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ABSTRACT

The mathematical analysis of the signal from an autometric gyro
with a linearly ruled reticle is presented and applied to proposed high
accuracy precession meaéurements. The angular measurement accuracy for a

practical gyro is limited by random reticle errors to sbout *,4 . 10-9

radisns.



NOMENCLATURE

an(p) =  Fourier coefficients of I(8)

az(p) = rapidly varying part of an(p)
X .x U

& 5 b = Fourier coefficients of I(x)

Fourier sine and cosine transforms of Wx(x)

2¥(0) , vY(p)

o = angle between star and gyro spin axis
oy = . initial alignment angle
T = focal length of optical system
I =  transmitted light intensity, signel function
L = reticle line wid’th‘
r = distence from light spot center
R = light-circle radius
= %gg = reduced light;circle radius
Po = reduced reticle center-spin center offset
s = reticle line space

T(x)

]

reticle transmission fun;tion
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NOMENCLATURE

angle of gyro rotation

gyro Angular velocity !
frequency of maximum amplitude of signal spectrum
light spot center coordinates .

x component of reticle center-spin center offset



I. INTRODUCTION

Satellite Gyro Experiments

Extremely accurate angular measurements are needed in gyro
experiments designed to measure relativistic precessions. A number of
proposals for such experiments have appeared in recent'yearsl-s, all
with a gyro in orbit around the earth. The precessions to be measured
are very ;mall and depend on the gyro and orbital parameters; for a typlcal
earth orbit experimentl they are about 3.7 X 10-5 radiéns/year (for the
deSitter Effect) and 2.4 x 10-7 radians /year (for the Lense-Thirring Effect).
Note that the inertial frame of the "fixed stars" is known only to a few
times 107° radians fyear. |

The primary difference between the vérious proposed experiments
has been the system emp}oyed t0 attain réadout of the required accuracy.
Other consideraﬁions, discussed elsewherel’6, such as imperfect knowledge
of the proper motion of the reference star, gravity gradients, electro-
magnetic perturbations, etc., are common to all the proposed experiments
end appear to limit accuracy now to a few times 10-8 radians fyear, of the
order of 10% of the Iense-Thirring Effect.

The lower limit on the useful duration of such experiments is
set by the inaccuracies in the readout mechanism and possibly from the
error in subtraction of stellar aberration. The upper limit is set by

satellite durabilify and/br protection requirements, and by those



fs
backgrounds which grow quadratically in time, e.g. the ﬁrecession resultiﬁg
from the earth's gravity gradient acting on the gyro's quadrupole moment n
8 non-polar orbit. The high accuracy of the sutometric gyro readout Shou}d
make it possible to do useful experiments with durations of only weeks raéher
than years, thus easing the durability, protection and tending requiremengs,
with & consequent simplificatién of satellite design.

This paper is a development of a preliminary studyl of an "auto~
metric readout system, which would combine & very simple but precise and
stable physical design with a relatively eiaborate mathematical analysis to
obtain an extremely high accurécy measurement. Here we present the basis
of such an asnalysis and make error estimates based on available physical
components . Wé conclude that as far as the readout is_concerned, an

accuracy of sbout 4 - 1077 redians is obtainable.

The Autometric Gyro

As described in Ref. i, the gyro contains an optical system aligped
with its spin axis; the optical system focuses starlight onto a reticle a4
the back of the gyro (see Fig. 1). Iight from a reference star slightly off
the optical axis will be focused.in the plane of the reticle into an off-center
spot which is stationary in a nonfrotating ffame moving with the gyro center-
of~-mass. However, in the coordinate frame of the reticle, which rotates with
the gyro, the spot runs around a circular path about the spin center. The

starlight, interrupted by the reticle pattern, falls on a photomultiplier



behind the reticle and generates a signal dependent upon the reticle
configuration and circle rsdius.

The radius of fhe circle traced by the spot is directly related
to the angle o between the starlight and the gyro axis and the optical

systen focal length f by

R=ftanowsfo . (1)

Thus determination of the change AR of the circle radius R is equivalent
to a determination of the angular precession in the starlight-optical axis
plane. The difficulty, of course, lies in the smallness of the radius
change: for afpractical gyro the Lense-Thirring Effect in one year gives
only AR = 1077 cm, sbout one-tenth the width of the smallest available

- reticle lines. But we will find that detailed frequency analysis of the
signal can give a usable resolution equivalent to 10-7 cm, of the order
of 1% of a year's Iense~-Thirring Effect énd .01% of & year's deSitter
Effect for a typical £ == 50 cm.

