Westinghouse Electric Corporation

Semiconductor Division
Youngwood, Pennsylvania 15697

Prepared by:

Donald F. Stoneburner and Herbert E. Ferree

This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the National Aeronautics and Space Administration under Contract NAS7-100.

TABLE OF CONTENTS

Page No.
INTRODUCTION 3
I. MECHANICAL DESIGN MODIFICATIONS 4
A. PROBLEMS DISCOVERED 4
B. ASSEMBLY MODIFICATIONS 4
II. PROCESSING 11
III. TEST RESULTS 12
APPENDIX 37

INTRODUCTION

Westinghouse Electric Corporation, under Jet Propulsion Laboratory Contract JPL-952309, has made 35 unusually low saturation voltage silicon power transistors. The prime goal was a tight grouping at $100^{\circ} \mathrm{C}$ of $\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}$ about 0.100 volts. This goal has been met. In addition to the development work in silicon processing needed to achieve this goal, a considerable mechanical redesign was also done to eliminate an instability in saturation voltage. This was caused by the cracking of a silver plated contact within the hermetic seal of the devices themselves. The plating has been eliminated and the units are now completely stable. In this report, test data is presented and discussed as well as factors leading to the final design and assembly of the units provided.

I. MECHANICAL DESIGN MODIFICATIONS

A. PROBLEMS DISCOVERED

Initially it was assumed that the transistor Pow-R-Disc ${ }^{\text {(T) }}$ design and the dual transistor assembly could be used as shosn in Figs. 1 and 3 of the final report, May 1969, for Contract No. JPLe952309. It was known that increases in $V_{C E}$ (sat) had been noted when assemblies were stored at $145^{\circ} \mathrm{C}$; however, it appeared that this might be due to simple relaxation of the contact force which could be corrected either by retightening or by modifying the assembiy procedure.

More detailed investigation revealed that there was bending in the heat sink contact area and there was a situation of double and conflicting constraint in the alignment of the top bus bar contacts. After correcting these items, the $\mathrm{V}_{\mathrm{CE}}(\mathrm{sat})$ was improved, but an increase was still noted after storing at $145^{\circ} \mathrm{C}$. on cutting open Pow-R-Disc packages, it was found that the thinner contact discs (10 -mil Teflon) were cracleing the silver plating at the edge of the disc. This problem was solved by using a contact design similar to that used on stud-mounted production units. An even lower $V_{C E}$ (sat) was the result and no rise due to 145° storage was noted.

B. ASSEMELY MODIFICATIONS

The prior design is shown in Fig. 1 from Contract JPL-952309. Referring to this sketch, the alignment grooves in Item 4, the top compression bar, served two purposes. They decreased the assembly thickness by the depth of the groove and they determined the lateral location of the dowel pins. However, the grooves in (2), the emitter contact
bar, cannot be spaced exactly the same as those in (4), especially since the spacing changes very slightly as (4) bends with loading. Since the grooves in (4) were deeper and held the dowel pin firmly, this resulted in the pin contacting (2) only on the side of at least one groove causing a very unbalanced situation.

The grooves in (2) could aerve the more important function in distributing the force to the soft copper bar to avoid indentation and bending. Lateral location of the dowel pins could be accomplished by care during assembly. With the upper grooves eliminated, the dowel pins became free to align themselves in the grooves of (2). This change assured more uniform application of force to the emitters, thus obtaining more uniform contact and lower $V_{C E(s a t)}{ }^{*}$

It was desirable to determine the actual contact force being applied in the assemblies. This was made possible by calibrating Item 4 with a force gauge. Using the resulting force vs. deflection data, it was possible to determine the contact force in an assembly. It was found that the force determined in this manner varied as much as 30% and using the specified torque and the contact force tended to be considerably more than predicted.

Even allowing for the increased mounting force, it was noted that (10), the support plate, was also deflecting more than originally predicted. This meant that the force was not uniformly distributed on the collector side of the devices because of bending in the heat sink (9) and the collector contact bar (6) as well as (10). Doubling the thickness of (10) could reduce the stress to about one fourth of the previous value and the deflection should be even less proportionately than this since relaxation (a form of creep) should no. longer occur at the lower stress.

The special bolt (15) and nut (16) in Sketch A335616 seemed to fit too tightly with other parts during assembly, and it was feared that the resultant friction was causing insccuracy in determining the loading force. It appeared the fits could be less tight with no detriment to the assembly and a standard boit, nut, and waigher could be used. At the same time, the insulator (13) could be improved by lengthening it to cover more of the bolt between the flanges of the flat packages. Also, this insulator made of PTFE Teflon (R) can now serve to align the springs (14), washer (12), and mica (11).

The new arrangement is shown in Fig. 2, Sketch A335291, attached. The bolt is shown $21 / 4^{\prime \prime}$ long, but it is apparent that it could be shortened. The previous bolt was $17 / 8^{\prime \prime}$ long. A bolt length of $2.0^{\prime \prime}$ was tried and found to be just right.

Other changes included going to high quality nickel plating on contacts instead of gold plating since recent experience indicated that gold plating was povous, and some evidence of gubsurface corrosion was observed in parts which were gold plated.

A common thermal compound was tried on some of the first assemblies prepared according to the final design. It was found to be sufficiently viscous that a notable change in contact force was observed due to the grease flowing for a considerable time after assembly. Since heat transfer was not a significant problem in this assembly, the thermal grease was omitted in the rest of the assemblies.

The final assembly appears to be adequately stable mechanically, and the electrical data shows that it is also stable electrically.

You can be sure if it's westinghouse

(1) Flat Package 1401
(2) Emftter Contact Bar
(3) Dowe 1^{-1} Fin Aligner
(4) Top Compression Bar
(5) Collector Contact Bar
(6) Top Fin Limit
(7) Collector Contact Are
(8) Bottom Fin Limit
(9) Heat Sink
(10) Support Plate
(11) Mica Insulation
(12) Compression Washer
(13) Insulator
(14) Belleville Springs
(15) Compression Bolt
(16) Compression Nut

II. PROCESSING

The transistor chips were fabricated by the single-diffused process similar to that developed on Contract No. JPL-951303. This process was developed to minimize the saturation voltage while maintaining other characteristics within contract specifications where at all possible. When limitations of the present state-of-the-art presented any comflicts, the goal of low saturation voltage was the primary consideration.

A number of improvements to normal single-diffused processing were made in order to meet contract requirements. These include special rinses, improved gas flow in the diffusion furnace, an additional photomasking step, and improved mounting techniques.

A change in the emitter contact design was necessary due to the difficulty experienced with cracking of the silver plated onto the Teflon, emitter contact disc. A contact similar to the type used in our stud-mounted devices was used with improvement of the stability of saturation voltage with temperature cycling. Other factors affecting this saturation voltage stability are discussed in the section of this report on mechanical assembly.

Due to the above change in the emitter contact within the welded Pơ-R-Discy open and 'the old style emitter contacts replaced. This resulted in the necespit ty of rewelding some seals with corresponding problems of leakagézif some of the "rewelded seals. This difficulty was the main contributing factor delaying shipping of the assemblies and also made selection of the best devices more difficult.

III．TEST RESULTS

Individual test data sheets are provided for each assembly．A total of 36 units were shipped and a data sheet is given for each assembly． However，unit 非135 is considered an extra assembly and is not included in further discussion of data or presentation of average or extreme values．Unit 非131 was tested for power rating and the thermocouples were left on for possible additional testing if so desired．The power test data is presented in two curves，one for the actual assembly tested and a second curve for a probable worst－case．

In addition to the test data sheets for each assembly，additional sheets give the average value and the range of test results for various characteristics．Graphs are also presented showing the dis－ tribution of each important parameter over its range of values，and the cumulative distribution of the number of assemblies with parameter values above or below any selected value．In these graphs，any units having values above the upper end of the scale are included in the last grouping．Thus，for example，the breakdown voltage grouping corres－ ponding to $95-100$ volts includes all units having breakdown voltages in excess of 100 volts．When the value of a parameter equals the value separating two groupings，the unit was counted as falling in the more favorable grouping．

With the exception of unit 非102，all units met or exceeded the speci－ fications for breakdown voltages and leakage currents．The test conditions for these parameters are indicated on the test data sheets for each assembly．

Due to the particular circuitry of the pulse gain tester used，it was impossible to check gain at 75 amps collector current and 1 volt $V_{C E}$ ．

At high currents and low voltage, the tester becomes unstable and the resultant "hunting" makes it impossible to take meaningful measurements. In a few cases this difficulty was also present at 2 volts. Gain measurements were made at collector-emitter voltages of 4,3 , and 2 volts and did not change appreciably over this range. Since the change with voltage is small and the gains measured at higher voltage are well above the specified value, there is no doubt whatsoever that all unfts would meet gain requirements at the specified collectoremitter voltage of 1 volt. The emitter-base voltages at these conditions were quite stable as indicated on the test data sheet showing the range of values.

