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When it is desired to contml a plant 3.n a particular way, an 

accurate description af the plant is necessary. 

lack of knowledge about the plant, adaptive control can be used to 

achieve the original contml objective despite thLs ignorance. 

When there is some 

The ~mdeJ-raference adaptive system presented hers is based on 

knowing the structure o f  the plant but not knowing some ur a l l  of t h e  

pmmeter va3.uea. In addition t o  t h b  uncertainty, tho analysfs also 

accounts for plant parameters which arc1 both unknown and in an 

unknown m a n n ~ ~ .  

The model-reference system uses a model subject to the same input 

as the plant. Since the modal and plant structure are the same, any 

difference Getween the states of the two (tracking error) is due to  

differences fn the paramt0r values of each. The model par(anreters are 

chosen to achieve the desired control objectiva. 

action reduces the emor, the plant behaves Pn the desired manne~ 

despite ignorance of its parameters, 

Hence w h e n  adaptive 

In contrast to previous work, variational techniques a m  employed 

in obtaining tw algorithms for effecting t h i s  adaptive control. 

first ia a  pa^ 

The 

ter adjustment scheme where the algorithm defines how 

ba adjusted to reduce the tracking error. 

The second method utirfees a contml signal input to achieve tbs same 



objectives e Both techniques are lelaented continuously i n  real t i m e ,  

and afford un 

absence of dfstwbances. 

l i ca ted  analysis of th8 closed-loop system i n  the 

The more hpozctant results are: 1 Either algorithm guarantees 

ters a m  stationary.  2. s t a b i l i t y  of the emr  when t he  plant par 

In the  presence of unknown parameter variations a bound on t h e  e m p  

can be guaranteed. This bound can be reduced by increasing adaptive 

loop.gains. 3. Even if all unknown parmters are not compensated 

for, an ercop bund  is still guaranteed, This r e su l t s  i n  a gmat ly  

s h p l i f i e d  configuration for the  p ter adjustment scheme. b, The 

parameter adjustment dewrlopsnernt is fornrulated so that it fa  di rec t ly  

applicable t o  plant parmeter identification, as well as sdqptetfon. 
.. 

Simulation nsultp3 are presented i l l u s t r a t i n g  application of the  

parameter adjustment algoz4thm to pitch control of an ail?craf% In 

addition other rzon-trivial aimuJations are presented which demonstrate 

the effectiveness of both methods. 
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INTRODUCTION 

A system has been defined as adaptive i f  a mans is provided t o  

monitor its performance and modify the control action accordingly i n  

an attempt to make it an acceptably performing system &). Since this 

work is concerned with only model reference adaptive systems, an 

acceptably per5oming system is one whose performance is closely enough 

slaved t o  aome reference performance so t ha t  t he  plant dynamPc response 

t o  a par t icu lar  input is closely described by t h a t  of the  d e l .  

t h i s  context the model is the physical implementation o f t h e  designer's 

concept of an acceptably per€omning system. 

In 

A strong parallel  ex i s t s  between model reference system and 

conventional control  systems, 

be achieved through external compensation, p r e f i l t e r s  and feedback 

elements. 

an acceptably performing system is nqed not be implemented. 

the s t ructure  of the  plant and the  value of a l l  plant parameters are 

known, the  desired performance can be obtained using fixed compensation. 

If t h e  plant  parameters vary, the system with fixed compensation may 

no longer behave acceptably. 

the  fixed scheme could be replaced by mre complex time variable 

compensation. 

In  both cases desired performance can 

In  the  conventional, feedback control ler  t he  concept of what 

Since 
* -  , 

If the parameter variatfons were known, 

The behavior of t h i s  scheme would be exactly that which 

compensated for plant parameter variations to produce desired system 

performance. 

The mom malistic problem, and the one wfth which this thesis 

deals, is where plant parameters vary i n  an unknown manner. The cost 
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of compensating for these variations is a more complex control ler  con- 

figuration. In part icular ,  it now becomes necessary t o  know how plant 

performance compares t o  desired performance. 

function is t o  analyze t h i s  r e l a t ive  performance and act in a way t o  

keep t h e  plant pep rsatisfactox)ily. The control ler  must there- 

fare milcaup~ performance and for every msasrmnmnt have a st rategy 

which is designed to irnpmve the plant response. The basis for a. 

par t icu lar  s tmtegy  as w e l l  as the  choice of a perfoMBance measwe t o  

a large extent define t h e  adaptive controller.  

The adaptive control ler  

The ultimate fac to r  i n  determining a design must be t h e  par t icu lar  

application f o r  which adaptive control is required. 

vary at rates which prohibit  acceptable response from parameter adjust- 

ment techniques.' 

by having inaccessible plant states. 

work for l i nea r  plants  may f a i l  to work with nonlinear plants. 

Some plants may 

There may a l so  be a fundamental l imitation imposed 

Other  techniques designed t o  

This t hes i s  reports  an approach t o  both t h e  parameter adjustment 

and the  signal augmentation model reference adaptive control systems. 

What is believed new i n  t h i s  research is t h e  basic analyt ical  approach- 

based on variat ional  reasoning- one which yields  adaptive algorithms 

which are simple and which afford uncomplicated analysis of the closed 

loop system i n  the absence of noise. The l indtat ions of t he  method 

clear, and t o  80106 extent, can be minimized by apgropriat 

desi- s 

t i ~ ~ t ~ ~  techniques used for madell reference adaptive 

The differences between plant control are highlighted i n  Chapter X. 

ident i f icat ion and model adaptation are discussed, 

Chapter XX formulates the control problem in mathematical terms, 
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A method f o r  adjusting controller parameters is dedved under ideal 

conditions. 

ameters are t h e  only fac tors  determining adaptive response. 

adjustment technique is then extended to  allow for synthesizing the 

varying input s ignals  t o  t h e  plant. 

These idea l  conditions require t h a t  the control ler  par- 

The 

BB 

I n  Chapter XI1 t h e  assumptions on ideal conditions artg relaxed. 

The adaptive system response w i k l  depend on both connnand input s ignal  

‘Lariatim and the affect8 introduced by rutknown 

By choosing t h e  adaptive loop gains large the worst caae effects of 

these variations can be minimized. 

va l id i ty  of the suggested design technique, 

ter variation, 

Simple examples i l l u s t r g t e  the 

In Chapter XV specific forms for the adaptive3 control ler  arp~ ex- 

Since the  parameter adjustment control ler  is qui te  complex a amined. 

simpler form is investigated for spec i f ic  systems. 

computer simulation results are pcesented. 

Digital  and Analog 

In order to implement a s igna l  augmentation control ler  when the 

nhen t h i s  5s plant has a zero requires exact knowledge of the  zero, 

not Imown, the control ler  must be implemented using the model zem, 

The effects of t h i s  approximation on adaptive behavior are studied, 

Chapter V outl ines  some of tho  more important weas which require 

cIoser examination 

0 



I. PROBLEM DEFINITION AND BACKGROUND 

Figure 1,1 is fundamental to many model reference control systems. 

The plant  s t ructure  is known but its parameters may be unknown OP 

unknown and time varying, The model provides a real time representa- 

t ion  of desired plant performance for the  given input r(t). 

appropriately adjusting control ler  parameters t h e  tracking errop e(t) 

By 

is t o  be made small. The p r e f i l t e r  and feedback compensation elements 

contain the controll&Ae parameters. 

plant and model states and plant inputs, and generates t h e  appwpriate 

The adaptive analyzer measures 

control signa3ls. 

provide the  proper variations t o  t h e  contmllable  pak?ameters. 

In -&e parameter adjustment system these signals 

I f  the  p a m e t e r  adjustments are to be used for identifying plant  

parameters, the  adjustable or controlhble parameters would ba in 

t h e  model. 

ing error. 

value as t h e  plant p a r a h t e r s  for an arb i t ra ry  input r(t). 

The model parameters would be adjusted t o  reduce the  track- 

When t h e  error is nulled the model parameters have the same 

The adaptive analyzer for the control s ignal  augmentation tech- 

nique provides a continuous time function which is applied t o  t h e  plant 

t o  keep t h e  tracking error small. 

l e r  is t o  be used, t h e  system design reduces t o  one of specifying t h e  

adaptive analyser. 

t h i s  analyzer to perfom any of t h e  aforementioned tasks ,  

dbcussing t h e  d e t a i l s  it $8 inst ruct ive to  summarize some of t h e  more 

important earlier m k  

Regardless of which class of controlt. 

This thes i s  presents a method useful for designing 

Before 

The study o f  adaptive control was motivated by t h e  prac t ica l  



e 
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challenges of the  early t o  mid 1950's. 

f l y  higher and faster the  environmental. effects on f l i g h t  character is t ics  

became increasingly troublesome. The fixed compensation schemes of the  

past and even scheduled parameter adjustment techniques became unsatis- 

factory. 

be identified.  

analyze f l i g h t  p ters and deduce from these the  plant dypdcsCl ) ,  

This method at first seem3 appealing since high s p e d  calculstions can 

As aircraft were designed to 

The scheduled gain changing systems require t h a t  the  plant 

To do t h i s  usually required an air data  computer t o  

keep the phase lag due t p  meas n t  slaall. The bJdtf88 Qf 

actual2y handling the uncmwQuz) s t a M  of data  needed often pmved t o  ba 

too complicated a t a a k .  

conditions was not always possible (1). 

In addition, maswement of environmntal 

An a l te rna t ive  t o  using air data measurements t o  ident i fy  the 

plant is t o  adjust  d e l  parameters on l ine ,  relying only on present 

values ; o f t h e  plant states. A technique employing on l i n e  parameter 

ident i f icat ion for use i n  an adaptive autopilot  was reported i n  19S8(19) 

The theoretical basis for parameter adjustments in the  model i s  given 

i n  (18). 

order plant the derivative of the  nth state variable is needed i n  the  

t h  A f a u l t  of this method is the  requirement t ha t  for an n 

Another in te res t ing  on l i n e  ident i f icat ion technique uses a Taylor 

series expansion of t h e  error between plant e d  &el t o  deduce parameter 

adjustment a lgor i thms Cg). By continuously changing the  madel parameters 

un t i l  t h e  (?IP;IWF is zero, at least far the input being applied, the  
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A drawback t o  any on l i n e  ident i f icat ion scheme compared t o  adp. 

aption fs t h a t  fdentifkation does not al ter or improve the plant 

performance. Use must be made of t he  parameter information t o  accom- 

pl i sh  t h e  control objectEve These techniques take 'considerable time 

to converge to accurate parameter values (9). The question of what 

should be done during the  ident i f icat ion delay .is not easy to answer, 

Since the  plant is responding continuously, it must be controlled. 

But t o  control it properly requires knowledge of the plant - information 

not available u n t i l  ident i f icat ion is complete. 

complication is t h a t  most on-line techniquess for ident i f icat ion are 

The reason for t h i s  

based on reducing the  squa.rt3 of the tracking e m r .  The error i s  

not a measme of t h e  system perfoamMnce however. A more meaningful 

emor measure for ident i f icat ion is the square of the  difference 

between model and plant parameters. 

scheme would reqbbe knowledge of t he  plant parameters. An adaptive 

system based on minimizing tracking error does not present this dis- 

advantage. 

dbect3.y. 

t h e  same process, for the  reasons ci ted above, when model-reference 

control is the objective, adaptation is the '  m e  di rec t  solution. 

