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TRANSIENT TEMPERATURE DISTRIBUTION
DURING AN EXOTHERMIC CHEMICAL REACTION

by

Myron Levitsky and Bernard W. Shaffer

ABSTRACT

The heat conduction equation for a material where heat is
generated by a first order chemical reaction has been derived as a basic
problem in heat conduction. Solutions have been obtained for a wall,
sphere and cylinder when the influence of local temperature upon the heat
generation rate may be suppressed. The validity of this restriction is
determined in part by the magnitude of a dimensionless combination of
material constants which has been designated as the reaction rate parameter
v2 , It has also been fouud that when a second parameter, (E/RT =)(H/pe) ,
becomgs small the appropriateness of the restriction increases ingependently
Of 1 . '

e WL, e i et

Introduction

There are several processes of technological interest in which a
liquid-like material is poured into a mold and hardens as heat is liberated
in the course of an exothermic chemical reaction. The resulting temperature
_{ﬁy‘ distribution within the material may be potentially significant for at least

one of two reasons. Within an inflammable material such as a solid propellant

rocket grain, the peak témperature developed must not reach the ignition

temperature of the propellant in order to avoid the problem of premature

combustion. Secondly, the thermal stresses induced during solidification
as a result of thermal gfadients caused by the liberation of heat, may lead
to residual stresses after hardening is completed which are detrimental
to the integrity of the resulting structure. To solve either prdblém

‘fii requires a complete knowledge of the temperature distribution during the

hardening process.




TRANSIENT TEMPERATURE DISTRIBUTION
DURING AN EXOTHERMIC CHEMICAL REACTION

by

Myron levitsky and Bernard W. Shaffer

ABSTRACT

The heat conduction equation for a material where heatl is
penerated by a first order chemical reaction has been derived as a basic
problem in heat conduction. Solutions have been obtained for a wall,
sphere and cylinder when the influence of local temperature upon the heat
generation rate may be suppressed. The validity of this restriction is
determined in part by the magnitude of a dimensionless combination of
material constants which has been designated as the reaction rate parameter
v2 . It has also been fou:.d that when a second parameter, (E/RT °)(H/pc) ,

beccmga small the appropriateness of the restriction increases 1n8ependent1y
of v ,

Introduction

There are several processes of technological interest in which a
liquid-like material is poured into a mold and hardens as heat is liberated
in the ccurse of an exothermic chemical reaction. The resulting temperature
distribution within the material may be potentially significant for at least
one of two reasons. Within an inflammable material such as a solid propellant
rocket grain, the peak temperature developed must not reach the ignition
temperature of the propellant in order to avoid the problem of premature
combustion. Secondly, the thermal stresses induced during solidification
as a result of thermal gradients caused by the liberation of heat, may lead
to residual stresses after hardening is completed which are detrimental
to the integrity of the resulting structure. To solve either problem
;, requires a compleie knowledge of the temperature distribution during the

hardening process.
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An examination of the available literature shows that the heat
generation rate during an excthermic chemical reaction is related to the
reaction rate considered in the theory of chemical kinetics, where the
latier is exponentially dependent upon the local temperature. As a result,
the partial differential heat conduction equation becomes non-linear and no

exact arnalytical solutions are available[ 1

o Existing results take the form
of numerical solutions, or study the asymptotic behavior of the exact solution
for special limiting cases. Thus Crank and Nicolsonr21 present a numerical
solution by finite differences to the one dimensional problem of a wall of
finite thickness, with convective boundary conditions, and heat generated
within the wall by a first order chemical reection. Similar results have

been obtained by Nichols and Presson[3] for the case of an infinitely long
cylinder with prescribed surface temperature and heat liberated according

to zeroth and first order chemical reactions. Anisimov and Perelmanuuw
investigate the asjymptotic behavior of the analytical snlution for a wall with
prescribed surface and initial temperature wherein heat is generated by initiat-
ing a zeroth order reactién. The results are obtained for large and small
times, and for small.values of the Pomarantsev or "explosion" parameter.

The literature search did not provide the authors with a temperature
solution that would be amenable to their investigation of the thermal stresses
induced during an exothermic chemical reaction which results in hardening of
the reacting medium. Hence, the basic process was examined as a fundamental
problem of heat transfer end an appropriate heat conduction equation contain-
ing a transient, temperature-dependent heat generation term was deriQed. The
resulting partial differential equation was found to be of a form that is

(2,3,

similar to those studied in the literature Even though no exact

analytic solution could be found for the derived non-linear heat conduction

[ 7 Numbers in squared brackets refer to references listed in the bibliography

-



equation, it was observed that a solution can be extracted for restrictive

conditions of temperature or heat generation. Specific solutions were

w

obleined for a slab, a cylinder end a sphere under the required restrictive
conditions. Not only are these solutions of use to the authors in their
thermal stress studies, but they also add to the limited literature of the
heat transfer problem.

