 4
-31°57"
-33%55"
~12%117
-30°17"
76°30"

-77%s0"

265°
342°%30"
597371
130°51"
203%44"
229°547
294°51"
-18%49:1
96°50"
149°36"
291%28!

166°401

Houston, Texas

Dakar, Senegal

Mashhad, Iran

Ranoya, Japan

Maui, Hawaii

Pitcaimn Island (U.K.)
Villa Dolores, Argentina
Caa_:;e Town, Scuth Africa
Cocos Island (Australia)
Culgoora, Australia
Thule, Greenland

McMurdo Station,
Antarctic (U.S5.A.)



Table 2

MINIMUM MISS DISTANCES
ORBIT 285 MM Altitude
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1

1.04
.91
84
.84
.76
.85
.87
.99
.70
1.51

1.42

1.53
1.53

1.41

©1.39

1.33
1.52
1.64

1.42

"1.64

.65

1.41
1,26
1.37
1.37
1.25
1.47
1.53
1.51

1.09

STANDARD DEVIATIONS IN INTERSTATION DISTANCE (METERS)

.69
1.60
1.51
1.52
1.37
1.02
1.46

.88

Table 3

285 NM Altitude

.98

.87

1.05

.76

1.07

1.37

.96

1.04
.69
.81
.89
.89

. 88

1.56

1.53

1.39

1.10

1.34

1.53
1.45
.89

1.36

1.51
.89

1.57

C66

1.51

1.69

_9'[-..



ORBIT

Table 4

MINIMUM MISS DISTANCES (DEG)

3490 NM Altitude

NB'R ¢1 2 ¢35 by $5 ¢g O7 ds s P10 b11 D12 D13 P1u G15 d1s D1y D15 G19 P20 P21 P22 23 ¢24.¢2s P26 D27 b2s das P30

1
2
3

i0

3

0.5

12 13

9

.8 1

.6

16

15

10

5

2

15

13

11 4

—LT



Table 5

STANDARD DEVIATIONS IN INTERSTATION DISTANCE (METERS)
3490 NM Altitude

10

11

.32
.?3
.27
.28
.26
.27
«34
. 34
+23
.66

.88

71

.64
.58
.59
.70
14
.60
.63

.22

.55 .24 .28 .31 .76 .86
.68 .68 .31 .31 .71 .91
.89 .79 .38 .28 .59 .29
.89 T4 .25 .28 .32 .60
.94 .60 .35 .29 .59

.63 .30 .58 .27

.59 .62 .30

.75 .32

.32

.62

.30

T4

.22

71

.64

_8‘[_
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DIRECTION-COSINE ATTITUDE-CONTEOL LOGIC
BuR SPIN-STABILIZED AXISYMMETRIC SPACECRAFT

bara W. Childs®
Colorado State University

Fort Collins, Colorado

ABSTRACT N70-35 111

The developments of this study yield a control logic for the active
attitude control of a spin~stabi1izgd axisymmetric spacecraft. The derived
control logic makes use of direction cosines for attitude definition, zand is
not restricted by either small angle assumptions or by the kinematic singu-
larities associated with Euler angles. The active torqueing capability is
provided by means of a reaction-jet system, and the control logiec is simpli-
fied by assuming that control torques may be applied impulsively. The control
logic formulated is optimal in the sense that each control impulse is delivered

in such a manner as to cause a maximum reductipn in "system error.”

INTRODUCTION

The basic objective of the analysis which follows is the synthesis of
an active feedback attitude-control logic for spinmstabilizéd axisymmetric
spacecraft. Control torques are to be generated by means of a reaction~jet
system, and the proposed control logic is simplified by assuming that control
torques may be applied impulsively. Pulse-width modula;ion is suggested for

generating the derived control impulses.

# ' . . .
Assistant Professor of Mechanical Engineering



Windeknecht [1]* was the first of several authors [2, 3] to suggest
impulsive control logic for passively damped spacecraft. Since passive damp-
ing systems are only effective if the spin-axis moment of inertia is .greater
then either tramsverse-—axis moment of inertia [4], the contrel logic suggested
in [1 -~ 3] is not workable for many spacecraft configurations. In contrast
to these systems, Porcelli and Comnolly [5] have suggested a control logic
for the active control of slender (i.e., "pencil-shaped") spacecraft. - Childs
[6] has recently suggested a control logic which is applicable for axisymmetric
spacecraft of arbitrary inertial proportions; i.e., it would be used to con-
trol a "disk-shaped" body, a "“pencil-shaped" body, or any configuration lying
between these extremes.

All of the abové cited control approaches employ Fuler angles as kine—
matic variables and are restricted in application to situations which do not
require "large" angular reorientations. The.control logic suggested by
Porcelli and Comnolly and by Childs are based on linearized Euler angle models
which become gquestionable for angular reorientations in excess of 15° (approx-~
imately). While these control approaches could be extended by changes in ref-
erence, a more fundamental approach consists of employing a kinematical repre-
sentation which does not have the inherent kinematic singularity associated
with Euler angles. The components of the direction cosine matrix [&, 8] are
such a representation, and the analys?s of this study makes use of them in a.

development similar to that of Childs [6].

THE CONTROL MODEL
The basic attitude-control requirement for spin-stabilized spacecraft

is that the spin axis be placed and maintained within some small defined

*Identifies listing in reference section



neighborhood of a prescribed orientation. The physical variables which must
Jbe controlled are angular rates and angular displacements. The angular rates
may be defined by Fuler's equations of motion for a rigid body which, for ar

axisymmetric body, are stated as

o1 + afw, = M3/I = uft) cos nlt)
@p — awy = Mp/T = u(t) sin n(t) (1)
walt) = w3(0) = Q
where
a = (I - I)/T (2)

and the subscripts 1, 2, 3 identify body-fixed x31, %2, x3; axes with the =xj
axis the axis of symmetry. The origin of the %1, %2, X3 sy;;i:em coincides
with the mass center of the rigid body. The variables wy, Wz , W3 and M,,
M, are, respectively, the components of the angular éeiocity vector of the body
and the external torque vector. The parameters I and I3 ave, respectively,
the transverse (I; = I, = I) and spin-axis moment of inertias. The form of
(1) implies that control is to be supplied by a gimballed torqueing system,
i.e., that n{t) is an unbounded control vari;ble.

The angular orientation of the body-fixed X, system relative to an
inertial Xi system may be defined by the direction cosine matrix [A]. If
the components of the arbitrary vector V in the x, and X, systems are

i i

denoted, respectively, by (v)i and (V)I, the direction cosine matrix satisfies
@, = I, 3 ®; = AW 3)
i I ? I i

where "' denotes the matrix transpose operation. Further, the matrix [A] is
related ([7], [8]) to the components of the angular velocity vector cited in

1) by



[A] = - [(w)]IA] (4)

where

(@] = [0 -ws w
(5)

*

Since only the spin~axis orientation orientation is significant, one

extracts from (4)

-
a13 = Qazg — Wedss

dz3 = —Qajs + wyazs (6)

[.]
azs Woajz — Wiass

These variables are not independent, since they satisfy the kinematic con-
straint

afs +ajs +ad: = 1 (7)

Equations (1) and (6) constitute the system of governing equations. The
kinematic definition given in (6) is not restricted by either small angle
approximations o; by kinematic singularities.
The control logic derived in this study is based on the assumption that
the effect of a “shorg—duratidn" firing of the gimballed reaction jet can be
’ \

adequately approximated by an impulse. Since a reaction jet is essentially

an "on-off" device, i.e.,
u = U>0,o0oru=0
the magnitude of a control impulse is approximatel& defined by

J = UIAt .



wvhere At 1is the firing duration. By varying At one obtains impulses of
varying magnitude. This approach is commonly referred to as pulse-widt’
modulation.

To determine the effect of a control impulse, Eq's (1) and (6) are

restated as .

