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When it is desired to control a plant in a particular way, an
accurate description of the plant is necessary. When there is some
lack of knowledge about the plant, adaptive control can be used to
achieve the original control objective despite this ignorance.

The model-reference adaptive system presented here is based on
knowing the structure of the plant but not knowing some or 211 of the
parameter values. In addition to this uncerta@nty, the analysis also
accounts for plant parameters which are both unknown and vary in an
unknown manner.

The model-reference system uses a model subject to the same input
as the plant. Since the model and plant structure are the same, any
difference between the states of the two (tracking error) is due to
differences in the parameter values of each. The model parameters are
chosen to achieve the desired control objective. Hence when adaptive
action reduces the error, the plant behaves in the desired manner
despite ignorance of its parameters.

In contrast to previous work, variational techniques are employed
in obtaining two algorithms for effecting this adaptive control. The
first is a parameter adjustment scheme where the algorithm defines how
controller parameters should be adjusted to reduce the tracking error.

The second method utilizes a control signal input to achieve the same
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objectives. Both techniques are implemented continuously in real time,
and afford uncomplicated analysis of the closed-loop system in the
absence of disturbances.

The more important results are: 1 Either algorithm guarantees
stability of the error when the plant parameters are stationary. 2.
In the presence of unknown pérameter variations a bound on the error
can be guaranteed. This bound can be reduced by increasing adaptive
loop .gains. 3. Even if all unknown parameters are not compensated
fﬁr, an error bound is still guaranteed. This results in a greatly
simplified configuration for the parameter adjustment scheme. 4. The
parameter adjustment development is formulated so that it is directly
applicable to piant parameter identification, as well as adaptation,

’Simulationﬂresults are presented illustrating application of the
parameter adjustment algorithm to pitch control of an aircraft. In
addition other non-trivial simulations are presented which demonstrate

the cffeétiveness of both methods.
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INTRODUCTION

A system has been defined as adaptive if a means is provided to
monitor its performance and modify the control action accordingly in
an attempt to make it an acceptably performing system (4), Since this
work is concermed with only model reference adaptive systems, an
acceptébly performing system is one whose performance is closely enough
slaved to come reference performance so that the plant dynamic response
to a particular input is closely described by that of the model. In
this context the model is the physical implementation of the designer's
concept of an acceptably performing system.

A strong parallel exists between model reference systems and
conventional control systems. In both cases desired performance can
be achieved through external compensation, prefilters and feedback
elements. In the conventional feeéhack controller the concept of what
an acceptably perfofﬁing system is ngfd not be implemented. Since
the structure of the plant and the valﬁe éf all plant parame&ers are
known, the desired performance can be obtained using fixed compensation.
If the plant parameters vary, the system with fixed compensation may
no longer behave acceptably. If the pafameter variations were known,
the fixed scheme could be replaced by more complex time varisble
compensation. The behavior of this scheme would be exactly that which
compensated for plant parameter variations to.produce desired system

performance.

The more realistic problem, and the one with which this thesis

deals, is where plant parameters vary in an unknown manner. The cost

-1~
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of compensating for these variations is a more complex controller con-
figuration. In particular, it now becomes necessary to know how plant
performance compares to desired performance. The adaptive controller
function is to analyze this relative performance and act in a way to
keep the plant performing satisfactorily. The controller must there-
fore measure performance and for every measurement have a strateg&
which is designed to improve the plant response. The basis for a_
particular strategy as well as the choice of a performance measure tg
a large extent define the adaptive controller,

The ultimate factor in determining a design must be the particular
application for wﬁich adaptive control is required. Some plants may
vary at rates which prohibit acceptable response from parameter adjust-
ment techniques. There may also be a fundamental limitation imposed
by having inaccessible plant states. Other techniques designed to
work for linear plants may fail to work with nonlinear plants.

This thesis reports an approagh to both the parameter adjustment
and the signal augmentation model reference adaptive control systems.
What is believed new in this research is the basic analytical approach-
based on variational reasoning- one which yields adaptive algorithms
which are simple and which afford uncomplicated analysis of the closed
loop system in the absence of noise. The limitations of the method
.become clear, and to some extent, can be minimized by appropriate
design. '

The most important techniques used for model reference adaptive
control are higﬁlighted in Chapter I. The differences between plant
identification and model adaptation are discussed.

Chapter II formulates the control problem in mathematical terms,
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A method for adjusting controller parameters is derived under ideal
conditions. These ideal conditions require that the controller par-
ameters are the only factors determining adaptive response. The
adjustment technique is then extended to allow fcr synthesizing time
varying input signals to the plant.

In Chapter III the assumptions on ideal conditions are relaxed.
The adaptive system response will depend on both command input signal
‘variation and the éffects introduced by unknown parameter variationm.
By choosing the adaptive loop gains large the worst case effects of
these variations can be minimized. Simple examples illustrate the
validity of the suggested design technique.

In Chapter 1V specific forms for the adaptive controller are ex-
amined. Since the parameter adjustment controller is quite complex a
simpler form is investigated for specific systems. Digital and Analog
computer simulation results are presented.

In order to implement a signal augmentation controller when the
plant has a zero requires exact knowledge of the zero., When this is
not known, the controller must be implemented using the model zero.
The effects of this approximation on adaptive behavior are studied.

Chapter V outlinés some of the more important areas which require

closer examination.



I PROBLEM DEFINITION AND BACKGROUND

Figure 1.1 is fundamental to many model reference control systems.
The plant structure is known but its parameters may be unknown or
unknown and time varying. The model prevides a real time representa-
tion of desired plant performance for the given input r(t). By
appropriately adjusting controller parameters the tracking error e(t),
is to be made small. The prefilter and feedback compensation elements
contain the controllable parameters. The adaptive analyzer measures
plant and model states and plant inputs, and generates the appropriate
‘control signals. In the parameter adjustment system these signals
provide the proper variations to the controllable parameters.

If the parameter adjustments are to be used for identifying plant
parameters, the adjustable or controllable parameters would be in
the model. The model parameters would be adjusted to reduce the track-
ing error. When the error is nulled the model parametefs have the same
value as the plant parameters for an arbitrary input r(t).

The adaptive analyzer'for the control signal augmentation tech~
nique provides a continuous time function which is applied to the plant
to keep the tracking error small. Regardless of which class of controlw
ler is to be used, the system design reduces to one of specifying the
adaptive analyzer. This thesis presents a method useful for designing
this analyzer to perform any of the aforementioned tasks. Before
discussing the details it is instructive to summarize some of the more
important earlier work.

The study of adaptive control was motivated by the practical

Yo
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challenges of the early to mid 1950's. As aircraft were designed to
fly higher and faster the environmental effects on flight characteristics
became increasingly troublesome. The fixed compensation schemes of the
past and even scheduled parameter adjustment techniques became unsatis-
factory. The scheduled gain changing systems require that the plant
be identified. To do this usually required an air data computer to
analyze flight parameters an4 deduce from these the plant dynamics(l);
This method at first seems appealing since high speed calculations can
keep the phase lag due to measurement small. The complexities of
actually handling the enormous store of data needed often proved to be
too complicated a task. In addition, méasurement of environmentalr
conditions was not always possible (1),

An alternafive to using air data measurements to identify the
plant is to adjust model parameters on line, relying only on present
values -of the plant states. A technique employing on'line parameter
identification for use in an adaptive autopilot was reported in 1958 (19)
The theoretical basis for parameter adjustments in the model is given

in (18). A fault of this methed is the requirement that for an ath

h state variahle is needed in the

order plant the derivative of the nt
adjustment algorithu. ‘
Another interesting on line identification technique uses a Taylor

series expansion of the error between plant and model to deduce parameter
adjustment'algorithms.cg). By continuously changing the model parameters
until the error is zero, at least for the input being applied, the

plant and model are made to behave dynamically the same. As with any
identification technique, if the particular input is not sufficiently.

broad band complete identification cannot be guaranteed.
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A drawback to any on line identification scheme compared to ad~
aption is that identification does not alter or improve the plant
performance. Use must be made of the parameter information to accom=
plish the control objective. These techniques take considerable time
to converge to accurate parameter values (9). The question of what
should be done during the identification delay is not easy to answer.
Since the plant is responding continuously, it must be controlled.

But to control it properly requires knowledge of the plant -~ information
not gvailable until identification is complete. The reason for this
complication is that most on-line techniques for identificati&n are
based'on reducing the square of the tracking error. The error is
not a measure of the system performance however. A more meaningful
error measure for identification is the square of the difference
between model and plant parameters. But to actually implement such a
scheme would require knowledge of the ﬁlant parameters. An adaptive
system based on minimizing tracking error does not present this dis-
advantage. By continually reducing the errof,'performance is improved
directly. Although adaptation and identification are conceptually

the same proceés, for the reasons cited above, when model-reference
control is the objective, adaptation is the more direct solution.

The term "model-reference adaptive system" first appeared as a
description of adaptive control work done at M.I.T. in the late 1950's.
This research was aimed at controlling yaw, pitch and roll loops under
varying environmental conditions for a particular aircraft. An
adaptive scheme suitable for this task was designed which performed
satisfactorily in both simulation and limited flight testing (20).

In addition to this important first work in adaptive control, a basic
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~ groundwork was laid for the design of adaptive systems. These five
steps summarize the important considerations:
1) Design of a model to meet the system specifications.

2) Selection of the control system loop configuration.

3) Determination of which Earameters should be varied and how

they affect system respéﬁse.

4) Determination of error critefia which will adjust parameters.

5) Analysis and simulation to determine the convergence times

énd dynamic operating performance of the system.

Step one is perhaps the most important. Care must Se taken to

_ guarantee that performance, as specified by the model, can actually
be achieved. For‘example, the requirements placed on %the system must
be qonsistent with any constraints on available control effort. This
restriction can usually be satisfied by not reéuiring performance from
the plant for which the plant is not designed. The purpose of model
reference control is then to keep the plant responding as it was designed
to despite variation of its parameters.

Regardless of what error measure is used, the adaptive analyzer
must be physically implemented. The ability to do this will depend
to0 a great extent on which parameters are to be varied to achieve
adaptation. Although the development presented in this thesis is
complgte in that it defines how each parameter of the plant could be
compensated, the resultant adaptive loop is greatly simplified by
using only some, or perhaps only one, parameter in the compensation.,
The validity of such a simplification can most reliably be tested by

simulation.

Other than making a proper or meaningful choice of error measure,
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the qualitative structure of the error measure will be important. How
much each state is weighed in measuring error will be important in terms
; of the dynamic operating characteristics of the system, Once the error
measure has been chosen and the adaptive loop structure has been deter-
mined, the final design would be "fine-tuned" as regards the error
weighting. Simulation studies would be used to a large degree in this
stage of design.

Work undertaken at U.C.L.A. at about the same time as that
referenced above attempted to generalize on possible adaptive tech-
niques (13). This work was not constrained to the design of a particular
system and consequently some rather broad fundamental questions were
posed on the philosophy of adaptive control. The adaptive problem as
viewed then was essentially one of identifying.the plant and updating
controller parameters. The identification was to be carried out by
adjusting model parameters using system input and output information.
As mentioned earlier, this approach is the dual of the adaptaticn
procedure. Hence the questions raised, and paraphrased below, are
pertinent also to the design of adaptive systems.

1) VUhat are the ways in which the model can have its parameters

adjusted?

2) Is it stable? Will the model have its parameters adjusted

so that they are a satisfactory representation of plant
dynamics?

3) What is the dynamic performance of the model? How fast does

it respond to a change in the plant dynamics?

A great deal of the effort in model reference systems has been

directed towards answering these questions. The problem of adaptive
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loop stability was particularly troublesome, and limited to analy-
sis (5). It was in fact the analysis of the stability propertiés of
adaptive systems which led Butchard and Shackcloth to present the
first.synthesis technique which guaranteed stability kéb. Thié tech~
niqug was popularized by Parks (17) and has subsequently received
considerable attention in the literature.

Included in the category of dynamic performance is the adaptive
behavior to changing plant parameters. A technique based on the as-
sumption of slowly varying plant parameters may be unable to perform
satisfactorily if the parameters vary rapidly. Although an adaptive
controller using control signal augmentation has been designed which
guarantees stability of the adaptive process despite rapid parameter
variations (7), there is no reported technique employing parameter
adjustments which guarantees that rapidly varying plant parameters
can be tracked. In general, even for stationary plants the error will
not be zeroced since imperfections or simplifications in plant modeling
will prohibit the plant and model froﬁ behaving exactlj alike. This
type of bounded error response might aptly be called "practical
adaptive stability" after the practical stability definition of
Lasalle (12)..

