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Gradient Techniques for Aerospace Applications

FINAL REPORT( *)

by

ANGELO MIELE

(A) Introduction

The object of this investigation is a contribution to the gradient techniques of

interest in optimization theory with particular regard to aerospace applications.

Typical mathematical areas are: (a) gradient methods for unconstrained variational

problems, (b) gradient methods with restoration of constraints, (c) memory gradient •

methods, (d) supermemory gradient methods, (e) gradient methods with bounded

control, (f) gradient methods-with bounded state, and (g) gradient methods with free

final time. The main analytical results, summarized in 6 reports and 3 articles (see

references) are described below.
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(D) Abstract of Reports

1. MIELE, A., Gradient Methods in Control Theory, Part 1, Ordinary Gradient

Method, Rice University, Aero -Astronautics Report No. 60, 1969.

Abstract. An analytical approach to the gradient method is presented within the

framework of Lhe Bolza problem of the calculus of variations. The first variation

is minimize(? subject to the linearized differential constraint and an isoperimetric

constraint on the control variation. Since the resulting Euler equations are linear,

the. differential system describing the optimum corrections is linear. The properties

of this system are studied, and the solutions are related to the stepsize a. Next,

the optimization of a is performed by minimizing the sum of the first variation and

the second variation; an analytical expression is derived for the optimum value of a.

Thus, the present method is a hybrid, in that the shape of the system of variations is

obtained from first-order considerations while the scale factor for the variations is

obtained from second-order considerations. Two numerical examples illustrating

the convergence properties of the algorithm are supplied.

2. MIELE, A., and PRITCHARD, R. E., Gradient Methods in Control Theory,

Part 2, Sequential Gradient-Restoration Algorithm, Rice University, Aero-

Astronautics Report No. 62, 1969,

Abstract. This paper considers the problem of minimizing a functional I which depends

on the state x(t), the control u(t), and a parameter m Here, I is a scalar, x an

n -vector, u an m -vector, and n a p -vector. At the initial point, the state x is pre -

scribed. At the final point, the state x and the parameter n are required to satisfy
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q scalar relations. Along the interval of integration, the state, the control, and

the parameter are required to satisfy n scalar differential equations. A sequential

algorithm composed of the alternate succession of gradient phases and restoration

phases is presented.

In the gradient phase, nominal functions x(t), u(t), n satisfying all the differential

equations and boundary conditions are assumed. Variations 6x(t), bu(t), Arr leading

to varied functions x(t), Qt), n are determined so that the value'of the functional is

decreased. These variations are obtained by minimizing the first-order change of

the functional subject to the linearized differential equations, the linearized boundary

conditions, and a quadratic constraint on the variations of the control and the parameter.

Since the constraints are satisfied only to first order during the gradient phase,

the functions z(t), u(t), n may violate the differential equations and/or the boundary

conditions. This being the case, a restoration phase is needed prior to starting the

next gradient phase. In this restoration phase, the functions x(t),u(t), n are assumed

to be the nominal functions. Variations hx(t), Au(t), On leading to varied functions x(t),

u(t), n consistent with all the differential equations and boundary conditions are

determined. These variations are obtained by requiring the least-square change of

the control and the parameter subject to the linearized differential equations and the

linearized boundary conditions. Of course, the restoration phase must be performed

iteratively until the cumulative error in the differential equations and boundary conditions

becomes smaller than some preselected value.

If the gradient stepsize is a, an order of magnitude analysis shows that the

gradient corrections are ex = O(a), to = O(a), On = O(a), while the restoration
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corrections are LR = O(a. ), Lu = O(a ), Arr= O(a ). Hence, for a sufficiently small,

the restoration phase preserves the descent property of the gradient phase: the

functional I decreases between any two successive restoration phases.

To obtain a reasonable convergence rate, the gradient stepsize a must be

determined in an optimal fashion. In this connection, two methods are presented:

one is based on information available at the end of the gradient phase and one is based

on information available at the end of the restoration phase.