W = iaw + G(t) (8)
and
& = i3.33m -— iQU.
. - _ (9)
dz33 T Wpazs Widszs
where
W= w + iw, = I(ﬂleie H 0 = ayg + iagyg = Ialeiq) (10)
8 = u)eM®

The solution to (8) for the control impulse
= (11 1y = 1 int L
u(t) = (F/D8Ce-tY) = (Ja2[/1)e™ s(t-t*) (11)

can be expressed as

w(t) = m“eiaﬂt 0<t<t!
. (12)
wlt) = wlet3NT 0< 7
where
o
T = t-t! . w’® = w(0) = Iw“[eie
. (13)
W' = w(el) woeiaﬂt

+ (J1/1)

From (12), Eq. (9) is reduced to a system of linear time-varying differential

equations. The transformation

0 1]
zei(aQt + 8%) ifae + 8%

= (21 + izp)e (14)



further reduces (9) to the linear time-invariant system

54 dpz = 1lw®|ass
) ' (15)
a3z = -|w°]z2
where
b = a+1 = I/I , u = bQ (16)
The solution of (15) is readily obtained, and from (14) yields for t<t!
Ol(t) - aoeiaﬂt
- ; 0
- i[uol lmplzsoz 5in($?-99) (1-cos B(,t)e::"(am:.he ) (17)
+ (adsw® - w®)By [n(l-cos Bot) + 1By sin Byt]et
and
azs(t) = als By’ (0?2 + |w®}? cos Byt)
+ 1ula®||w®|85" cos (6°-8%) (1 - cos 8,t) (18)
- Ja| w® 185" sin (§°-8°) sin Bt
where
8 = ¥+ |w%|?2 = [(@®? + (T]w®])2)/12 (19)
Hence,
Bp = [mO)/1 “ (20)

where H® is the initial anéular—momentum vector of the rigid body. The
solution for t 2 t! (or T > 0) is obtained from Eq's (17) through (20) by
replacing the index 0 by 1 and s;ubstituting T for t.

Although the solution developed ‘above is formally correct, it is

physically unmotivating, and a more meaningful solution format is obtained

via the following definitions.



sin 8° = 1|w®|/[8®] = [u°[/B,

£21)
cos §° = I30/7{8 = w/Bo
a3 = cosys , |ol = sinys (22)
5§3 = |H®| cos A° (23)

The angles defiﬁed above are illustrated.in Fig. 1, and one observes that
A% is the angle between the angular-momentum vector H? and the inertial
X; axis, while 8% is the angle between the angular-momentum vector and the
spin axis. The angle <y3 obviously lies between the x3 axis and the X;
axis.

Of these three angles A% and &9 are.piecewise-ccnstant functions
of time (stepping dicsontinuously when an impulse is applied), while 73 is

a continuous function of time. TFrom the last of (3) and (23), one obtains
cos A® = cos v} cos 8 + sin vY sin 8% cos ($%-69) (24)
which yvields, in conjunction with (21) and {22},

as3(t) = cos 8% cos A" + (cos ¥} ~ cos 8" cos A%) cos Bt

~ sin v} sin 8 sin (¢°~8%) sin B¢t
for (18). This result is further simplified by the substitution

sin v3 sin ($% - 6% /sin A°

sin 20 =
{25}
cos ¥ = (cos vJ - cos 8% cos A%)/sin 8% sin AP
which vields
ags(t) = cos 8% cos A" + sin 8° sin A® cos (g + Bot) (26)

The planar representation of Fig. 2 illustrates the spherical trigon-

ometry involved in this torque-free rigid-body solution with the spin axis



precessing about the angular momentum vector at the rate Bgy. Eq's (24) and
(26) are simply an expression of the law of cosines for arcs from spherirzi

trignometry.

CONTROL SYNTHESIS

By a Suitab;e~definition of the inertial X, system, the general
attitude—control’objective can be interpreted as the requirement that the x;
axis (spin axis) be placed and maintained in coincidence with the inertial

X3 axis. 1In terms of the state wvariables, the desired terminal state is then

defined by

Wi (P) = we(T) = a13(T) = axs(T) = O

’ : (27)
aza(T) = 1 = v3(T) = 0

where T 1is the first time for which (27) is satisfied, and is unspecified.

From (26), the solﬁtion for aj3 following application of a control

impulse is given by

a33(T) = cos 8! cos A! + sin 6! sin A' cos (Z! + BiT) (28)

-A given contrel impulse will be defined as optimal if it minimizes the system
error which follows the impulse. 1In view of the desired terminal conditions
cited in (27), system error is defined as the maximum value of the spin axis

angle +v;3, i.e.,
E = max Y3(t) (29)

ﬁence, the initial system error is defined by E? = A% + 8%, Equivalently,

a control impulse is optimal if.it maximizes the minimum value of aj33(t) which
occurs following a control impulse. From Eq. (28) the quantity to be maximized
is

G(|I], n', £1) = cos (A! + &%) (30)



g

The necessary conditions of optimality, BG/alJll = 96/3tt = 3g/ant = 0,
are satisfied by
sin (% + Bat?) = 0 , cos (¥ + Bot?!) = 1 (31)
sin (a@t? +0%n?) = 0 , cos (aOt' +8%nl) = -1 (32)

Although the formal confirmation of these results is lengthy, their kinematic
significance is easily appreciated from Fig. 3. Eq. (31) implies that the
optimal firing time t! occurs when aa3z{t) is a maximum {or y3(t) is a
minimum), while Eq. (32) implies that the "new” angular-momentum vector H*
is to lie in the plane defined by the initial angular-momentum vector H°
and the inertial X; axis. This latter statement can be better appreciated

by noting from (13) that
w2 = Jw®|2 + 2 |0®]]31]/T cos (a@t! + 8%n') + (|3|/1)2

If in addition to (32), one also has
'] = 1 |

then [mll = 0, and the resultant angular-momentum vector ' would lie in
the H® - X3 plane. The firing time t! and impulsa phase n? defined,
respectively, by {31) amd (32) affect this desired result irrespective of the

impulse magnitude iJII. As a cﬂnsequenc&,‘one obtains
A+ 8t o= 41 o= A%~ g0 {33)

The form of the definition for the contrcl phase provided by (32) is
not entirely satisfactory,since its implementation would require measurement
of the angular velocity components w3 and ws. A control logic that requires

only angular measurements would be more attractive from a sensor viewpoint
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and can be readily developed from the kinematic interpretation given above and
in Fig. 3 for Eq.'s (31) and (32). The following additional angle defi-itious
are required. The angles between the X3 and x3 axes and between th 1
and =x» axes are denoted, respectively, as 7y: and Ya2; hence, arz = -fou’
azz = cos Ya. The angle between the X3 - x3 and X3 - x2 planes is dencte
as £ vwhile the anglé between the X3 -~ x3 and Xz - u® planes is V.
Finally, one denotes nl =t - 7. With these definitions one obtains from

Fig. & via spherical trigomometry (the law of cosines for arcs)

cos 53 = ~ cos Yy sin Yz + sin Y; cos Y3 cos ¥
(34)
sinn! = - cos ¥z sin Ya + sin vy cos vz cos (& - ¢)
Using the same relationship, one obtaing from Fig. 5
0 = cos vy cos Y3 + sin Yy sin ¥z cos ¥
(35}
0 = cos ¥, cos Y3 + sin Yz sin y3 cos (£ - )
Hence, from (34) and (35)
cos 7t = - cos Yi/sin T3 , sin Nt = - cos Yo/sin Vs (363
, and from (10) and (22)
cos nt = cos §! , sinn? = sin ¢! (37)

Eq. {37) may them be used in place of {32) to define at.
The necessary conditions of optimality (3¢/3]|J%] = 3c/att = 36/ont = 0)
do not yield & unique value for IJll. A graphical illustration of this state-

ment is . provided in Fig. 6 where one notaes that any [5*] in the range
Ije®] < 131 € T{w®] + 140 tan (A° - &%) (38)

yields the same optimal performance index
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A opt. ~ ¢OS (A" - 8% = E'=21"-¢&° (39)

In review then, the general solution for the optimal firing time tl, impulse
angle 1, and impulse magnitude |J1| are defined, respectively, by (31),
(37), and (38). 1uere are two special cases not covered by this general

5
solution, namely, A% = 0 and ]m°| = 0. In both cases, there ir no preferred

1 js chosen

firing time t! since 7vy3(t) is constant. In these cases t
arbitrarily with (37) and (38) used to define n' and ]JII. In.both of these.
cases the optimal control impulse does not reduce system error; however, any
other non-zero control impulse increases system error.