The work reported here falls into this category since the scheme
can be designed to guarantee practical stability in the presence of
varying parameters even tbough the basic structure is derived assuming
stationary plant parameters. |

The alternative to parameter adjustments is to provide a control
signal to the plant which will keep the tracking error small. This

technique is referred to as a signal synthesis approach or control
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signal augmentation (4). The adaptive controller is designed to produce
a control input which causes the plant output to track the model out~
put. This is generally simpler to implement than the parameter ad-
Justment scheme since only one control parametey (the control signal)
is being changed for a single input plant. Most of the work in this
area has been aimed towards generating a control which'guara;teed the
existence of a Lyapunov function of the tracking error. Grayson

first introduced the concept in 1961 (7), Since then the method has
been refined to make it of practical engineering importance (1u)

This survey of methods is not intended to be complete, but rather
intended to reference some of the previous work in parameter adjustment
and control signal augmentation techniques. Many other philosophies
exist for designing adaptive systems. Among these are the parameter
perturbation schemes, the high gain schemes, and techniques employing

test signals for excitation in addition to normal plant inputs (6),



IT DESIGN BASED ON IDEAL PLANT
2,1 PLANT DEFINITION

The first step in the design process is to define a measure of
the tracking error. The influence of all controllable parameters
as well as all control inputs is then used to advantage to reduce
this error measure. As a result, algorithms defining parameter ad-
Justments are derived which act to decrease the difference between
plant and model. .Siailnrly, for the control augmentation technique,
a method is deduced which definss a control input useful in reducing
the crror measure. . '

Because of tha duality between parameter adjustments for adaptive
control and for identification, the algorithm will be developed with
the former in mind, any differences inherent to the identification
scheme will be brought out as the.development progresseé. Regardless
of the actual structure for implementation, be it identification or
adaptation, the design problem can be stated as follows: Given the
differential equation representation of the piant it is desired to
control the plant to perform in a specified manner despite a lack
of knouledge of the plant parameters. The model is used to describe
this reference performance.

The structure of the plant and model are the same, the only
difference is the parameter values of each. The function of ths
adaptive controller is to reduce the difference between plant and

model via parameter adjustments or control augmentation., The plant
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is described by a vector differential equation
% = P(x,u,r,p,t) (2.1.1)
where x, are the plant states, 1.:j are the control inputs and rj are the
plant commands. The plant parameters are contained in the vector p.
There are N plant states, X plant parameters, J command and control
inputs. Any or all elements of p may be unknown or unknown and varying
| in an unknown manner with time. -
The model is structurally the same as the plant
m = F (m,r,a,t) {2.1.2)
where m, is ope of N model states, a, is one of K model parameters
and the cc;mand vector r is the same as applied to the plant. The
tracking error is the difference bstween model and plant state vectors
e=m-X {2.1.3)
' The dynamic behavior or the error is given by
e = g'(m,x,r,p,a,t) ' (2.1.4)
and if the model structure is chosen properly may be expressed as
e= gle,x,r,u,d,t) (2.1.5)
where § = p-a is the N dimensional parameter difference vector.
The goal of parameter adjustment adaptation is one of adjusting
§ to zero despite ignorance of p. Although in the development of the
Final design p is allowed to be time varying, it will be pointed out
that zero tracking error cannot be guarantéed under these conditions.
Rather, the error will be kept small despite these variations.
The ;lgorithm is based on the ability to change 4. In particular,
rates of change of the components of § are deduced which are sufficient

t¢ continually decrease the error measure.
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2.2 DEVELOFMENT OF THE ADJUSTMENT ALGORITHM

Since the object is toc minimize the tracking error between plant
and model, a measure of this error with a meaningful minimum is required.
Let this function be L(e) and require it to be nonvnegative for all
possible values of e. With this requirement, the smaller the value of
L(e} the closer the plant states will be to the model states.

The only means available to effect a controlled change in L are
thru § and u. L(e) coﬁld be minimize& by making adjustments in the
negative gradient direction of L. However, because there is no direct
way of changing e, it is necessary to make changes in L thru changes
in 6§ or u. If L is a function of § then to be meaningful it must be
a non-negative function of 8. With this restriction, the graéient
of L would also Se a function of 8§ and since 6§ is unknown the gradient
could not be evaluated. Several of the techniques developed previcusly
have circumvented this problem by defining L to be a function only of
e and then approximating the partial derivatives of the error with
respect to § and making adjustments accordingly.(4) In addition to
the inaccuracies introduced in approximation, these methods have the
disadvantage of being overly complex.

If an integral criterion wgrerto be minimized L(a) could be con-
sidered ths rate of cost and J £ L(e)dt the cost associated with

%o
the system (2l1.5). The adaptive problem couid then be stated as
follows: Given the system governmed by (2.1,5) it is desired to choose
8,u to minimize tg
Is ! L(e)dt (2.2.1)
t

0



S8ince (2.2.1) represents a functional to be minimized subject to con-
straint (2.1.5) consider instead minimizing

te N
I= f [L(el +.'Z ai(éi_-.-gi)] dt (2.2.2)

to i=1
The elements of the N dimensional vector a are Lagrange multipliers.
By multiplying each of the N differential constraints by a corre-
sponding as s the minimization of (2.2.2) may procedg with no additional
constraints (2). The necessary conditions for the §(t) which minimizes
(2.2.2) can be derived using variational calculus but the result is
meaningless since the value of the parameter difference vector is
unknown. BEecause of this it is impossible to set the value of ¢ at
any instant. If this could be done then 6 would be analogous to a
control input and could be synthezized to minimize I.

Rather thén finding these conditions, since th? resultant scheme
could not be implemented, conditions will be found desc:ibipg approw=
priate changes in § which guarantee a reduction in I.

Consider two subintervals comprising [to,
(tg,tfﬁ.* Let the nominal values of the variables on [to,tf] be re-

tf] namely [to,tg] and

presented using circumflex notation. Then the independent variables
~ A A A A~ 7
are 1,5 ,# and the dependent variables are a,x,m,g,L. Express (2.2.2)

as the sum of two integrals
t t

. g ~ N Fy : ” f L] N ~ ~ »
I= f [+ Z “i(ei"gi)]dt + ! L+ z ai(eifgi)]dt = Il+12
* i=1 % i=1

0 g (2.2.3)

It will be shown.that the system (2.1.5) can always be adjusted on

% The square bracket denotes a closed interval, the smooth bracket
an open interval
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(xg,tfj in such a way that the total cost on [to,th can be made equal
td or less than the cost on [tQ,Q;] if no adjustments were made on (Fg’
tf]. The induction is clear; if these changes are initiated repeatedly
over successive intervals, the cost I is contirgally reduced from
what it would be if no change were made.

It is assumed that:

1) Any change in I over (tg,th is completely caused by changes
in §,u over this same‘interval. This says that the effect on
e, and hence on I due to the input r changing on (tg,tf]
is negligible. |

2) Any change in x and m is equivalent to a change in e.

8) Any change in § is a controlled change. The value of § is
unknown but there can be no variation in § not caused by the
adaptive action.

The effects of relaxing these assumptions will be investigated in
Chapter III.
Recall that & ﬁas K components, u has J components and e has

N components. If §,u are changed incrementally on (tg,tf]:

6 = 6 + 48 K=1,2,00.K ' (2.2.4a)
. = u., + Au, =1,2,...d 2.2.4b
u] uJ + u3 i , { )

the error components will change incrementally, and the error on
(tg,tf] is:

| ej = & + de, i=1,2,...N (2.2.4¢)
The changes (2.2.4) also cause changes in g,L on (tg,tf]. The ui's
are chosen to be independent of any change occuring on this interval.
The value of a is completely determined by the system behavior on

[to,tg] with no change on (tg,tf] despite changes in the control, the



-17-

Parameters and the error.. This is no restriction since (2.2.2) is

equivalent to (2.2.1) for any choice of a. The changes in g,L are:

& = g + 08 121,2,...N (2.2.5a)
L=1L+aL . (2.2.5b)

which can be expressed as

.

N 9g K 9g; J 9, ~
Ag = . Z anp— Ae +Z’ --~— 66 '!! E p— Au i=l’2’ocoN (2.2.6&)
i ‘ jzlaej 3 k=1a5k k j=1 auj i |
N
AL = -:% Aej (2.2.6b)
= 4

where the circusflex indicates the partial derivatives are evaluated
about thedr nominal cr(unﬁcrtuﬁsﬁd values. The nomimal - values are the
values sélelyA&ét@ﬁwihed by the finctional behavior on [to;tgi.
Substituting into (2.2.3) gives:
£F. N n te o N .
1=[ [+ ) &i[éi-éi]]dt + I friesL + ) ai[éngi"-'éi—Aéi]]dt

i=1 i=1
t, .tg | (2.2.7)

Using I, as defined in (2.23) and combining (2.27) with (2.2.6):

t Py
£ N N N 38 K 9g
* L ~ ~ ® . i i
I=I, + I L+ 2 = de, + 2 a.{g,~e.~-de, + Z = be, +) = A
1 { j=laej i i=1 i*%1 i T j=laej j k=136k k
-4
J g

+ ¥ -5-‘;;‘- duyTlat (2.2.8)



t t
X f”f‘n T[]
= + -t Ig.-e. ] @, dt + j [ he [-—— +)a —---—] ]dt
1 . {21 1 i 1 ! j= i aej jop & ej
8 8
t t
£ * £ °
K N og J N 2
+[ g‘f ack].zai -&—ﬂdtqr[ » -251-55-1- dt
¢ =3 =1 ¢ U= dli= -
B 8
te e
+ [ L dt - [Z a; + A&, dt + H.0.T. (2.2.9)
% v 171
.8 i :4

H.0.T. represents all higher order terms required to make (2.2.9) an
exact ‘equality. Expression (2.2.9) can be simplified by appropriately
choosing the &i"s. If these are chosen as the co-state variables
associated with the unperturbed system they must satisfy the necessary
conditions of the Maximum Principle: Given (2.1.5) and e(to), the
value of §,u to minimize (2.2.1) must minimize for all time the

Hamiltonian defined as

A N

H=1L +i§i 284 (2.2.10)
where the xi's are co-state variables defined by

A= %%1 1=1,2,...N, ACt.)=0 (z.2.11),

By associating the A 1'8 in (2.2.9) with the unperturbed system,
they are independent of any changes on (t g’tf]' These are exactly the
conditions rociuired for the a 48, and ch‘oosi_ng &=1 validates the
development to thizs point,

From (2.2.10) the following identities hold:

. * N, 9g,
b= d, =% T, = (2.2.12a)
3 73 ej j=1 * %y
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N ,

oH Z "
SH P (2.2.12b)
ack i1 i3 X

o J ag
aH Z > i
Cvali (2.2.12¢)
3uj io1 At auj .

»
where H has been denoted ‘as H to indicate it defines the Hamjltonian
for the unperturbed system. Using these identities in (2.2.12) and

noting that 31 = ;1 results in

I3 i jfll . te
I=I, + I ¥ be; A gt - g A Aéfdti»[ L dt

¢ 3= g 32 t

g g g

t t

£ K . £ .

+ j ) Ask-g%dr +j y bu, %ﬁ at + H.O0.T. (2.2.13)

k=1 K j=1 3 %Y

t t

g g

N

Since .} (ae, i, + A Ae ) is the differential of Z de » (2.2.13)
j=1 i 3 =1 ] 1

can be written as (18)

t

(f: lf ( M (t) f§
I= J Ldt - Ae.(t )A t )+Ae (t A t.) + dt
jsp 4 % i's el “x a"k
tg g
te g i
I+ 2 = dt + H.0.T. (2.2.14a)
1 j 3u
R R
g
te te te .
» X M H
=] Ldt + ) as at + Z Au, 5= dt.H.0.T. (2.2.14b)
. k 98, j ou
: o k1 k391 ;|
0 g g
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The term Aej(tg) represents the change in the jth error component
at the beginning of the interval (tg,tf]. This change is measured
relative to the nominal value éj which is determined solely by 3, u

on [to,tgl. If the partial derivatives

de, - da
_..i’ .—1 b2 ’k’m
T T

exist fhen ej cannot change discontinuously. The value of»e_j at
the beginning of (tg,tf] must be exactly that at the end of the
interval [to,tg]. The term Aej(tg) must then be zero. Because the
aj's were chosen as the co-state variables, from (2.2.11) Aj(tf)=0.
From (2.2.14b) the total cost, I, on (to,tf] is the sum of four
terms. The first term represents the cost associated with the system
using 3, ;. The second and third terms indicate that the total cost
can be changed if § or u or both are changed on (tg,tf]. Because
of assumptions (1) and (2) the change in I is completely controlled
by the changes in §, u. The fourth term represents all higher order
terms resulting from any change on (tg,tf]. Assuming the system equa-
tions are sufficiently smooth, these terms are negligible for suffic-
iently small changes in §, u.’

The second term in (2.2.1%) can be made negative and the total

cost on [to,tf] can be reduced by changing 8§ as

-

Adk = o= Bk 'g'%l‘ k=l,2,oonx (2.2'15)
k

where Bk’ k=1,2,...N are positive constraints whose value depends
upon the value of aﬁ/aak along the interval (tg,tf] and must be chosen

small enough to allow higher order terms to be neglected.
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Using (2.2.15) in (2.2.1%) it is clear that a reduction in cost
can always be realized providing that all partial derivatives of H
with respect to § are non-zero. In the case where the GRAD‘s H is
identically zero, the cost cannot be reduced hy.changing an Gk. The
adaptive problem is solved once 6=0. But, from (2.2,15) the condition

is imposed that & should be changed until GRAD, H=0., It does not

8
necessarily follow that é=o under these conditions. (2.2.15) is

sufficient to reduce the cost while GRAD, H # 0 and it also shows

[
that once it is zero, system performance cannot be improved by ad-
justing 6 further. This result is only valid for the particular choice
of L and the particular plant input under consideration. It may be

tyat 6 # 0 and GRAD, H = 0 for one choice of L or » and for another
choice this will not be the case. If L could be chosen to be a function

of § as well, then it could be guaranteed that when GRAD, H =0.§ must

8
be zero. As pointed out earlier, L cannot be so chosen since isplementa-
Ltion of (2.2.15) would then rejuire kncwledge of §.