The saturation voltages were measured under specified test conditions. Measurements at $100^{\circ} \mathrm{C}$ and at room temperature are shown. The distribution graphs show a very tight grouping of $V_{B E(s a t)}$ values well below the specified maximum at $100^{\circ} \mathrm{C}$. The collector-emitter saturation voltage ranged from 0.062 to 0.106 volts at room temperature and 0.074 to 0.156 volts at $100^{\circ} \mathrm{C}$. At the higher temperature, 17 units had values of 0.100 or less, 25 units had values of 0.120 or less, and 29 units had values of 0.140 volts or less. The difficulty with rewelding seals that had been opened, as described earlier, was a factor in not having more units with lower values.

It was not possible to make the switching time measurements at exactly the specified conditions of base current and temperature due to equipment limitations. Six units were used for evaluation of switching time and these six agreed well enough that it was felt unnecessary to test all units. One unit was tested at both room temperature and $100^{\circ} \mathrm{C}$ and data from this were used to calculate temperature correction factors. Correction factors for base current drive were calculated using equations from Phillips - "Transistor Engineering." The corrected
values are shown on the test data sheets for the assemblies measured. The range of total switching time for these units was 10.7 to 14.2 microseconds, with values for four of the six units falling between 11.4 and 11.8 microseconds. The average value was 11.9 microseconds. While it was expected to perform better in this area, the long switching times are a natural trade-off in the attempt to obtain low values of $\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}$. There exists a direct relationship between gain and $V_{C E}(s a t)$ with higher gain resulting in lower saturation voltage. There is also a relationship between gain and switching time and the decision to do both processing and selection of units to achieve high gain in order to lower the saturation voltage resulted in a less favorable switching time performance.

Final Caution

Low values of saturation voltage depend critically upon the residual resistances external to the silicon wafer as well as on the wafer itself. Those residual resistances are determined by the mechanical assembly. Do not attempt to disassemble the unit or to change the bolt torque. Minor changes in part strains and in seatings will cause $\mathrm{V}_{\mathrm{CE} \text { (sat) }}$ to rise.
high power, loin saturation voltage
SILICON SHITCHING TRANSISTOR
PER: JET PROPULSION LABORATORY
ENGINEERING NOTE NO. 342-015

average values

$\nabla_{\mathrm{CE}(\mathrm{sat})}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
v_{C E(\text { sat })}=.085 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{\mathrm{C}}=75 \mathrm{~A}\right)
$$

$$
\nabla_{B E(\text { sat })}=.84 Z V \quad\left(I_{B}=5 A, I_{C}=75 \mathrm{~A}\right)
$$

$$
\text { Gain } 125,168,170\left(I_{C}=75 \mathrm{~A}, \mathrm{v}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
$$

$\mathrm{V}_{\mathrm{BE}}=, 730 \mathrm{~V}, .732 \mathrm{v}, 736 \mathrm{~V} \quad\left(\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)$
$V_{C E(s a t)}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{array}{ll}
v_{C E(\text { sat })}=\frac{.108}{} V & \left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
\nabla_{B E(\text { sat })}=768 \\
& \left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right)
\end{array}
$$

$$
\text { Gain }=183,178,164 \quad\left(I_{C}=75 \mathrm{~A}, v_{C E}=4,3,2 \mathrm{~V}\right)
$$

$$
v_{B E}=634 \mathrm{v}, 631 \mathrm{v}, 634 \mathrm{v}\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{v}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
$$

Breakdiown Voltages

$\mathrm{BV}_{\mathrm{CBO}}=63.5 \mathrm{~V} @ \mathrm{I}_{\mathrm{CBO}}=10 \mathrm{~mA}$
$\mathrm{BV}_{\mathrm{CEO}}=50.0 \mathrm{~V}$ © $\mathrm{I}_{\mathrm{CEO}}=10 \mathrm{~mA}$
$\mathrm{BV}_{\mathrm{CES}}=52,8 \mathrm{~V}$ © $I_{\mathrm{CES}}=10 \mathrm{~mA}$
Leakage Currents

$$
\begin{aligned}
& \mathbf{I}_{\mathrm{EBO}}=1,79 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{EBO}}=4 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{CBO}}=0,67 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CBO}}=20 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{CEO}}=2,14 \mathrm{~mA} @ \mathrm{v}_{\mathrm{CEO}}=20 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{CES}}=1,79 \mathrm{~mA} \odot \mathrm{~V}_{\mathrm{CES}}=20 \mathrm{~V}
\end{aligned}
$$

Excluding Assembly 102
10.49 V

649 V
$49,9 \mathrm{r}$
54.1 V

Excluding Assembly 102
1.48 mA
$0,34 \mathrm{~mA}$
1.62 mA
$1,26 \mathrm{~mA}$.

Switching Time

$$
\begin{aligned}
t_{\mathrm{d}}+t_{\mathrm{r}}=\ldots \mu \mathrm{s}, \mathrm{t}_{\mathrm{s}}=\ldots \mu \mathrm{s}, \mathrm{t}_{\mathrm{f}} & =\ldots \mu \mathrm{s} \\
\text { Total Switching Time }=\ldots \mu \mathrm{s}\left(\mathrm{I}_{\mathrm{C}}\right. & =75 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=5 \mathrm{~A} . \\
\mathrm{V}_{\mathrm{BE}} & =-1.5 \mathrm{~V} \text { on turn-off) }
\end{aligned}
$$

HIGH POWER, LOW SATURATION VOLTAGE

SILICON SWITCHING TRANSISTOR

PER: JET PROPULSION LABORATORY ENGINEERING NOTE NO. 342-015

RANGE OF VALUES

$\mathbf{V}_{\mathrm{CE}(\mathrm{sat})}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
$V_{C E(s a t)}=\frac{.062 / .106}{79} \mathrm{~V} \quad\left(1.46 \mathrm{~V}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right)$
$\nabla_{B E}$ (sat) $=0.79\left(1,46 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right)\right.$
Gain $62 / 417,65 / 395,68 / 417\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right)$
$V_{B E}=.70 / .79 \mathrm{~V}, .69 / 78 \mathrm{~V}, 68 / 76 \mathrm{~V} \quad\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right)$
$\nabla_{C E(s a t)}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
$V_{C E(\text { sat })}=\frac{.074 / 156 v}{71 / 16} \quad \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right)$
$\mathrm{V}_{\mathrm{BE} \text { (sat) }}=.71 / 1.16 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}\right)$
Gain $=57 / 441,55 / 469,53 / 4 / 17\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right)$
$\nabla_{B E}=. \underline{09 / 76} \mathrm{v}, \underline{60 / 74} \mathrm{v}, \underline{60 / 74} \mathrm{v}\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)$

Breakdown Voltages

$$
\begin{aligned}
& B V_{E B O}=99 / 14 V @ I_{E B O}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CBO}}=15 / \geq 100 \mathrm{~V} @ \mathrm{I}_{\mathrm{CBO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CEO}}=7 />100 \mathrm{~V} \text { © } \mathrm{I}_{\mathrm{CEO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CES}}=\mathbb{Z} 1100 \mathrm{~V} \text { @ } \mathrm{I}_{\mathrm{CES}}=10 \mathrm{~mA}
\end{aligned}
$$

Leakage Currents

$$
\begin{aligned}
& I_{E B O}=\frac{20,1 / 25_{\mathrm{mA}} @ \mathrm{~V}_{E B O}=4 \mathrm{~V}}{} \\
& I_{\mathrm{CBO}}=\left\langle\alpha / / 12 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CBO}}=20 \mathrm{~V}\right. \\
& I_{\mathrm{CEO}}=\left\langle 0,1 / 20 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CEO}}=20 \mathrm{~V}\right. \\
& I_{\mathrm{CES}}=\left\langle 0,1 / 20 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CES}}=20 \mathrm{~V}\right.
\end{aligned}
$$

4,5/14
$18 />100$
$\angle 1 />100$
$21 />100$
Excluding Assembly 102
$<0.1 / 8$
$<0.1 / 2$
$<0.1 / 9$
$<0,1 / 9$

Switching Time

Parameter Gain @ 4V Units \qquad
R.T.

Percent of Units

Percent
of Units
"Parameter $\frac{\text { Gain @ 3V }}{\text { R.T. Units }}$ \qquad

Perl... of Units

Percent
of Units R.T.