The Heat Conduction Equation

The theory of the kinetics of chemical reactions shows that the
rate at which a chemical reaction proceeds is determined by the character of
the reaction. In a zeroth order chemical reaction, the reaction rate is

b; independent of the concentration of the reactants which is fixed by the con-
ditions of the reaction, Such a situation occurs, for example, under steady

state conditions in a reacting bed, where material is supplied to the reaction

iﬁ externally in order to keep the concentrations constant. Thus, if W reéie-
.fgé sents the concentration of some characteristic reactant, the rate at which this
fgl reactant is consumed is given by the equationr57

4

x- - cle‘E/ RT (1)

where C1 is the so-called pre-exponential factor, E 1is the activation

ener.v, R 1s the universal gas constant and T the absolute temperature.

During a chemical reaction which occurs in a closed system, the
reacting materials are consumed in the process. The relation between the
rate at which the reaction proceeds then depends not only upon the temperature
but also on the concentrations of the reactants. In the simplest case, the
reaction rate is described by Equation (1) with W ﬁultiplying the right

hand side[sj, and the result expressed as
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at ~ oF/E (2)

1

This equation characterises a first order reaction. With N defined as
the degree of reaction, the instantaneous concentration of reactants W
is equal to 1-N, a quantity which decreases from unity to zero as the
reacting meterial is consumed. Equation (2) may then be written
§ dN "‘E RT

In an exothermic reaction, the rate of heat generation per unit
volume may be assumed proportional to the rate at which the reactants are
consumed. The reaction, when carried to completion, liberates a quantity

of heat per unit volume which is designated H and called the volumetric

heat of reaction. If é(r',t) represents the instantaneous rate of heat

ke e e s
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generation with r' designated as the position vector, the quantity of
heat liberated from the start of a reaction to a subsequent time t is given

t
by the integral .L Q(r',t)dt . Therefore, the degree of reaction N can

PR St el

B it a Tk,

ey
RIS LI DK

t
alcro be measured by the expression %|L Q(r',t)dt , and in view of Equation

&

(3) the rate of heat generation can be written

FEERS-A

Q(r',t)at] (4)

where the constant C is rqual to H C, - Equation (4) couples the heat
generation rate to the temperature distribution T(r',t) . Therefore, a
complete solution of the problem requires the simultaneous consideration of

ai the heat conduction equation.

In order to effect such a solution, it will be assumed for simplicity

that thermal conductivity k , specific heat ¢ , &and density p remain constant




during the reaction. The thermal diffusivity X = k/pc is then also constant.
Under the foregoing conditions, the temperature distribution in a material

subjected to a time varying internal heat generation is governed by the

relation rn
{
2 " Q(r',t) 1 oT
v° 7(r',t) + ramall (5)
The heat generation rate C'Q, may be eliminated between Eqixa’cion.s
11 (4) and (5). Rewriting (4) as
e ot/ ©
; 1l - 'ﬁ" ' Q,dt'
Ul fo)
( it follows that
. t
o“ a 1 - ) ~ 'E RT ly
ﬁ -HR[LnIl-ﬁ\L Q,dt}j:be / (()
Ai -

as may be seen by taking the indicated derivative. Integration of the pre-
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ceding equation from time +t

t
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0 to an arbitrary time t then gives

T
) %L ¢ E/RT 44 (8)
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Thus, forming exponentials of both sides of Equation (8) and introducing the
result into Equation (4) permits the heat generation rate to be expressed as

a function of temperature in the form

t - E.
E C ~ RT ..t
R'I‘-H.L e dt

(9)

é(r' »t) = Ce

when @(r',t) is replaced in Equation (5) by the preceding result, the

transient heat conduction equation becomes

e iy
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(10)

The solution to the last equation, subject to suitable boundary and initial
conditions provides the temperature distribution within a material undergeing
a Lirst order chemical reaction.