Since only one parasmeter is belng measured, only one of the {wo
degrees of freedom of the anguiar precession cen be determined. A signal
with at least two stars in the field of view is required for the complete
determination of the precession. This would require an extension of the
enalysis given here for the single-star to the two-star case. This does
not appeer to be difficult although we have not considered it in detail.

A measurément of the precession predicted by theory can be made
using only one sfar provided the initial alignmegt of the gyro can be set

so that the precession is in the starlight~optical axis plane. Fortunately,



a relatively large initial alignment error 6“0 can be tolerated without a

significant decrease in accuracy if the gyro is aimed away from the star

}
in this plane at angle o, much greater than 6“0‘ The fractional error in:

!
i

the precession measurement induced by an initial alignment error angle éad

l

around oy will be worst when éao is out of the plane, being then

&yo 1 6@0 2
1-005(—)%-(—— .
o 2

(¢} Q’O

Thus, for éao = lO-h radians, obtainable from a reasonable attitude control

system, and oy = lO-3 radians, error from initial alignment would be only

1/2%.

Choice of Reticle and Type of Analysis

The choices of reticle pattern and of type of analysis of the
readout signal are élosely interrelated: since the fangential velocity
‘of the light spot (as viewed in the gyro reference frame) increases as R :
increases, the number of reticle line crossings per unit time will increasé
for a reticle pattern which does not diverge with radius, e.g. a Cartesian
grid. Thus time intervals will decrease and spectrum frequencies increase
with increasing R. This effect can be enhanced by the use of reticle
patterns in which the spacings»decreasé withbincreaSing radius. However,
such patterns necessarily have preferred origins, and it cannot be assumed

that these will coincide with the'spin center.6 Indeed, setting the spin

axis with such accuracy would require use of a measurement scheme as



accurate as that we are trying to develop.

A way sround this difficulty would be to use a special reticle
pattern with a preferred origin but to restrict the reasdout %o specifiedv
sections of the cifcumference, a procedure which allows a relatively large
error in initial alignment. But analysis of such gated rather than continu-
ous transmission through a reticle with a skew pattern would be intricate,
end we have not considered any such case in detail.

We chose the simple linearly ruled reticle (Fig. 2; this is
similar to that of Sdhnopper et al., Ref. T) along with analysis in the
frequency domain because:

1) The signal generated by a linesrly ruled reticle is
matﬁematically tractable. Its symmetry properties allow a simple inter-
pretation of grouping the frequency components into odd and even harmonics
.that enables us to isolate the effects of centering error in the data
analysis. In addition to simplicity, the linearly ruled reticle gives very
great readout accuracy and easy error compensation. We found that inter-
ference effects in the'mid-frequency rapge,‘Caused,b& the reguler periodicity
of the linear pattern, provide an extremely sensitive precession indicator.
Now that we know how interference effects augment the sensitivity of the
linear reticle, we guess that special patiern designs would ﬁot give further
gain.

2) Non-linear patterns could not be masde as fine and as accu-
rate as linear patterns by a grating engine without much technical development .
As will be seen latér, accuracy increases as both relative error and line
spacing decrease-;at least for the linear reticle--so the finest pattern
obtainable is desired. Iine spacings of about lO-h cm are .presently avail-

-6 8

gble, accurate to 10 ~ cm.



Outline of Analysis

The gyro output is to be a frequency spectrum generated by
electronics in the gyro and/or in an accompanying tender (possibly
manned), and possibly telemetered to earth. The arbitrary alignment
of, and the imperfections in; the physical construction of the gyro wiil
require several parameters to be matched to the data, giving the reticle
center-spin center offset, the mean parameters of the reticle pattern,
optical_aberrations, ete. In addition, parameters describing the huge
periodic effects of stellar aberration on the signal from the gyro in orbit
will similarly have to be matched to the dafa‘ While we will see that the
data could be snalyzed completely using only a few frequency components,
it would of course pay to overdetermine these parameters as much as possible
by using the entire spectrum.
' The discussion of analysis will be broken into three parts:
1) fSignal and Spectrum Analysis", the mathematical
representation éf the signal and its Fourier series.
2) "Utilization", & general program for dete analysis.

