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ABSTRACT
 

The work described in this report deals with analytical
 

studies for the 4escription of the poupled fluid mechanical
 

and chemical kinetics processes occurring in rocket and air­

breathing propulsion systems. The partial differential equations
 

and numerical solution techniques for subsonic, supersonic and
 

mixed flows are presented. Calculations, demonstrating the
 

application of tbe analyses to combustion chamber and nozzle
 

flow fields,are given.
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NOMENCLATURE
 

Cf skin friction coefficient
 

h static enthalpy
 

H total enthalpy
 

Le Lewis number
 

n coordinate measured normal to the streamline
 

p static pressure
 

Pr Pra dtl number
 

q totzl velocity
 

r radial coordinate
 

rL particle radius
 

s cpordinate measured along streamline
 

Sc Schmidt number
 

T static temperature
 

u streamwi.e component of velocity
 

production rate of the th species
 

x streamwise coordinate
 

y lateral or radial coordinate
 
i .th
 

1 i species
 

jth element mass fraction
 

E characteristic angle relative to the streamline direction
 

Cp,g diffusivity of particles apd gas, respectively
 

mixture viscosity
 

Vi 



Aty gas phase vipcosity
 

9flow direction relative to axial coordinate 

p density 

r 2tan O 

Tw wall shear 

Pequivalence ratio
 

*stream function
 

Subscripts
 

pc potential core 

DSL separating streamline 

n,M generic point in the x, * finite difference grid 
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I. INTRODUCTION
 

The existing tools for analysis of propulsion system
 

components and overall performance characteristios. involve,
 

to a large degree, the application of one-dimensional concepts
 

(References 1 and 2 ) Such treatments are essential in
 

determining the potential performance of a given system and
 

to a certain extent, provide an assessment of the apparent
 

importance of some of the relevant processes which when coupled
 

constitute the complex aerothermodynamic problem of detailed
 

propulsion system analysis.
 

In general the flows of interest involve a number of
 

coupled processes, including homogeneous chemical reactions,
 

phase transition, and mixing within and between the phases.
 

One principle limitation of the tools referred to above is the
 

lack of coupling between these phenomenon. In addition, their
 

treatment of the combustion process is limited and as a result
 

some of the important mechanistic detail is lost. The limitations
 

gf the current capability as gaged by the status of the ICRPG
 

programs for rocket "motoi analysis has been recently sunmarized
 

in Reference 3
 

In particular, that article states:
 

"The following desirable improvements in calculation
 

capability would increase the scope of applicability and
 

the accuracy:
 

i) A physically realistic combustion(jER) model which
 

relates the multiple stream tube generation of product
 

gases in the finite combustion chamber to the injected
 

propellant mass flux and droplet size distributions.
 

2) 'An expanded list of chemical elements and compounds
 

which can be handled.
 

3) Consideration of the effects of solid particles (as
 

well as liquid droplets) in the combustion chamber'
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4) consideration of the effect of mixing along stream
 

tube boundaries.
 

5) Refinement of the nozzle convergent region treatment
 

.to include; a) two-dimensional flow, b) kinetic effects,
 

.c) solid particles and liquid droplets in flow, d) continuing
 

evaporation and chemical reaction with gas generation and
 

heat release in this region, and e) multiple stream tubes.
 

6Y Refinement of the transonic nozzle analysis to handle,
 

a) small throat &urvaturetatios, b) multiple stream tubes
 

(discontinuous sonic surface), c) liquid droplets,
 

evaporation, and continuing reaction, d) kinetics, and e)
 

solid particles in the flow.
 

7) Inclusion of the effects of,a) multiple stream tubes,
 

b) liquid droplets, evaporation,and continuing reaction,
 

d). kinetics, and e) solid particles in the flow.
 

8)% Modification of the bound.ary-layer treatment to account
 

for geometry-effects on its development.
 

9) .- Acquisition of additional and more precise physical
 

data,and a)-droplet size and mass distribution resulting from
 

injection processes, b) droplet-shattering and evaporation
 

in a hot gas stream, c) chemical reaction rates, and d)
 

multistream tube mixing rates."
 

The present effort includes airbreathing as well as rocket
 

motor analysis and addresses itself to the bulk of the above
 

problems.
 

The chief purpose of the present work is to expand the
 

computational framework for the analysis of flows which can
 

treat the many simultaneous and coupled processes in airbreathing
 

and rocket type propulsion systems. I
 

The workpresented in this annual report covers combustor
 

and nozzle flow fields, including combustion, phase transition
 

*and mixing.
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II. 	 ANALYSIS 

The propulsion systems of interest here cover a wide
 

spectrum of combustion chamber flow regimes, ranging from relatively
 

low speed rocket combustion chambers to high speed scramburners.
 

Included within these limits are families 6f composite engines
 

such as ducted and shrouded rockets,.ejector ramjets, and so on.
 

The composite concept is attractive for applications requiring
 

low speed take-off and climb, and then efficient operation in the
 

hypersonic flight regime. The elements of the various propulsion
 

systems are shown schematically in Figure 1.
 

Common to each of the engine concepts is the coupling of
 

mixing and combustion as the fuel and oxidizer are brought into
 

contact. However, depending upon the characteristic scales
 

of the flow and the relative importance of inertia compared
 

with viscous effects, the pressure field-can become a crucial
 

additional consideration in the flow field analysis. Thus,
 

in a rocket combustion chamber where the velocities are subsonic
 

ohly "streamwise" pressure gradients will be of potential
 

importance. Howeveri in augmentation chambers involving mixed'
 

subsonic/,supersonic flows,in scranburners, and nozzles~both
 

"streamwise"t and "lateral" pressure variations can he 

important.
 

The analyses which are described here are designed to
 

treat the spectrum of such flows.
 

A. 	 Parabolic Flows - The Liquid Propellant Rocket
 

Combustion Chamber-


A schematic of this type of flow field is shown in
 

Figure 2 . -In general, the processes which occur in the immediate 

neighborhood of the injector face are very complex, and are not
 

yet well defined analytically This is in part due to the multi-.
 

plicity of injection configurations which are in use, such as
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elements comprised of single jets (showerhead), impinging streams
 

(like or unlike doublets, triplets, etc,), concentric tubes,
 

impinging sheets and swirl cup injectors. Nevertheless, foi
 

certain of the geometries an approximate model involving a
 

"concentric ring" representation, as shown-in Figure 2, is
 

appropriate. Such a model provides a rationale for establishing
 

initial conditions and is a geometric simplification in that
 

the flow may be treated as an axisymmetric flow throughout
 

the entire chamber.,
 
1 4,5

In previous work the problem of describing and numerically
 

solving an axisymmetric, or plane two-dimensional, ducted flow 

field using the parabolic boundary layer conservation equations
 

has been treated. Also, a finite-rate chemistry model wap
 

developed to describe the high temperature combustion of air and 

JP or RP fuels (of References 6 , 7 , and 8 ),, and was coupled 

to a mixing analyses. For purposes of engine design and/or
 

performance analysis, experience -has shown that the most
 

practical procedure is to make calculations over a wide range
 

of conditions, using chemically frozen or chemical equilibrium
 

models, and then use the finite- rate chemical kinetics model for
 

those conditions-which have proved to bi-of the greatest interest;
 