In order to simplify and generalize subsequent calculations, it is
desireble to put Equation (10) into dimensionless form. For this purpose,

let us define the dimensionless lengths
x=x'/L ; r=x'/R (11a)

where I and Bo are some characteristic dimensions of the system, such

as wall thickness and external radius respectively; the dimensionless time
.
T = Xt/L° (11v)

the dimensionless temperature

€ = RT/E (11c)
the Pomarantsev or "explosion' parameter

P = CRI/KE (124)
and the dimensionless group

y = CLzz/ﬁ(H - | '(lle)

With the preceding definitions, Equation (10) may be rewritten in dimensionless

form as



e (12)

#

where vd now denotes the ILaplaclan operetor written with respect to the
aimenslonless space coordinates,

[ 4,61 in o

The Pomarantsev parameter P plays a crucial role
zoroth order reaction. A steady state solution to the transient conduction
cquation does not exist if it exceeds a critical value. Instead, the tem-
perature increases without limit during an exothermic reaction and an
explosion will regult. In a first order reaction, however, the temperature
rise is limited by the available quantity of reactants and cannot exceed
the amount H/pc o« Unless this temperature rise trippers a secondary recaction,
no cxplosion in the first sense is possible.

As cited in the Introduction, some numerical results to Equation
(12) exist in the literature, but analytical solutions are not known to
exist. wpecific approximate analytica) solutions will be derived in the
present paper for the situation in which the initial temperature of a
repion as well as its surface temperature are constant and equal %o TQ .

In dimensionless terms, the initial and boundary values of the temperature
parameter © will be designated 90 .

Tt is proposed that a solution for © be generated in the following

manner. Replace the term © on the right side of Equation (12) with the

constant 60 , S0 that the dimensionless temperature relation may be written

-1/6
720 - gg =-pe - e7° . (13)

Then define the reaction rate parameter



e

-1/6
#oa e ° (14)

50 that Equation (13) can be expressed

n
2 v

08 P .2~ .
Ve-a-;a-;;vc'e (15)

It is now possible to solve Equation (15) directly for 6 , and the solution
decipgnated Ql(r,w) y 18 the first approximation to the correct temperature
distribution. A second approximation can be generated by substiting Gl
into the right hand side of Equation (12), and solving the resulting non-
homopeneonus differential equation for that which is designated eg(r,r) »
By repeating the vrocess, an iteration scheme is set up vhich hopefully
will converge to the correct solution. Unfortunately, details hecome com-
plicated and although the first approximation is readily obtained, integration
required for the second approximation has proven to be unmanageable.
Fortunately, however, the first approximation is of considerable interest
under at least three physical conditiocns.
When all other quantities are kept constant, and the reaction
rate parameter VE is sufficiently small, the resulting rise in the tem-
perature will also be small. The variation of the exponential factlor
exp (-E/RT) is then small, and Equation (11) may be represented by Equation (15).
At the other extreme, we have a very large reaction rate parameter.
The material then hardens quickly and the heat is liberated impulsively.
The material undergoes an instantaneous and uniform rise in temperaturs
equal to H/pc y Followed by a cooling rate that is independent of the
reaction rate parameter as well as the temperature. The solutions of

Equation (15) then approach the exact solution of Equation (11).
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It should be pointed out in view of Equations (1le), (1le) and

(14) ihat ihe definition of the reaction rate parameter may also be written

1O B

Vv o= }%—:‘-{: e /R, (16)
and thus involves quantities other than those which govern the physical speed
of the reaction. Large and small values of v2 associated with rapid and
slow hardening must, therefore, be identified with the time scale of the
Fourier nurber (Xt/L%) , and not with physical time.

The maximum temperature change which will result from an impulsive
liberation of heat is equal to H/pe . If during that temperature change
from To to To + H/pc there is only a small change in the exponential

factor e"E/RT

» then in an approximate sense, the heat generation rate
becomes independent of the temperature. The solutions of Equation (15) will
thus approach those of Equation (11) independently of the value of the reaction
rate parameter.

Except for circumstances cited, the results obtained from Equation
(15) are expected to be qualitatively similar but quantitatively different
from the solutions of Equation (11).

Equation (15) may also be written

2 08 -vz'r

vee - 5o = - pe (17}

by defining the coefficient Pv2/7 %o be equal to the parameter B . The
latter form will prove to be useful in subsequent analysis.