3) "Error Estimation" for a typical physical system.



II. SIGNAL AND SPECTRUM ANALYSIS

Introductory Analysis of the Signal Function

The reticle coordinates are specified in Fig. 2.' The gyro
cannot be made accurately enough to specify its spin center in advance,
SO X will-be arbitrary. Translational symmetry in {he y direction
allows us to formally specify Vo = 0.

For the gyro rotating with angular velocity Wg? tracing a
circle of light of radius R = <(x - x )%+ ye)z_/ ? in the plane of the

reticle,

x(t) = R cos wgt + % (2)

For & given spot shape the transmitted light intensity, I

is a function only of the coordinate x.

I=1 (x[tj) = I(R cos wét + xo) . (3)

This function must be determined from the reticle transmission function
7(x) and from the light spot intensity function, ¢(r), where r =
((x‘ - x)2 + (y' - y)a)l/2 is the radius out from the center of the

(symmetric) spot. We use only the projection onto the x axis
+

g (x" - x) =Iw‘b(X' - x, y' - y)aly' -y) (see Appendix).

The reticle periodicity is the most accurate reference avail-

eble (as opposed to line widths or spacing), so it will be advantageous

11
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to adjust the retiéle parameters to Obtain a spectrum with minimal depen-

dence on other factors. This will be the case vhen I(x) is as close to a-

sinusoid as possible, and can be sccomplished by the use of equal line

width 2 and sbace 5 between lines.

We will taeke 4 = s throughout the rest of this paper, except in

H
i

the Appendix, where deviations’ from uniform spacing @re specifically con-

sidered.

We start our analysis with the approximation of a sinusoidal

crossing function:

I = cos %g% = cos(% [R cos wgt + xo]> . (h):

A complete understanding of the spectrum generated by'this simple light
intensity function will provide a basis for understanding the spectrum

of the actual function. Transforming to dimensionless varisbles:

» TR
b =7

end © = wgt, the real angle of rotation, we have
I(8) = cos (p cos 0 + p ) (5)

Rewriting Eq. (5) as

I(8) = cos(p cos 6) cos fo " sin(p cos 8) sin Po (6)

12



demonstrates that the Fpurier series representation of I(G) is expressable
as a linear combination of the series representation of cos(p cos ©) and
sin(p cos 8). Both functions are expandable in a cosine series. By
considering their behavior under © = © + T, we see that the expansion for
cos(p cos ©) contains only even terms while that for sin{p cos ©) contains
only odd terms. This property‘greatly simplifies the analysis since it
allows us to isolate the effects of -xo. ‘This reflects & basic symmetry
property of the reticle pattern. Referring to Fig. 2, we see that there
are two equivalent definitions of the reticle origin. A reticle rotating
gbout the center of a space--e.g. X, = 0 in Fig. 2=~ or about the center
of a line, e.g. X, = 1 ,has 6 =nT, where n is integral, and will generate
only even components of the sﬁectrum. A reticie centered on the boundary
between a space and & line, e.g. xo'= % in Fig. 2, has p_ = (o +1/2) 7
_'and will generate only odd components. The case of any off-center reticle
with neither of these choices of 6 is reducible to a superposition of the
two on-center cases. Effectively there ére_two separate channels, each
containing enouéh information to determine the light cirecle radius exactly.
Separate determination of the precessiﬁn can be made from each channel.and

the mean used for the most prdbable result.

The Spectrum and Its Qualitative Analysis

Fig. 3 presents the numerically generated spectrum of I(O) for =
typical R and arbltrary xo. The complete spectrum and even and odd compo-

nent series are plotted separately for comparison; 'Fig. i presents plots

of the odd component series for AR = 0.12¢ and AR = 0.24s. These correspond

13



to0 precessions of 2.k x 10" and 4.8 x 1077 radians, the predicted Iense~
Thirring precessions for one and two years or the predicfed deSitter pre=-
cessions for 2k and 48 days. The most noticeable change is the drastic
smplitude change in the region sbout 270 y (=~ pwg/jé).