A sipngle control impulse, even if unrestrained in magnitude, can not
in general achieve the desired terminal conditions given in (27). Since
control impulses will in fact be maénitude Jimited, a sequence of best impul-
ses, EJiG(t—ti), will be required to drive the system error into an acceptable
neighborhood of the point defined by (27). The constraint cited in (38) for
optimal impulse magnitude makes no provision for physical limitations on im-
pulse magnitudes |Ji], although they are in fact bounded both above and below

as follows

i
[ i < 1971 < 19] (40)

The lower bound arises because of physical limitations while the upper bound
is necessary to insure that the "impulsive character" of control torques is
preserved. With this in mind, two non-optimum possibilities become evident

in (38), namely,

7]

< 1|w?] (41)
max

and

IJ'min > Iw®| + I30 tan (A° - &%) (42)
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Condition (41) would be likely to arise in the acquisition phase of control
wien |${max is too swmall to achieve the desired optimum given in (3%), while
condition {42) would ba encountered near limit-cycle operation with lJimin

exceeding the allowable desired maximum. From Fig. 6, however, one would cou

clude that a control impulse will always reduce system error providing
!J]min < I[w“] + I35 tan A° (43)

If control 'is applied when lJ!min > Tlw?} + I3 tan A", system error (as
defined by max Y(t)) will be increased. Eq. (43) effectively defines the

idealized limit—cydle accuracy of the control logic in terms of lJlmin'

SUMMARY AND CONCLUSIONS

A comtrol logic is developed hereln which allows one to compute a
sequence of optimum impulses which force the solution of {8) and (9) into a
predictable {Eq. (43)) idealized neighborhood of the point {27). The control
logic is not restricted by sither small-angle approximations or by the kine-
matic singularities customarily associated with Euler angles. F;fther, the
control logic obtained does not necessarily require sensor measurement of the
angular-veloeity components w©3; and wy, although it would be necessary to
make angular or direction-cosine measurements.

The developments of this study are predicated on a gimballed torqueing
gystem, and the resultant simplicity of the control logic is, to a large extent,
purchased at the expense of mechanical complexity. There is no reason, however,
that the analytical approach employed in this study.could not be applied to a
simpler mechanical system. For example, with a single-axis bodv-fixed toraueine

system one would obtain for (1)
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(:31 + allws

fl

Mi/T = wu (44)
Wy — alw; = 0

where the control element wui is bounded by
w = % W ,or u=20 (45)

The analysis is actually simpler in this case since the impulse phase is known
to be either 0 or w. The development of a control logic for this type of
torqueing system (with direction cosines as kinematic variables) is currently

in progress.
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control of a spin-stabilized axisymmetric spacecraft with the attitude
of the spacecraft defined by direction cosines, and the control torques
provided via.a gimballed reaction jet. The optimal solutions for free
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INTRODUCTION

Problems associated with the active attitude control of spin-
stabilized axisymmetric spacecraft have been discussed in the 1iterature
for some time, and largely fall into the following two caiegories:
(a) Control of passively damped spacecraft [13*, [2], and (b) control of
undamped spacecraft for small pointing and coning errors [3], [4].
Rgcent1y, two analyses [B], [6] have been reported which treat the ldrge-
angle attitude-control problem. Porcelli in ESE allows large pointing
errors but retains the assumption of small coning errors, while Childs
[6] considers the general case of arbitrary pointing and coning angle
magnitudes. .In both of these papers, impulsive-control strategies are
developed from an analysis of the free motion of the spacecraft. In the
analysis which follows, an optimal, unbounded control solution is demon-
strated, and a suboptimal control Togic based upon it is proposed. The
proposed control logic is not restricted by the small coning angle assum-

tions of [51, and is simpler than that suggested by Childs [6].

THE CONTROL MODEL

The basic attitude-control requirement for spin-stabilized spacecraft
is that the spin axis be placed and maintained within some small defined
neighborhood of a prescribed orientation. The physical variables which
must be controlled are angular rates and angular displacements. The angu~
Tar rates may be defined by Euler's eqﬂatﬁons of motion for a rigid body

which, for an axisymmetric body, are stated as

* = - 3 -
Identifies Tisting in reference section.
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W, - awe, = M/I = u(t) cos n(t)/1
B + aw; = Mp/I = u(t) sin alt)/1 {1
wal{t) = ws {0} = wu
where
a = (I~ I}/1 (2)

and the subscripts 1, 2, 3 identify body-fixed X;, X, Xs principal axes
with the x3 axis the axis of symmetry. The origin of.the X;, Xz, X;
system coincides with the mass center of tﬁe rigid body. The variables
wys We, ws and M;, M, are, respectively, the components of the angular
velacity vector of the bed§ and the external torgue vector. The parameters
I and I; are, respectively, the transverse (I, = I, = I) and spin-axis
moment of inertias. The form of (1) impliies that control is to be supplied
by a gimballed torqueing system, i.e., that n(t) s an unbounded control
variable.

The angular orientation of the body-fixed x; system relative to an

1

inertial Xi system may be defined by the direction cosine matrix [A].
If the components of the.arbitrary vector v in the X3 and Xi systems
are denoted, respectively; by (V)i and (V}I’ the direction cosine matrix

satisfies

(V)i = [A:}(V)I H (V}I ﬁ[Ajl(V)i (3}

where "T" dendtes the matrix transpose operation. Further, the matrix [A]
is related [7] *to the components of the angular velocity vector cited in

{1) by



(Al = - [(«)][A] (4)
where
(] =] 0 -ws w
wy 0 -y (5)
-y Wy 0

Since only the spin-axis orientation is significant, one

extracts from (4).

d13 = fAz3 - Wydss
83 = -Qa;; t wa3; (6)
d3z = wpdi13 — widzz

These variabies are not independent, since they satisty the kinematic con-

straint
ajs * azz * aj; = 1 (7

Equations (1) and (6) constitute the system of governing equations.
The kinematic definition given in (6) is not restricted by either small
angle approximations or by kinematic singularities. Ana1yticé1 solution
of the state equations is expedited by restatement in the following com-

plex variable format

. . i

o+ taQw = ue' /I

o+ iQu - 'ia33w = 0 (8)
a3z - wpdiz t wydzs =0

where

w = w tiwy = llﬂle1e ’ o = dayz *+ sy = IO&|E1¢ (9)

1
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By a suitable definition of the reference xi system, the general
attitude-control problem may be expressed as the requirement that the
body-fixed x,; axis be placed and maintained in alignment with the X,

axis.

&ECESSARY CONDITIONS FOR UNBOUNDED, FREE-TIME, FUEL-OPTIMAL CONTROL
“he problem to be examined in this section is as follows. Determine
those control variables u(t), n{t) which transfer the state solutions

from arbitrary initial conditions to the specified final state

01(T) = we(T) = a;3(T) = a3{T) = 0 4 azs(T) = 1 (10)

while minimizing the fuel-performance index
T
J = [ kudt (11)
]
In the above, the product ku defines the rate of fuel consumption where
4 2 8, and the final time T 1is not specified.

