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CALCULATION OF FILOW OF A RADIATING GAS IN A SHOCK LAYER
by
0. M. Belotserkovskii and V. N. Fomin

(Transleted from Zhurn®l Vychislitel'noi Matematiki e Matematicheskoi
Fiziki, Vol. 9, No. 2, March-April 1969)

1. INTRODUCTION

in recent years, arising from the‘growing tncreese in the problem of
flight of space vehicles in the atmosphere of the Earth and other plenets,
there has been intensive research in the field of physical gasdynamics.

Thiﬁ is due to the fact that flight in dense layers of the atmosphere is
accompanied by a number of ?hysical and chemical processes occurring in
thevshock layer formed at the vehicle surface. Such processes include
excitation of internal degrees of freedom, excitation of electronic levels,
dissociation, ionizaetion, radietion, etc.; in addition, the state of the
gaes cen depart from thermodynamié equilibrium. The mechanisms llsted

have a stréng influence on the characteristics and properties of a high-
.temperature gas stream, end it is, therefore, natural for enéineers to be
interested in a detalled study of these processes.

One of the important difections in which work has béeq done in contem-
porary physical gasdynamics is the investigation of hypersonic flow of
radiating and absorbing gaseous medla. Radiati#e transport in gaseous mediar
has previously been of interest mainly to astrophysicists and meteorclogists.
In that context, methods were developed for calculating radiative transport
mainly in plene geseous layers, approximating the at;bspheres of stars and
planets. Applying this to the problem of flight in dense layers of the atmos-

phere, exsmination of radiative transport problems has raised a number of new



questions of a different nature.

One such problem which has received attention from physicists for a
number of years is the calculation of the absorption coefficilents of air
over a wide range of temperatures and pressures. This question has been
discussed in & large number of experimentsl and theoretical papers in the
USSR and abroad. Tables of ebsorption coefficients /1/ are presently
available which allow gasdynamic calculations including radiation to.be
performed.

Another importent problem of interest meinly to gasdynamicists is that of
the influence of radiation on the flow over blunt bodies, as well as a
simultaneous consideration of convective and radiative heating of bodies,
allowing for coupling. The first aspect of this problem can be examined
within the framework of solution of the inviscid problem of flow over a boedy,
while the second part of the problem requires consideration of a system of
equations of Navier-sﬁokes type, including radistion. In addition, in the
study of hypersonic flight at high altitude (at Reynolds number of Re ~ 10 =~ 102),
8 physically valid solution of the problem of calculating the flow, including
radiation, can be obtained.only by including viscosity.

At the present time, there is d.large number of Russian and foreign papers
devoted £o an investigation of the flow of a gas, allowing for radiastlon, in
laminar boundary layers, in the region of the stegnation point of a blunt body.
We mention only & few, i.e., /2,4/. 1In these papers, the radiation was com-
puted by epproximeting the rediating layer of gas by a plane layer.

In the study of flows having axial symmetfy (when considering the gas flow
not only in the stagnation point region, but also considering the effect of
blunting in the whole field), as well as multidimensional flows, an epproxi-

metion by plane layers cannot be made, and the problem becomes extremely complex
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owing to the need to integrate the radietive transport equation in tne gas
stream with complex distiribution of temperatures and pressures. Until
recently, solution of problems of this kind was very laborious, but iu
recent years, due to the widespread development of numerical methods for
the calculation of flow over bodies by means of computers, & number of approaches
to0 these investigations has emerged.

This paper describes some of the results of applying numerical methods
(the method of integral relations and the method of characteristics) to
computation of supersonic flow over blunt bodies, allowing for radiation.
Many[?alculations have been performed for various assumptions regarding
the nature of the radiation (volume luminosity, selective luminosity, selective
emission and absorption); the results of the computations are given. 1In
conducting the computations, the selective nature of the radiation in tﬁe
shock layer wes taken into account, the transport of radistion being considered
in a continuous spectrum, and in a set of weak spectral lines, taken into
account by integration. The contribution of. strong spectral lines to the
energy balence in this paper was neglected, due tc the absence of sufficiently
relisble data in this region at the time the cémputations were made. All the
calculations shown here vwere made under the assumption that local thermodynamic

equilibrium of the gas prevalled.