The amplitude of the nth spectrum component is given by the

Fourier cosine coefficient an(p)

2T .
gn(p) = ,-,]; JO I(8) cos n® ae® . (7

To undérsténd the spectrum character qualitatively it is convenient to
consider the terms in Eq. (6) separately. That is, I(8) = cos(p éos 8)
or I1(8) = sin(p cos 8). The same arguments héld for both functions
which, as mentioned, correqund to the even and odd component series.
Since I(8) is a rapidly oscillating function (there are about‘
240 cycles in the range O < © < 2T for the p ~ 380 we are using in this
example), it is reasonable to assume almost complete cancellation of
those portions of the integrels in ﬁhich the instantaneous frequency does
not equal the component frequency nwg. Thus, to a good spproximation,
the magnitude of any component'willbbe determined strictly by the specific
regions of I(8) where the instantanecus frequency ~ Ty Physically we
see that each spectrum frequency component is associated with specific
generating regions on the reticle. The instantaneous frequency asso-

at
The signal 1s strongest in the high frequency range because

ciated with the region about © for this reticle is alp cos ©) _ ~p,, sin O

of the comparatively large fraction of the time the spot is moving almost

normal to the lines. Thus we expect an overall increase of spectrum
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intensity with frequency until the frequency

Opax = %? W, = Pw (8) :

I

is reached at © = =. Actually, the spectrum peak for non-zero spot and
line widths is at & slightly lower frequency.
Because of the up-down symmetry of the reticle, end its right-

left symmetry (anti-symmetry) for x, =0 (g), there are four strong

generating regions for each frequency, one in each quédrant of the reticle.
These degenerate to the two regions of normal crossing at the maximum
frequency. The pesks and dips in the frequency spectrum &re caused by
interference between these four regions; the frequency dependence of

their relative phase determines the fine structure within the spectfum
envelope.

We do not know how to describe in the time domsin just how the
motion of thé spot controls thé’neatness of the interference pattern in
different regions of the frequency spectrum. However, it ddes seem
reasonable that the regions cbrresponding to the siméle angles © = W]é, i

' ' i

m/4, T/6 and T/8 are particularly neat, as is conspicuous in the spectra
in Fig. 3.

On the other hand, the origin of these regions is simply under-
stood in the frequency domain. They appear when the period of the inter-
ference pattern is e simple fractional multiple of the difference between
the frequency components, in a manner analogous to stroboscopic observation

9

or periodic motion.
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Full Analysis of Sinusoidal Crossing Function

Instead of evaluating Eq. (7) directly we use Jacobi's resulbs:

cos(p cos ©) = 3 (p) +2 ) (-1) 7, (p) cos 2n (10)
n=1 '
sin(p cos ©) = 22 (-1)2* Tppp(p) cos(en - 1) 0 . (1)
n=l

We can identify the coefficients of cos 2n® and cos{2n -~ 1) with the
a (o).

Removing the uniform multiplicative constant %.we have,

n-1
(-1) 2 sin Py Jh(p) , n odd (12)
a (p) = { n
(-l)2 cos o Jﬁ(p)', n even . (13)

Fig. 51is a graph of Jn(p) as a function of 71, where 7 varies
continuously. The even compoﬁent spectrum displayed in Fg. 3 is obtaip—
gble from this éurve by taking the absolute yalue and drawing straight
lines between points where the plot crosses even integral values of 7.

A similar procedure at the odd points generates the odd component spectrum.
Of course, both spectra must be scaled by the appropriate factors, cos Po

- and sin o respectively. Explicit representations of the regularities

in the spectrum énvelope and their dependence on p can be obtained by

A

expanding an(p) about the regular points {(e.g. LE— pwg). This process
9

end the resultant formulae are described elsewhere.”



17

Analysis with Arbitrasry Crossing Function

Since it is pericdic in x, the signal function can be expressed

in & Fourier series:

=]

(x) = E;(az cos mx + bz sin mx) (1k)
m=0 |

where the az R bz are the Fourier coefficienté of I as a function of x
(see Appendix) giving

(<]
% X .
I(8) ==§Jam cos m(p cos 6 + po) + 'bn1 sin m(p cos © + po) (15)'
n=0 ~ 5
[+

_ x X . '
—-};(am cos mp_ + b sin mpo) cos{mp cos 8)

m=0 (16)