Hence it was necessary to develop a reliable hydrocarbon-air
 

equilibrium chemistry model and couple it to a suitable ducted
 

mixing analysis. In the course of this Work, it was found that
 

it was possible to formulate relatively simple "quasi-complete
 

combustion" chemistry models which accurately reproduced the
 

thermodynamic equilibrium models in terms of flame temperature
 

(for temperatures upto 25000 K, where dissociative affects first
 

becomd significant), and which included solid carbon as a specie
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for highly fuel-rich stoichiometric ratios. This makes it 

possible to perform equilibrium-like calculations for little
 

--more than the cost of a chemically frozen calculation, and
 

reserve the more expensive thermodynamic equilibrium model, 

along with the quasi-global finite rate model for the most
 

important sets of operatinq conditions.
 

The flow field conservation equations for the ducted problem,
 

with equilibriim chemistry, are presented below. *,
 

The analysis includes the capability for treating phase
 

transition effects appropriate to liquid fueled motors. in
 

fact, for generality both-evaporation and condensation are included
 

in the analysis using classical nucleation and growth theory as
 

detailed in Ref. 9. The computer program was developed considering
 

C02 or H2 0 as-species which may appear in two phases but the
 

analysis may be readiiy extended to include other species such
 

as the fuel and oxidizer.
 

Referring to Figure 2, the describing equations in Von
 

Mises coordinates for the ducted mixing and combustion process
 

are given by:
 

Momentum:
 

-u = f .pd + ' (a 

-x 
 pu dx + Y 4 (0 

Energy: u2 

6H 1 6 1 i 1 2 
ax N 

~" 
x 

- -r+-l 
Pr 60 

) 
Pr B 

+ 1
 
Sc Pr
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Species Diffusion:
 

Elements:
 

Y 1- a W
 

N ft' Sc Pu--


Phase Transition Specie:
 

agL 1 a L) 
ax =N +Sc +L 

Pu
 

The transformation employed in arriving at the above equations
 

is given by:
 

OY=PYN
4)N 


0NOx _vyNN
 

where the stream function, 4 identically satisfies the continuity
 

equation, and
 
2N
 

a =
 

Furthermore,
 
elements
 

j=l :
 

W. W. 

Lj WL LWi~jj S i,j 

where
 
0 for plane two-dimensional flow
 

N = 
I for axisymmetric flow 

and v. . is the stoichiometric coefficient of element j in specie i. 

Finally, the ideal gas law is used for the equation of state:
 

all gas j
 
p =pR T L 0


0 wi 
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Boundary-Conditions
 

2au _ Cf 

puy w g BULK2
S(J )wTCW 

Puywit
 
at 4=.
 

= 0, or T 
= Tw 

q- = 
0
 

Initial Conditions
 

U =u()" 

H = H 7)(
-K -k
 

0 0 UK_.(0)x-= 0 0 1 = 

= "%l(0),up to 10 

rL= r Ll()-,up to 10 

Su =u 2 (0) 

H = 2 (0) 
01l < 0 :g 02 =2(0) 

aL= a () 

rL= u()) 

H = H-, () 

7 rL rL1i () 



In the above analysis, ten classes of particles are
 

provided for. The classes are defined initially by fixing
 

the size range of each class. This criterion applies to all
 

the annuli at the initial station, and for all pubsequent
 

stations which are computed during the development of the flow
 

field.
 

The boundary conditions currently employed incorporate
 

the assumption of no mass transfer through the wall and symmetry
 

of the flow field about the centerline. However, provision is
 

made to account for wall drag and heat transfer. In certain flows
 

the wall boundary layer will influence only a small part of the
 

bulk flow and a detailed wall boundary layer treatment is not
 

required. An examination of some relevant experimental data,
 

reference 10 (velocity profiles across the duct), shows that
 

the details of the wall boundary layer are not a dqminant influence
 

on the development of the bulk flow field. Thus, in the present
 

analysis the gross effects of the wall boundary layer are included
 

without resorting to detail. Hence,instead of specifying u = 0,
 

the velocity wall boundary condition is based on a relation between
 

wall shear and velocity gradient in terms of either a skin
 

friction coefficient; or the direct specification of the shear
 

distribution.
 

The wall boundary condition on the total enthalpy may
 

be used to account for the affect of cooling the duct by means
 

such as regenerative cycling of the fuel. This is done by
 

explicitly specifying the wall temperature and computing the 

local enthalpy from it. Alternatively, the wall may be considered 

to be isoenergetic.
 

Wall Drag
 

In the present formulation the value of Cf or 7w must be
 

specified. This can be done in several ways. For example a mixing
 

chamber calculation can be performed assuming Cf=0. The wall
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property distributions thereby generated constitute the edge
 

conditions to be employed in an existing boundary layer calcu­

l&tion to determine the shear distribution rw . The mixing 

calculation is now repeated with the non-zero shear. If, in
 

fact, the shear is small and the total friction drag is
 

negligible compared to the influx of momentum, it would not
 

be necessary to-go beyond this first iterate. An alternative
 

approach involves a more empirical approach, where Cf is an
 

initially specified constant.
 

Now, Cf is a function of the local Reynolds number, Mach* 

number, wall and boundary layer edge temperatures as well as 

the pressure gradient. However, for sufficiently high Reynolds 

numbers and mild adverse pressure gradients, Cf is rather a 

weak function of x. Thus, for a preliminary assessment of 

the boundary layer effect a constant value of Cf would be adequate. 

For exampl6, based on a comparison with the experiments in 

Reference 10 , a value of Cf/2 = 1.5 x 1O 3 was found to give 

good agreement for a range of conditions characteristic of 

ejector ramjet type flows. It should be noted that the current 

version of the computer program requires specification of a 

constant value of Cf only.
 

Chamber Geometry 

To provide the versatility necessary for both analysis
 

of existing hardware and design of new hardware, either the
 

wall contour or the axial pressure distribution may be specified.
 

Thus, one may specify6
 

y = y (x) 

or
 

p p (x), 
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The unspecified variable becomes a dependent quantity, and
 

is given as part of the solution.
 

The solution technique is based upon an explicit finite
 

difference method and is detailed in References 6 and 7.- Some
 

.of the essential features are given in Appendix B.
 