2. SYSTEM OF EQUATIONS, BOUNDARY CONDITIONS AND
VARIOUS NUMERICAL SCHEMES USED IN THE CALCULATIONS

1. The system of equations of gasdynamics, teking radiation into account,
is well known. For inviscid non-ccnducting, equilibrium dissociated end ionized

gas streams, this system of equations takes the form:
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He;e-ﬁ-is the vector velocity; p is the pressure; p is the density; T is

the temperature; h(p,T) is the specific enthalpy; u(p,T) is the molecular
weight; R is the universal gas constent: Iz is the radiative intensity;

k' = ky(1 — exp{—hv/kT}) 1is the ebsorption coefficient, including induced
emission; ¢ is the speed of light; k is the Boltzmann constant: h is Flanck's
constant; r is the direction of radiative transfer; (0 is the element of solid
engle; » is the frequency.

The main difficulty in considering gasdynaric problems, taking rediation
into acecount, is that it is necessary to deal with & very complicated integro-
differential system of equetions, Egq. (1) -- (5).

}In calculating flow of & radiating gas, the optically thin layer approxi-
mation has been widely used. This approximation corregponds to the condition

k'lgd (here 1 is the characteristic dimension of tﬁe flow). This epproach
.18 not always physically valid, especially for real gas media, but it leads
to consliderable simplification of the original system of equations, since in
this case, the gas can be considered to be radiating (voluﬁe luminosity), but
not absorbing energy, which leads to the disappearance of the integral term in
Eq. (3), and the mystem {1) == (5) becomes purely differentisl. Using such
gimple models, the possibilities of different numerical schemes in the method

of integral relations can be investigated.
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In general{ the assumption of an optically thin gas layer ie nct satisfled,
and then ve must consider the emigssior and absorption of energy in ihe gas,
slloving for selectivity. The solution of this problem in a rigorcius formu-
lation is very difficult. However, we can use an approximate methcd for con-
sideringvselective’radiation and sbsorption of energy, without impesing limite
etions on the optical thickness of the layer.

In neutron trensport theory /5/, the method of spherical harmornics is
widely used to obtain aﬁ approximate system of differential equaticns, equive-
lent to the transport equation. Following this seme approach, we represent

the radistive 1ntensity in the form of a series in spherical harmonics:

I-(Q' r)= : Z Z Avl (")Yu (Q). e m— - &

“Now we substitute Eq. (6) 1nt:ﬂ§:__2h), and multiply the resulting equation
by Yu"(Q) | and thereafter integrate over the solid angle. The ecuations
resulting from this procedure are an inf:nite system of differentiel equations
vith an infinite number of unknown functions .dv™ , cfompletely equivalent to
the exact transport equation. Since wve k.ﬁow., .from 1';he theoxry of neutron trans-
port, that the first approximation in the method of sphericel harmonics (which
is called the Py-Mm apprgximation) ie sufficiently accurate in the rzjority
of problems, we restrict ourselves here to only this approximetion (in what
follows, we call this the differential epproximation).

Thus, the rediative tranefer equation, Eq. (L4) is replaced by the approxi-

mate system of equations: dxv ”v . —k\ ( Ivo - lva).

M

!

grnd I\.o = --3lcv fv. :
vwhere I.,AI.(IQ, i, =="[‘ Ivcosf}dQ_ is the radiative énergy flux.
We now turn to the question that Eq. (7) assumes the validity of the dif-
ferential spproximation for any frequency y, i.e., the first equation in Eg. (7)

is exact, and the second equation is spproximate. We note that Eg. (7) reduces
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to the equations for an optically thin gas layer (or optically “hlck), if
1/} is larger (or considerably smaller, respectively) than the character-
istic flow dimension 2. .

Since the P, approximation restricts consideration to the first terms of

1
the serles expansion of the intensity Iv in spherical harmonics, it is clear

that: L(r, Q) = %‘_u,, ()4 30,92 - (8)

The boundary conditipng for the original system of equations includes
the conventional gasdynamic relations, given on the shotk wave and on the
body, and boundary conditions for the — ilstion, which are determined by
assigning the. radiative intensity at the front of the shock wave And on the
body surface.

