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TRANSIENT TE`^2.PERATURE DISTRIBUTION
DURING AN EXOTHERMIC CHRMICAL REACTION

by

Myron Levitsky and Bernard W• Shaffer

ABSTRAC^i`

The heat conduction equation for a material where heat is
generated by a first order chemical reaction has been derived as a basic
problem in heat conduction. Solutions have been obtained for a wall,
sphere and cylinder when the influence of local temperature upon the heat
generation rate may be suppressed. The validity of this restriction is
determined in part by the magnitude of a dimEnsionless combination off'
material constants which has been designated as the reaction rate ammeter
v^	 It has also been found that when a second parameter, (E^RT ^^(H^pc) ,
becomes small the appropriateness of the restriction increases independently
of v2

Introduction

There are several processes of technological interest in which a

liquid-like material is poured into a mold and hardens as heat is liberated

in the ct^urse of an exothermic chemical reaction. The resulting tei^^iperature

distribution within the material may be potentially significant for at .least

one of two reasons. Within an inflammable material such as a solid propellant

rocket grain, the peak temperature developed must not, reach the ignition

temperature. of the propellant in order to avoid the problem of premature

combustion. Secondly, the thermal stresses induced duxin^g solidification

as a result of thermal gradients caused by the liberation of heat, may lead

to residual stresses after hardening is completed which are detrimental

to the integrity of the resulting structure. To solve either problem

requires a ^;r^mple^^e knowledge of the temperature distribution during the

hardening process.
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TRArFIEfJT TFMPE.'RATURE DISTRIBUTIOfJ
DURING AN F^OTHERMIC C}if:MICAL REACTION

by

tdyron Levitsky and Bernard W. Shaffer

ABSTRIIC'i'

the heat conduction equation for a material where hea p is
generated by a first order chemical reaction has been derived as a basic
problem in heat conduction. Solutions have been obtained for a wall,
sphere and cylinder when the influence of local temperature upon the heat
generation rate may be sulpressed. The validity of this restriction is
determined in part by the magnitude of a dimEnsionlzss combination of"
material constants which has been desiPnated as the reaction rate parameter
v?	It has also been fou:.d that when a second parameter, (E^RT )(H/ pc) ,
becomes small the appropriateness of the restriction increases in^e^endently
of v2 .

Introduction

There are several processes of technological interest in which a

liquid-like material is poured into a mold and hardens as heat is liberated

in the ccvrse of an exothermic chemical reaction. The resulting tei^^perature

'	 distribution within the material may be potentially significant for at least

one of two reasons. Within an inflammable material such as a solid propellant

.^	 rocket grain, the peak temperature developed must not reRCh the ignition

temperature of the propellant in order to avoid the problem of premature

combustion. Secondly, the thermal stresses induced during solidification

as a result oi' thermal gradients caused by the liberation of heat, may lead

to resid^ial stresses after hardening is completed which are detrimental

to the integrity of the resulting structure. To solve either problem

t	 requires a ccmple^e knowledge of the temperature distribution during the

hardening process.
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	 An examination of the available literature shows that the heat

generation race during an exothermic chemical reaction is related to the

reaction rate considered in the theory of chemical kine^ies, where. the

1atl,er is exponentially dependent upon the local temperature. As a result,

the partial differential heat conduction equation becanes non-linear and no

exact analytical solutions are available 11 . Existing results take the form

of numerical solutions, or study the asymptotic behavior of the exact solution

^'	 for special limiting cases. Thus Crank and Nicolson^ 21 present a numerical

'^	 solution by finite differences to the one dimensional problem of a wall of

finite thickness, with convective boundary conditions, and heat generated

within the wall by a first order chemical re^,ctior^. Similar results have

been obtained by Nichols and Presson^ 3a for the case of an infinitely long

cylinder ^,w.ith prescribed surfe,ce temperature and heat liberated according

to zeroth and first order, chemical reactions. Anisimov and Perelman^^^

investigate the as;^rnp±:tic behavior of the analytical solution for a wall with

prescribed. surface and initial temperature wherein heat is generated. by intiat-

ing a zeroth order reaction. The results are obtained far large and small

times, and for small. values of the Pomarantsev or "explosion" parameter.

The literature search did not provide the authors with a temperature

solution t'rrat would be amenable to their investigation of t?ae thermal stresses

induced during an exothe?^m,ie chemical reaction which results in hardening of

the reacting medium. Hence, the basic process was examined as a fundamelntal

problem of heat transfer and an appropriate heat conduction equation con^tain-

ing a transient, temperature-dependent heat generation term was derived. The

resultfng partial differential equation was found to be of a form that is

similar to those studied in the literature^ 2 ' 3 ' 4^	 Even though no exact

analytic solution could be found fir the derived non-linear heat conduction

(' 1 Numbers in squared brackets. refer to references listed in the bibliography

-2-



equation, it was observed that a solution can be extracted for restrictive

conditions of. temperat;urE^ or heat generation. Specific solutions were

obi.ained for a :slab, a cylinder e.nd a sphere under the required restrictive

conditions. Not only are these solutions of use to the authors in their

thermal stress studies, but they also add to the limited literature of the

heat transfer problem.

