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ERRATA IN REPORT WIS-TCI-369 (June 15, 1970)
Dissociation Energy and Long-Range Potential of Diatomic Molecules
‘From Vibrational Spacings: The Halogens
. o

Robert J. Le Roy and Richard B. Bernstein

(1) Page 25. 1Iu Table V the VH values for the two bromine isotopes
should be 53 (not 50).
(ii) Page 61, 2., 2-3 should read:

C#*%% FIT POLYNOMIALS OF INCREASING ORDER TO THE DATA TILL THE
Y DECREASE IN THE SUM OF SQUARES OF RESIDUALS DUE TO THE
HIGHEST POWER TERM IS NOT STATISTICALLY SIGNIFICANT
(ACCORDING TO A PARTIAL F-TEST), OR THE STANDARD ERROR
BECOMES LESS THAN ERY.

aoon

(iii) Pages 67 and 79. The three cards immediately following statement
number 1000 should be removed and this section should read:

1000 A(KK) = 1.DO/AMAX
NK = N*NDIM
DO 1500 I = 1,N
NK = NK-NDIM
K = N-T+1
IF (ROW(K) .EQ. K) GO TO 1500

All results reported are unaffected by these errors.

June 29, 1970
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Abstract

A recently developed method for obtaining dissociation limits
and long-range internuclear potentials from the distribution of the

uppermost vibrational levels of diatomic molecules ig applied to

3

existing data for the B ng states of (., Br, and Iz, and the

2° 2
ground XlZ; state of 022. Values of the asymptotic long-range

potential constants (Cn) are deduced from the data; they compare

well with the best theoretical estimates. The analysis yields

improved D0 values for the ground Xliz states of 33,35

79’79Br2, 81’81Br2 and 127’12712, respectively as follows:

Clzy

19997.2.(+0.3), 15894.5(+0.4), 15896.6(0.5), and 12440.9(+1.2) cm T
Presented also are: (1) a convenient graphical approximation procedure for
utilizing the method,and (2) a graphical means of making vibrational
assignments for higher levels when gaps exist in the observed
vibrational sequence. The latter approach suggests certain vibrational

reassignments for ground-state CL,(X'I5) and for Br, (B “lg,).
2 8 2 Cu



I. Introduction

An expression has recently been derived which relates the
distribution of vibrational levels near the dissociation limit D
of a diatomic molecule to the attractive long-range part of its
internuclear potential (1,2). For the common situation where the
outer branch of the potential may be closely approximated by the

attractive inverse-~power functionality:
V(R) = D-C_/R" ; (1)

the distribution of vibrational eigenvalues E(v) near D is closely

approximated by

)
4 [E)] = k_ [D-E(W]1 . (2)
dv
Using physical constants from Ref. (3), the comstant Kn is
F(1ﬁ35
K 14.55487 ] [n . 1 ] (3)
* L Pyt LA
for D and E(v) in. cm—l, the reduced mass | in amu, and Cn in

-10
cm 1An. As usual, T'(x) dis the gamma function (4). A more useful

expression is obtained by integrating Eq. (2)>&/

=y

E(v) =D - [(g-wE ] ", 0k, (4)

where H = (E:g)K s and for n>2 the integration constant v, is
n 2n “'n ‘ D



the "effective" vibrational index at the dissociation limit, E(vD) =

Truncating v

p toan integer then yields the vibrational index of

the highest bound rotationless level supported by the potential.
Consideration of the third derivative of Eq. (4) shows that Birge-
Sponer plots should show positive (upward) curvature for levels lying
close to D where Eq. (1) is appropriate. The significance of the
parameters and the types of errors inherent in Eqs. (1)-(4) are
discussed in Ref. (2).

In general, values of the four unknowns D, n, Cn and w.

p may

be obtained from a least-squares fit of experimental vibraticnal
energies to Eq. (4). However, siqce it is non~linear in the parameters,
Eq. (4) require good initial trial parameter values if the fit is to
converge uniquely. All of the results presented below were obtained
from general fits to Eq. (4), using initial trial values obtained by
the method presented in Refs. (2) and (5). Computer programs for
these regression procedures are listed in Ref. (3).
The general smoothing and regressions techniques discussed in

Refs. (2) and (5) yield the best parameter values obtainable from

(2-4). However, results with almost the same accuracy may
be obtained from a siﬁple graphical treatment of the data, described
below, if two extra cqnditions are satisfied. First, the value of ﬁ,

the asymptotic value of the power inm Eq. (1) 4 must be knownB%’ Second, the

levels must be sufficiently "dense' to allow use of the approximation

aEW)

o ey z%mc 1+Ac 1] = SLE(v+1)-E (v-1)]

vy

(5)



Then, with n held fixed at n }%/ Eq. (2) yields the approximate

expressions
2n 20
+2 +2 -
(B ™7 = [D-EWI ®) 7 ; (63
2n
— G
suggesting a plot of (AGV} vs. E{v). For the highest levels

this should be linear with intexcept D, while for the relatively

deeper levels it shaild show negative curvature. Hence, a linear
extrapolation from such a plot shoﬁld always give an upper bound to

D. Once D ‘has been determined in this manner, Eq. (4) may be rewritten

as

(n—z

Zn

[D-E(v)] (vb-ﬂ'r) H (7)

With n=n, a plot of the left hand side vs. v yields v, as the
intercept, and Hn (and hence Cn) from the siope. The usefulness of
Eqs. (5~7) is- demonstrated below.

In Sec. II, Eq. (4) is fitted to the experiméntal vibrational
energies of the B Bng states of 022, Br2 and Iz, yielding estimates
of the asymptotic long-range potential constants, CS’ and improved
values of the ground-state dissociation energies)é/ A further application
of Eq. (4) is introduced in Sec. IIL, which suggests vibrational
reassignments for the highest observed levels of Br2 (B Sng) and
of ground state sz(XlZg+)a In the latter case, a fit to Eq. (4)

then yields estimates of v, and of the long-range C6 constant.

D
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+
II. Ground State Dissociation Energies and B Iy, -State

Potential Tails of the Halogens

A: Chlorinée/

A detailed discussion of the fitting of the experimental dats

of Douglas et al (9) for 022 (B 3HEU) to Eq. (4) has been presented
(2). However, the reported (1,2) uncertainties in the parameters were
incorrectly déscribed as 957 statistical confidence intervals: they
were actually two standard deviations, corresponding to the 957 confidence
level only in the limit of many degrees of freedom. Paraﬁeter values
obtained on fitting the experimental emergies (9) to Eq. (4) with n
free or fixed at =5 are given in Fig. 1, together with the proper
95% confidence intervalgé{

As was concluded in Ref. (2), the highest observed levels of
CRZ (B 3H2u? depend mainly on the theoretical asymptotic %hH=5 inverse-
power term in the long-range poten;ial}e//The disagreement with the
#=6 suggestion of Byrne, Richards, and Horsley (10) is discussed in
Sec. IV. The values of D, CS? and vy reported in Ref. (2) (which
also gave predicted energies of the unobserved highest bound levels of
this state) are listed for the sake of completeness in Table I,
together with the improved estimates of their uncertainties?é/ Similarly
included are the results for the other halogen systems, to be discussed
belowBZ/

While the parameters given in Table I are the best wvalues

obtainable from the available experimental data (9) using the present



method, results of nearly the same quality are obtained on utilizing
these data (9) directly in the simple graphical manner suggested by
Eqs. (5-7). For this case the theoretical ﬁ=§gyénd Fig. 2 shows the
plot suggested by Eq. (6); the intercept is indistinguishable from the
value of D obtained from the fits to Eq. (4) (see Table I). Using
this D and n=n=5, Fig. 3 shows the plot suggested by Eq. (7); its

slope and intercept are very close to the fitited values of Hn and

Ve
Combining the fitted D value for CZZ (B BHZQ} with the
2P1/2 - 2P3/2 atomic CL spin-orbit splittingdf 882.50 cmflicgg,gg)

yields a ground state dissociation energy of Do = 19997.25 (+6.3) cm“l

This differs significantly from both the estimate of D0

It

obtained by Rao and Venkateswarlu (14) from a Birge-Sponer extrapolation

20062 (+40) cm

1

of their ground-state vibrational data, and from the D0 = 20040(+20) cm—l

which Clyne and Coxon (13) obtained on reinterpreting their data (14).
However, the discrepancy is removed by the vibrational reagsignment of

the highest observed ground-state level, discussed below in Sec. III.

B: Bromine

3H+ state of Br, makes
Ou 2

The present analysis of the B
use of concurrent fitting to Eq. (4) of data for different isotopes
in a given molecular electronic state. The only assumption required
is that the long-range potential tails of the isotopic species be

identical)%/ If the isotopic potentials are assumed to be identical

everywhere, the number of free parameters in the problem is reduced



further, since the ratio of vy values for isotopic species i and
j is then determined solely by the reduced mass ratio:

/2 (8)

v (3) /v (1) = () /u(i)1*
To obtain trial parameter values for a multi-isotope case (5), Eq. (8)
is assumed and the relative isotope shifts are estimated>g/ (Alternately,
‘trial parameter values may be estimatedSeparately by applying Egqs. (5-7) or the
method of Ref. (2) to the data for the individual isotopic molecules.} -
However, in the final fits to Eq. (4), D, n, Ch’ vy for each isotope,
and the relative energy shifts (ground-state zero-point energy
shift$®§ for the different species were allowed to be free parameters.

Horsley and Barrow (18) have  measured vibrational energies

of four adjacent vibrational levels, v=50-53, near the dissociation

3H+ 79,79Br 81,81Br
Ou

limits of the B states of and e (It is suggested

2
in Sec. IIL that their vibrational assignmént for these levels is one
unit toblsmall; the new numbering is used here.) Unfortunately, a fit of
these‘eight'bbservations té Eq. (4) with all six parameters free

did ﬁot yield a reliable wvalue of . However, since

all the levels considered lie within 20 cm--l of the dissociation

limit, it is probable that théy depend primarily on the theoretical?d
asymptoéic potential behavior (V(R)NR_S). The plausibility of this
éssumption is strengthened by consideration of Fig. 2 which shows that
for CZZ (B 3&;1), the levels within ca. 40 cm—l of D,‘accord with

~

n =05, while the theoretical C5 for CQZ is considerably



smaller than that for Brz)ée/

Fixing n=ﬁ=5)é/the eight data were fitted to Eq. (4), yielding
the parameters given in Table I, and an isotopic zerc point energy
shift of 2.05 (+0.12) en™ N The latter is in good agreement with the
more precise value of 2.029 (+0.014) Cm—ls the difference between the
ground—-state isotopiec zero point energies calculated from the vibrational
constants of Ref. (18).

The ratio of the Br, isotopic VD's in Table I agrees well
within the uncertainty of the fit with that predicted by Eq. (8),
confirming its validity for this case. Hence, Eq. (8) may be applied
to the mixed isotopic molecule 79’815r2,yielding v, = 60.89. Furthermore,
the‘(79,79)~(81,81)Jisotopé shift suggeéﬁs a vglue of D= 19580.74 cmfl
for the mixed isotope (79,81). Using thése interpblated paraméters
and the constants given in Tablé I, the energiés of the highest vibrational

levels of the B °

ﬁzu potential may be predicted from Eq. (&) for
all three isotopic speciés. In Table II these are compared to the
experimental energies of Refo (18) for the pure (79,79) and (81,81)
isotopes, and of Brown,(&Q) for (79,81}%}(

As in the discussion of Cf,, it is interesting to comparée the
best fitted parameter values with the estimates of them which would
have been obtained from Eqs. (5-7), with naﬁn%@{ In this caée the
two isotopes must be considered separately; for each, the four observed
energies yield only two KE; valueé which uniquely determiné the
intércepts D. These resultant D values for (79,79) and (81;91) are

respectively only 0.05 em™ L and 0.13 cm_1 larger than the bést

fitted values (Table I). Using these (approximate) D's and fixing n=5,



Eq. (7) then yields Fig. 4. As before (for C,, see Fig. 3) the
slopes and intercepts lie within the statistical uncertainties in the
fitted Table I parameter values.

Combining the fitted D wvalues for the pure isotopes with the
3685.2(+0.3) cm~l spin-orbit splitting (21) yields ground state
dissociation energies of Do (79,79) = 15894.5(+0.4) cmui, and
DO (81,81) = 15896.6(+0.5) cmnla The consistent astimated value for

the mixed isotope is D, (79,81) = 15895.5 (+0.5) cmul.

C: quiﬁé%g/

The only quantitétive data for this state extending above hv=58
appea£ to be Brown's (22) band-head measurements for levels wv=48 to 72?%%’
Since a Birge-~Sponer plot of his wvibrational spacings shows positive
curvature everywhere, these data are suitable for treatment by the
present method.

As for 022 (B,Bﬂgﬁ) (2}, the vibrational enerpies were répeatedly
fitted to Eq. (4) while the deeper levels were successively omitted
from consideration. This was done in turn with all four paramétérs
being varied freely, and with =n fixed at n=5. The regsulting parameter
values are shbwn in Fig. 5, plotted against the energy of the lowest
level included in a given fit, E(vr)?é/ Unfortunately, the scatter in
the data is such that the four-parameter fits bécome unstable when fewer
than 10 levels are considered at once, precluding g direct deﬁermination
of n. Even when n is held'fixed at EMS,‘the three-parametér fits

become erratic when fewer than 9 levels are considered at once.
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While reliable "local values" of n. camnot be determined
directly, the flattening of the three dashed curves in Fig. 5 for
v i 55 strongly suggests that the highest ca. 18 observed levels lie
in the asymptotic (ﬁ=5) region. This is qualitatively confirmed by
the fact that the fitted Cs values are within. 307 of the theoretical
valugigéféhaydﬂs cm“l 25. The present best estimates of D, CS’ and
Vs presented in Table I, were obtained by weighting the results for
v, =55 to 64 by the squared inverse of their uncertainties)3>'ThiS Vp
suggests that this state has 15 vibrationél levels above the highest
one observed by Brown (22); predicted values of their energies,
generated from Eq. (4) and the parametersin Table I, are given in
Table III.

As in the previous cases, the best fitted parameter values
can be compared to estimates of them obtainable from Eqs. (5-7).
Fig. 6, based on Eqs. (5-6), yields an estimate of D indistinguishable
from the value in Table I. Furthermore, the linearity of this plot for
v 2 55 confirms the dominant n=5 influence in this region. The
ensuing plot based on Eq. 7 (Fig. 7)§yields estimates of W

D

lying well within the statistical uncertainties in the Table I wvalues.

and H
n

Combining the fitted value of D with the 7603.15 cmﬁl atomic
2Pl/2 - 2p3/2 splitting (12,25) yields a ground-state dissociation
. 7
energy of Do = 12440.9(+1.2) cm—l.\“/ The source of the disagreement

between this result and Verma's (26) D0 = 12452.5(+1.5) c:mm:L is

discussed elsewhere (11).
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IIT. Proposed Vibrational Reassignments

A. General

Frequently the energiles and indexing of the deeper vibrational
levels of a given electronic state are accurately known, while near
its dissociation limit D the data are often relatively sparse, with
gaps of geveral vibrational quantum numbers between observed levels.
In the absence of additional information, this may lead to errors in
vibrational assigmnments.