But to actual ly  implement such a 

By continually reducing the error, 'performance is improved 

Although adaptation and ident i f icat ion are conceptually 

The tern %odel-reference adaptive system" first appeared as a 

description of adaptive control work done at M.I.T. i n  t he  late 1950'~~ 

This research w a s  airnod at cohmlling yaw, pi tch  and roll loops under 

vmying envhnmenta l  conditions for a p a r t i c u l e  aircraft. 

adaptive scheme sui tabie  for t h i s  task was designed which performed 

sa t i s fac tor f ly  in both simlation and lfmited f l f g h t  tes t ing  (20). 

Ln addition t o  t h i s  importat first  work 

An 

adaptive control, a basic 
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groundwork was laid for the  design of adaptive systems. 

s teps  summarize t h e  important considerations: 

These f ive  

Design of a model ko meet t h e  system specifications.  

Selection of the  control  system loop configuration. 

Determination of which parameters should be varied and how 

they affect system response. 

Determination of e r ro r  criteria which w i l l  adjust  parameters. 

Analysis and simulation t o  determine the  convergence times 

and dynamic operating performance of the  system. 

Step one is perhaps the  most important. Case must be taken to  

guarantee t h a t  performance, as specified by t he  model, can actual ly  

be achieved. 4 For example, the requirements placed on the  system must 

be consistent with any constraints  on available control. effort. 

r e s t r i c t i o n  can usually be s a t i s f i e d  by not requiring performance from 

This 

the plant  for which t h e  plant  is not  designed. The purpose of model 

reference control is then to keep t h e  plant  responding as it was designed 

t o  despite var ia t ion of its parameters. 

Regaxdless of w h a t  error measure is used, t h e  adaptive analyzer 

must be physically implemented. The a b i l i t y  t o  do t h i s  will depend 

t o  a great  extent on which parameters are t o  be varied t o  achieve 

adaptation. Although the  development presented i n  t h i s  t h e s i s  is 

complete i n  t h a t  it defines how each parameter of the  plant  could be 

compensated, the resu l tan t  adaptive loop is  great ly  simplified by 

using only some, OF perhaps only one, parameter i n  the compensation, 

The va l id i ty  of such a simplification can most reliably be tested by 

simulation. 

Other than making a proper or meaningful choice of error measwe, 
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t h e  qua l i ta t ive  s t ructure  of the  error measure w i l l  be important. HOW 

much each state is  weighed i n  measuring error w i l l  be important i n  terms 

* of t he  dynamic operating character is t ics  of t he  system. Once t h e  error 

measure has been chosen and the  adaptive loop s t ruc ture  has been deter- 

mined, t h e  f i n a l  design would be sffine-tunedt' as regards the  error 

weighting. 
4 

Simulation s tudies  would be used t o  a large degree i n  t h i s  

stage of design, 

Work undertaken at U.C.L.A. at about t h e  same time as t h a t  

referenced above attempted t o  generalize on possible adaptive tech-. 

niques Cl3). This work was mt constrained t o  the  design of a part icular  

system and consequently some ra ther  broad fundamental questions were 

posed on t h e  philosophy of adaptive control. The adaptive problem as 

viewed then was essent ia l ly  one of idcn t i l y i n g  tho p l a n t  and uFrtaLing 

control ler  parameters. The ident i f icat ion was t o  be carried out by 

adjusting model parameters using system input and output information. 

As mentioned earlier, t h i s  approach is  the  dual of the adaptation 

procedure. 

pertinent a l so  t o  the  design of adaptive systems. 

Hence the questions raised,, and paraphrased below, are 

1) What are the ways i n  which t h e  model can have its parameters 

adjusted? 

2) Is it stable? W i l l  t h e  model have its parameters adjusted 

so t h a t  they are a sat isfactory representation of plant 

dynamics? 

What is the  dynamic performance of the  model? 

it respond to a change i n  t h e  plant dynamics? 

3) How fast does 

A great deaJ. o f  t he  e f fo r t  i n  model reference systems has been 

directed towards answering these questions. The problem of adaptive 
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l9op s t a b i l i t y  was' part icular ly  troublesome and limited to analy- 

sis (5). It was i n  fact t he  analysis of the  s t a b i l i t y  properties of 

considerable a t ten t ion  i n  the  literature. 

Included in the  category of dynamic performance is t h e  adaptive 

behavior t o  changing plant parameters. A technique based on the  as- 

sumption of slowly varying plant  parameters may be unable t o  perform 

sa t i s fac tor i ly  i f  the parameters vary rapidly. Although an adaptive 

control ler  using control s ignal  augmentation has been designed which 

guarantees s t a b i l i t y  of the  adaptive process despite rapid paameter 

variations c7>, . there is no seported technique employing parameter 

adjustments which guarantees tha t  rapidly varying plant parameters 

can be tracked. I n  general, even for stationary plants t h e  error w i l l  

not be! zeroed since imperfections or simplifications i n  plant modeling 

w i l l  prohibit  t he  plant and model from behaving exactly alike.  This  

type of bounded error response might apt ly  be cal led "practical  

adaptive s t ab i l i t y"  after the prac t ica l  s t a b i l i t y  def ini t ion of 

can be designed to  guarantee prac t i ca l  s t a b i l i t y  i n  the  presence of 

varying parameters even though t h e  basic s t ructure  is derived assuming 

stationary plant parameters, 

The al ternat ive t o  parameter adjustments is t o  provide a control 

signal t o  the plant which w i l l  keep t h e  tracking error small, This 

technique is referred t o  as a s igna l  synthesis approach or control 
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signal aupenta t ion  ‘C4). The adaptive control ler  is designed t o  produce 

a control input which causes the  plant output to track the model out- 

put, This is generally simpler to  fmplement than t h e  parameter ad- 

justment schezae since only one control parameteg (the control signal.) 

is being changed for a sbngle input plant. +lost of the work i n  t h i s  

area has been aimed towiuds generating a controlwhich’guwanteed the  
9 

existence of a Lyapunov function of t he  tracking error, 

first introduced the  concept i n  1961 (7). Since then the  method has 

Grayson 

been refined t o  make it of prac t ica l  engineering importance (l4h 

This survey of methods is not intended t o  be complete, but ra ther  

intended t o  reference some of .the previous work i n  parameter adjustment 

and control s ignal  augmentation techniques. Many other  philosophies 

exist for designing adaptive systems. Among these are the  parameter 

perturbation schemes, .the high gain schemes, and techniques employing 

test  signals for excitation i n  a d d i t i o n  t o  normal plant i n p u t s  ( 6 ) .  



ZT BESXQ? BASED ON XDEAL PLANT 

The fhst s tep  i n  the  design process is to  define a measure of 

t h e  tracking error. The influence of a l l  controllable parameters 

as w e l l  as all control inputs is then used to  advantage to reduce 

t h i s  error measure. 

justments are derived which act t o  decrease the  difference between 

P ala S-ly, fm the contm.?. a tatfaa technique, 

As a r e su l t ,  algorithms defining parameter ad- 

Because of ths dual i ty  between gmameter adjustments for adaptive 

control and for ident i f icat ion,  the  algorithm w i l l  be developed with 

t he  forsner i n  mind, any differences inherent t o  the  ident i f icat ion 

scheme w i l l  be brought out as t he  development progresses. Regardless 

of t he  ac tua l  structure for implementation, be it ident i f icat ion or 

adaptation, the  design problem can be s ta ted  as follows: 

d i f f e ren t i a l  equation representation of t h e  plant it is desired t o  

Given t h e  

control t he  plant t o  perform in a specified manner despite a lack 

of knuwledge of the plant  parameters, 

t h i s  reference performance. 

The model is used to describe 

The structure of the plant and model are t h e  samoo t he  only 

The function of t h s  difference is the paurameter values o f  each. 

adaptive controller is t o  reduce t h e  difference between plant and 

modie% via justnrents or  control augmentation, The plant 
I '  
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is described by a vector differential equation 

where xi are the plant states, u are the control inputs and lp a m  the  3 3 
plant'commandls. The plant paramratere BTB contafned fn the vector pe 

Them are W plant states, K plant parameters, J command and control 

inputs. Any OICI a l l  ek nts of p may be unknown or unknown and varying 
a .  

manner with tima. 

The model Is structurally the  same as the plant 

6 = F (m,r,a,t) t2.1.2) 

where mi is ma of N model states, % is one of K model paramt@rS 

and the command vector P is the same as applied to the plant. The 

tracking e m r  is the diffemnctr between model end plant state vectors 

e z m - x  (2.1.3) 

The d y n d c  behavicw or the emr is given by 

b = g'tm,x,r,p,a,t) (2*1*4) 

and if the m s h i d l  stmcture fs chosen properly may be expressed as 

'e = g(e,x,r,u,d,t) (2.1.5) 

where 6 = p-a is the N dimensional parameter difference vector. 

The goal o f  parameter adjustwnt adaptation is one of  adjusting 

d to aera despite ignomnce of p. Although in the development of the 

'vaz-yhqg, Zt w i X t  Be pointed out 

that zero tracking e m y ) ~  cannot be guaranteed under these conditions. 

Rather, the error w i l l  be kept mall despite these variat ims.  

The algorithm is based on the ability to change it.  In particular, 

rates of change of t h e  componenrs of d are deduced which are sufficient 

to continually decrease the e r m  measwer 
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2.2 DEVELQPIGNT OF THE ADJUSTMENT ALGORITHM 

Since the object is t o  minimize t h e  tracking error between plant 
' and model., a measure of t h i s  e r ror  wi th  a meaningful minimum is required. 

Let this funct2on be Lcel and require it t o  be nonynegative f o r  a l l  

possible values of e. With this requirement, the  smaller the  value of 

LCe) the  closer the plant states w i l l  be to the  model states, 

The only means available to effect a contralied change ia L are 

thru d and U. 

negative gradient direction of L. 

Lee) couM be minimized by making adjustments in t h e  

However, because there  is no d i rec t  

way of changing e, it is necessary t u  make changes i n  L th ru  changes 

i n  6 or u. 

a non-negative function of 6 .  

If L is a function of 8 then to  be meaningful it must be 

with t h i s  r e s t r i c t ion ,  the  gradient 

of L would also be a function of d and since 6 is unknown t h e  gradient 

could no-t be evaluated. Several of t h e  t-echniqucs developed prcvicculy  

have circumvented t h i s  problem by defining L t o  be a function only of 

e and then approximating t h e  partial derivatives of the error with 

respect t o  6 and making adjustments accordifigly.(4) In  addition t o  

t h e  inaccuracies introduced i n  approximation, these methods have t h e  

disadvantage of being overly complex. 

If an internal a l t e r i o n  were t o  be minimized LCB) could be con- 

L(e)dt the cost associated with it' sidered t h s  rate of cost and 

the system c2.1.5). The adaptive problem could then be stated as 

follows: Given the system governed by C2.1,5) it is desired t o  chooge 

4,u to minidze 

LCe1d-t: c2 * 2.1) 



Since (2.2.1) represents a functional to be minimized subject to con- 

s t ra in t  C2.1.5) 

I =  

The elements of 

consider instead minimizing 

L 

(2.2 * 2)  

the  N dimensional vector u are Lagrange multipliers.  

By multiplying each of the  N d i f f e r e n t i a l  constraints  by a comer 

sponding ai, the minimization of (2.2.2) may procede with no additional 

constraints  C2). The necessary conditions for the a f t )  which minimizes 

(2.2.21 can be derived using var ia t iona l  calculus but the  r e s u l t  is 

meaningless s ince the  value of the  parameter difference vector fa 

unknown. Because of t h i s  it is impossible t o  set the value of 6 at 

any ins tan t .  If t h i s  could be done then d would be analogous t o  a 

c o n t d  input and could be synthezized t o  minimize E. 