Equilibrium Chemistry Models
 

In defining the chemical species to be considered as
 

part of a hydrocarbon-air equilibrium chemistry package,
 

attention was given to choosing species that would be repre­

sentative of those formed as the result of a pyrolysis or cracking
 

process which is of potential importance in a regenerative cycle
 

for cooling purposes. Thus, in addition to the species H, 0,
 

H20, 02, OH, CO, C02' and N2 , which are commonly considered as
 

typical of high temperature hydrocarbon combustion products,
 

CH4 , C2H2, C2H4, C2H6' C(g),and C (s) were included in the system.
 

In addition the numerical analysis was set up so that the
 

fuel specie could be chosen from among CH4' C2H2, C2H4 C2 6 ,
 , 


C3H8, C3H6, C4H8, C4HI0 , C6H6' and C9H20. It is felt that this
 

relatively small chemical system (of never more than sixteen species
 

at one time) is a representative equilibrium model of hydrocarbon
 

combustion processes at both low and high temperatures, and for
 

highly fuel rich as well as fuel lean mixtures.
 

The method of numerical solution is a standard technique
 

involving the minimization of Gibbs Free Energy by means of
 

"'the method steepest descent." Care was taken il the wtiting
 

of the computer program to construct a system which did not
 

require any but the most arbitrary initial guesses for the
 

chemical species.
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Typical results from flame temperature calculations are
 

shown in Figures 3 and 4.
 

In the course of developing the equilibrium chemistry
 

model, and coupling it to the mixing analysis, the usefulness of
 

simple complete combustion models become apparent.
 

The standard complete combustion model for a hydrocarbon­

oxygen system is:
 

(0 uel leap
ue la
 c
CnHm .+ P02 - nC02 + m/2 H20 + 2., 


{CnI-fuel rich
 

Obviously, this model ignores the effects of dissociation.
 

For fuel-lean mixtures with flame temperatures less than
 

2500°K this simple model is an acceptable approximation to
 

the equilibrium composition. For fuel-rich mixtures the above
 

model is not as patisfactory; since CO and C(s) are present
 

in.significant amounts at equilibrium. A study of -hydrocarbon­

air equilibrium compositions tabulated in Reference 11 indicated
 

that it would be possible to formulate,a simple, algebraic.
 

fuel-4ich "quasi-compjete combustion" model by using three
 

distinct regions of fuel/air ratios.
 

This type of simple, approximate equilibrium model is of
 

interest, since in performing a typical combustion system multi­

dimensional turbulent flow field calculation using a digital
 

computer, most of-the computer running time is usually spent
 

performing the chemistry calculation. This is true even when an
 

equilibrium chemistry model rather than a finite-rate chemistry
 

model is employed. For many applications the chemistry effects
 

are of prime importance and must be modelled to as high a degree
 

of accuracy as possible.
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However in making preliminary design studies for a
 

proposed propulsion system; it is always-desirable to investi­

gate the extremes of no burning ("frozen chemistry") and maximum
 

burning ("complete combustion chemistry"). Thus it was decided
 

to attempt to develop "quasi-complete combustion" models that
 

would be appropriate for fuel-rich as well as fuel lean mixtures.
 

The first attempt to formulate the model is shown in Figure 5.
 

This model yields flame temperatures that are only slightly above
 

that at true equilibrium. However, the representation of the
 

relative amounts of the major chemical species in zones A and B
 

was not very realistic for most combinations of pressure and initial
 

mixture temperature. This led to a revision-of zones A and B,
 

resulting in the model shown in Figure'6. In particular, the
 

entire spectrum of equivalence ratios is modeled by four distinct
 

regimes defined according to the fuel-to-oxygen atom ratio.
 

In'this lean regime complete oxidation of the fuel forming 

CO2 and H20 is assumed. The upper limit for this regime is 

the stoichiometric point where the atom balance is given by: 

_ + 2y Y_H c 0 

where Y's are the atom concentrations. In terms of element mass
 

fractions this relationship is given by:.
 

- + = 2lWH2 +2w02Wc WO 

Accordingly, the lean regime is defined within the limits:
 

- a
 

W02 WH2 Wc
 

2 a
 

12
 



and the-specie mass fractions are given by:
 

(X2
 

wc 2 

2H2 2c
 

2'. 2- Wll- Wc 2 

It is noted that the lean regime is represented ty the standard
 

complete combustiqn relationships.
 

In the fuel rich side it is observed that CO appears in
 

substantial quantities and depending upon the degree of richness
 

free hydrogen and finally solid carbon show up.
 

In zone A of Figure 6, it is found that the molar coicen­

tration of water is essentially constant and that carbon -is
 

oxidized to CO2 and CO. This dbmain is bounded by tfie limits:
 

2aO 

WH2 Wc W2 Wc
 
a% aH OH2 a 

wherein the species mass fractions are given by:
 

yH2 WH2 0 
all 0= 

2. WH2
 

a•e "Y02 "H2
 
OCO --WCO [2( - _o- ) + 2
 

(02 2c -H2

&CO2 WCO - - 2
 

Wc 
 W
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For a CnHm/02 system it is interesting to note that in zone A
 

the mole fraction of water vapor, YH20is 67% for olefins and
 

something greater than this for the paraffins depending upon,
 

the size of the fuel molecule. of course, the mass fraction,
 

aH2 0, varies over this zone according to the local molecular
 

weight of the products of combustion
 

In zone B free hydrogen begins to appear and'the mole
 

fraction of CO remains essentially constant. Hence, the bounds
 

are:
 

aYH 2 a 2 -a02_ 

WH2Wc WO2 Wc
 

and the species mass fractions are given by:
 

ca Wc 

ac ac 2y 02] 

& 

OH0 WE0 -2 W c
 

21 2 wO Wc
 

Here it is noted that the mole fraction of CO, YC0, is constant
 

at 33% for olefins and something less for the paraffin'series
 

in a C H /0 system.

n m 2
 
Finally in zone C the oxygen appears in CO only and free
 

carbon forms. The mole fraction of hydrogen is essentially
 

constant. This zone exists above the limit:
 

WO2 -Wc
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and the species mass fractions are given by:
 

UH = YH22 


wco
 
2 yO2 W 2
QCO = 


2 OWc
 
2
 

S 2w0 2
 

In this last regime, for a CnHm/02 system the mole fraction of 

hydrogen, YH2, is constant at 67% for olefins and something greater 

for paraffins again depending upon the molecular weight of the fuel 

This model, as shown in Figures 3 and 4, yields a flame temperature 

very near that of equilibrium except for mixtures very close to 

stoichiometric. in this -region, the flame temperatures are high 

enough so that chemical dissociation is significant and hence the 

'flame temperature of the complete combustion model is noticeably
 

higher than the flame temperature at true equilibrium.
 