There are two situations where difficulties might arise when
GRAD6 H is zero. The first is when the parameter adjustment scheme
stops at a solution but the error measure is non-zero or even increasing
with time. The other is where L will be zero but some of the components
of § will be non-zero. In the first case the problem can be eliminated
if the error system is represented in phase variable form. The reason
for this will become obvious as the adjustment algorithn is more fully
developed.

The secochontingencyis not a serious one in adaptive control,

since it results in L=0, at least for the input being applied. The

goal of adaptation is achieved because the plant and model behave
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dynamically the same subject to the same input. The fault lies with
the fact that for the particular inpgt the system error is insensitive
to certain of the parameters. Put in another way, the input is not
sufficiently broad band to excite all modes of the error system. If
the parameter adjustment scheme was used off-line for plaht identi-
fication the system inputs could ‘be chosen to eliminate this problem.
If it were used on-line, random fluctuations and input disturbances
might serve to keep all modes excited. If control signal augmentation
were used in addition to parameter adjustments the excitation caused
by the control signal could be sufficient to maintain dynamic res-
ponse of all modes.

The adjustﬁenf algorithm can be more fully developed by considering

L to be a symmetric quadratic form with zij=kji‘

N
L= )] 2. .e e (2.2.16)
i,j 11
With the system equation (2.1.5), the Hamiltonian is formed as
H = L, ee+§x g (2.2,17)
byt 88 18
3 3ej ’
b §=1,2,...N (2.2,18)
&
Aj (tg) =0
4
and
:‘;i:%ﬁ':g’i i=1,2,...N (2.2.17)
J
The pargmeters should be adjusted on (tg,tf] according to:
N . a{;i
a8, = -8 'Zl A 7 k=1,2,...K (2.2.20)



23~

with ii given by

Nom - Y e, - V0 aLemd i,1,2,...8 (2.2.21)
1 551 ij 73 551 3 Bei
Ai as a function of time on the interval (tg,tf] is

. N N . og, .
A = I [ 3 214 S,j f Z A ——J-]dt + 2y (tg) i=1,2,.. N
£ ) (2.2.22)
(2.2.20) indicates that to specify AGk on (tg,tf] requires knowing A
on (tg,tf], the result of integrating (2.2.21) backwards over this
interval. Since & is the error resulting from § with no change on
(tg,tf], implementation of (2.2.20) will involve a time delay of tfrtg
seconds. '
The fact that a time delay results from trying to implement (2.2,20)
is not surprising. The parameter Gk was to be'changed as a function
of time over the interval (tg,tfl to reduce the cost over this interval.
fhis then requires knowing the error response on the interval before
implementing the parameter change. The net result is that in order
to reduce cost on (tg, tf] requires waiting until t.. There would
be an additional computational delay asscociated with integrating the
collected information from t_ backwards to specify A for t on (cg,t

£ f

The conclusion must be that this change designed to- reduce the integral

1.

on the interval (tg,tf] has no effect on system performance on this

interval since it must be implemented after the interval of interest.
The development leading to (2.2.20) extends analogously to the

case where Au is to le chosen on (tg,th to effect a reduction in I.

" Starting from (2.2.14) it follows that Au should be chosen as
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-~ . aé
gﬁ | j=1,2,...d (2.2.23)

N
A, 2 =y, == = ~ vy, A,
ST PR izl i T
Reasoning as in the parameter adjustment case, to implement (2.2.23)

requires a time delay of at least t —tg seconds.

£
2.3 REFINEMENT OF ADJUSTMENT ALCORITHM TO REAL TIME
There are several reasons why the algorithm as developed above
is not satisfactory.
1) Storage facilities.are réquired to save the error vector
over the interval of minimization and compute (2.2.22).
2) The delay associated with the required computations will
have a destablizing effect for rapidly varying dynamics.
3) The means for changing the parameters as functions of time
may be difficult to implement. ’
The development of a real time scheme will necessitate abandoning
integral reduction for reduction of an instantaneous error measurec.
It is felt, however, that since the resultant scheme will not have
the faults listed above that it is a more appealing solution to the
adaptation problem.
By adjusting § according to {2.2.20) the integral cost I is reduced
over an interval of arbitrary duration. If this interval is reduced

to length At, tf becomes tg + At and (2.2.22) becomes

~ N N ~ 3 :
Ay = I ) L éj +_£ A -—-1]dt i=1,2,...N  (2.3.1)

i=1
t_+at
g

From the parameter adjustment algorithm (2.22.20) and (2.3,1)



~25~

t
N N N g, aé
= - : U —
a8, = -B, §=1 j .g Lig Sy +.lej s ]d&} %, k=1,2,...K
tgtat J

(2.3.2)

By the Mean Value Theorem for integrals (2.3.2) may be approximated as

R N agi
AS, 7 -8} [ Y 2., .(t +At) + Z A (t +at) —-j(t +At)]At.
k k 151 Li=y ij 3 g 321 itg ask

Kzl’z,'.QK (2030“‘)

For any At, ij(tg+6t)=0 #3 from (2,2.18}, Since (2.3.4) represents the

change in §, over an interval At, to implement it over an arbitrarily

k

small interval

ij j (t } (t ) k=1,2,...K

(2.3.5)

(2.3.5) is equivalent to (2.3.4) over a small enough interval. That is,
implementing rates of change as in (2.3.5) gives exactly the same result
as implementing (2.3.4) over this same interval. Unlike (2.2.20),
there is no time delay associated with (2.3.5). Also there is no
computational delay because there is no integration of stored data
needed to evaluate (2.3.5). Hence the method does not have the dis-
advantages associated with (2.2.20). It should be stressed that (2.3.5)
is based on the criterion of reducing an instantaneous error measure
whereas (2.2.20) was based on reducing an intégral error function.

The subscript denoting particula; time tg can be dropped because
(2.3.5) is continuously implemented. Also, reasoning as with (2.2.1u),

E(tg) = e(tg); the actual measurable error. The constraints are
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written as Bk(tg) since, as was pointed in the discussion of (2.2.15)
they are positive but may be dependeﬁt on GRADsﬂ. It is sufficient

to let them be constant but the freedom is there to allow dependence

on GRADGH. This result becomes more intuitive if the parameter ad-
justments are regarded as movemerts towards a minimum in the K-dim-~
ensional parameter space. As is well known, the size of the move-

ment is dependent on the shape of the function. Since (2.3.5) defines
movements in this space as a function of time, the location in para-
meter space is mapped onto the time axis. The result is that it is
equivalent to consider Bk as being time dependent or parameter dependent.

Equation (2.2,23) can similarly be solved for sufficiently small At

to yield rates of change of the control vector:

) N N 28, '
‘lk = -Yk izl jzltij ej -5‘“: k=1’2,;n'J (20306)

2.4 USE OF PHASE VARIABLES IN THE ADJUSTMENT ALGORITHM

The possibility was raised in connection with (2.2,15) that &
might settle at an equilibrium although the error measure could be #

0. At that time it was said that by choosing the error states as phase
variables this could be avoided. The following argument supplies the
details.

The control exerted by 8§ on the error system is not direct, but
rather constrained by the system equation (2.2,19), This is illustrated
in (2.3.5) where‘the term aéi/aak represents the influence Gk has on
the ith epror state. It is this coupling between the parameters and
the error states which permits the error measure to be reduced through

parameter adjustments. For every adjustible parameter it is necessary



-7~

that the corresponding partial derivative of the form aéi/aa be non-

k
zero. As examples are presented it will be seen that these terms are
generally either functions of the input or of the plant states. In
either case, the assumption that they be non-zero is very weak.

For § to stay at an equilibrium point requires that 8=0. This

can only occur if, for every term aéi/as whick is non-zero, the

k
N
corresponding term ) L éj be zero. If it is guaranteed that L
i=1

goes to zero under these conditions then the adaptive goal is achieved.
By choosing the error states in phase variable form, for i=p
the requirement is that

eIy e =0 (2.%.1)

Z‘iij“‘ 1

vwhere s is the gaplace operator. If the coefficients lpj are chosen

to satisfy the Routh-Hurwitz criterion it is guaranteed that I~0,

This does not necessarily guarantee that the plant parameters are
identified. The parameter error vector § will not tend to zero if

the normal plant excitations are not sufficiently broad band to force
all modes of the system. This problem can be reduced if the normal
plant inéuts are augmented by the control signal as given in (2.3.86).
The advantage to using control augmentation is that the plant is excited
more than it would be if the-normal plant inputs were acting alone. The
result is that not only will the adaptive process be achieved, but

by exéiting the plant, the control augmentation will increase the prob-
ability that §+0 as I~»0. This is an important consideration since

it was assumed that the plant parameters were stationary. If §=0

then the plant is identified for all future inputs.
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Example 2.1
To illustrate some of the preceding ideas consider a plant

described in phase variable form as

%) = x,

i

% = - - r R
ky = PgRsPoX,-PiX) + Kp(.fu) (zx1.1)

The desired behavior is given by the model equations

b
t, = my
hy = -33m3 —82m2 -alml + K%;r (x1.2)

Because the plant and model are in phase variable form the error

states are also .phase variables.

1%

&, = e =g,

L]

e, -33e3 -32e2 -alel + x363 + x262 + xlﬁl +r6u —Kﬁx=g3

(x1.3)
where
§ =9 =9
8, = 92<:€;
{x1.4)
83 = P3 ~%
8, = K -K
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The coupling terms are

(x1.5)

Thus for k=1 through 4 there is a non-zero term of the form 3g3/36k.

Choosing an error measure as in (2.2.16) and applying the parameter

’

adjustment algorithm (2.3.5):

- L

6, = -8 se; "1
o 2

8, = -8, Be, "2

. 3L,

63 = -84 Je; (x1.6)
_ a1,

su = -8y de, r

3 _

Je.- (lafy * %35 & t L33 ¢5)

3
From {(2.3.6) the control signal is synthesized as

. Y_ 3L

. 3
Because phase variables are used

s + 2 s2] e © (x1.8)

318 * 232 % * %3 & = [y ¥ Ay 33
and to guarantee 10 it is necessary to choose the &'s to make (x1.8)
stable. Because y in (2.3.6) can be any positive function, %5- is

also a positive function (for minumumphase plants) and (x1.7) can be

implemented without knowledge. of Kp.
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A logical question to ask is whether (x1.6,7) could be implemented

without using e, Specifically,, if Py = a is not required in (x1.6).

3 *3

However, if e, is not used % must be zero. This in turn requires

33

that L be independent of 43 but it is the partial of L with respect to
] :
e, which appears in (x1.6). Hence the algorithm cannot be used unless

the highest plant derivative is used in the error measure., *

Example 2.2

To illustrate fhe wmechanics of applying the adjustment algorithm

to a non-linear system consider the von der Pol equation with a forcing

term: _

I (p2=p3x?) X+ pjx=r+u (x2.1)
which can be written in phase variable form by letting X, = %

k) = % |

iz = -pixl + (p2~p3xi) X, tr+u (x2.2)

If the desired behavior is given by

m, =m

1 2
ﬁz = —32m2 - 31ml + v (x2.3)
then by using non-linear feedbacku = °3x x, in (x2.2)
ii = Xy
%y = ~PyX) ¥ Py¥, t x Xy (cg-pg) + (x%2.4)

and the error equations can be written as
‘%%

S =y -de + %38y ~x,8, - (x2.5)
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where

8, 2P, + 3, (x2.8)

83 = 33 - Pg
The parameter adjustments then fullow from applying (2.3.5)
1= "By Xy (8510 * £y &)

§
82= -8,%, ("'23.°1 + 1,2232)

e _n o2 .
85 = ~Bgx %, (2g18) +ho0e,)

2.5 STABILITY OF THE ADAPTIVE PROCESS

It was demonstrated in Example 2.1 that if phase variables are
used to implement the a&aptive system the highest order error state
must be includad in the error measure. T the plant is third crder
or greater than some of the phase variables would probably have to
be obtained‘by differeptiating lower order plant states. The inherent
difficulties arising from such a scheme when noise is an important
consideration are well known.