Let us now direct our remarks to the boundary condition and initial
conditions of the problem. During an actual casting process the mold wall,
and the surfaces between the m»ld, cast material, and the ambient fluid

form a thermal barrier to heat flow. The usual mathematical description of

“Q-

T -




tils effeet takes the form of a convective boundary condition. However,

when the mold is physically thin, and the material highly conductive, the
accumulated thermal resistance can be negligible. Furthermore, during

the curing prrocess, the mold surface may be cooled and kept at a fixed
temperature in order to maintain temperature control. Under the foregoing
conditions, the ambient temperature may be considered the same as the surface
temperature of the poured material. The latter situation suggests the
boundary and initial conditions for the present study. It will therefore

be assumed in solving Equation (17) that for the

Boundary condition: O . . = 6, (18a)
and for the
Initial condition: e(r,0) = 6, (18v)

Temperature Solution for an Infinite Slab

Let us consider the problem of casting an infinite slab of
constant thickness I . The initial temperature of the cast material is
TO and the surfaces of the mold are maintained at To . The resulting
temperature variation is a function of only one space coordinate, that which
is measured normal to the mold surface; in dimensionless form it is given
the range O < x< 1 . Consequently, the Laplacian operator reduces to the
second derivative with respect to x , and Equation (17) for the dimension-

less temperature parameter © , becomes

2 2 :
g_g.-i-‘i: —peV T (29)
X T

The associated boundary and initial conditions may be simplified to read

«10=



Boundary conditions: 6(x,7) =0 ; x=0, x = 1 (20a)

Initial condition: 8(x,0) = 0 (20p)

because Equation (19) determines © to within a constant, and 6 can
be measured with respect to 90 .

To find the complete solution to Equation (19) note that its
homogeneous solution may be found by separation of variables to read

o ")\51’ '
6y = ﬁ e [An sin A x + B, cos Anﬁl ’ (21)
n = 1,2,5’000

2
The particular solution is assumed to be of the form ep = e Th(x) .

When substituted into Equation (19), it is found that

i x) = A_ §in vx + B_ cos VX - = 22
.

5

! and conseguently the complete solution takes the form

2

-V T . ﬁ_‘]
O(x,T) = e [A sin vx + B_ cos vx -
(9) p i p 2

v
o =A 21’
+ ﬁ e 1 [An sin,xnx + Bn cos A ? $ (23)

n = 1’2’3,000

The boundary conditions at x =0 and x = 1 are satisfied if

£
2

tdJ
L}

- - £ -
Ap = v2 [cot v - ecsc V]

(24)

A, =ntn =1, 2, 3 e ;5 B =0

The solution at this point, therefore, can be written
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8(x,7) = J% e’ 7[(csc v - cot v) sin vx + cos vx - 1]

12
. (25)
o0
+ % Ane'(nn) T sin nnx 3 n= 1,2,3 eees
n
The initial condition requires that
6(x,0) = 0 = f%'[(csc v - cot v) sin vx + cos vx - 1] +
v
) (26)
+ ¥ An sin nnx , n= 1,2,50000
n
or
-@- m
- 5 [esc v - cot v) sin vx + cos vx - 11 = 5 A_sin nnx ,
v
" (7)
n= 152,3000.
(7

When the left side of Equation (27) is expressed in a Fourier series

consisting of terms in sin nnx , the coefficients An are found to be

equal to

Le
A =" ’ = 1,55550000 28
n nn[vz-(nn)zj i > (#8)

Therefore the solution to Equation (19) with the prescribed boundary and

initial conditions of Equation (20) may be written

e-vzr
o(x,1) = QE [(csc v - cot v) sin vx + cos vx - 1]
v
2 ~(29)
® ¢ (0T in nax
"'"‘52 = H n= 135,‘5’.00.

n nn[vz?(nn)ej

The preceding result can be put into a more compact form by noting that

at T::O

~]12-



0(x,0) = 0 = j%{_(csc v - cot V) sin vx + cos vx - 11
NS

(30)
on
Sin nnx » n = 1,3,5 ece
+hp 2, 2
n nnf vo-(nn)
or therefore
2 ®  sin nnx
(csc v-cot v) sin vx+cos vx-1l = 4" v 5
n nnf (nr)"-v
(31)

ns= 1,3,5 eceyr

When Equation (31) is substituted into Equation (29) and both series placed
under one summation sign, it is found that the temperature distribution
within a slab in which the material is generating heat at an exponentially

decaying rate is given by the relatively simple expression

2 2
s(em) = bp p LT )
n nn[ (nn)"-v]

sin nnx

(32)
n= 1,3,5,000

The significance of this expression will be discussed after an equivalent

il AN a® -y T e dRT e e T
ORI SV T i ANR S 201 R T

examiniation of the temperature distribution in a sphere and in an infinitely

long cylinder.