3. DAMOULAKIS, J. N., Gradient Methods in Control Theory, Part 3, Sequential

Gradient-Restoration Algorithm: Numerical Example s, Rice University, Aero-

Astronautics Report No. 65, 1969.

Abstract. In Ref. 1, Miele and Pritchard developed the sequential gradient-restoration

algorithm for minimizing a functional subject to certain differential constraints and

boundary conditions. In this report, nine examples are presented, six pertaining

to the fixed-final-time case and three pertaining to the free-final-time case. The

numerical results show the rapid convergence characteristics of the sequential

gradient-restoration algorithm.

4. OAMOULAKIS, J. N., Gradient Methods in Control Theory, Part 4, Sequential

Gradient-Restoration Algorithm: Further Numerical Examples, Rice University,

Aero -Astronautics Report No. 67, 1970.

Abstract. In Ref. 1, Miele and Pritchard developed the sequential gradient-restoration

algorithm for minimizing a functional ' subject to certain differential constraints and

boundary conditions. In this report, four examples are presented, two pertaining to

the fixed-final-time case and two pertaining to the free-final-time case. The numerical

results show the rapid convergence characteristics of the sequential gradient-

restoration algorithm.
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5. DAMOULAX-S, J. N. , Gradient Methods in Control Theory, Part 5, Sequential

Gradient-Restoration Algorithm: Additional Numerical Examples, Rice University,

Aero-Astronautics Report No. 73, 1970.

Abstract. In Ref. 1, Miele and Pritchard developed the sequential gradient-restoration

algorithm for minimizing a functional subject to certain differential constraints and

boundary conditions. In order to reach a more complete understanding of the properties

of the sequential gradient-restoration algorithm, several modifications and extensions

are studied. These modifications and extensions are concerned with (i) the scheme

for updating the state, the control, and the parameter, (ii) the possibility of employing

an incomplete restoration phase at the end of each gradient phase, and (iii) the search

technique for the gradient stepsize. Several numerical examples are given.

6. MIELE, A., Gradient Methods in Control Theory, Part 6, Combined Gradient-

Restoration Algorithm, Rice University, Aero -Astronautics Report No. 74, 1970.

Abstract. This paper considers the problem of minimizing a functional I which depends

on the state x(t), the control u(t), and the parameter m Here, I is a scalar, x an

n-vector, u an m-vector, and rr a p-vector. At the initial point, the state x is prescribed.

At the final point, the state x and the parameter Tr are required to satisfy q scalar

relations. Along the interval of integration, the state, and the control, and the parameter

are required to satisfy n scalar differential equations. A combined gradient-restoration

al o^ rithm is presented: this is an iterative algorithm characterized by variations

ex(t), Du(t), Grr leading toward the minimal condition while simultaneously leading

toward constraint satisfaction. These variations are computed by minimizing the

first-order change of the functional subject to the linearized differential equations,

the linearized boundary conditions, and a quadratic constraint on the variations of the

control and the parameter. The resulting linear, two-point boundary-value problem
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is solved via the method of particular solutions. The descent properties of the algorithm

are studied, and schemes to determine the optimum stepsize are discussed.



6

9

(E) Abstract of Articles

7.	 MIELE, A., HUANG, H. Y., and HEIDEMAN, J. C., Sequential Gradient-

Restoration Algorithm for the Minimization of Constrained Functions: Ordinary_

and Conjugate Gradient Versions, Journal of Optimization Theory and Applications,

Vol. 4,. No. 4, 1969.

Abstract. The problem of minimizing a function f(x) subject to the constraint 4 x) = 0

is considered. Here, f is a scalar, x an n-vector, and cp a q-vector. A sequential

algorithm is presented, made up of the alternate succession of gradient phases and

restoration phases.