‘The Hamiltonian function for this system is defined as

Ho= -ku + po{ads + af; + a3,y - 1)
+ py{atwy, + U cos n) + ppl-aQwy + u sin n) (12)
+ pa{Rass =~ wodzg) + Pu{-Na1s + wyss)
+ ps{wgars ~ wydas)
The costate differential equations can then be expresséd as
p+iagp = i(assq - aps)
& +109 - wps = 2po(t)a (13)

Ps - Pawp + Pyw; = 2pp(t)ass



where
p = pytip, s g = pgtipy
with the complex variables o and w defined in {9). The maximum of

the function #H with respect to the control angle n 1is satisfied by
~inn = pz/ip1 , cosn = p/|p| (14)
Hence, the functional dependence of H upon u becomes
#Hu) = u{-k + |p}])
For unboundéd u, it is necessary that
Ipl < k {(15)
If |pl <k, u = 0, while if [p| = k, the control u can be either
unbounded {impulsive control)}, or bounded (singular or coasting arcs’

The costate variables are required to be continuous, and the Hamiltonian

function must satisfy
H(t) = 0, (16)

since the final time s unspecified, and H 1is not an explicit function

of time.

EXTREMAL FUEL-OPTIMAL SOLUTIONS

The nature of the extremal solutions for the system considered is
most easily explained in terms of the properties of the motion of the
system. The free motion stlution. for the state egquations (8) may be de-

veloped as follows. The solution to the first of (8) for u=0 fs
w(t) = e 'R g0 = y(0) (17)

Substitution from {17} into the remainder of (8), together with the

transformation
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- goile%-agt) _ i(e%-ant) (18)

o (zy + iz;)e
yields the linear time-invariant system [6]

z+ibpz = i|wllass » 83 = ~lu|z, (19)
where

b = 1-a = I,/I (20)

The solution for {19) is straightforward, and may be expressed as

aza(t) = co0s6° cosA® + sing® sinA® cosy
z{t) = sing® cosi% - coss® sinx® cosy + 1 sinA® siny {21)
- WP+ Rt
where
2 2.1
Bo = [{Is@) ¢ (T|o®]) T%1 = [HO/T , (22)

and |H%| is the initial moment-of-momentum vector magnitude, Additionally,

sing® = I}a®|/[H°| , coss® = I,0/|H°| (23)
cosA® = Hy /] (24)
833 T COSvyy 3 [Gl = IZI = SinYa (25)

Fig. 1 illustrates the three angles +vg, A%, and 8% while the planar
representation of Fig. 2 shows the spherical trigonometry involved in
this torque-free rigid-body solution with the spin axis precessing about
the angular momentum vector at the rate B,. The first of Eq. (21} is
simply an expression of the law of cosines for arcs from spherical trig-
onometry.

The same basic distinction between initial condition classes noted

by Porceili and Connolly [3] for the smali angle model holds here as weli.
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Specifically, there are two basic optimal strategies depending on whether
A > 8% or A% < 8°. The optimal strategy for 1% < 8% s the simpler,

and consists of the twa~fmpu?se strategy

S0 _ ool
u(t) = -gtel(8°-20E )5 1y

. 26
~3(T)el (0205 (¢ 7y (z6)

where 6&{ } is the delta-dirac function. In (26) above, the initial
firing time t' 4s arbitrary, and the phase of w at t*, &', is defined
by 8! = 0%+ aqt!. The nature of the soiution is illustrated in Fig. 3
where one notes that the first impulse generates a new angular momentum
vector H' such thai the spin axis precesses into alignment with the . X,
axis, 1.e., after the first impulse 2A! = &', The terminal impulse reduces
w to zero when x; and X; are aligned, i.e., when a{t} = 0. The
costate solution which accompanies this strategy is given from (12}, {14),
(?5},'and {26) by

> o
p{t} = »kal(e agt) s, O0<t<T

(27}
q(t) = ps(t) = 0

This costate solution, together with the state solutions, identically
satisfies the necessary conditions of optimality. This targe angle optimal
solution for A% > &% is identical with the small angle solution first

formulated by Porcelli and Connolly [31 with a cost.of

J = ke o (28)
By contrast, there is a marked difference between the obtima?“séiutiens
for the small angle model [3], [4] and the large angle direction-cosine |

solution for A% » §° fnitial conditions. The sma??—ang?e'ééiﬁtiéhsrwhéﬁﬁ
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have been developed consist of two impulses, while the optimum large-
angle strategy consists of an impulse followed by a singular arc. Tnis
statement is most easily confirmed by considering the special initial
condition ¢lass &° = 0. The optimal control strategy consists of a
forced precession which is not accompanied by coning, and is accomg?ished

by directing a constant-magnitude control torque towards X%, i.e.,
o+ faqw = Ue'¥/1 (29)

where ¢ s defined in (17), and U 1is a fixed control magnitude. The

state solutions which correspond to (29) are

o(t) = -i{u/1g)e’ oD
a(t) = sin ya(t)el¢(t) (30)
a33{t) = cos y,{t)
wherg
o{t) = % - Qt . ya(t) = A0 - (U/I.Q)t (31)

The costate solutions are

g{t) = ~bgk’;os Yse‘¢
ps{t) = bk sin v; (32)
p(t) = ke'?

The state and costate solutions given in (30) through (32) yield an
jdentical satisfaction of the necessary conditions except for the

#H{t) = 0 condition given in (16), for which substitution yields

H(t) = kU/I,

"This is the customary [8] ideal conirol path which is taken in controlling
passively damped spacecraft for which 8° = 0.-
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Since the execution time T and control magnitude U are related by
U = I0v,°/T = I.00%/T,

Eq. {16) is satisfied for T =« and U - 0.
The optimal control policy for general A% > 8% dinitial conditions
{i.e., &° #0) ds illustrated in Fig. 4, and cohsists of a coasting

arc from the initial state to the point

= =1 l - U - G
valt) = Yelpiy = ¥s (A® - 8% (33)
${t) = ¢° 7 gt? = 2n
At this time the impulse
s ol i
Po(t - tY) = -Tfut]ei{® -a0L) (34)

is applied which eliminates w, and places the spin axis on the singular

are to the origin. The cost of this transfer is
J = x[I]e®] + Is0(2° - v)] (35)

The costate solution for the complete A" > &% transfer is given by*

afnl
p{t) = k[-5in?8° - cos?8° cost + i coss® sin@}e?(a -alt)
. s p0_
gq{t) = kb&j sind® sinA? + cosé® cosA? cosy Ie’(e at) {(36)
1 - i cosi® sing j
ps{t) = kbQ[sinA® coss® - cosA® siné® cosy]
for 0 st tl., For %' €t < T one has from {30) through (32)
p{t} = ke'® (37}
q{t) = -bQk cosyse'? ps{t) = bk sinys

*
Development of the general coast-arc costate solutions is given in
Appendix A.
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where
T = t -t}
olr) = ¢l -ar = , ¢ = el+q = 90 -t 4
{38,
Ya(’l‘) = "{31 “‘(Uizsﬁ)’i = (A% - 8% - (V1.0

The state and costate solutions cited for 0 g t < t1 ddentically satisfy
the necessary conditions (including H{t)} = 0). The solutions for

t! < £ < T have the same properties as previously noted for the &% =0
case. The costate variables are continuous for all time, 0 <t < T. In

particular, they are continuous at t.= tl,

CONTROL MECHANIZATION

To understand the control legic which is discussed in this section,
it is worthwhile to review the following current control approach [8] em-
ployed for the active control of passively damped spacecraft. During the
acquisition phase of control, the passive damper forces the spin-axis and
moment-of-momentum vector into coincidence, effectively eliminating lof.
The reaction-jet system is then employed in an attempt to precess the
spin-axis xz towards the reference X, axis. This precession is accom-
plished by a series of impulses designed to approximate the singular arc
noted in the preceding section. A control impuise can either increase or
decrease |w], and it is generally speculated [5] that the net result of
a sequence of impulses is a neqligible change in |w|; however, should
lo] {and hence §) become too large, one simply waits until the passive
damper reduces. |w| sufficiently, and then continues forced precessional

motion,
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It is proposed that a completely active control system is near optimal
when operated in a manner analogous to this active control of a passively
damped system. Specifically, active control is to consist of the follow-
ing two sequential modes:

Mode A. Eliminate the transverse angular velocity magnitude

without regard for position (angular orientation).