Rather than finding these conditions, s ince t h e  resu l tan t  scheme 

could not be Supla 

priate changes in ? which guwantee a reductton fn P, 

ed, conditions w f l l b e  found descrihfng appro- 

Consider two subintervals comprising Ito, t,] namely Et ,t 3 and o i :  
(t t 3 . h  

presented using circumflex notation, 

are 0,i  ,F 

Let t h e  nominal values of the variables on Eto,tf3 be m- 

Then the independent variables 
8' f 

+ A * d 6 9  

and t h e  dependent variables are a , x , m , g , l ,  Express (2.2.2) 

as the sum of two i n t eg ra l s  

g e  N~ A A 

LL + 1 aiGi-gi)ldt + 
* 0  . g  

= Il+IZ 

(2.2.31 
i=l 

It w i l l  be shown.that the syetem C 2 . 1 , S f  can always be adjusted on 
cI.cI-- 

square bracket denotes a closed in te rva l ,  t he  smooth bpacket 
an open in t e rva l  



ct,,td in such a way t h a t  the  total cost on Lt,,tfa can be made equal. 

43, 
to OF lesq thgm t h ~  cost on lt,,.t, 3 i f  no adjustments were made on C t  

t$. 

o v w  succcssivc intervctls,  t h e  cost I is contk i ;a l ly  reduced fs-orfi 

The induction is clear; if these changes a m  b i t i a t e d  repeatedly 

what it would be if  no change were made. 

It is assumed that: 
e 

11 Any change in I over C t  ,t 3 is completely caused by changes 

i n  6,u over t h i s  same interval.  
, &  f 

This says t h a t  t he  effect on 

e ,  and hence on I due to t h e  input r changing on ct t 3 

is negligible. . .  

Any change in x and rn i s  equivalent to a change in e *  

Any change in 6 is a controlled change. 

, g' f 

2) 

3) The value of 6 is 

unknown but there  can be no variation in 6 not caused by the  

adaptive action. 

The effects of relaxing these assumptions w i l l  be investigated in 

Recall that 6 has K components, u has J components and e hias 

N canponents. If 6,u arcs changed incrementally on Ct *t 3: .I f 
a 

bk = 6k + Mk k=1*2 eK C2.2.4a) 

j=1,2,. * .I3 (2.2.4b) 

t h e  error components will change incrementally, and t h e  error on 

C t g , t $  i s :  

ei = 6 t bei f=l,2,. .N (2.2.4~) i 
The changes (2.2,4) also cause changes in g,L on Ct t 1. 

are chosen t o  be independent of any change occuring on this interval .  

The ai's 
&, f 

The value of a is completely determined by t he  system behavior on 

Lt t 3 with no change on Ct t 3 desplte changes in the control, the  
0 ,  g" f 
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Parameters. and the error.. This is no restriction since C2.2.2) is 

equivalent to ($2.2.11 for any choice of a. The changes in grL are: 

(2.2.5a) 

c2.2.5b) 

which can be expressed a8 

N a  A 

(2 -2.7) i=l 

'f, N 
I=/ t L t  1 Gi[ii-8,11dt t + 1 ai[gi+Agi=di-A6i]3dt 

t it1 
. g  . 

Using II as defined in (2.23) and combining (2.27) with (2.2.6): 

(2.2.8) 



(2,2.9) 

% 
4 f I; a d t  - .,E, ai. Ahi dt .t H.O.T. 

. g  
t t 
* t 3  

H.O.T.  represents &LT higher order terms r e g b e d  t o  make (2,2.9) an 

exact equality. 

choosing the ai's. 

associated with the unperturbed system they must satisfy the necessary 

Expression C2 2 . 9 )  can be simplified by appropriately 
6 .  

If these a m  chosen as the -state vzrriables 

conditions of the M d m u  Principle: 

value of 6,u to minimize 112.2.13 

Given (2.1.5) and %(to), the 

minimize for all time the 

From C2,2,10] the following Identities hold: 
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where H 

for the 

has been denoted .as 

unperturbed system. 
.) a 

noting that 4% = gi resul ts  

(2.2.12c) * 
4 

H to indicate it defines the Hamfltonian 

Using these fdcntities in (2.2.12) and E 

in 

tf K tf J & 

dt +I 2' huj aH dt t H.O.T. 
j=1 j 

k=l *'k ik ( 2  .?. 13) 

t 
g 

t 
g 

N a N 

j=l j j  3 1 j =l, 
Since . 1 CAe + A6.) is the dif ferent ia l  of E de $, C2.2.13) 
can be written as (16) 

g 
t 

(2  2.14a) 
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The term Ae.(t ) represents the change i n  the j t h  error component 
a g  

a t  the beginning of the  interval  (t ,t 3 .  This change is measwed 
g f  

r e l a t ive  to the 

on ft,,t,l. If 

nominal value 6 which 

t h e  par t ia l  derivatives 
j 

is determined solely by is 

ex i s t  then e cannot change discontinuously. The value of e at 3 3 
the  beginning of (t ,t 1 must be exactly tha t  at the  end o f  the 

g f  
in te rva l  Et ,t 1. The tern be (t ) must then be zero. Because the 

o g  j g  
a 's wem chosen as the  co-state variables, f r o m  (2*2.11) X (t )=Os 
j 1 f  

From (2.2.14b) the  t o t a l  cost ,  I ,  on [t,,tf] is the sum of fow 

terms. The first: term repmsunts the cost: ctssocLited w i t h  the sy.;tt.!n 

using 8 ,  U. 
& I  

The second and t h i r d  terms indicate t h a t  t he  t o t a l  cost 

can be changed i f  6 or  u or both are changed on (t t 3. 

of assumptions (1) and (2) the  change i n  I is completely controlled 

Because 
62' f 

by t h e  changes i n  6, u. The fourth term represents a l l .h igher  order 

terms resul t ing front any change on (1 ,t 3.  

tions are suf f ic ien t ly  smooth, these terms are negligible for suffic- 

Assuming She system equa- 
g f  

ientlly small changes i n  6 ,  u.' 

The second term in (2.2.14) can be made negative and the total 

cost on [t,,t,l can be reduced by changing 6 as 
A 

aH k=l,2,. . .K 'k xk 6dk = - (2.2.15) 

where 6 k=1,Z2...N are posit ive constraints whose value depends k b  
upon the value of 3fi/Xk along the  in te rva l  ( t  t 3 and must be chosen 

g' f 

small enough t o  allow higher order terms t o  be neglected. 



Using (2.2,15) i n  (2.2.14) it is clear t h a t  a reduction i n  cost  

can always be rea l ized  providing that a l l  p a r t i a l  derivatives of H 

with respect to d are non-zero, 

ident ica l ly  zero, the  cost  cannot be reduced by changing an ik* 

adaptive problem is solved once 8=0. 

is imposed t h a t  6 should be changed u n t i l  GRADd H=O. 

necessarily follow t h a t  6=0 under these conditions. 

suf f ic ien t  t o  reduce the  cost  wh i l e  O W d  H jiC 0 and it also shows 

t h a t  once it i s  zero, system performance cannot be improved by ad- 

jus t ing  6 furth&. 

of L and t he  pmticular plant fngut under consideration. It may be 

t h a t  6 f 0 and GRADd H = 0 for one choice of L or P and far another 

choice this will not be the CZLS~.  

of 6 as w e l l ,  then it could be guaranteedthat  when GRAD6 H 10 6 must 

be zero. As pointed out earlier, L cannot lie so chosen sirice i i q > ? t x ? d c ? . r i -  

Lluri of 12.2.15) would Lhen rt:Viairc knc:i.Lcdge of 6 .  

I n  the case where the GRAD6 H is 

The c 

But, from (2.2.15) t h e  condition 

It doe; not 

(2.2*15) is 

This result is only val id  for t he  particular choice 

If & could be chosen t o  be a function 

There are two s i tua t ions  where d i f f i c u l t i e s  might arise when 

GRAD6 H is zero. 

stops a t  a solution but the error measure is non-zero or even increasing 

with t i m e .  The other is where t w i l l  be zero but some of t he  components 

of 6 w i l l  be ncm-zero. 

if  the  error system is represented in phase variable form. The reason 

for t h i s  will become obvious as the  adjustment algorithn is more f u l l y  

deveLoped. 

The first is when the  parameter adjustment scheme 

In the  first case the  problem can be eliminated 

The secondwntingencyia not a ser ious one i n  adaptive control,  

s ince it re su l t a  in L=O, at &east for the input being applied. 

goal o f  adaptation is achieved because the  plant and model Behave 

The 
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dynamically the  same subject t o  the  same input. 

t he  fact tha t  for t he  par t icu lar  input the  system error is insensi t ive 

The f au l t  lies with 

to cer ta in  of the  parameters. 

suff ic ient ly  broad band t o  excite a l l  modes of t h e  e r ro r  system. 

the  parameter adjustment scheme was used off- l ine for plant identi-  

f ica t ion  the system inputs could 'be chosen t o  eliminate this problem. 

If it were used on-line, random f luctuat ions and input disturbances 

might serve t o  keep a11 modes excited. 

were used i n  addition t o  parameter adjustments t h e  excitation caused 

by the control  s igna l  could be suf f ic ien t  t o  maintain dynamic res- 

ponse of all modes. 

Put i n  another way, t h e  input is not 

If 

If control signal augscntation 

The adjustment algorithm can be more f u l l y  developed by considering 

L t o  be a symmetric quadratic form with Lij 'a t j ia  

With t h e  system equation 

with 

(2.1.5), the Hamiltonian is formed as 

(2.2.16) 

? ' I  8H -3 
ei - -gi i = 1 , 2 ,  ... N 

j 

TIE pirdmetttrs should be adjusted on (t t 1 according to: 
8' f 

(2.2.3.8) 

and 

( ? . ? . I ? )  
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n 

with ii given by 
n 

* 
Ai as a function of t i m e  on the i n t e rva l  (t t 1 is 

g' f 

(2.2.20) indicates  that to specify Abk on (t t 1 requires knowing 

on (t ,t 3, the r e s u l t  of integrat ing (2.2.21) backwards over t h i s  

interval. Since is the  error resu l t ing  from 6 with no change on 

g' f 

g f  

(t ,t 3, implementation of (2.2.20) w i l l  involve a ti- delay o f  t r t  
g f  f g  

seconds. 

The fact that a the delay results from t ry ing  t o  implement (2.2.20) 

is not surprising. 

of time over the interval (t ,e 3 t o  reduce t h e  cost over this interval ,  

This then =quires knowing t h e  error response on the intexval before 

The paxwneter bk was t o  be changed as a function 

g f  

implementing t h e  parameter change. The net Tesult is that in order 

to reduce cost on Ctg ,  tff requires waiting until tf. There would 

Le an nddit i ona l  c(>m~jutJ+ionJI.  delay a:;:;cci,t ten with i n t c g z ~ ~ t i r l i r ,  thc 

collected information f r o m  t 

The conc.Lus&m must be that t h i s  change designed tio.reduce the integral 

bachwards to specify for t on ( ~ ~ , t ~ l .  f 

on the i n t e rva l  (t ,t 3 has no effect on system performance on this 

i n t e rva l  s ince it must be implemented afker the  in te rva l  of in te res t .  
g f  

The development leading t o  (2.2.20) extends analogously ta the 

case where Au is to fie chosen on (t t 3 t o  e f f ec t  a reduction in I. 
g' f 

' S t a r t i n g  f r o m  (2.2.14) it follows t h a t  Au should be chosen as 
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(2  e 2.23) 

Reasoning as in t he  parameter adjustment case, t o  implement (2*2.23) 

requires a time delay of a t  least t -t seconds. 