One constraint which may be applied to the data is to require
that the Birge-Spomner plot for the species in question should have
positive curvature for levels near D (1,2). The present approach
implicitly includes this constraint while making more explicit use
of Eq. (4). The necessary assumptions are a value for 1, and a good
estimate of D which is independent of the wibrational numbering
under dispute. Thggz(according to Eq. (7)), for n fixed at 1, a
plot of [D-E(v)] 2 vs v should bel linear for levels very near
D, while showing progressively stronger negative curvature for deeper
levels (see discussion in Sec. I). Since the long~range interatomic
interaction ma§ be expressed (27,28) as a sum of‘inverse Cintégér)—power
terms in R (of lowest order 1) , the effective "loeal" n at the
outer turning points increasés with the binding energy. However,
consideration of Eq. (4) shows that in the. limit of very large n,
[D-E(v)] wvaries directly as (VD—V)z. Thus, a plot of [D—E(v)]%

vs, v should have strong positive curvature near the dissociation
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limit (for n > 4 this curvature becomes infinite at D), while
becoming increasingly linear for the deeper levels.

The present approach consists of requiring the vibrational
assignment to be such thdt the two types of plot discussed above
show the appropriate curved and linear regions. As a check, in
Fig. 8 this approach was appliéd to the data of Douglas et al (9)
for Cf, (B SHEU), for which f=5)%/ Clearly, even had there been a
gap of 10 unobserved levels somewhere in the rarge, Fig. 8 would

have unambiguously fixed the vibrational assignments.

B: Vibrational Reassignment and Potential Tail of Ground-State CZZ(Xlxz)

The only experimental data for highly excited vibrational levels
of ground state CRQ are the UV resonance emission doublets reported
by Rao and Venkateswarlu (14). The rotational assigmment for these
doublets has recently been revised (15) yielding slightly different
energies, and these are used here. However, the validity of the
present discussion does not hinge on this change.

In Ref. (14) the extrapolation of a Birge-Sponer plot gave a
value for the ground state dissociation energy  65(+10) cm—l larger
than that of Sec. IIA?{ﬁ/ Furthermore, this plot showed growing
negative curvature near the dissociation limit,which would be Wdrséned
if the extrapolation were constrained té yield the present Do.' This
is the opposite of the expected behavior in this region, especially
since the vibrational spacings for the analogous (but shallower)

ground electronic state of I, (29) show positive curvature for levels
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lying within 1000 cm"l of the dissociation limit. Although one expects
the long-range inverge~power attractive potential tail to be somewhat
weaker for sz than for 12’ its influence on the highest vibrational
levels should not disappear altogether.

Ref. (l4) reported observations of all adjacent or semi-adjacent
ground-state levels from v=9 to 42. Above this point four other
levels were observed, separated by gaps assigned respsctively as two,
three, two, and one unobserved levels. The anomalous increasingly
negative Birge—Sponer curvature is explained if these gaps are too small.
Using the theoretical ﬁ=6\%’ and the ground-state dissociation
energy obtai;ed in Sec. II A, the observed levels (re-evaluated using
the rotational reassigmment of Ref. (15)) are presented in Fig. 9 in
the form suggested by the preceding section. Aboﬁe v=42, each pair of
adjacent points is joined by a straight line which is extrapolated to
the tie line correspohding to the next higher observed level. The
possible vibrational assignments correspond to integer values of v
on these'tie lines, and tﬁe three pairs of curves in Fig. 9, (A,A"),
(B,B') and (C,C') correspond to the only plausible sets of assignments.

In Fig. 9, curves (C;C') correspond to the original assignment
(14); as stated above and confirmed by the curvature shown, this is
imﬁlausible. Curve A shows positive curvature for the higher ievels
which is too pronounced to be due to experimental &rror. However, the
slight positive curvature in B at the highest observed level is
within the uncertainty in the experimental énergies)%é/ Thus, it

appears that the (B,B') reassignment of the original (1l4) wv=54 as

v=55 1is correct.
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The main restriction on the use of this approach is the
requirement for a good initial value of D. Applying the method to
the same energies using trial D wvalues in turn 50 c*.m“l smaller and
larger than the present value would have yielded (C,(') and (A,A')
respectively as the most probable assiguments. On the other hand,
using Do = 20012 cm—l, the best estimate available previous to Ref.

(14), the present reassignment is obtained.

It is important to note that this reassignment negates the
speculation concerning a possible barrier maximum ani§). No such maximum is
expected theoretically, since for the ground states of the halogens,
at least the first two non-zero inverse-power potential terms are
attractive (see the argument presented for I2 in Ref. (11)), as
well as the exchange forces which give rise to the chemical binding.

Using the known n=6 and Do for the ground state, Eq. (4) was
fitted to the three highest experimental energies (v=49, 52 and 55)
yielding the values of C6 and vy given in Table I. The C6 obtained
is in fortuitously good agreement with the theoretical 06 = 0.82x105 cm—1 26,
estimated by Caldow and Coulson (30). However, fitting the hiphest
two levels using the (A,A') and (C,C") vibrational assignments would

yield C, wvalues respectively 7 times larger and 1/8 as large as the

6
theoretical estimate. This lends credence to both the present
vibrational reassigmment and theé significance of the fit itself.

Table IV presents the energies prédicted by the constants in Table I

for the highest bound levels of 622 (X12g+)?%3/
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C: Vibrational Reassignment for Br, (B ng)

The four vibrational levels observed near the dissociation limit

Bng state of each of 793793r2 and Sl’SIBrz were originally

of the B
assigned as v=49-52 (18). The only other measurements of the upper
vibrational levels of this state are Brown's (20) observation of levels
up to v=48 of 79’81Br28 In oxder to compare these resultg, the
(79,79) and (81,81) energies (18) were averaged to yield approximate
(79,81) energies for the levels considered. For this species <ﬁ=5<@
and D was obtainéd in Seec. II B), Fig. 10 is the plot suggested by
Sec., IITA. The solid points are from Ref. (20) and the open points are
the interpolated energiés mentioned above. It is apparent that the

original (18) vibrational numbering of the latter four levels must be

increased by one. This reassipgnment was used in Sec. II B.

IV. Discussion

A: Comparison of B 3ng State D Values with Previous Results

Most of the results in Table I differ somewhat from previous
dissociation limits and conclusions about the nature of the long-range
potentials, despite being based on the same data. For the D wvalues,
the appropriate quantity for comparison is [D—E(vH)], the binding
energy of the highest observed level. Table V compares the present
and best previous values of this quantity for the B 3ng states of

the halogens.
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In the case of 12 the discrapancy oviginates in the graphical
extrapolation of Ref. (22) beyond the highest observed levels. This
illustrates the errors which may avise from use of the Birge-Sponer
(31) and Birge (32) extrapolation proceduresf%é’

The previous bast estimates of the dissociation limits of the
(79,79) and (81,81) isotopes of Br2 {B Sﬂgg) (18) were based on
limiting curves of disscciation (e.g., see Chapt. VI of Ref. (§§)}3
The discrepancy with the present vesults implies that the absorption seriag
were incomplete; i.e., they did not extend to the predissociation limit.

It has been shown (34) that for vibrational levels lying near the
dissociation limit, the ensrgies at which the rotational series for

the different vibrational l%vels break off due to predissociation

should vary as [Jm(Jm+1)}n~2 , where n=1, and Jm is the rotational
quantum number of the last unpredisscciated level. For Br2 ¢:] Bﬂg;)s

(for which ﬁﬂé&ﬁ the theorstical C5 coefficienﬁ%9/yields a
predicted slope of 2@0x165zcm“1] for plots of E(Jm) Vs, {Jm(3m+1)]5/3,
Since the data (18) do not conform to this behavior,it is inferrad

that the experimenters did not observe the very highest non—pradissociétimg
levels. This is congistent‘with their lack of observation of any broadened
lines.

One further effect to be considered is the effect on the fitted
D value of an error in the chosen value of h. Fitting the data to
Eq. (4) in the manner described in Sec. II, but with n set equal to 6
instead of 5, one obtains D wvalues for 0223 Brzs and 12, respectively

which are only 0.36, 0.50 and 2.7 en™l smaller than the best values

(Table I).
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+ , , , . ; _
B: The B BHO State Potential Tails. Comparison with Previous
u

Results and with Theory

Byrne et al (1l0) concluded that the outer RKR turning points
(35) for the B 3H§; states of both Ci, and Br, followed an ‘RM6
dependence, rather than the theoreticai%/ asymptotic R—5 form. However,
the validity of this conclusion is contingent on the accuragy of the
RKR  potential and of the value of D assumed.

For 012 the reported turning points (35) are plotted against
binding energy in Fig. 11, using both the present D and the experimenters’
(9) D (presumably the value used in Ref. CEQQDGQ;’ fhe small difference
between these D's has a negligible effect on this plot, and it appears
that the previous 10=6 deduction is wrong since it requires ignoring
the last few levels. (This also implies that the reported (10) "06"
is spurious.) The difference between the intercepts of curves A and
B in Fig. 1l indicates that either the present best 05 is ca. 407%
small, or that the RKR results are slightly in error. The latter
is plausible since no experimental data wers available for the lowest
six levels of this state, spanning the lower 407 of the potential well.

The RKR potential for Br2 (B Bng? from which Byrne et al (10)
concluded n0=6 appears to have béen calculated (35) for the mixed
isotope (79,81) from the averaped Ref. (18) data for (79,79) and
(81,81). However, these results only span levels 9 < v <19 and
50 < v < 53, and v=9 lies ca. 37Z of the well depth above the
minimum. In addition to using the incorrect original (18) vibrational

assignment for the four high levels (49 < v < 52), the interpolation
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over the large gaps in the spectrum fs quite unveliable. TFor example,
the interpolated v=30 and45 {79,8l) energies are respectivelys and
9 cm ~ higher than the values reported by Brown (20), while the
extrapolated (35) [E(9)-E(0)] is 8 cnfl larger than the value
obtained from the data of Darbyshire’(§§)a Since the wnrellability
of the RKR potential (35) appears to be the source of the previous
(10) anomalous n=6 conclusion, log-log plots similar to Fig. 11 are
not presented here. However, it is unoted that increasing D by
z.ll.cm_l from the previous value (18) to the present one altered
the bindiﬁg energies for the highest levels sufficiently for the last
two points on s?ch a log-log plot to display the proper slope of -5,

Steinfeld; Campbell and Weiss {37) calculated RKR turning
points for levels 43 f.ﬁ < 50 of Iz (B Bﬁgé}, and on analyzing them,
concluded that the potential was displaying its theoretical n=53
behavioéa' in this vegion. On the other hand, the results presénted
in Figs. 5 and 6 suggest that the potential deviates significantly
from this asymptotic behavier for v £ 55; moreover their (37) apparent
05 coefficient is more than 100% larger than the theoretical Value?%gj
Thus, their n=5 conclusion appears fortuitous.

Steinfeld ét al's (37) turning points for 43 < v<5l were
based on their measurement of two vibrational bands whoesa upper states
(they conpluded)ﬁgre v=43 and 49. However, their ensuing wv=49 enbrgy
is 11.4 cm_l lower than the value observed by Brown (22}, leading

to a reassignmenmt of their 49-1 band as 57-2 (see footnote 4, Ref. (11)).

This error in energy erroneously compressed the levels 43 < v < 49, and
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this is the probable source of theilr apparent Rfs behavior.

In Table VI, the "experimental" C5 values obtained by the
present method are compared to the theoretical values.QQ/ Also given are
the approximate binding energies baeyond which deviations from simple
Rfs behavior become apparent, as indicated by Table II and Figs. 2
and 6. These quantities will depend mainly on the relative strengths
of the contributing Rfs, and R and r°8 potential terms. If appears
that for Brz this range is zunomalously small in relation to the
relative strengths of the 05 coefficients. However, this may be spurious,
due to errors in either the energies or the assignments of the (79,81)
levels of Ref. (20)N1t/

While the present "experimental" CS values are seen to be in
reasonable agreement with theory, they are consistently small. Since
there may be some residual bias inherent in the present method (2) it
is difficult to make an appraisal of the theoretical values, although
a potential weakness in them was mentioned in footnote 46 of Ref. (2).
However, the qualitative agreement shown in Table VI does strongly
confirm that the highest levels considerasd in the present analysis

do depend mainly upon the asymptotically dominant Rfs potential tail.

C: General

&

s

Recently Stwalley (38) has presented an alternate derivation of Eq.(4)
and then applied it to data for the B 123 state of H, (for which
n=3) by performing fits to Eq. (7) while varying the value of D to

minimize deviations |, He also verified the present Eqs. (3~4)
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‘for the exact calculated eigenvalues of an LI (12,3) potential
(i.e., a well with an R—'3 potential tail)}%é/obtaining the same good
agreement as had previously been found for an R—6 -tailed potential (2).

The main restriction on the use of the present method (fits to
Eq. (4)) is that the levels considered mugt lie close enough to the
dissociation limit that their Birge~Sponer plot shows positive
curvature. It has also been found very advantagesus to know the
theoretical n for the state under consideration>€/ If in addition
the level density is great enough to satisfy the linear approximation
of Eq. (5), then application of Eqs. (6~7) may yield good approximations
to the best parameter values (see Sec. II). Where appropriate, therefere,
plots of the form of Eq. (6) should replace conventional Birge-Sponer
extrapolations as a means of determining the dissociation limit D,

It 1is believed that the present methodology is now

sufficiently well documented to become another everyday tool in the

spectroscopists' data analysis kit.
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Table I: Summary of Results for the Halogens\é/

B 3H€u States D (cm"l)a n=h | C_ [cm“l ™ vy
35,35, 20879.7,(40.3%) | 5 | 1.2,040.2°)x10% | 349, (40.2%)
79,79, 19579.7, (+0.27) 5 1.79(+0.2)x10° | 60.5, (+0.3)
SLo8lp,  |l19se1.7,(x0.35) | 5 | 1.7,(+0.2)%10° | 61.2,(40.3)

127,127, 20044.00 (+1.2) | 5 | 3.1, (+0.2)x10° | 87.7 (+0.4)

x 157 states (D=D )

g _° —
35 ,3505&2 19997. 2, (+0. Py | 6 |o. 74@0, 3°)%10° | 61.0¢+1:2°)
79,79, 15894.5(+0. 4) 6 S —
81’81Br2 15896.6(+0. 3) 6 — e
127,127, 12440.9(+1.2) 6 — —

a) See footnotes 3 and 7.

b) See footnote 6.

c¢) These uncertainties ar¢ only estimates.
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Table I1: Calculated.emergies (in cmwl) of the highest

bound levels of isotopic Brz(B 3-H°!au). Numbers
in parentheses are experimental; for (79,79) and
(81,81) these are from Ref. (18), while for
(79,81) they are taken from Ref. (20) \{l/

v (79,79) (79,81) (81,81)

41 || 19453.44 19448.89 (19470.3) 19444.00

w2 | 473,76 469.72 ( 486.2) 465.37

43 491.66 488.13 ( 499.5) 484,31

bt 507.34 504.28 ( 512.5) 500.97

45 ll 520.94 518.36 ( 524.3) 515.53

46 532.65 530.51°( 531.5) 528,15

47 542.62 540.90 ( 542.2) 538.98

48 551.01 549.68 (. 551.4) 548.18

49 557.97 557.01 555.90

50 563.65 (19563.65) 563.04 562.28 (19562.28)

51 568.20 ( 568.20) 567,90 567.46 ( 567;4$>

52 571.76 ¢ 571.77) |  571.74 571.60 (. 571.61)

53 | 574.47 ( 574.47) 574.69 574.82 574.31)

54 576.46 576.89 577.24

55 577.84 578.46 579.00

56 578.75 579.51 580,22

57 579.24 580.1, 581.00

58 579. 5 580. 5él.45

59 575’9,69 580. 4 5814

60 57949 580. ., 581..,

61 — — 581..
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Table III: Calculated energies (in c-m-]‘) of the highest
bound levels of 127’12712@ BH_}(—}U,}" Brown's
(22) experimental energles for v < 72 are
given in parentheses.
v E{v) v E(v)
66 19987.2 (19986.9) 77 20038.6
67 995.5 ( 995.3) 78 040.1
68 20002.8 (20002.7) 79 041.3
69 009.4 ( 009.6) 80 042.2
70 015,2 ( 015.5) 81 042.,
71 020.2 ¢ 020.2) 82 043.,
72 024.7 ( 024.4) 83 043.
73 028.5 84 645°84
74 031.7 85 043.4,
75 034.4 86 043. g4
76 036.7 87 044




a)

b)

Table IV: Calculated energies (in cm"l) of the

highest bound levels of ground-state

35,35

C,Q,z(X1 Z;), The experimental

level energies, obtained by applying

the rotational reassignment of Ref. (15)

to the data of Ref. (14), ave given in

parentheses ,

v E(v) v E(v)
48 19119. 55 19911, (19905.%)
49 306. (19305°) 56 947,
50 465. 57 972,
51 597. 58 986.
52 706. (19711.%) 59 994
53 792. 60 996. 5"
54 860. 61 997. 5"

Calculated from the data in Table I of Ref. (14) using the

rotational reassignment of Ref. (15) and the ground-state

rotational constants of Ref. (9).