Mode B. Once |w| is minimized by Mode A, initiate by repeated im-

pulses a transfer of x; towards X;. If during this transfer |u|

and hence §) become too large, return to Mode A.
In short, Mode A control is an active replacement for the passive damper,
and the development of such a system has been reported [9]. Mode B con-
trol Togic does not differ from existing active-control approaches for
passively damped systems [8]. By following this simplified control policy,
the maximum increase in cost over the optimal A° < §° cost given in (28)

would be

= I 0 0 b 0
Aoy KI.Q(A® + 89) < 2kI.08

while the increase over the A° > &° optimal cost cited in (35) would be

= ]
AJmax 2kI .08

Hence, the average increase in fuel-consumption would be kI,08°, and if
one follows Porcelli's aramments [5] that &° s "small" this simplified
policy is seen to be quite economical.

In summary, the control mechanization suggested incorporates exist-
ing active coning control systems [9] for Mode A control and existing

precessional- control approaches for Mode B control [8]. Such a control
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approach will closely approximate the optimal control strategy. Sine
it is basically a geometric control concept, it would be relatively

insensitive to inertia ratios, and could be adapted to any axisymmetric

configuration of interest (including time-varying systems)}.

SUMMARY AND CONCLUSIONS

Extremal solutions are developed herein for the unbounded, free-time,
fuel-optimal control of an axisymmetric spinning body. The optimal con-
trol strategy is shown to be guite similar to existing control policies
which have been separately developed for coning [9] and precessional [8]
control, and a suboptimal control policy is proposed which makes use of
these exist%ng control approaches, The control approaéh is conceptually
adequate for arbitrary initial errors, arbitrary (but non-spherical)
axisymmetrieliﬁeftia properties, and can be realized with one body~ fixed
reaction jet.

?Gséibﬁe extensions of this work include analysis of asymmetric spin-
stabilized vehicles, and the development of additional extremal solutions
for the present problem. Specifically, small angle analyses suggest the

prasence of another type of singular arc for conirol of the form

M 8_
U(t) - "‘Ue1 (8 aﬂt)

For A% < 8% dnitial conditions with a costate solution similar to {27).
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APPENDIX A: COAST-ARC COSTATE SOLUTIONS

An interesting fact about the formulated optimization problem is
that the kinematic constraint given in (7) and included in the Hamiltoni
(12) has no influence on the optimal solution. This fact is verified by
considering the Tast two equations in. {13) (which are linear if w(t)

is specified). The complete solution to thase equations is

It

q(t)
ps{t)

QM) + A alt)

h (A.1)
ps (t) + A{t) as,(t)

1

where the superscript h denotes the homogeneous solution and the scalar
function A(t) is defined by A(t) = 2pg(t). Substitution from (A.1)
into the first of (13) yields

p+ iap = i(a33qh - apsh:

Hence, the terms 2p,o and 2pgass which arise in .(13) (due to the con-
straint (7)) have no influence on the switching function. In addition,

substitution from (A.1) into (12) confirms that these terms have no in-

fluence on H(t) either, and the system whose solution is souaht becomes

from (13)

p+ iagp = 1i(aszaq - ops)
q+ inq - iwps =0 (A.2)
P - Pswy + pywy = 0

In analogy with (18), the transformatic .

q(t) = Vei(e“-aﬂt) (A.B)

yields the solution for v and pg
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[}

v/B sind® cosA® - cos8® sinA® cos¥ + i sinA® siny

ps/B coss® casA? + sind® sinA® cosv

it

where B 1is a scalar constant, and
¥o= ¥+ gat

The solution for the first of (A.2) is
. . t .
ﬂe-1aﬂt v ieflaﬂt I ela&x
o

p{t} = p {(as2q - ops)dx

From (A.3) and (18),

. . t
. 0.
p(t) = poe TR, jel (8°-aat) . (a33v ~ zps)dx
3]

Substituting from (A.4) and (21) followed by integration yields
-d i lat.
p(t} = pge 1a0t + ie’i(e aﬂt}g Z(t)/ﬁg

where

it

Z(t)A -i cos$” cosA® sinA®(cos¥ - cosy?)
+f coss® cosa® sinx®{cosy - cosy®)
-cosA? sinA®(sin¥ - siny?)
+sinA® cosA®{siny - siny®)

+i t sinA® sins® sinA® sin(¥® - ¢?,

(A.4)
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Abstract

This paper presents an approximate analytical solution
for torque free motion of a slightly asymmetric spinninﬁ
body. The solution deveioped is not restricted by either
a constant spin speed or a small angle assumption. Accuracy
comparisons between the approximate analytical solution and
exact numerical integration solutions are provided for a

particular inertia ratio and degree of asymmetry.



Introduction

Previous authors [1-5] have demonstrated the advantages of emplov-
ing an impulsive attitude control logic for spin stabilized spacecraft.
In each case a mathematical model of the torque free motion of a spinning
body is presented in terms of a system of differential equations. For
slightly asymmetric spacecraft these models employ the assumptions of
constant spin speed and small Euler angles to obtain analytical solutions
[2, 4]. When it becomes necessary to maintain attitude control through
large angular displacements or the degree of asymmetry increases these
assumptions are no longer applicable. Childs [5] has developed a math-
ematical model for an axisymmetric spacecraft which avoids the small
angle restriction by employing direction cosines. This paper presents
a mathematical model describing the torque free motion of a stightly
asymmetric spacecraft in terms of direction cosines and avoids the assump-

tions of small angles and constant spin speed.

Analysis
Let Ri define the reference axes and let X; denote the spacecraft
fixed axes where the origin of both axes is located at the spacecraft

center of mass. Thus Euler's equations for torque free motion are given

by
wr = =((I3 = I2)/I1)we ws
w2 = ((Is - 11)/I2)w ws (1)
ws = (I - 12)/15)my w,.

Conservation of energy requires that



-3
I ® + Towp® + Isws® = 27 (2)
while conservation of angular momentum requires
(Tawn)* + (Towe)” + (Isws)® = K2 (3)

Employing (2) and (3) one obtains

m? = 0% - Cfw,t (4)

&ng = Caz - Cnawzz (5)
where

Ci1? = {H* = 2TI3)/(11{I1 - Is))

C.2 = 12(I2 = I33/(1:{11 - I3))

€a® = (2TI, - H*)/{Is(1: - I3))

Cu? = (I = I)/{Is(l1 - 1s))
and I; <1, <14 or I121; > 14

The general soiution to (1) may be expressed in terms of eiliptic integrals
by utilizing (4} and (5) [6]. However, this form of a solution is awkward
and does not provide a great deal of physical insight. Previous authors
[2-4] have shown that for an axisymmetric spacecraft or a slightly asym-
metric spacecraft with a constant spin speed assumption an analytical
sotution to (1) 1s readily obtained. Inspection of Euler's equations
demonstrates that the assumpiion of constant spin speed becomes unaccept~
able as the degree of spacecraft asymmetry increases.

In this andlysis a more general solution to (1) is developed in terms
of a power series and is applicable to axisymmétric or s1ightly asymmetric

spacecrafi. Introduce the variables



T = (I + L)/2 e = (I - L)/T
such that (1) can be written as
él = - amptiy ~ £Pwylvg
Bz = Aty ~ ePwiing (6)
o3 = e{I/Is)ww,
where  a = (I, - I)/T and P = (I~ (Is/2))/I

and terms of order 2 are neglected. The solution to (6) can be

demonstrated [71 to be

w{t) = |w*lcos(ant+p®Y-e{w® | {aksin{aRt+o® )+ N(1)}+{P/a)sinatsinp®)
walt) = Ju®|sin{aQt+p® J+e|w® | {aKeos (at+p® ) +N(t)-(P/a)sinaQtcosp®} (7)
welt) = 0+ eX{eos2p? - cos{2{ant + o))}

where-5-
o N{t) = tecosZp® - (sin{2{ant + 0%)) - sin2p?)/{2a0)
0] = ((0®) + @®%% o = tan (w,"uwi®)

Q= and K = (1]w®]|?)/(41,0a)

Previous authors have used Fuler angles [2.3], direction cosines [5]
and Euler's symmetrical parameters [8] as the kinematic variables defining
body axes orientation relative to veference axes. Childs [5] has demon-
strated the advantages of selecting direction cosines which are smployed
in this analysis.”