2.3 

f g  

REFINEMENT OF ADJUSTMENT ALGORITHM TO REAL TI.* 

There are several  reasons why the  algorithm as develQped above 

is not sat isfactory.  

2 )  Storage facilities are required to save the error vector 

over) the in te rva l  of minimization and compute (2.2.22). 

2) The delay associated wi th  the required computations w i l l  

have a 'destablizing effect for rapidly varying dynamics. 

The mans for changing t h e  parameters as functions of time 3) 

may be difficult to imp1enrrtn.t. 

The development of a-real time scheme will necessitate abandoning 

integral  reduction for reduction of an instantaneous error measure, 

It is f e l t ,  however, t h a t  since the  resul tant  scheme w i l l  not have 

t h e  f a u l t s  l i s t e d  above t h a t  it is a more appealing solution t o  the 

adaptation problem. 

3y adjusting 6 according t o  (2.2.20) the  in tegra l  cost X i s  reduced 

over an i n t e rva l  of arbit- duration. 

t o  length A t ,  tf becomes t + A t  and (2.2.22) becomes 

If t h h .  intesval  is reduced 

g 

From t he  parameter adjustment algorithm (2.22.20) and u.3.1) 
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t 

- 
(2.3.2) 

BY the Mean Value Theorem for integrals C2.3.2) may be approximated as 

For any At, i Ce +btl=O 44 from c2,2,182. Since (2.3.4,) represents the l i e  s 
change in 6 

small interval 

over an interval At, to implement it over an arbftrarily k 

* 

(2.3.5) 

C2.3.51 is equivalent to (2.3.4) over a small enough interval. That is, 

implementing rates of change as i n  (2.3.5) gives exactly t h e  same result 

as implementing (.2.3.4) over this same interval. 

there is no t h e  delay associated with (2.3.5). 

computational delay because there is no integration of stored data 

needed to evaluate (2.3.5). 

advantages associated with (2.2.20). 

i s  based on the  criterion of reducing an instantaneous error measure 

whereas (2.2.20) was based on reducing an integral errOT function. 

Unlike (2.2.20), 

Also there is no 

Hence the method does not have the dis- 

f t  should be stressed that (2.3.5) 

T h e  subscript denoting particular t i m e  t can be dropped because 
g 

(2.3.5) is continuously implemented. Also, reasoning as with (2.2,14), 

1; the actual nreaswable emr.  The constraints auce 
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written as B (t 

they are posi t ive but may be dependent on GRAD6H. 

t o  let  them be constant but the  freedom is there to allow dependence 

on GRAD6X. This r e su l t  becomes more in tu i t ive  i f  the parameter ad- 

justments are regarded as movements towards a minimum i n  the K-dim- 

ensional. parameter space. 

s inceg as was pointed i n  the discussion of (2.2.15) 
k g  

It is suff ic ient  

As is w e l l  known, the  s i ze  of the  move- 

ment is dependent on the  shape of t he  function. 

movements i n  t h i s  space as a €unction of time, the  locatian i n  para- 

meter space The r e su l t  is tha t  it is 

equivalent to consider Bk as being t i m e  dependent o r  parameter dependent. 

Equation (2.2.23') can similarly be solved for suff ic ient ly  small At 

to  yield rates of change of the  control vector: 

Since (2,3.5) defines 

is mapped onto the time axis. 

(2.3,6) 

2.4 USE OF PHASE VARIABLES IN THE ADJWSTNIENT ALGORITHM 

The poss ib i l i ty  was raised in connection with C2.2.15) that 6- 

might sett le at an equilibrium although the  e r ro r  measure could be # 

0 .  A t  that t i m e  it was sa id  t h a t  by choosing the  errop states as phase 

variables this could be avoided. The following argument supplies t h e  

details. 

The control exerted by 4 on the error system is not d i rec t ,  but 

rather constrained by the  system equation ( 2 , 2 , 1 9 f ,  

in (2.3.5) where the term @./a4 

the ith error state, 

This is i l l u s t r a t ed  
0 

represents the  fn€hence 1 9 ~  has on 

It is t h i s  coupling between the parameters and 

i k  

the ermr states which permits the error measure t o  Be reduced through 

paramet- adjustments. For every adjust ible  parameter it i s  necessary 



-27- 

t ha t  the corresponding p a r t i a l  derivative of the  form aii/adk be non- 

zero. As examples are presented it w i l l  be seen tha t  these terms are 

generally e i the r  functions of the  input or of the  plant states. In  

e i the r  case, t h e  assumption tha t  they be non-zero is very weak. 

For 6 t o  stay at an equilibrium point requires t h a t  8 = O o  This 

can only occur i f ,  f o r  every term aKi/Nik whicf; is non-zero, the 
I4 

A be a e ~ o .  If it is guaranteed t h a t  L 
i j  

corresponding term 1 R 
ij3. 

goes t o  zero under Ihese conditions then *e adaptive goal is achieved, 

By choosing the  e m r  states i n  phase variable form, for S=p 

the requirement is t h a t  

(2.4.1) 

whea?e 8 is the  Laplace operator. 

to satisfy the Routh-Hurwitz criterion it is guaranteed tha t  L+O. 

If the  coeff ic ients  L chosen 
Pj 

This does not necessarily guarantee tha t  t h e  plant parameters are 

ident i f ied.  

the noma1 plant excitations are not suf f ic ien t ly  broad band t o  force 

The parameter error vector d w i l l  not tend t o  zero if 

a l l  modes of the  system. This problem can be reduced if the  normal 

plant inputs are augmented by the  control s ignal  as gPven i n  (2.3.6). 

The advantage t o  using control augmentation is t h a t  the plant is excited 

r e su l t  is t ha t  not only w i l l  the  adaptive process be achieved, but 

by exciting the  plant,  the  control augmentation w i l l  increase the  prob- 

a b i l i t y  that 6+0 as WI,. 

it w a s  assumed t h a t  the  plant parameters were stationary. 

then the plant is ident i f ied for aU. future inputs. 

This is an important consideration since 

If 6=0 
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(x1.l) 

Example 2 . 1  

To illustrate some of the preceding ideas consider a plant 

described in phase vtrciabre form as 

G1 = x2 

A = x 3  2 

2 = p x - p  x - p x  f K (?+%A) 3 3 3  2 2  1 1  p 

The desired behavior is given by the model equations 

i = m 2  

rh, = ma 
I 

I = -3  rn -3  m -8  m t Km*F (x1.2) 
3 3 3  2 2  1 1  

Because the plant and d e l  are in phase variable form the error 

states are also.phase variables. 

* hl = e2 = gl 

Q, = e3 = g2 

6, = -a e -3 e -a  e + x363 + x 8 -t x 6 +r6& -Ku=gg 3 3  2 2  1 1  2 2  1 1  P 

( ~ 1 . 3 1  

where 

(x1.4) 
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The coupling terms are 

-r:  5 k=1,2,3 
"k 

(x1.5) 

Thus for k = l  through 4 there is  a non-zero term of the form 3g3/aSk. 

Choosing an error measure as i n  (2.2.16) and applying the parameter 

adjustment algorithm (2.3.5): 

From (2.3.6) the control signal is synthesized as 

Because phase variables are used 
2 

galal + L~~ e2 + La3 e3 = EtaL + s .t 1133 s 3 el (~1.81 

and to guarantee L+O it i s  necessary to choose the t t s  to make (x1.8) 

stable. 

also a posit ive function (for minumum phase plants) and ( ~ 1 . 7 )  can be 

Because y i n  (2.3.6) can be any positive function, - is 
KP 

implemented without knowledge. of Kp a 
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A logical  question to ask is whether ( x 1 . 6 , 7 )  could be implemented 

without using e3. Specifically, ,  if p3 = a x is not required in  (xl-6). 

However, if  e3 is not used L33 must be zeroI 

that L be independent of ea; but it is the partial  of L with respect t o  

e3 which appears i n  (~l.6)~ 

the highest plant derivative is used i n  the e m  maewe. 

3 3  
This in  turn requires 

* 
Hence the algorithm cannot be used unless 

* 

6 

To ullu8h?ate the ras&anics of applying the adjrsa 

to a non-linear system consider the von der P o l  equation with a forcing 

term: 

(x2.1) 2 x - (p*=p3x ) k + plx = P t .u 

which can be written i n  phase variable form by letting x1 = xI 

'(1 = x2 
k = - p x  + ( p - p x ) x 2 + r 4 u  2 

2 1 1  2 3 1  

If the desired behavior is given by 

h 2 = - a m  - a m  + T  

then by using non-linear feedbacku a c3x1x2 i n  ( ~ 2 . 2 )  

2 2  11  
2 

. .  xr = xs 

2 
j$ = -p 1 1  x + p2x* + x p 2  (c3-p3) 4- II' 

and the e m  equations can be written 68 

(x2.2) 

(x2.3) 

(x2.4) 
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where 

2.5 STABILITY OF "'HE ADAPTSVE PROCESS 

It was demonstrated i n  Example 2.1 that if phase variables am 

used to implement the adaptive system the highest order error s tate  

lhit i . ,X DE! i nc lud .~ :  in t l i e  el Z-OP cea:;ure.  T f t hc ptm t is third L : I - ~ P ~  

or greater t h m  some of; the phase variables would probably have to 

be obtained by differentiating lower order plant states. The inherent 

difficulties arising from such a scheme when noise is an important 

consideration are w e U  known. 

The advantage to using phase variables is that it can be g u m  

anteed that t*o when i=O. It i s  natural to examine the stabflity 

of the adjustments when a different  set of state variables w e  used, 

Instead of eXaminhg the adaptive loop stability for a p r t f e u l a r  

state repressatzetfoa, the inhemnt s tab i l i ty  h p l f e d  by mduciq 
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( 2 . 5 . 2 )  

8 
t 

* * 
(2.5.2) results frolp racognizing that L = L 011 [tortg! since L is the 

loss function fbr the unperturbed system, and the pex'Wrbations occur 
b 

on <t ,t 3. On the interval (t t 3 L - L is the change in loss resul- 

tfng f r o m  Changes of 6 ,  u on (t ,t 3. 
it fallows that 

& f  Iz' f 

g f  
Comparing (2.5.2) and (2.5.1) 

By choosing Aqkr bu as h C2.2,20) and (2.2.231 respectively, the, r4gh.t 

s ide of (2,5,3) is negative, 
3 

As At shrinks to zero, the. left side of 

C2* 5.9 is ALAX. 

small interval A t  i s  if dt L is negative, 

positive d e f i n i t e  it niust fok1ct.r t h a t  t h t i  errur ~eSpoi i?:c  1:; c ~ . : \ ~ i : . p t p t i c * l . ~  1.:; 

stable. (12) By choosing L positive semidefinite t h e  adjustments can 

only guarantee that M. 

The only way for b a t  to be negative over an arbitrqri.ly 
d Therefore by chwsing L 
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In Appendix A these same results  are proved in a more formal. 

Way by showing that  the adjustments guarantee the existence of a 

Lyapunov function for the d i f ferent ia l  equations defining the error 

system. In particular, if the Bk and y .  i n  (2.3.5) and 12.3.6) are 

constant it fs shown that the parameter adjustment algorithm is the 

8am as that propossB by Buchard and Shackclotb (3) and Parks (17). 

I 

b 
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I11 ADAPTIVE CONTROL FOR NO%I’ATIONARY PLANTS 

3 a 1 INTRODUCTION 

For the  development i n  Chapter 2 it was necessary t o  assume 

3.) Any change i n  4 was completely coritrolled. The plant  par- 

ameters could be unknown but constant. 