It should be noted that methane (CH4) is a significant
 

equilibrium specie in very fuel rich regions (0/F < 1 or (n > 3)
 

for fuels such as kerosene (C9H20), and that at low temperatures
 

in highly fuel rich regions the original fuel specie is present
 

at equilibrium in significant amounts rather than being com­

pletely broken down into C (s) and H . In summary, the quasi­

complete combustion chemistry model is -not a substitute for an
 

equilibrium chemistry model. Instead, it is a useful approximate
 

model when employed in making parameter studies, or in applica­

tions where the details of the combustion process are of
 

secondary importance.
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Turbulent Transport Viscosity Models
 

In general, the initial mixing region is a free shear
 

layer and is bounded by the potential core on the inside and
 

the secondary stream on the outside. Initially, this mixing
 

region is essentially two-dimensional and the growth of the
 

mixing layer varies linearly with the streamwise coordinate.
 

In this region of the flow a Prandtl form for the eddy viscosity
 

was employed:
 
4 lbf-sec 

x 2
- + I x 10-4(
XPC=kIPe
 
pe' lej ut ft 

where kI is a constant and was determined by analysis of the
 

experiments in Reference 10'. It was found that a value of
 

k = 4 x 10 - 4 provides a good representation of the experiments
 

which were analyzed.
 

At the end of the potential core region the flow becomes
 

a fully developed turbulent flow and a different viscosity re­

presentation is required. In this region of the flow, the
 

model employed in Reference 12 was found to be adequate:
 

lbf-sec
 
x 10=- lr4P<X; =1 
 + %2r (Pu) ( ft2
 

where k2 is a constant and r1 is the "half radius" defined by
 

the location of the mean mass flux (pu) across the duct.
 

The value of k2 was found by working with experimental data
 

to be k = .018.
 

Since the analysis may also be used for investigating
 

free jet and plume problems, appropriate viscosity models
 

(described in References 7 and 13)have also been included in the
 

computer program. (Table II) .
 

Since finite-rate condensation and solid carbon are included
 

in the analysis, the question of to what degree the presence of
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a particulate phase will affect the mixing process, and the
 

eddy models used in describing it has been considerea. In
 

general, it can be expected that any particles present in the
 

flow field, whether they result from the formation of soot
 

in highly fuel-rich regions, or the condensation of water in
 

locally low temperature areas, will have diameters of the
 

order of 1 micron, or less. For particles this small, the
 

assumptions of thermal and dynamic equilibrium may be made.
 

Following References 14 and 15, the relation between the gaseous
 

and the mixture turbulent viscosities is
 

condensed j
 
___ __a 

tg 
 9g
 

where cp and Eg are the diffisivities of the particles and gas,
 

r-qoectively.
 

For micron sized particles
 

P
 

and hence,
 

+tga 1g
 

Thus, ILtg
 

t 
 C1­

and the local eddy viscosity may be computed by using the existing
 

gas phase models modified according to the above prescription.
 

Input formats for the various versions of the parabolic programs
 

are given in Appendix A.
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B_ 	 Hyperbolic and Mixed Hyperbolic/parabolic Flows in
 

Augmentation Chambers, Scramburners and Nozzles
 

There are a number of practical propulsion systems whose
 

internal flows cannot be adequately described by equations based
 

upon purely boundary layer considerations. Examples of such
 

systems include scramburners and composite engines where the
 

flow is either supersonic throughout or mixed supersonic/subsonic,
 

respectively, The work described in Section A was based upon
 

the treatment of flows described by parabolic equations and is
 

applicable to flows at Mach numbers in the range 0 < M < 0(2).
 

At higher Mach numbers disturbances will propagate through the 

flow and the assumption that the pressure is constant normal
 

to the local flow direction is no longer valid.
 

What is required for these flows is an analysis which
 

includes lateral pressure variations in addition to mixing
 

and combustion. In previous work a technique was developed for
 

the solution of the-viscid-inviscid equations for supersonic
 

flows, with mixing and combustion, c.f., References 9 and 16
 

Although that work considered only supersonic flows the solution
 

technique used there may be extended in a relatively straight 

forward manner to mixed flows. The solution technique involves 

a composite of hyperbolic and parabolic concepts. A characteristics 

calculation is performed across a step for the local pressure and
 

flow deflection. Then a diffusion/combustion calculation is
 

carried out within the step for velocity, temperature and species
 

concentrations. The characteristics calculation incorporates the
 

effects of diffusion and combustion in the compatibility
 

equations. This requires that the diffusion and combustion
 

effects be treated as part of the forcing function in the
 

compatibility equations. Therefore, there is a lag in the calcu­

lations over the step. This provides a mechanism for iterating,
 

,on say, the pressure by repeating the characteristics calculation
 

18
 



with an updated forcing function. This is done until the
 

pressure no longer,changes (to within a prescribed tolerance).
 

This has shown to be a feasible solution technique for free
 

and ducted flows with and without combustion in References 16
 

and 17.
 

Assuming, for th6 mixed flows of interest here,,that
 

diffusion is important only normal to the streamlines, or
 

primary flow direction, then, one need only bypass the characteristic
 

"leg", when performing the calculation within the low speed
 

-region of the flow. Thus, the flow field is considered to be
 

made.up 6f two regimes:
 

1. The high speed regime described by the generalized
 

equations-referred to as the Method of Characteristics
 

with Viscosity (MOCV), and
 

2. The moderate to low speed regime described by purely
 

parabolic equations.
 

This concept is 'shown in Figure 7.*
 

The equations and-solution procedure for the mixed flow
 

problem is described below. It should be noted, however, that
 

this formulation contains the pure supersonic flows as an
 

inherent subsystem. Referring to Figure 8, the describing
 

equations are:
 

Global Continuity
 

r
(pq)s +- +(i)sin@+pqn =0 
S r n 

s-Momentum
 

pq qs + Ps r rip (2)
on 'n
 

n-Momentum
 
2 

pq 0 + P = 0 (3) 
s n 

19
 



Species Continuity 

j Le 

pq(ax) = p*. + r AMr ( i) - (4) 
isr Pr n n
 

Energy
 
1 j1- 1 2 ,
 

p -r3 H ]+ (1--a (q /2) +
 
- Pr. n nr Pr n n
 

(5)
 

r 1 

where
 

H = a,.h. (T) + q2/2 (6) 
i 3 1 

- P 
 (7)
 

RT
 
21_ 1 

h i =h iyT) (8)
 

These equations are combined to yield two compatibility equations, 

rela~ing'changes in p and Q, 

dr + g (9) 

2
 

b += Tan G (10)
2
 
pq Tane
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2 
(l+r2)sin c - H)-

F 
[qn ,D.­

pq nn 
nO 

y n p 2q (ii) 

YCOS h.D. + DiRT F sin 
1 i p iw 

(12) 

D+-=U cosO 1 
pq n q y in q 

Equations 9 are solved along the two characteristics .respectively
 

inclined at the-angles ± Ek to the streamline direction. The
 

Ek are given by:
 

Tanl = F (13)
1,2 -v ¥ 2 F 1 F 

pq C--­
p p Pq 

where
 

dh. (T) 
F = T E o. (14)

i T dT 

and W. represents'the rate of production of the ith species as

.1 

a result of chemical reactions and is a known function of species
 

concentrations, temperature, and density.
 