Within the uncertainty in

not exist.

V.

(see Table I)gthese levels may
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Table V: Binding energies (in'cm-l) of highest

observed level (VH) of the B "I

states of the halogens

3 .+
Ou

Species Vi Present Previous

35,35y, 31 2.8 (+0.3)2 3. (+2.)P
2 5 R

79,79, 50 5.2, (+0.2.) 2.7(+0.5)°
2 45227 —

81,81y, 50 6.9, (+0.3,) 4.1(+0.5)¢
2 6035 -+

A1y 72 19.6(+1.2) 12.64

a) See footnote 6.

b) From Ref. (9).

c) From Ref. (18).

d)

From Ref. (22).



Table VI:

Cy

estimateSQQ/for the B

Comparison of present "experimental"

-1 0
values (in cm 1 AS) with theoretical

3ﬁ+ . states of the
Ou
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halogens. Eb(ﬁ = 5) is the approximate binding energy

beyond which deviations from R behavior
become apparent.
Species 022 Br, 12 B
1 17 5 5 o 5
Experimental 1.29(f0.2)X10 1.79(jp,2)x10 3,11(f9.2)xi0
Theoretical® 1.4,x10° 2.3,x10° 4.5,%10°
(=5 [em 1] 60 50° 200

See fooinote 10.

As discussed in footnote 11, the isotopic assignments

of Brown's (20) levels may be in error, in which case this

50 cm_l

is a lower bound to EbCEES).
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Footnotes

Eq. (4) is wvalid only for cases in which n#2. However,
analogous expressions for n=2 and for the ca;e of an
attractive exponential long-range potential are given in
Ref. (2).

A summary of theoretical knowledge of the asymptotically
dominating power n is given in Appendix B of Ref. (2).

For the B 3ng states of the halogens n=5, while for their

ground X 1Eg+ states, n=6 (6,7,8).
Unless otherwise stated, throughout this paper all energies are
expressed relative to the v=0, J=0 level of the ground
électrgnic state of the designated isotopic molecular species.
The present discussion of chlorine considers only the most
commen isotopic species, 35’350£2.

Unless otherWiséfstated, all uncertaintiés givén in this péper
correspond to 95% statistical confidence intervals.

The final uncertainties in the best parameter values for

sz (B Sﬁgu) differ from both the previously reported vélués

(1,2) and the true 95% statistical confidence intervals shown

in Fig. 1. The values given are best estimates based on thé

957 confidence intervals for the last few points to the right in

Fig. 1.
The uncertainties in these D values differ from those reported
previously (1,2,11l) because of the incorrdct 957 confidente

intervalsin the earlier work.
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This is much less stringent than requiving precise potential
invariance everywhere, including R wvalues near the minima,
Small differences between potential curves for different isotopic
species in a given state arise from the coupling of nuclear and
electronic motion. In their a priori caleulations for the

ground state of st Kolos and Wolniewicz (16) showed that the
effect of such coupling disappeared at long range. More generally,
the effect of this coupling on an eigenvalue depends on the
expectation value of the nuclear kinetic energy, and this goes Lo
zero for levelé approaching the dissociation limit (e.g., for
ground state H23 see Table III of Ref. (17)).

These shifts were estimated in two ways: (a) by comparing
vibrational zero point energies, and (b) by separately
smoothing the level energies for the different isotopic molecules

as functions of a common sbscissa ¥ (rilated to the vibrational

quantum number by: ¥ = v(i) [u(l)/u(i)]qs and comparing the calculated

ordinates at any chosén ¥ value.

Values of long-range Cy; constants may be éxpressed as the
product of a factor peculiar to the electronie state in question,
and the expectation values of the square of the radii of the
valence électrons <%2> on the interacting atoms (6). Knipp
(6) and Chang (7) have presented tables of these numerical
factors for a wide range of situations, and Fischer (19) has
fecently presented accurate Hartree-Fock values of <r2> for

shells of most atoms.
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Brown (20) stated that: "In gemeral the measurements are not
accurate to better than 2 cmml, and in cases where the isotope
effect has not been identified, the error is considerably
greater." Furthermore, consideration of Table IT suggests
that some of his band heads might more properly be reassigned
to the pure isotopes. If this is done, for 6 of the 8 experimental
(79,81) energies given in Table IT the agresment is better than
2 cm—l, while for the other two (v=44 and 45) the disagreement
is at worst 3.5 cm_l. In any case, the calculated (Table II)
energies for the deeper levels (e.g., v £ 43) are likely to be
increasingly in errov.
The present discussion of iodine considers only the most common
isotopic species 127’12712.
The original vibrational numbering of these levels has since
been revised (23,24); thus the numbering used by Brown (22) has
been decreased by one unit.
Using their rotational reassignment, Clyne and Coxon (15)
obtained a D0 value 43 cm~1 larger than the present
estimate; however, this change does not affect the qualitative
arguments presented here.
The scatter in the doublet splittings (1l4) which give the Bv ‘
values for the upper states is large enough to yield possible
errors of a few cmm:L in the level energies.
For an excellent review of these methods, gee chapter V of the

book by Gaydon (33).



17.

18.

30

The wv=32 turning point reported by Todd et al (35) is ignored
here as being spurious, gince there is no reported observation of
this level. This point would lie well above all the lines in

Fig. 11, since their extrapolated [E(32)-E(31)] is some 30% smaller
than that predicted (2) on substituting the constants of Table I
into Eq. (4).

In Stwalley's more approximate derivation, a numerical factor

of T/2 occurs in place of the ratio of gamma functions in

Eq. (3) (38). For a given fitted value of Hn’ use of his
numerical factor would give values of Cn for mn=3 and 6

which are too large by factors of 1.41 and 4.68 respectively.
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Figure Legends

Figure 1 Results of fitting experimental vibrational energies

35,35

of 022 (B Bﬂtu) (9) to Eq. (4). The points

correspond to fits of levels v, ooup to vy = 31. The
broken vertical line is the best estimate obtained for

D. Points joined by solid curves correspond to four-
parameter fits with n varied freely, while the others
correspond to three-parameter fits with n held fixed

at n=75., The error bars represent proper
95% confidence intervals.

35’35022 (B 3ng) (9) plotted according to

Figure 2 Data for
Egs. (5-6) with n-ﬁ=5>%/ Energies are in cm_l; the
mark at D denotes the fitted value from Table 1I.

35,35

Figure 3 Data for 022 (B Sﬁgu) (9) plotted according to

Eq. (7) with n=i=5 N Energies are in cm_l; the mark at
v denotes the fitted value from Table I.

Figure 4 Data for the (79,79) and (81,81) isotopes of Br2 (B sﬁ%tp
(18) plotted according to Eq. (7) with n=ﬁ=5§3/ As in
Fig. 3. The slopes of the lines differ by the amount

predicted by the reduced mass factor in Eq. (3).

Figure 5 Results of fitting experimental vibrational energies



35

127,127I

of 9

63 3I[gu) (22) to Eq. (4). As in Fig. 1.

127,127

Figure 6 Data for Iz (B SH;u) (22) plotted according to

Eqs. (5-6) with n=ﬁ?5>g/ As in Fig. 2.

Figure 7 Data for 127,127

Eq. (7) with néﬁm5§%’ As in Fig. 3.

12 (B Sﬂzu) (22) plotted according to

n-2
Figure 8 [D~E ()] 2n vs v for observed levels of
35’350%2 (B 3H€u) (9) with D from Table I, for both
n=68(&, left ordinate scale)and n=h=5 (4, right
ordinates). All energies are in cm“l& The broken
lines are tangents to the two curves in their linear regiouns.
n-2
Figure 9 [D-E(v) ] 2n vs v for observed levels of
35’356£2 (% 1Zg+) (14,15) with D from Table I, for
both n= & (@, left ordinate scale), and n=n=6 &,
right ordinate scale). All energies are in em™t. The
possiblé vibrational assigmments (points joined by solid
lines) cofrespond to integer values of v on the tie
lines for the different levels near their intersections

with the linear extrapolation from the two preceding

levels (broken lines).



Figure 1.0

Figure 11

36

n-2

[D—E(v)]zn vs v for observed (20), solid points) and

interpolated (18, open points) levels of 79’81B

3.+
B
T2 ( HOu)
with D f£from Sec. I1B, for both n= ®(cirecles, left
ordinate scale), and n=n=5 (triangles, right ordinates

1

scale). All energies are in em —; "old" and "new" refer

to the vibrational assigmments of the four highest levels.

Log~log plot of binding energies (in cmni) vs calculated

(35) RKR turning points (in K) for 35,35

1.+
Clz (x Zg}
using both the present (X) and the previous (9)- ()
estimates of ﬁgébThe straight lines have slope of -n;
the intercept of A corresponds to the present (Table I)

CS’ while line B is the best n=5 fit to the points

for the uppermost levels.
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Appendix A: Smoothing and Fitting Program to Obtain Trial Parameter

A Fortran V listing of the smoothing and fitting program used

Values

to obtain good trial parameter values for use in the general non-linear

fits to Eq. (4) (see Appendix B) is presented below.

the approaches discussed above and in Ref. (2), for cases in which

at least one of the parameters is known the alternate fitting

procedures described below may be used.

Casa. 1:

Case 2:

If n=A is known}g/Eq. (2) may be written as
2n 2n
[E(v) /av] P = o)) kT
2n
)
so that a linear fit to [dE(v)/dv] Vs,

E(v) yields D as the intercept, and Cn
(from Kh’ see Eq. (3)) from the slope. Sub-
sequently, v, may be obtained from Eq. (7).
In effect, Eq. (Al) is equivalent to Eq. (6)
except thét the derivative is obtained by

polynemial smoothing rather than by the

approximation of Eq. (5).
If D is known, Eq. (2) vields

log [dE(v)/dv] = log (K.) +(1.~2_1ig log [D-E(v)] ,
n o/

In addition to

(AL)

(A2)
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which suggests a linear fit to log [dE(v)/dv] wve.
log [D-E(v)] to obtain n and Cn’ Analogous to

Eq. (6), the approximation of Eq. (5) yields

log (C)) = log (X ) + (%2 log [D-E(W)] , (a2
‘ v B \2n

which may be used in the same mauner as Eq. (A2).

In either case, a subsequent fit to Eg. (V) vields

vy

Case 3: If both n=i and D are known, Eq. (4) may be

written as

n-2

D-EW] ™ = () H , (A4)

end the linear fit suggested by this expression visllis

v

D and Hn (and hence Cn)a

The fitting procedure used in a given case is determined by
thé value of the parametér IDR2 read in as input. The three
basic approaches which have been discussed: 2a) use of Eqs. (15-16)
in Ref. (2) (IDR2>0), b) use of Eqs. (Al-A2) and Eq. (7) (IDR2=0),
and ¢) wuse of Egqs. (5-7) and Egs. (A3-A4) (IDR2x0), have all been
tested. Except in cases where there is much secatter in the data,
procedure a) appears to give significantly better fits than the

others; however the results of the other approaches are also satisfactovy.
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#%#% PROGRAM FOR APPROXIMATE FITTING OF VIBRATIONAL ENERGIES 70
LE ROY — BERNSTEIN WKB~BASED EXPRESSION FOR HIGHLY EXCITED
VIBRATIONAL LEVELSs YIELDING GOOD TRIAL PARAMETERS FOR GENERAL
NON—=LINEAR FIT TO THE GENERAL EXPRESSION. PARAMETERS ARE
THE DISSOCIATION LIMIT D» THE POWER N AND COEFFICIENT CN OF
THE EFFECTIVE LOCAL INVERSE-POWER POTENTIAL» AND THE INTEGRATION
CONSTANT VD » WHICH FOR (N«GTe2) CORRESPONDS TO THE VIBRATIONAL
INDEX AT THE DISSOCIATION LIMITs #¥# PROGRAM CAN CONCURRENTLY FIT

C

C

C

C

C DATA FOR DIFFERENT ISOTOPES OF A GIVEN SPECIESs USING A COMMON N
C

C

C

C

C
C
C
C

AND CN+ WHILE RELATING THE VD VALUES THROUGH THE (KNOWN) RATIO
OF THE REDUCED MASSESs AS LONG AS THE RELATIVE ISOTOPIC ZERO=~POQINT
ENERGY SHIFTS ARE EITHER KNOWNs OR MAY BE ESTIMATED FROM THE DATA.
*¥% PROGRAM WRITTEN AND TESTED BY ReJe LE ROY,.
DIMENSION E{(50)sVF{50)sR2(50):TITLI16)9BZ(4)sSBZ{4) sFMULL)»SHI&] )

1 DSH{4).vDIS(4)sAA(LL)
COMMON/BLKL/T(50)sX(50)sY(50)9DG(50)sD2G(50) sRAT{(50)»DY1(50) s

1 DY2(50)sX2(50)+W{50)
DATAZT/712:70604e30383018292s 77692571 32e44732:36592:30632:2625
1 20228022201926179522160520145924131+20120224110320101+240935
2 2¢08602:080220074920069920064192006022¢05602¢05292404852.045
3 2:042:20#2,000/
DO 1 1=1450
1 Wili=1l.0
Pl=3,1415%926
SQPI=SQRTI(PL}
C%% TITL IS THE NAME OF THE SYSTEM CQNSIDEREDo
Cr¥#x NISOT IS THE NOs OF DIFFERENT ISOTOPES CONSIDERED AT ONCE.
Cx¥% NCAS IS THE NO. OF DIFFERENT FITS TO BE MADE TO THE DATA FOR
C THIS SYSTEMe
CH#% JF(ISHeGT20) WHERE (NISOT«GTal)> SHIFT ENERGIES FOR DIFFERENT
C ISOTOPES BY KNOWN INITIAL~-STATE ISOTOPE SHIFTSs
2 READ(55502) (TITL(I)»I=1916)sNISOTsNCAS»ISH
IF(NCAS.LEsO} GO TO 999
NUB=10
ICAS=0

IF(NISOTeLEsl) ISH=0
C#% FIT POLYNOMIALS OF INCREASING ORDER TO GIVEN ENERGIES UNTIL STDERR

C  CONVERGES» OR BECOMES LESS THAN THE PRECISION OF THE DATAs ERY.
C#¥% BZ 1S A NUMERICAL FACTOR FOR EACH ISOTOPE INCLUDING REDUCED MASS
C  ETC BZ=8*PI#*2%MU(AMU)I#14(1/CMI*(Le CANGST ) ) #%2 2Hu%2

READ(55503) ERYs(BZ(J)sJ=1sNISOT)

IWRST=1

WRITE(65601) (TITL(I)3sI=1516)sERYsNISOTs(BZ{I)sl=1sNISOT}

NLV=0

15=0

SH(1)=0.0 }

IF(ISHaLE.0) GO TO &

READ(5+503) (SH(J)sJ=2,NISOT)

WRITE(65618) (JsSH(J) »J=2sNISOT)

4 1S=1S+1 - :

SBZ{15)=SQRT(BZ(1S))

FMU{IS)=SBZ(1)/SBZ(IS) |
C¥#% NIS 1S THE NO. OF LEVELS READ IN FOR ISOTOPE (IS).
C*## IF(IVHeLT,0) READ IN ENERGIES AND VIB NUMBERING TOGETHER.
C  IF({IVHeGE«0O) NUMBER VIB LEVELS DOWN FROM V=IVH FOR HIGHEST.