In the gradient phase, a nominal point x satisfying the constraint is assumed; a

displacement Ax leading from point x to a varied point y is determined such that the

value of the function is reduced. The determination of the displacement Ax incorporates

information at only point x for the ordinary gradient version of the method (Part 1) and

information at both points x and :R for the conjugate gradient version of the method

(Part 2). Here, x is the point preceding x.

In the restoration phase, a nominal point y not satisfying the constraint is assumed;

a displacement Ay leading from point y to a varied point z is determined such that the

constraint is restored to a prescribed degree of accuracy. The restoration is done

by requiring the least-square change of the coordinates.

If the stepsize a of the gradient phase is of O(e), then 6x = O(e) and By = 0(e2).

For a sufficiently small, the restoration phase preserves the descent property of the

gradient phase: the function f decreases between any two successive restoration phases.

The ordinary gradient version of the algorithm exhibits asymptotic convergence

but not	 quadratic convergence. On the other hand, the conjugate gradient version
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exhibits quadratic convergence in the neighborhood of the minimum point. In

particular, for a quadratic function subject to a linear constraint, the minimum point

is obtained in no more than n-q iterations.

8.	 MIELE, A., PRIT,CHARD, R. E., and DAMOULAKIS, J. N., Sequential Gradient-

Restoration Algorithm for Optimal Control Problems, Journal of Optimization

Theory and Applications, Vol. 5, No. 4, 1970.

Abstract. This paper considers the problem of minimizing a functional I which depends

on the state x(t), the control u(t), and a parameter TT. Here, I is a scalar, x an n-vector,

u an m-vector, and rr a p-vector. At the initial point, the state is prescribed. At

the final point, the state x and the parameter rr are required to satisfy q scalar relations.

Along the interval of integration, the state, the control, and the parameter are required

to satisfy n scalar differential equations. A sequential algorithm composed of the

alternate succession of gradient phases and restoration phases is presented.

In the gradient phase, nominal functions x(t), u(t), rr satisfying all the diffL rential

equations and boundary conditions are assumed. Variations A*t), bu(t), Orr leading to

varied function R(t), Qt), n are determined so that the val-e of the functional is decreased.

These variations are obtained by minimizing the first-order change of the functional

subject to the linearized differential equations, the linearized boundary conditions, and

a quadratic constraint on the variations of the control and the parameter.

Since the constraints are satisfied only to first order during the gradient phase,

the functions u(t) u(t), n may violate the differential equations and/or the boundary

conditions. This being the case, a restoration phase is needed prior to starting the

next gradient phase. In this restoration phase, the functions x(t), u(t), ft are assumed
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to be the nominal functions. Variations bk(t), M(t), Air leading to varied functions

x(t), u(t), n consistent with all the differential equations and boundary conditions are

determined. These variations are obtained by requiring the least-square change of

the control and the parameter subject to the linearized differential equations and the

linearized boundary conditions. Of course, the restoration phase must bc: performed

iteratively until the cumulative error in the differential equations and boundary conditions

becomes smaller than some preselected value.

If the gradient stepsize is a, an order of magnitude analysis shows that the

gradient corrections are Ax = O(a), du = O(a), &T = O(a), while the restoration corrections

are tic= O(a 2), Lu = O(a2), NfT= O(a)). Hence, for a sufficiently small, the restoration

phase preserves the descent property of the gradient phase: the functional I decreases

between any two successive restoration phases.

Several examples are presented for both ttre fixed-final-time case and the

free-final-time case. The numerical results show the rapid convergence characteristics
3

of the sequential gradient-restoration algorithm.

9.	 MIELE, A., Recent Advances on Gradient Methods in Control Theory, Paper
s

Presented at the 22nd Annual Southwestern IEEE Conference and Exhibition,

Dallas, Texas, 1970.