Equations (l)-(8) comprise eight ecpations* for the eight 

dependent variables, p, p, T, H, h, q, 9, a.. Of the five 

partial differential equations, Equations (1) - (5), the two 

compatibility equations (Equation (9)) are used.in place of the 

global continuity and the normal momentum equations, and comprise 

the "hyperbolic" part of the system. Then the streamwise momentum, 

energy, and species continuity equations (Equations (2),(5),(4))
 

integrated along streamlines, comprise the "parabolic" part of
 

*For convenience we will refer to all the species continuity
 

equations as one equation.
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the system. They are solved by an explicit finite difference
 

procedure, as are the charicteristic compatibility equations.
 

Referring to Figure 9, the computational procedure is as follows:
 

Consider the solution to be known at some axial station x.
 

Then a characteristic mesh can be drawn, as sketched. Associated
 

with this mesh is a minimum range (Lx) of influence.
 

. First the compatibility equations are solved on the
 

characteristic mesh (with uneven axial spacing). Then, by
 

interpolations on p and 9, the ordinate, inclination, and
 

pressure at x + x of the streamlines originating at x are
 

determined. With the pressure gradient known, the parabolic
 

part of the system is solved in the sequence: streamwise
 

momentum, energy, and species continuity-


Since the parabolic equations are subject to a stability
 

limited step size which may be smaller than kx, several
 

"parabolic" steps may be taken for each characteristic step.
 

The solution of the subsonic (completely "parabolic") region
 

is obtained by deleting the characteristics solution from the
 

OCV computation. The normal pressure gradient in the subsonic
 

region is considered zero, i.e., Pn=O, and the streamwise
 

pressure gradient in that region is determined by matching
 

the -flow along the streamline, TA--,separating the two regions.
 

This is done by relating
 

(a) pressure - deflection from the supersonic side, and
 

(b) pressure - area change from the subsonic side.
 

The relationship between (a) and (b) is established by 

conservation of mass in the "parabolic" regime. Now, with 

reference to Figure lQ, the entire solution is known -at the 

axial station, x = xn . All the region below the right running 

characteristic ACX is computed, as usual, by the Method of 

Characteristics with Viscosity. The ordinate yB of the 

separating streamline, ESL, at xn+ 1 is given by 
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n+l n + n dsLy dx
 
Y = Y dx dx
 

x 
n 

where dyDsL/dx is replaced by some average value over the
 

interval so that w can numerically evaluate the integral. As
 

a first guess, we put (dy/dx) =dy/dx) along the SSL. Then,

DSL A 

by interpolating, we find the point D at x = x whose running 

characteristic hits the point (xn 1 'YB). With the value (initially 

guessed to be T ) for T* we can solve the compatibility equation
A . B 

alohg T to obtain po' the initial guess for the pressure at B. 

Since Pn = 0 above AB, we have the pressure in the entire parabolic 

region at xn+I. Now we solve the parabolic part of the system 

obtaining the solution for the entire subsonic region, including 

point B, at xn+I. The mass flow above A at xn must equal 

that above B at xn+l=xn + Ax. 'Thus, by inverting the usual 

mass flow integration, the ordinates of all the streamlines 

above B, including yF (the ordinate of the edge streamline _F) 

are determined. Finally from the specified wall geometry, 

Y= Yfs (Xn+l), a check is performed. In general, upon'comparing 

YF and yFS, we do not find agreement. At this point we 

iterate on rB , the separating streamline inclination at B 

(and, implicitly, on yB and pB) until yF=Y within some tolerance. 

As an example of the technique, a calculation was performed 

for an inviscid, non-reacting mixed flow. The initial.data 

consists of a supersonic core and a subsonic secondary. The 

upper wall is straight and parallel to the axis. The initial
 

lateral pressure, Mach number, and flow deflection distributions
 

*7 = dy/dx, is the streamline-slope. 
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(Figure 11) are specified to simulate typical flow conditions
 

somewhat downstream of the initial merging between an under­

expanded supersonic primary and a subsonic secondary. Then the
 

fibw downstream is computed, including the self-induced pressure
 

gradient along the upper wall, by the procedure discussed above.
 

Figure 12 shows the distributions of pressure, temperature,
 

density, and velocity in the "parabolic" regime, which in this
 

case is fully subsonic. The results are compared with "NASA
 

TR 1135". This comparison is made by entering into TR 1135
 

with the computed area distribution. The approach to the throat
 

is of interest in this type of flow, and Figure .13 shows that
 

the calculation procedure is able to approach close-to the sonic
 

point before it fails. Since no special treatment of the
 

transonic flow is included this failure is to be expected.
 

However, one can switch to a pressure specified mode- and
 

extrapolate through the choke point. In this case, the resulting
 

area variation will be consistent with the fixed initial
 

conditions. In general, one can use this procedure in conjunction
 

with an adjustment of initial conditions until the area required
 

to pass through the choke point is "essentially" equal to a
 

specified chamber area distribution.
 

Although the basic technique has been formulated and tested,
 

additional work is required. Inclusion of the chemical and
 

phase kinetics packages are needed and- constitutes part of
 

the current effort under the present NASA Contract NASS-21387.
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III. APPLICATIONS AND SUMMARY
 

A. Applications
 

To demonstrate the spectrum of problems which can
 

be described by the pure parabolic and MOCV analyses seyeral
 

examples are given below.
 

Rocket Motor Combustion Chamber
 

As an example of the type of flow fields that the parabolic
 

system is applicable to, a set of computations were made for
 

the Cornell Laboratoryethylene/oxygen (C2H4/02) rocket motor.
 

Themotor and the-operating conditions are shown in Figure 14
 

and three calculations were made for those given set of conditions.
 

The first two calculations were performed using the "quasi­

global" finite rate ccmbustionmodel previously reported in
 

References 6 and 8. These calculations were made assuming; (a)
 

chemical equilibrium-over the entire injector face, and (b)
 

equilibrium for the mid-ring, and unburnt reactants for the
 

central and outer rings; thus, the mid-ring served as an ignition
 

source. In the third case, the calculation was repeated using
 

the first quasi-complete combustion model discussed in Section
 

IIA. The purpose of performing these three calculations is
 

to demonstrate the effect of chemical and initial flow modelling
 

,on the predicted chamber flow field. A comparison of the
 

calculated exit conditions for the three configurations is shown
 

in Figures 15 through 18. It may be seen that there is good
 

agreement between-the complete combustion calculation and the
 

finite rate chemistry calculation assuming equilibrium for the
 

entire injector face. For this motor, this suggests that if
 

equilibrium was appropriate over the entire injector face then
 

equilibrium, or in particular, complete combustion is adequate
 

for predicting the flow-field throughout the combustion chamber.
 