The advantage to using phase variables is that it can be guar:
anteed that 10 when §=0. It is natural to examine the stability
of the adjustments when a different set of state variables are used,
Instead of examihing the adaptiv; loop stability for a particular
state representation, the inherent stability implied by reduciﬁg
an ervor measuve can be used to formally argue stability,’

From {2.2.14)
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A te te . e x o te g .
1= Ldt = | Ldt + T a6 zrdt+ | ] M, —=dt (2.5.1)
k 38 e B T
t t ¢ k=l k3= 3
0 0 g g
»
tf - tf R °
= I 14t + ! (L - L)dt
o o
(2.5.2)
te te

(2.5.2) results frém recognizing that L = L on [to,tg} since L is the
loss function for the unperturbed system, and the perturbations occur
on (tg,tf]. On the interval (tg,tf] L - £ is the change in loss resul-
ting from changes of &, u on (tg,tf]. Comparing (2.5.2) and (2.5.1)

it foilows that

te te te
Ao A K H Y 2
(L-L)dt 2 | ALdt= Y A8, = +) Au, =— lat (2.5.3)
, k 36 o 3 du
! ! R k j=1 5
g g g

By choosing Adk, Agj as in (2.2.20) and (2.2.23] vespectively, the pight
side of (2.5.3) is negative. As At shrinks to zero, the left side of
(2.5.9 is ALAt. The only way for ALAt to be negative over an ari:itrarily
small interval At is if g;-b is negative. Therefore by choosing L
positive definite it must follew that the errur response is acveptoticelly

stable. (12) By choosing L positive semidefinite the adjustments can

only guarantee that 10,
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In Appendix A these same results are proved in a more formal
way by showing that the adjustments guarantee the existence of a
Lyapunov function for the differential equations defining the error
system. In particular, if the By and Yj in (2.3.5) and {2.3.6) are
constant it is shown that the parameter adjustment algorithm is the

same as that proposed by Buchard and Shackcloth (3) and Parks (17).
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III ADAPTIVE CONTROL FOR NONSTATIONARY PLANTS

3.1 INTRQﬁUCTION

For the development in Chapter 2 it was necessary to assume

1) Any change in 6§ was completely coritrolled. The plant par-

ameters could be unknown but constant. '

25 The effects on L caused by plant inputs was negligible

compared to the control action on any interval.

3) Any change in the plant state and model state vector was

equivalent to a change in the error state vector.

With these ‘assumptions it was shown that §, u could be changed on
(tg,tf] to guarantee a reduction in L. In particular, as the inter-
val became infinitesimal, rates of change for §, u were established
which guaranteed L was reduced to a minimum. In this chapter the
effects of relaxing these assumptions are investigated..

The .need for adaptatio& arises more from the unknown variation
of plant parameters then simply the presence of constant unknown param-
oters. If the paramcters did not vary, off line tuchnicques micht Le
used to identify the plant. This plunt description would then be valid
for all time and conventionﬁl control techniques could be used.

In aircraft control field environmentally sensitive parameters
present a real problem. Since the equations of motion are determined
largely by the aircraft environment, as higher altitudes and faster
speeds are attained the effect is that plant parameters vary widely
over a given flight path. It is not surprising that a great deal of

the early work in adaptive systems was directed towards these problems (13).
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Because of the importance of this problem it has become almost axiomatic
that any published report on adaptive techniques contain an example per-
taining to aircraft control.

The effects of ageing and breakdown certainly fall into the category
of parameter variation. Here the parameters ma§ be constant for a

long time and change arbitrarily to a different constant value. Or in
the case ol gyeing, the parameters might be very slowly varying. Tu
either case, the system design should provide for some means of compensa-
tion. The classic high gain feedback scheme has beén used successfully
to offset the effects of parameter variation. Some reports have been

published aimed exclusively at using the more modern adaptive techniques

to compensate for component failure (11),

3.2 INFLUENCE OF UNCONTROLLED VARIATIONS

By first examining these effects on (tg,tf] and then letting this
interval shrink to zero their influence on the adaptive process can

be determined. On the interval (tg,tf],

-~

Gk = 4§, + Ad + A6

. y k=1,2,...K {3.2.1)

k

where &k is the same as in (2.2.4) except for the A8, term which

k
represents the uncontrolled parameter variation. The input vector

changes as
r, = P, + AD 21,2,...J (3.2.2)
j 5 j j ™3
In aidition, the control signal changes as
u, = u, + A,  3=1,2,...d (3.2.3)
s B M. B et

As a result of these changes the plant states change incrementally
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on (tg,tf]
g = Xy b Bxg 48X, 1=1,2,0..N (3.2.4)
In Chapter 2 it was assumed that the combined effect of éhanges in
the plant and model states was exactly equivalent to a change in the
error state. The effects of relaxing this assumption ars examined
by including the plant state chaﬁées in the analysis.

For notational continuity and simplicity the change in r is written
with a superscript tilda and is referred to subsequently as an un-
controlled change. Similarly, the change in x not reflected as an
eqﬁivalent change in error is referred to as the uncontrolled change
‘and §3 written with the cans eupen script nototion.

As in (2.2.5)
g = §i + Agl i=1,2,...N (3.2.5a)
L=L+ L (3.2.5b)

Because of the changes in r and x and § the incremental changes in By»

L are given by

N 3§ K ag, J 9§ K aéi - d3g
88,5 ) w——le, + ) w88, + )] =—Au, +) 28, + } &b
1521 %oy 71 N5 3 Tk jzl duy 3 ey 36 Tk 3:155; 3
N agi
+ ] == ax (3.2.6)
j<1 axj b
and
AL = g-‘-’-’;-‘m (3.2.7)
j=1 aaj 3 )
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The effects of these changes on I can be represented analogously

to (2.2.8) as

t L - R
£, N ¢ N . N g K og
= L + 3 o 8 _as et} —t
I-—I1 + 1 L *jzl 3°j Aej +1£1 Xitgi e Aei +j£l aej Aej ;§1 36k Aﬁk
g
J 28, K 9g, _ J og, . N g
4 ] = Bug + P g 88 + ) gomars ] 5= ek 1lde v H.OL
j=1 %Y k=1 “°k =1 P31 3= %y
(3.28)
and collecting terms:
t t -
£ N . £r N > N . g
-~ 2 L i
I=1 +J ] [g,=&, 1 dtfj Y e [-—- +] A ——-—]]dt
1 Rt A R ] bz 3 L%y g5 i
g 3
t . t, .
(e 5 S [ [, b,
NS R POU NS D P
LTS B H R 1t Tty
g g
[ IE o b i e Ly 33, 2
+ a8, ¥ 2 }dt +! A A —-]dt
1 b N R L=1 L
N g .
t » t t
f u’ ~ u"" »~ aﬁl f - f”‘ -
ffgf j.f_xivdt:rfmt-IZaiaéidt+u.o.1'.
b =1 i=1 5 =1
t 1
g g g
(3.2.9)

Using the relationships for A and H in (2.2.17,18) and applying the

reasoning leading to (2.2.13), (3.2.9) can be expressed as



te oy % . . X
- H 3H s 3H
T=) W+ | ] a8 spat+| ] du, w0 At + I a8 - at
H $ k=1 k : 3= ! k=1 k
9 8 . 8 g
p . o .
- 3H -~ M
+ ) bry 3o dt + ) Bx; 3%, 4t + H.O.T.
: 3= i, 3= i
g g
(3.2.10)

Recalling that tﬁe circumflect notation refers to unperturbed
variables on [to.tg], {3.2.10) shows that the cost can be .changed on
[to,tf] by changing the integral on (tg,tf]. In addition to the
controlled changes caused by changes in §, u there are three additional
terms which can change the cost. Agk represents the unknown parameter
variation, Aij is the change in plant inputs from nominal values on
[to,tf] and A;cj is the plant state variation which is not equivalent
to a change in error. It may be that these uncontrolled changes serve
to further reduce I. However, if these changes are always such that
they tend to increase I then by choosing the controlled changes in
(3.2.10) large enough a reduction in I is still possible. Too large
a change in these terms would make the higher order terus significant.

s tf-tk*At.ths'higher order terms are less important and (3.2.10)

becomes
tngt K
1= I Ldt +k21 A8, 33 aa (t ) At+2 Bu, au (t )at + { a8, as (t )at
= 3 k=1
%o
Jd
+) A (t At + Z ij a (t ) &t (3.2.11)
=1 3 j=1 *3
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A reduction in I can always be guaranteed if the controlled variations
in (3.2.11) are sufficiently large to determine the change in I on At.
This in turn requires that these changes can be made large enough

to offset the effects of the worst possible uncontrolled changes.
3.3 ESTABLISHMENT OF A LEAST UPPER BOUND ON L

The worst possible uncontrolled variations in (3.2.11) are
k =" Dk" sgn 35

ory =||x<j || sgn é-;j (3.3.1)
.Ax]‘ -"‘j n sgn axj

where ‘l Il ||R | ana |l || are the magnitudes of the largest possible
uncontrolled chenge in sk. r, and x, respectively on At. If the un-
controlled cbagges are finite over any interval and have only a finite
number of points at which they can be discontinuous (3.3.1) can be
represented by derivatives -

n ] = 152 &0 ot

izl s
lxgh = 112 511 ae

—=r.|] at (3.3.2)

i
-7
t

i

d 3 j1 d ~ 4 -
where l'ﬁ?"k‘l'llai'rjll and I!EE'“jl' are the maximum uncontrolled
rates of change of Bk,'ri and X over the interval.
The controlled variations on (tg,t + At] are chosen as in (2.2.20)

g
and (2.2,23) as

3N
A‘ R - vl (3.3-3a)
k “k aak
3“
bug= ~vg gy (3.3.3b)

3
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The total change in (3.2.11), both controlled and uncontrolled is

3 B [-?i;-—‘zAt . {3*1}2 st a3 [RL 5 |Jogn 2. 2 (42
ey k 138) PR kT oy etk 28, 96,

¢ T NS r, [lean B 2H (42
j=1 dt j 3rj arj

!‘ . - e >
+j§1na-;! Mllewn 32, 35, (o

(3.3.%)

-

To guarantee a veduction in 1 it is sufficient to have

4

L 4 ?(9-*-‘*~]2> LI & fjogn 2. 28
wey k(38 Nk Yalag) L Ve S 3, 36,
30 . 3H

+ Z |19 7. ||sgn & . M

j=1 dt 3 8rj arj

M M

g Has x;|lsgn 55 %, (3.3.5)
(3.3.5) is a conservative criterion because the uncontrolled effects
were assumed acting to increase I fn the maximum possiBle way.
Using the Hamiltonian formulation of Chapter 2 and letting L
be a symmetric quadratic function of the error as in (2,2,16)



o g g %8
awemoen 53 2 e (t *At) vy At k=1 2,:.-&
¥ g1 g W ETT 3 |

s N N g
el L ogye ety Zhar k=12,

- ’ "’.
% gm o1 53 o . (5.5.6)
3.3.6

~ N N ag.
Sy 1 e, (t,406) 5=t kal,2,00d

My j=y =y AT k

x
3!‘1 z '
z (t + At) k=1,2'Q‘.J

o i-.l je1 1 j “k

Substituting (3.3.6) into (3.3.5), dividing both sides by (At)? and
letting At+0: defines a region in error space (with t8=t):~

°z
Bk z z z.’lj‘j(t) Y

2 381 2
+ 2 (t) -—-{
k=1 X|i=1 §=1 kzlyk 121 321 ij‘j du

» { |]dt k"l { 2 ‘1j j(t) 33;jssn Zl.jzlzijej(t) 1w '.

AL ST Zzﬂ jmr-[sgnlizlxzﬁ oy 3]

N

¥ z 2,.e, (t)
i=1 j=1 1373 xk

. (3.37)

sgn

: zudtxku R e<t>--,;;

i=1 j=1

(3.3.7) is a geheral expression for the region in which it can be
guaranteed that I is reduced. It is argued below that (3.3.7) implies
a least upper bound on L under appropriate conditions. It can thus

be argued that the plant states teack the model states with finite
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error measure. -Example 3.1 serves to clarify these results for a
p@rticulir cass. . | .

The implicatides of (3.3.7) can ba fllustrated by expressing the
integral cost I cu the interval &t e | -

A te e, te
18 f Ldt =[ Ldt &+ f ALdt (3.3.82)
to to tg
te.
= [ Ldt + AL (tg) At (3.3.8b)
%

where (3.3.8b) is exact as At+0. The total change in I is equivalent
to a change in L. The change in L is comprised of a controlled change

and an uncontrolled change:

AL(t )8t = AL(t)8t = (AL, + aL)At (3.3.9)
The controlled change is caused by adaptive adjustments of §, u.
fhe uncontrolled change is caused by the changes in x, r, § as described
previously. An alternate expression for the total change in I is

given by (3.3.4). Comparing these two relationships shows that

AL, = —kglak(%%k}ZAt -% ! (%g;}?ﬁf . (3.3.10)

¥

1=

K J ...
"3 4 : oOH H , d =y M oM
8L = ) |l5e 6 llsen 5= s ot + | llgp rillsen 55 - == ot
x=1 dt 'k L s, =1 dt j Brj 3:0_j

N
a- M oM
+ I s %sllsen 5= - == At

R T TS (3.3.10)

By choosing the parameter adjustments and control signal augmentation
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as in (3.3.3a) and (3.3.3b), ALc is negative. By allowing the worst
case vapiations in the uncontrolled changesti is always positive. If
there is a region in the error space where (3.3.9) is negative under
these conditions then it is guaranteed there iz a bound on the error
under worst case conditions. As At+0 the cnly way (3.3.9) could be
negative if gt L is negative. Therefore when the adjustments are

applied over an infinitesimal At I can be reduced if

L +$L <o . (3.3.11)
conversely I will increase, under worst case comdit;ona. if the left
side of (3.3.9) is positive. That there is an upper bound on e, and
L if L is chosen positive definite will be shown below.