We note that the differential approximation has been used successfully
to calculate the flow of radisting hydrogen in axisymmetric nozzles /6/.

2. Ve use the method of integral relations to calculate the flow of a
radiating gas in the region influenced by the bluntness.

We shall consider Scheme I of the method of integral relations /7/. The
.system of equetions describing the flow of the gas behind a shock wave,; allow-
ing for radiation, in dimensionless form, cen be written in s, n (fig. 1)

coordinates as: follows--nw-u»-rw-‘-vu .

.g. o AT =Y. .,‘.’.a+'.é€’..Az,X‘, L
a-.- ‘ d 2 e

p=p(p. T). h= h(p. ). ' )
The notation and dimensions are conventionul ‘for Scheme I/7/. in the cese
)

of volume emission, the gquantity E is the amount of radiant energy passing
through unit volume of the gas in unit time, divided by Pwuﬁm;/1% (vhere

R, is the radius of the body).



Using the well-developed apperatus of Scheme I, we consiruct an app oxi-

\te system of equations for nwnerical integration.

Fig. 6

The differences from Scheme I, which does not take account of the effect
> rediation, reduce to the following: Since the flow of the gas with radis-
lon behind a shock wave is non-isentropic and non-adisbatic, then, as was
‘ue in calculating non-equilibrium flows in Scheme I, the condition that
1tropy is conserved along the stream lines in not used. 8ince the line of
mmetry 8 = 0 (Fig. 1) and the hody surface are stream lines, the energy
uation is used along taese in the form of Eq. (9). In the second (and

gher) approximations, where the intermediate lines n, are nov stream lines,

i
e energy equation is written approximately along these lines n, in terms

i
" the known values of the corresponding functions on the streem line /7/.

The boundary conditions are the conventional gasdynamic conditions for
heme I} vhich, in the cese of volume emission, do not contain additional
nditions for the radiastion, since the gas transmits energy without absorbdbing
.+ Because of thelr difficulty, fhe approximetion systems were not written
re, but some results of the calculations are given in Part 3 for the case
> volume emission, as:obtained according to this scheme.

Calculations of the flow in the bluntness influence region were performed

80, using SchemelIl of the method of integrel relations, end different variants

> this scheme were investigated. References /7--8/ have made a detailed



examination of the question of applying Scheme II to calculation of the fiow
of a radiating gas. By constructing an approximating system, a representation
has been formulated for the eéuations of motion and continuity along the shock
layer by means of ordinary differentisl equations, and an approximate form

of the energy equaiion along the houndaries of the strips has been written

in terms of the known form of this equation along the stream lines.

Aftervards, another variant was developed for constructing an approximate
system within the framework of Scheme II. 1In contrast with that examined above,
the form of the energy equation here is written in the diverggnt form: |

a_‘z_(M‘(H-’ b‘%(ﬁﬂ)#ywrm:o, e ~(10)
vhere 6= ﬁ-+nv’ , and s andlc are the coordinate system in which a solution
is usually developed aécording the Bcheme II (see Fig. 1); the remaining
symbols are conventional for Scheme II /7/.

In constructing the approximating system, the energy equation, Eq. (20)
vas integrated, in addition to the equations of continuity and motion. The
integrated functions here are approximated by polynomials in the coordinete s
along the shock layer, taking account of the symmetry about s = Q. By integrating
Eq. (10) we obtain the two missing relations necessary tu close the approximation
system of equations. Because of its cumbersome nature we shall not e¢how the
approximﬁtion system here.

The resulis of calculations according tc those variants of Scheme II and |
a comparison of them are presented in Section 3; results of calculations accord-
ing to Scheme I also presented there. By comparing the results of calculations
employing the different methods of approximate representation ¢f the original
equations (and particulerly of the energy equation), we can assess the possibi-*
lities . of the various numericel schemes and the reliabiitiy of the results

obtained. When the results of calculations using the various approaches



-9-

converge, we can be assured &5 to the adequate sccuracy of the numerical
schemes and the relicility of the results. This is particularly important
when we are considering problems of a complex physical nature (in particular,
with radistion), where a comparison with experimental data cannot be made in
order to assess the accuracy of the calculations, because such data eare tot-
ally absent at preseéent.