However, the pilot ignition model gives a different result. This
 

is due to two effects which differentiate this case -rom the first
 

two calculations.
 

25
 



In the first place, the velocity profile across the
 

injector face is not the same because of the unreacted state
 

assumed for the central and outer streams. This difference
 

effects the mixing rate which is particularly evident in the
 

equivalence ratio profile at the end of the chamber, Figure 18.
 

The second difference is due to the ignition process which
 

involves the propagation of the flame through'the unburned
 

propellents as the flow field develops.
 

This result suggests the importance of proper modeling of
 

the initial conditions both fluid mechanically and chemically
 

and indicates the relevance of the ignition mechanism in terms
 

'of the downstream flow field structure.
 

Nozzle Recombination
 

The analysis described under Section IIB is applicable
 

to mixed, as well as pure supersonic flows. As an example
 

of the applicability of the MOCV program to ducted flows, a
 

study was made on an Atlas-Vernier rocket motor nozzle assuming
 

inviscid flow. The engine was burning ethyl alcohol/water/LOX
 

and the initial conditions at the-throat are given in Table I
 

and the nozzle contour is given by:
 

4.817 - '1 2 0 < x'1 1.0352 inches 

r= 
0.67688 + 0.2679 x; 1.0352 s x S 4.69 inches 

Where r is the nozzle radius, and x is the axial distance
 

measured from the throat. 

Two calculations-were performed starting from the same
 

equilibrium throat conditions. In the first the composition
 

was assumed chemically frozen at the thrbat values. The second
 

calculation considered finite rate recombination throughout
 

the expansion from the throat to the exit plane.
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Figures 19a and 19b show the center-line and wall velocity,
 

pressure, and temperature distributions down the nozzle. Figure
 

20b show the H-0 and OH mass fraction distributions down the 

nozzle. The chemical system includes, in addition, 0, H, 02, H 

CO, C0 2 , N2, C(S), and fuel but only the above two were shown.' 

The exit profiles of T, p, and q are shown in Figure 21. 

Special note should be made of the initial readjustment the
 

in concentrations and temperature due to the transition from
 

the specified eqilibrium initial conditions to the finite rate
 

kinetics calculation included in the MOCV. This is due'tooa
 

combination of the assumption of equilibrium at the throat, and
 

a possible mismatch in the equilibrium constants and the ratio
 

of forward to backward reaction rate constants.
 

Proceeding down the nozzle one notes in the wall distributions,
 

the effect of a change in wall slope at x = 1.0352 inches. The
 

downstream effect of this appears to be essentially smeared
 

out as indicated in the centerline distributions.
 

B. 	 Summary
 

Analyses for-the description of various combustion­

chamber and nozzle flows havd been developed.
 

A parabolic analysis for low speed combutor including
 

rocket motors is presented which includes coupled mixing,
 

combustion and phase transition kinetics.
 

For applications involving mixed subsonid/supersonic
 

or pure supersonic flows an analysis is presented which couples
 

mixing, combustion, and lateral, as well as axial pressure
 

variations. This analysis can treat scramburners, augmentation
 

chambers and nozzles.
 

Examples -of calculations are pr6sented for a rocket
 

combustion chamber and a nozzle recombination process.
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The rocket motor study shows the potential value of complete
 

combustion models for making rapid preliminary calculations. In
 

addition, the results for the particular pilot ignition model using
 

a kinetics mechanism shows the importance of proper modelling
 

for the ignition process.
 

The nozzle recombination calculations demonstrate the capability
 

to compute the throat to exit plane flow field using a single
 

program which includes kinetics (and mixing) throughout. "Freezing"
 

points are not a required input but rather are predicted as a
 

natural consequence of the kinetics mechanism which is employed.
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APPENDIX A 

INPUT FORMATS FOR PARABOLIC PROGRAMS WITH 

EQUILIBRIUM AND QUASI-COMPLETE COMBUSTION MODELS
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DECK 7C
 

INPUT FORMAT FOR A FREE OR DUCTED FINiTE DIFFERENCE MIXING
 
PROGRAM WITH HYDROCARBON-AIR TWO-PHASE EQUILIBRIUM CHEMISTRY
 

,CARD COLUMN FORMT DESCRIPTION 

2-80 20A4 Title card; will be printed on every page of 
output 

2 1-5 
6-10 

I5 Number of 4 grid points (M) (: 50) at initial x 
Number of 4 grid points at x = 0 after grid 
size is halved ( 25) " 

,i-15 Number of first viscosity model (from 1 to 8) 
16-20 Number of second viscosity model, if any 

.21-25 input 0 
1 

- Axisymmetric coordinates used 
- Plane two-dimensional 

26-30 
Sinput0 - Isoenergetic wall boundary condition 

1 - Wall temperature (OK) specified 

0 - Free jet problem with static pressure 

prescribed 
.31-35 input 1 - Ducted problem with static pressure 

prescribed 
2 - Ducted problem with wall radius 

prescribed 

36-40 & 0 is a printout dump for mixing process 
41-45 Used only with ducted, wall radius prescribed 

case. Input F 0 adds refinement to pressure
interation process­

'46-50 0 ­ no printout dump from equilibrium chemistry 
1 - some printout dump,from equilibrium chemistry 
2 - ample printout dump from equilibrium chemistry 
3 - overwhelming printout'dump from equilibrium 

chemistry. 

51-55 This input specifies the hydrocarbon that will be 
considered to be the fuel. 

Input Fuel Input Fuel 
11 CH4 16 C3H6 
12 C2H2 17 C4 H8 
13 C2H4 18 C4HI0 

14 C2H 6 19 C6 H6 

15 C3H8 20 C9H20 
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DECK 	7C (Contd)
 

56-60 0 - Constant pressure/temperature
 
equilibrium calculation is per­

formed for input profile data.
 
Input 1 - Constant pressure/ enthalpy


equilibrium calculation is per­

formed for input profile data.
 
3 	 1-10 El0.8 Printout interval (feet)
 

11-20 Maximum axial distance (feet)
 
21-30 Initial axial location (feet)
 
31-40 Wall 	temperature (OK) - only if .sp6cified above 

4 	 1-10 E10.8 Lewis Number
 
11-20 Prandtl Number i 
21-30 " . 
31-40 	 XMPS; bx= Ax/XMPS 
41-50 	 6* initial in viscosity models 7 and 8 

(appropriate to plume problems) (feet)
 
51-60 *1; magnitude of lowest grid point
 

5 	 11-20 (a) dxx in model 1 (linear buildup of viscosity)
dx 3 
(ibf-sec/ft
 

(b) 	Value of g in model 6 (constant viscosity)
 
(lbf-sec/ft2)
 

(c) 	68 nitial if model 7 or 8 is used as second
 

viscosity model (feet)
 
21-30 (a) Endpoint (x) of model l(feet)
 

(b) 	Initial jet width in model 5(potential
 
core model) (feet)
 

61-70 Standard width (feet) for printout purposes
 

6 1-10 	 Initial wall radius (feet) for pressure pre­
scribed case, or initial pressure (lbf/ft2 )
 
for wall radius prescribed case.
 