READ(5:501) NISsIVH
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NLB=NLV
MLI=NLV+]
NLV=NLVENIS
- Ca¥¥ READ IN LEVEL ENERGIES IN UNITS OF {(1/CM)s HIGHEST LEVSZL_.S FIRST.
IF{IVHLT.0) GO TO 8
READI55503) (ELI)sI=NL1sNLV)
DO 6 I=1sN]S
6 VF(NLB+I ) slVH+l~]
GO TO 10
8 READIS:504) (VF{I)sE{I)elIaNLLIeNLY)
10 IF{IS5:EQal) GO TO 30
DO 12 I=NLL1sNLV
12 VFLIL=VFLLYHRFMULIS)
IF{ISHsGT0) GO TO 16
C##% ESTIMATE ISOTOPE SHIFTS FOR (I15.GTa.l) BY COMPARISONS WITH DATA FOR
C ISOTOPES CONSIDERED ALREADY.
EM=0,0
EM2=0.0
DO 14 I=NL1sNLV
XX=a2YF{l)=~VE{1)}
Nl=NU+1
DF=AA(NL)
DO 13 J=1eNU
13 DF=XX*¥DF+AA(NL=J}
DF=E(L)-DF=-E(1)
SM=SM+DF
14 SM2=SM2+DF#¥2
SH{IS) =SM/NIS
DSH{IS)=T{NIS~ 1)*SQRT((SMZ*NIS*SH(Is)**2)1€N15~1))/
1 SOGRT(FLOATINIS))
WRITE{&5617) . ISeSHIISYDSHIIS)
C##x CORRECT DATA BY INCLUDING ISOTOPE SHIFT
16 DO 18 I=NL1sNLV
18 E(1)=E{1}~8H{IS)
C#%% COMBINE AND ORDER DATA FOR DIFFERENT ISOTOPIC SPECIES» HIGHEST 1-5Ta
NEE ]
DO 28 J=NL1sNLV
SF=d=1
DO 20 I=J1sJF
K=l
KF(VF(J)@GTeVFtI}) GO TO 22
20 CONTINUE
GO TO 30
22 VFF=VF{J)}
EE=E(J)
JI=K+1
DO 24 I=Jled
Led+Jl=I
VF{LI=VF {L=1)
24 ElL)Y=E{lL=1)
VF{K)=VFF
E(K)y=EE
28 CONTINUE
30 IF(185«GE.NISQT) GO TO 38
IF1ISHeGT0) GO TO 4
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Cxsx LEAST SQUARES FITTING WHEN REQUIRED TO GET SHIFT FOR NEXT ISOTOPE.

NU=3
RUB=10
DO 34 I=1.NLV
X{I)=VF {1}

34 Y{I)y=ELI)
ID2==1
NU=1]

CALL PLYFITINLV:NUsNUBsAASERYID2)
WRITE(&65616) 15.NU
GO TO 4

38 ICAS=ICAS+H] :
Co¥% FIT THE FIRST NFT LEVELS» STARTING BELOW THE HIGHEST NDIL OF THEM

Caa® JF{NDT»LT.0) DROP DEEPER LEVELS FROM FIT ONE AT A TIMEs
CHnd IF(NDToGT-0) REPEATEDLY FIT S5AME NOe. OF LEVELS WHILE SUCCESSIVELY
C OMITTING HIGHER ONESs NDT AT A TIMEe USE THIS OPTION TO YIELD THE
C EFFECTIVE LOCAL POTENTIALS.
C¥#x NHD IS THE NO. OF CONSTANTS TO BE HELD CONSTANT
CH¥ie IF{NHDsEGQ.1Y FIX N=HD1, IF{NHD«EQa—~1) FIX DISQC=HDlos
¥t JFINHD«EQe2Y FIX BOTH N=HD1 AND CN=HD2. IFINHD«EQe~23 FIX
C BOTH N=HD1 AND DISOC=HD2
C#%¥% JDR2Z DEFINES THE VARIQUS FITTING MODESe. #% IF{IDRZ.GT«0) FIT
C USING EQSs{15=18) IN JoCHEM«PHYSssVOLa52:3869(1970)«
Cé# IF(IDR2:EQ.0) FIT USING EQS«{Al-A2) OF REPORT WIS~TCI=-369{1970) s
C #% JF{IDRZ22LT0} USE FQSa(5«75s AND A3-A4) OF WIS~TCI~36911970)s IN
C THIS CASE: IF((NISOTEQel)aANDs(NHDsNEs=2)) THERE CAN BE NO GAPS
C OF UNOBSERVED LEVELS IN THE ENERGIES USEDs
READ{5:501) NFTsND1«NDTsNHDsIDR2
IFI{NHD-EQ.0) IDR2=1
IF{(IDR2:EQeQ )0 ANDo {NHDsEQe=2}3) IDR2=-1
IF{{IDR2sLTe0)sANDo { (ABSIVF{1)1=VF{2)=1¢}2GTe0e01)es0RsINISOTGTsl)
1 ¥y IDR2=0 :
NHDA=NHD
IFINHDeLT20}! NHDA==NHD
NUB=10O
IST=ND1
IF{NHD=:NE+Q) READ(5:505) HDlsHD2
42 IF{{IST+NFT=-NLVI=GT=0) GO TO 130
IDGF=NFT+NHDA=4
XDGF=1DGF
MJ=NFT-2
DO &4 I=1sNFT
Y{I)=E(IS8T+1)
L4 X{I)=VF{IS8T+1)
IF{IWRST«GT«0) GO TO 44
65 WRITE(G62601) (TITLII)eI=1lel6)sERY:NISOT(BZ(1)sI=s1lesNISOT)
IF{ISH:GT0) WRITE(6:5618) (JaSHIJ)»J=2sNISOT)
IFCINISOT«GTul)oANDe { ISHLED)) WRITE(&98617) (JsSH(J)»DSHIJ) s =2
I NISOT) . :
45 TWRST=0
IF(NHD=EQ.0) GO TO 50
IF(NHDaEQ.=1) GO TO 54
ZN=HD1
WRITE{6:609) ZN
IFIABSIZIN=2+1:LT20:01) GO TO 84
IF{NHD=1) 56:60:48
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Cx¥e
G F

50
52

54
56

58
60

78
80

84

90

100
102

104

106

53

CN=HD2

WRITE(6:619ICN

Al=le+le/ZN

AZ=A1~0:5
GAMMA 1S THE LIBRARY SUBROUTINE PRODUCING VALUES OF THE GAMMA
UNCTIONs GMlsGAMMALIAL) . IN ERROR MODE EXITS TO STATEMENT 200.
CALL GAMMA(AL:GM1:$50+%200) :
CALL GAMMA(AZ GMZ2+552s5200)
XKN=GM1#SQP I/ (GM2¥SBZ {11} #2 ¥ZN*CN#*{~] 4/IN)
GO TO 60

D=HD1

GO TO 58

D=HD2

WRITEL6:610) D

IF{IDRZ2+1L.TeO0) GO TO 78

IFINFT2LES3) GO TO 78

NU=3

CALL PLYFITINFTsNUsNUBsAASERY»IDR2])
WRITE{6:6031NU

IF{IDRZ.LE«D) GO TO 78

CALL UDZ2DVZ2iNFToNJoNHD IDGF s ZNsVDsDs XKNSER2)
GQ TO 80 »

CALL UDIDVIINFTsNJsNHD IDGFsZN»VD Do XKNLERZsIDR2)
IFIERZ2:LTo0e} GO TO 112
IF{ABS{ZIN~26)0GTs001) GO TO 90

CALL ZNEQZ(INsNFTsNJsDsDDsCNeDCNoBZI1)YsR29ERZ)
DVD”O@

DIN=0«

VD=0.99E+30

GO TO 106

IF(NHD«EQe.2) GO TO 102

Al=la.+1e/2ZN

AZ2=A1-0, 5

CALL OAMMA(AL1 GM1l+%5100:%200)

CALL GAMMA(AZ2 GM2:51029%5200)

CN=2 % ZIN®SQP1/SBZ{(1) *GM1/GM2

CN=CN/XKN

PWl=le/4N

DO 104 I=1oNFT

R2(1)=CN/ABS{Y (1) =D)#¥pPy]l

FCu~De99F=31

ITFLLZN#ALOGIO(CNT Yo LEe30e) FL=CN#®#IN

CN=FC !

DO=0.0

DZN=04+0

DCNaOa 0

DVD=0e0

IF{IDGFLELQ) GO TO 106

CALL CONFID(ERZ2:sNFT2IDGFoNHDeZNsDZNsXKNsCNsDCNsVD2DVDsDsDD)
CNU=CN+DCN

CNL=CN-DCN

ZNU=ZN+DZN

INL=ZN=DZN

vDU=vD+DVD

VDL =yD=DVD
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DU=D+DD
DL=D-DD
WRITE{6+604) NFT@ERE@IDGF9092N$V9vtNsDDgDZNvDVDwDCNyDUyZNU9VDU5
1 CNUsDLsZNL VDL +CNL
DSH{11=D
vDIS{1li=vD
IF{(NISOTsLE=1) GO TO 112
DO 110 J=2:NISDT
VDIS{J) =YD /EFMULJ}
110 DSH{J)Y=SH{J]
WRITE(G6:61%) NISOT«UBZL I e FMULTIYsSH{J) 2VDIS(J) o Jm)leNISOT)
112 WRITE(6:605) [
NLB=1
NK=NFT ;
WRITE(G:60671 {X{I)eY{I}oX2{I35DY2(1)sR2({1)as12l NLE)
WRITE(6:608) {(X{I+NLBIsY{I+NLB)+DGII)sD2G(I)«RATLLIIoDYLI(I )
1 X2(I+NLBYsDYZ({I+NLB)sR2{UI+NLB)YesI=1sNJ)
IF{{NJ+LITGENFT) GO TO 114
WRITE(G3606) {X{IYsY{I1eX2L1)sDY2(I)oR2Z(1)sI=NKoNFT)
C##% PUNCH TRIAL PARAMETER VALUES AND FIT-CONTROLLING CONSTANTS FOR
C INPUT TO GENERAL NON-LINEAR REGRESSION PROGRAM.
114 PUNCH 501 s NFT«ISToNHD:ISH
PUNCH 5083 ZMsCNo{VDIS{J) aJdul sNISOTI o (DSHIJ) s J2lsNISOT)
IF{NDT) 122513205124
122 NFT=NFT+NDT
NUB=NU
IF{NFT-3) 1305126+42
126 IF{NHD<EQeQ}! GO TO 130
NJ=NFT=1
GO TO 45
1246 IST=ISTHNDT
GO TO 42
130 IF(ICAS-NCAS) 3Bs2s2
200 ZN=l./({Al=1s)
WRITE{S6-607) INsALsA2
GO 7O 130
999 STOP
501 FORMAT(2014}
502 FORMATI{16A5/71014)
503 FORMAT(B8F10:3)
504 FORMAT(S5(F51:F10:.3))
505 FORMATIF10:.4:E105:6F10.3)
601 FORMATI(1IHI /10X 16A5/1HQ 2X 7T6HTHROUGHOUT s UNCERTAINTIES IN PARAME
1TERS REPRESENT A 95/100 CONFIDENCE LIMIT. /1IHO 2X 105HSUCCESSIVE
2 POLYNOMIAL FITS ASSUMED CONVERGED IF STANDARD ERRQR HAS RELATIVE
ADECREASE OF LESS THAN 57100 /720X 65HOR STANDARD ERROR IS5 LESS T
4MAN THE PRECISION OF THE DATA ERY = FT7«4/1H0 2X 12HFIT DATA FOR
5 I12:35H IS50TORPIC SPECIES WITH B2 VALUE(S) 4E14s.7 )
603 FORMAT!1IHO 2X 16HINTERPOLATE WITH 13+ 21H ORDER POLYNOMIAL FIT )
604 FORMATI1HO/3X BHCONSIDER 134294 LEVELSs E FIT HAS STDERR = E9e3s
1 120 FOR IDGF= 137 1HO 5X 16HOBTAIN CONSTANTS 5X
2 3HD = Fl0s3s5X 4HIN = F8:3+5X 4HVD = FT7e395X GHCN = E11.%/1HO &X
3 18HWITH UNCERTAINTIES 5X Fl0e3¢9X FBo33s9X%X FT7u3:9X Elles/
4 13X 1ZHUPPER BOUNDS 85X Fl0s3929X FB8s3s9X F7:339X E11le5/
5 13X 12HLOWER BOUNDS 5X Fl0e339X F8+359X F7:399X E11la5 )
605 FORMATIIHDASY 1HV 8X 1HE 9X S5HDG/DV 5X THD2G/DV2 66X 2HY1l 7X
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1 SHDIFF1 4X 1QHI{VD=VI®#PW 4X SHDIFF2 8X 2HRZ )

606 FORMATIF9:2sE1266942X EL3+59E11e59F9e4)

607 FORMAT{1HO/10X 24HERRORsssseIN GAMMAs ZN=3E1leS96Hy Al=3ELlleSo
1 6H» A2=3E11.5)

608 FORMAT(F9uo2+E12:692E110592E100649E13:55E11e53F964)

609 FORMAT(1HO 2X 15HCONSTRAIN N = Fbe2)

610 FORMAT{LHO 2X 18HCONSTRAIN DISOC = FlQ.3)

613 FORMAT(F10:4+ELQ00496F10e3) )
615 FORMAT{1HG/ 3X 31HABOVE VALUES ARE FOR IS0TOPE~le 2X THFOR THE I2»

1 224 150TORPIC SPECIES HAVE 13X2HBL 10X 3HFMU TX 2HSH &X ZHVD/
2 72X E1527sF1179F763sF8+3) 1}
6516 FORMATI{IHO ZX 21HSMOOTH DATA FOR FIRST I13:17H I1SOTOPE(S) USING 12
1 20H=-TH QORDER POLYNOMIAL
617 FORMATIIHO 2X ZOHDETERMINE ISQTOPE SHIFT SH{ [2¢3H) = F743s
1 24He WITH UNCERTAINTY DSH= Fde27)
618 FORMATIIHO 2X 28BHHOLD IS0TOPE SHIFTS FIXED AT &4{7H SHU 12s3H) =
1 FTle% 3} ) :
619 FORMATLLIHO 2X 15HCONSTRAIN CN = E13.47)

END

SUBROUTINE UDIDV1(NFTsNJsNHD s IDGF s ZNsVDsD s XKNsER2s IDR2)
C##% SUBROUTINE TO FIT DATA USING SOME OF EQSe(5-7s AND Al-A&) FROM
C  REPORT WIS~TCI~369(1970)as USES AT MOST 1~ST DERIVATIVE OF ENERGY
C WITH RESPECT TO Vs THIS APPROACH MAY ONLY BE USED IF (NHDWNE.O)

COMMON/BLKL/T (50} %1501 5Y{50)sDG(50)D2G(50) sRATI50) +DYL1(50) s

1 DY2(50)sX2(50)sW{50)

DIMENSION VB(2)sDVB(2)

10=0

NU=1

IADD=0

XDGF=1DGF

DO 2 I=1sNFT

2 D2G(1)=0,0

IF{NHD+GTo~2) GO TO 10
C#¥x IF N AND D BOTH FIXEDs OBTAIN VALUES OF VD AND KN HERE.