Percenl of Units

Percent
of Unit

웅

Parameter $\frac{V_{B E(s a t)}}{100^{\circ} \mathrm{C}}$ Units Volts

Percent of Unit

Percent of Unit

$$
\text { Parameter } \frac{\text { Gain@ } @ \mathrm{~V}}{100^{\circ} \mathrm{C}}
$$

Per of Units

Percent of Units

Percent of Units
Barameter Gain(3 2V Units \qquad
$100^{\circ} \mathrm{C}$

Percent
of Unit

Parameter $\mathrm{BV}_{\mathrm{CBO}}$. Units Volts

Percent
of Units

Parameter $\xrightarrow{\mathrm{BV}_{\mathrm{CEO}}{ }^{\circ} \cdot}$ Units Volts

Percent
of Units

Prameter $\underbrace{\text { BV }}_{\text {CES }}$ Units Volts

Percent of Units

Percent of Units

Percent of Units

No. of Units

15

8
12
16

Parameter $\mathrm{I}_{\text {CBO }}$. Units $\mathrm{mA}^{\text {mA }}$

Percent of Units

Percent of Units

Percent of Units

Percent of Units
\qquad ${ }^{1}$ CE - Units mA

Second Breakdown
Ares Not Evaluated

```
WORST CASE PROJECTED
FROM DATA ON ONE UNIT - .
USING DATA ON UNIT $1.31
```


A P PENDIX

DATA SHEETS ON INDIVIDUAL ASSEMBLIES

PER: JET PROPULSION LABORATORY TnmTNEERING NOTE NO. 342-015
dATA ON ASSEMBLY NO. 101
$\nabla_{C E(s a t)}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

```
    \(V_{C E(s a t)}=.098 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right)\)
\[
\nabla_{\text {BE (sat) }}=80 \quad \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{\mathrm{C}}=75 \mathrm{~A}\right)
\]
\[
\text { Gain } 103,100,99\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right)
\]
\[
v_{B E}=.72 \mathrm{v}, 172 \mathrm{v}, 46 \mathrm{v} \quad\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{v}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\]
```

$V_{C E}$ (sat) and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CE}(\text { sat })}=\frac{0.14}{} \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{\mathrm{C}}=75 \mathrm{~A}\right) \\
& \mathrm{V}_{\mathrm{BE} \text { (sat) }}=\frac{.77}{\mathrm{i}} \mathrm{~V} \quad\left(I_{\mathrm{B}}=5 \mathrm{~A}, I_{\mathrm{C}}=75 \mathrm{~A}\right) \\
& \text { Gain }=100,96,95 \\
& \mathrm{~V}_{\mathrm{BE}}=0.62 \mathrm{~V}, .62 \mathrm{~V}, .64 \mathrm{~V}\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right) \\
& \left.=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

Breakdown Voltages .

$$
\begin{aligned}
& \mathrm{BV}_{\mathrm{EBO}}=9,5 \mathrm{~V} @ \mathrm{I}_{\mathrm{EBO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CBO}}=95 \mathrm{~V} @ \mathrm{I}_{\mathrm{CBO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CEO}}=85 \mathrm{~V} @ \mathrm{I}_{\mathrm{CEO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CES}}=85 \mathrm{~V} @ \mathrm{I}_{\mathrm{CES}}=10 \mathrm{~mA}
\end{aligned}
$$

Leakage Currents

$$
\begin{aligned}
& I_{E B O}=1,4 \mathrm{~mA} @ \mathrm{~V}_{E B O}=4 \mathrm{~V} \\
& I_{\mathrm{CBO}}=\angle 0,1 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CBO}}=20 \mathrm{~V} \\
& I_{\mathrm{CEO}}=\angle 0.1 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CEO}}=20 \mathrm{~V} \\
& I_{\mathrm{CES}}=\angle 0,1 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CES}}=20 \mathrm{~V}
\end{aligned}
$$

Switching Time
$t_{d}+t_{r}=4,3 \mu s, t_{s}=2,5 \mu s, t_{f}=\ldots \mu$
Total Switching Time $=14,2 \mu s \quad I_{C}=75 \mathrm{~A}, I_{B}=5 \mathrm{~A}$,

$$
V_{B E}=-1.5 \mathrm{~V} \text { on turn-off) }
$$

HIGH POWER, LOW SATURATION VOLTAGE

SILICON SWITCHING TRANSISTOR

PER: JET PROPULSION LABORATORY ENGINEERING NOTE NO. 342-015

DATA ON ASSEMBLY NO. 102

$\nabla_{C E(s a t)}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{C E(\text { sat })}=.080 .0 \quad\left(I_{B}=5 A, I_{C}=75 \mathrm{~A}\right) \\
& V_{B E \text { (sat) }}=.84 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& \text { Gain } 121,123,123\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right) \\
& \mathrm{V}_{\mathrm{BE}}=274 \mathrm{~V}, .24 \mathrm{~V}, .24 \mathrm{~V} \quad\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{C E(s a t)}=0.085 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& V_{B E(\text { sat })}=.7 / V \quad\left(I_{B}=5 A, I_{C}=75 \mathrm{~A}\right) \\
& \text { Gain }=326,3 / 2,3 / 2\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right) \\
& V_{B E}=.60 \mathrm{~V}, \underline{60} \mathrm{~V}, \underline{60} \mathrm{~V}\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

Breakdown Voltages

$$
\begin{aligned}
& \mathrm{BV}_{E B O}=3,9 \mathrm{~V} @ \mathrm{I}_{\mathrm{EBO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CBO}}=15 \mathrm{~V} @ \mathrm{I}_{\mathrm{CBO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CEO}}=7 \mathrm{~V} @ \mathrm{I}_{\mathrm{CEO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CES}}=7 \mathrm{~V} @ \mathrm{I}_{\mathrm{CES}}=10 \mathrm{~mA}
\end{aligned}
$$

Leakage Currents

$$
\begin{aligned}
& I_{E B O}=10,5 \mathrm{~mA} @ \mathrm{~V}_{E B O}=4 \mathrm{~V} \\
& I_{C B O}=12 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CBO}}=20 \mathrm{~V} \\
& I_{C E O}=20 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CEO}}=20 \mathrm{~V} \\
& I_{C E S}=20 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CES}}=20 \mathrm{~V}
\end{aligned}
$$

Switching Time

$$
\begin{aligned}
t_{d}+t_{r}= & \mu s, t_{s}=\ldots \mu s, t_{f} \\
\text { Total Switching Time }=\ldots \mu s\left(I_{C}\right. & =75 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=5 \mathrm{~A}, \\
\mathrm{~V}_{\mathrm{BE}} & =-1.5 \mathrm{~V} \text { on turn-off) }
\end{aligned}
$$

HIGH POWER, LOW SATURATION VOLTAGE
SILICON SWITCHING TRANSISTOR

PER: JET PROPULSION LABORATORY ENGINEERING NOTE NO. 342-015

DATA ON ASSEMBLY NO. 103
$\nabla_{C E(s a t)}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{array}{ll}
V_{C E(s a t)}=\frac{.095}{} \mathrm{~V} & \left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
V_{B E}(\text { sat }) & =89 \\
& \left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right)
\end{array}
$$

$$
\text { Gain } 129,125,119\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
$$

$$
\mathrm{V}_{\mathrm{BE}}=.24 \mathrm{~V}, .75 \mathrm{v}, .75 \mathrm{C} \quad\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
$$

$V_{C E(s a t)}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{C E(\text { sat })}=\frac{.152}{} \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& V_{\mathrm{BE}(\text { sat })}=.75 \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& \text { Gain }=125,121,117 \quad\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right) \\
& V_{B E}=.64 \mathrm{~V}, .65 \mathrm{~V}, .64 \mathrm{~V}\left(I_{C}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

Breakdown Voltages

$$
\begin{aligned}
& \mathrm{BV}_{\mathrm{EBO}}=11 \mathrm{~V} @ \mathrm{I}_{\mathrm{EBO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CBO}}=13 \mathrm{~V} @ \mathrm{I}_{\mathrm{CBO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CEO}}=60 \mathrm{~V} @ \mathrm{I}_{\mathrm{CEO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CES}}=6 \mathrm{~m} \\
& \mathrm{~V} @ \mathrm{I}_{\mathrm{CES}}=10 \mathrm{~mA}
\end{aligned}
$$

Leakage Currents

$$
\begin{aligned}
& I_{E B O}=1.5 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{EBO}}=4 \mathrm{~V} \\
& I_{C B O}=0.1 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CBO}}=20 \mathrm{~V} \\
& I_{C E O}=0,1 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CEO}}=20 \mathrm{~V} \\
& I_{C E S}=0,2 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CES}}=20 \mathrm{~V}
\end{aligned}
$$