11-20 
 Xl1 
 End points (feet) of pressure or wall
 
x2 	 radius polynomials
 
x3
 

7 	 1-10 a1
 

a
2	 

First pressure (lbf/ft2 ) or wall radius
 

(ft) polynomial
a3 

a4 F1 (x)=a1 +a2 (x-x*) + ...+a6 (x-x*)
 

a 5 

a6
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DECK 7C (Contd)
 

8 1-70 E10.8 Second -Por Yw polynomial
 

9 1-70 	 Third P or yw polynomial 

10 	 1-70 Fourth P or yw polynomial 

lla 	 1-10 E10.8 T(OI ) 

11-20 T(O2 

61-70 	 T(@ 7 ) 

lellb 	 1-10 T((8) Initial static temperature profile (0K)K 

11-20 	 T(O9) 

12a 	 1-10 E10.8 U(1 ) 

61-70 UN47 ) Initial velocity profile (feet/second) 

12b 1-10 U(08 ) 

S( M 

13Aa 1-10 E10.8 a H 
11-20 a 0
 
21-30 a
 

H20
 
31-40 a! Species mass fractions at Three
 

41-50 	 a cards are inputted for each grid point.
 
02 

51-60 	 OH
 

61-70 a Co 

13Ab 	 1-10 aCo2 

11-20 	 ax 

21-30 	 a C(gas) 

31-40 	 a 4 
41-50 	 aa 

51-60 	 aC2H4 -34. 



DECK 7C (Contd) 

I3Ab 61-70 E1O.8 aC2H6 Species mass fractions at 

13Ac 1-10 U H (Fuel) Three cards are inputted for 
CN M each grid point. 

11-20 C(solid) 

13Bc Mass fractions at @2 

13Ma Mass fractions at OM 
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Input Format for a Free or Ducted Finite Difference Mixing Program
 
with Hydro6arbon-Air Two-Phase Quasi-Complete Combustion Chemistry
 
with Finite Rate Condensation of Water or Carbon Dioxide.
 

Card Card Column Format Description
 

1 2-72 12A6 Title card; will be printed on every
 
page of output
 

2 1-5 15 Number of P grid points(M) (! 50) at
 
initial x
 

6-10 Number of 0 grid points to be retained
 
after grid size is halved ( 25)
 

11-15 Number of first viscosity model used
 
(from 1 to 8)
 

16-20 Number of second viscosity model used
 
if any. 

21-25 In 0 - Axisymmetric coordinates used
Input 

l - Plane 2-Dimensional coordinates 
26-30 " Input /0 - Isoenergetic wall boundary cond. 

1l- Wall temperature is an input
 
'31-35 0 - free jet problem with static
 

pressure prescribed.
 
Input 1 - Ducted problem with static
 

pressure prescribed
 
2 - Ducted problem wih wall
 

radius prescribed. 

36-40 # 0 is a printout dump for mixing process. 
41-45 V 0 is a printout dump for condensation 

process.
 
46-50 Number of condensation model used
 

(from 1 to 6)
 
51-55 0 - Condensed particles not
 

initially present
 

Input 1 - Condensed particles initialW
 
present;
 
Must input mass fractions and
 
radii
 

56-60 0- Condensate considered to be
 
Input C0 2 

i - Condensate considered to be
 
H2 0
 

3 1-10 EIO.8 Printout interval (feet)
 
11-20 Maximum axial distance (feet)
 
21-30 Initial axial location (feet)
 
31-40 n ( atom numbers in chemical species that
 
41-50 m is considered as the fuel: CnHm
 

51-60 Wall temperature (OK), if specified.
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Card Card Column Format 	 Description
 

4 	 1-10 El0.8 Lewis Number
 
11-20 Prandtl Number
 
21-30 A
 
31-40 XMPS ;A/XMPS
 
41-50 6* initial in viscosity models 7 & 8
 

(appropriate to plume problems) (feet)
 
51-60 01; magnitude of lowest grid point
 

5,6,7 	 Three cards with thermodynamic data for the specific fuel,
 
CnHm, being used.
 

8 	 1-10 El0.8 R1
 

11-20 	 R2
 

21-30 
 3
 

31-40 
 4
 

41-50 	 R5
 

51-60 	 RR6 Upper limits (feet) of condensate
 

droplet radius permitted in each
 
61-707 of the ten classes of droplets.
 

9 1-10 R8
 

1120 	 R9 

21-30 	 RI0
 

10 	 11-20 (a)MA in model 1 (linear buildup of
 
viscosity) (lbf-sec/ft3 )
 

(b) Value of A in model 6 (constant
 
viscosity) (lbf-sec/ft

2 )
 

(d) O*initial if model 7 or 8 is used
 

as second viscosity model (feet)
 
21-30 (a) Endpoint (x) of model 1 (feet)
 

(b) Initial jet width in model 5 (potential
 
core model) (feet)
 

61-70 Standard configuration width (feet)
 

11 1-10 Initial wall radius (feet) for pressure
 
prescribed case, or initial pressure
 
(lbf/ft2 )
 

11-20 X1
 

21-30 	 X2 End points (feet) of pressure
 

x3 or 	wall radius polynomials
31-40 
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Card Card Column Format Description 

1-10 El0.8 a1 
11-20 a2 

21-30 a3 First pressure (lbf/ft2 or wall 
31-40 
21-30 

a 
4 

radius (ft) polynomial 
Fisarsur lf/t rwl 

41-50 a5 F1 (x)=a1 +a2 (x-x*) +...+a 6 (x-x*)
5 

51-60 a 6 

61-70 x* 

13 1-70 Second P or yw polynomial 

14 1-70 Third P or yw polynomial 

15 1-70 Fourth P or yw polynomial 

l6a 1-10 T 

11-20 T(* 2 ) Initial static temperature 

--61-70 T (P7 
profile (OK) 

l6b 1-10 T () 

11-20 T 9) 

17a 1-10 U(V-1 

-- U(0 7) Initial velocity profile 

17b 1-10 U(48 ) (feet/second) 

U(*M)J 

18Aa 1-10 aL 

11-20
1-20 a0

a0 Mixture species mass fraction at V' 
H 20 Two cards are input for each 

31-40 a grid point. 

•41-50 H2a02 
51-60 

61-70 

0 

aCo 9 
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Card Card Column Format Description 

18Ab 1-10 E10.8 ac02 

11-20 & C H Mixture species mass fractions 

21-30 2 Two cards are input for each 

31-40. 1-50 " 2 grid point
Solid C, E 

41-50 "Condensate 
(CO2 or H2 0.J 

1iBa Mass fractions at qP­
2
18Bb 


18Ma Mass fractions at
 
18Mb
 

If, condensate droplets exist at the initial starting
 
point of the computation, the initial mass fraction and
 
particle radius must be given below for each of the
 

19Aa 

ten classes of particles. 