Temperature Solution for a Solid Sphere

Under conditions of spherical symmetry, the lLaplacian operator

reduces to a function of the radial derivatives, and consequently Equation

heat according to a first order chemical reaction can be written

5
.
i
-
“af
i
wl
d
o

2
LGP -8 - (33)
r
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(17) for the dimensionless temperature distribution within a material generating



The dimensionless coordinate r 1s equal to r'/Ro where r' is the
dimensional radial coordinate, and R0 the outer radius of the sphere.
For the same physical reasons presented in the previous section, the

boundary and initial conditions associated with Equation (33) may be written
9(1’7) = 0 (a) ’ 9(1‘,0) =0 (b) (5“)

In addition, of course, there exists the assertion that the solution be
nonsingular at the origin. With V = r6 , Equation (33) reduces to
var

5;2— - y‘r = - Bre- (35)

The homogeneous solution to Equation (35) is found by separation of variables

to be

o
V., = g e B [An sin xnr + Bn cos Aan y N =1,2,3 cas (36)

whereas the particular solution may be written

2
v =eV T

L _pr.
o [A, sin vr + B cos vr 5] (37)

v

The complete solution is equal to the sum of Vp and VH o When V is

replaced by r® , the complete solution for the dimensionless temperature

distribution takes the form

2
-y T
o(r,1) = & [Ap sin vr + Bp cos vVr - é%ﬁ
v .
o 'lff ' (38)
e .
+T —3 [An sin A\ r + B cos xnr] ,
n

ns= 1’2.3’0.0

~-14-



At the origin the terms containing cos (vr) and cos (xnr)
become infinite but are eliminated from the solution by causing Bp and
B, to vanish. Boundary condition (34a) requires © to vanish at the
outer radius, a requirement that is satisfied when Ap = 6/vesin v and

A, = nr% , n=1,23,... Thus Equation (38) can be written

2
-Vor o _=(nn)r
e sin vr . B e .
6(ryt) = — Iy - X + § —5— A, sinmr
(39)
n = 1,2,5,000
Initial condition (34b) requires that
; =0 £ sin vr > -
o(r,0) =0 ¥ S -+ ;r-l A sinnomr , n=1,2,3,... (40)
or
. [ -}
-%- [r - ﬁ%—?’\ = 7 An sinnar , n= 1,2,3,400 (41)
Y n
The Fourier coefficients An are determined to be
n
A = —2BCD 1003, (42)

" nnr(nn)e-v21

and consequently, the solution of Equation (33), subject to the given

boundary and initial conditions, can be expressed

2 2
-Vt o n _~(nn)"7
o(r,t) = j% . 2 = [2;2 :r -1l + 73 2@1_;) > = sin nnr
v n naf (nn)"-v7) r

- (k3)
n= 1,2,3,000.

It is seen, as a consequence of Equation (41) and Equation (42) that at

T =0, the series given by the second term represents the negative of
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the radially dependent coefficient

B .sin vr ® 28(-1)" &in nnr
[ = r-l = = v . [ n = 1,2,3,000 (”“’l’)
ver sin v n (nﬂ)e_ve Nty

Thus Equation (43) can be written more compactly as

- (n) } -2

n e e sin nrnr

6:=2m-l
(ry7) B z (-1) (nr)2 - v nry (45)

-e

n = 1’2’5,000

Equation (45) approximates the temperature distribution within a sphere
with a time-dependent generation of heat due to first order chemical

reaction.

Solution for an Infinitely Long Cylinder

In cylindrical coordinates with axial symmetry, Equation (17)

reduces to

2
12 . 8. gV (46)

r

The dimensionless coordinate r is equal to r'/RO where r' is the
dimensional radial coordinate, and Ro is the outer radius of the cylinder.
For reasons previously indicated, the boundary and initial conditions for

the problem may be expressed
e(L,7) =0 (a) ; e(r,0)=0 (b) (47)

with the understanding that the solution be non-singular at the center.

