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ABSTRACT

I

b
SO

| In this paper the moments of the acquisition time
parameter TA are derived for a first order phase lock loop

“; when the input to the loop is a sine wave in additive Gaus-
v sian noise. It is shown that except for differences in boun-
dary values the moments of the acquisition time and time to

cycle slip (T) variables satisfy identical recursive second
et order differential equations.

It is demonstrated that as the signal to noise
ratio (p) in the loop increases, both the mean acquisition

wed

time E[TA] and mean time to cycle slip E[T] increase.

Thus, as the signal to noise ratio increases it
takes longer for the phase error to reach a stable point.
But it is also demonstrated that once such a point is reached,
it takes a much longer time for the phase error to change by
a 27 increment. In addition, it is shown that the ratio

E[T]/E[TA] increases as p increases.

The recursive second order differential equation,
which is satisfied by the acquisition time moments of a
second order loop, is given. Unfortunately, computer memory
requirements for the solution of this equation is so great
that no computed results were obtained.
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™ - 70-2034-6

TECHNICAL MEMORANDUM

N INTRODUCTION

In previous memorandum I studied the problem of

1,2

o cycle slipping in a phase lock loop. It was shown that

the Nth moment of the time-to-cycle slip parameter (T)
satisfied a recursive differential equation for the nth

order phase lock loop. The phenomena of cycle slipping is
closely related to the problem of acquisition. It is shown

in this memorandum that the Nth moment of the acguisition time
parameter (Ta) for a first order loop satisfies the same

S

recursive differential equation that T satisfies. The dif-
ference in determining the moments of Ta from those of

T lies in the boundary values that the moments of the two
parameters must satisfy.

ot The phase lock loop is schematically depicted
in Figure 1.
Vv 2A  sin(wt +8, (1)) x(t) Linear Filter with
» o = X » Laplace Transform
: \ G(s)
V' 2K icos(wot+8; (1)) VCO <—%

FIGURE 1 — PHASE LOCK LOOP
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o The loop consists of three components; a multiplier,
§ a time-invariant linear filter g(t) whose Laplace transform is
G(s), and a voltage controlled oscillator (VCO). If the loop
is operating on a noiseless sine wave, then the steady state
output of the VCO is a quadrature replica of the input signal
which may differ only in amplitude. The multiplier output x(t),
. under these conditions, will have only a double frequency term
i which the linear filter and VCO configuration will not pass.
The linear filter has a second and equally important function
which is to reduce the effects of noise that normally gets into
) the loop.

FIRST ORDER PHASE LOCK LOOP (G(s) = 1)

Viterbi3 has shown that the behavior of a first order
phase lock loop in a noiseless environment can be described
by the following differential equation

= (w-wo) - AKsing¢ (t) (1)

7 where ¢ (t) = 0,(t) - 0,(t)

Equation (1) describes how the frequency error changes
with phase error. This can be depicted graphically as in Figure 2.

de/dt

3
ki
f
lid

(w—wp) — AK

FIGURE 2 — SYSTEM TRAJECTORY FOR FIRST-ORDER LOOP
(SAME AS FIG. 3.2 OF REFERENCE 3)
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The phase error will move until the frequency error
M is reduced to zero. If the frequency error is positive, the
j phase error will increase with time. On the other hand, if
the frequency error is negative, the phase error will decrease
with time. Using this fact, the possible trajectories of the

phase error are depicted in figure 2. Thus, the values of ¢
for which %% = o, are given by
i _ T o
¢n = 2nmt + sin AR n=o0,xt1,+2, . . . (2)
. -1 Y%
' — — —
¢y = (2n-1) 7 sin N
where we note that the ¢' points are unstable and will lead to
- further migration of the phase error to the nearest stable ¢
: point.
- It is to be noted that equation (2) is wvalid only
i when w-uw <AK. Thus, if w—wozAK the loop will never attain

lock. The time for the phase error to move from an initial
setting ¢ (o) to a point ¢' can be determined from equation (1).
Thus,

¢

v d¢ (3)
d tle ) = (w—mo) - AKsiné

¢ (o)

Equation (3), figure 2, and symmetry considerations
allows us to write the expected acquisition time EFA]as

- o o
P _ 1 dé d¢ (0)
Gk E [TA]_ b J’ j w=w - AKsing +

—(¢O+7r) ¢ (o)

f f ds (o) (4)
- o w ) = AKsins

¢ (o)

Nll—‘
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In deriving equation (4) we assumed ¢ (o) to be uni-
formly distributed about some on value.