PW=2 o % ZN/LZN=2 o} |

PWlsle/PW |

DO &6 I=1,NFT

RAT(I)=(D=Y{1))#*pPuWl

6 DG(I}=0.0
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CALL FORSYT{(XsRATsWeNFT:WB:DVBsNUsDYLsIOQFPRHERLSIADD)
VD==-vB{1)Y/vB(2)

XKN=ABS{VB(2) %PW)}

WRITE(6:606) ER1

IF(VB(2):GE«0.) G0 TO 32

SMZ*O@O ‘

DO 8 I=1sNFT
DY2{T11=D={VB{1)+VBI2)#X(]) ) »eEpPY = Y{I)
SM2=GM24+DY2( 1 jauld

ERZ2=8SQRT{SM2}

IF(NFTeGTs2) ERZ2=2ERZ2/SQART{XDGF)

G0 TO 50

IF{IDR2+EQ.0}) GO TO 12

DO 11 I=1:NJ

DG(II=0eB#{Y{IJ=Y{I+2)}

WRITEL{H:608)

IF{NHDLT=0) GO TO 22

P s 2.%IN/{ZN+2e)

Pl=lo/P

IFINHD-EQ:2) GO TO 16

Ce#% IF N HELD FIXEDs FIT HERE TO GET D AND KNe

14

DO 14 I=13NJ

DY2(Ii=¥Y{I+1l)

RAT(1)=DG{1)%#*p

CALL FORSYT(DY2sRATsWsNJsVBsDVBINUIDY1sIOsFPRYERL»IADD)
XKN=ABSIVB{2) ) #%P] ¥

D==VvB({1)/VB{2)

WRITE(6+601) DesXKNsERIL

IF(VB(2)sGEeQo} GO TO 32

GO TO 30 |
Cw¥x IF BOTH N AND CN HELD FIXEDs FIT HERE TO GET De
16 D=0,0

18

DO 18 I=1sNJ

D=D+Y{I+1})+(DGII)/XKN)#%P
D=D/NJ

WRITE(65603) DsERL

GO TO 30

Cx#% [F D HELD FIXEDs FIT HERE TO GET N AND KN.

22

24

30
32

DO 24 I=1sNJ
RAT(I)=LOG(DG(1))

D2G(1)=L0GID~Y{I+1))

CALL FORSYT(D2GRAT oW +NJ»VBsDVBsNUIDYLs105FPRIERL IADD)
ZN=10/(VB(2)=0s5) |

WRITE(65604) ZNsER1 :

IF (ABS{ZN=2¢)LT2001) GO TO 999

XKN=EXP(VB(1))

IF{(D=GToY({1l))oAND2(DsGTeY{NFT)}sANDe{ZNoGT=0e)) GO TO 34
WRITE(6+602) ZINsDsXKN

ERZ==1e

GO TO 50

Cxit KNOWING Ns Ds AND KNs FIT TO GET VDs
’ 34 PU=2.%IN/{ZN=24}

PWl=1l./PW
HN=PW1%XKN
HNl=1e /7HN
VD=0.0



57

DO 36 I=1+NFT
36 VD=VD+X(I)4+iD=Y{I))%%Pyw]l ¥HN1
VD=VD/NFT
WRITE{(6:5605) VD
IFL(VDsLToX{1)1)eOR(VDulLTaX{NFT)}) GO TO 32
SM=0 o0
DO 38 I=1«NFY
DYZ2i1)eDm (HN®L{YD=X (I} ) ) 4#PY = Y{23‘
38 SM=SM+DYZ(I)
DD=0.0
IFINHDeLT o0} GO TO 40
DD=SM/NFT
D=D~-0D
WRITE(6+6071 DD
40 SM=0,0
DO 42 I=1sNFT
DY2{1}=DY2(1)-DD
42 SM=SMHEDY2{T)#u2
ER2=5QRT{5M)
IF({IDGFGT«0) ER2=ERZ2/SQRT{IDGF)
50 DO 52 I=1eNFT
52 X2(1)=ABSIVD-X{1] |#*PW
999 RETURN »
601 FORMAT(1HO/3X 12HOBTAIN D = F1l0e3s13H AND KN = E1De5s &8H
1FROM A FIT TO {DG/DVI¥®(2¥N/(N+2)) = {D=E(V) IHRKNBE(2RNS (N+2})
2 765X 16HMHAVING STDERR = ElQ.4 )
602 FORMAT{1IHO 10X Z26HERROR ###% FIT GIVES IN = F8e395X 3HD = FlOs2»
1 55X 4HKN = EL10e5 ) '
603 FORMAT(1HO/3X 12HOBTAIN D = Fl0e3s T7H FROM AVERAGE OF D
1= E(V) + ((DG/DV)I/KNY#E{2*N/(N+2}) » HAS STDERR = ElQe4%) '
604 FORMAT(1HO/3X 12HOBTAIN N = FBa3y» 94H AND KN FROM A FIT TO
i LOGIDG/DYV) = LOG(KN) + (+5+1/N}I#LOG(D-E(V)) HAVING STDERR

2 = El0.4 ) :

605 FORMAT(1HO 2X 13HOBTAIN VD = FB8s+3» 62H AS AN AVERAGE OF VD
1= V + (1/HN)I®(D-E(V))*¥({N-2)/(2%N)) )

606 FORMAT(1HO/3X 98HOBTAIN KN AND VD FROM FIT TO (D=E(V])])¥#{

1(N=2)/(2%N)) = (HN*VD) - HN*V ,  HAVING STDERR = E10e4)
607 FORMAT(12X 32HAND IMPROVEMENT IN D OF DD = F8.3)
608 FORMAT(1HO/3X 72HAPPROXIMATE FIRST DERIVATIVE DE(VI/DV  WITH
1BY  (E(V+1)=E(V=1))/2. )
END :
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SUBROUTINE UDZDV2{MFTsMNJsNHD s IDGF o ZNs VDD s XKNSER2Z)
C#%% SUBROQUTINE TO FIT DATA USING EQS-{(15~]16}) FROM JoCHEMaPHYSe s
C VOL B2 +3869(1970)e UTILIZES BOTH 15T AND 2~ND DERIVATIVES OF
C ENERGY WITH RESPECT TO Ve
COMMOMN/ZBLEL/TIBH01 (501 sY{50)1sDGI50)sD2G{50)sRAT(50):DY1(50)
1 DY21i505:X2(501+W{501
DIMENSION VB12)DVB(2)
DOUBLE PRECISION Al2:271:D7
10=0
MU=1
{ADD=0
XDGF=1DGF
IFLIMED EG=11s0OR INHDsEGQ0)) GO TO 10
C#% FIT TO GET vD HERE IF N 18 HELD FIXED AT THE VALUE READ IN.
VBIZI®{IN=Zal F{EMSEn ]
5M=0,0
DO & 1=} eMd
DYLL11=2RATL 1 =~VBI2 8X21 1}
& SM=SM+DYLL1)
VB{Li=EMamd
SM2=0.:0
DO & I=1siJ
DYLOE 1 =WBI1=-DYILL}
& 5M233M2+DV1§12%%2
ER1=8SQRT{SMZ/ (NJ~1s1) *
DVBLLY=TINJ~1 Y #ERI/SQRTIFLOATINJ Y}
DVBL21=0:0
VD==-yBI113/VvBI2)
DVD=DVBIL1)AVYRIZ2}
DIN=0:0
GO TO 16
Cw¥ FIT TO GET ZM AND VD HERE IF NEITHER IS HELD FIXEDs
10 CALL FORSYTIX2:RATeWeNJeVBsDVBoRNUsDYL e I0FPRERLsIADD)
DVBLL1=DVYB{1 1% T {(NJI~2)
DVBI(2)=DVB{2)1#T{NJI=2}
IN=2 0% {1, +¥BI211/({le=VBI2})
VD=-yB (13782
Ces¥ CALCULATE 957100 CONFIDENCE INTERVALS ON N AND VD
SM1=0s0
SM2=0-0
DO 12 I=1:MJ
DF=yD=X21{11}
SM1=SM1+DF
12 SM2Z=SM2+pF8®2
FERR=ERL®T{MNJ-2)
Alls11=NJryB{2)%%2
Al2:2)216:%EM2/ 1IN+ ) %%4
All:2) =4 ¥SMIEYBLZY/{IN+2 s %2
AlZs1=8{1:2)
ND#W=g2
CALL DMTINVIA:NDM:NDM2DTHIER) ' )
IFLLALL 1) e hFoDeD+0) DR {A{(262) clEsQaD+0)) WRITE(B+H14)Y A{lsl) s
1 A{Lls2Y:A0(2:130A02:2)
DVD=FERR#DSQRT{DABSIA{2:2) 1))
DZM=FERR®DSQRT (DABSIA{L-11 1)
16 WRITE (S6:6121 MNJ:ERLVB{1)DVBI1}suBI21sDVB(2)sZNsDZINsVDDVD



IFIABS{ZN~2¢}LT0.001) GO TO 999
TET={VD-X{1} i #{ZN~2e]
IF(ITET G o000} oM {ZMaGTels}} GTO 18
WRITE(G 61112 EMHYD
ERZ2==1s
GO TO 9%%
18 PU=2 . #ZN/{iMeZ s}
PHI=1e/PY
Fipd=ls
IFIZNLT 2.0y FINZu-is
DO 20 Tal oNFT
20 R2{Vi= [FIN2uIVD=X{1})iaapy
IFINHD-EGQ:2) GO TQ 30
TFiNMDLGELQ) G0 TO 49
Cea FIT TO GET M HERE IF 0 15 CONSTRAINED 7O THE vALUL READ INe
EM1I=0.0
sMe=0,0
DO 2z I=3oNFT
SMI=SMI+-IY{I=-DI®X2{1}
22 SM2=mEM2euz iy eX211}
VB2 1=8M1/5M2
SM2=0a0
DO 26 I=afeNFY
DYZ(1=DevR{2)#X2(1}=YI1}
26 SM2=SMZ4DYZUTe%2
ERZ=SQART (EM2/ XDGF)
GO T¢ 50
Ce%x FI1T TO GET D IF  CN I3 CONSTRAINED TO VALUE READ IN.
30 VB(2)=-ARS{PWI#XKN]¥#Py
D=0,0
DO 34 I=1s:NFT
DYZ2LI3=Y il i~yBI2 X201
34 D=D+DYZIT}
D=D/NFY
SM2=0:0
DO 386 I=1eNPT
DY2{11=D=0Y2(1}
36 SMZ=LMZ2+0DY2(] Y a#2
ER2=SQRT{8M2/XDGF §
GO TO 999
Cw#% FIT TO GET D AND CH  HERE IF NEITHER IS5 CONSTRAINEDs
40 CALL FORSYTI{NHZ2:Y:WoNFT VB DVBeNUsDY2I0FPRIERZ:IADD)
IFLIDGF-GT.0) ERZ2=ERZH*SQRTIFLOAT(NFT=2) /XDGF)
D=vB{1}
50 XKN=ABS{VB(Z; 1##PYWIHABS{PYW)
999 RETURN .
611 FORMATILIHO/IHO 5X 22HERRQOR =ew## GET IN = ElDo.4: 12Hs AND VD =
1 EilGe& 3
612 FORMATLLIHOS 3X 33WFIT TO {GLIG/DV1IY/ZID2G/DV2)Y WITH 13,20H LEVELS
IHAS STDERR = E9.3/7 3X 16HAND YIELDS Al = ElleS5.1H{ E9:44
2 HBMH} Sl % FBolglH{ FTa4 B} IN = FlBabolH{ FTekhe8H) VD w
3 FT7eB3elMl FhoedelHl )
614 FGRM&?%&H@/&Q% ZTHERROR #4% MATRIX INVERSE IS 2014.7/7(37X 2D1i4s7))
EMD
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SUBROQUTIME ZMNEQZIZNsNFTeNJsDsDDsCNsDCN2BZsR25ER2)

Ciatd ESTIMATE PARAMETER VALUES OF D AND KN IF N=2

&

&

999
601

DOUBLE PRECISION AlZ:21:DT7
DIMENMSION R2{801VB(2)DVEBI2)
CO%%ﬂNfEiK§5?€5@§?l€”0?§V€§Q)?Qﬁ§503@DEG(ﬁO)%RAT(ﬁOF%ﬁvl(ﬁﬁiﬁ
1 DYZIBDy»X2 IR0 «sWIED)

1ADD=G
10=0
NU=1
IN=2

DO 2 I=
D2Giir=0,
@VZ(??';QL‘&§
BRAT{II=0.D
ALl FORSY?ZQ?K\Qh%“v%&vVB@QVB%NU?DYl@IQ»FPR?EhleIABD3
WRITEL{AH0211 Fi

DESA N AT RS

KEM=yB12

SHL=0:0

DY2L{LY=0.0

DO & =2, NFT

DYZ{i =Y iii=De{D-Y (L YHEXP [=XKN#* L X (T )=X{1}))
SMI=aMi+DY2 {1}

SMi=SMLI/NFT

SM2= O@O '

DO & I=]l MFT

DVfo}nglv w2l

SM2aSM24+DY2 b a2

FR2=SQRT{5MZ )

IF{NFT-GTe2) ERZ2=ERZ/SQRTIFLOAT(NFT=2))
FERR=ERZ2¥T(NFT=~2}

CN={6-283 1852/ X KN #®2/B2

FCTr0 58X KMN/ TN

All:21=20,0

A{2:21=0,0

DO B8 Is=l.nNFT

R2{II=SQRTICNSLD=Y{1} )}

DO={D-Y LTy iwX (T #FCT

AL 2i=A01:21+DD

Al2:21=R{2:214D0%%Z 4

Al2» L?*Af§w?3

Alle1ll=NF

NDM=2

CALL DMTINVIANDMMDMsDTSIER)
DD=FERR¥DSORT(DABS{A{1l211)
DCN=FERRRDSORT{DABSIALZ2) 1)

RETURN

A

FORMATCIHO/%K 104HSINCE N = 2 » "OBTAIN VALUES OF D AND KN
oM A FIT TO DGIDY = KN#{D=E(V]) » HAVING STDERR = E9.4 )