2) The effects on L caused by plant  inputs was negl igible  

compared t o  the  control  act ion on any interval.  

Any change in the  plant  state and model state vector was 3)  

equivalent to a change i n  the error state vector. 

With these.assumptions it was shown t ha t  69 u could be changed on 

(t ,t 3 t o  guarantee a reduction i n  t. 

V a l  became inf ini tes imal ,  rates of change for 4 ,  u were established 

In particular, as t h e  in te r -  
8 f  

which $wMntsed L was reduced to  a minimum. In  t h i s  chapter the 

effects of r e l d n g  these assumptions are investigated. 

The.need for adaptation wises more from t he  unknown vmia t ion  

of plant parameters then simply the presence of constant unknown param- 

used t o  ident i fy  the plant. T h i s  p l m t  description would then be valid 

for all time and conventional control techniques could be used. 

I n  aircraft control f i e l d  environmentally sensi t ive parameters 

present a real problem. Since the  equations of motion’are determined 

largely by t h e  aircraft environment, as higher a l t i t udes  and faster 

speeds are attained the  effect is t h a t  plant parameters vary widely 

over a given f l i g h t  path. It is not surprising t h a t  a great deal of 

the  ear ly  work in adaptive systems was directed towards these problems (13). 
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Because of the  importance of t h i s  problem it has become almost axiomatic 

tha t  any published report on adaptive techniques contain an example per- 

ta in ing  t o  aircraft control. 

The effects of ageing and breakdown cer ta in ly  fall  i n t o  the category 

of paraneter variation. 

long time and change a r b i t r a r i l y  t o  a different constant value. 

Here the  parameters may be constant for a 

O r  i n  

t ?.e CdSC r.,: d t ; c i I i g ,  the Fararneters nii;ht be V t x y  SKr,tiljf VdPyin,:. 

e i t h e r  case, the  system design should provide for some means of compcnsa- 

r!: 

tion. The classic high gain feedback scheme has been used successfully 

t o  o f f se t  t he  effects of parameter variation. 

published aimed exclusively at  w i n g  the  more modern adaptive techniques 

t o  compensate for component f a i l u r e  

Some reports  have been 

(11). 

3.2 INFLUENCE OF UNCONTROLLED VARIATIONS 

By first examining these effects on {t t 1 and then l e t t i n g  this 
g’ f 

h t e r v a l ’ s h r i n k  to zero t h e i r  influence on the  adaptive process can 

be determined. On the  in te rva l  (t t 1, 
g’ f 

n 
bk = eSk + Adk Abk k=1,2, .  .K (3.2.1) 

whepe 6 is the  same as i n  (2.2.4) except for the  Ai, term which 

represents t he  uncontrolled parameter variation. 

changes as 

k 
The input vector 

j=1,2,. .J (3.2.2) 3 Fj = Gj t iG 

e 

j=1,2,  *. . J ( 3 . 2 . 3 )  5 u = u. +?Au 
j 1  

As a result of these changes the plant states change incrementally 
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L. A 

XA = x + Axi + &Xi i = 1 , 2 ? e o e N  (3.2 *4) i 
In Chapter 2 it was assumed that t h e  combined effect of changes in 

the plant and model states was exactly equivalent to a 

error state. The effects of reiaxing this assumption 

by inchding the plant state cha&es in the analysis. 

For notational continuity and &npUcity the change in  F is written 

with a superrsc~ipt til,& and is referred to a ~ s q u e n t l y  as an un- 

controlled 

squivabnt 

in (2.2.51. .. 

Because of the changes 

L are given by 

i=1,2,*eaN (3.2.  Sa) 

(3,2.5b) 

in I? and x and 6 the incremental changes in gIp 

(3.2.6) 

and 

(3.2.7) 

6 
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The effects o f  these changes on X can be represented analqpusly 

(3.28) 

and collecting term: 

c 

(3.2.9) 

Using the 

reasoning 

e 

relationships for X and X in (2.2.17,18) and applying the 

leading to (2.2.3.3), (3.2-91 can be expressed as 
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Recalling that the circwnflect notation refers to unperturbed 

variables on [t ¶t 1, (3.2,lO) shows t h a t  t he  cost can be changed on 

ft,,t$ by changing the in tegra l  on (t ,t 1. 

controlled changes caused by changes i n  6 ,  u there  are three additional 

o g  
In  addition to the 

g f  

- 
terms which can change the  cost, L\bk represents the unknown pammeter 

var ia t ion bsj is the  change in plant inputs f r o m  nominal values on 

[t ,t 3 and Ax. is the plant sta te  variation which is riot equivalent 
* 

O f  3 
t o  a change i n  error. It may be t h a t  these uncantrolled changes serve 

to further reduce f. However, if these changes are always such t h a t  

they tend to increase I then by choosing the  controlled changes i n  

(3.2.10) Zerge enough a:reduction i n  X is still  possible. Too large 



-39- 

A reduction in I can always be guaranteed if the controlled variations 

in (3*2*&1) are sufficiently large td determine the change in I on Atu 

This in turn requires that these changes can be made large enough 

to O f f s e t  tbe effects of the worst possible uncontrolled changes. 

3.3 ESTABLIS OF A LEAST U P E R  BOUND ON L 

The w o r a t  possibb uncontrolled variations in (3e2e119 
a 

(3 3.. 1) 

where I 1 DkI I 1 1 R 1 I and I f x I I are the magnitudes of the largest possible 
uncontmlled change in bk, rS and x, respectively on At. 

crontmlled e)rarages are finite over any interval and have only a f inite  

number of points at which they can be discontinuous c3.3.1) can be 

3 3 
f f  the un- 

represented by derivatives 

a 
(2.2.23) a 
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The totab change in (3.2.11) both controlled and uncontroUed is 

( 3 :a 4) 

To gwantse a rrrdaactign in X it fr sufficient to ham . 

(3.3. sf is a conservative criterign because the mcontrol1e.d dfectq 

mre assme& srotbg to iaweasti r fn niaxfm ~OSS%BXS wqy.  

Using the Hamfltonfaa foxmulation of Chapter 2 and letting f, 

fc quadratic function of the e- as h C2,2,$6Z 



A 

At 

At 

A t  

e 
k=1,2,. . .J 

2 Substituting (3.3.6) into (3.3.5), dividing both sides by ( A t )  and 

l e t t ing  A t e :  defines a region in em?o~ space (with t =t): Is: 

<3,3.7) Ss a geberal expression €or the region in which it can be 

guaranteed that I is reduced, 

a &east upper bound an L under appropriate conditions. 

ft is argued below that (3.3.7) implies 

It can thus 

be argued that the piant states teack the model states with f i n i t e  
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int 

. .  

t 

tha, i n t g m a l b t  lul 

tf* 
Mt t AL (tg) A t  

( 3 . 3 .  Ra) 

(3.3.8b) 

where (3.3.8b) is exact as At-. The total change in I. is equivalent 

to a change i n  I,+* The change in L is comprised of a controlled change 

and atr uncontrolled change: 

AL[f)At = AL(t)At (ALc t Ai)At (3.3*9) 

The controlled change is caused by adaptive adjustments of  6,  ta. 

The lancontrolled change As caused by the changes In x, r, 6 a8 described 

previously. An alternate expression for the total change i n  I is 

two relationships show that 
2 

$t 3 9.3.10) 

C3.3.10) 

By choosing the parameter adjustments and control signal augmentation 
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aa in ( 3  b3,3a) and (3.3.3b), ALEc is negative. 

case vmiatfons i n  the uncontrulled changes At is alwaya positive. 

them is a region in  the error space where (3.3.9) is negative under 

thaoo conditions &en it is g&wanteed them is a bornrd on the e m r  

a m ?  womt case coraditfona. A8 A t 4  t b  only way (3.3.9) could be 
d negative if K L  is negative. Therefore when the adjustments are 

applied over an infinitesins1 At I can he reduced if 

By dLlowing the worst 

If 

( 3.3.11) d "  
\ 

d -L + - - L  < Q  dt C .  dt 
conversely I wJU increase, under worst case C~mditii~18* if the left 

aide of (3.3.9) is posit ive.  That  the- is an upper bound on e, and 

L if L is chosen positive definite  will be shown below. 

The existence of such a region i n  error space can Bs argued by 

d '  d "  agi 

auk 
some t e r n  - = o if J < K and some terms I]- & 5 1 1 3  I lp,l i= * for 

J, N x K, The farm (3.3.12 is used only to provide a simplified expres- 



Fm B =.&the left side of (3.3.12) will d side as the 

e* This is the c e  rsince the right s ide incpeases as 

Son I?~M be &uced. men the system error does not satisfy 
0 

(3.3.32) it i s  porrrrfble for L t o  fnmase. Since alu the cc~zyrr states 

to the plant states, The left  s ide of (3.3.12) will increase and 

. .  
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Since the model wfll he stable, an increase I n  the magnitude of 

@mop states w i l l  be caused by an increase in the magnitude o f  the 

plant' states, 

Is not satisfied the l o f t  s i d e  m y  increase. 

che r i g h t  side w i l l .  increase faster than tha nuxerdior the emor states  

will enter a regioil wheve (x1.2) is q a i n  satisfied. 

measwe a11 error states means that there inust be a least uppes bound 

on L despite worst case parameter variations. 

7 largo t h i s  least upper bound can be mininized. 

that if the restrictions o f  Chapter 1 are  iro;msed on the r i g h t  side of 

( X l . 2 )  is znm, 

If the system is apex-ating in a region where ( x . 1 . 2 )  

Since the denominatu:* of 

Choosing L to 

By choosing the B's ar:d 

It is noteworthy 
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can be made. 

without identification. 

constant (x1.2) reduces to 

This example iflustlrates how adaptation can be accomplished 

If all plant parameters are unknown but 

(xl. 3) 2 2 2 2 C B p 1  + 8 p 2  + B3x3 t B4v 3 

If r i s  a step input, only ths  plant output (xl) will be nonzero. 

that @& pr f3& n~n- tem,  the least upper bound goes.*o zem. 

if BxsO #en 6% cans&& chipnge the ident i f i ca thn  is imposafbh. 

IBX l+"O the p %la n e  QfCr. exmw seasum goes 

to zero but the parameter e m r  mctox, d does not, 

i i . t G i : i . t i * ~ ~ i  titat ic!r?ritification is not' g e - 1 1 :  r a l l y  ;u.;';;ble ,if t ? , r *  I t : p t  

spectrum is not sufficientxy broad. 

Providing 

However, 

similarly 

This agrees with 

A very important practical consideration is that not all parameters 

have to be adjusted to keep L small. 

gain is adjusted (~1.2) still represents a bound on & and B1) can be 

chosen large to keep t h i s  bound small. This bound will not be as small 

as would result from adjusting all pammeters, but the resultant imple- 

mentaion is considerably simplified. 

when t h i s  simplified scheme is used am: 

In particular if only t h e  plant 

Some important design considerations 

1) Choose as large as possible subject to the restriction 

that 

between choosing B4 so large that IS,l dominates the? bound 

and ChOQsing 8, too small 64 that the denominator of  fxX.2b 

,will effect 1 d41 a A trade-off may be necessary 
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daminatea. 

IJhen possible chocse the  plant input to be lapge i n  magnitude 

and slowly varying. 

Because most plants have low pass characterist ics the plant derivatives 

will have low values. This character is t ic  will tend t o  reduce the 

effects of these terns i n  the numerator of (x1.2). 

the above considerations the plant parameters are slowly varying the 

Least upper bound can be maintained acceptably small using only simple 

plant gain adaptation. 

designing an adaptive controller in Chapter 5. 