The existence of such a region in error space can be argued by

setting 8, = ykﬁfk.and expressing (3.3.7) as

. 2
K N N agil N N o,
xgz.{ [1);1 jzlzﬁej EIW I [121 521 11% °“k] ]

(z“dg Gk”'z Zlijj—r ’“dt k“ ‘2 jglijjagi

. rFr N g
d - i
+ ligd il L jZ,_‘n‘:'a‘x‘;H/ 8 @.3.12)
g, -
. , da = d
Some terms Sai = 0 if J < K and some terms !Ia¥-xkl|, "EE'rkiiz 0 for

J, N x K. The form (3.3.12 is used only to provide a simplified expres-
sion feor illustration. The vertical bars on the terms on the right
side of (3.3.12) indicate absolute value. These relationships follow

from representing a term mu;fiplied by its Qign as its absolute value.



-m-

For 8 = 1 the left side of (3.3.12) will dominate the right side as the
error gets large. This is the case since the right side increases as
an absolute valus and left increases as a square. The region in error

space where the right side dominates defines the region where I can

increase, or equivalently where %t" L et %1':' L >0. By chooszing B large

this region can be reduced. When the system error does not satisfy
(3.3.12) it 1is possible fc:r L to increase, Since all the error states
are used in mplemtini the adjustments, as any error component bs-
eonos large ‘;%-ﬂ ﬁmt increase since these codpling terma are related
to the plant states. The left side of (3.3.12) will increase and

‘enter a region whe?:'o I can be reduced. The following examples illustrate
this ispcotant result for simpde plants. The analytical treatment of
thess resulte for more cowplicated structuses vould be most untractzble.

© EXAMPLE 3.1
In Example 1.1 et || & || k1,4 be the maxiomm uncontrolled
rates of change of plant parameters. “'&% r|| and “-a% ;;j 113=1,3 are
the bounds on the derivatives of the plant and plant states respectively.
The coupling coefficients between g and the parameters, between g and
the input and between g and the plint statez are given in Exaxmple 1.1.
Choosing I, as a sysmstric quadratic form relation (3.3.7) yields



Ty -

Ualel a8, + Lgae 3) [3 + Szxg + ﬁaxg + Burz ; yK: 1>
(2 800 bl g2 &byl + 118 &1k Tml + 12 8,11l
R IR ORI R T L I | R R T

+ lldt 3ll |93]] lzslel t L8,  Lyoe 3l (x1.1)

whirh “efines the region in error space where I can be reduced under

.

derivative of L with respect to €y defines a replun in § dinmoasion

P

space:

3 (d d
g Hae 55511 + 5 Hreyll

l2,, ¢ et e | > (x1.2)
an’ l 32 2 33 3 : 2 2 2 2 2
+ 8 b SN 3 £3x3 +Bur +Y Kp

Since the model will be stable, an increase in the magnitude of
error states will be caused by an increase in the magnitude of the
plant states. If the system is operating in a region where (x.1.2)
is not satisfied the left side may increase. Since the denominator of
the right side will increase faster than the numerator the error states
will enter a region where (x1.2) is again satisfied. Choosing L to
measure all error states means that there must be a least upper bound
on L despite worst case parameter variations. By choosing the 8's and
y large this least upper bound can be minimized. It is noteworthy
that if the restrictions of Chapter 1 are impozed on the right side of

{%1.2) is zoro.
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can be made. This example illustrates how adaptation can be accomplished
without identification. If all plant parameters are unknown but

constant (x1.2) reduces to

[2550; + 3205 + 25524

gt 1116, ] + High &1, + g2 511 18,) + izt %yl1- 185

>

[8,X + Byxs + Bx3 + 8,2° ] (x1.3)
If r is a step input, only the plant output (xl) will be nonzero. Providing
that Bl or B“ are non-zero, the least upper bound goes to zero. However,
ianlao.then 61 cannotlchgpge the identifiggtion is impossible. Similarly
if,shaorfhe*p&agt gain‘dohs not change and 63#0; The error measure goes
to zero but the parameter error vector § does not, This agrees with
intuitition that identification is not gencrally pessible if the Input
spectrum is not sufficiently broad.
A very important practical consideration is that not all parameters
have to be adjusted to keep L small. In particular if only the plant
gain is adjusted (x1.2) still represents a bound on L and 8, can be
chosen large to keep this bound small. This bound will not be as small
as would result from adjusting all parameters, but the resultant imple-
mentation is considerably simplified. Some important design considerations
when this simplified scheme i3 used are:
1) éhoose Bu as large as possible subject to the restriction
that 8, will effect }6u{. A trade-off may be necessary
between choosing B, so large that léq] dominates the bound

and choosing B“ too small so that the denominator of (x1.2)
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dominates.
2) When possible choose the plant input to be large in magnitude

and slowly varying.
Because most.plants have low pass characteristics the plant derivatives
will have low values. This characteristic will tend to reduce the
effects of these terms in the numerator of (x1.2). If in addition to
the above considerations the plant parameters are slowly varying the
least upper bound can be maintained acceptably small using only simple
plant gain adaptation. This important simplification is utilized in
.designing an adaptive controller in Chapter 5.

In view of the preceding discussion it should be pointed that the
assumption in Chapter 2 that the input is slowly varying is overly
restrictive. If the plant input is sufficiently broad band, and if
all the parameters are adjusted, the numerétor of (x1.3) will tend
to zero as the parameter difference vector § goes to zero providing
the parameters are slowly varying or stationary. Under these conditions
L goes to zero regardless of how the plant states vary and regardless
of input variations. The singularly important feature which limits
adaptivevconvérgence is the variation of plant parameters.

Control signal augmentation can be used to offset the deterioration
in porformance when a simplified gain adartation scheme is used. The
effect of control augmentation is clear from the denominator of (xl1.2).
The more effort in this signal, as measured by Ys the larger will be
the demonimator. Because no signal multiplication is required to

implement control augmentation, the system is not overly complex.
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EXAMPLE 3.2

This example is chosen to further illustrate.some of the important
design considerations:

1) The weighting Factors 8 and the error measure play an import-
ant role in defining the adaptive resﬁohse.

2) It is not necessary to.éiways use all of the error states
when the system states are not phase variables.

3) The 8's can be chssen to minimize the effects of time variable
parameters.

4) If there is freedom in choosing the input signal magnitude
this can be used to.minimize the effects of parameter varia-

tions.

The plant is third order subject to a step reference r=Ru(t).

k) = - %"1 t X%,
iQ = - %y T %, Cared)
X, = Ux_ + Knr

3 .3 P

The only unknown parameter is the plant gain Kp; enabling the error

equaticns to be written as:

: = .1

& =-3¢ + ez

éz = "32 + ea (x202)
e, 2 -uea + &

vhere § = km--kp,)gm is the desired gain.

The error measure is chosen as L= %1e§ resultihg in

§= —Br£93 (x2.3)



~49-

Provided the error can be quickly reduced to zero the restriction on
step inputs is not overly restrictive. From (x2.2) it is obvious that
§=0 whenue3 = 0 for a finite duration; therefore if L can be reduced
to zero quickly » need be constant only over a short interval. The

error system with adaptive controller is shown in Figure 3.1.

i

BRY, et

Figure 3.1
After the step reference is applied the dynamic error behavior is
governed by the parameter adjustment loop. This error response is
1

?
, ¢s® + usreRery
after normalizing wirh respect to initial conditions at the time

(x2.4%)

03(3) =

adeptation was started. Hence to insure ea*o it is only necessary
to choose 8>0 and 2>0. The problem of using all the error states
is avoided since the states are not phase variables.

The output e, is the solution to

1

| 1
(s? + bs + BR22) (s+1)(s+ 1/2)

el(s) = (x2.5)
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by choosing 8 (or & or both) properly, the transient error response is
only limited by the term 1/s+ 1/2.
If the plant gain is time variable then § has an uncontrolled

variation & with a bound liag-SI{. From (3.3.1) the worst case is

d z_ 11,43 oH_1y d 3 :
E?'agllai'é“SEn sﬁellaE'agtsgn r. If R is positive and § %? possitive
since e,=My-X, &, will be increasing positively. From (x2.3), § will
be negative. The worst case variation of § would be in the positive
direction. This same reasoning applies to any combination of R, & 6.

For R positive the block diagram for the error response is shown in

Figure 3.2
4-
Hsg sl .:.;. R ey 1 %2 ] 2 e
——— s + & Pl s+ 1 s 112 P
5 -

Figure 3.2

The closed loop response is given by

e,(s) . R
TSI

5 (x2.6)
+4s + BRL

with ¢ acting in a worst case way IIE%-EII(S) = "5%‘3 I]/s and
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(x2.7)

e {s) =
3 8(32 + 48 + BRzz) _

As predicted bj (3.37) L will not go to zero but rather approach a

bound
d 7142
15z sl
peleels L (2.8)
282R22

From (x2.7) the transient error response is influenced by the choice
of B and % (x2.8) shows that the bound is minimized by choosing 8¢

large. If the poles of (x2.7) are 0,

v-—-i—-—-—
s + 1/2

max subject to 8, +8, = k, s

815 8, and if the transient res-

» the design must be such that s.s,=

ponse is to be dominated by 172

> As shown in figure 3.3 the

1
1232 7 3
i © 5, = 2 which results in BR22=y4, If this

design results in too large a steady state L, there is one further

“optimum" design is at s

possibility. Since the adjustment algorithm ailowed for 8 to be time
varying, B(t) could be‘chosen to g@ve fast transient response and very
small steady state L. For B time varying an analysis similar to ‘the
above would bé very difficult. Intuitively, however, in a simple case
such as this B would be chosen as a slowly increasing function for
small steady state error. The transient response would be esséntially
like that above for slowly varying 8.

The advantages to using parascier oljusiments with control signal
augmentation have been argued. Any anaiytical treatment when both
modes of compensation are used is difficult. Some of the implications
of using only control signal augmentation can however be examined by

selecting a simple example.
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= constant

e 5

Figure 3.3

EXAMPLE 3.3
Figure 3.4 shows an adaptive system using control signal sugmen-
tation. The plant is known except for a constant gain Kp. In state

vériable form

8, = -v(al + 32)e2- 3,3, +6r-xpu (x3.1)

with 8§ = Km-Kp



An erropr measure is chosen as

-1 2 2
L= E{lllel + 2£l2ele2 + z2232) (x3.2)

and applying (2.3.6) the resulting control signal augmentation is

a = pr(zlzel + 22222) zq (J.lzel + 222e2) (x3.3)
The error response is
8s - R(s)
el(s) = -3 2 2 {(x3.4)

2
8 + s (al+32) + s(3132+pr222)+prl12

It was pointed out in the discussion of Example 3.1 that is all plant
parameters were constant, parameter adjustments could be used to force
I+0. This could be guaranteed despite input variation or plant state
variation. Using control signal augmentation this is not the case,

If v in figure 3.4 is unbounded with time then the error will be un-
bounded for any finite amount of control effort. This is easily verified

by considering worst case conditions. Following the procedure of

space where

d
o111 = 1
(21581 + 2y00,]> ——;;5————— (x3.5)

If »(t) = t2 (x3.5) is not bouﬁded and control signal augmentation
cannot force the plant to adapt. The same conclusion follows from
applying R(s) = 1/83 to (x3.4).

If parameter adjustmeﬁt was also used in.this example Km-Kp
would go to zero and the error bound would be zero regardless of

how the plant input varied.

Another disadvantage to using only control signal augmentation
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is that for certain plant inputs excessive control effort is required
to maintain a small bound on L. For a ramp input the bound on L is

given from (x3.5) as

_liL_. * (x3.6)

KZ
p

L
For § > 0 e, is positive and G will remain positive resulting in

|£150) + 2592l =

excessive control effort and plant saturation. This problem also can
be avoided by using gain adjustments. Asjusting & in (x3.6) will
force (xé.s) to zero but also will keep § changing as it aépfoaches
zero. As 8 changes sign the error will also change sign, resulting

in lower levels of control input.

Km ml

(s+32)(s+al)

model
plant

K

.-..-_—-—-—.—’ .—.—..L....— el

(s+32)(s+3l)

c(212+2228)

Controller

Figure 3.4



IV IMPLEMENTATION OF ADAPTIVE SYSTEM

4.1 Introduction

The preceding chapters have laid the theoretical groundwork for
the adaptive system. In this chapter several examples will be presented
with computational results.

To this point little has been said about the actual structure of
the adaptive controller. The parameter adjustment algorithm for adaptive
control presents some problems when implementation is considered. There
are hewever several techniques wh!:h can veillstieadly be implemented
to provide for the appropriate parameter adjustments. Rather than attempt
to generalize a particular scheme for implemenfation, several different
methods will be illustrated by example.
| When the algorithm is used for plant parameter identification
the implementation problems are not as severs sin;e the model presumably
could be designed so that its parameters could be directly manipulated.