Separation of varisbles shows the homogeneous solution of Equation (L6)

to be

-16-
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(48)
nm 1,2,5,000
in which Jo is the zeroth order Bessel function of the first kind, and
X, is the zeroth order Bessel function og the second kind. With a
particular solution of the form 6 = e’ Té(r) , Equation (46) shows
that g satisfies the relation

2
RE NPT oo
r

dr v

The latter is a Bessel equation of zeroth order. Its solution is

#(x) = AT (vr) + BY (vr) - ;% (50)

where Ap and Bp are constants. Hence the complete solution tq

Equation (46) may be written

2
8(r,7) = ™ A (vr) + BY () - ;‘%J

(51)

-X 21

- ] .
n
+;;, e [AnJo(knr) + Bnyo(xnrﬁ , Nom 1,2,3,000
Since the Bessel function Yo(Ar) becomes infinitely large at r = 0,
the constants Bp and Bn must vanish identically for the preceding
solution to be finite at the origin. At the outer radius of the cylinder,
the boundary condition requires that ©(l,7) = O » This condition ié
.« P 2
satisfied when AP = B/v J,(v) and ) are roots of Jo(xn) =0 .
Substitution of the preceding conclusions into Equation (51) allows it

to be written

-17-



( ) 2 .' (VI‘) om u)‘:{. )
Q(r,tT) = r——(")' l" + 7 A e J )\ r

N = 1,2,3’,000

The initial condition on © , prescribed by Equation (47b) indicates that

(vr) o ,
8(r,0) = O = ¥ [ T N+r AT T
n

(53)
ne 1,2)5,e00
5 or therefore
—Q [%—(-g;- R AT T) b on= 1,23, (54)
B n
‘,éﬁ The coefficients An may be determined by developing the left side
g; of Equation (54) into a Fourier-Bessel seriesr81 . It is then found ihat
8 Il 1 - J (vr)_l 5.0 5
e Py %W (55)
P ™ 3/ ”

IR

R T

Evaluation of the integral shows that

|
it ALV ()
Thus the solution to Equation (46) under the prescribed boundary and initial
conditions of Equation (47) can be vritten
'1' ' _é_ -V21‘ J (Vr) o € Jo(lnr)
‘} 9(1‘,1’) = fm 1n - 25 ¥ 2 )
Ve A A=V ()

(57)
n = 1,233,90.




The previous expression can be simplified by noting that at 1 = 0

0(x,0) = 0 irJ (VI‘) 11 - o8 o J (A I‘)
T = = - n
T aa AP 0)
(53)
n= 1,2,3,000
so that
5 rJo(vr) —_— o J (O r)
AN RO R X
v2 JO \4 n )\ntke Va.‘Jl()\ ) ( 9)
P,

n= 1)2,5.000

Substitution of Equation (59) intc Equation (57) followed by a combination
of the two series under one summation sign ylelds the temperature distribution
in an infinitely long cylinder, where the material generates heat due 10 a

first order chemical reaction, in the form

2
2 =-\'7
VT n. J.(.r)
o(r,7) = 28 z = = n=1,2,3,... (60)

Determination of Coefficients

To make a qQuantitative examination of the temperature distribution
associated with the solutions given in Equations (32), (L45) and (60), it is
necessary to assign suitable numerical values to the constants contained
therein. Precise values can be assigned in a specific investigation; In
the present situation, a more general point of view may be taken before
making the assignment, by first exploring the significance of the expression

previously defined as the degree of reaction N .



P

The quantity N(t) which specifies the extent to which the
chemical reaction has gone to completion, may be expressed in terms of
the heat generation rate and the heat of reaction as

r* d(r',t')at! (61)

)t'
N(r,t) .

e { o

In view of Equation (©6), the integral containing the heat generation rate

¢an be eliminated, leaving
r,t ‘4
N(r,t) = 1 - (€2)

Since the heat generation rate is itself expressible solely in terms of the
temperature, it may be replaced in the preceding equation by its equivalent

in terms of temperature from Equation (9), so that

t
- ¢ Y e'E/RTdt'
H o,

N(r,t) =1 -e (63}

If the temperature T does not vary appreciably from its initial value To
(as assumed in each of the three solutions for temperature distribution,
derived earlier in this report), or if the heat generation rate is not
appreciably influenced by the temperature changes induced in the material,

Equation (63) reduces to

-1/8
. e © t

N(t) =1 - e

xiQ

(64)

where, in accordance with Equation (1lc) E/R'I‘o has been replaced by its
equivalent eo « 'Then, in view of the definition of v2 given by Equation
(16) and 1 given by Equation (11b), the degree of reaction is expressible

in the simple form

Sn—— - B Ot et
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2
Ne)=1-¢e" " (65)