If i n  addition to 

This  important simplification is ut i l ized  i n  

In view of the  preceding discussion it should be pointed tha t  the 

assumption i n  Chapter 2 tha t  the input i s  slowly varying is overly 

res t r ic t ive .  

all t h e  'parameters are adjusted, the numerator of (x1.3) will tend 

If t he  plant input is suff ic ient ly  broad band, and if  

to  zero as the  parameter difference vector 6 goes t o  zero providing 

t h e  parameters are slowly varying or stationary. 

L goes to zem regardless of how the plant states vary and regardless 

of input vapiations. 

Under these conditions 

The singukrly important feature which limits 

adaptive coavergence is the variation of plant pararaetc~s. 

C ~ n t m l  signal augmentatfon can be used to offset the deterioration 

i n  ~.::I*EuLYI~~;Lc'c xhen a t i m p f i f i c d  gain adartat  ion  3cherrre Is tisd. 

effect  QE control augmentation is clear f m m  the denominator of (~1.2). 

The more e f fo r t  i n  this signal, as measured by y ,  t h e  larger w i l l  be 

the  demonimatop. Because no signal multiplication is required t o  

implement control augmentation, the system is not overly complex. 

The 



-48- 

EXAMPLL: 3.2 

This example is chosen to  further i l lustrate  sone of the Smportant 

design considerations: 

1) The weighting factors 8 and the error measure play an import- 

ant role in defining the adaptive respohse. 

It is not necessary to always use a l l  of the e m r  states 
b 

2) 

when the system states are not phase variables. 

3) The B ' s  can be chosen to minimize the effects of time variable 

paramelars a 

If there is freedom i n  choosing the input signal magnitude 4) 

t h i s  can bs used tu niinidste the effects of parameter varia- 

tions e 

The plant is third ordep subject to a step reference r=Ru(t). 
1 g = - -.x * x') 1. 2 1 

c.-;:* . .! ) x -I- x % = -  2 3  

k3 = 4% t K r 
3 P  

The only unknown parameter is the plant gain K ; enabling the e r r o ~  P 
equaticns to be mitten as: 

42 = -ep t e 3 

= -4e t b r  3 



Plrovided the emor can be quickly reduced to zero the restriction on 

step inputs is not overly restrictive. From ( ~ 2 ~ 2 )  it is obvious that 

6 = 0 when e3 = 0 for a f i n i t e  duration; therefore if I, can be reduced 

to zero quickly P need be constant only over a short interval. 

error system with adaptive controller is shawn in Figure 3.1. 

The 

Figure 3.1 

After the step reference is applied the dynamic e m p  behavior is 

governed by the parameter adjustment loop. This emr msponse is 

after nomalizing whh respect to i n i t i a l  conditions at the time 

adaptation was started. 

t o  chsosc P O  and W O .  

Hence to insure e3M it is only necessary 

The pmblem of using all the e m r  states 

is avoided since the states are  not phase variables, 

The output el is the solution to 
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by choosing B (or II or both) properly, the transient error response is 

only limited by the term l/s+ 1/2. 

If the plant gain i s  time variable then 6 has an uncontrolled 

variation with a bound 1 1 F r o m  (3.3.Q the worst case is 

d - d -  aM - &=I 61 isgn ig lsgn F. If R is psitiye and & is possitive dt e 

since e =m -x e w i l l  IWJ increasing positively.  FXWI (~2.3)~ d w i l l  

d 

3 3 3 3  
be negative. The worst case variation of would be i n  the posit ive 

dimaction. This sane reasoning applies to any combination of kR, f 6. 

Figure 3.2 
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As predicted by (3.37) L w i l l  not go to zero but Father approach a 

bound 

1 2  L = p Le3-+ 
2B2R2& 

Worn (x2.7) the transient error response is influenced by the choice 

of I3 and .L (x2.8) shws that the bound is minimized by choosing 88 

large. 

pmse is t o  be dmhated by 

maX SUbj43Ct t0 Si f S2 = 4, 8 ,!5 

"optimum" design is at 8 = s2 = 2 which results I n  8R21=4. 

design results i n  too large a steady state L, there is one furthez? 

possibility. Since the adjustmen% algorithm allowed for B to be time 

varying, s(t)  could be chosen to give fast transient response and very 

small steady state 1. 

I f  the poles of &2,7) a m  0 ,  sl, s2 end if: the transient res- 

+ ' 1,2 , the design must be such that sis2= 

> As shown in figure 3.3 the 3 2  F 
f f  t h i s  I 

F a  8 t ime varying an analysis sddlalr to 'the 

above t~ould be very difficult. Intuitively, however, in a simple case 

~ u c h  as t h i s  $ would be chosen as a 81owly increasing function for 

small steady state error. 

like that above for slowly varying 8. 

The transient response WQuXd be essential ly  

modes of compensat$.on are used is difficult. Some o f t h e  implications 

o€ using only contm2 signal augmentation can however be examined by 

selecting a simple example. 
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=2 

Figure 3.3 

EXAMPLE 3.3 

Mgure 3.4 shows an adaptive system using control signal augmen- 

tation. 

variable fom 

The plant is know except f o r  a constant gain K In state P* 



(x3.2) L = +E e 2 i 2tL2ele2 i ~ ~ ~ e ~ )  2 
2 11 1 

and applying (2.3.6) the resul t ing control s ignal  augmentation is 

6 = yK (2 e -k E2222) =a (L12el + e ) (x3.3) p 12 1 22 2 

The error response is 

It was pointed out i n  the  discussion of Example 3 . 1 t h a t  i s  a l l  plant 

parameters were constant, parameter adjustments could be used t o  force 

WO. This could be gumanteed despite input variation or plant s t a t e  

variation. 

If ;P f-i bigme 3.4 is unbounded with time then t h e  e r ro r  w i l l  be un- 

Using control signal augmentation t h i s  is not the case. 

bounded €or any f i n i t e  amount of control e f for t .  This is eas i ly  verified 

by considering worst case conditions. Foltowing t h e  procedure of 

spxc? where 

d Isl*H;i?.r I t  bue1 + &22"21> ( x 3 . 5 )  
YK; 

2 f f  r(t) = t (x3.5) is not bounded and control signal augmentation 

cannot force the plant to adapt. 

applying R ( s )  = 11s to (~3 .4 ) .  

The same conclusion follows from 
3 

If parameter adjustment was also used i n  t h i s  example K -K 
* P  

would go to zero and t he  ermr bound would be zero regardless of 

how the plant input varied. 

h o t h e r  disadvantage t o  using only control, s ignal  augmentation 
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is that for certain plant inputs excessive control effort is required 

to maintain a small bound on E. For a ramp input the bound on L is 

( x 3 . 6 )  

e 
€'or d > 0 el is posit ive and 6 will remain positive resulting in 

excessive control effort and plant saturation, This problem also can 

be avoided by using gain adjustments. 

force (x3.6) to zero but also will keep 6 changing as it approaches 

Asjusting 6 i n  (~3.6) w i l l  

zero. As 6 changes sign the error w i l l  also change sign, resulting 

in lower levels of oontrol input. 



IV I ~ ~ ~ ~ A T I O N  OF ADAPTIVE SYSTEM 

4.1 Introduction 

The preceding chapters have 'laid the theore t ica l  groundwork for 

the  adaptive system. 

with computational results. 

In  t h i s  chapter several  examples w i l l  be presented 

To t h i s  point l i t t l e  has been said about the actual  structure Of 

the adaptive controller. 

contml presents some problems when irr;plemntation is considered, 

The parameter adjustment algorithm for adaptive 

There 

.:re !,r;:.tt.ver st:vt91 d tcc 111.i ique:: 5ih:  :!I cdti t . t . . i l :  ; t ic. i lI*i  be ii::p1t.rl:twt.ed 

to provide for the appropriate parameter adjustments, Rather than  attcrnpt 

t o  generalize a par t icu lar  scheme for implementat ion, several  different  

methods w i l l  be i l l u s t r a t ed  by example. 

When the algorithm is used for plant parameter ident i f icat ion 

the implementation problems are not as severe since the  model presumably 

could be designed so t h a t  its parameters could be di rec t ly  manipulated. 

Trm important design considerations have been discussed i n  preceding 

chapters. The first is the  impoxttance of the adjustment algorithm gains 

% - e ~  3, these 

.gains have profound influence on the  adaptive response. This was dis- 

cussed by demonstrating that a least upper bound on L could be reduced 

by properly choosing the adaptive loop gains. 

chapter demonstrate this observation for non t r i v i a l  Cases. 

The examples i n  t h i s  

As discussed 

i n  connection with (2,2.15) these gains serve also as constraints to 

keep the  parameter changes small enough so t h a t  higher order terns do 

-55- 
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not *affect the  adaptive performance. 

t h a t  the least upper bound on L could be minimized by choosing the  adap- 

t i v e  gains lmge. That analysis however assumed that higher order term8 

The examples of chapter 3 i l l u s t r a t e  

W P e  neg l ig ibh  The effects of making t h e  loop gains so large that 

of higher order terms are investigated in this chapter, It w i l l  be 

Seen that the  gains cannot be chosen a r b i t r a r i l y  large without decreasing 

performance. The fact remains nevertheless t h a t  these gains can be 

chosen to reduce the worst possible e r ror  performance bound, 

The second point is t h a t  all of the  unknown parameters need not 

be compensated t o  achieve adaptation. In the parameter, adjustment 

scheme it would be far toocomplex to implement an adaptive loop for 

each plant parameter. The effect on ermP response when a simplified 

parmeter adjustment scheme is used is also investigated by mans OF 

4.2 Simulation of Parameter Adjustment System 

This example is taken f-mm an article in (19). The equations 

reppesent two-degree of freedom longitudinal airframe dynamics. 

The variables 8,a and ptu are aircraft pitch angle, angle of attack and 

elevator position respectively. 

N is the normat --leation at t h e  airframe center of gravity 
P 

and V is the aircraft v&.oclfty. The plant p a r a r n e ~ ~ ~ ~  1 9  and P 



andK were 
P 

Fkom actual flight test data p1’p2 parameter change. 

8learrured a8 a function of velocity. F$gure 4.1 shows t h i s  depeDdence, 

The only parameter which variea significantly over the range of velocity 

shown is K 

hsve as a stationary model while the &craft decelerates firon 294 f t / s e c  

C20Onrph) to 217 ft/srsc fl00mph), A8 discussed in (IS), p1 18 nearly 

zero ovee the PUght path an4 is not iasroil(tant enough to  compensate 

for. 

The control objective $8 to canstrdn the plant to be- P* 

The model equations descrlbin$ desired behavior a m  

The  err#^ is defhed 68 the diffgrence between d e l  and plant pitch 

e = m - O  t4.2*31 
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an adequate representation of the error system for implementation 

purposes. 

acceleration and pitch r a t e  can be sensed, 

with the  elevator posit ion tha t  must be used tofmplement the adap- 

t ive  control ler .  

by varying elevator position by a factor  Kc, t h e  adaptive c o r h o l l e r  

can be implemented as i n  figure 4.2. 

More r e a l i s t i c a l l y ,  it can only be assumed that normal 

It is t h i s  information 

By feeding back W through a compensator pa and P 

The ermr equitions describing figure 4.2 follow d i rec t ly  

e is tho error 1 
error in pitch rate. For purposes o f t h i s  example an error measure 

was chosen as 

(4.2-7) L = 1/2(e1 2 + 2eleZte2) 2 

No investigation w a s  made of the effects on e m r  response caused by 

di f fe ren t  weighting of t h e  e r ro r  and error rate i n  (4.2.7) 

Defining 

(4.2.8) 

the  adjustment algorithm from (2.3.5) and (4,2.8) is 
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R and $2 are unknom so implementation of (4.2.9) can only be P 
approxinated. 

assumptions are verified. 

the adaptive loop gains will be s a e d  by the term 1/# 

It is through simulation that the validity o f  these 

P' * 
Since the actual adjustments are 8, and fi 

Nevertheless, 
P. 

the choice of B,, 8, i n  (4.2.9) is seen to be very influential on the 

errOF response a. 