The Heat Conduction Equation

The theory of the kinetics of chemical reactions shows that the

rate at which a chemical reaction proceeds is determined by the character of

the react3.on. In a zeroth order chemical reaction, the reaction rate is

independent of the concentration of the reactants which is faxed by the con-

ditions of the reaction, Such a situation occurs, for example, under steady

state conditions in a reacaing bed, where material is supplied to the reaction

externally in order to keep the concentrations constant. Thu., if W repre-

Bents the concentration of some characteristic reactant, the ;rate. at which this

reactant is consumed. is given by the equationr5^

dW	 -E^RTdt--Cle

where C1 i the so-called pre-exponential factors E is tyre activation

ener4r^^^, H is the universal gas constant and T the absolute temperature.

puring a chemical reaction which occurs in a closed system, the

reacting materials are consumed i.n the process. The relation between the

rate at which the reaction proceeds then depends not only upon the temperature

but also on the concentrations of the reactants. In the simplest case, the

reaction rate is descr ,̂^ed by E^,=.z^tion ^1) with. W multiplying the right

hand sider5^, and the result expressed as

(1)

•3-
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(2 )

This equatipn characterises a f^.rst t7rder reaction. With N defined as

the degree of reaction, the instantaneous concentration of reactants W

is equal to 1-N , a quantity which decreases from unity to zero as the

reacting, material is con^tumed. Equation (2) may then be written

dt ^ ( l'N ) 
Cl e-E^RT
	

(3)

Zn an exothermic xeactio^,'^, the rate of heat generation per unit

volume may be assumed proportional to the rate at which the reactants are

consumed. The reaction, when car;r^.ed to completion, liberates a quantity

of. heat per unit volume which is designated H and called the volumetric

heat of reaction. Tf Q(r',t) represents the instantaneous rate of heat

generation with r' designated as the position vector, the quantity of

heat liberated from the start of a reaction to a subsequent time t is given
t

by the integral	 Q(r',t)dt	 Therefore, the degree of reaction N can
t

al.^o be measured by the expretasion H r Q(r', t )dt , and in view of Equation
'o

(3) the rate of heat generati'.on can be written

.,^

^^

.j
f

t

Q(r',t) = ce'y
/R^^ ^- 1 _ 

H 
J Q(r,,t)dt^

O

where the constant C is requal to H C l	Equation (4) couples the heat

generation rate to the terrrperature distribution T(s',t) 	 Therefore, a

complete solution of the ^problean requires the simultaneous consideration of

	

^: ^^	 the heat conduction equation.
;^.

	^^	 In order to effect such a solution, it will be assumed for simplicity^°,
^^k{

	+4	 that thermal conductivity k , specific heat c , and density p remain constant
k

4 r

`^ :!

ir`

^^

	

q	
_4-

E1

(^+)



,.

:,	 during. the reaction. 7'he thermal diffusivity K k^pc is then also constant.

Under the foregoing conditions, the temperature distribution in a material

'	 t^ub,^ected to a time varying internal heat generation is governed by the

relation f 1.1

r

..
The heat generation rate Q may be eliminated between ^quation^s

^^	 (4) and (5) • Rewriting (^+) as

^"	 Q	 ^ Ce^E^RT	 (^)1 ^ 
^t Qat^H .o

it follows that

^'
r

H	 a i ^Gn ^1 - 1
cwt	 H

t	 /
Qd^^^ _ t',e'E RT (7 )

,.,f
..

"t

,•€

^^^^ as may be seen by taking the indicated derivative. 	 Integration of the pre-

ceding equation from time 	 t .^ 0	 to an arbitrary time	 t	 then gives
.,

.e;
,,^

'_^
t	 .

^]^ - H
	 Qdt}

t

^ _ H
	

e^,E^RT dt, (8^,^,n

^^	 ,i
,r

..	 Lt
Thus, forming exponenti8ls of both sides of Equation (8) and introducing than

^^` result into Equation (^+) permits the heat generation rate to be ex^aressed as

a function of temperature in the form

E
_E _ C terRTdt ►

RT H J
ors	 Q(r'.t) = Ce	 o	 (^)

r ^4^

/:i

.' i
^;	 When t^(r' , t) is replaced in Equation (5) by the preceding ^re^^Yt, trze.	 Y Ai
^{

^j

^^	 transient heat conduction equation becomes
^.,Y

^'
5..

.:^:

a



• (lle)

.,.^

E
t	 ^ RT ^

	RT •' ^ ,^
	 a	 dt

^2^^1^^^ _fi e 	^^ ^` .r.

r̂ .'Iae solution to the last eq^:a'^ion, subject to suitable boundary and initial

cc^t^d:Ltions provides the temperature distribution within a material ttnder^oinp

a. fiirs^L orr^ex chemical ree„etion»

xn carder to s.^^plif^r and Qeneralize subsequent calculations, it is
c^esix^€^blc: to put Eq^^at^.on (l0) into dimensionless i'orm. Fox • this purpose.

1e^:. txs def^:ne the d^.mens],onless lengths

x ^ x' /^ ;	 r = r' /Ro	 (lla)

^thex^e ^ and. R^ are some characteristic dimensions of the system, such

as walk. thickness an,d external radius respectively; the dimensionless time

the ^^.mensa.on::ies^s temperature

FtT/E
	

(llc)

tl^e Pomarc.ntsev or "explosion1° parameter

P r G,'I2I,2/kE	 ,"
	

(lld)

(l0)

and the daxnensionl^:ss graaxp

y ^- CL`''/`K x

tir^.th th,e ;receding, cle^'a^.tions, Equation (1.0) may be rewritten in dimensionless

Form z^s

-6-
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2	 a6	 -1/80 _ye `l^AaT
^6-^^-Pe	 e (13)

y 
r ^T 

^ 
My^^ 

dT^

^^'' )