©

x x -
+ E;(-am sin mp + b cos mpo) sin{mp cos ©)

m=1

Thus, fhe'Fburier series of I(G) can be represented as a
superposition of the Fourier series of the basic signal functions ;
cos(mp cos ©) , sin(mp cos 8). The components corresponding to the firstg
part of Eq. (16) are all even multiples of 0y vwhile those corresponding
to the second part are all odd multiples. The determination of the a; ’
b; allows us to separate the experimental spectrum into sinusoidal
cfossing function spectra corresponding to multiples of p which are then
used for precession determination. These coefficients can be obtained by
solutiqn of a sysﬁem of linear equations using the spectrum component

magnitudes as the known variables. This procedure is simplified by
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three facts:

1) As seen in Figs. 3 and 4, the components of cos(p cos ©),
sin(p cos ©) quickly become negligible above g = P - However, the primary
range of the ' terms in Eq. (16) extends to mo, SO the coéfficients‘can
be progressively determined by starting in the high frequency region and
working down.

2) In sctuality, only two or thrée of the coefficients will
be significant.

3) I(8) can still be completely expanded in a cosine series
s0 the relative component phases will be defined to an easily resolved
180° anbiguity.

Figqre 6 is the odd component spectrum from a computer simulation
of a typical crossing function; only the primary renge is shown. As can
-be seen by comparison with Fig. 3, the differences sre not large and do not

mask the esseﬂtial structures.



19 -

ITI. UTILIZATION

In determining gyro precession from relestive changes in the
spectrum components we should try to isolate that part of the data vhich
is dependent on only the reticie periodicity. This is automatically done
by the initial separation of the spectrum into sinusoidal crossing function
spectra whose structure is dependent solely on the reticle periodicity.
All further analysis involves these separsted spectra.

While p could be determined by a least square fit of Egs. (12,
13) a more accurate procedure would be to emphgsize the regions of the
spectrum with greater than average sensitivity. This is done by using
the peak region of the spectrum for é coarse reading of p and then using

the interference region for & very accurate reading of p and thence R.

The Spectrum Peak

p can be determined from the spectrum pesk position Wpax by

Meissel's relation:9

wp = 27 (o - B086M3 5 L) . (17)

Since Wpnax need not be an integer, its value must be interpolated from
the surrounding spectfum‘components. This interpolation is not difficult
since the form of the spectrum is known (see Ref. 9, Appendix H). Even an

interpolation accuracy of only half the difference between the components



. 1 s s
determines p to a fractional accuracy of 50 This glves Awmax/&maX’g

2 - lO"3 for p ~ 400, a typical value, more than asccurate enough for use

as an initial coarse reading.

The Interference Region

The amplitudes in the interference region have sensitivities
of ?he order of 100% for a unit change in p independent of the initial
value of p (see Ref. 9, Appendix E). Thus readout sensitivity from this
region is esSentially,indeféndent of the initial alignment angle oy-

Use of the change in magnitude of any component, Alan(p)l, as
a precession indicator requires knowledge of Qligégll + This derivative
may be calculated directly from the obseryed spectrum.by the Bessel

function recurrence relstion:
P ——35—— +p J (p) =1 Jn_l(p) . (18)

As seen from the formula, determination of the derivatives of either
the 0dd or even component series requires use of the alternate series.
This requires accurste normalization of the series relative to each
other.
An alternete method is to utilize our knowledge of the form of
the spectrum to determine the derivatives indirectly. Since we are con-
.sidering components in the intermediate spectrum region, we may use

Rayleigh's approximstion for Jﬁ(p) in Egs. (12,13) resulting in:



sin o(n ,p)
°© (2 - nz)l/u

sin p

a (o) = {

» n odd

cos ofn , o)
cos p. —5 5l > B even
(p° - n%)

where ¢(n , p) =A/p2 g2 tn sin~t (%) - %' .

(19)

(20)

A crude determination of p from the spectrum peak will enable

us to normalize the spectrum components and remove the denominators of

Egs. (19,20). This isolates the rapidly varying part of the spectrum

az(p)-.

o) - { gin ¢ (n , p) , n odd
n P
cos.p (n, p) , neven

from which we obtein

cos Cp(n F} p) g‘gpe ) n odd

aaz(p) i {

3P
-sin ¢(n , p) %% , neven

The fractional change in normslized component intensities

is given by
r .
aan(p) coten g(n , p) , n odd
_____a_e_____.,.{
T
an(p) - ten ¢(n , p) , n even .