The schem used for achieving adaptation is shown in figure 4-2 

By changing Kc and p, according to (8.2.91, the products K K and 

pcp2 cosnpensate for changes in the plant parmetem. 
C P  

The actual values 

b = 8 h  (t) t % (4.2 . U) 
To investigate the effects of varying the adaptive gabs 'a the 

adaptive response a figure of m9P.h was assigned to the systeea. 

the flight: path between speeds of 294 and 

This 

14? 
2 2 

f 1 /2  (e, + 2ale2 + ez) dv C4 2.12 I 
294 

fo facilitate scalfng of figure V.3*  rather than platting I as a 

function o f  the adagtfve gains, 
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pas plotted. 

best  adaptive 

I = 7 . 5 ~ l . O ~ ~ .  

For t h e  unconpensated system B1=O, B2=0, I = SXJ.O-~~  The 

performance was achieved at  fil=lOOO, B2=20 resul t ing i n  

The analysis of chapter 3 demonstrated tha t  L could be 

kept very small by properly choosing these gain@. 

the  la rger  these( gains the  smaller the  upper bound on L; however, because 

of higher order effects t h i s  result is not completely valid. 

i n  figure 4.3 increasing 6 above 20 caused I to  increase for  all values 

of B1' 

Case I is for Bn=20, &=SO case 11. is for B,=20, 8,=1000. The maximum 

It w a s  observed t h a t  

0 

As shown 

2 

Figure 4.4 shows L as a function of velocity fop two cases. 

L for case I is 

inmewing Bl. 

versus velocity 

8 x whereas the  

These data were more 

L' = ~'/logloL 

i n  each case. 

6 .L 

maximum L was held to 7 x IOy8 by 

conveniently scaled by plot t ing 

n. 1 1 ~ :  4~itcct : ;  01. aujus.ting o:;?j, c.nc parninetcr wcre also fnvcsti,;atcd, 

Eeferringto figwe 4.3, t he  minimum I for S p = O  is at f3,=1000, 

fi -0 t he  best response w a s  obtained wi th  B2=300. 

For 

1- 

4.3 Example 4.2 

This example'is t h e  same as example 2 of chapter 1. It is 

used to i l l u s t r a t e  how state variable feedback can be used t o  implement 

t h e  adaptive controller.  The dynamics of the plant are 

The p's and the  plant gain are 

u = u<x,c) = - 

unknown but constant. TO pmvide a 

state variable €eedba& is used 
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A pref i l ter  KQ is also used to allow for gaiu ccmpensaticxk. The model 

equations are 

variable compensa*icm art? used fs shown in figure 4.5. 

* 

J 

I 

aptation i s  achieved by adjusting cllc c2 and KO. The cerm~ equations .. 

ax?% 



-66- 

A1 = a* 

6, = -a e -a e -6 x -e2x2 + dr 2 2  1 1  11. 

where 

choosing an e m p  measwe 

results in the adjustment equation8 

(4.3.5) 

(4.3 .?)  

It is possible to use state variable feedback for compensation only 

because the plant and model were available in phase varfabZe form. 

This problem becomes considerable mcmcomplisated when the plant 

i s  i l lustrated by the system (4.3.1) where only the plant observation 

variable 

is avdl&.te. 

x2. 
directly because the plant states cannot be measwed. 

If E 3.8 known it i s  a simple matter to peeover xl# 3. 
Xf zl is u n h o n  then the adaptive system cannot be implemented 

As shown in 
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with 

(Q 3 12) 



Becawe K is unknown in (4.3.131, the ef€ort is to produce some 
P 

uncertainty in y z ,  Since yz can be arbitrary positive function of t h e  

adaptive. controller i 

.\e... . ,. . , - 
. .  

, . .I ’ ’ 
. _  : ;. . - . &  5 ’  :, , . . . .  . ... . - ’ .  . , .  

From (4.3.13), (4.3.12) it: follc;ws that the model parameters should be 

adjusted as 
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(4 e 3.15) 

0 

A d j U s t m f m t  of model parameter& does not present the pmblem inherent 

to the plant parketer adjustment schemes 

of figure 4.6 appears complicated, there are no plant parameter adjust- 

Although the implementation 

ments needed. 

back cannot be used to implement the parameter adjustments. 

Because of the unknown plant zero state variable feed- 
* 

The system 

however need not be as complicated as shown. 

atism is used is to keep the e m r  small, there is no need to compensate 

for all the unknown plant parameters. 

Since the reason adapt- 

This goal can be achieved by 

compensating for only the most important plant parameters. The most 

impoptant ones have the greatest e f f e c t  on error response. For the 

system considered here acceptable performance could be achieved by 

compensating for on&y zero and gain variatfoas. There is no possibility 

of identifying plant parameters under these circumstances; however,, 

since the tracking emor will be kept small the model mwt be an 

adequa$e represkntcttion of the plant for the particular input. This 

ackqmte repmsentatbn 18 then used in the prefilter to compensate the ..> . .. .. . ..* I .  . 
p l a t  and maintain the overall tpansfer function close to that desired. 

4.1) ‘ C o n t r o l  S ignd  Augmentation for P l a n t s  with Zeros 

One other alternative to using the parameter adjustment scheme 

of Figure 4.6 is to use control signal augmentation. The error qua- 

tions (4.3*3.1) show that because of the plant zem the error is con- 
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t ro l l ed  by the contra1 u and i ts  derivative. 

<4.3-111 can be t reated as i f  there were two control inputs, 

2.3.6 will then give 

Denoting u=ul, u=u2, 

Applying 

y1 6 = - (e, + e,) 
3. KP ( 4a4. 1 )  

Since iiL 

O V B P C O ~ ~  by considering a di f fe ren t  control variable, 

u2 both relations cannot be satisfied, This prohlem is 

u = CLU+& 

then application of (2 3 * 61 results i n  

.. 
u -i. c J f -- CS, + e2j  

P .  

C4 4 2 1 

( 4  9 41 

(4=4*4) cannot be implemented exactly since c1 is the unknown pldnt 

zem. However, by using the &el zero in tQ+4.4] performance w i l l  not 

be appreciably affected if the model and plant zeros are close. 

This observation can be argued heuristically by using a different  

implementation of (4.4.41, Recall t h a t  U was chosen on the bas'fs 

t h a t  i t  made one term in t he  expansion of the  in tegra l  cost function 

always negative. This same r e s u l t  can be obtained by syntheaising u 

according t o  

This will result in 

(4.4.6) 

as the implementation of the control sugnal augmentation technique 



where the m o d a l  zero has been used. 

Using (4.4.6) the e€fects of the  model zero In the hplemntat ion 

can be qualitatively studied. 

loop gain can be any positive Evnction of time. 

It has been argued that the adaptive 

FOP a switch occurin@; 

in the control law (4.4.6) at t r t s ,  the PealizabXe control derivative 

i s  given &y the solution to (4.Q.6). The ideal relation is given by this  
I 

8- S O h t h n  evaluated for the plant zero. Denoting the realizable 

. control es % and the ideal by uI 

(4.4.9) it is clear, that f(t) canwt be gum?mteerd always positive. 
# 

However as t-t,, the t-8 between switching gets large f(t) is positive 

arad approaches a positive constant. 

long the aystw w i U  operate as 22 the plant zero were used for 

.+ 

If the time between swi‘tchings i s  
$,& 

rapidly turd f(t) may be nagativo. 

divaPgcer and as it becolses 

Under these conditions the ~ ~ P O F  may 

e the time between 8WitchingS w i l l  be 



longer and fct] will again be posit ive.  This heurist ic  argument 

implies a bound on the e m r  caused by using the model zero instead of 

the plant zero i n  the adaptive controller. 

4.5 S~rnulat~on o f  Adaptive Controller for a Plhnt with a Zero 

Thds example uses the equations for pitch axis motion of a high 

altitude airwakt. 

purposes i n  the litepatwre (8,14) . 
a simpLifed implementation of the parameter adjustment technique using 

only gain compensation. 

The plant has been used extensively for i l lustrat ion 
3 

As described below it illustrates 

The plant fs describfId by 

and an ulnd&ped nr0de.I is used for purposes of illustration 

(4.S.2) 
L A  

The variation of plant parameters 

given in (8). For one particular 

with Mach Number and a l t i tude  are 

plant state these parameters are 

p1=6.61. The configuration is shown 

Kc is adjusted according t o  (4.3.12), (4.3.13) as 

where L is chosen as i n  (4.3.6). 

* 
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I 

were adjusted and the p r e f i l t e r  contained the compensation of figure 

Q.E* ‘60 eviaJLuare the adaptive e m r  response as separate f r o m  the 
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1 plant response-uncompensated 



. .  
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.. 

plant input 

plant output A 
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actually used, 

Figure Q.11 
I 

The parameters of F(s)  i n  the model and prefilter were adjusted to 

minimize ex and it was demonstrated that e under these conditions was 

kept almost identically zero. 

‘ 
A 

This was accomplished despite the fact 

that convergence of the  model parameters to  the value of the plant 

parametars was rather slow 

4.6 Simulation of Control Augmentation Technique 

This las t  example was chosen to i l lus tra te  an application of the 

control. signal augmentation technique, 

conficuration makes it p a r t i c u l x l y  nrqxsl ing.  

The simplicity of t h i s  

The plant is 
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i = x *  1 

The plant parameters were chosen for simulation purposes-to be 
-.lt 

p 1 = 2 + e  

- . 2 t  p2 = 5-28 

- .05t 
K = S + e  s i n ( t )  P 

The control ckosen i n  accordance w i t h  (2 .3 .6)  is 

but the alternate form as discussed i n  section 4 .5  was found to give 

s l ight ly  better results. The control signal was generated from 

A model 

& = - a m - a m  + K r  .( lt. 5 8 )  2 2 2  1 1  Ip 

was used with a2=l, a1=.5, and Km = 10. 

are shown i n  figure 4-12- 'Ib. aajQP &awba& to. t h h  wn&rOB augmentation 

The plant and error response 

* scheme is the excessively large control effmt required. 
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V AREAS FOR FURTHER INVESTIGATION 

5.1 Introduction 

Perhaps t h e  mo8t iarportant subject  fop fu r the r  investigation 

is t he  effect of noise CyLI the adaptive process. 

ment of t h i s  important problem was reported i n  (15) but the  r e s u l t s  

A geimal tmat- 

do not apply to t he  model reference system as developed in t h i s  

thesis .  

Because t h e  model would generally be a computer simulation of 

desired performance it can be isolated from any noise effects other 

. than input disturbances. The plant i s  subject to other distrerbancss, 

hawever, state measurements MY be noise contaminated. If the model 

is subject to  the same input disturbance as t h e  plant  t h e  adaptive 

system s h o d d  work as developed s ince a l l  t h a t  is assumed is t ha t  the 

same input  is applied to %he model and the  plant.  If the model is 

chosen to have disturbance re jec t ion  properties, and if t he  adaptive 

system works i n  spite of contaminated measurements, t he  plant  w i l l  

t rack the model a& assume thetsa.mzm.xwjsction..prcyCuaz%$es. 