°;^^^iax4c ^^ n.c^r denotes °^#^+^ ^aplac^.at^ op^^xator wr^.tter^ with. ^ y esp+^at to t;he

c^^.mc^^^ y;^.^a,^nlc.s ^ space eoarc^^.nates

^h^^ pomarant y ev pararn^ter P ple^ys +^ erue^.a^, rala ^^ ^^"^^ in a

wrath ordex r. caet^.om. A shady Mate ^^o1ut3.ar^ to the trap« 3.arat concluct;^.on

c:c^taa^:^^.on cloe^ not ex^.at ^.:^ ^.t e^ece^s a er3.t3.eal value. xnstaau, the tam»

;perature a.nca^arias witho^,^t lint^.t d^trin^ an exo^Lhcrmie reaot^,or^ anc^ an

explosa,on wiMLl res^^„t. In a First order reac^;ion, however, the ter^pc^^a'i^urr

xise ^. ^ limii^ec^ by the available quanti^by of reactants and cannot a,a^aaed

the amount IIf pe	 L^hless th^.s temperature rice tri^^;ers ^a Neeor^c3ar,^r xea,ct^.c^x^,

no exPlos:i.on 3.n ^:he f:^xst sez^aa is posu;ible.

^.s citad .in the lx^tror^uet^.an, some nurr^e^°ieal results to Equr^tiara

(lam) exist in the literature, ''but analytie.al solutions sre not known tea

exist. ^^^^acific approximate a,nalyta.ea^;,! solutions w^.11 be d+^rived ^.^^ the

present ps.per i`or the s3 t^^ati4n ^n wh3.ch the inita]: temperature oi' r^

z°e^;on as we^.^. as its surface temp^x^atu,re are cons giant s,nd ee^,uaJ. -^r^ ^c^

In dimensiontess terms, the in^.tial and, boundary values of the tprct^raerature

parameter 8 will be designated 90

Tt is proposed that a solution far 8 be genera^tec3. irz the follow:Ln^;

manner. ^teplace the term A on fhe right side of Eq^ua^ion (1^) with the

constant 60 , so that the dimensionless temperature ra^.ation may be writt^;n

Then define the reaction rate parameter

_^^



^^/^

	

^^ ^ y ^	 °	 (^^^)

^a that Equation. (^.;y ) can. ^e expressed

..

It is naw possible to salve ^quat3.on (^.>) directly for 8 , ana the so:tut^.on

	

des^:gn^.tod 8 l (r, T)	 is the first approximation to the corxect ternperai^xre

^^.strabu^,^,on. A secons,^ approximat^,on can be ge»^erated by subst^.tirr^ 91

into the right bland side off' equation (12), and solving the resua.t^.ng none

homo^;en.aoras different^^al equation fox that which is designateri A^ (r, T) ,►

.^3y repeating the ^axocess, an iteration scheme is set up which hop^f ally

wild, converge to the. correct solut^^n. Unfortunately,. deta3.ls become corn-

plicatod and although the first approximation is rc:ad^.^.y obtawned., integ;rataon

requax^ed for the second approximation has proven. to be unmanageable.

^'orturr.e.tely, howevi^r, the first approximation is of considerable anteres^t

under at least three physical. condatii^ns.

When al„l other quantities are kept constant., and the reaction

rate par,.ameter 'v` is sufficiently sma11, the result^.n6 rase in the tem-

perature will. a:^lsa be small.. The variation of the exponential factor

exp (-E^RT) is then small, and Equation. (,1.1.) may be represented bar Equation (a.^).

At the othex extreme, we have a very large reaction rate param^,eter.

The rrraterial then hardens quickly aria. the heat is liberated impulsively.

The material undergoes .an instantaneous and uniform rise in temperatu^^A

equal to H^^^c , followed by a cooling. rage that is independent of the

rer^ctanrate parameter as well as the temperature. The sol^,^tions of

^;c^uaton (^,^) then approach the exact solution of Equation (1.1,).

-8-
rp+. r^wrw.
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It ahould be pointed aut in view of Equations (^,lc}, (llc} and.

(^.^^} tiYat ^,t^e defin^.tion of the ruction rats; parameter ray also be written

v^ ^ ^ a•E/RTo

?^H ^^)

and 1,hus ^.nvolves quantities other than those ti^hich govern the physical :peed

^f the reaction. Large and. small values of v2 associated. with.rap^.d and.

Glow hari^ening must, therefore, be ^.denta.f3ed with the time scale of the

Fouriernumber (Kt^L^) , and not with physical. t^.me.

The maximum te^stpera.ture change. which will result from. an  impulNive

1^.beration of heat is equal to H^pc 	 xf durin6 that tempera^;ure c'han^;e

from To to To + H^pc there is only a small change. in the exponential

factor e"E^RT ^ then in an app=woximate sense, the heat generation rate

becomes independent of the tempexature. The solutions of Equation (15) w3.11

thus approach those of 'Equation (ll} inc:ependently of the value of the reaction

rate parameter.

Except for circumstances cited, the results obt gined from Equation

(15} are expected to be qualitatively srrilar but quantitatively different

Pram the s olut2ons of Equator, (ll} .

Equation (15) ma,y alao be written

X26 - ^6 _ - ^e -v2^r	 (^,R

by def^.ning the coefficient Pv2^^ to be equal to the parameter ^ . T)^e

.latter form will pxbve to be useful. in subsequent analysis.