1-10 El0.8 a1 

11-20 a 2 

21-30 3 

31-40 U4 

41-50 a5 

51-60 aa 

61-70 7 

2 

19Ab 1-10 

11-20 

21-30 

a8 

a9 

31-40 

41-50 

51-60 

61-70 

r1 

r2 

r3 

r4 

19AC 1-10 

11-20 

21-30 

r5 

r6 

r7 

31-40 1r 

39-

Mixture mass fraction of
 

condensate (C02 or H2 0) in
 

each category at V1.
 

Radius (ft) of condensate droplets
 

in each category at
 



Deck 9 (concld) 

Card Card Column Format Description 

19Ac 41-50 

51-60 

E10.8 r9 \Radius (ft) of condensate droplets 
in each category at i 

10 

19Ba 

19Bb 

19Bc 

Category mass fractions and radii at 22 

19Ma 
19Mb 

19Mc 

Category mass fractions and radii at *4 
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APPENDIX B, 

SOME FEATURES OF THE FINITE DIFFERENCE SOLUTION OF THE 

PARABOLIC EQUATIONS 

The solution of the parabolic system has been obtained 

employing an explicit finite difference technique (Refs- 6 & 7). 

The finite difference formulation for the calculation of the 

flow at the point (n+l, M) is obtained by using the following 

explicit difference relations where P is anyone of the three 

pertinent variables u, &; or H: 

P 
Lp_ 

oAX 

--l, -. 
P 

fl1 M (15) 

,n.+l n, (16) 

LTL j = nn,.-f 2n.-l. (17) 

wher e P 2N(1 

b [bn,M + bn,Mn . (19) 

= M (A 'P) 

Te conservation equations in difference form are: 

Elements: 

(j)n = )n, + (-a rP u ) - N Le t1Pr U ( =A (a ) Pr t _, L 3 

n+,0 no (A 'if) L t 

G- , -i 

nl 

(20) 

(21a) 
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__ 

IM$O: 

_ fLetb)
 
j n+l,+ n,M +MN 22+n ,k)C
-P 

Leb Letb 

Pr nM+I Pr n,M-jj) n,M (21b) 

Letb 

Pr t n,M- (jn,14-1 

Jth element mass fraction
 

(1+N) 2 &X I-Nu 
[(p)~n~[Un, - O 1 ­

Un+l O = +n, (At)2 [(pu) A-2 n,o nj n,o
O 


CdP) (22a) 
-p~~ (x) n+l 

=uX (b)nM+ un,1 M+1 -­

(22b)
 

-[bn,M+ + b UnM + bnM UnM -

AX ~dP)
-A~,(au) n,MMn dx n+l 

Enercv: 

+~lo (uHn2 ) no n,o ' n1 1 - n o, 

(23a)
+2
+ il 1 2 OSPr n',o 2 n n, . 

Le 
i1 tPr t n,o ( ri,,! -(inoi 
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M.90 

=n+lM & -tP nM+ n,M+I_. ) n,M+nM X 2+ (Pr 

b- + tn,_ Hn,_+([p _ UV+(-tn,M_ }n,M +Cp- b H t ) , + n'm+l-
Pr nM n Pr n,M- n,M-1 Cbrl-,p­~ 
I: •tt2 22 

- i(b[n) ,M+, + (b[l- nM + (bil-P- M 
nL+ Pr nIj 2tnM- P 

UM t te- 2­
2
 u
 

(,M+
.2 i+s Prt i)n,M+l­

Le-1 Le -1 
+ (bh - . 1 Ca­

i Pr n,- J
+ in,M+-

(23b)
+LB bh etl1 
Pri t 

Step Size Control
 

The step size in the explicit finite difference scheme is
 

controlled by a stability criterion and from studies of linear
 

parabolic partial differential equations there results the following
 

condition, Ref. 15:
 
+Prt _ 1 1N (A 0 " 

3 
Let _st (-24-).

(- b) + -- b)2 t n,M+3 Pr t n,'X-

Although the partial differential equations are non-linear, the
 

present explicit difference formulation resultsin a locally iinear
 

system and Equation 24 provides an estimate of the stable scen size.
 

The computer program has as an input an arbitrary fraction which can 

be chosen to cut the above step size in the event a stability problem
 

arises.
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TABLE I 

ATLAS VERNIER NOZZLE 

R(ft)- .068
 

x(ft) 0
 
m 2 1.008
 
P(#/ft ) 26.744
 

(fps) 2792.7
 

Mass Fractions
 

CO .24
 
02.33 
H 5.89-

H2 6.78
 
H20 .38543
0 2.23-2 

-
02 1.1
 
OH 2.3 

T( K) 3040.8.
 

T(°R) 5465
 

Molecular 23.075
 
Weight 

Note Initial condition (throat)
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TABLE II 

TURBULENT VISCOSITY MODELS CONTAINED IN PARABOLIC MIXING PROGRAM
 

COMMENTS
MODEL 	 FORM 


. This model is crude0 < x < k 
1 (k2 -10) + 10 and has been used to assess mixing rates in theDomain: 


k 3 	 potential core region of concentric jets. Model
 

5 is recommended.
 

2 6.211 x 10 - 4 	 Based on early work of Zakkay and has been 
used successfully for flame propagation studies
 

in high speed premixed fuel/oxidizer systems.
 

4
3 0.018r (Pu)-(nu)e + l0- Ferri model for fully developed unbounded two
 
stream mixing.
 

4 .01844(pu) 	 Zakkay model for fully developed mixing. Has
 
been used successfully for bounded and unbounded
 
flows.
 

5 4 x 10 px u -u + 10 	 Domain: 0 < x < 12r.V -- 2-- - Potential core 
j 	 j 7pu)e 

model. Has been used successfully and it is re­
commended that it be coupled to Model 4.
 

6 k 2 	 Pure arbitrary constant - useful in developing
 

computer programs.
x+6*i -(uj('~]1-4 
7 C-%9- (pu) .±(pu) ]+)0Shear layer model accounting for initial

9 boundary effects.
 

8 .Ol(L(x)+6 ) (pu) -(Pu) +10-4 Same as model 7 but does not assume a linear 
Se 	 growth law for the mixing width. Here L(x) is
 

computed as the flow field is generated.
 

Units =lb-sec/ft2
 

L(x) local width of 	mixing region
 

half radius determined at (pu%'l = CPu4+(Pu)e
 
22 2
i
 

6t initial nozzle boundary layer displacement thickness
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FIGURE 1 - SCHEMATIC OF PROPULSION SYSTEMS 
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FIGURE 9 - COMPUTATION PROCEDURE
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FIGURE 14
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