Switching Time

$$
t_{d}+t_{r}=\ldots \mu s, t_{s}=\ldots \mu s, t_{f}=\ldots, \ldots s
$$

Total Switching Time $=$ \qquad $\mu s I_{C}=75 \mathrm{~A}, I_{B}=5 \mathrm{~A}$, $V_{B E}=-1.5 V$ on turnoff)

HIGH POWER, LOW SATURATION VOLTAGE

SILICON SWITCHING TRANSISTOR

PER: JET PROPULSION LABORATORY ENGINEERING NOTE NO. 342-015

DATA ON ASSEMBLY NO. OS
$\mathbf{V}_{C E(s a t)}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

```
\(V_{C E(s a t)}=\frac{.074}{} \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right)\)
\(\nabla_{\mathrm{BE}(\text { sat })}=85 \mathrm{~V} \quad\left(I_{\mathrm{B}}=5 \mathrm{~A}, I_{\mathrm{C}}=75 \mathrm{~A}\right)\)
Gain \(153,147,1444\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right)\)
\(\mathrm{V}_{\mathrm{BE}}=.72 \mathrm{v}, .73 \mathrm{v}, .73 \mathrm{~V} \quad\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)\)
```

$V_{\text {CE (sat) }}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
$V_{C E(s a t)}=0.099 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right)$
$V_{B E(s a t)}=72 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right)$
Gain $=131,129,127\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right)$
$\mathrm{V}_{\mathrm{BE}}=.62 \mathrm{v}, .62 \mathrm{v}, .63 \mathrm{~V}\left(\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3 ; 2 \mathrm{~V}\right)$
Breakdown Voltages

$$
\begin{aligned}
& \mathrm{BV}_{\mathrm{EBO}}=9,9 \mathrm{~V} \text { @ } \mathrm{I}_{\mathrm{EBO}}=-10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CBO}}=\frac{33}{} \mathrm{~V} @ \mathrm{I}_{\mathrm{CBO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CEO}}=22 \mathrm{~V} @ \mathrm{I}_{\mathrm{CEO}}=-10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CES}}=25 \mathrm{~V} @ \mathrm{I}_{\mathrm{CES}}=10 \mathrm{~mA}
\end{aligned}
$$

Leakage Currents

$$
\begin{aligned}
& I_{E B O}=24 \mathrm{~mA} @ V_{E B O}=4 \mathrm{~V} \\
& I_{C B O}=0.9 \mathrm{~mA} @ V_{C B O}=20 \mathrm{~V} \\
& I_{C E O}=6.0 \mathrm{~mA} @ V_{C E O}=20 \mathrm{~V} \\
& I_{C E S}=3.2 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CES}}=20 \mathrm{~V}
\end{aligned}
$$

Switching Time

Total Switching Time $=$ \qquad $\mu s\left(I_{C}=75 \mathrm{~A}, I_{B}=5\right.$. $V_{B E}=-1.5 \mathrm{~V}$ on turnoff)

HIGH POtHER, LC: S. TORSION VULIAGI:

SILICON SNITCHING TRANSISTOR

PER: JET PROPULSION LABORATORY ENGINEERING NOTE NO. 342-015

DATA ON ASSEMBLY NO. 105
$\nabla_{C E(s a t)}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{C E(s a t)}=\text { liS } V \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A} .\right. \\
& V_{B E} \text { (sat) }=\frac{8}{i} k_{i} \quad V \quad\left(I_{B}=5 A, I_{C}=75 A\right. \\
& \text { Gain } \left.147,142,139 I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right) \\
& \mathrm{v}_{\mathrm{BE}}=.75 \mathrm{~V}, .75 \mathrm{~V}, 25 \mathrm{~V} \quad\left(\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

$V_{C E(s a t)}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
$\nabla_{\mathrm{CE}(\mathrm{sat})}=\frac{-109 \mathrm{~V}}{-28} \quad\left(\mathrm{I}_{\mathrm{B}}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}\right)$
$V_{B E(\text { sat })}=\frac{78}{} \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{\mathrm{C}}=75 \mathrm{~A}\right)$
Gain $=123,121,115\left(I_{C}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)$
$\mathrm{V}_{\mathrm{BE}}=.65 \mathrm{~V}, .65 \mathrm{~V}, .66 \mathrm{~V}\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)$
Breakdown Voltages

$$
\begin{aligned}
& B V_{E B O}=13 \quad V @ I_{E B O}=00 \mathrm{~mA} \\
& B V_{C B O}=1100 V @ I_{C B O}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CEO}}=2100 \mathrm{~V} \text { © } I_{\mathrm{CEO}}=10 \mathrm{~mA} \\
& B V_{C E S}=7100 \mathrm{~V} \odot I_{C E S}=10 \mathrm{~mA}
\end{aligned}
$$

Leakage Currents

$$
\begin{aligned}
& I_{E B O}=1.1 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{EBO}}=4 \mathrm{~V} \\
& I_{\mathrm{CBO}}=\angle 0.1 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CBO}}=20 \mathrm{~V} \\
& I_{\mathrm{CEO}}=\angle 0.1 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CEO}}=20 \mathrm{~V} \\
& I_{\mathrm{CES}}=\angle 0.1 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CES}}=20 \mathrm{~V}
\end{aligned}
$$

Switching Time

$$
\begin{aligned}
& t_{d}+t_{r}=\ldots \mu s, t_{s}=\ldots \mu s, t_{f}= \\
& \mu s \\
& \text { Total Switching Time }= \\
& \mu \mathrm{s}\left(\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=5 \mathrm{~A}\right. \text {, } \\
& \nabla_{B E}=-1.5 \mathrm{~V} \text {. on turn-ott) }
\end{aligned}
$$

PER: JET PROPULSION IABORATORY ENGINEERING NOTE NO. 342-015
data on assembly no. Olo
$\nabla_{C E(8 a t)}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{C E(s a t)}=\frac{106}{} V \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& V_{B E(s a t)}=-82 \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& \text { Gain } \left.100,106,77 I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right) \\
& V_{B E}=26 \mathrm{~V}, 25 \mathrm{~V}, .75 \mathrm{~V} \quad\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

$\nabla_{C E(s a t)}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
$V_{C E(s a t)}=\frac{0 / 56}{2} \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right)$
$V_{B E \text { (sat) }}=0.75 \quad\left(I_{B}=5 A, I_{C}=75 \mathrm{~A}\right)$
Gain = 70, $68,68\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right)$
$V_{B E}=65 \mathrm{~V}_{2}, 65 \mathrm{~V}, 65 \mathrm{~V}\left(\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)$
Brealdown Voltages

$$
\begin{aligned}
& B V_{\mathrm{BBO}}=9.5 \mathrm{~V} @ \mathrm{I}_{\mathrm{EBO}}=10 \mathrm{~mA} \\
& B V_{C B O}=92 v @ I_{C B O}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\text {CEO }}=83 \mathrm{~V} \text { © } \mathrm{I}_{\text {CEO }}=10 \mathrm{~mA} \\
& B V_{\text {CES }}=83 V @ I_{\text {CES }}=10 \mathrm{~mA}
\end{aligned}
$$

Leakage Currents

$$
\begin{aligned}
& I_{E B O}=0,4 \mathrm{~mA} @ V_{E B O}=4 \mathrm{~V} \\
& I_{C B O}=\angle 0,1 \mathrm{~mA} @ V_{C B O}=20 \mathrm{~V} \\
& I_{C E O}=0,2 \mathrm{~mA} @ V_{C E O}=20 \mathrm{~V} \\
& I_{\text {CES }}=\angle O_{1} 1 \mathrm{~mA} \Theta V_{C E S}=20 \mathrm{~V}
\end{aligned}
$$

Switching Time

$$
\begin{aligned}
& t_{d}+t_{x}=4.1 \mu \mathrm{~s}, t_{s}=\frac{1.9}{1 .} \mu \mathrm{s}, \mathrm{t}_{\mathrm{f}}=5,8 \mu \mathrm{~s} \\
& \text { Total Switching Time }=1 /, 8 \mu \mathrm{~s}\left(I_{C}=75 \mathrm{~A}, I_{B}=5 \mathrm{~A}\right. \text {, } \\
& \nabla_{B E}=-1.5 V \text {. on turn }- \text { off) }
\end{aligned}
$$