The two important questions are then (1) what effect do noise 

contaminated plant state measurements have on the adaptive process; 

(2) what affect does a disturbance not sensed by the 

sponsa, Even for linear p 

adaptive control a thm leads to  a non l inear  closed loop system, 

FOP t h i s  reason an analysis of the  schema i n  the presence of noise is 

-79- 



untractable. The d i f f icu l ty  arises basically because t o  fully specify 

t h e  statist ical  behavior of t h e  ermr requires knowledge of t h e  error 

covariance matrix i n  addition to the  mean value. If the  error process 

is R o t  Gaussian t h i s  may not: even be adequate. For the parameter 

adjustment scheme the complexity of the  analysis Is prohibitive. 

Some insight i n t o  the effects of noise on the control s igna l  

augmentation scheme can be gained by making appropriate assumptions. 

The conclusions reached might then be used as a basis  to begin a 

study of the paramter adjustment scheme i n  the  presence of noise. 

For i l l u s t r a t ion  a first order plant which has an unknown but constant 

pole and gain is chosen. The plant state equation 1s 

A s -  px + K (NU) (5.1.1) P 
Desired performance is described by 

rh t .. am + Kmr (5.1.21 

As shown in figure 5.1 the plant state is corrupted by noise and 

t h e  input is t h e  desired input plus noise. It is assumed that both 

n and n2 are Gaussian whi t e  noise processes with  mean values 1 - -  
nk=n2 = 0 

and variance 

6 is the  de l t a  function 
i j  

The comupted plant state and t h e  plant input are then 

1 

pn = I? + n2 

2 t n f X $ R  

(5.1.3) 

(5.1.3) 

cs 9 19-5 1 
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The closed loop behaviolr of x w i l l  be defined by the two disturbances, 

The frr*pulses msponses hl(-t, ) *  h2(t, ) can not be determined exactly 

because the plant parametem are unknown and may be tim varying. 

.. . 

statistics of x .  Denoting the expected value operator by 
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Because nl,n2 and T a m  mutually independent (5.1.9) reduces t o  

By averaging inside the integral the variance can be found as: 

t t 

0 0 

The last term i n  (5.1.9) represents the man of x squared and for t h i s  

reason has been omitted from the variance expression. The hpulse  

responses hl(t,t)hq(t,r) cawnot be found but if the frozen system 

concept is w e d  these functions can be approximated by the stationary 

hpulse response functions h1(t-r)h2(t-r) associated with the system 

having the nominal plant parameters. The variance is then 

Making the substitution t-r=ft in (5.1.11) results in 
L 

FOP the frozen system the plant outputvariance becomes stationary as 
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0 ' b  
which is bounded for b%, hq having low'pass Arerqtaencp characterdstics. 

The erroz? statistics follow direct ly  from the above results. Since 

e 3 VI-% the contribution due to  noise in the error comes exclusively 

fram X. Therefore the expected value of the emor caused by noise 

is the negative of the expected value of x I  

& = % = O  c 5 1.14) 

Similarly, the contribution of noise to the e m p  variance is the 

vwiance of X. 

C5.1.15) 

The contribution to e not caused by noise is the e m r  reaporme for the 

uncontaminated system.. 

For the example considered here At follows Erom f i p e  5.1 that 

whma script L danotes tha Laplace Traisformsathn, and 

p(0) = Y 

From (5.1.16) and (5.1.17) it then follows that 
a 

( 5.1.17) 

Substituting (5.1.18) into (!5.1*15): 
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For this simple example it is obvious that The a r i q t i v e  loop gain y 

should be chosen as small as possible to reduce the contribution of 

measurement noise  t o  the error variance. Since the bound on error for 

the uncontaminated system has been shown to be inversely proportional 

to y there will be a trade off required between minimizing the deter; 

minfstfc error bound and minimizing the ermp variance caused by 

noise. 

5.2 Illustration of Naise Effects on Simple Parameter Adjustment Scheme 

Because of the noniinear nature of the parameter adjustment adaptive 

system an analysis l i k e  that above is not possible. 

insight into the statistical error behavior can be gained by considering 

the linearized form of the nonlineajc, controller.'  

However, some 

For the plant i n  (5 .Z.L)  

k = p, 4 KPp (5.2 0 1 )  

the gain adjustment algorithm can be implemented as shown in figwe 5.2. 

It is assumed that t h e  plant pole f s  known. 

is then to compensate for the  unknown but constant p l a n t  gain K . 
closed loop plant differential  equation is 

The purpose of adaptation 

The 
P 

k = -p x + K K r (5.2.2) 
P C  

with 

K K = Bri[m-x) 
P O  

(5.2.3) 

then the system i n  the absence of noise will 
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Any change in x from xo w i l l  be causec. by noise cmtaminatfon of the 

plant state and noise affecting the plant but not the  xwdel, n1 and n2 

respectively in figum 5*2.. 

to the linearized fcmn o f  C5.,2,2L . 

This change i n  x frora xa is the solution 

A* C -PAX + (KpKc)oA~ + (K F) bK {5.2.5) 
P Q C  

similarly, krorn (5*2.3), the a h w e  6K K can be expressed as the 

solution to 
C P  
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where km=CK K has been used. 

change i n  x from the steady state step responser 

r .from Ro is just n2, and any change i n  x f r u m  xo is &x+nl. 

Ax by bx t n1 and AP by n2 in (5.2.7) and integrating gives 

The solution to (5.2.7) gives the 
P C O  

xo4 Any change i n  

Replacing 

t a 
Axct) = gct-a) [Kmn,(a)-SK R [Ro[Ax(r) + nlCr)3txon2(r)~drlda 

P O  I 
(5.2.8) b 0 

where gct-a) is the impulse response defined by (5.2.23. 

As t-+0 x(t) becomes stationary and its mean value is 
Qm 

0 0 0  

f x0n2(T:) ]drda (5.2.9) 

( 5 . 2 . 9 )  can be expressed as 

a -  

0 0  

F m m  (5.2.10) it follows that - 
Ax = 0 

( 5.2.10) 

( 5.2.11) 

The mean value of the perturbation i n  x caused by noise is zero. 

Similarily _. 
he = 0 ( 5 . 2.12) 

Since the nominal value of emz- is zero, the erxup i n  the presence 

of noise is zdm mean. 

The vmJance could be found starting from (5.2.7) ., However, 

it is simpler for this linearlized system to work with the transfer 
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function representations, 

of (5.2:;): 

Taking the Laplace Transfomn of both sides 

c5 t 2.131 Gfs) is the transform of .&I and N l b I ,  N 2 b 1  are transf0- 

of signals entering at nlpnz respectively in figure 5.2, Noting that  

c5.2.13) can be expressed it9 
I 

s+p qs) = - 

Undw the assumption of stationarity,  the vaiance of the change in 

X can be fou~d using standard %echniques. 

p=Ro=l then denoting BK as a, (5.2.25) becomes - 

For purposes of i l lustrat ion 

' P  

The variance Is the result of the complex integration 

which can be evaluated using standard tabulated forms (16) as 

(5.2.16) 



(5.2.19) 

Reasoning as i n  t h e  control augmentation analysis,  the  error variance 

is the  same as the  plant variance. 

To recapi tulate ,  it was assumed t h a t  subject t o  a constant input 

the  adaptive system would n u l l  the error caused by di f fe ren t  values 

pf model and plant gain. If the  deviation f w m  t h i s  equilibrium 

cawed by noise i s  stationary,  it w i l l  be zem mean with f i n i t e  variance, 

The vax4ance can howevm be plinfdzed by setting the adaptive gain to  

-4 
. .  

. .  - .  * .  

t' be slarapolated 

t o  the s i tua t ion  where adaptation is not achieved before the eystern 

is corrupted by noise, 

for a s t e p  input,  then t o  maintain the error close t o  zero despi te  

noise, t h e  adaptive loop gain should be as small as passible.  

X f  t he  emop is smdllbetween plant and model 

Setting 

t h e  adaptive gain t o  zero would make adaptation impossible; therefore 

t h e  gain should be made only as small as results in suitable performance, 

This reasoning cannot be extended to  the more general case where the 

ermr between pia" and' matel is large in the presence of noise. To 

do so would violate  the l inear iz ing assumption inhererit i n  ( 5 . 2 , 5 ) ,  

5.3 Summary of Areas for Additj-onal Investigation 

The i l l u s t r a t ions  

conclusive e m i n a t  ion 

they s e ~ v e  to  point up 

. a  

: * 

i n  t h i s  chapter were not intended t o  be a 

of noise effects on system performance. 

the  hportance of noise contamination on the 

Rather 

. .. - _  
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In addition to' an extension and generalization of  the preceding 

analysfs, fruitful areas €or fw?ther.investigation are 

Redesign of the adaptive loop to guarantee art emr bound as 

$n Chapte 3 but to also afford mop8 cuntrol over?. the noise 

induced emrrr bound* 

Investigation of alternative error criterion. 

input. Knowing the saturation limit of the plant, a relay 

configmation can be used to form the control derivative. 

Rather than integrating this to obtain the control as done in 

Example 4.2¶ a low pass filter could be used which would 

effectively duplicate the required integration but would 

at the sama t i m e  provide a saturation-limit on the total 

control effort. 



. . .  
.I . . ; * .  . . . .  

- . -  , . 
- .  

. .  
. . - * .  .. .. ' 

. '  .'.a', 
. .  

* .  
. .  - *  

' ! :  . ._ . . .  

If: * 

1) The homogeneous emr equations ~ t ? b  l inear and stable in 

error terms w i t h  constant coefficients. 

2)  The unknown parameter difference vector and the c o n t r o l  

vector enter linearly into the equations. 

The scale factors B and y i n  (2.3.5) and ( 2 . 3 . 6 )  are constant. 3) 

4) The parameters are constant 

then the parameter adjustment algorithm is +the same as the method 

proposed by Butchard and Shackcloth (3)  and Parks (17). 

To show t h i s  the error equations are written as 

. N  -- 
Ai=gi(e,b,u,rt)= 1 a e + hi(x,6,u,t) 

j=L 3 5  
or equivalently as  

-91- 
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lbf A and S are diagonal the (A3) ean'be expressed 88 

F r o m  (A81 and (AI) it follows t h a t  

and choosing 

6k = - 

N N  
k=1,2,.,.J 

kk i=l j=& % = - -  9 

Substituting (Afla) and'cAL3.b) into (A71 results in 

(Alia) 

(Allb) . 

t $ = e Q e  (A12 1 
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positive definite. (10) 

V is a positive 'definite functkm of d and e but i fs a function 

oE e only ana is thus only a positive semidefinite function of e and 6. 

Whether OP not V is a Lyapunov function is a moot point, The important 
0 

fact is that the parameter adjustment algorithm cannot gumantee 64. 

This is nOt surprising since the. mope straight forward vzdational 

appreesh present ShawS that thB 1Bl?aSwpB C33ZIIlOt bs a function 

thd value o€ d t o  i at  the adjust- 

racnt 

m s t  



APPENDIX B 

This Appendix shows t h a t  i:F the only measurable output of a 
* 

l inear system i s  a linear combination of the  s tates  weighted by 

unknown constants the adjustment algorithms may still be applied 

using only t h i s  output and its derivatives. 

plants described i n  phasevariable form. 

This result is for 

For a system i n  phase variable form with unknown but constant 

parameters 

k. = x i=1 ,2 , .  . .ti-$ 
1 i+l 

the only measurement available 

N 
y = 1 ZjXj 

j =l. 

i s  the observation 

- 
+i - Yi+l 1=2,3,. . .N-1 

This follows from Letting 

-94- 
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then 

in general 

and 

Factoping out pk : 

which verifies (B3) 
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