The above variant of Scheme II was also used to calculate £low over
blunt bodies, allovwing fbr radiation, in carbon dioxide and in gas mixtures

of the type 002 + N Some of the results of these calculations ere presented

o
in Section 3.

3. For a more rigorous calculation of rediative transfer in a shock layer,
a numerical scheme has been developed in which no restrictions are imposed on
the optical thickness of the gas, and which permits calculation not only of
radiative emlssion, but also of absorption 6f energy by the gas. This is
accomplished by means of Scheme II of the method of integral relations and
the above different‘al epproximation.

A short account was given in /7/ of a scheme for calculeting supersonic
" flow over a blunt Yody, allowing for selective emission and atsorption of
energy. A more detalled description of this scheme will be given below.

The equations of wotion, continuity snd state are employed in the ordinary

form for Scheme IX. In dimenaionless‘form, the energy equation is:

dh — — . *
_ .(p.T) " dp 4 —p*Edt=0. (,11.)'
where o - ’
E w= 2 [’\‘" ([lﬂB.—I'o)]k Avh

© L ke

is the difference between the amounts of energy emitted and absorbed by unit

volume of gas in unit time.
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We note that Eq. (11) differs from Eq. (3) in that the frequency renge
examined is subdivided into n intervals, the coefficient within each interval
being essumed constent (but verying from interval to interval). This permits
the operation of integration to be replaced by summation in the energy equation.

Equetion (7) in the s and { coordinate system can be written in dimension-

less form as follows:

-8 . 8 ot : _ .
75 (ref) + 37 (rAH o rle,'t,,) + Arek) (I,o—4al?.) =0,

L . 6!;0__ . ? . : -"““ O
S oo @ |
il : %‘L = - 3]iv' (A’Iu +C8.'Hvt)- ! :

vhere jﬂuaﬁeih&; are components pf the radiative flux vector along the s and
(axes, respectively. Egquation (12) is solved n times, i.e., the number of
intervals into which the frequency range is subdivided.

In order to construct e closed solution for the system of equations
comprising the equations of continuity, motion, state, energy (11) and the
relations of Eq. (12), for example, in the second approximation, a varianf of
Scheme IY was used, based on-an epproximate representation of the energy equsas
tion along the strip bounder: s.

The first and third equatiéns of Eg. (12) are integreted from s = 0 to
s = sl,and froms = 0 to s = 0.551, the integrand functions being polynomials
of fourth degree in s for even functions, and of third degree for odd functions.
This gave four ordinary differential equations, approximating the rriginal
system, and four other differentiel equations were obtained by representing
| the total derivatives of ILO with respect to ({ at the strip boundaries, and.
the total derivative of HLS at s = 0 in terms of the known form of the partiel
derivatives of these functions with respect to s and (. These equations are

' ’ W W

enough to determine the 8n unknowns, connected with radiative transfer, !{up "y

I (el =0y t=01,2
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is the index of the strip boundary, ke==1%,2,...s% 1is the index of the
frequency interval. I'n addition to the system of 12 equations for deter-
mining the gasdynamic parameters at the strip boundaries, /8/ , we obtain
a closed approximation system of 12 + 8n equations.

We shall write down the 8n equations, dropping the éu’bscript k to

simplify the notation:

L Lay=— 3ol o

Figy = == 3k Hog,— 30! (Aal o= Citn Hir) 0 s
o dioy = — e Mgy Bl (Ay m,,-;,e.,"u.t,) o,
H,:, = — ok, (r,o,-sz,.) ; e l

0

—No Dy +N1'Ds 'i‘N 'Dy + 2""" {— Nooc + A'I.(Dl""aDll) +1‘:Dd 4
+6? AZD‘_'!-‘Z,D’+AZ303=0
: No Dv“-Nl'Da'F N;'D, + [N D,.,—A;D“—}-N,(D“—iZD,,)] + (13)

|
’{‘21‘2 e, +ZoD7—‘fT100+A'D»"O o . E

: : !/3‘\'0 +u/31vo.—61.o,+(:81$, +Gsl &.”-—0
R s Ly —%/s T'vo, -+ 31»(,, 335,84+ 38,8, =0,

Here, . i V T . ' h .
Nl = (A H\'( —gie(‘ ][vq) Pl- &= kv{ (A{qu + gles,_ v(()'
Ao = maytoky,’ (o, — 4nBy,), A= m“e,kv, (Lo, — lmB,,‘)
T Ag = mygtali’y, (oo, — 4By, ty = rilu,.