HIGH POWER, LOW SATURATION VOLTAGE

SILICON SWITCHING TRANSISTOR

PER: JET PROPULSION LABORATORY ENGINEERING NOTE NO. 342-015
data on assembly no. 107
$\nabla_{C E(\text { sat })}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& v_{C E(\text { sat })}=.092 \mathrm{v} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& \nabla_{\mathrm{BE}(\text { sat })}=.82 \mathrm{~V} \quad\left(\mathrm{I}_{\mathrm{B}}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}\right) \\
& \text { jain } 101,100,97\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right) \\
& 7_{B E}=.75 \mathrm{v}, .25 \mathrm{v}, .75 \mathrm{~V} \quad\left(\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

$V_{C E(s a t)}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{C E(s a t)}=\frac{140}{} \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& V_{B E} \text { (sat) }=24 \mathrm{~V} \quad\left(I_{B}=5 A, I_{C}=75 \mathrm{~A}\right) \\
& \text { Gain }=62,7 \mathrm{~L}, 62\left(I_{C}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right) \\
& \mathrm{v}_{\mathrm{BE}}=\frac{276}{} \mathrm{v}, .64 \mathrm{v}, .64 \mathrm{v}\left(\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{v}_{\mathrm{CF}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

Breakdown Voltages

$$
\begin{aligned}
& \mathrm{BV}_{\mathrm{EBO}}=\frac{6,5}{54} \mathrm{~V} \text { © } \mathrm{I}_{\mathrm{EBO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CBO}}=\frac{54}{45} \mathrm{~V} \text { © } \mathrm{I}_{\mathrm{CBO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CEO}}=45 \mathrm{~V} \text { © } \mathrm{I}_{\mathrm{CEO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CES}}=47 \mathrm{~V} \text { © } I_{\mathrm{CES}}=10 \mathrm{~mA}
\end{aligned}
$$

Leakage Currents

$$
\begin{aligned}
& I_{\text {BO }}=4.6 \mathrm{~mA} @ \mathrm{~V}_{E B O}=4 \mathrm{v} \\
& \mathrm{I}_{\mathrm{CBO}}=20.1 \mathrm{~mA} \mathrm{~V}_{\mathrm{CBO}}=20 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{CEO}}=0.1 \mathrm{~mA} \mathrm{~V}_{\mathrm{CEO}}=20 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{CES}}=0.1 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CES}}=20 \mathrm{~V}
\end{aligned}
$$

Switching Time

$$
\begin{aligned}
& t_{d}+t_{r}=4,3 \mu s, t_{s}=\frac{1,7}{1} \mu s, t_{E}=\frac{5,6}{} \mu \mathrm{~s} \\
& \text { Total Switching Time }=\frac{11.6 \mu s \quad\left(I_{C}\right.}{}=75 \mathrm{~A}, I_{B}=5 \mathrm{~A}, \\
& V_{B E}=-1.5 \mathrm{~V} \text { on turnoff) }
\end{aligned}
$$

HIGH POWER, LOW SATURATION VOLTAGE
SILICON SWITCHING TRANSISTOR

PER: JET PROPULSION LABORATORY ENGINEERING NOTE NO. 342-015

LALA UN ASSEMBLY NO. \qquad
$\mathrm{V}_{\mathrm{CE}(\text { sat })}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{C E(\text { sat })}=\frac{903}{} \mathrm{~V} \quad\left(I_{\mathrm{B}}=5 \mathrm{~A}, I_{\mathrm{C}}=75 \mathrm{~A}\right) \\
& \mathrm{V}_{\mathrm{BE}(\text { sat })}=\frac{81}{} \mathrm{~V} \quad\left(I_{\mathrm{B}}=5 \mathrm{~A}, I_{\mathrm{C}}=75 \mathrm{~A}\right) \\
& \left.\operatorname{Gain} 62,65,68,6 I_{\mathrm{C}}=75 \mathrm{~A}, V_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right) \\
& \mathrm{V}_{\mathrm{BE}}=.25 \mathrm{~V}, .25 \mathrm{~V}, .75 \mathrm{~V} \quad\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3 ; 2 \mathrm{~V}\right)
\end{aligned}
$$

$V_{C E(s a t)}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

Breakdown Voltages

$$
\begin{aligned}
& B V_{E B O}=45 \mathrm{~V} @ I_{E B O}=10 \mathrm{~mA} \\
& B V_{\mathrm{CBO}}=65 \mathrm{~V} \text { (} I_{\mathrm{CBO}}=10 \mathrm{~mA} \\
& B V_{\mathrm{CEO}}=45 \mathrm{~V} @ I_{\mathrm{CEO}}=10 \mathrm{~mA} \\
& B V_{\mathrm{CES}}=50 \mathrm{~V} @ I_{\mathrm{CES}}=10 \mathrm{~mA}
\end{aligned}
$$

Leakage Currents

$$
\begin{aligned}
& I_{E B O}=8.0 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{EBO}}=4 \mathrm{~V} \\
& \mathbf{I}_{\mathrm{CBO}}=0.2 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CBO}}=20 \mathrm{~V} \\
& \mathrm{I}_{\text {CEO }}=0.3 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CEO}}=20 \mathrm{~V} \\
& \mathrm{I}_{\text {ES }}=0.2 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CES}}=20 \mathrm{~V}
\end{aligned}
$$

Switching Time

$$
\begin{aligned}
& t_{d}+t_{r}=\ldots \mu s, t_{s}=\ldots \mu s, t_{f}=\ldots \quad \mu s \\
& \text { Total Switching Time }=\ldots \quad \mu s\left(I_{C}=75 A, I_{B}=5 A,\right.
\end{aligned}
$$

$$
\nabla_{\mathrm{BE}}=-1.5 \nabla \text { on turn-off) }
$$

$$
\begin{aligned}
& V_{C E(s a t)}=\frac{.146}{} \quad \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& \nabla_{\mathrm{BE} \text { (sat) }}=83 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& \text { Gain }=57,55,53\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 V\right) \\
& V_{B E}=6 \mathrm{~V}, .67 \mathrm{~V}, \ldots 8 \mathrm{~V}\left(I_{C}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

HIGH PONER, LOW SATURATION VOLTAGE
SILICON SWITCHING TRANSISTOR

PER: JET PROPULSION LABORATORY ENGINEERING NOTE NO. 342-015
data on assembly no. 109
$\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{C E(\text { sat })}=\frac{095 \mathrm{~V}}{} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& V_{B E(\text { sat })}=82 \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& \text { Gain } 10 /, 103,79 \quad\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right) \\
& V_{B E}=.75 \mathrm{~V}, .75 \mathrm{~V}, 76 \mathrm{~V} \quad\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

$\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{C E \text { (sat) }}=\frac{135}{} \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}\right) \\
& V_{\mathrm{BE} \text { (sat) }}=74 \mathrm{~V} \quad\left(\mathrm{I}_{\mathrm{B}}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}\right) \\
& \text { Gain }=76,76,74 \quad\left(I_{C}=75 \mathrm{~A}, V_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right) \\
& V_{\mathrm{BE}}=63 \mathrm{~V}, 63 \mathrm{~V}, .63 \mathrm{~V}\left(\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

Breakdown Voltages

$$
\begin{aligned}
& \mathrm{BV}_{\mathrm{EBO}}=65 \mathrm{~V} @ \mathrm{I}_{\mathrm{EBO}}=10 \mathrm{~mA} \\
& \mathrm{BV} \mathrm{CBO}=28 \mathrm{~V} @ \mathrm{I}_{\mathrm{CBO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CEO}}=21 \mathrm{~V} @ \mathrm{I}_{\mathrm{CEO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CES}}=21 \mathrm{~V} @ \mathrm{I}_{\mathrm{CES}}=10 \mathrm{~mA}
\end{aligned}
$$

Leakage Currents

$$
\begin{aligned}
& I_{E B O}=0.6 \mathrm{~mA} @ V_{E B O}=4 \mathrm{~V} \\
& I_{C B O}=0.5 \mathrm{~mA} @ V_{C B O}=20 \mathrm{~V} \\
& I_{C E O}=9.0 \mathrm{~mA} @ V_{C E O}=20 \mathrm{~V} \\
& I_{C E S}=90 \mathrm{~mA} @ V_{C E S}=20 \mathrm{~V}
\end{aligned}
$$

Switching Time

$$
\begin{aligned}
& d t_{r}=\ldots \mu s, t_{s}=\ldots \mu s, t_{f}=\ldots \mu s \\
& \text { lotal Switching Time }=\ldots \mu s \quad I_{C}=75 \mathrm{~A}, I_{B}=5 \mathrm{~A} \text {, } \\
& V_{B E}=-1.5 \mathrm{~V} \text { on turn-off) }
\end{aligned}
$$

data on assembiy no. $1 / 10$
$\nabla_{C E(\text { sat })}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& v_{C E(s a t)}=.089 \mathrm{v} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& \nabla_{B E(\text { sat })}=81 \quad V \quad\left(I_{B}=5 A, I_{C}=75 \mathrm{~A}\right) \\
& \text { Gain } 124,170,-\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right) \\
& \mathrm{V}_{\mathrm{BE}}=27 \mathrm{v}, 22 \mathrm{~V}, \mathrm{~V} \quad\left(\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{v}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