To characterize the properties of the direction cosine matrix [A]
consider an arbifrary vector v. This vector may be expressed in body

axis coordinates as vy and in reference axis coordinates as Vi The
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direction cosine matrix then satisfies

v = [y vg = [Ally, (8)

[A1T[A] = [I]

where T denotes the transpose and [I] is the identity matrix. The
reTationship between the direction cosine matrix and the spacecraft anguia

velocity is given by [9]

[A] = [WIA) (9)
where
0 w3 gy
W] = - w3 0 wy
we -~y 0

and 1s subject to the above constraint.

The direction casihes i1lustrated in Figure 1 are of particular
interest in defining the attitude of a spin-stabi1ized spacecraft. These
terms define the spin axis orientation relative to a desired reference

direction (R;). From (9) one obtains

¥

dyg = igdgy - Wpdsgy
323 = ~W3d13 * W1ds3 (10)
533 = Wgdis - Widas

with a132 + a233 + 3332 = 1,

The orientation of body axes X5 relative to the reference axes Ri‘
is defined in terms of an intermediate coordinate system Xi' For torgue

free motion it is convenient to choose this coordinate system such that
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X5 coincides with the angular momentum vector H. The angular votations

B® and A" which orient the Xi coordinate system are defined in terms
of the angular momentum vector at the initial time. The angular rotation

B® is given by
5 o= “ifuo run
B tan” (HY,/HR,) + = (11)
about Rj; and A% 1is defined as
2 -} [}
A cos™ ' (Hfa/H) (12)

about -Rp. Hence, an arbitrary vector v in the Ry coordinate system

is expressed in the Xi coordinate system as

. g [
vy [2°308°7 vg (13)
The orientation of body axes X5 relative to Xi is defined hy the three
Euler angle rataéibnészé' about X3, 8 about X}, and ¢ about x; such

that S
The angular velocity of the spacecraft is related to the three Euler angle

rotations by

& = {wssiny - wycosy)/sing
p = wsing + wecosy (15}
@ = wg + cotO{w,cosY - wysing)

A solution to {15) is readily obtained., The angular momentum vector

in the Xy coordinate system is given by

H, = Hk {?5}

where k 1s a unit vector in the Xy direction. This vector can be ex-
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rressed in the X; coordinate system as

H, = [wllelle] Hy (17)

Expanding (17) into component form one obtains

Ijwy = -H cosp sing
Iowy = H siny sind (18)
13{33 = H ¢os8

Thus angles ¢ and 8 are defined as

P tﬂn_z{lzwa/"llwx) {19}

cos ™ {Tawa/H) {20)

g

The remaining angle ¢ s obtained from (15). The above results, together

with {3} and (5} yleld
$ = H(2T - Taws?)/(H2 - L3204%) (21)
Neglecting terms of order e? the solution to (21) is given by

& = 4% + Apt + ehy{trcos2p® - (1/2a0)(sin{2{ant+p®)) ~ sin2p®))

(22)
where

Ry

4]

H(2T - 1a02)/(H* - 152Q%)

Ay HIw®|2(2T1; ~ H2}/(2a{l® - 1,%0%)%)

and the initial condition ¢° 1s unspecified.
The results obtained by introducing the additional kinematic variables
are combined to yield analytical expressions for each of the direction

cosine elements 3 5+ From {13) and {14) one obtains



R~
v, = [wIellsr*1l8°] vy (23)

Performing the matrix multiplication yields [A]. In particular

a;s = (cosy coss cosé - siny sing) sini® - sing cosy cosi®
2z = -{simp cos® cosd + cosy sing)sima® + sing siny cosa®  (24)
azy = cosB cosA® + sing sinA® cos¢

In (24) v, 6 and o are given by (19), (20) and (22) with ¢° defined

in terms of ay, at the initial time.

Discussion S

Equations (6) and {10) define a general mathematical model for
torque free motion of an axisymmetric to slightly asymmetric spin stabilized
spacecraft in terms of direction cosines. The analytical solutions to these
equations are given by (7) and (24).

it is of interest to investigate the analytical solutions developed
for a sTightly asymmetric spacecraft. In general (|w®|# 0) (7) indicates
that the spin axis component of angular momentum is periodic. When this
component of momentum is a maximum, conservation of angular momentum re-
quires that the transverse component be a minimum. This result when com-
bined with (20) defines a cone angle with a periodically varying amplitude.
It is of particular interest to consider the final expression in (24) which

may be written as
3
3

cos, a3 = cosi® cos6 + sinAi® sind cos¢ {25)

For the previously defined sequence of angular rotations ¢, & and v,
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{25) is a statement of the Law sf‘Casinés from spherical trigonometry.
This resuit provides a simple geometrical description of spin axis motion
relative to a desirved reference direction and is depicted in Figure 2.

To form a measure of comparison between the analytical solution and
the exact solution as determined by machine computation a numerical example
is considered. In this example spacecraft initial conditions and moment
of inertia ratio (I/13) remain constant while = is varied. With this
approach a measure of the effect of asymmetry upon agreement of the
analytical 3o£ution with the exact or numerical solution is determined.

The solutions are compared over a time interval approximating the time
required for {ha spin axis to precess twice about the angular momentium
vector, Table 1 lists the data employed in this examgle.

Figures 3 to 5 depict a comparison between the exact and analytical
solutions for &z, with the data of Table 1. For an.ax?symmetric space-
craft the analytical solutions are the exact solutions as shown in Figure 3.
The results for a slightly asymmetric spacecraft are illustrated in Figures
4 and 5. These figures demonstrate that for a constant moment of inertia

ratio of
(?‘713) = 1.7

agreement between the two solutions is a function of both solution time and
degree of asymmetry., In the example considered for which

b<e g2 k
and the solution time approximates the time required for one precession of
the spin axis about the angular momentum vector satisfactory agreement

between the two solutions is achieved.
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Summary

In this analysis a mathematical model of the torque free motion of
an axisymmetric to slightly asymmetric spin stabilized spacecraft is
developed. The differential equations describing spacecraft dynamics are
given by {6) and spacecraft kinematics are defined in terms of direction
cosines by {10). Analytical solutions to these differential equations
without the assumptions of small angles or constant spin speed are aiven
by {7) and (24).

Analysis of the analytical solutions has shown that for a slightly
asymmetric spacecraft both the spin axis component of anguiar momentum
and the amplitude of the cone angie are periodic. It has also been
demonstrated that the motion of the spin axis about the angular momentum
vector may be expressed in terms of the Law of Cosines for sides of a
spherical triangie.