Abstract. This lecture summarizes recent work performed at Rice University under the

sponsorship of the NASA-Manned Spacecraft Center. The problem considered is that of

minimizing a functional I which depends on the state x(t), the control u(t), ai:,'. the

parameter n. Here, I is a scalar, x an n-victor, u an m-vector, and n a p-vector.

At the initial point, the state is prescribed. At the final point, the state x and the

parameter n are required to satisfy q scalar relatinus. Along the interval of integration,
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the state, the control, and the parameter are required to satisfy n scalar differential

equations. Two algorithms have been developed: (a) the sequential gradient-restoration

algorithm and (b) the combined gradient-restoration algorithm.

(a) Sequential gradient-restoration algorithm. This algorithm is composed of the

alternate succession of gradient phases and restoration phases. This sequential algorithm

is constructed in such a way that the differential equations and boundary conditions are

satisfied at the end of each iteration, that is, at the end of a complete gradient-

restoration phase; hence, the value of the functional at the end of one iteration is

comparable with the value of the functional at the end of any other iteration.

In the gradient phase, - nominal functions x(t), u(t), rr satisfying all the differential

equations and boundary conditions are assumed. Variations Lx(t), ©u(t), A17 leading

to varied functions Xt), u(t), n are determined so that the value of the functional is

decreased. These variations are obtained by minimizing the first-order change of

the functional subject to the linearized differential equations, the linearized boundary

cor.:itions, and a quadratic constraint on the variations of the control parameter.

Since the constraints are satisfied only to first order during the gradient phase,

the functions z(t), u(t), n may violate the differential equations and/or the boundary

conditions. This being the case, a restoration phase is needed prior to starting the

next gradient phase. In this restoration phase, the functions x(t), u(t), n are assumed

to be the nominal functions. Variations Axk(t), AU, An leading to varied functions x(t),

u(t), n consistent with all the differential equations and boundary conditions are

determined. These variations are obtained by requiring the least-square change of the

control and the parameter subject to the linearized differential equations and the linearized

boundary conditions. Of course, the restoration phase must be performed iteratively
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until the cumulative error in the differential equations and boundary conditions

becomes smaller than some preselected value.

If the gradient stepsize is % an order to magnitude analysis shows taht the gradient

corrections are do = 0(a), to = O(a), Lrr= O(a), while the restoration corrections are

rK = O(a2), to = O(a 2), fin = O(a). Hence, for a sufficiently small, the restoration .

phase preserves the descent property of the gradient phase: the functional I decreases

between any two successive restoration phases.

Methods to determine the gradient stepsize in an optimal fashion are discussed.

Examples are presented for both the fixed-final-time case and the free-final-time case.

The numerical results show the rapid convergence characteristics of the sequential

gradient-restoration algorithm.

(b) Combined gradient-restoration algorithm. In this algorithm, the gradient phase

and the restoration phase are joined together in a single phase. Nominal functions

x(t), u(t), n not satisfying all the differential equations and boundary conditions are

assumed. Variations Ax(t), ou(t), An leading to varied functions X(t), u(t), ff are

determined by minimizing the first-order change of the functional subject to the linearized

differential equations, the linearized boundary conditions, and a quadratic constraint

on the variations of the control and the parameter. The descent properties of the

j	 algorithm are studied, and schemes to determine the optimum stepsize are discussed.

Examples are presented for both the fixed-final-time case and the free-final-time case.

(c) Integration technique. In the sequential gradient-restoration algorithm, both

the gradient phase and the restoration phase require the solution of a linear, two-point

boundary value problem. In the combined gradient-restoration algorithm, the joint
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gradient-restoration phase also requires the solution of a linear, two-point boundary

value problem. The technique employed is the recently discovered method of particular

solutions. It consists of combining linearly q + 1 particular solutions of the nonhomo-

geneous differential system. This linear combination satisfies the differential equations

and the initial conditions if the constants are such that their sum is one. This and the

q final c&ditions yield a set of q + 1 scalar equations determining the q + 1 constants

of the combination.
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