END

FR



SUBROUTINE PLYFITINFTNNsNUBsAASERY 2 IDR2)
Cwx® FIT POLYNOMIALS OF IMCREASING ORDER TO THE DATA TILL STANDARD ERROR
C EITHER CONMYERGES. OR BECOMES LESS THAN ERY o
Cx%et JF{IDR2:EQ0} CALCULATE 1-5T DERIVATIVESs DGs IF{1DRZ2.GT0)
C CALCULATE BOTH 1-5T AND 2-ND DERIVATIVESe DG AND D2Ge IF{IiDR2.LT<0)
< CALCULATE NG DERIVATIVES.
COMMOM/BLRKIZTISHO) X501 oY {50} 2DGI50) o D26GLE0 1 oRATIBOI2LY1II50)

1 DY2(50)«%2090):W{50Q) ,
DIMENSION AA{I3).VB{11}sDVBLL1)

I0=D

TADD =0

WRITELG.601) Xillhas¥Y{l)
DO 10 I=1eNFT
DGIIYeY {1 =Y113
10 X211 =i ihe=il}
2 NU=pNM
CALL FORSYTIMZ2sDGoeWsMFToWB o DVEBNUDYL1IQ.FPRTLHERRTADD:
TADD =1
MNMN=N+]
FIST=FPRTL=TINFT~NN)*%2
WRITE(SE02) NMUsNFTERRFTET o IVBLL)sImloNN)
IF{MU=LES3} 00O TO 4 \
Cas IF THE DECREASE IM THE SUM OF SQUARES OF RESIDUALSE ON GOING FROM
< AN (M=1)-TH DEGREE FIT TO A M-TH DEGREE FIT 15 SIGNIFICANT AT THE
C 957100 CONFIDENCE LIMIT LEVEL: THEN (FTSTeGTe0!}
IFIFTSTSLY0) 6O TO &
4 DO 6  I=l NN
6 AA{II=VBIL)
TFOINNG LT oRFT o AND e INU LT MUB I AND« LERRSGT-ERY ) GO TO 2
MU=NL+ 1
8 NN=NU-1
IFLIDRZLT«0) GO TO 999
Co#x CALCULATE FIRST DERIVATIVES EXCEPT FOR BOTTOM AND TOPMOST LEVELSa
NFl=aMFT~1
K=NpM+1
DO 64 J=1 NN
Kmi~1
DYl {Ji=kapalKslt
64 DYZ2{Jtmig-11%DYL L)
MJ=0
DO 68 I=2:MF1
MJd=NJ+]
Dl=DYL{1i}
DO 66 J=2 MM
66 D1l=sX2 {1 y#D1+DYL1L4)
68 DGINJI=D]
IFLIDRZALE-0) GO TO 78 :
Crze MOW CALCULATE 2-ND DERIVATIVES.
K=~
DO 72 IT=2.NF]
iJal=1
DZ=DYZ2(1;
DO 70 J=2.8
T0 D2=X2{lyuDzepYal.h)
D2G(1lJdian2
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72 I

78 DO 80 T=1sH

80 X2 {I1wxifwl

999 RETURN

601 FORMATLIHO/ 3K 20HEOR
1ALUES LB

602 FORMAY

SMCOTH NG POLYNDMIAL FITs SCALE X AND Y VW
i%. 7 e aH AND E13.T7: LO6H o RESPECTIVELYe )
TUARES FIT DF ORDERIZ+3H TO213: .

S BTRERR= sE10s42 1aHs FeTEST 8 EVab/

ICIEMTS 3K TEL4«T/1 15X BE14.7) )

SUBROUTINE FORSYT (XY WsNeCoEsMsXDF ¢ 105 FPRTL sMSRs TADD)
CH## SUBROUTINE 70 PERFORM LEAST-SQUARES POLYNOMIAL FITTING USING
ORTHOGONAL POLYNOMIALS, BY A METHOD OF FORSYTHE.
WET) - WELGHT ASSIGNED TO ORDERED PAIR X(I)sY(I)
N == NO» OF DATA POINTS
C ~- COEFFICIENTS OF SINGLE POLYNOMIAL IN X
E =~ ERROR VECTOR FOR C
M - DEGREE OF POLYNOMIAL TO BE FITTED
10 ~ IF = 0: ND PRINTIMG. IF = 1 PRINTING
Co#k XDF ~ RESIDUALS.
CH#u% FPRTL 18§ THE PARVIAL F-TEST FOR THE FIT. FPRTL={IMPROVEMENT IN
C  SUM OF SQUARES OF RESIDUALS)/(ROOT MEAN SQUARE OF RESIDUALS)
C#¥% MSR ~ ROOT MEAN SQUARE RESIDUAL.
C##% ON FIRST ENTRY WiTH A GIVEN SET OF DATA ALWAYS SET 1ADD=0s
C#ae JF(IADDGT-0) USE OPTION FOR ADDING ONE HIGHER DEGREE TO A POLYNOMIA
C  PREVIGUSLY FITTED TO THE SAME DATA.
CH¥x SUBROUTINE WRITTEN AND TESTED BY Rsh. LA BUDDE.
DIMEMSTOMN © XIN)aY{M e WINIa U113 sE{10Y 5011 oVIL1)sATLL) sB(11s11)0
I DU1LysXDF M) o
IMPLICIT DOUBLE PRECISIOHN {A«=H 0-W}
REAL FPRTL :MERsWaC R
MM = Mo+
IFITADDLELDY 5O 10 4
1 LO=pp
GO TO 300
4 ILO=2
DO & lwulelp
IT = 1 % )}
DO & Jmlsll
é %gl’i’nﬁ} = gnf"i}

NN NAYARANS



300

500

700

800

900

10G60

26
28

63

B{i1:T) = 0eDO
B{IsI) = 14D0

B(1ls11) = 1.D0O
vily = €,00
uil) = 0,D0
All)y = 0.DO
D{1) = Q.00

VY = 0,00

DO 300 I = 1,N
T = DBLE(W{I))

D(1) = D(1) + T

AL1) = A(1) + T¥DBLE(Y(I))

U (1) = U{1) + T*DBLE(X(I))

VY = VY + TXDBLELY(I))*DBLE(Y(I))
ACL) = A(1)/D(1)

U1y = UL/t

Blasl) = = U(L})

AYY = 0.D0

VY = VY = ACLI*A(1)I%D(1)

DO 1000 [ = ILOsMM

11 =1 -1

UCI) = 0.DO

A(I) = 0,00

D(1) = 0.,DO

Vil) = 0,D0

DO 800 J = 1,N

Pl = 1.D0

P2 = 0.,D0

WORK = DBLE(X(J))

DO 700 K = lel1 |
T = (WORK =U(K))*P1 = V{K)*P2

Bt

i

i

]

P2 = P1

PL = T

T = DBLE(W(J)}%P1

UCI) = U(I) + T*P1*WORK
V(I) = V(I) + T*P2¥WORK
DII) = D(I) + P1%*T

A(L) = A(I) + T#DBLE(Y(J))
ULI) = ULI)/D{T)

VEI) = VII)/D(IT)

ALY = A(II/D(I)

WAYY = A(I)*A(I) #D(I)

AYY = AYY + WAYY

IF (I1<EQe2) GO TO 1000

BlI»1) = =ULII}*B(Ilsl) =~ V(II)*B(I 2»1)
DO 900 J = 2,511

BllIsJ) = BillsJd=l) = UCIII*B({IIsJd) = V(II)¥B(I=2sJ)
CONTINUE

IF(I0«LE-0) GO TO 28

WRITE(65604)

WRITE(6:602)

DO 26 I=1,MM

WRITE(65601) (B(IsJ)sJ=1sMM)
WRITE{(6+605)

SYN = DBLE(MN)#*({VY =~ AYY)/DI(1)



IFI{NeGTeMM) SYN=SYN/DBLE(FLOAT(N~MM})

" DO 2000 K = 1:MM

1500

2000

Cadi

2500

3000
4000

42

44

3500
10

20

30

40
601
602
603
604
605

T = OeDO

WORK = 0,DO

DC 1500 J = KsMM

T = T + A(JI#B({JsK)

WORK = WORK + B(JsKI®¥B(JsK)/D(J)
IF{I0=GT <0} WRITE(6:603) KT
CIKy =T
E{K)=DSQRT(DABS { SYN®*WORK) )
FP=DBLE{NI*WAYY/{SYN%D({ 1))
IF(I0«LED?Y GO TO 4000
WRITE OPTION FOR (10sGT40)

Pl = DBLE(NI*AYY/{DBLE{M)*SYN®DI(1))
WORK = AYY/VY
T=DSART{DABS{SYN)}

WRITE (6510} VYsSYNaT

T = DSQRTIWORK)

WRITE (6+20) P1sFP»WORKST
WRITE (65301}

IF {1LOsGTa 2) GO TO 2500

1 = 0

T=DSQRT{ABSISYN/D{1) )}

WRITE (6+40) IsDUL1)sA(L1)sT
DO 3000 [ = [LOsMM

IT = 1 = 1
T=DSQRT{ABSI{SYN/D(I)))

WRITE (6+40) IlBD(I)QA(I),TQU(II”V‘II).

WRITE(6:604)

MSR=0s0

DO 44 I=1sM

L=M+1

Z=C{M+1)

DO 42 J=1sM

L=2#%X{1)+C{L=J)

XDF{I)=2=-Y{1)

MSR=MOR+XDF {1 ) #%2

IF{N2GTMM) MSR=SQRTI{MSR/FLOATI{N~MM))
FPRTL= FLOAT(Ni*WAYY/(D(1)*MSR**2)
RETURN

64

FORMAT (1'0TOTAL SUM OF SQUARES'sD15.635Xs "MEAN SQUARE RESIDUAL'sD1

15:635X9 'RMS RESIDUAL"sD156)

FORMAT (1Q0TOTAL F-VALUETsD15s6s5Xs "PARTIAL F=-VALUE?!»D15+6/5Xs
1'COEFFICIENT OF DETERMINATION'»D15.635X» "MULTIPLE CORRELATION CONS

2TANT *sD15.6)

FORMAT ('OPOLYNOMIAL"2X$°NORMALIZATION':4X;'COEFFICIENT‘r?Xr’“RRC

IRt s 9Xs *RECURSION?® )

FORMAT(5X 16, 5D18.7 )
FORMAT{9D13-6)

FORMAT({1HO 5X 1OHB-ARRAY 1§ /)

FORMAT( B5X 8HFOR K = [3s6X ¢COEFFICIENT =t

FORMAT({/1Xs110{1H#})
FORMAT{1HO 1X)
END

D15.8 )
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SUBROUTINE CONFID(ERZ2sNFTs IDGF s NHD»ZNsDZNsXKNsCNsDCNsVDsDVD2DsDD)
C*#%% SUBROUTINE'TO CALCULATE 95 PERCENT CONFIDENCE LIMITS ON FITTED
C PARAMETER VALUESs YIELDS RESULTS WHICH ARE APPROXIMATE IN TWO WAYSs
C 1-5Ts HAVE NOT COMPLETELY OPTIMIZED THE PARAMETER VALUESs THOUGH ARE
C PROBABLY VERY CLOSE. ##% 2-NDe IMPLICITLY ASSUME THAT THE FUNCTION
C 1§ LINEAR IN THE PARAMETERS IN AN INTERVAL ABQUT THE GIVEN VALUES.
COMMON/BLKI/T(SO’&X(BG?;Yf50)VDG(5Q)DD2G(50)9RAT‘50)’DYl(ﬁO)o
1 DY2{50)sX2(50)sW(50) ,
DOUBLE PRECISION A{44) s ANM{4) DTl
DIMENSION DYDP(50s4) +AH4)
FZN2=13
[IF{ZNeLTs2) FIN2®=1e
PWe2 s "IN/ (ZN=2,}
SL==(ABS{XKN/PW]) } #4PW
NDIM=4
L=2
IF{NHDsEQs~2) L=1
IFINHDeGTe D) LzlL=NHD
Jd=L+1
IF(L.LE«O} GO TO 8
FCT=SL/ICN#{Qe5%#ZN~1e}}
DO & I=1sNFT
& DYDP(IsL)= meefF CTH#X2(1)
8 FCT=PW*SL
_ DO 10 I=1sNFT
10 DYDP(IlsJdJ)= FCTE*X2{1)/7(VD~X(1))
IF{NHD+EQe=2) GO TO 20
IF(NHD<GT.0} GO TO 1%
XHN=XKN/PW
DO 12 I=1sNFT
DY=XHN®(VD=X{1))
12 DYDP(lsl)=~ALOG(DY ) RSLEX2{ 1) %4/ (ZN=2, ) %¥2
IFINHDeLT«0O) GO TO 20
14 KK=JJ+1
DO 16 I=1sNFT
16 DYDP{IsKK)I=1,0
20 NORD=4-~ABS{NHD)
DO 24 J=1sNORD
DO 24 K=1sJ
2=0.0D+000
DO 22 I=1sNFT
22 1= Z+DBLE(DYDP(I%J)’*ﬁﬁLE(DYDP(I&K’)
AldsKi= 2
24 A(KsJi= 2
DO 32 J=1sNORD
ANM(J)=0,D+000
DO 28 K=1sNORD
28 ANM{JI=ANM{JI+DABS{ALJK}))
PO 30 K=1s0RD
30 AlJeK)I=A{JsK)/ANMIJ! !
32 AH{J)I=ALUsJ) :
CALL DMTINV{ASNORDSNDIMeDT+IER)
DO 26 I=1s:NORD
TST=AMET)#AL{T 1}
IF(ABS{TST)eGT 00 1E+07) WRITE(65603) IsTST
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IF(A{LIs1)eGTo0.D+000) GO TOQ 26
WRITE(6:601) IsAlIol)
AlTsl)y==A(I»1)

26 ALTI«I)=A{1s1)/ANM(T)
FERR=T ( IDGF ) #ER2
DVD=FERR#*DSQRT (Al JJsJJ) )

DCN=0.0 -

IF(NHDeLToe2) DCN=FERR*¥DSART{A{LL))
DIN=0s0

IF(L.GTel) DZN=FERR*DSQRT{A{1s1))

DD=0.0
IF(NHD+GEoQ) DD=FERR*DSQRT(A{KK KK} )

99 RETURN
601 FORMAT{1HO 5% 1BHERROR ###% FOR [ = 12s 40H MATRIX INVERSE IN CON

IFID HAS CllIs1) = Dlé.7}
603 FORMAT(LHO 5X o?CAUTION #*#% CONFIDENCE LIMITS POSSIBLY UNRELIABLE
1SINCE FOR I at [2¢ ¢ FIND ACTsI)#AINVILIS1) =0 EL0s5)

END

SUBROUTINE DMTINV(A+NsNDIMsDETSIER)
C*#% SUBROUTINE TO INVERT MATRIX A BY METHOD OF GAUSS—-JORDAN
C ELIMINATION WITH PARTIAL PIVOTINGe INVERSE IS RETURNED 'IN THE
C INPUT MATRIX Ae %% DIMENSION OF A IS (NDIM*NDIM)s ALTHOUGH
C THE MATRIX TO BE INVERTED IS ONLY (N*N}s #¥% [ER=1 IF MATRIX
C 15 SINGULAR TO THE PRECISION OF THE MACHINEs QOTHERWISE 1I1ER=0.
C *#% DET IS THE DETERMINANT OF INPUT Ae. %% EVERYTHING DOUBLE PRECISION
CH#%% ROUTINE WRITTEN AND TESTED BY ReAs LA BUDDEs

DIMENSION A{1)sROW(100)

IMPLICIT DOUBLE PRECISION (A=Hs0=2)

INTEGER ROW ’