The analytical solutions obtained are the exact solutions for an
axisymmetric spacecraft. For a slightly asymmetric spacecraft the study
of a numerical example with moment of inertia properties

(T/1a) = 1.7 and 0-<esg 0.2
indicates that the approximéte analytical solution compares favorably with

the exact solution over one precession cycle.
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Table T Example Data
Initial Conditions
271 = 0.877583 a;p, = 0.22984 a;3 = -0.420735
az1 = 0.000000 dog = 0.877583 dag = 0.479426
az; = 0.479426 dag = -0.420753 dzz = 0.770151
wy = 0.150000 s 0.150000 ws = 0.628319
Moment of Inertia Parameters
Iy I I T £
3400. 3400. 2000. 3400. 0.0
3740. 3060. 2000. 3400. 0.2
3910. 2890. 2000. 3400. 0.3
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Symbols

Nomenclature

Definitions
semi~major axis of the orbit of the target satellite
eccentricity of the orbit of the target satellite
inclination of the target satellite orbit plane
longitude of the ascending node of tarpet sat. orbit
argument of perigee of target satellite orbit
time of perigee passage of targer satellite
distance from target satellite to geocenter
velocity of tarpet satellite
eccentrie anomaly of tarpget satellite
slant-range
gravitational constant of the Barth
declination of the tracking satelliite
right ascension of the tracking satellive
distance from tracking satellite to geocenter
declination of the geostationary target satellite
right ascension of the geostationary target satellite

distance from geostatlonary target satellite to
geocenter

time starting the range medsuremsnts

angular velocity of the votation of the Barth

Tnits
earth~radii
non—dimensional
radians
radians
radlans
seconds
sarth-radii
radii/sec
radians
earth-radii
{xadii)?/sec?
radians
radians
earth~radii
radians

radians

earthwradii
seceonds

radians/sec
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1. Introduction

Techniques involving range only data for orbit determination have
been investigéted by several researchers in the past. The method of
R. M. L. Baker, Jr., based on the synthesis of the classical f and ¢
series of celestial mechanics with certain unified formuiae developed by
S. Herrick, has been applied to range only orbit determination using
ground-based tracking stations [Baker]. The technique does not give
adequate information for orbit determination when the tracking stations
are near the poles or equator. In addition, the ground based trackiné
stations provide limited coverage. Consequently some investigations into
the use of space-based tracking stations have been conduéted. The feasi-
biTlity of using range only data to determine circulér orbits has been
demonstrated [Ball]l. The possibility of using range and range rate in-
formation and combining tracking data obtained from satellites with ground
based data to improve orbit determination accuracy has also been investi-
gated [Johnson, Mullin, and Steiner].

The purpose of this research has been to develop a general method
for determining the orbit of a target satellite from range only data

obtained from a single space~based tracking station..

2. Description of the Method
For the purpose of this initial study, %t has been assumed that the
earth is spherical and that no perturbations appear as the result of air
drag, solar radiation, lunmar attraction, or any other cause. It is fur-

ther assumed that approximate values of position and velocity, ?s and 35,
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at a certain time t are known. The situation is described by the
following sketch.
: 94

4
From the basic vector relationship
= r-4d
or
P = p® = r2+d2-2rd (1)

one cah get an expression for p in terms of the orbital elements

a, e, 1, 2, w, E of the target satellite $ and the elements of position
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a, 6, d of the tracking satellite T 1in the form
p(aa = i: Qs W Ea s G d) (2)
Let Po be the observed value of range, and Pe the computed value
of range from expression (2). The range residuals are
e (3)
Calculating Pc requires initial estimates of a, e, 1, Q. w, E,
which can be computed from approximate values of ?S and Vé.
Using Kepler's equation
E-esinf = 5%—(t -7 (4)
one can write Ap fin terms of the corrections aAa, Ae, AT, AQ, Aw, AT as

Ap- = {.Q.Q.-}-.B.Q@.E.} Aa + _3_Q+QQ_QE_;AE+ {ﬁQjA-i

?a  B3E ja 3e 3E 3e i
3p 20 3p 3E
* asz}m * {Bw} Boy * {aE st AT ()

The coefficients of Aa, Ae., A, AR, Aw, AT can be found by differ-
entiating equation (2) with respect to a, e, i, @, w, E and taking account
of relation (4).

The equation (5) represents a set of equations (one for each cbserva-
tion time) which can be solved for aa, Ae, Ai, AQ, Aw, and AT by the method
of least squares.

The next approximations'to the orbital elements of the target satellite

is:

o
I

a+ Aa

e + Ae

[+
1]

i+ Ad

—
H]

(6)



Q' = Q+ A0
w' = ow+ Aw
T'" = T+ AT

One can obtain the new value of E by solving Kepler's equation. The
a', e', i', ', w', E' are then substituted back into equation (2) and
Pe is computed again.

New residuals are formed from equation (3), and new corrections to
a, e, i, , w, E are computed from (5) and (4). Aﬁmfwﬁchwegﬂ:%e
next approximat{on to a, e, 1, 2, w, T from equation (5). This process

is repeated until the residuals Ap are sufficiently small.

3. Range Equation and its Partial Derivatives
With respect to the geocentric inertial frame Oxyz, the coordinates

of the tracking satellite T are

X, = d cosd cosa
Yo = d cosé sina
z, = d siné

and the coordinates of the target satellite $ are

X, = a{(cosE-e){cosf cosw - sinQ sinw cos 1)
- /T-e? sinE(cos sinw + sinQ cosw cos i)}
Yo = a{{cosE-e)(sinQ cosw + cosQ sinw cos i)
- V/T-eZ sinE(sin? sinw - cos cosw cos i)}
z, = af(cosE-e) sinw sin 1 + /1-e% sinE cosw sin 1}

Equation (1)} then becomes
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p2 = a2(l-e cosE)? + d? + 2ad coss{[cos i sin(Q-a)
- tan§ sin i]{sinw(cosE-e) + /1-e? cosw sinkE]
- cos{-o)[cosw({cosE-e) - /1-eZ sinw sinE]} (7)
If the tracking satellite T 1is in the equatorial plane, § = 0, then
p2 = a2(l-e cosE)? + d2 + 2ad{cos i sin(f-a)[sinw{cosE-e)
+ /1-e2 cosw sinE] - cos(-a)[cosw(cosE-e) - Y1-e? sinw sinE]
(8)
The partial derivatives of equation (7) with respect to a, e, 1, @, w, E

are, respectively,

3p . a%(l-e cosE)® - d2 + L

oa 2ap 2a
p . az(.I E ad . c s
56~ o -e cosE)cosE - 7;-cosd{[cos i sin{Q-a) - tand sin i]
. e . e , .
sinw + cosw sinkE| - cos(f-a)lcosw - sinw sink}}
L yT-e2 ] (2-a)T YT-e2 :
%%- = - %g-cosﬁ[sin i sin(@-a) + tané cos il[sinw(cosE-e)

+ /1-e2 cosw sinE]

90 %g-cosd{cos i cos(@-o)[sinu(cosE~e) + /T=6Z cosw sinE]

+ sin(p-a)[cosw(cosE-e) - /T1-eZ sinw sinE]}

It

%ﬁ- %?—cosa{[cos i sin{@-a) - tans sin i][cosw(cosE-e)

- /1-e2 sinw sinE] + cos(R-a)[sinw({cosE-e) + /1-e?cosw sinE]}

&

2
SE %;—(1-e cosE)e sinE + %?—cosa{[cos i sin{Q-a) - tans sin 1]
[-sinw sinE + /T-e2 cosw cosE] + cos(R-a)[cosw sinE

+ /1-e2 sinw cosE]}



and from Kepler's equation

9F _ =L.5w(t-T)
32 asf2(1~ecoss)

3E o _sinE
g J-ecosk
3E -\
I a312{3-ecosE)

(4. Tracking a Geostationary Satellite
In order to apply the above method in the case of a geostationary
target satellite, the tracking sateliite should not be geostationary. Let
2> eps iT, Qs Wy TT be the orbital elements of the tracéing satellite
and o, 65, dS be the elements of position of the target satellite with
respect to the gecceniric equatorial inertial frame; then equation (7)
becomes

{)2

it

2 {1.a 2 2 s ; -
az (1 achsET) + d? + 2a.d_ cos Gs{[cos i s1n(ﬂT as)

i

tan 8, sin iT] [sin mT(cas ETwaT) + Ji-e% oS wr sin ET}

cos(QT«us) fcos mT(cqs ET"ET} - #}~e% sin wr $in ET]} {9)

where gT is% obtained by solving Kepler's equation.