Two important design considerations have been discussed in preceding
chapters. The first is the importance of the adjustment algorithm gains
. o the- evror- response .- AsAillus@ratedfin'euumpiewl of chapter 3, these
-gains have profound influence on the adaptive response. This was dis-
cussed by demonstrating that a least upper bound on L could‘be reduced
by properly choosing the adaptive loop gains. The examples in this
chapter demonstrate this observation for non trivial cases. As discussed
in connection with (2.2f15) these gains serve also as constraints to

keep the parameter changes small enough so that higher order terms do

-55~
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not ‘affect the adaptive performance. The examples of chapter 3 illustrate
that the least upper bound on L could be minimized by choosing the‘adap-
tive gains large. That analysis however assumed that higher order terms
were negligible. The effects of making the loop gains so large that
these higher order terms are important was not included as part of the
atalycle 2 wedathent. By eaas ot cewplicr clmulation rhe conieitution
of higher order terms are investigated in this chapter. It will be
seen that the gains cannot be chosen arbitrarily large without decreasing
performance. The fact remains nevertheless that these gains can be
chosen to reduce the worst possible error performance bound.

The second point is that all of the unknown parameters need not
be compensated t; achieve adaptation. In the parameter adjustment
scheme it would be far toocomplex to implement an adaptive loop for
each plant parameter. The effect on error reséonse when a simplified
parameter adjustment scheme is used is also investigated by means of

simulation.
4.2 Simulation of Parameter Adjustment System

This example is taken from an article in (19). The equations
represent two-degree of freedom lengitudinal airframe dynamics.
? = plél' PN, * Kp‘r+u)

. e (%.2.1)
Np = y(0-a)

The variables 8,a and r+tu are aircraft pitch angle, angle of attack and
elevator position respectively.
Np is the mormal secaleration at the airframe center of gravity

and V is tbe aircraft velocity. The plant parameicre Dys P, and Kp
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result from linearizing the true equations of motion. These parameters
are functions of dynamic pressure; as aircfaft velocity changes the
parameterA change. From actual flight test data Py P, and Al(p were
measured as a function of velocity. Figure 4.1 shows this dependence.
The only parameter which varies significantly over the range of velocity
shown is l(p. The control objective is to constrain the plant to be-
have as a stationary model while the aircraft decelerates from 294 Fft/sec
(200mph) to 147 ft/sec (100mph). As discussed in (18), Py is nearly
zero over the flight path and is not important enough to compensate
for.

The model equations describing desired behavior are

m= -all'n - aénmi- K-r

(%.2.2)
N, = V(ih-a)

The error is defined as the difference between model and plant pitch
angle |

ezmn-~-0 (4.2,3)
(4.1.1)', €4.1.2) are used to obtain

emm-6= - a (é+ 8)- a V[é+ 8-aJ + X, +p16 + Py - Kop

L (4.2.4)
e = -£a1+a2V]é + [pz-azlup + [Kn-l(p}-
By letting e, =6, (4,2.8) can be expressed in phase variable form
as
‘ 61 = e,
é = ~[a1+azvlea*tpz~a2mp*(xa-xph' (%.2.5)

If direct manipulation of p, and Kp were possible, (4.2.5) would be
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~59.

an adequate representation of the error system for implementation
purposes. More realistically, it can only be assumed that normal
acceleration and pitch rate can be sensed, It is this information
with the elevator position that must be used to.implement the adap-
tive controller. By feeding back Np through a compensator P, and
by varying elevator position by a factor Kc’ the adaptive controller
can be implemented as in figure 4.2.

The error gqnations describing figure 4.2 f&llow directly

from (#.1.5)
é,. = e, |
&, = -[alfazvle2+[pcxpfpéwa23Np+[Ku-prc]r (4.2.6)
e, is the error between model and plant pitch angle and e, is the
error in pitch rate. For purposes of this example an error measure
was chosen as .
| L= l/2(e2 + 2e.e +e2)
1 17272
No investigation was made of the effects on error response caused by

("‘0207)

different weighting of the error and error rate in (4.2.7)

Defining
83 = Py - 3, - P K,
(4.2.8)
A= Km - Kch
the adjustment algorithm from (2.3.5) and (4.2.8) is
62 = - écgp - pcgp b BQ'NP-(el+e2) (4.2.9a)
-4 = -Kbxc - KcKp = -Bl'r'(el+e2) {4.2.9b)
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Kp and 52 are unknown so implementation of (%.2.9) can only be
approximated. It is through simulation that the validity of these

assumptions are verified. Since the actual adjustments ave éc and Rp’

the adaptive 1bop gains will be scaled by the terms l/Kp. Nevertheless,

the choice of 8 in (4.2.9) is seen to be very influential on the

1° B2
error response.

The scheme used for achieving adaptation is shown in figure 4,2,
By changing K; gnd P according to (4.2.9), the products chp and
PP, compensate for changes in the plant parameters. The actual values
us?d.in simulation were nlz.l, az=-50, and Km=10 for the model and
2.1, p,=-67, &éo‘:ﬂnd

P
i . +
V=294 ; 104t ft/sec
’ 0 (4.2.10)
v-29h
] | Kp'gAleer S T A
for the plant. - The input was

r = sin (t) + S5t (8.2.11)

To investigate the effects of varying the adaptive gains on the |
adaptive response a figure of merit was assigned to the system. This
was the integral of L over the flight path between specds of 294 and

147 ft/sec.

w7
' 2 2 ,
I=1/2 I (el + 2ele2 ¥ 92),dv (4,2.12)
294

To facilitate scaling of figure 4.3, rather than plotting I as a

function of the adaptive gains,

I'= -l/loglol (%,2,13)

*

* As shown in (19) & can be synthesized from measurable variables, however
for purposes of illustration it is zero for this simulation,
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vas plotted, For the unconpensated system 8,20, 8,70, I = 5x10"2, The
best adaptive performance was achieved at Bl=1000, 82=20 resulting in
I=7.5x10"%, The analysis of chapter 3 demonstrated that L could be
kept very small by properly choosing these gaing. It was observed that
the larger these| gains the smaller the upper bound on L; however, because
of higher order effects this resuit is not completely Valid.' As shown

in figure 4.3 increasing 62 above 20 caused I to increase for all Qalues
of 8,. Figure 4.4 shows L as a function of velocity for two cases.

Case I is for 82=20, 81=50 case II is for 82=20, 81=1000. The maximum

L for case I is 8 x 10~° whereas the maximum L was held to 7 x 107° by

increasing Bl' These data were more conveniently scaled by plotting

L' = ~1/log, L (4,2.14)
versus velocity in each case.
The: eflfects ol adjusting ouly cne parameter were also investijated.
Referring to figure 4.3, the minimum I for 32=o is at 81=1000. For

8,=0 the best response was obtained with 82=300.

1

4.3 Example 4.2
This example is the same as example 2 of chapter l. It is
used to illustrate how state variable feedback can be used to implement

" the adaptive controller. The dynamics of the plant are
% = *2
Xy = =pyX; -PoX, + KP[r+u] (4.3.1)

The pis and the plant gain are unknown but constant. To provide a

means for adjus%ing parameters state variable feedback is used

u = ulx,c) = - [clxl‘+ c2x2] (4,3.2)
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A prefilter Kc is also used to allow foz; gain compe_nsatian. The model

eqguations are

nEm,

n, = -am,-a;m + K (4.3.3)

A block diagram of the system showing how the prefilter and phase

variable compensation are used is shown in figure 4.§.

.Km. "1
2

8 '!‘8281'&1

sz+p28+pl Z

cyte, 4

,..
3
-
“'l

Adaptation is achieved by adjusting Cys €y and Kc' The error equations

are
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[+ 13
L

(-3
B} 2
{(4.3.4)

-a x, ~8,%x. + Ar

&, = -aze, ~aje, ~&;x, ~§,x,

2

where:

61 =a; tp xpcl

62 a, + py + xpc2 (4.3.5)

A= Km - Kch

choosing an error measure

L =1/2 (ei + 2ale2 + eg) (4.3.6)

results in the adjustment equations

One
™
W

. .4 .
¢y Ic';‘ g % ¢ (e tey)

u

€ 62/Kp = 4B2/Kgx2- (el + e2) (4.3.7)

Kc = A/Kp = ¢ yr (el + e

2)
It is possible to use state variable feedback for compensation only
because the plant and model were available in phase variable form.
This problem becomes considerable more complicated when the plant
states are not measurable. One important situation where this arises
is illustrated by the system (%.3.1) where only the plant observation
variable

Y = %y + 2%, (4.3.8)
is available. If zy is known it is a simple ﬁatter to recover X,
xye If z, is unknown then the adaptive system cannot be implemented

directly because the plant states cannot be measured. As shown in
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Appendix B, if the system (4.3.1) (of any order) having unknoewn but

constant parameters is expressed using phase variables when the observa-

tion equations can be written as

Y29 =y,

Yo = “Po¥p Py¥; + Kpcl(r+u)+xp(u+r) (%.3.9)

A modal, ‘i§ then chosen as'

B L L LU T T (R0
Defining e, = m -y,, the error equations can be manipulated to give
51 = cé_

with

’_62 = ~a,e,-a,8, + 8y, + Al[dlr + 2]+ Aztrxp]

-K ¢ uerﬁ (4,3.11)

Pl

7Py

6y = Py-8y
8 = KoK

A, = 4y-c;

(4.3.12)

If L is chosen as in (%.3.6) the paramster adjustments are

827 Bpyaley tep)

Gl = -Blyl(el-l-e?)

e

Al_ - ~?1[ﬁlr+i](fl+e2)

;5.‘3; ;’.“,;‘;fg?’_xp;_‘“f?z’ , ‘

: (4.3.13)
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Because Kp is unknown in (4.3.13), the effort is to produce some
uncertainty in 1% Since Y, can be arbitrary positive function of time
this presents no problem. The adaptive controller implementation for

this- émﬂ ‘using papaseter adjustments is shown in figure 5.8,
L P : D . . ] . o .},......".'_' .".'

y e T
. R
.

Km(s+d)
oo ) : i
s +d23+al
: K.(stc. ) (s+a_sta,)
r a'87Cy 25+8) ot K (st2,)
X (%D, g5%p, 1)(84) > -5 ——p
n 8“4p,8+p
2 l
Figure 4.6

The mal pamtm are adjustad 0 1dentify the plant parameters.

By aﬂjustfna the Wdina #odel pwmtera in ‘the pnﬂlter, tha
complate plant mnsfcr is just ‘the desired transfu'

Ky(ste,) -

5 (4.3.14)
8 4P, 454D g

From (%4.3.13), (%#.3.12) it follcws that the model parameters should be

adjusted as
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a, = +Blyl(el+e2)

a, = +8,.y.(e . te. )
2 27277172 (%4.3.15)

L

- yl[dlp+r](el+e2)

H

&l = —yz[rxp](el+e2)'
Adjustment of model paramete£§ does not present the problem i;herent
to the blant paraméter adjustment scheme. Although the implementation
of figure 4.6 appears complicated, there are no plant parameter adjust-
ments needed. Because of the unknown plant zero state variable feed-
back cannot ;e used to implement the parameter adjustments. The system
however need not be as complicated as shown. Since the reason adapt-
ation is used is to keep the error small, there is no need to compensate
for all the unknown plant parameters. This goal caﬁ be achieved by
compensating for only the most important plant parameters. The most
important ones have the greatest effect on error response. For the
system consi@ered here acceptable performance could be achieved by
compensating for only zero and gain variations. There is no possibility
of identifying plant parameters under these circumstances; however,
since the tracking error will be kept small the model must be an
adequate representation of the plant for the particular input. This
.gdeguatgﬂggpre§en§gtipg_%g then used in the prefilter tqvcompenSate the

plant and maintain the overall transfer Function close to that desired.

4.4 Control Signal Augmentation for Plants with Zeros
One other alternative to using the parameter adjustment scheme
of Figure 4.6 is to use control signal augmentation. The error equa-

tions (4.3.11) show that because of the plant zero the error is con-
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trolled by the control u and its derivative. Denoting U=y, , USU,,
(4.3.11) can be treated as if there were two control inputs. Applying

2.3.6 will then give

. N ( )
u, =8 = (e, + e
3 Kp 1 2 (4.4.1)

. ‘Y2 ( . )-
U, = =g + e
2 Kpcl 1 2

Since O both relations cannot be satisfied. This prohlem is

1° %2
overcome by considering a different control variable,

U= cluﬂ'x (-“1432)—
then application of (2.3.6) results in

[} =.._!,

U Kb (e, +¢,) (4,4.3)

From (%4.%.2), (4.4,3);

¥ =x—- Lo"}o
ut e Kp (el + ez) (to.4)

(4.%.4) cannot be implemented exactly since ¢, is the unknown plant
zero.. However, by using the médel zero in (4,4.4) performance will not
be appreciably affected if the model and plant zéros are close.

This observation can‘be argued heuvistically by using a different
implementation of (4.4.4). Recall that U was chosen on the basis
that it made one term in the expansion of the integral cost function
always negative. This same result can be obtained by synthezising u

according to

» .-l
U= X sgn(el + ez) (4.4.5)
P
This will result in
L 1] - - -.Y*
u+td, ds Kp sgn (el + ez) (4.4.6)

as the implementation of the control sugnal augmentation technique



where the model zero has been used.