One may us? the 1 a 8 © expression to determine a physically
valid xange of values for the parameter v2 based upon observation of hard-
ening times and thermal diffusivity. Although mathematically it takes an
infinite 1 for the reaction to reach complytion and N to take on the
value 1, one can observe that the limiting value is reached asymptotically.
For all practical purposes it is reasonable to assume that the reaction has
been completed when N takes on some value close to unity, let us say
arbitrarily 0.9. The numerical value of v21 is then about 2,30, It is
further noted in our reasoning that the physical time required to fabricate
or cure materials where setting occurs by chemical reaction, may range any-
vwhere fram 1 to 100 hours. Also, the characteristic length or radius of the
physical configurations under examination may run from 0.1 foot to 10 feet.
With dimensionless time given as < = MtyL? , Where t' 1is the setting

time, and VQT = 2,5 according to the preceding assunption, the parameter

v = 2.3/(t'/1%) . Let us take the thermal diffusivity X to be
Neloll fta/hr, a numerical value found for many plastic materials. It is

° has a range of values from about 0.5 to 500, (the small

then seen that v
value was obtained by using the assumed numerical values of a large setting
time and small size, while the larger value was obtained for a short setting
time and a large size).

The parameter P which first appears in Equation (17) and then is
found throughout the analysis, can be expressed with the aid of Equations

(11d) and (1i.;) in temms of ve

by the relation
B8 = V2 . R/E + Hfpe (66)

Since the dimensionless temperature © is equal to RT/E , substitution

-01-



for B and © into Equations (32), (45) and (60) puts them into a form

which expresses the dimensional temperature. Thus for the wall

2 e
® ; =Vt ~(nn)%y
T(x,7) = we . Lo (e e ) gin nnx

¢ n nn[(nu)e-v21
(67)
n=2155¢..
For the sphgre
2 H® . (e-(m)ef_e-v T a1
T(r,7) = 2v ==y (-1) =2 sin nxr
P [ (nn)2-v?1 nxr @)
n= 1’2:5s0--
For the cylinder
2
VT AT
2 H® (e e 1) Johyr)
T(ry7) = &7« 557 2_p T I0)
no A A -V 1V'n (69)

n= 21,2550

The ratio H/pc is dimensionelly a temperature, and measures the increase
in temperature which would occur if the heat of reaction per unit volume H
were to be discharged into the meterial instantaneously. It corresponds to
the temperature after the initial instant in the limit as v2 becomes very
large, and is also the maximum possible temperature increase under any

circumstances for the first order reaction.

Numerical Results and Discussion

Equations have been presented which express the temperature dis-
trivution within a wall, sphere, and cylinder where heat is generated by a
first order chemical reaction when the temperature does not vary appreciably

from its initial value or if the heat generation rate is not appreciably

02—



influenced by the temperature change induced in the material. In order to
obtain some idea of the significance of either one of the restrictions, please
note that the temperature effect is due to the factor exp (-E/RT) which appears
first in Equation (1). For many organic resins, the activation energy E has
a range of from 20,000 to 40,000 BTU/Ib - molel> . If the reaction is initiated
at 70°F, it is easily determined that a rise in the temperature of 18° in the
first instance to 9o in the second is sufficient to cause the factor exp (—E/RT)
to double. Under these circumstances, the reaction rate is strongly influenced
by temperature, and the sensitivity increases with the magnitude of the acti-
vation energy. Thus, for low values of v2 » ‘the approximate solutions will
be valid only if the temperature rise is indeed small, or when the reactions
have a low activation energy. It can also be seen from Equation (16) that for
a suitable combination of physical constants, v2 may become large. As we
have just seen, temperature has the effect of accelerating the reaction and
thus increasing the effective value of v2 « It has already been observed,
however, that for very large values of v2 the temperature distribution over
most of time is independent of the temperature, since the generation of heat
has ceased. Thus the approximate solutions will . "~o be valid for these large
values of v2 .

Since the temperature exerts its influence upon the heat generation
rate through the presence of the factor exp (-E/RT), it is the variation
of this factor which, to a great extent determines the accuracy of the
present solutions. The maximum temperatur: rise under any circumstances
is limited to H/pc , so that the ratio of the exponential factors under

the extreme limits of the initial and maximum temperature can be written
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The variation of the exponential factor decreases as the foregoing
approaches unity, and this condition will be met, approximately,
whenever the dimensionless group E/RTi . H/pc is very small. Thus,
independently of the parameter v2 or the rate of reaction, the more
closely the preceding cvondition is satisfied, the more appropriate
will be the solutions presented in the present paper.