The right ascension of the target sateilite can be written as

oy = ocso + mE(t-to) | {10)

If the orbital elements of the tracking satellite are known;then equation
{9} has the form

o = pEaSGs & ds)
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One can express the range residuals Ap in terms of the corrections &ms R

O
A8, bdg as
_ {0 3 5
Bp iEf*A%O+L£;h%*ﬂﬁ% Ad_ (1)
o) s
where
20 aTds -
b= - cos ¢ {cos iy cos(Q-a ) [sin wp(cos ET'eT)
s p s
0

%-¢1—e%' €os vy sin ET] + sin(ﬂy-as)[ces wy {cos E?-eT)
- —_nd 3 3 A
/1 e} sin w; sin ET]}
3 - i

S . M . - .
= - - +
2 o {{sin §_ cos iy sin (@r-0 ) + cos & sin ‘T]

[sin mT(cos ET“eT) + %1-e% cos wr $n ET]

- sin &, cos (@p-a.) [cos wy(cos Ep-er) - J3:E$'sin wy sin Er 1}

2 _ .2f1. 2
% . d2 aT(T.eT cos ET)
Bds -2%5_ stp

The next approximationsto the elements of position of the target satellite

are

o, = o, +he. +owelt-t )
5 s0 so E 0
65 = 55 + AGS
ds = ds + Ads (12)

The process is then continued as in section 3.



5. Preliminary Results

The above formultation has been simulated for a simple least squares
approach. First, the target satellite selected for study was an ellip-

tical earth satellite having the following known orbit parameters

a= 1.6 earth radii
e = 0.05

i= 1.138991 radian

Q= 1.796065 radian

w= 1.004865 radian

and the tracking satellite was taken as a geostationary sate11i£e. Then

the more general case of an elliptical non-equatorial earth synchronous

tracking satellite was considered to compare the results obtained with

a ground-based tracking station, and to track a geostationary target

satellite. In all cases the observed ranges were simulated by a program

written in double precision for FORTRAN IV on a CDC 6400 digital computer.
The entire orbit determination program was also written in double

precision because of the number of trigonometric functions involved in

the expressions and the similarity of the observed values of p, and

to diminish the detrimental effect of truncation in calculation and to

avoid difficulty in performing inversion of the normal matrix.
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The program started from approximate values of components of position

and velocity vectors of the target satellite at time t, = T + 1800 seconds

True Position and Velocity

Approximate Position and Velocity

ry = -0.3115940360324
ry = -1.0161619714329
r, = 1.1516722843306
Vx = 0.0004110148706
Vy = -0.0007627143063
Vz = -0.0004996964384

= -0.33
= -0.96
= 1.00
= 0.00038
= -0.00078
= -0.00052

(radii)
(radii)
(radii)
(radii/sec)
(radii/sec)

{radii/sec)

Using well-known formulas one can obtain the first estimates for

orbital elements of the target sateilite as

a = 1.3559298580661
e = ,0878878577706
i = 1.1232204187772
2 = 1.7322918670788
w = -0.0091516259974
T = -896.7222616242500

{radii)

(radian)
(radian)
(radian)

(sec.)

13

A1l range residuals were reduced to a value smaller than 107 '~

Using ten observations with a 100-sec interval between two observations,

after six iterations the best estimates for the orbital elements of the

target satellite were

a

1.5999999996368
0.0499999999891
1.1389909994616
1.7960649999600
1.0048649967139
-0.0000051365072

(radii)

(radian)
(radian)
(radian)

(sec.)
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The effects of the number of observations and the time interval used
were also considered in this study, and gave the following results:
1. The value of the normal matrix increases as the number of
observations increases (i.e., when the number of observations.
changes from 10 to 20, with the same time interval, the value

35 -34}; that

of the normal matrix changes from 107 to 10
facilitates the inversion process and allows larger {(or
smaller) gquesses for the first estimates of the orbital
elements.

2. With the same number of observations and iterations, the
accuracy increases slightly as the time interval increases
(Table 1).

3. Small time intervals {less than about 10 sec.} must be
avoided in order that the ranges vary sionificantly enough
so that the inversion of the normal matrix is possibie.

The method also works well for different values of inclination angle of

the target satellite orbit plane, including 1 = 80°.

For 1 =.0, the fracking satellite should be in a slightly inciined

orbit so that %%-% G, making the inversion of the normal matrix possible.
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10 observations & after 3 iterations

40-se¢ interval

50-sec interval

100-sec interval

a  1.5999993646172 1.5999998812537 1.5999999851120
e 0.04999995675940 0.0409999664185 0.0500000006377
i 1.1389894947893 1.1389806906153 1.1389909143707
& 1.7960647775925 1.7960649476248 1.7960649687362
w 1.0048618674775 1.0048645161761 1.0048650009421
T -0.0056788572160 -0.0009357441760 -0.0000287907105

Table 1. Effects of Time Interval Variations

Because space-based tracking stations offer better geometry between
stations and target satellites, by choosing suitable positions for tracking
sateilites one can get larger variations in slant-ranges in the same time
intervals than in the case of an Earth-based tracking station. Conse-
quently, in orbit determination problems using single station with range-
only data, space based tracking stations will give better resulis in a
shorter computer time.

The results below represent the tracking of an elliptical earth-
satellite by using both ground and space-based stations (making 10

observations from each) to track during the same time intervals (100-sec).



Orbital elements of
target satellite

a=1.6 (radii)

e = 0.1

i = 1.138991 (radian}
Q= 1.796065 (rad%an)
w = 1.004865 ({radian)
T=0. {sec.)

Orbital elements of
tracking sateliite

6.592185612541 (radii)

Q
it

e = 0.05

i = 0.02 {radian)
Q= 1.50 (radian)
w = 0.70 (radian
T = 1000. {sec.)

Tracking satellite
(after 3 iterations)

a = 1.6000000111919  (radii)
e = 0.1000000009737

i =1.1389910470895  (radian)
= 1.7960650022364 (radian)
w = 1.0048649819020 (radian)
T =-0.0000059857304 (sec.)
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Estimates for orbital elements
of target satellite

a = 1.5961457660781 {radii)
e = 0.0979824812812

i = 1.1394144718751 (radian)
Q = 1.7967958707145 (radian)
w = 0.9959110790266 (radian)
T = 9.2644292404117 (sec.)

Coordinates of earth-based
tracking station

d=1.0 (radii)
§ = .5934 (radian)

o, = 2.295889 (radian)
(at t = 0)

Earth-based tracking station
(after 4 iterations)

1.6000000277239 (radii)

0.1000000028427

1.1389913824938 (radian)
1.7960653060371 (radian)
1.0048646107041 (radian}

-0.0002198539483 (sec.)
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Using the same elliptical non-equatorial earth synchronous tracking
satellite, with 6 observations starting from perigee at 100-sec. intervals
the probiem of tracking a geostationary satellite which has been moved to
a neighboring position from a nominal point by perturbation effects was
examined. With the method described in Section 4, and assuming that the
perturbation motion of the target satellite was very slow so that one can
consider the target satellite to be fixed with respect to the earth during

any measurement period, the results are

Position of geostationary 1st approximation for elements
target satellite of position {using position of
nominal point)

a 2.5124666666667 (radian) 2.4958 (radian}
G

6, 0.0166666666666 (radian) 0.0 (radian)

d_ 6.6704676659106 (radii) 6.592185612541 (radii)

S

Best estimatles
(after 8 iterations)

o 2.5124666669423 {radian]
0

8¢ 0.0166666674769  (radian)

dS 6.6705781317991  (radiqi)
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To get better results and faster convergence for the process, one should
increase the number of observations if the curvature of the portion of
the tracking satellite orbit used during the measurement period decreases.
Further analysis of the method will be made to determine .a suitable
weighting matrix for laser range data, and to examine the effects of the
geometry of the orbits, especially in the case of trac?ing satellites on
parabolic and hyperbolic orbits. In addition, an examination of the

effects of using two or more tracking satellites is being conducted.