Let u:s now direct our remarks to the boundary condition and initial

conditions of the :problem. ^iux:^n^g arz actual casting p^ocess the mo;id wall.,

and the .surfaces between the n!'?ld, cast material., Arad the ambient fluid

form.. a thermal barrier to heat ^l.aw. Tt^e ^^^ual. mathematical description of

• i



-Lxi ^ effect takes tt^e form. of a convective. boundary condition. However,

tvtlen the mold 3.s physically thin, and the material h3.ahly conduct^.ve, the

accumulated thermal. re^3.stance can be negli^ible^ Furthermore, dur^.n^

the curt.n^ pw^ocess, the mold s^xrface may be cooled and kept at a fired

temperature in order to maintain temperature control. Under the foregoing

cond3.tians, the ambient temperature tnay be considered ^che same as the surface

^;erperature of she poured material. The latter situatt.on suggests the

'^oundury and initial conditions for the present study. It will therefore

^^^	 be assumed ii1 solving equation (l7) that for the`,
^^

Boundary condition: esurface - eo	
(18a)

°`	 and for the

Initial condition: 	 8(r,0)	 90	 (18b)
•ski

.^ ..

I

-^^'{

S^

^'' ^	 Tem erature Solution for an Infinite Slab
^'

^^	 Let us consider the problem. of casting an infinite slab of^. '.

^
y
^`	 constant thickness L . The initial temperature of the cast material is

f^' 4

z.	 ,
'1'o and. the s^zrfaces of the mold. are maintained at T o	The re^:ul°wing

^^ ^^
^^	 temperature variation is a function of only one space coordinate, that which

^	 ^

j:^'

'Y ^	 is measured normal to the mold surface; in dimensionless form it is given

^;:::^
the range 0 ! x < 1	 Consequently,. the Laplacian operator reduces to the

second derivative with respect to x , and Equation (17) for t^1e dim ension-

less temperature parameter 9 ,becomes

^^,
ti^
,;^.
.^.

^^:b
:,E

''

,^^;
. ..`^,

.^

,^

a2A - aA _ - ^e-v2T

axe aT

The associated boundary and initial conditions may be simplified to r^:ad

-10-
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. #4'
•i:

^t

.. Yi

r`' ^

•y;' ^•^

M9

ti^ {

^a
•:^::.,,^
':",

'ig;:
v:^

_'.

^o^,^ndary conditions:	 6(x, T)	 0 ; x ¢ 0, x = l

=nitial condit^.on; 	 A(x,0)	 0
_

^.

because Equation (1g) determines A to within a constant, and A can

be measured with xespect to Ao .

To find the complete solution t=.^ Equat3crn (19) note that its

homo^eneoua solut3or^ may be found by separation of variables. to read

-1^ nT
6H =T, a	 rAn sin ^ nx + Hn cos ^, nx^ ,

n

n = 1,2,3,..E

2

The paxtir^ular solut^.on ^.s ass^.amed to be of the form 6p ^ e-ti^ rt^S(x)

4Jhen substituted into Equation (1^), it is found that

;^,.,r^.^ ,
Mt ^^1 dd ..'
n';

:°'^

1
x4

i N

xi ^r^ ^.

^(x) = Ap sin vx ^^^ Bp cos vx - -^
v2

and consequently the complete saluti.^n takes the form

2	

_A(x,T)	
e..v T 

^Ap sin vx + Bp cos vx
v2.

-^ ^T
	 ^e	 ^.An sin ^ri + Brl cos a nx ,

n

n = 1,2,3, • • •

The boundary conditions at x = 0 and x 1 are satisfied if

Ap =-^[cotv^cscv^ ; Bp=
v

^ n =nn,n = 1, ^, 3 ...	 ; Bn =O

Tlie solution at this point., therefore, can be written

(20a)

(20b )

(2:l,)

{22)

(23 )

(24)

W



or

- - 2 [ esc v -cot v) sin vx +cos vx - 11 = S, An sin nnx ,
v	 tl	 (L71

n = 1„2,3....

S^Ihen the left side of Equation (27) is expressed in a Fourier seriesC7^

consisting of terms in sin nnx , the coefficients An are found to be

eq^xal to

An =	 ^^ 2	
n = 1^3 ^ 5^ ....

nn [ v - (n^c) ^

(28 )

Therefore the solution to Equation (19) with the prescribed boundary and

initial conditions of Equation (20) may be written

_^v2T	
_e(x,T) - ^	 [(csc v cot v) sin vx +cos vx - 1^

v

(	 ) 2 (29)
+^^ e-nn 2s'nnnx 

^ n= 1,3,5,....

^'^`^

,,

The initial condition requa.res that

6(x,iJ)=4=-^[(cs c v -cot v) sin vx+ cosvx-l^+

v
(^6)

+ F An s 3.n nnx ,	 n - 1, ^, 3 ...
n

.^t{

,.Y

,:

.^
'3

^.^'

t

.^ a

'r;

..^

,.	 a.

,^;

^<
^,a.^

'^'3
'^^

°A
.. ,^

^.

;,
,.

-	 .„::

{ R t
:.	 ^:

^j

^^

^,. ,	 .:
!.. ^

2
A(x,T) =-^ e v ^('(cscv-cot v) sinvxfcosvx-J.^

v

(25)

+ S A 
e-(nn)2T 

sin nnx ; n ^ 1,2,3 ....
n

n

The preceding result can be put into a more compact form by noting that

at '^ _. ^

- a.2 -



A(x,0^ = 0 = ^ ^(csc v -cot v) sin vx + cos vx - l^

	

v G.	 a

(^^)

	

+ ^ 
S	

sin nnx	 ,	 n ^ 1, 3 , 5 ..
n nn[ v2-(nn)21

or therefore

(esc v-cat v) sin vx+cos vx-1 = 4 v2 F	 sin nnx

n nnx (nn)2-v21

(^1)

n ^ 1,3,5 ••••

+	 When Equation (3 1) is substituted info Equation (29) and both series placed
^' ,

under ono summation sign, it a.s found that the temperature distr3,buts.on

within a s^.ab in which the material is generating heat at an exponentir^.11y

c^ecayi.tl^ rate is given by the relatively simple expression

^	 v` T - (nn) T
	0(x,T) = ^$ T ^e	 -e 2 2 ) si.n nnx 	 ;

n	 nn(' (n^) -v ^

(32 )
n ^ 1^3^5^...