$\nabla_{C E(s a t)}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{C E(s a t)}=\frac{-l / l}{} V \quad\left(I_{B}=5 A, I_{C}=75 \mathrm{~A}\right) \\
& \mathrm{V}_{\mathrm{BE}(\text { sat })}=73 \mathrm{~V} \quad\left(\mathrm{I}_{\mathrm{B}}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}\right) \\
& \text { Gain }=144,136, \angle 34\left(I_{C}=75 \mathrm{~A}, v_{C E}=4,3,2 \mathrm{~V}\right) \\
& \mathrm{V}_{\mathrm{BE}}=. \underline{22} \mathrm{~V}, \underline{.62} \mathrm{v}, \underline{.62} \mathrm{~V}\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

Breakdown Voltages

$$
\begin{aligned}
& \mathrm{BV}_{\mathrm{EBO}}=12.5 \mathrm{~V} @ I_{\mathrm{EBO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CBO}}=37 \mathrm{~V} \text { © } \mathrm{I}_{\mathrm{CBO}}=10 \mathrm{~mA} \\
& \mathrm{Bv}_{\text {CEO }}=\frac{24}{24} \mathrm{vB} \mathrm{I}_{\mathrm{CEO}}=10 \mathrm{~mA} \\
& { }^{B V_{C E S}}=24 \mathrm{~V} @ \mathrm{I}_{\mathrm{CES}}=10 \mathrm{~mA}
\end{aligned}
$$

Leakage Currents

$$
\begin{aligned}
& I_{\text {EBO }}=1,0 \mathrm{~mA} \mathrm{C} \mathrm{~V}_{\mathrm{EBO}}=4 \mathrm{~V} \\
& I_{C B O}=0.4 \mathrm{~mA} \text { © } \mathrm{v}_{\text {CBO }}=20 \mathrm{~V} \\
& I_{C E O}=3.0 \mathrm{~mA} @ \mathrm{~V}_{\text {CEO }}=20 \mathrm{~V} \\
& I_{C E S}=3.0 \mathrm{~mA} \text { © } \mathrm{V}_{\text {CES }}=20 \mathrm{~V}
\end{aligned}
$$

Switching Time

$$
\begin{aligned}
& t_{d}+t_{r}=\ldots \mu s, t_{s}=\ldots \mu s, t_{f}= \\
& \text { Total Switching Time }= \\
& \mu \mathrm{s}\left(\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=5 \mathrm{~A}\right. \text {, } \\
& \mathrm{V}_{\mathrm{BE}}=-1.5 \mathrm{~V} \text { on turn-off) }
\end{aligned}
$$

DATA ON ASSEMBLY NO. //l
$\nabla_{\mathrm{CE}(\mathrm{sat})}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{C E(\text { sat })}=.078 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& \mathrm{v}_{\mathrm{BE}(\text { sat })}=1.0 / \mathrm{V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& \text { Gain } 300,288,278\left(I_{\mathrm{C}}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right. \\
& \mathrm{V}_{\mathrm{BE}}=.73 \mathrm{~V}, .73 \mathrm{~V}, .73 \mathrm{~V} \quad\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

$V_{C E(s a t)}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{C E(s a t)}=\frac{.084}{} \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& \nabla_{B E(\text { sat })}=24 \quad V \quad\left(I_{B}=5 A, I_{C}=75 \mathrm{~A}\right) \\
& \text { Gain }=268,268,278\left(I_{C}=75 \mathrm{~A}, v_{C E}=4,3,2 \mathrm{~V}\right) \\
& \mathrm{V}_{\mathrm{BE}}=.61 \mathrm{~V}, \underline{61} \mathrm{~V}, \underline{62} \mathrm{~V}\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

Breakdown Voltages

$$
\begin{aligned}
& \mathrm{BV}_{E B O}=\frac{13}{3} \mathrm{~V} @ I_{E B O}=10^{\circ} \mathrm{mA} \\
& \mathrm{BV}_{\mathrm{CBO}}=42 \quad \mathrm{~V} \text { © } \mathrm{I}_{\mathrm{CBO}}=10 \mathrm{~mA} \\
& B V_{C E O}=30 \quad V ® I_{\text {CEO }}=10 \mathrm{~mA} \\
& B V_{C E S}=30 \quad V @ I_{C E S}=12 \mathrm{~mA}
\end{aligned}
$$

Leakage Currents

$$
\begin{aligned}
& I_{E B O}=1,0 \mathrm{~mA} \mathrm{\&} \mathrm{~V}_{\mathrm{EBO}}=4 \mathrm{~V} \\
& I_{C B O}=0.2 \mathrm{~mA} \Leftrightarrow \mathrm{~V}_{\mathrm{CBO}}=20 \mathrm{~V} \\
& I_{\text {CEO }}=\frac{0.3}{0 .} \mathrm{mA} @ \mathrm{~V}_{\text {CEO }}=20 \mathrm{~V} \\
& I_{C E S}=0.2 \mathrm{~mA} \Theta \mathrm{~V}_{\mathrm{CES}}=20 \mathrm{~V}
\end{aligned}
$$

Snitching Time

$$
t_{d}+t_{r}=\ldots \mu s, t_{s}=\ldots \mu s, t_{f}=\ldots \mu s
$$

Total Switching Time $=\ldots \quad \mu \mathrm{B}\left(\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=5 \mathrm{~A}\right.$,

$$
\left.\nabla_{B E}=-1.5 V \text { on turn }- \text { off }\right)
$$

HIGH POWER, LOW SATURATION VOLTAGE
SILICON SWITCHING TRANSISTOR

PER: JET PROPULSION LABORATORY ENGINEERING NOTE NO. 342-015
data on assembly no. //2
$\nabla_{C E(s a t)}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{C E(s a t)}=.068 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& \nabla_{B E \text { (sat) }}=146 \quad \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& \text { Gain } \left.395,375,34 / I_{C}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right) \\
& V_{B E}=0.72 \mathrm{~V}, .72 \mathrm{~V}, .72 \mathrm{~V} \quad\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,\right.
\end{aligned}
$$

$\nabla_{C E(s a t)}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CE}(\mathrm{sat})}=\frac{.078}{} \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{\mathrm{C}}=75 \mathrm{~A}\right) \\
& \mathrm{V}_{\mathrm{BE}(\mathrm{sat})}=. .75 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{\mathrm{C}}=75 \mathrm{~A}\right) \\
& \text { Gain }=34 /, .341,250\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right) \\
& \mathrm{V}_{\mathrm{BE}}=.61 \mathrm{~V}, .61 \mathrm{~V},-6 / \mathrm{V}\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

Breakdown Voltages
$B V_{E B O}=13,5 \mathrm{~V} @ I_{E B O}=10 \mathrm{~mA}$
$B V_{C B O}=78 \quad V ® I_{C B O}=10 \mathrm{~mA}$
$B V_{C E O}=60 \mathrm{~V}$ © $I_{\text {CEO }}=10 \mathrm{~mA}$
$B V_{C E S}=64 V @ I_{C E S}=10 \mathrm{~mA}$

Leakage Currents

$$
\begin{aligned}
& I_{E B O}=0.2 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{EBO}}=4 \mathrm{~V} \\
& I_{\mathrm{CBO}}=\angle 0.1 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CBO}}=20 \mathrm{~V} \\
& I_{\text {CEO }}=2.2 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CEO}}=20 \mathrm{~V} \\
& I_{\mathrm{CES}}=\angle 0.1 \mathrm{~mA} \odot \mathrm{~V}_{\mathrm{CES}}=20 \mathrm{~V}
\end{aligned}
$$

Switching Time

$$
t_{\mathrm{d}}+\mathrm{t}_{\mathrm{r}}=\ldots \mu \mathrm{s}, \mathrm{t}_{\mathrm{B}}=\ldots \mu \mathrm{s}, \mathrm{t}_{\mathrm{f}}=\ldots \mu \mathrm{Z}
$$