Using (4.4.6) the effects of the model zero in the implementation
can be qualitatively studied. It has been argued that the adaptive
locp gain can be any‘positive function ;f time. For a switch occuring
in the control law (4.4.6) at t=ts, the realizable control derivative
is given by the Qolution to'ku.ufs). The ideal relation is given by this
same solutioﬁ evaluated for the plant zero. Denoting the realizable

control &s v and the ideal by uy

-d,(t-t_) ~d( t-t )
byt fee b TIaglede t° (4.4.7)
\p 1
-¢ (t-t_ ) ~c,{t-t_)
bprt— e b TIrafere b° (4.4.8)
\p 1

1f ﬁR = f(t)ﬁi with £(t) > 0 then implementing 4.4.7 correspcnds to
implementing 4.4.8 with y replaced by somse positlve'function of time,
Under these circumstances the adaptive performance should not be
significanciy aitected by woiap ti: uaded coro.

Solving (4.4.7) and (4.4.8) for £(t):

~-d,(t-t ) ~-d.(t~t.)
. Hz Gee b ) wurde b °
£t) = —B2 ( (4.4.9)
~c. (t~t ) -c,{t-t )
k’:‘al‘l”e LUy rage)e b8

From (%.4.9) it is clear that f(t) cannot be guaranteed always positive.
v _

However as t-t_, the time between switching gets large £f(t) is positive
and approaches a positive constant. If the time between switchings is i}
long the system will operafe as if the plant zero were used for ﬁ
implementation. As the error becomes small 6R will change sign more
rapidly and £(t) may be negative. Under these conditions the error may

diverge and as it becomes large the time between switchings will be



longer and f(t) will again be positive. This heuristic argument
implies a bound on the error caused by using the model zero instead of

the plant zero in the adaptive controller.

4.5 Simulation of Adaptive Controller for a Plant with a Zero

This example uses the equations for pitch axis motion o{ a high
altitude aircraft. The plant has been used extensively for illustration
purposes in the literature (8,14). As described below it illustrates
a simplifed impleméntation of the parameter adjustment technique using
-only gain compensation.

The plant is described by

= X(s) _ 2
os) = w7y = % [:2+p23+p1] (4.5.1)

and an underdamped model is used for purposes of illustration

K (s+d,) e
F(s) =g—§-§~; =22 5(5+3) (4.5.2)

2
s t+a.sta s+ + 10

The variation of plant parameters with Mach Number and altitude are
given in (8). For one particular plant state these parameters are

Kp = 14.04, zl=.955, pz=1.886 and pl=6.61. The configuration is shown
in figure 4.7.

Kc is adjusted according to (4.3.12), (4.3.13) as

. Y
--__].“.. oS
Kc f Kp (?lr+r)(el+32) (4.5.3)

where L is chosen as in (4.3.6).
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The uncontrélled error response and plant output y are shown in
figure 4.8, Figure 4.9 shows fhe adaptive‘response and error response
for the gain compensation scheme. These responses occurred subisct
to the input shown in Figure %#.,10. Additional runs were made for
smaller values of y and the results were as predicated: the error
perfopmance could be improved by increasing the adaptive gain. These
results were obtained in a PACE 231 R Analog Coqpufer.

The same system was simulated on a Digitél Computer {IBRM 360)
te examine ihte idecl but uarealistice situaticn where all medel parvains=icrs
were adjusted and the prefilter contained the compensation of figure
4.6. To evaluate the adaptive =rror response as separate from the

identification error response the éystem-shown in figure 4,11 was

»
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plant input

Figure %.10

e
g Xy =% s
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plant output ' ;

error response

Figure 4.9
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actually used.

e F(s) -—bg-—v e
+ .

bt
38
<
A4

G(s) ;

o ca(s) EEING S

Figure %.11

s

The parameters of F(s) in the model and prefilter were adjusted to

minimize e and it was demonstrated that e, under these conditions was

A
kept almost identically zero. This was accomplished despite the fact
that convergence of the model parameters to the value of the plant

parameters was rather slowe

4.6 Simulation of Control Augmentation Technique
This last example was chosen to illustrate an application of the
control signal augmentation technique. The simplicity of this

configuration makes it particularly appealing. The plant is
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* % %

3 -2 =T . u050u
%y = = PpXywPyX; * Kp(r+u) (,5,4)

r = 5 sin(3t)

The plant parameters were chosen for simulation purposes-to be

"‘olt

Py = 2 +e .

- - -n2t
Py © §-2a
(#.5.5)

-.Ost

Kp =5+ e sin(t)

The control chosen in accordance with (2.3.6) is
u =y (el + e2) (4.5.6)

but the alternate form as discussed in section 4.5 was found to give

slightly better results. The control signal was generated from

U = 200 sgn (e, + e,) (4.5.7)
A model
. h, =m,
i, = - a2m2-alml + Kmr {1.5,8)

was used with a2=l, a1=.5, and Km = 10. The plant and error response

are shown in figure 4.12. ‘The major drawback to this contrel augmentation

scheme is the excessively large control effort required.
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V AREAS FOR FURTHER INVESTIGATION

5.1 Introductioﬁ

Perhaps the most important subject for further investigation
is the effect'of noise on the adaptive process. A geﬂeral treat-
ment of this important problem was reported in (15) but the results
do not apply to the model reference system as developed in this
thesis.

Because the model would generally be a computer simulation of
desired performance it can be isolated from any noise effects other
than input dist&rbances. The plant is subject to other distrubances,
however, state measurements may be noise contaminated. If the model
is subject to the same input disturbance as the plant the adaptive
system should work as developed since all that is assumed is that the
same input is applied to the model and the plant. If the model is
chosen t6 have disturbance rejection properties, and if the adaptive
system works in spite of contaminated measurements, the plant will
track the model and assume thesa .same.rejection. properties.

The two importantiquestions are then (1) what effect do noise
contaminated plant state measurements have on.the adaptive process;
(2) what effect does a disturbance not sensed by the model have on
the error response. Even for linear plants the parameter adjustment
adaptive control algorithm leads to a non linear closed loop system.

For this reason an analysis of the scheme in the presence of noise is



untractable. The difficulty arises basically because to fully specify
the statistical behavior of the error requires knowledge of the error
covariance matrix in addition to the mean value. If the error process
is not Gaussian this may not even be adequate. For the parameter
adjustment scheme fhe complexity of the analysis is prohibitive.

Some iﬁsight into the effects of noise on the control signal
augmentation scheme can be gained by making appropriate assumptions.
The conclusions reached might then be used as a basis to begin a
study of the parame%er adjustment scheme in the presence of noise.

For illustration a first order plant which has an unknown but constant
pole and gain 1s chosen. The plant state equation is

X =~ px + Kp(r+u) (5.1.1)
Desired performance is described by

m= - a,+Kr (5.1.2)
As shown in figure 5.1 the plant state is corrupted by noise and

the input is the desired input plus noise. It is assumed that both

ny and n, are Gaussian white noise processes with mean values
n=n, = 0 (5.1.3)
and variance
615 is the delta function
' $oo O+e
I Gij(s)ds = ] Gij(s)ds 21 (5.1.4)
-
O£
The corrupted plant state and the plant input are then
X, = x+n,

- (5,1.5)
rn-r+n2
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The closed loop behavior of x will be defined by the two disturbances,

the uncorrupted plant input and the appropriate impulse responses.

t t t
x(t) = I hl(t,r)nl(t)df + I hz(t,r)n2(t)dt + J hz(t.T)r(T)dt
0 .

0 0 (5.1.6)

The impulses responses hi(t’ ), hz(t, ) can not be determined exactly
because the plant parameters are unknown and may be time varying.
Despite this the expected value of x can be found as

' . 3

2(t) "!'-'I hz(t.‘t)l‘(t)dt (5.1.7)
0 -

which is the noise free éipectéd value,

With the assumption that the plant output is Gaussian it is
culy urccessavy to determine the variance te completely specify the
statistics of x. Denoting the expected value operator by

Ex:
t s
x(tIx(s) = Ex { J' J hl(t,t)hl(s,a)nl(t)nl(a)étdu
‘ 0 0
s
I hz(t,t)hz(s,a)nz(t)nz(a)drda
0

e
© Sy 14

t 8

+ r I hz(t,r)hz(n,a)r(t)r(a)dtda
0o 0

S . (5,1.8)
I hl(t,t)hz(s,u)nl(t)nz(a)dtdu

Q

t 8

| hl(t.t)hQ(s.a)nl(t)r(n)drdﬁ

+ 2

s ]
© ot

+ 2

Qﬁ-u—p\
°\l—-—q

t s
hz{t',t?hz(a so)n (x)r(d)darda]

- .

~
&3 Sombamiang,
& Semanamamay,
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Because n; 40y and T are mutually independent (5.1.8) reduces to

t 8
x(t)x(s) = Ex { I J hl(t,r)hl(s,a)nl(r)nl(u)dtdu
0 0

t s
+ f .j hz(t,r)hz(s,a)nz(r)nz(a)dea
0

(5,1.9)
t s
+ ] I h2(t,t)h2(s,u)r(t)r(a)drda}
0 0
By averaging inside the integrél the variance can be found as:
t : '
x(t)2 = h (t,t)zﬂzdt +!h (t,t)2N2dt (5.1.10)
1 1 2 2
0

The last term in (5.1.9) represents the mean of x squared and for this
reason has been omitted from the variance expression. The impulse
responses hl(t,t)hz(t,t) cannot be found but if tﬁe frozen system
concept is used these functions can be approximated by tﬁe stationary
impulse response functions h1{t~t)h2(t-t) associated with the system

having the nominal plant parameters. The variance is then

2
1

2

x(t)? = N I.hl(t-t)zdt + N2 L h,(t-)2ar (5.1.11)

Making the substitution t-t=8 in (5.1.11) results.in
t t |
2 f h(8)%a8 + N2 | n,(8)%as (5.1.12)
h 0 1 2 2
0

For the frozen system the plant outputvariance becomes stationary as

x(t)2 = N

t+2 and
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x()% = x% = 42 [‘ b (8)%d8 + W5 J n,(8)%as (5.1.13)
. i o
which is bounded for h., h, having low pass frequency characteristics.
The error statistics follow directly from the above results. Since

e = m~x the contribution due to noise in the error comes exclusively

from x. Therefore the expected value of the error caused by noise

is the negative of the expected value of x.

e=x=0 (5.1.14)
Similarly, the contribution of noise to the error variance is the
variance of x.

2,
[~} =

W2 2 2 2 .
= N} I hl(B) a+ N, I hz(B) ds (5.1.15)

%l

The contribution to e not caused by noise is the error response for the
uncontaminated system..

For the example considered here it follows from figure 5,1 that

h,(8) = 1%»‘} = h,(8) *p(8)
(5.1.186)
hy(e) - ».1-%9? ]
where script L deﬁotes the Laplace Transformation, and
p(B) = vy (5.1.17)
From (5.1.16) and (5.1.17) it then follows that
h,(8) = I Yh,(8-¢)d¢ (5.1.18)

0

Substituting (5.1.18) into (5.1.15):
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. 2 -
e = Niyz [ [ ] h2(8-¢)d¢] a8 + N2 I n,(8)%d8 (5.1.19)
Q

For this simple example it is obvious that the adaptive loop guin y
should be chosen as small as possible to reduce the contribution of
measurement noise to the error variance. Since the bound on error for
the uncontaminated system has been shown to be inversely proportional
to vy tﬁere will be a‘trade off reqﬁired between minimizing the deters
ministic error bound and minimizing the error variance caused by

noise.
5.2 Illustration of Noise Effects on Simple Parameter Adjustment Scheme

Because of the nonlinear nature of the parameter adjustment adaptive
system an apnalysis like that above is not possible. However, some
insight into the statistical error behavior can be gained by considering
the linearized form of the nonlinear controller. .

For the plant in (5.1.1)

X = Py +'Kpr (5.2.1)
the gain_adjustment algorithm can be implemented as shown in figure 5.2,
It is assumed that the plant pole is known. The purpose of adaptation

is then to compensate for the unknown but constant plant gain Kp. The

closed loop plant differential equation is

X = -p X+ prcr (5.2.2)
with
prc_= Br{m-x) {5.2.3)

Ifr is a stép 1=Rou(t) then the system in the absence of noise will

reach equilibrium at
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Figure 5.2
K XR
Xq = _BB-E,-.Q. (5.2.4)
Any change in x from x, will be caused by noise contamination of the

0
plant state and noise affecting the plant but not the model, n, end n,

respectively in figure 5.2. . This change in x from Xy is the solution

to the linearized form of (5.2,2),.

AX = -pAx + (KPKC)OAr + (Kpr)odxc {5.2.5)
gimilarly, from (5.2.3), the change AKcKp can. be expressed as the

solution to
“ prKc_= - B[Robx + onr3 (5.2.6)
Ax(t) = -pAx + Kmﬁrwapro f [RoAx(t) + xOAr(t)]dr
' 0 (5.2.7)
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where km=(Kch)o has been used. The solution to (5.2.7) gives the

change in x from the steady state step response, x Any change in

04

r from R0 is just n,, and any change in x from Xy is Axtn Replacing

10

Ax by Ax + n, and Ar by n, in (5.2.7) and integrating gives

a

ax(t) = I gl{t-a} (K o, (a)- SK R, [ (R [ax(7) + nl(r)J+xon2(r)]dT]da
¢ 0

where g(t-a) is the impulse response defined by (5.2.2).