The significance of th expression will be discussed after ran equivalent

examination of the teni^erature distribution in a sphere and in an infinitely

long cylinder.

Temperature Solution for a Solid Sphere

Under cexiditions of spherical symmetryn the T,aplacian opera°tvr

reduces to a function of the radial derivatives, and consequently Equation

(17) for tree dimensionless temperature distribution within a material generating

heat according to a,f;irst order chemical reaction can be written

	

2 ^ (r2 
^^) _ ^ _ - ^e-

v2^	
(33 )

r
r	 .r	 T

-13-



a2V - aV __ - ire-v2T
art

The homogeneous solution to Equation. (35) ire found by separation of variables

to be

^, -}^nT
VH = ^ e	 [An sin ^ nr + Bn cos ^ nr1 ,	 n 1, ^, 3 ...	 (36 )

n

whereas the particular solution ,'nay be written

2

Vp = e
_v 

T [Ap sin yr + Ep ecs yr - ^1	 (37)

The complete solution is .equal to the sum of Vp and VH	 When V is

replaced by r6 , the complete solution for the dimensionless temperature

distribution takes the form

,,

^^.
ti

^^

,,

,.^•	 .+

•	 ^=
,,;

^.;

;i
- $.^

..^

..
^^"

,i i1
^.	 ; i

:_	 ,
`^y;
^;

„, .j^.^,
. ,^,

..

^^>)

f^

«	 t S	 .

,.. r.
Y.

. `,^_:	 Tlie dimensionless coordinate r is equal to r'^Ro where r' is the

dir,,ensional radial coordinate, and Ro the outer radius of the sphere.

-	 For the same physical reasons presented in the previous section, the

^^oixndary and initial conditions associated with Equation (33) may be written

6(l,T) ^ 0 (a) ,	 9(r,0)	 0 (b)
	

(3^)

In addition, of course, there exists the assertion that the solution be

nonsingular at the origin. With V = rA , Equation (33) reduces to

.,fir.
^,;,.

',
r .	 ,.y^ ^

i
_'•

,.^f
f
t

-j±	 t'

Y'

2
-v T

®(r,T)= e r [Ap sinvr+Rp cos yr-^1

^ -^ nT

E e^ [ An sin ^ nr + Bn cos ^, nr^ ,
n

n s 1,2.,3, • • •

-14
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At the origin the terms containing cos (vr) and cos (^,nr)

become infinite but are eliminated from the solution by causing Bp and

Bn to vanish. ^3oundary condition (34a) requires B to van^.sh at the

outer radius, a requirement that is satisfied. when Ap : ^^v2sin v and

^ n : nrr , n ^ 1, 2, 3, ... Thus Equation (3^ ) can be written

sin yr -	 ^ ^ °D e-(nn)2TB(r^T)	 r	 ^ sin v	 r1	 2 + F	 r	 An sin n^rcr ,
v	 n

(39)
n = 1,2 ,3,...

Initial condition (34b) requires ghat

A(r,0)	 0	 -^ ^ sin yr - r1 + F. An sin nrcr , n	 1,2,3, ...	 (^+0)
v	 n

or

	

sin yr	 O0
rr - sin v ^ " F An sin nrcr : n ^ .1,2,3,... 	 (^+1,)

n

The Fourier coefficients A are determined to be
n

2^^
-l^n

,	 n : 1,2, 3 ,...	 (42)

and. consequently, the solution of Equation {33), subject to the given.

boundary and initial conditions, can be expressed

^ e-v2T sin yr -	 ^'	 2^{-1)n	 e^- ( nn)2T
8(r,T) = v2 ^	 r	 sin v	 r1 + n nn me 2 -v21	 r	

sin nnr
^(	 )

' (^+3 )

n = 1,2,3,...

Tt is seen, as a consequence of Equation (41) and Equation (42) that at

T _ 0 , the series given by the second term represents the negative of

-15-



.,^..

^_,

^;'

t^

^i

9 4!.,^

,^.,

the radial^.y dependent coefficient

...^.'
[ sin yr - r1	 r 2

2l 2

ai^	 ^+
n	 1 2^3, ...	 (^ )>

v r n (nn) -v nnr

Thu y Equation (43) can be wxitten moxe compactly as

( ^2	 2

®(r,T) = ^^ 5' ( -l)n 
e- n^c ^r - e_v ^ sin nnr

n	 (nn) 2 - v2	 n^ r	 45 )

n : 1.^^^1^...

Equation ( 1^5) approximates the temperature distribution within a sphere

with atime-dependent generation of heat due to first order chemical

reaction.

Solution .for an Infinitely Long Cylinder

Zn cylindrical coordinates rtith axial symmetry, Equation (17)

reduces to

r ^r car
1 a 

(r 
a6 ) - aA x - 

^e
-v2T	 (^+6)

The dirnen^ionless coordinate r is equal to r'^Ro where x' i.s the

dimensional radial coordinate, and R o is the outer radius of the cylinder.