Total Switching Time $=\ldots \mu s\left(I_{C}=75 A, I_{B}=5 A\right.$,

$$
\nabla_{B E}=-1.5 \mathrm{~V} \text { on turnoff) }
$$

HIGH POWER, LOW SATURATION VOLTAGE

SILICON SWITCHING TRANSISTOR

PER: JET PROPULSION LABORATORY ENGINEERING NOTE NO. 342-015
data on assembly no. $1 / 3$
$\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
$V_{C E(\text { sat })}=.084 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right)$
$V_{B E(\text { sat })}=.84 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right)$
Gain $639,134,129\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right)$
$V_{B E}=-75 \mathrm{~V}, 275 \mathrm{~V}, .75 \mathrm{~V} \quad\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right)$
$\mathrm{V}_{\mathrm{CE}(\text { sat })}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{C E(\text { sat })}=\frac{.104}{} \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}\right) \\
& \mathrm{V}_{\mathrm{BE}(\text { sat })}=.26 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}\right) \\
& \text { Jain }=109,-\quad-\quad-\quad\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right) \\
& \mathrm{V}_{\mathrm{BE}}=.64 \mathrm{~V},=\mathrm{V},-\mathrm{V}\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

Breakdown Voltages

$$
\begin{aligned}
& \mathrm{BV}_{\mathrm{EBO}}=13 \mathrm{~V} @ \mathrm{I}_{\mathrm{EBO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CBO}}=100 \mathrm{~V} @ \mathrm{I}_{\mathrm{CBO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CEO}}=100 \mathrm{~V} @ I_{\mathrm{CEO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CES}}=7100 \mathrm{~V} @ I_{\mathrm{CES}}=10 \mathrm{~mA}
\end{aligned}
$$

Leakage Currents

$$
\begin{aligned}
& I_{E B O}=\angle O_{1} \mathrm{~mA} @ \mathrm{~V}_{E B O}=4 \mathrm{~V} \\
& I_{C B O}=\angle 0_{1} 1 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CBO}}=20 \mathrm{~V} \\
& I_{\mathrm{CEO}}=\angle 0_{1} 1 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CEO}}=20 \mathrm{~V} \\
& I_{\mathrm{CES}}=\angle 0_{1} 1 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CES}}=20 \mathrm{~V}
\end{aligned}
$$

Switching Time

$$
\begin{aligned}
t_{d}+t_{r}=\ldots \mu s, t_{s}=\ldots \mu s, t_{f} & =\ldots \mu s \\
\text { Total Switching Time }=\ldots & \mu s\left(I_{C}=75 \mathrm{~A}, I_{B}=5 \mathrm{~A},\right. \\
\nabla_{B E} & =-1.5 \mathrm{~V} \text { on turnoff) }
\end{aligned}
$$

HIGH POWER, LOW SATURATION VOLTAGE
SILICON SWITCHING TRANSISTOR

PER: JET PROPULSION LABORATORY ENGINEERING NOTTE NO. 342-015
dAta on assembly no. $1 / 4$
$\mathbf{V}_{\text {CE (sat) }}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{C E(\text { sat })}=\frac{.082}{} \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& V_{B E(\text { sat })}=.80 \\
& \text { Gain } \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& V_{B E}=183,170\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right) \\
& \mathrm{V}, .72 \mathrm{~V}, .73 \mathrm{~V} \quad\left(I_{C}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

Breakdown Voltages

$$
\begin{aligned}
& \mathrm{BV}_{\mathrm{EBO}}=\frac{51}{} \mathrm{~V} @ \mathrm{I}_{\mathrm{EBO}}=10 \mathrm{~mA} \\
& B V_{\mathrm{CBO}}=31 \mathrm{~V} @ \mathrm{I}_{\mathrm{CBO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CEO}}=24 \mathrm{~V} @ \mathrm{I}_{\mathrm{CEO}}=10 \mathrm{~mA} \\
& B V_{\mathrm{CES}}=24 \mathrm{~V} @ \mathrm{I}_{\mathrm{CES}}=10 \mathrm{~mA}
\end{aligned}
$$

Leakage Currents

$$
\begin{aligned}
& I_{E B O}=7.0 \mathrm{~mA} @ \mathrm{~V}_{E B O}=4 \mathrm{~V} \\
& I_{C B O}=2.0 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CBO}}=20 \mathrm{~V} \\
& I_{C E O}=2.0 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CEO}}=20 \mathrm{~V} \\
& I_{\mathrm{CES}}=2.0 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CES}}=20 \mathrm{~V}
\end{aligned}
$$

Switching Time

$$
t_{d}+t_{r}=\ldots \mu s, t_{s}=\ldots \mu s, t_{f}=\ldots \quad \mu s
$$

$$
\text { Total Switching Time } \quad \mu s\left(I_{C}=75 \mathrm{~A}, I_{B}=5 \mathrm{~A}\right. \text {, }
$$

$$
V_{B E}=-1.5 V \text { on turnoff) }
$$

$$
\begin{aligned}
& V_{C E(s a t)}=107 \mathrm{~V} \quad\left(I_{B}=5 A, I_{C}=75 \mathrm{~A}\right) \\
& V_{B E} \text { (sat) }=76 \quad\left(I_{B}=5 A, I_{C}=75 A\right) \\
& \text { Gain }=174,150,178\left(I_{C}=75 \mathrm{~A}, v_{C E}=4,3,2 \mathrm{~V}\right) \\
& \mathrm{v}_{\mathrm{BE}}=. .64 \mathrm{v}, .64 \mathrm{v}, \underline{2} \mathrm{t} 4 \mathrm{v}\left(\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

HIGR POWER, LOW SATURATION VOLTAGE
SILICON SWITCHING TRANSISTOR

PER: JET PROPULSION LABORATORY ENGINEERING NOTE NO. 342-015
data on assembly no. $1 / 5$
$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{array}{ll}
V_{C E(\text { sat })}=.069 V & \left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
V_{\mathrm{BE}(\text { sat })}=2.29 & \left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right)
\end{array}
$$

Gain 234, 234, $300\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right)$
$V_{B E}=.70 \mathrm{~V}, .69 \mathrm{~V}, .68 \mathrm{~V} \quad\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)$
$V_{C E(s a t)}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{C E(s a t)}=0.093 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& V_{\mathrm{BE} \text { (sat) }}=0.74 \mathrm{~V} \quad\left(I_{\mathrm{B}}=5 \mathrm{~A}, I_{\mathrm{C}}=75 \mathrm{~A}\right) \\
& \text { Gain }=250,242,220\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right) \\
& V_{B E}=62 \mathrm{~V}, .62 \mathrm{v}, \underline{21} \mathrm{~V}\left(\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

Breakdown Voltages

$$
\begin{aligned}
& \mathrm{BV}_{\mathrm{EBO}}=10 \mathrm{~V} @ \mathrm{I}_{\mathrm{EBO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CBO}}=\frac{47}{} \mathrm{V@C} \mathrm{I}_{\mathrm{CBO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CEO}}=\frac{38}{38} \mathrm{~V} \text { © } \mathrm{I}_{\mathrm{CEO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CES}}=38 \mathrm{me} \mathrm{I}_{\mathrm{CES}}=10 \mathrm{~mA}
\end{aligned}
$$

Leakage Currents

$$
\begin{aligned}
& I_{E B O}=3,0 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{EBO}}=4 \mathrm{~V} \\
& I_{\mathrm{CBO}}=0,2 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CBO}}=20 \mathrm{~V} \\
& I_{\mathrm{CEO}}=0,5 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CEO}}=20 \mathrm{~V} \\
& I_{\mathrm{CES}}=0,4 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CES}}=20 \mathrm{~V}
\end{aligned}
$$

Switching Time

$$
t_{\mathrm{d}}+\mathrm{t}_{\mathrm{r}}=\ldots \mu \mathrm{s}, \mathrm{t}_{\mathrm{s}}=\ldots \mu \mathrm{s}, \mathrm{t}_{\mathrm{f}}=\ldots \mu \mathrm{s}
$$

Total Switching Time $=$ \qquad $\mu s I_{C}=75 \mathrm{~A}, I_{B}=5 \mathrm{~A}$,
$V_{R F}=-1.5 \mathrm{~V}$ on turn-off)

HIGH POWER, LOW SATURATION VOLTAGE
SILICON SWITCHING TRANSISTOR

PER: JET PROPULSION LABORATORY
ENGINEERING NOTE NO. 342-015
data on assembly no. $1 / 6$
$\boldsymbol{V}_{C E(s a t)}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
$\begin{array}{ll}V_{C E \text { (sat) }}=.066 \mathrm{~V} & \left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\ V_{B E \text { (sat) }}=.83 \\ & \left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right)\end{array}$
Gain $447,395,417\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right)$
$V_{B E}=2 / \mathrm{V}, .21 \mathrm{~V}, 23 \mathrm{~V} \quad\left(\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)$
${ }^{V_{C E}(\text { sat })}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