The evaluation of equation (4) leads to the following
conclusion. In the noiseless case, it takes an infinite amount
a of time for the loop to acquire lock. Since this result does
not agree with our experience with phase lock loops, it is
necessary to look at the noisy model in order to obtain results
o which are more realistic and more meaningful.

In the presence of additive Gaussian noise equation
(1) becomes

= (w—mo) - AKsin¢ (t) - nl(t)sine2(t)

+n2(t)cosez(t) (5)

where nl(t) and n2(t) are independent Gaussian processes of
zero mean and identical low pass spectral densities. The
spectral densities of nl(t) and n2(t) are assumed flat over

a sufficiently wide range so that with respect to the closed
loop bandwidth, they can be approximated as white noise with
the same magnitude of No/2 watts/Hz. No is the height of the

one sided noise spectral density.

L

i
i
o4

It has been shownl that the variation of ¢ (t) des-
cribes a homogeneous first order Markov process so that we may
apply the following result.

Define ¢ (t=0) = ¢ (o) with a>4¢(t)>b, then the first pas-
sage time Tab(¢(o)) is the random variable defined as the time

to reach either boundary a or b the first time, given that ¢ (t)
starts at ¢O.

Mathematically we say

T =T (¢(0))= sup {t|la>¢(y)>b, ozyst}
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Let ¢ (t) be a homogeneous Markov Process and if
T = Tab(¢(o)) is a proper random variable whose moments of

g

. n . .
order n<n exist, then E [Tab (¢O)] satisfies

1

-nE[T" ") (6)

2 ;
KNy a2 [Py AKsing — 4% | g B[Py
3 a2, - |ARsSing =S¥ 39 =

o with
E[T(a)™] = E[T(D)™] = o

E[T1° = 1

We define the acquisition time random variable
given ¢ (o), as Ta b(q>(o)) = TA(¢)(where a = ¢o and b = 2n—¢o),
14

TA(¢) satisfies equation (6). To evaluate equation (6) we

use the boundary values to determine the initial conditions
on E@A(¢fﬂand dETA(¢)n} To do this we note that

1 as

o
t

y .

| de[T, 1 _ _-ul(t) u(z) -u(t)
- da, » ~ = e g(z)dz + e c; (7
- 2
5

where
-
5 ult) =| p(x)dx
. and Qo
p(x) = - p sin x + 0I5
L
N B AK and Q _=w-
e =§yB r L7 ’ o “Yo
o L
n-1
E
- g(z) = - %%— FA(Z) }
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while X t
[T "= f[e'“(t) feu(z)g(z)] az+c; e () aesc, (8)
b a
with
i (2)7] B, 017 (9)
we have
C2 =0

and a t a
C1 = - e-u(t) eu(z)g(z)dz ‘/’e_u(t)dt (10)
b b

We are thus in a position to solve equation (6)

for the nth moment of the acquisition time, random variable,
given ¢ (o).

However, one may ask at this time whether TA(¢) as

defined, is the random variable which determines statistically
the acquisition time of an actual first order phase lock loop?

The first possible objection to the definition is
that it appears to restrict the possible unknown phase to a
27 interval about ¢ To see that this is not the case one need

only substitute LI for ¢O in the definition and note that since

oy = ¢oi2ﬂN, equation (8) will give identical results for 9

and ¢O. This periodicity allows us to restrict our attention

to a 27 interval about L

Secondly, we note that TA is a conditional random

variable. Thus, if we were interested in the worst case sta-

n

[a ] "

2m interval and select that value of ¢_ for which EFA ] is greatest.
9

tistics, we could determine E for all possible values in a
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Another approach is to average over all values of

L Because of symmetry considerations, assuming w0 either

positive or negative leads to identical results. Thus, we
need average over only a 2mn rather than a 4r interval. We
define the moments of the mean acquisition time as

(11)

We assumed ¢ to be uniformly distributed since the

receiver has little or no knowledge of the transmitter phase
or of the statistics of the transmitter phase.

To compute the moments E TAn we simulated equation

on a digital computer using a program called "Mimic." This
is the same procedure that was used to determine the time to
cycle slip parameter except in this case C1 is no longer zero

but is given by equation (10).

Our results are summarized in Tables I and II. It
can be seen from the data that as the signal to noise ratio
increases and as the initial phase offset is increased, the
mean acqguisition time increases.