For reasons previously indicated, the boundary and initial conditions for

the problem may be expressed

A(1,T)	 0	 (a)	 9	 6(r,0) - 0	 (b)
	

(^+7 )

frith the understanding that the solution be non-singular at the center.

Separation of. variables sllows the homogeneous solution of Equation (^+6)

to be

^.

..^...j.
^^ ^

i .•Y t

'';^.,

^^:
Via?;;!
C 4-

h. 1

-16-



,^^
' ^^°

r ^?

^^t,.4

.,,
1;^^,;,.

..^

:;

d

}:

^,,^

Z
;,

6x = f' e n [^A.nJo(^nr) + BnYo (^ nr)1 ,
n 

-^
^c ^,

(^^^

in which Jo is the zeroth order Bessel function of the first kind, +snd

Yo is the zeroth order Bessel funct^,on of the second rind. kith a
_ ^

particular solution of the form 9p = e v Ty6(r) , E'quation (^^) shows

that ^ satisfies the relation

dr2 	d:r	 v2

The latter is a Bessel equation of zeroth oxder^. Its solution is

^(r)	 ApJ'o(vr) + Bp'Yo(yr) _ -^
v

where Ap and. Bg are .constants. ŷenc^ the complete solution to

Equation (46) may be written

	

2	 - ^
6(r,T) = e-v T ('APJo (vr) + BpYo (vr)	 ^^

v

^+ -^ ^^

+ F e	 [AnJo(^ nr ) *^ BnYo (^ nr)^ . n = l^^,3^...
n

Since the Bessel function Yo (^ r) becomes infinitely large at r = 0 ,

the constants Bp and Bn must vanish identically for the preceding

solution to be finite at the origin. At the outer radius of the cylinder,

the boundary condition requires that A(1,°^) •^ 0 . This condition is

satisfied when Ap = pw2Jo(v) and ^n 
are roots of Jo (a n ) 0 .

Substitution of the preceding conclusions into Equetion (57,) allows it

to be written

.,

r."

^..^

•'

t{

'a

(49)

(5Q)

(51)
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Y

..^
,.^

M

.. 1 . 1

•	 ;?t„
^^

is 4

v	 ©	 n

(>^ )
n " ^^2f,^^.•.

The i:^it-,ial co^^^.tion on 8 , pre^^cribed by Equat^.on (^^7b) ind^.cates th^.^l

	

^^ (^r)	 as

e(r,0) ^ 0 .^ -2 ^ ^ ^ - 11 + F AnJo (^ nr) ^

	

o^ ^,	 n	 ^f
(» )

n a 1,2,3,...

or there^'ore

- 
^ Jo (vr)	 ^

v2 [ 
Jo v ^- 11 _ ^ AnJo (^ nr) , n	 1^2^3^ • • •	 (^^)

7;'he coef^iGents ^'n may be ^ieterm^ed by developing tk^e left; s ice

a:^ Equation (5^+) into a Fourier-Bessel series r ^^	 It ^.,^ then ^'outici ^Lha^.

^ 1	 J (vr)
2 ^ ^1 - J v 1 J^o(^nr)dr

v	 o

p	 °	 (55)
n	 Jl^An)/2

Evaluation of the integral shows that

An = -- ^ ^--	 (^^ )

fi n[ v -^ n1 J1(^n)

Thus the solution to Equation (^6) under the prescribed boundary and initial

conditions of Equation (^+7) can be written

.	 ^^.
^ {

rF^

a	
x4

;^y^,',
^I

.;

• ^^	 ,

_^ 2T

2 Jo (vr)	 a^ e n Jo (^ nr )6(r,T) _ ^ e-v Tr Jo v - 11 - ^ F	 ^-v2 J	
^

n ^n[a n 1 l(an)

n •^ 1,2,3,,..

-18-
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'N`

M 1f

AY

t .

The previous expression can be simplified by noting that at T = 0

Jo ( vr)	 M	 Jo(%nr)
0 (r, 0) = 0 •^ - 2 r J v - 1'1 - 2P r -_..,.,,....__	 0

V	 o	 n a. n^1^ n - v ^ d1(a n)

(53)

n = 1,2,3,..e

so that

v2 J v .. 11 
= 20 rf J0(vr)	

M

o	 n n	 1(X n )n - v21J

do(X nr)

(59)

n = 1,29399••

Substitution of Equati on (59) into Equation (57) followed by a combination

of the two series under one suz=ation ,sign yields the temperature distribution

in an infinitely long cylinder, where the material generates heat due to a

first order chemical reaction, in the form

2
^o e-v2T -e -^nT

	Jo(%nr)

2P 
n2 

v21
	 1(%n	

; n = 1,2,3 9 ..	 (60)
n  n-

Determination of Coefficients

To make a quantitative examination of the temperature distribution

associated with the solutions given in Equations (32) 9 (45) and (60), it is

necessary to assign suitable numerical values to the constants contained

therein. Precise values can be assigned in a specific investigation. In

the present situation, a more general point of view may be taken before

ranking the assignment, by first exploring the significance of the expression

previously defined as the degree of reaction N .

k.}

'	
t^
t

.i
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The quantity N(t) which specifies the extent to which the

chemical reaction has gone to completion, may be expressed in terms of

the heat generation rate and the heat of reaction as

t
N(r,t)	 H	 Q(r' ,t' )dt'