(5.2.8)

As t»~ x(t) becomes stationary and its mean value is
o o o

ax(t) = K§'=I g(t~r)Kﬁn21a§ da«BKpRo [ I g(t—a)[Ro[KET?)fnllt)
0 0 0

+ x40 (t)]dtda (5.2.9)

e, e white Gaussian noise precesses whoese -2tisties are given
in (5.1.3). Since they both have zero mean and with Ax(t) =dx

(5.2.9) can be expressed as

ax {1 + sxp g I ! g(t-a)dadr]=0 (5.2.10)

From (5.2.10) it follows that
Bx =0 (5.2.11)
The mean value of the perturbation in x caused by noise is zero.

Similarily —
de = 0 (5.2.12)

Since the nominal value of error is zero, the error in the presence
of noise is zéro mean,
The variance could be found starting from (5.2.7). However,

it is simpler for this linearlized system to work with the transfer
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function representations. Taking the Laplace Transform of both sides

of (5.2.7):
ax(s) = K G(sWy(s) = BK Ry S2F (R ax(s) + RN, (8] + xgh,(s)]

6(s) is the transform of g(t) and N,(s), N,(s) are transforms (5.2.13)

of signals entering at n, .0, respectively in figure 5.2, Noting that
1 .

G(s) =-§;b y (5.2.13) can be expressed as
. 2
[X s-8K R x ] [8x R°]
8 +ps+BKpR° 8 +ps+BKpRo
&nd from (5.2.4), 24 =.(KPKC)?R0/? = meD/p which gives
K_[s- gX_R2) - '
P tex &3
ax(s) = N (s) -5»--—--1’--5- - ¥, (s)* s (5.2.15)
. 8 +p2+BKpRD s +ps+BKpRQ

Under the assumption of stationarity, the variapce of the change in
% can be found using standard techniques. For purposes of illustration

p=Ro=l then denoting BK_ as a, (5.2.15) becones

p
Km[s~a] “1(3)“
Ax(s) = Nz(s) % - =5 (5.2.16)
S +s+a 8 +s+a

The variance is the result of the complex integration

—p————

sz =

;l-'

+ )0
5 } Ax(s)Ax(~s)ds = J, + J (5.2.17)

1 2
_ju

it

which can be evaluated using standard tabulated forms (16) as
Jl = '—-a--(ﬂ'f‘l)
(5.2.18)
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Recalling that u=BKP, minimizing the variance requires 8=0 in which

case the variance is simply

—5 N

K
Ax2 =

2
2 m

5 (5.2.19)
Reasoning as in the control augmentation analysis, the error variance
is the same as the plant variance.

To recapitulate, it was aséumed that subject to a constant input
the adaptive system would null the error caused by differéntvvalues

_ of model and plant gain. If the deviation from this equilibrium
caused by noise is atationary, it will be zero mean with finite variance,
The variance can however be minimized by setting the adaptive gain to

"7 To be meanirigful thé results cbtalned gbéva vust be extrapolated
to the situation where adaptation is not achieved before the system
is corrupted by noise.  If the error is small between plant and model
for a step input, then to maintain the error close to zero despite
noise, the adaptive loop gain should be as small as possible. Setting
the adaptive gain to zero ﬁould make adaptation impossible; therefore
the gain should be made only as small as results in suitable performance,
This reasoning cannot be extended to the more general case where the

error between plant and model is large in thé presence of noise., To

do so would violate the linearizing assumption inherent in (5.2.5),

5.3 Summary of Areas for Additional Investigation

The illustrations in this chapter were not intended to be a
conclusive examination of noise effects on system performance. Rather
they sefve to point up the importance of noise contamination on the

adaptive system.

v s
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In addition to an extension and generalization of the preceding

analysis, fruitful areas forAfurther'investigation are

1L

2)

o)

Redesign of the adaptive loop to guarantee an error bound as
in Chapter 3 but to also afford more control over the noise
induced error bound. - . '
Investigation of alternative error criterion.

Design of the control aug.aentatioa technigque to limit the plant
input. Knowing the saturation limit of the plant, a relay
configuration can be used to form the control derivative.
Rather than integrating fhis to obtain the control as done in
Example 4.2, a low pass filter could be used which would
effectively duplicate the required integration but would

at the same time provide a saturation limit on the total

control effort.



-APPENDIX A
If: n
1) The ﬁomogenéous error eqﬁations are linear and stable in
error terms with constant coefficients.
2) The unknown parameter difference vector and the control
vector enter linearly into the equations.
3) The scale factors 8 and-y in (2.3.5) and (2.3.6) are constant.
4) The parameters are constant
then the parameter adjustment algorithm is -the same as the method
proposed by Butchard and Shackcloth (3) and Parks (17).

To show this the error equations are written as

N
é,=g, (e G,n,rt) z aje; + hy(x,8,u,t) (A1)
i=1
or equivalently as
& = Aa +h (x,6,u,t) (A2)

in vector form. By choocsing a positive definite function

Vs e Ln + 6 R + R tsu ) | . (A3)

K

as a poasibia hyapuhov f%netion, V can be;f@rhad as

© Yo [AtLeLATer2[ntLeT+E TR+ TR su-l-utsu (A4)

fe.coriing to (2.1.5) and (2.3.6)
ag,

-BZ Zz

iy i ij ] 36k k=1,K (AS5)
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T (
4, = -y 2.8, == ‘k=1,J A6)
%k g2y 5oq 413 Tuy g

If R and S are diagonal the (A3) can be expressed as

J .
v-ecaum]a-:-z 8,8 n. + 2..e,h, + &, 8 (A7)
kZI k k" Kk 1X1 521 13%4M kzlﬁk“k Kk

Using assumptior 2 above the h's can be written

By =1 h 6*2 Biie B (48)

From (A8) and (Al) it follows that

it | h! % K=1,2,...K, i=1,2,...N
=. = = poselhg = gbgone .
36k ik 3§k * (A9)

shy' ___ 9g

Wk. = hik = ‘5"“;" k’ 1,2,...J, i=l’2,--|N ’
and choosing
B = - k=1,2,...K (A10)
kk
1 =
’fk = 's'k"k" k-'l,z’oqol’

(A5) and (A6) are

foao 2 zz‘ § (Alla)
& 2 o k=l 2 ...K Alla
k Thx 151 =1 133 o

; _A T ¥

2igey By k12,000 (AL1Db) .

XF

Sxk 121. j-z-l

Substituting (Alla) and (Allb) into (A7) results in

V= eth (A12)
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with

Q= AL+ 1A (A13)
positive definite. (10)

Vv is a"positive'éefinite function of & and e but V is a function‘.
of e only and is thus only a positive semidefinite function of e and §.
Whether or not V is a Lyapunov fdnction is a moot point. The important
fact is that the parameter adjustment algorithm cannot guarantee.6+0.
This is not sﬁrpris;ng since the»more_straighf forward variational
apprbﬁch presénted shows that the error.measuré cannot be a function
of.-a. Doing so would :?équim the value of & to implement the adjust-
‘ment equations; since they would appear in 2H/38 1n-(2.2.15).

Because the Lyapunov method is conservati?e, the error measure

must also satisfy (A13).



APPENDIX B
This Appendix shows that if the only measurable output of a
linear system is a linear combination of the states weighted by
unknown constants the adjustment algorithms may still be applied
using only this output and its derivatives. This result is for

plants described in phasevariable form.

For a system in phase variable form with unknown but constant

parameters
i = xi+l 131,2,.-.}!"‘1
. g {B1)
X, = px +Xr
Wl BT
the only measurement available is the observation
!2‘ B
y = Z X, (B2)
j=p 33

with constant but unknown zj?s. The adjustment algorithm as proposed
in Chanter % can be applicd since the stite cquations deseribing (B1),
(be) arve

y =9, Y,

*

Yi ¥ Yiq1l i=2,3,...N-1 (B3)
N N -1
. d
y, F 2 Py, = K l Z % ‘
noc1 k'k P 1=l 73 aed 1

This follows from letting

-

) )
Y. =¥ Z.X, = ) =z, X
1 g1 33 453 1 (B4)
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then
I P %E' g e ) 25 djjll *2
§=1 j= 1 dat
in general .
-
i =y = 2 o— X, = Z - x BS
R S N B! j‘ 521 3 gt in
and
N j-1 i .
» d d d N d
y=-—-y=£z -——l—-r_-.-x!_ B, = (BS)
n dt°’n 551 j at | 31 "ai= j§1 *a
From (B1)
i i -1
d . d l ‘
—v—, ®O= P 1- (37)
dt “n k 1 K™%
Hence
R [ [ SR
y, = Z, —; X = z =z %, Tk
I =< W Y R - T e T T i

Factoring out Py

o |3 e [en § a2
y. =1 P ‘ —. X Z +k z, -
Roxsr Ko ly=1 add 5" Pz 3 gt
(B9)
N j-1
d
= Z P Y. + K X. Z - r
SR Y B

which verifies (B3)



1)

2)

3)

. 4)

5)

6

7)

8)

9)

10)

11)

12)

BIBLIOGRAPHY
Anceen, R. E., "Self-Adaptive Autopilots", Space/Aeronautics,
Vol #3 No., 4, April 1965.

Bliss, G. A., Lectures on the Calculus of Variations, University
of Chicago Press, Chicago, 19i46,

Butchard, R. L., Shackcloth, B., "Synthesis of Model Reference
Adaptive Systems by Liapunov's Second Method" Proc. Second IFAC
Symposium on the Theory of Self-Adaptive Control Systems, 196S5.

Donalson, D. D., Kishi, F.H., Review of Adaptive Control System
Theories and Techniques, Modern Control Systems Theory, edited
by Leondes, C. T., Univ. Cal. Engineering and Sciences Extension
Series, McGraWbﬂill, 1965.

Donalson, D. D., Leondes, C. T., "A Model Referenced Parameter
Tracking Technique for Adaptive Control Systems” Part II -
Stability Analysis by the Second Method of Lyapunov, AIEE
Winter General Meeting, N, Y., N. Y., 1962

Eveleigh, V. W., Adapative Control and Optimization Techniques,
McGraw-Hill, New York, N. Y., 1967

Grayson, L. P. "Design Via Liapunov's Second Method", Preprints
of Technical Papers, Fourth JACC, New York, N. Y., 1963.

Horowitz, I. M., “Linear Adaptive Flight Control Design for Rew
Entry Vehicles". IEEE Trans. Auto. cOntrol Vbl. AC-Q, No, 1,
January, 1964,

Hsia, T. c.. Vimqlianich, V., “An On-line Techniqne for System
Identification".. IEEE Trans. Auto. Control, Vol AC-~14 No.l,
February, 1969.

Kalman, R. E., Bertram, J. E., "Control System Analysis and Design
via the Second Method of Lyapunov, I, Continuous Time Systems",
Journal of Basic Engineering (Series D, Trans. ASME) 82:371-393,
June, 1960.

Kezer, A., "Use of Model-Reference Adaptive Systems to Improve
Reliability", MIT Instrumentation Laboratory Report, January, 1961,

LaSalle, J., Lefschetz, S., Stability by Lyapunov's Direct Method
with Applications, Academic Press, New York, 1961. C

=96~



13)

)

=97~

Leondes, C. T., et al "Program in Basic Research in Adaptive Control
Theory" Proc. Self Adaptive Flight Controls Symp, Wright Air Develop-
ment Center, Wright-?atterson AFB, Ohio, January, 1959,

Monopoli, . R. Ve “Engineering Aspects of Control System Design Via

.thé *Dinect .Method' of Lyapinov", NASA Report C.R.-654; Oct., 1966.

.:""-'Ofﬂea -of 'reemicax Sczvvmea. Dept. ‘of Commerce Hashingt‘ma D. C.

15)

16)

17)

18)

19)

20)

20230.

..

Myers, G. H., "Bias Effects in Nonlinear Adaptive Servomechanisms”,
IEEE Trans. Auto. Control, Vol. AC-10 No. 1, January, 1965.

Newton, G. C., Gould, L. A., Kaiser, J. F,, Analytic Design of Linear
Feedback Controls, John Wiley and Sons, Inc., New York, 1957.

Parks, P. C., "Liapunov Redesign of Model Reference Adaptive Control
Systems", IEEE Trans. Auto. Control, Vol. AC-11, No. 3, July, 1966,

Potts, T, F,, Clymer, A. B., Ornstein, G. N., "The Automatic Deters
mination of Human and Other System Parameters", Western Joint
Computer Conference, Los Angeles, California, May, 1961.

Schaeperkoetter, R. L., Transier, K. G.,"Parameter Identifications
The Key to Second Generation Adaptive Flight Control", Sperry
Engineering Review, Vol. 21 No. 2, 1968.

Whitaker, H. P., " The MIT Adaptive Autopilot®, Proc. Self Adaptive
Flight Controls Symp., Wright Ai» Development Center, Wright-Patterson
AFB , Ohio, January, 1959,