The remaining symbols are the same as in /8/ . By solving Eq. (13) with

respect to derivatives of the functions My Hugyy Ly

, we obtain a
system of equations used for numerical integration, along with the 12 equa-
tions from /8/ , and connected with them via the energy equation.

We now discuss the boundary cornditions of this problem. The gasdynsmic
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boundary conditions were formulated in /8/, and remain unchanged. Tﬁe
boundary conditions for the radiation are assigned approximately under the
assumption that no rediation enters the shock layer from the flow upstream;
the body surface absorbs all the energy supplied to it from the shock
layer, and radiastes an amount of energy that is negligibly small in compari-
son with the emission from the shock layer.

These assuvmptions allow us to obtain the approximate conditions:

At the shock wave  Ju = 2Hi, - )

On the body _ .'I.o‘+211.;! =0, - (15)

In addition, the following approximate boundary conditions can be used

at the shock wvave:

' 1 14 32 N
H,,,.:.——-m (—gtl ————I.,o,+2fw.+kv.°u’1Hvtn)| R
) = 1 . 8 '.(16)
H =- zsz (.B_Ivo' ,o,"-]vo.‘*"kv.eh’.”"tl)' '

These conditions Qere obtained from the third equation of Eg. (125 with
¢ =1 -

In conducting the calculations with selective emission and absorption‘of
energy, we used data from /1/. Here the range.of variation of &/(p, T)
with respect to frequency was divided inio 20 1ntérvals and ; table of values
of k'b as & function of p, T, and ¢ vas congtructed. The necessary values of
k'bfor the calculation which did not coincide with the éntry points of the
table were determined by interpolation.of krbwith respect to p and T on a
logarithmic scale.

A numericael integration of the system Eq. (13), together with Eq. (25)
from /8/, was carried out in a similar way as was done in /8/. There is a
difference in that, in starting the calculation:from the shock wave, values

‘. a_nd . .
of I (ana  Hy 'n H,) wvere determined from these, using Eqs. (14) end

1051
(16)) must be assigned in such a way as to satisfy condition (15) at the body
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;
surfece. The necessary values of 1001 vere chosen during the calculation;
Some of the results of the calculations are shown in Section 3.

4, o0On the bvasis of Schemes I and II of the method of integral relations,
Scheme III /7/ has been developed, which has definite advantages over Schemes
I and II.

It is very expedient to use Scheme III to calculate flows of radiating
gas (clearly, this is particularily favorable in calculating viscous flow
of a radiating gas). This work is currently being conducted by V. 1. Lebedev
end V. N. Fomin, on the basis of Ref. /9/.

5. The schemes considered above for calculating flow of the radiating
ges in the region influenced by bluntness were constructed using the method
of integral relations. The solution of & problem in the region affected by
bluntness can be continued into the supersonic region. For this, the method
of characteristics is used, adapted for calculating flow of a radiasting gas.
This makes it possible to calculate the flow over blunt cones, allowing for
rediation.

In order to determine the flow parameters on the inclined surface of é
‘cone, the initial data are taken to be the conditions at the limiting character-
istic, obtained in the calculation of the flow over the blunt region. A
scheme for calculating the flow on the conical surface is described in J1/-
The calculations made assumed volume luminescence. We note that the finite
difference relations of the numerical method of characteristics for computing
flow with radiation differ from the numerical scheme for calculating super-
sonic flow of equilibrium dissociated and ionized gas streams, in that eddi-
tional terms eppeer-/7/. Some results of the celculetions are shown in Sec-
tion 3.