4^
(61)

in view of Equation ( 6), the integral containing the heat generation rate

can be eliminated, Leaving

art
N(r,t) = 1 -

C  
-E RT

Since the heat generation rate is itself expressible solely in terms of the

temperature, it may be replaced in the preceding equation by its equivalent

in terms of temperature from Equation ( 9) 0 so that

(62')

. C 
r 
t e-E/RTdt'

H ,l o
N(rot) = 1 - e (63)

4

If the temperature T does not vary appreciably from its initial value To

(as assumed in each of the three solutions for temperature distribution,

derived earlier in this report), or if the heat generation rate is not

appreciably influenced by the temperature changes induced in the material,

Equation (63) reduces to

-1/e
- H e	 ° t

N(t)=1-e (64)

where, in accordance with Equation (llc) E/R'.t o has been replaced by its

equivalent 6o . 'then, in view of the definition of v2 given by Equation

(16) and T given by Equation (11b), the degree of reaction is expressible



N(0 l e•v2 T (65)

a

f ,

^^ F

R?

e -N

One may use the 1 a s t expression to determine a physically

valid ',,innge of values for the parameter ;v2 based upon observation of hard-

ening times and thermal diffusivity. Although mathematically it takes an

infinite T for the reaction to reach completion and N to take on the

value It one can observe that the limiting value is reached asymptotically.

For all practical purposes it is reasonable to assume that the reaction has

been completed when N takes on some value close to unity, let us: say

arbitrarily 0.9. The numerical value of v 2T is then about 2.30, It is

further noted in our reasoning that the physical time required to fabricate

or cure materials where setting occurs by chemical reaction, may range any-

where from l to 100 hours. Also, the characteristic length or radius of the

physical configurations under examination may run from 0.1 foot to 10 feet.

With dimensionless time given as T = X t'/L 2 , where t  is the setting

time, and v 
2 T = 2,3 according to the preceding asswnption, the parameter

v2 = 2.3/(xt ! /142) . Let us take the thermal diffusivity h to be

.004 ft2/hr, a numerical value found for many plastic materials. It is

then seen that v2 has a range of values from about 0.5 to 500, (the small

value was obtained by using the assumed numerical values of a large setting

time and small size, while the larger value was obtained for a short setting

time and a large size).

The parameter 0 which first appears in Equation (17) and then is

found throughout the analysis, can be expressed with the aid of Equations

(lld) and	 in terms of v2 by the relation

V 	 R/E • H/P c
	

(66)

Since the dimensionless temperature 9 is equal to RT/E , substitution

'o

=1

r:
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A=

for p and 9 into Equations (32), (45) and (6o) puts them in to a form

which expresses the dimensional temperature. Thus for the wall

2	 H W (e"V2r e_(nit)2T)

Pc
T(x,T) = 4v	 F	 sin n^tx ,

n	 nn[ (nn )2-v21

(67)

n =-s3^Sr..•

For the sphere

2 H 	 1 n (e- ( 
nn ) 2 	 2

T_ e_
y
 T ) sin n,trT(r,T) = 2v	 F (- )	 ,

T n
	 r (nit )2-v21	 nrtr

	
(68)

r
	 n = 1,2,3,..9

For the cylinder

t

y.

- v
2	 2
T _^ T

T (r, T )	 2V2 • H âm ( e	 - e n )	
Jo (^ nr )q

PC 
n	 nrX n-v2^	

Jl ^ n	
(69)

n	 1,2 ,3, ...

The ratio H/pc is dimensionally a temperature, and measures the increase

in temperature which would occGr if the heat of reaction per unit volume H

were to be discharged into the material instantaneously. It corresponds to

the temperature after the initial instant in the limit as v 2 becomes very

large, and is also the maximum possible temperature increase under any

circumstances for the first order reaction.

Numerical Results and Discussion

Equations have been presented which express the temperature dis-

tribution within a wall, sphere, and cylinder where heat is generated by a

first order chemical reaction when the temperature does not vary appreciably

from its initial value or if the heat generation rate is not appreciably

k
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influenced by the temperature change induced in the material. In order to

obtain some idea of the significance of either one of the restrictions, please

note that the temperature effect is due to the factor exp (-E/RT) which appears

first in Equation (1). For many organic resins, the activation energy E has

a range of from 20,000 to 40,000 BTU/lb - .ole . . If the reaction is initiated

at 700F, it is easily determined that a rise in the temperature of 180 in the

first instance to 9° in the second is sufficient to cause the factor exp (-E/RT)

to double. Under these circumstances, the reaction rate is strongly influenced

by temperature, and the sensitivity increases with the magnitude of the acti-

vation energy. Thus, for low values of v 2 , the approximate solutions will

be valid only if the temperature rise is indeed small, or when the reactions

have a low activation energy. It can also be seen from Equation (16) that for

a suitable combination of physical constants, v2 may become large. As we

have just seen, temperature has the effect of accelerating the reaction and

thus increasing the effective value of v 2	It has already been observed,

however, that for very large values of v 2 the temperature distribution over

most of time is independent of the temperature, since the generation of heat

has ceased. Thus the approximate solutions will '>o be valid for these large

values of v2 .

Since the temperature exerts its influence upon the heat generation

rate through the presence of the factor exp (-E/RT), it is the variation

of this factor which, to a great extent determines the accuracy of the

present solutions. The maximum temperature rise under any circumstances

is limited to H/pc , so that the ratio of the exponential factors under

the extreme limits of the initial and maximum temperature can be written

-23-



E	 H pc

RTo C To H p c^
e (70)

'q

`	 E

RTC 11 H p c )
e E

P	
- RTo

e

The variation of the exponential factor decreases as the foregoing

approaches unity, and this condition will be met, approximately,

whenever the dimensionless group E/RT2 • H/pc is very small. Thus,

independently of the parameter v 2 or the rate of reaction, the more

closely the preceding condition is satisfied, the more appropriate

will be the solutions presented in the present paper.