However, the mean acquisition time for a phase off-
set of .875 and a signal to noise ratio of 20, is only 1.82
seconds. It is also interesting to note that one would expect
the mean acquisition time to be less than the time to cycle
slip since on the average the phase error has to travel a
shorter distance to a boundary in the former case. Table III
compares the mean acquisition time with the mean time to cycle
slip. It can be seen that for a given signal to noise ratio
the mean time to cycle slip is significantly greater than

Emax [TA] :

(6)
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TABLE I

Moments of the Acquisition Time Parameter Ta

o = 1/2)
- Y
Moment 1/4 1 3 5 10
E T .
max[ A] .257 .634 .962 1.11 1.31
Ey [TA] .168 .389 .548 .615 .733
o} .194 .398 .473 .491 .494
Skewness 2.104 1.810 1.53 1.45 1.17
Excess 6.48 4,82 3.81 3.76 2.55
Excess
Predicted* 6.6 4,86 3.51 3.15 2.05
TABLE IT
Moments of the Acquisition Time Parameter Tp
(¢o = _875)
- p P
Moment 1/4 2 3 5 10 12 i5 20
E T
max[.ﬂ .268 .648 .995 1.19 1.48 1.56 1.68 |1.82
E¢ FA] .176 .410 .607 .710 .860 .90 .951(1.02
o} .202 .394 .487 .611 .611 .630 .654| .683
Skewness 2.077 1.56 1.118 1.16 1.26 1.30 1.36 11.44
Excess 6.32 3.52 2.32 2.17 3.00 3.35 3.84 [4.52
Excess
Predicted* 6.47 3.65 1.87 2.02 2.38 2.54 2.77 |3.11

*Excess predicted under the assumption that T
Type III random variable.

A

is a Pearson
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TABLE IIT

Comparison of Mean Time to Cycle Slip (T) and Maximum Mean Acqui-

sition Time in a First Order Phase Lock Loop

o E[T(6, = 0)] E[T,(s = 8.75)]
1/4 1.27 .268
1 7.91 .648
352.7 .995
5 18,308. 1.19

In estimating the time to cycle slip probability den-
sity distribution, the first three moments of the time to cycle
slip parameter were fitted exactly to the first three moments
of a Pearson Type III probability function. The Excess was then

predicted assuming T to be a Pearson Type III random vari-
able, and then this predicted excess was compared to that
which was computed using the derived differential equation for

the moments of T. It was noted then that the computed and pre-
dicted values of Excess were extremely close in value. As can
be seen in Tables I and II the computed and predicted values of

the Excess of TA do not compare as well. The results indicate

that as p increases, the Pearson Type III assumption becomes
less valid.

THE SECOND ORDER PHASE LOCK LOOGP

In a second order loop with a perfect integrator in
the loop [G(s) =1 + g&, Viterbi3 has shown that in the noise-

less case the pull-in range is theoretically infinite. 1In
addition, he has shown that an approximate expression for the

change of frequency per cycle for large values of ¢ is

5 i

G(b: L —
r¢2(o)—l
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So that the number of cycles traversed by the phase
error in order to obtain lock for an initial frequency offset
of @ is

o

oLl [r[é(o)]z —1]
- - ™
S¢
where
AK . .
r=— and is the damping factor of the loop

c;(o) = [QO—AKO]

® the phase error of the loop at t = o

Assuming a positive frequency offset Q, we can write
the acquisition time random variable for the noise case as

TA = Ta,b(e)

where

This equation holds for values of ¢(o) as low as 3 and
values of r down to 1.

Using results obtained in reference 1 we find that
T, for a second order loop satisfies equations (6) and (7) with

p(x) = - p (BT sinx+%x+§9
Therefore Q

u(x) = (l%E) cos x + %? x2 + 59 X
while

g (x) = - $E [TA(x)n-l]
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where _ 4BL nd B _ AR+o
2 L =~ 4

o (1+3)

Unfortunately, numerical results could not be ob-
tained even for ¢ (o) as low as 3. To see what the problem
is, note that the a and b limits are very large and that u(x)

for large values of x is proportional to x2. Since u(x) is
the argument of an exponential in equation 7 we see that the
memory requirements for computing E[TA] in a second order loop
can become extraordinarily large.

T 4 /
;;;Z;:;w>7/‘“é ALy NN
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