6. 1In calculating subsonic and supersonic flow of the radlating gas, to
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determine the thermodynamic functions of alr, we used the universal analytical
representation due to V. V. Mikhaillov /7/, vhich allowed us to make calcula-
tions, both in air and in gaseous mixtures of the type CO2 + N2. In performing

the calculations for air, essuming volume luminescence, we used the data of

Reference /10/, which can be represented in the form;
; P\ ) L
E==105<5:) [10&“7““”.fiohﬂ kg/m.sec3 (17)

for  9000°K < T << 12000°K, 10 < p/po< 4,

or more accurately in the form:

E.E'wo-uoo'r [100'”’1000—2-"6(’5;‘)] (Bp:)\-s' kg/m'sec3 (18),

for and . e .
P 141000z
WK< T < 000 K B dgpres T (o 3

for 10000°K 'S T <<'16000°K, 10 < plpy<C 1 » where p, 18 the air density under
standard conditions.

In performing the calculetions for gas mixtures of the type CO, + N2, under

2

the assumption of volume luminescence, we used data of Reference /ll/, which

can be approximated in the form:

J = 1010t Tnooo+s.az ( P )Mt—o.ma Thooo

£ xe/n.secd  (19)

for 6000°K << T << 12000°K, 10-9 <0/ po << 1072, 0o = 1.29 kg/m3
For the calculations with selective emission and absorption, we used data

of Reference /1/. 1If we put Ir, = O in Eq. (11), the result is & calculation

0
corresponding to the case of volume luminescence with allowance for selective

emission (selective luminescence).

3. RESULTS OF COMPUTATIONS AND CONCLUSIONS

Numerous calculations were performed according to the numercial schemes

examined in Section 2. -We nov present some of the results end an analysis of
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them,

The majority of the results refer to an gample calculation of supex-

sonic flow of & radiating-and‘ absorbing gac over a sphere of radius Ro = 1l m,

the incident strcum conditionn being My = 33, pe ==0.0020 aTm T, == 2'57o K

[t

v My ,
10 o
29
, : o8t/
. ' i ; o ‘ : i i,
o .. e wrE 0 o N7 NN
..  Fg.?2 : " Fig. 3 '
; ! .
M? o os 0 L. 0 05 -
‘ Fig. 5 S
" plpe R
‘ ’ﬂ_ s . L] N
! . Y
§==5 Ny
L z' ", ‘/l/v .'

' g

: .".’.-’.
Wi

—
— —
e — —
—

0 05 T
Fig. T e




-16-

Figure 2 shows the variation of temperature along the axis of eymmetry.
8 = O from the shock wave to the body, for calculatlons according to Scheme
II in the second approximation. (It seemed inappropriate here to use highe
order approximations in the numerical scheme, since the accuracy of the second
approximation is considerably greater than the accuracy of the physical
gquantities entering into the original system.) The broken line shows the
temperature profile obtained without energy loss in the shock layer due to
radiation (E = 0); the cbntinuous line is the tempersture profile for the
calculations with allowance for selective emission and sbsorption of energy;
the results of calculations of selective luminescence using the data of
Reference /l/ are shown by dot-dash lines; the points show the results of
calculations of volume luminescence, calculating E according to Eq. (17)
(the crosses indicate data obtained in calculating volume luminescence
according to a variant of Scheme II, using integration of the energy equaﬁion;)
Figs. 3 and 4 éhow the date for the line 8 (1imiting characteristic) and

8 =.%s Figs. 5,6 and T show data on the variation of density in the shock

1
layer on the same lines and for the same assumptions regarding the nature of
the rédiation.
We can see that, in all the caseé exemined, the temperature_drdps in

the shock layer, and the density increasee.'AThg results of the calculations
show that the pressure p remains practically unchanged, while the velocity

v decreases somewhat near thé body éurface, due to rediation. Hence, we can
deduce the important conclusion that the radistion cen have an eporecisble
influence on the radiative heat flux reaching the body surface, but does not
have an apprecisble 1nfluencé on the eserodynamic characteristics of the body.