IER=0

AU = OeDO

AL = 1.D+300

DET = leDO

NK = = NDIM

DO 1000 K = 1N

NK = NK + NDIM

KK = NK + K
AMAX = A(KK}?
NI = K i

DO 200 1 = KN y

KI = NK + | <1

IF {(DABS(AMAX ) »GE. DABS(A(KII})Y GO TO 200
AMAX = A(KT) ,

NI = 1 ,
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200  CONTINUE
DET = DET*AMAX
IF (AL «GTs DABS{AMAX)) AL = DABS(AMAX)
IF (AU oLTs DABS{AMAX}) AU = DABS (AMAX)
PIVRAT = AL/AU
IF (PIVRAT ¢GTe leD=12) GO TO 300
WRITE (6:1) KsDEToPIVRAT
1ER=1
RETURN

300 ROW{K) = NI

IF (NI «EQes K} GO TO 350

DET = = DET
NI = NI = NDIM
KI = K =~ NDIM

DO 250 I = 19N
KI = KI + NDIM
NI = NI + NDIM

DODA = A(KI)

AKI) = A(NI)
250 A(NI} = DODA
350 NI = = NDIM

DO 800 I = LN

NI = NI + NDIM

IF {1 «EQe K} GO TO 800

KI = NI + K

ALKI) = A(RIY/AMAX

DO 760 J = 1lsN '

IF {(J «EQe K )Y GO TO 700

JI o= NI o+ J

JK = NK 4 J

ACJTY = ALJI)Y = A(JKI¥A{KI)
700 CONT INUE
800 CONTINUE

DO 900 I = 1N

KI = NK + 1
900 A(KI} = «~A(KI)/AMAX
1000 A{KK) = 1.DO/AMAX
NK = =~ NDIM

DO 1500 K = 1N

NK = NK + NDIM

IF (ROWIK) #EQ« K} GO TO 1500
NI = (ROW(K) = 1}*NDIM

DO 1200 J = 1N

SJEKE = NRK + J
JI = NI +
DODA = A{JK)

ALJK) = Alad]}
1200 A(JI) = DODA
1500 CONTINUE
RETURN
1 FORMAT{/¢0GJR FAILS AT STEP'»16s2Xs*MATRIX IS SINGULAR TO PRECISIO
IN OF MACHINE/5X« 'DETERMINANT'9D20010/5Xs *RATIO OF MIN TO MAX PIVO
27510206109
END
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Appendix B: Nonlinear Least-Squares Fitting Program to Obtain

Final Best Parameter Values

A Fortran V listing for the program used to perform the final
fits to Eq. (4) is presented below. As input, it requires reasonably
good initial trial parameter values (see Appendix A). Subroutine
GASAUS, which was used to perform the least squares fitting, is a
University of Wisconsin Computing Center library subroutine, and list-

ings and documentation for it may be obtained from:

Information and Documentation Office
University of Wisconsin Computing Center
1210 West Dayton Street

Madison, Wisconsin 53706
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‘C#%#% PROGRAM TO PERFORM NON~LINEAR LEAST-SQUARES FIT OF EXPERIMENTAL
C VIBRATIONAL ENERGIES TO LE ROY ~ BERNSTEIN WKB-BASED EXPRESSION
C FOR VIBRATIONAL ENERGIES OF HIGHLY EXCITED LEVELS. PARAMETERS ARE
C THE DISSOCIATION LIMIT De THE POWER N AND COEFFICIENT CN OF
C THE EFFECTIVE LOCAL INVERSE-POWER POTENTIALs AND THE INTEGRATION
C CONSTAMNT VD » WHICH FOR (NeGTe2) CORRESPONDS TO THE VIBRATIONAL
C - INDEX AT THE DISSOCIATION LIMIT. ##¥% PROGRAM CAN CONCURRENTLY FIT
C DATA FOR DIFFERENT ISOTOPES OF A GIVEN SPECIESs USING A COMMON N
C AND CNe» BUT INDEPENDENT VALUES OF VD AND Do
C**# PROGRAM WRITTEMN AND TESTED BY ReJs LE ROYe
EXTERNAL MODEL
_ COMMON/BLKl/NISOTaNDSOCaX(50)9FMU(4)ylSOT(%)aZNsHMsVHék%@DSGtﬁ
1 SH{4)sNHDESC
DIMENSION E(50)sSCRAT(400)sTITL(16) +BOLW(9)sBOUPIT) +PAR(9} s
1 R2(50):sGI50)eVFIB01sSB214)eBZ{4)eDVDIGIsDDI4)sVDIA)2DYI50)
PI=3.1415926
SQPI=SQRTI{PI}
CH#% CONSTANTS CONTROLLING NON-LINEAR LEAST-SQUARES SUBROUTINE GA&AUSs
< WHICH TRIES UP TO MXIT TIMES TO CONVERGE.
MXIT=50 '
PRN“OWO
BOFC=2.E+06
EPS1=0elE=07
EPS2=061E=07
EPS3=0s1E=07
GMA=0.01
FNU“lgx
Ca%% TITL IS THE NAME OF THE SYSTEM CONSIDERED
Ce#% NISOT IS THE NOes OF DIFFERENT I1S0TOPIC MOLECULES CONSIDERED AT ONCE
Cxx% NCAS IS THE NOe OF DIFFERENT FITS TO BE MADE TO THE DATA FOR
C THIS SYSTEM.
4 READ(5:5033 (TITL{I)sI=1s16)sNISOTsNCAS "
C##%x BZ IS A NUMERICAL FACTOR FOR EACH ISOTOPIC MOLECULEs. INCLUDING
IF(NCASeLLE=D) GO TO 99 .
C REDUCED MASSs ETCe BZ= E*PI%*Z*MU(Amu}*lellcmy*(lu(ANGSTs)**ZJH%*?
READ(52502) (BZ(I)sI=1eNISOT) ’
NLV=0
DO 20 15=1sNISOT
SBZIIS)=SQRT(B2{1IS}))
FMU(IS)=8B2(1)/8B2{1S)
C##% ISOT IS THE NOs OF LEVELS USED FOR ISOTOPE (IS)
Co## IF({IVHsLTo0) READ IN ENERGIES AND VIB NUMBERING TOGETHERs OTHERWISE
o READ ONLY ENERGIES AND NUMBER VIB LEVELS CONSECUTIVELY DOWN FROM
C V=IVH AS THE HIGHEST. ##% ALL ENERGIES IN WAVENUMBERS
READ(55501) ISOT(IS}eIiVH
NL1=NLV+1 5
NLV=NLV+ISOT(IS) i
Cx®% READ IN LEVEL ENERGIESs HIGHEST LEVELS FIRSTe
IF{IVH.LT.0} GO TO l4
READ(55502) (E{1)sIsaNL1sNLV)
ISOTP=1S50T(IS)
DO 12 I=1,180TP
12 VFINL1+I=1)=IVH+1=1] (
GO TO 20 '
14 READ{5s505) (VF(I}eE(I)pI=NLLoNLY)
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20 CONTINUE
NPAR=2# { 1+NI30T)
Ca#x ESC 15 AN ARBITRARY SCALING P%CTQR SUBTRACTED FROM TRIAL De

READIS:5021 ESC ,
WRITELH:601}) FTITLII)elwmlal ) sNEISOT o{BZ2UJ)eJelsNISOT)
WRITE(S:614 ESC
DO 90 ICAS=1,NCAS
Ce#x FIT THE FIRST NFT LEVELSs STARTING BELOW THE HIGHEST ND1 OF THEM
Caun JFINISOT-GT-1) SET ND1=D
Cau® ABSI{NHD) 1S THE NO. OF PARAMETERS ?Q BE HELD FIXED AT THE TRIAL VALUES
C IF(NHDEQe1) FIX ONLY N, #%% IFINHD.EQe=1} FIA ONLY Do
Céd IFINHDEQ:21 FIX N AND CHe IF{NHDEQe=2) FIX BOTH N ANC De
CH#EXR JF{ISHGTL0) WHERE (NISOT«GTs1}e SHIFT ENERGIES FOR DIFFERENT
C ISOTOPES By KNOWMN INITIAL-STATE 1SOTOPE SHIFTS.
READ{5+501) NFT+NDLIsMHDyISH
IFLABSINMDI 26T o2 NHD=(
IF{NMDLT2Q) [8H=1
MOSGC= ]
IFCISHLESO! NDSOC=NISOT
Co%sdt INITIAL TRIAL PARAMETER VALUES: PAR(1i=Ns PAR{2)=CN»
C PAR(3 o400 s2+NISOT 1=vD FOR DIVERS ISQTOPESs PAR{Z+MNISOTI=D
C FOR ISOTOPE 1s AND ALL OTHER PARAMETERS ARE ESTIMATES OF THE
C I1S0TOPE SHIFTS 5SH{J)Y FOR ISOTOPES J=2+3y ETCe» WHERE SH{J} IS
C SUBTRACTED FROM THE ENERGIES FOR ISOTOPE J TO MAKE THEM COMSISTENT
C WITH THOSE FOR  JU=l.
Cexdr NOTE THAT TN THE ACTUAL FITTING USE PAR{Z y=HN
C AND PAR{3 340040 ) =HN¥VDI(304s0s0) g
READIS5-504) (PAR{I)sI=1lsNPAR)
CNN=PAR( 2}
Al=l.+1e /PAR(L)
A2=h1~-0:5
CALL GAMMAIAL1:GM1:%524:+%589)
24 CALL GAMMA[TAZ sGM2:%526:%89)
26 FCT={(PAR{1}1~2%CM1/GM2 #SQPI/SBLZI1)
PAR{2)1=FCT#PAR(Z2)®¥{ =16 /PAR{1})}
DO 28 J=14NISOT
28 PAR(2+J)=PAR(2I#FMULJI*PAR(Z+J)
PAR(3+NISOTI=PAR{I3+NISOTI~ESC
IFUINDLIANFT=NLY)GT=0) GO TO 90
CHdt SELECT THE NFT LEVELS TO BE FITTED.
IFINISOT.GTe1) GO TO 30
ISOT{li=NFT
ISH=0
NDSOC=1]
GO TO 42
30 ND1=0
IFINLVEQ.NFT) GO TO 52
NDF=NLY~NFT
DO 40 IDF=1sMNDF
ISMX=NISOT
IMY=NLY
VB=FMU{ ISMXTeVF{IMX]
JF=0
DO 34 IS5s1:N150T
SJI=JFel
SFRJIFFISOTILI8)



DO 34 I=JlsJF
VISTeFMULISIRYFE]}
IFIVTSTGEVEY 60 TO 34
ISMX=lg
IMX=]
VB=VYTST
34 CONTIMUE
ISOTLISME I =l B0TLIAMY )Y~
IFCISOTITSME) o LE«G ) NISOT=MISDT-1
IF{IMKEQeNLY Y GO TS 40
IMisiMY+]
DO 36 I=iMLeNLY
VELT=LY=yFii}
36 Ell=1Y=E{1:
40 NLVY=NLV-1
42 DO 44 Im3 o NFT
HELy=VFINDIYE
4b GUI=EINDIHT)
Co#t PREPARE PARAMETERS FOR FITTING.
K=0
NP=NPAR
SH{11=0.0
IFUISHALESO! GO TO 48
DO 46 J=2.NIS0T
46 SH{JI=PAR{2+NISOT+J}
NP=NPAR-NISOT+]
48 ZN=PAR{1:
HM=PAR{ 2)
DSOC=PAR[3+MNISOT}
NP=NP-ABS{NHD)
IF{INADSEQa=110Rs {NHDEQs0)] GO TO 58&
K=NHD
IFINHDAEQs~2) K=l
DO 54 [=1:NP
54 PAR{I 1=PAR{TI+K ]
56 DO 58 I=1.:NP
BDOURPI L =ARS{DAR{ I ) ®BDFC) ?
58 BDLW( I ==BDUP (I}
Cia® CALL NON-LIMEAR LEAST<SQUARES FITTING SUBROUTINE.
' CALL GASAUSIPRNMODELINFTsGoNPsPARsBDUP sBDLWsERPSLsEPSZsERPSS sMXITs
1 GMA-FNU.SCRATY
WRITELS:601) (TITLIL) s 151 e16) o NISOT 2(BZ(JIsd=lNISOT
CALL MODEL(PAR:DYsNFTsNP)
IFLINHDaGTo0) cORe {NHD»EQe~21 1 WRITE(6+608) ZN
IFINHD-EGQGa2) WRITE(6:615) CNRN
DSPR=DSOCHESE
IFINHDLT-0) WRITE(6:609) DSPR
IFCINHD o LT 00 cAND (NISOTeGTol)) WRITEIGs616) ({SHIJ) 0Jm2«NISOT)
WRITE{6s810}) ESC
IFLINHDGT0) e OR+ INHDsEQe=2)) GO TQ &5
Alulstle /2N
A2=A1~0s5
CH#*% GAMMA IS THE LIBRARY GAMMA FUNCTION SUBROUTINE. IF IT FAILSs ON
C RETURNING TO THE CALLING PROGRAM CONTROL IS TRANSFERRED TO
C STATEMENT 89, OTHERWISE IT GOES TO THE FOLLOWING STATEMENT.
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CALL SAMMATAL CML-%62:589)
CALL CAMMATAZ ;(MZ 0 $64 589
FCT=(IN-2 1 REGH] /EBE(LE »GM)L/GM2
CN=FCT/HN

Pwluwl@fE%

5¥2=00

JF=0

DO 66 =1 :MIS0T

VDI e/ LN FMULL Y
DVDL N =0,0

DO{Si=Ga

JImJFel

SEJFRIB0TIL
DISOC=LEPR4SHT I}

DO && §*~?¢JF

QY’E*mﬁf*” =341}

RZ(1I}= SLDIEOC-GLI 1#8PY]
ﬁYZ%Q””%U¥31}%%£

DZNﬂ@m4

DCMN=0+D

KCMr=0,.90E~31]

IF{LALOGIOICN I #ZN 1:0Ee33e ) NON=CN¥®IN
M= CN

ERR=SORT{5Y2}

IFINFT-LE:NP) GO TOQ 70

Ce¥® ERR 1S THE STAMDARD ERROR OF THE FETa

ERR=ERR/SORT {FLOATINFT=NP )}

Ciwdsr PRINT RESULTS,

70

T4

78
80

84

1F€C?‘%€€,Efﬁw0) GO TG 70

CALL CONFID{ERRsHNET:NPCHoPAR YD DINDCNsDVD DD s SCRAT)

DS0OC=DSPR

DU=DERTHDM L}

DL= DSQ&“ngmi

VDU=YDL L1 3+DVDIL)

VDL=VDL13~DV1 1}

CNU=CN+DCH

CNL=CN-DCH

ZRU=ZN+DZM

ZNL=ZM-D7N

IFINISOT +LEs1) GO TO 74 : 4

IFLISH-GT=0) WRITE{63614)

WRITE(G:£12) MNISOTe{ BEZ{JIeFMULII»]IS0TIJo8H{J) DD{J) VD LJY s
DVD{J1 =1 sNISOT)

WRITEL{S:513!

WRITE{5:6021 NFTERR«DSOCsVHIL) sHNoZNsVD{L)sCNeDD{L) +DZN-DVD{1) s
DCMsDUZNU VDU CNU DL s ZML o VDL s CNL '

IFIABSIE(L1~E{2)}alTo0e01) GO TO 80

MNLIN=NFT/441 : i

WRITELH 604}

DO T8 J=7%:lLIN

WRITELS+603) IXLI Y eGlTYDY{T 1 eR2{IY oI NFTHNLIN)
GO TO 90

NLIN=NFT/3+ L

WRITELH506)

DO 84 J=loNLIM

WRITE(G:605]) (RIT 108l eDY{L eR2E1)olnsdeNFToNLIN)
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GO TO 90

C##% PRINT FOR ERROR CONDITION IN GAMMA FUNCTIONs SUBROUTINE GAMMA.