The numerical results which are obtained for the three geometrical^fql

; y configurations studied are qualitatively similar, and it suffices for illus-

trative purposes here to exhibit graphs and tables for one of these, the

infinitely long cylinder. 	 Figure 1 shows the temperature history at the

center of the cylinder for several values of the parameter v 2	Values

of the temperature are plotted as a fraction of the maximum attainable

temperature increase	 H/pc	 For a value of	 v2	equal to unity, the maximum

temperature rise in the cylinder reaches 0.18 of the maximum attainable tem-

perature rise.	 In view of the preceding discussion, and depending upon the

activation energy, this can be sufficiently large to influence the heat

2
generation rate.	 At the other extreme, we note that when 	 v	 equals or

exceeds 100, the maximum temperature is greater than .90 of the attainable

maximum increase, and the subsequent cooling follows the same path as for

v2	equal to 500 and presumably larger values. 	 Thus, in this range of values

for	 v2	the solution will, along the centerline, approximate the actual

temperature history resulting from the reaction quite TRell.	 From Equation

L,
a„ (16) we observe that	 v2	is a function of the dimensions and thermal

properties of the system as well as of the reaction constants. 	 Thus, a given
f
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physical reaction rate can, in different contexts, lead to large or small

values of v2 .

Figure 2 shows the dimensionless temperature distribution within

the cylinder at the moment at which the center reaches the maximum temperature.

The distribution, which has been normalised so that the magnitude at the center

is unity, is shown for differing values of	 v2	 With increasing values of

v2 ,	 it is evident that there is an ever larger central region of almost

constant temperature at this instant.	 In the limit when	 v2	becomes very

large and the heat is liberated impulsively throughout the material, the

temperature ratio at the time of the centerline maximum is of course unity

throughout.	 It thus appears that the closeness of the approximation with

increasing values of	 v2	varies spatially as well as in time. 	 For a given

} value of	 v2 ,	 the center temperature as determined by the solution presented

here may reproduce the actual temperature during the reaction closely, whereas

points nearer to the surface may still be considerably in error, thus indicating,

that convergence of the linearized solution to the exact solution is not
=7

necessarily uniform spatially.

Some qualitative inferences may also be drawn from the results

k, .̀ . indicated in Table 1.	 One may be inclined intuitively to judge the degree of

hardening in a thermosetting material from the temperature, assuming that if

the material still exhibits an elevated temperature, the reaction is not yet

completed.	 On the contrary, Table l 'shows that for large values of 	 v2 ,

corresponding to a rapid hardening, 'the material is completely hardened at

the time that the centerline temperature attains its maximum value. On the

'	 other hand, when v2 is small, the major part of the _reaction can occur well

after the time of maximum temperature. Thus, one cannot judge the degree of

'.'	 reaction solely from temperature data.

Al
F
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	 Similar conclusions may be drawn from the results for the slab

and sphere.
i

Conclusion

The problem of determining the temperature distribution in a

material where heat is generated by a first order chemical reaction has been

discussed, and the non-linear character of the resulting heat conduction

equation exhibited. 	 Suitable solutions for a wall, sphere, and cylinder were

obtained by suppressing the effect of temperature upon the heat generation

rate, and conditions under which this approximation would be valid were studied.

3G

It was determined that the validity of the approximation depended

in part upon a combination of constants designated as the reaction rate

parameter	 v2 ,	 and that the approximation became quantitatively accurate

when	 v2 	was either very large or very small.	 For small values of 	 v2 , the
,..yf

closeness of the approximation also depended upon the temperature rise and the
'.4

t.I

activation energy.	 At intermediate values of 	 v2 ,	 the approximate solution

a' was qualitatively similar to the expected form of the actual temperature dis-

tribution, but no quantitative inferences could be drawn.

It was observed that the sensitivity of the heat generation rate to

temperature changes was determined by the magnitude of the activation energy.

For chemical reactions with low activation energy, the influence of temperature

upon the heat generation gate is small, and the solution presented here will

yield quantitatively accurate results.	 This will occur when the variation of

the factor exp (-E/RT) over the range of temperatures predicted by the

approximate solution is small. If the activation energy is large, the approx-

imate solution will be quantitatively accurate only for very large and very

".;	 small values of the dimensionless reaction rate parameter v2 	 It hR s also

t ^

„t v

.`

44. 1
a.,
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been shown that the influence of the temperature upon the heat generation

rate decreases with the magnitude of the factor (E/RT2o)(H/pc) , and

that as this factor becomes small, the accuracy of the approximation

increases independently of the parameter v2 .
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Figure 1 -
Temperature History
on the Centerline
of an Infinitely
Long Cylinder for
Several Values of
the Reaction Rate
Parameter
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DEGREE

REACTIOPI

DIMENSIONLESS
 I 

AT

TrW RATURE

TE^^PX IR.AT JRE
^^!CENTERLINE   

,50 .22 ,50 ,10

1,00 ,33 ,40 ,17

5,00 ,E3 ,20 ,40

10,00 1/-7 V ,15 ,f,5

50,00 ,97 ,07 .95

100,00 ,99 ,05 ,99

500,00 1,00 ,n3 1,00

Table 1 - Variation of the Degree of Reaction and
Dimensionless Time with Reaction Rate at
Time of Maximum Centerline Temperature

in the Cylinder
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