A comparison of the results of the calculaetions mede according to the

different variants of Scheme II (points and crosses) permits us to conclude
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that the results of the celculations by the different metheds give quite good
accuracy, which is evidence of the reliasbility of the data obtained. The
greatest differences are observed at the limiting characteristic, but it
should be borne in mind here that the position of the limiting characteristic
alters somewhet for the various forms of the approximations, so that the
comparison should be made on different lines. The curves of variation of

T end p on an intermediate line give-a maximum difference between them of

~ 0.3% for T and ~ 0.6% for p. On the limiting characteristic, et a distance
of ~ 0.25E from the shock wave, the difference for T constitutes ~ 3--L%,

and for p, ~ 4%, and then tris difference decreases, being no more than 1%,
as we approach the body.

An examination of the calculated results allows us to draQ an important
conclusion sbout the goodness of convergence for the various methods of aspproxie
mating to the energy equation. In /7/ the error in calculations according
40 Scheme II and the second approximatiﬁn was determined to be 2%. It
can be seen from the results here that the error of calculations in this
paper does not exceed 1%, at least in the major part of the flow region
examined. (This region is shaded in Fig. 1.) In the unshaded region, the
error in determining some of the paraméters can reach as high as ~ 4%,
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Becouse of the decreasse of temperature and the increase of density in
the shock layer, the divergence of the shock wave is decreased (Fig. 8);
this leads, in turn, to & reduced radiative heat flux. Fig; 9 shows a
comparison of results of calculations of temperature and density according to
Scheme II (second approximation, full line).

We now discuss the following circumstance. When examining Scheme I and
Scheme II for calculating the flow of the radieting gas over a sphere, a
preference for Scheme II was given. This arises f¥om several causes. Calculetions
according to Scheme I involved some specific difficulties in passing through
the singular points found at points in the flow where v = aB + In eddition,
in Scheme I, the integration i1s carried out along the body, while in the case
of volume luminescence, the energy equation has a logarithmic singularity on
the body at the stagnation point, and so we cannot obtain realistic values
of temperature at the body surface within the framework of volume luminescence.
For calculastions with selective emission and absorption of energy, within the
limitations of the differential approximation, we do not obtain singularities
at the stegnation point, bﬁt the values of temperature at the body, even in
this case, are evidently determined with a large error. For this reason,
the schemes considered gire the true behavior of teﬁperature in the major
part of ihe shock layer, apart from a narrow region near the body surface.

It is clear that an improvement in the temperature is this region is possible
by solving the viscous problem. It is possible that it would be more favorable

to use Scheme I vhen considering complex shapés of space vehicles.

Figures 10 and 1l (on following page) show the veriation of temperature
and density in the shock layer in a gas mixture of 9% CO; +91% Nao. + Ve
see that qualitatively, the picture of the variation of p and T is the same as

for eir (l”“ = /!0, Poo = 0.005 atm \Tu = 300" K.. Iy = 1m)
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Figure 12 shows a ;ﬁmparison of the results 6f calculations of the temper-.
ature profile along s = 0, according to the data of Reference /2/ (broken line),
15 vhich fhe shock layer 1s approximated by.a plane layer, with the results of
calculations using a differential approximation (full line). Ve seé tha£ the

agreement between the results is quite good over the major part of the shock
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layer, apart from a narrov reglon near the body surface, where the accuracy
of the differcntial approximation possibly decreases. Figure 13 shows, by
way of example, the varlation of J[y,elong 6 = O for various values of r, and
Fig. 14 gives the radiant heat flux //v, on the body surface at the stagnation
point (t = 0, 8 = 0), and the nature of the varietion of the flux with fre-
quency (full line). The broken lines indicate the value of /v, for ro losses

due to radiation in the shock layer.
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Figure 15 shows the varietion of the paremeters p and T in the shock
layer on the inclined surface of the cone. We sce that caiculation of
the radiation leads to a fall in temperature and an increase in density
in e narrov reglon located near the cone surface, while the gas parameters
remain unchanged in the major part of the shock layer.

The authors wish to express their gratitude to I. T. Gurvich, E. M.
Ermakov, V. I. lebedev and M. P. Shulishnina, who took psart in the calecu-

lations.
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