89 ZN=lo/{Al=1e} 4
WRITE(6¢607) IZNsAlsAZ2 :
90 CONTINUE
GO 7O 4
99 STOP :

501 FORMAT(2014)

502 FORMAT(8BF 103}

503 FORMAT{18A5/1014)

504 FORMAT{F106c%sE10e¢5+6F10a3)

505 FORMAT{5(F51sF10+:31))

601 FORMAT{1IH1 10Xs16A5/1H0 5X S59HPARAMETER UNCERTAINTIES REPRESENT A
1957100 CONFIDENCE LIMIT /71HO 5X 1ZHFIT DATA FOR 12535H ISOTORIC
25PECIES WITH B2 vALUE(S]) 5El4.7 ]

602 FORMAT{1HO/10X 20HLEAST SQUARES FIT TO:13+22H ENERGIES HAS STDERR
l= ElQOeo4/1HD 5X 10HAND YIELDSs5X 3HE =eF1l0e3stM —~ { F9afs2H =
2 FOubplHuy J#X(2/(1 =~ 2/ FTs3e4H))Y o BX 3HVD= FB8:.39+5X 3HCN=
3 Ell25/ 1HO 5X 1BHWITH UNCERTAINTIES F1l0e3940X FT7e3212X F843s 8X
4 Elle5 7 6X 12HUPPER BOUNDS 6X Fl0e3540X FT7e3312X FBa3:s8X E11.5/.
5 6% 12HLOWER BOUNDS 6X FlOe3940X F7e3312%X FB438X E11.5 3

603 FORMAT({({4{["Bo1sFl02332F 7231} ;

604 FORMATI1IHO/ 4léeX 1HV TX 1HE 66X 2HDE S5X 2HRZ 2X1)

605 FORMAT((3(F9s1sE13eT7sEL105eF7e31))1}

606 FORMAT{1HO/ 316X 1HV 9X 1HE 10X 2ZHDE 7X 2HR2 2ZX}))

607 FORMAT(1HO0/10X 24HERRORssoewsIN GAMMAs ZN=,E11:596Hy Al=3Ellabs
1 6Hs A2=3E1le5)

608 FORMAT(1HO 5X 17HCONSTRAIN N = F5e29 13H THROUGHOUT. )

609 FORMAT{1HO 5X 17HCONSTRAIN ) Fl0s3513H THROUGHOUT» )

610 FORMAT(1HO 5 36HSCALE D INSIDE GASAUS BY SUBTRACTING El1Z.56)

612 FORMATIIHO 55X 7HFOR THE I2s17H ISOTOPIC SPECIES 11X 2HBZ 10X 3HFMU
14X 4HISOT 55X 2HSH 13X 2HVD /7{37X El3«7ToF1lleTsl452(F8:331H{ F6s3s
2 1H) 1) i

613 FORMAT{ = 6&xX 29HCONSTANTS BELOW FOR IS0OTOPE~-1l)

614 FORMAT(1HO 3X S8HCOMBINE DATA FOR DIFFERENT IS0TOPES USING KNOWN 8§
IHIFTS SH 1} .

615 FORMAT{1HO 5X 18HCOMSTRAIN CN = Ellebs 13H THROUGHOUT.

616 FORMAT{1TX 21HAND ISOTOPE SHIFTIE) 4F9«64 )

END j

B



SUBROUT INE CHDSRT{PAR NP sPWsL,)
C#%% SUBROUTINE USED BY MODEL AND GASDIF TO SORT OUT THE POSSIBLE
C FITTING OPTIONS. RETURNS WITH PR1=Ns PR2=KNe PR3 (J)=KN*VD(J)s AND
¢ PR&LJ)=DISOC(J) ‘

COMMON/BLK1/NISOT ¢ NDSOCsX(50) sFMU(4) 9 ISOT (4) s ZNoHNsVH{4) 5 DSOC

L SH{&}:NHDSESC |

DIMENSION PARINE)

L= 2= NHD

IFINHD:GTL0) G0 10 &
L=1

FFINHDoLE =2} GO TOQ £
ZN=PAR{ L}

L=2

2 PU=2 o BIN/{IMN«2 4}
IFtL.GT0: HN”P;*A;?{L}
DO 4 J=1:NIS50T

L YH{JI=PARIL+J}
IFL(LANTSOTIGE-NP) 6Q T0 99
K=L+N1SOT
DSOC=PAR (K41}
IFINDSOCLE=-11 GO TO 99
DO 8 J=2NESHC

B SH({JI=PAR{K+J}

99 RETURHN
END

SUBROUTINE MODEL{PARYCsNFTsNP)
C##x SUBROUTINE REQUIRED BY GASAUS. CALCULATES VALUES OF THE FUNCTION
C YC(IY AT EACH OF THE NFT ARRAY POINTS X{1)e FOR ANY TRIAL SET OF
C VALUES OF THE NP PARAMETERS PAR(J])
COMMON/BLKL/MISOT «NDSOCX{50) s FMULLY s ISOT{L ) e ZNsHNsVH L} s DSOCH
L SHi4) «NHDESC
DIMENSION PARINP)sYCINFT)
CALL CHDSRTIPAR:NPsPHoL)
JF=0
PO 20 J=1sMISOT
JImJF+l
SEEJFFIS0TI.JY
FrHM=HN®FMUL L)
D=DEOCHESCHEHI I}
18 DO 20 is4ledf
20 YOI 1 =D (WHIJ)=FHN#EX{ ] Yu#py
99 RETURN
END
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SUBROUTINE GASDIFI{PAR:DYDP ¢NFToNP )

76

Cx#x SUBROUTINE REQUIRED BY GASAUS. CALCULATES PARTIAL DERIVATIVES

C
<

DYDP{I:.0)

1

OF THE FUNCTION AT EACH OF THE ARRAY POINTS X{I)
RESPECT TO EACH OF THE TRIAL PARAMETER VALUES PAR(J)

s WITH

COMMGN#BLALXNESO?9ND¢QC@X€50)9FMU€%)sISQT(@)@ZN;HNaVH(@)9D$0Ca

SHI{4) s NHD+ESC
DIMENSIOM DYDPINFTNP) PARINF) oDY(50)
CALL CMNDSRTIPARNPsPWslL)
PW1l=PW=1, _

IFINISOT LE-L1)} GO TO 4
Sd=Lel '
DO 2 J=JdJ. NP

DO 2 I=1enFT

DYDP{Is a0l

JF =D

DO & J=1leNISOT
JIsJgF+l

JEmJFFISOT M)

Jdm Jel

FHN=HN®FMEJ Y

DO & I=dfoJF

10

12
14

99

DY (T i=VH{JYFHNEX (D)
DYDP(IsJJ)e~PunDY (1) #%PYW1
IF(LLE-Q) GO TO 6

DYDP{I sl )m=DYDP{Ll s JJYRFMULJ ISR T)
CONTINUE -

IF(NHD-EQe=2) GO TO 99
IF(NHDsGT:0)Y GO TO 19

JF =0

FiN=2e /{ZNR{LZN~20}}

DO 8 J=1zRNIS80T

JI=JF+] '

JE=JF+IS0T )

NEENES !

DO 8 I=JlsJF
ovopclgxsa»FzM%Aggegavczi3*mvawtxgaa)*avéza
ZF(NHD@EQ&“L? GO YO 99
JE=0

151=180T(1)

ISOT(1i=NFT

K=L+NISOT

DO 14 Jd=1sNDSOC

JI=JF+1 -

SJF=JF+I50T )

DO 12 I=JlgJF
DYDPLIl oKard 3= a0
IFIJsEQel) JF=181
CONTINUE

1SO0T{1li=181

RETURN

END
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SUBROUTINE CONFID{ERR:NFTsNPsCNePARsVDDZNDCMsDVDDD-DYDP)
Cxx% SUBROUTINE TO CALCULATE 9% PERCEMT CONFIDENCE LIMITS ON THE FITTED
C PARAMETERS. YIELDS RESULTS WHICH ARE APPROXIMATE IN ONLY ONZ WAY.
C THAT 1Ss IMPLICITLY ASSUME THAT THE FUNCTION IS LINEAR IN THE
C PARAMETERS IN AN INTERVAL ABOUT THEIR BEST VALUES.
COMMOM/BILKI/NISOT«NDSOC X (B0 oFMU{G) s ISOT (4] s ZNsHNoVH{4) s DSOCH
1 SH{4Y} sMHD=ESC
DOUBLE PRECISION AlGs6)sANMISE) DT 2
DIMENSION PAR(IMNE) DVDINISOT) «DDINISOTITIE0) oVD(4) sDYDPINFT NP »
I AHI{S)
DATAST/12:708628:303230182520T76326571:22:44792:365+2030602:2625
1 2&22&%2@2{%1‘52&179%2%160?2@ 1@5?2@131?2@ 3,2(}93;210923101 32093
2 2:08602:080:2:074+2e06922e066:20060925056+2:052:2:0485200459
3 2042:20%2.000/
NDIp=6
CALL GASDIF(PARDYDP4NFT MNP}
L=2
IFINHREQe=d ) L=l
IFINHDGT-0) Lu2=~NHD
Cxa¥® MUST MODIFY THE DERIVATIVES FROM GASDIF SINCE THERE THE
C INDEPENDENT VARIAULES ARE (FMULIS)I®VDIIS)I#HN) v AND HNs
JF=0
FON=1le /¢ ZN¥CN)
DO 4 15=1-NI1S0T
JI=JF+1
JE=JFEISOTLIS)
JJI=L+15
FHN=FMU{I5) ¥HN
DO &4 I=JlsJF
DYDP{IJU)=FHN*DYDP{I+JJ}
IFILsLE-Q) GO TO 4
DYDP{I:L) *BYQP%I@JJ)*&VQ%ISIMX€E33*FDN
4 CONTINUE
DO B J=1oNP
DO 8 K=1:Jd
2=0,00+000
DO 6 I=1eNFT
& 2=Z2+DBLE{DYDP{I+J)IXDBLE(DYDR{I K}
AldsKI=Z i ¥
8 AlKsJ)=2
DO 20 J=1:NP
ANM(J1=0,0D0+000
DO 1& K=lsNP
16 ANM{J)=ANMIJY+DABSTALJsK) )
DO 18 K=1snP
18 AlJoK)=A(Je K /ANMIJ)
20 AHUJY=ALJsJ)
CALL DMTINVIANPNDIM«DToIER}
DO 12 Is=sjeNP
TST=AH{I}#A{1:1)
IF{ABS(TET))=GE Qe LE+QT) WRiTﬁ(&yﬁﬁli I+TST
IFCA(I11eGTa0:D+0} GO TO 12
WRITE{6:602) TsA{I:1)
AlTsIdm=plls])
12 ACTD=A{l: 1) /7ANMITY
FERR=ERR#T{NFT~NP} 3
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IF(Le«GToaly DIN=FERK*DSQRT{AIL.L
IF{NRD:LTo2) DCNsFERREDSQARTIALL
DO 11 J=1.NIBOY
Kal+J
11 DVDU{JI=FERR®DSQORT{ALK»K )}
IFINHD:LT-0! GO TO 99
DO 13 J=1eMND50C
K=L+MNIS0T+J
13 DDUJ ) =FERR®DLGRT ALK K]

99 RETURN
601 FORMAT(IHO 5% o+ CAUTION ##% CONFIDENCE LIMITS POSSIBLY UNRELIABLE

ISINCE FOR I =% J2e 0 FIND A{I-LY®AINVII]) =0 E1045)

602 FORMATIIHO BX tLAUTION we% CONFIDENCE LIMITS UNRELIABLE SINCE FOR
I o=f 12¢ 58X LOHANVIIL} = D14eT )
END

A
T

SUBROUTINE DMTINVIAsNNDIMsDETSIER)
Cx#% SUBROUTINE TO INVERT MATRIX A BY METHOD OF GAUSS~JORDAN
C ELIMINATION WITH PARTIAL PIVOTING. INVERSE IS RETURNED IN THE
C INPUT MATRIX Ao #% DIMENSION OF A IS (NDIM#NDIM)» ALTHOUGH
C THE MATRIX TO BE INVERTED IS ONLY (N¥N). #%¥* [ER=1 IF MATRIX
C IS SINGULAR TO THE PRECISION OF THE MACHINE, OTHERWISE IER=Q.
C #% DET IS THE DETERMINANT OF INPUT Ae %% EVERYTHING DOUBLE PRECISION.
Cwu# ROUTINE WRITTEN AND TESTED BY ReA. LA BUDDE.

DIMENSION A{1}sROW{100;

IMPLICIT DOUBLE PRECISION {(A=MHo0=Z)

INTEGER ROW

{ER=0Q

AU = D.D0

Al = laﬁ*€'3gg
DET = 1l.D0O

NK = = NDIM

DO 1000 K = 1M
NK = MK 4 NDIM

KK = MK + K S
AMAX = A{KK)
NI = K {
DO 200 I = KoN '
KI = KK + 1 ) '
IF (DABS{AMAX) «GE» DABS{A(KI))} GO TO 200
AMAY = ALKI}
NI = 1

200  CONTINUE
DET = DETHAMAX
IF (Al oGT» DABS{AMAX)) AL
IF (AU oLTs DABS{AMAX)} AU

B %

f
DABS (AMAX)
DABS (AMAX)
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PIVRAT = AL/FAU
IF (PIVRAT eGTs lsD=12) GO TO 300
WRITE (653 ) KeDETePIVRAT '
IER=]
RETURN
300 ROWI(K? = NI
IF (NI «EQs K} GO TO 350 ;
DET = ~ DET t
NI = NI = NDIM
KT = K = NDIM
DO 250 1 = 1N
KI = KI «+ MNDIM
MI = MI <+ NDIM
DODA = AIKI)
ALKIY = RINID}
25Q A(NI} = DODA
350 NI = ~ WDIM
DO 800 I = lgi
NI = NI <+ NDIM
IF 11 «EQ. K3 50 TO 800
KI = NI + g
AlKT) = ALKIY/AMAY
DO TR0 J = 1.
IF (J «EDe ¥ 1 G2 TO 700
JI = NI + 4
JK o= BK o+ J
AlJLY = ALJT3 = A(JKIRALEL)
700 CONT INUE ’
800 CONTIMUE
DO 900 I = LapM
KI = NK + 1
200 ALKIY = =A{KY¥/7AMAX
1000 A(EK) = 1.DO0/AMAX
MK = = NDIM
DO 1500 K = 1N
CNK = NK 4+ NDIM
IF (ROWIK)Y EQs K} GO TG 1500
NI = (ROWIK) <« Lli#NDIM
DO 1200 J = 13N
JE = MK ¢ J
J1 o= NE 4+
DODA = A{JK)
ALKy = AL1)
1200 AlJIY = DODA
1500 CONTINUE
- RETURN
1 FORMATI/0GJR FAILS AT STEP*316+2Xs*MATRIX 1S SINGULAR TO PRECISIO-
IN OF MACHINE:/8YX s TDETERMINANT*sD20sL0/75Xs 'RATIO OF MIN TO MAX PIVO.
2T8¢ 02010}
EMD
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