(21)

(22)

(23)

(o)

(25)

(26)

(27)

2l
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These equations indicate that component magnitudes change from
maxima to minima for Ay ='%l. For "typical" gyro parameters (f = 50 cm,
line spacing = lO-h em) this corresponds to Ay = 6.8 X 1077 radians, the
Iense-Thirring precession in 2.8 years.

As can be seen from Eqs.(26, 27) fractional precession sensitivity
becomes arbitrarily largé for ;omponent magnitudés approaching zero. A

lover limit on useble component magnitudes will ‘be set by the absolute

noise level of the system, to be discussed in the next section.



23

IV. ERROR ANALYSIS

The main sources of readout error are expected to be (1) the

reticle, (2) the optical system, (3) photon noise, and (4) mechanical
and thermal changes of the gyro in operation. No consideration of
mechanical and thermal problems has been given ﬁeyond the small amount

in Refs. 6 and 9; they are expected to be controllable but need detailed

planning.

Reticle

The previous analysis incorporates all reticle characteristics
that can be represenfed by one dimensional Fourier series (e.g., the
reticle line cross-sections). However, periodic and random error in line
spacing is expected to have a megnitude € k=10-6,inches.8 -Computer simu-

2
lation indicates that these errors will create & fairly uniform spectrum
of background noise over the frequency region of interest, giving for a %
reticle having th lines/ém a noilse intensity to spectrum envelope ratio
of gbout .0l which agrees with the predicted noise ratio %% .  These
intensity errors induce & fixed rather than fractional error in precession
determination. This error is computed from Egs. (23,24), evaluated at
ai(p) ~ O since typicelly the minimal components will be used for the

final neasurements, giving



C ol

. Aar(p) €
: n r s
dop = e Aan(p) =g~ 0L
?p :

" where n is & null component.

This corresponds for 4 = 1074 em to

€
AR = ;&) Ap = —2%% 10°7 em-
and (£ = 50 cm)
My w3 2 X 10"9 radians R

To be conservative in design we double this figure and estimate

My = b ¥ 10™7 radians .

Optical System

Optical system defects can cause gberrations in both the light
spot shape and the path traced out on the re‘ticie.

The exact form of the light spot intensity function is in prin-
ciple unimportant since, as with tﬁe reticle line cross sections, the
required information can be determined from the spectrum itself. Circular
symetry is requiréd for the crossing function to remain dependent solely.
on the x coordinate but fhis is not expected to be a problem in such

paraxial optics.
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Angular misalignments between the optical axis, gyro spin axis,
and reticle normal are expected to be sbout qus radians each. Errors

from these will be negligible since we are working in the paraxial region.

Photon Noise

Tn order for the photon shot noise to be fractionally small
enough .to measure 2 - 10_9 radians using the light from e.g. Mintaka
(6-0rionis) with an optical aperture of e.g. 20 cm radius, an exposure
time of gbout & second is necessary. The real time available is severely
limited, however, because the stellar éberration from the gyro's orbital
motion gives a huge sinusoidal background modulation, swinging + 10~h

radisns with a period of only sbout 6 - 10°

seconds. Intervals of the
order of 10 seconds in which o should be stationary to 10-9 radians are
available near the ﬁeaks of this orbital modulation. Thus in sbout an

hour we can in principle get one good measurement on all component

frequencies without being limited by photon noise.



V. SUMMARY

A simple reticle with parallel equally spaced lines to trans-
mit light in an autometric gyro is shown to give a signal which can be |
used for %ery accurate angular precession measurements. 'Frequency analysis
of the signal is chosen over time domain analysié and/of over a specially
désigned reticle.

' Gyro precession will induce a change in the interference struc-
ture of the spectrum in addition to dilatihg the overall freguency distri-
bution. The expected output spectrum has beenjanalytically determined,
exhibiting the dependence on spot and reticle line cross sections and
line spacing so that they can be precisely determined from the output
data.