The numerical results which are obtained for the three geometrical
configurations studied are qualitatively similar, and it suffices for illus-
trative purposes here to exhibit graphs and tables for orie of these, the
infinitely long cylinder. Figure 1l shows the temperature history at the
center of the cylinder for several values of the parameter v2 « Values
of the temperature are plotted as a fraction of the maximum attainable
temperature increase H/pc . For a value of v2 equal to unity, the maximum
temperature rise in the cylinder reaches 0.18 of the maximum attainable tem-
perature rise. 1In view of the preceding discussion, and depending upon the
activation energy, this can be sufficiently large to influence the heat
generation rate. At the other extreme, we note that when v2 equals or
exceeds 100, the maximum temperature is greater than .90 of the attainable
maximum increase, and the subsequent cooling follows the same path as for
v2 equal to 500 and presumably larger values. Thus, in this range'of values
for v2 » the solution will, along the centerline, approximate the actual
temperature history resulting from the reaction quite well. From Equation
(16) we observe that v is a function of the dimensions and thermal

properties of the system as well as of the reaction censtants. Thus, a given
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physical reaction rate can, in different contexts, lead to large or small
values of v2 .

Figure 2 shows the dimensionless temperature distribution within
the cylinder at the moment at which the center reaches the maximum temperature.
The distribution, which has been normalised so that the magnitude at the center
is unity, is shown for differing values of v2 « With increasing values of

2

v- , it is evident that there is an ever larger central region of almost

constant temperature at this instant. In the limit when v2

becomes very
large and the heat is liberated impulsively throughout the material, the
temperature ratio at the time of the centerline maximum is of course unity
throughout. It thus appears that the closeness of the approximation with
increasing ‘ralues of v2 varies spatially as well as in time. For a given
value of v2 s the center temperature as determined by the solution presented
here may reproduce the actual temperature during the reaction closely, whereas
points nearer to the surface may still be considerably in error, thus indicating
that convergence of the linearized solution to the exact solution is not
necessarily uniform spatially.

Some qualitative'inferences may also be drawn from the results
indicated in Table 1. One may be inclined intuitively to judge the dégree of
hardening in a thermosetting material from the temperature, assuming that if
the material still exhibits an elevated temperature, the reaction is not yet
completed. On the contrary, Table 1 shows that for large values of v2 5
corresponding to a rapid hardening, the material is completely hardened at
the time that the centerline temperature attains its maximum value. bn the
other hand, when V2 is small, the major part of the reaction can occur well
after the time of maximum temperature. Thus, one cannot judge the degree of

reaction solely from temperature data.
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Similar conclusions may be drawn from the results for the slab

and sphere.

Conclusion

The problem of determining the temperature distrihution in a
material where heat is generated by a first order chemical reaction has been
discussed, and the non-linear character of the resulting heat conduction
equation exhibited. Suitable solutions for a wall, sphere, and cylinder were
obtained by suppressing the effect of temperature upon the heat generation
rate, and conditions under which this approximation would be valid were studied.

It was determined that the validity of the approximation depended
in part upon a combination of constants designated as the reaction rate
parameter v2 s, and that the approximation became quantitatively accurate
when v2 was either very large or very small. For small values of v2 » the
closeness of the approximation also depended upon the temperature rise and the
activation energy. At intermediate values of v2 » the approximate solution
was qualitatively similar to the expected form of the actual temperature dis-
tribution, but no quantitative inferences could be drawn.

- It was observed that the sensitivity of the heat generation rate to
temperature changes was determined by the magnitude of the activation energy.
For chemical reactions with low activation energy, the influence of temperature
upon the heat generation irate is small, and the solution presented here will
yield quantitatively accu¥ate results. This will occur when the variation of
the factor exp (-E/RT) over the range of temperatures predicted by‘the
approximate solution is small. If the activation energy is large, the approx-
imate solution will be quentitatively accurate only for very large and very

small values of the dimensionless reaction rate parameter v2 « It heas also



been shown that the influence of the temperature upon the heat generation
rate decreases with the magnitude of the factor (E/RTi)(H/pc) , and
that as this factor becames small, the accuracy of the approximation

increases independently of the parameter v2 .
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Figure 1 -
Temperature History
on the Centerline
of an Infinitely
Long Cylinder for
Several Values. of
the Reaction Rate
Parameter
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.50 22 5N 10
1.00 .33 40 17
5.00 €3 .20 48
10.00 78 19 .65
50.00 .97 07 .95
100.00 99 .05 39
500.00 1.00 03 1.00

Table 1 - Variation of the Degree of Reaction and
Dimensionless Time with Reaction Rate at
Time of Maximum Centerline Temperature

in the Cylinder
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