Thé-spectrum structure is extremely sensitive to precession.
Computer simulations indicate that accuracy will be limited by reticle
line spacing veriations to + b + 1070 radians. This would allow &
Iense~-Thirring brecession measurement accurate to * 20% in 30 days
(accuracy being limited by physical effects common to all such experi=-

ments) or a + 1% deSitter precession measurement in four days.
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APPENDIX

The Crossing Function

The signal function I(x) can be determined by numerical inte-
gration of the light spot intensity function ¢x(x' - x) over the reticle

transmission function T(x'):

I6e) = [ a(x') g (et - x) ax (28)
— i
vhere we have assumed that the reticle is virtually infinife.
-8ince I(x) is periodic, it can be expressed in s Fourier
series. The period is the reticle line width 4 plus gap space s.
For reticle lines with symmetric opscity aboubt their centers

and 4 = s, the trensmission function T(x) has the symmetry properties
T(x) = P(~x) (29)

T(4 - x) = -T(x) . (30)

For manipulative convenience the crossing funection has heen chosen to
vary between -1 aﬁd +1 rather than between O and 1.
These equations imply that the crossing function can be expanded

by the restricted series

i(x) = E a;i cos %x (31)
m odd



Fortunately, only the first few terms of the expansion are required in
practice. Numerical results, obtained with a diffraction-limited spot
(Jl(g)/g)2 (where C = g%, D is the mirror diameter, f its focal length,
X is the reduced wavelength of the starlight, and r the distance from
the spot center) falling on = perfect reticle, showed that one term in
the sinusoidsl approximation gave agreement to 10% and two terms to 0.5%.
The symmetr& properties of Eqs. (29,30) are expected to be
violated by &bout e%lbecause of asymmetry of the opacity of the reticle
lines about their centers and inequality between line width and gap
width in an actual reticle. These deviations will be the same for
each line so T(x) remains periodic. However, Eq. (31) is no longer exact.
In practice, only a few additional terms would'be‘required. We have not
gone into these questions, except to note that in studying the crossing
function from a periodic reticle with asymmetrie lines and with an
arbitrary light spot intensity function, it will be convenient to isolate
the effects of variation in T(x) and wx(x) by representing the Fourier.

coefficients of I(x) (a; s b;) as functions of the coefficients of

(x) (a , b7)

) and the Fourier cosine and sine transforms [aw(p) s b*(p)]

of @x(x). A simple derivetion similer to the convolution theorem of

Fourier analysis gives:

e = oy 2¥(m) + b b¥(1m) (32)
vr = ey bY(m) + b7 &¥(1am) (33)
vhere k = LEZ S

For & circularly symmetric light spot, v¥(xm) = 0.
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Fig. 1
Fig. 2
Fig. 3

FIGURE CAPTIONS

Gyro and Photomultiplier. Note that the lens system shown is

only schematic; a Cassegranian mirror system with the reticle

at the center of the large mirror mighf be preferable.

Reticle Coordinates. The dotted circle represents the fuzzy
boundary of the circular light spot, and the solid circle
shows the path traced out by its center. For the cases
studied the path swept across some one hundred and twenty

solid lines, i.e. R 60(4 + s) = 1204,

The Signal Spectrum Using a Sinusoidal Crossing Function.
While the actusl spectrum is discreté, a continuous line is
used in this and other spectrum plots for graphical and
interpretative ease. Only the values at the relevant (even
or odd or both) integral arguments are significant. The
magnitude of the amplitude--i.e. the square root of the

intensity--is plotted, since it is not intended to measure

" phases. The scale of amplitude is relative. The abscissa

is angular frequency in terms of the gyro angular fregquency
g * In Figure 35 8ll components are plotted. Figures 3b and
3c show only even and odd components. A radius R and an
x-coordinate of the center, X wefe chosen at random, giving

R = 121.3714 (hence p = TR = 381.30) and x, = .32, where £ is



Fig. 3
(Cont'a)

Fig. 4

Fig. 5

Fig. 6

the line width which here equals the gap space s).

Spectrum Variation with Precession Using s Sinusoidal

Crossing Function; Odd Components only. A year of Lense-

Thirring (or 24 days of deSitter) pfécession changes Fig. ha
to Fig. Ub, with a radius change AR = .124 . After two years
we have Fig. he, with AR = .24 . Some regions of the spectrum
of exceptional neatness are marked in Fig. ha and labeled with

the value of © for the corresponding generating region of the

light path on the reticle.

High Order Bessel Function with e Fixed Argument: Jn(38l.30).

The sbscissa is the order n.

Spectrum from Realistic Crossing Function. The odd components
of the spechbrum using the crossing function from a diffraction-
limited spot of diameter approximately equal to 4. The gquan-

titles R and x are the same &s in Figs. 3 and ha.
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Fig. 6

Same as Fig. 4a but with

diffraction-limited spot
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