Breakdown Voltages

$$
\begin{aligned}
& B V_{E B O}=13 \\
& B V_{C B O}=61 \\
& B V_{C E O}=40 I_{E B O}=10 \mathrm{~mA} \\
& B V_{C E S}=45=10 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{CBO}}=10 \mathrm{I}_{\mathrm{CEO}}=10 \mathrm{~mA}
\end{aligned}
$$

Leakage Currents

$$
\begin{aligned}
& I_{E B O}=\angle 0,1 \mathrm{~mA} \Theta V_{E B O}=4 \mathrm{~V} \\
& I_{\text {CB }}=\angle 0,1 \mathrm{~mA} \Theta \mathrm{~V}_{\mathrm{CBO}}=20 \mathrm{~V} \\
& I_{\text {CEO }}=\angle 0,1 \mathrm{~mA} \text { © } \mathrm{V}_{\text {CEO }}=20 \mathrm{~V} \\
& I_{\text {BES }}=\angle O_{1} \mathrm{~mA} @ \mathrm{~V}_{\text {ES }}=20 \mathrm{~V}
\end{aligned}
$$

Switching Time

$$
t_{d}+t_{r}=\ldots \mu s, t_{s}=\ldots \mu s, t_{f}=\ldots
$$

$$
\text { Total Switching Time }=\ldots \mu s I_{C}=75 \mathrm{~A}, I_{B}=5 \mathrm{~A} \text {, }
$$

$$
V_{B E}=-1.5 V \text { on turnoff) }
$$

$$
\begin{aligned}
& V_{C E(s a t)}=.074 V \quad\left(I_{B}=5 A, I_{C}=75 \mathrm{~A}\right) \\
& V_{B E} \text { (sat) }=\frac{25}{} \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& \text { Gain }=441,469,417\left(I_{C}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right) \\
& V_{B E}=60 \mathrm{~V}, 61 \mathrm{~V}, 61 \mathrm{~V}\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

HIGH POWER, LOW SATURATION VOLTAGE
SILICON SWITCHING TRANSISTOR

PER: JET PROPULSION LABORATORY ENGINEERING NOTE NO. 342-015
dATA ON ASSEMBYY NO. $/ / Z$
$\nabla_{C E(s a t)}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{C E(\text { sat })}=.077 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& \nabla_{\mathrm{BE}(\text { sat })}=\frac{85}{} \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& \text { Gain 242, 242, } 227 \text { (} I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V} \text {) } \\
& V_{B E}=2 \mathrm{Z} V, 4 \mathrm{~V}, x 72 \mathrm{~V} \quad\left(I_{C}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

$V_{C E \text { (sat) }}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CE}(\text { sat })}=\frac{.089 \mathrm{~V}}{} \quad\left(I_{\mathrm{B}}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}\right) \\
& \mathrm{V}_{\mathrm{BE} \text { (sat) }}=.75 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}\right) \\
& \text { Gain }=278,259,234\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right) \\
& \mathrm{V}_{\mathrm{BE}}=.61 \mathrm{~V}, .61 \mathrm{~V}, .61 \mathrm{~V}\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

Breakdown Voltages

$$
\begin{aligned}
& \mathrm{BV}_{\mathrm{EBO}}=9,5 \mathrm{~V} @ \mathrm{I}_{\mathrm{EBO}}=10^{\circ} \mathrm{mA} \\
& \mathrm{BV}_{\mathrm{CBO}}=30 \mathrm{~V} @ \mathrm{I}_{\mathrm{CBO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\text {CEO }}=21 \mathrm{~V} \text { © } \mathrm{I}_{\mathrm{CEO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\text {CES }}=21 \mathrm{~V} \text { © } \mathrm{I}_{\mathrm{CES}}=10 \mathrm{~mA}
\end{aligned}
$$

Leakage Currents

$$
\begin{aligned}
& I_{\text {EBO }}=112 \mathrm{~mA} @ V_{E B O}=4 \mathrm{~V} \\
& I_{C B O}=0,7 \mathrm{~mA} @ V_{C B O}=20 \mathrm{~V} \\
& I_{C E O}=8,0 \mathrm{~mA} @ V_{C E O}=20 \mathrm{~V} \\
& I_{\text {CES }}=2,5 \mathrm{~mA} @ V_{C E S}=20 \mathrm{~V}
\end{aligned}
$$

Switching Time

$$
\begin{aligned}
t_{d}+t_{r}=\ldots \mu s, t_{s}=\ldots \mu s, t_{f}= & \mu s \\
\text { Total Switching Time }=\ldots I_{C} & =75 \mathrm{~A}, I_{B}=5 \mathrm{~A}, \\
V_{B E} & =-1.5 \mathrm{~V} \text {. on turn-C.-. }
\end{aligned}
$$

HIGH POWER, LOW SATURATION VOLTAGE

SILICON SWITCHING TRANSISTOR

PER: JET PROPULSION LABORATORY ENGINEERING NOTE NO. 342-015
data on assembly no. $/ / 8$
$\nabla_{C E(s a t)}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{C E(s a t)}=\frac{.073}{} \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& V_{B E}(\text { sat }) \\
& =\frac{.86}{} \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right)
\end{aligned}
$$

Gain 288, 234, 312 ($\left.I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right)$
$V_{B E}=.7 \mathrm{~V}, \ldots \mathrm{~V}, .73 \mathrm{~V} \quad\left(\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)$
$V_{C E(s a t)}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{array}{ll}
V_{C E(\text { sat })}=\frac{.087 V}{.76} V & \left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
V_{B E(\text { sat })}=2 & \left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right)
\end{array}
$$

Gain $=312,326,288\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 V\right)$

Breakdown Voltages
$B V_{E B O}=13 \mathrm{~V} @ I_{\text {ECO }}=10 \mathrm{~mA}$
$B V_{C B O}=36 \quad V$ © $I_{C B O} 10 \mathrm{~mA}$
$\mathrm{BV}_{\text {CEO }}=23 \mathrm{~V}$ © $I_{\text {CEO }}=10 \mathrm{~mA}$
$\mathrm{BV}_{\text {CBS }}=22, ~ V$ © $I_{\text {CDS }}=10 \mathrm{~mA}$
Leakage Currents

$$
\begin{aligned}
& I_{\text {BO }}=1,3 \mathrm{~mA} \odot V_{E B O}=4 \mathrm{~V} \\
& I_{C B O}=0,5 \mathrm{~mA} \odot V_{C B O}=20 \mathrm{~V} \\
& I_{\text {CEO }}=3,2 \mathrm{~mA} \& V_{C E O}=20 \mathrm{~V} \\
& I_{\text {ES }}=3,2 \mathrm{~mA} @ V_{C E S}=20 \mathrm{~V}
\end{aligned}
$$

Switching Time

$t_{d}+t_{s}=\ldots \mu s, t_{s}=\ldots \mu s, t_{f}=\ldots \quad \mu s$
Total Switching Time $=$ \qquad $\mu \mathrm{B}\left(\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=5 \mathrm{~A}\right.$, $\nabla_{B E}=-1.5 V$ on turnoff)

HIGH POWER, LOW SATURATION VOLTAGE

SILICON SWITCHING TRANSISTOR

PER: JET PROPULSION LABORATORY ENGINEERING NOTE NO. 342-015
data on assembly no. $/ 19$

$$
\begin{aligned}
& \nabla_{C E(s a t)} \text { and Gain Measurements at } 25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \\
& V_{C E(s a t)}=\frac{0.07 / V}{V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& \nabla_{B E} \text { (sat) }=990 \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& \text { Gain } 312,300,326\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right) \\
& V_{B E}=70 \quad \mathrm{~V}, 2 \mathrm{Z} \mathrm{~V}, .72 \mathrm{~V} \quad\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

$\mathbf{V}_{\mathrm{CE} \text { (sat) }}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
$V_{C E(s a t)}=.081 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right)$
$\dot{v}_{\text {BE (sat) }}=80 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right)$
Gain $=4441,4 / 7,292\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right)$
$\mathrm{V}_{\mathrm{BE}}=.60 \mathrm{~V}, \underline{0.61} \mathrm{~V}, \underline{06} \mathrm{~V}\left(\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right.$,
Breakdown Voltages
$B V_{E B O}=\frac{1 l}{} V$ (3) $I_{E B O}=10 \mathrm{~mA}$
$B V_{C B O}=34 V E I_{C B O}=10 \mathrm{~mA}$
$\mathrm{BV}_{\text {CEO }}=22 \mathrm{~V}$ © $\mathrm{I}_{\text {CEO }}=10 \mathrm{~mA}$
$B V_{C E S}=23 V\left(3 I_{C E S}=10 \mathrm{~mA}\right.$

Leakage Currents

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{BBO}}=0.7 \mathrm{~mA} \text { © } \mathrm{V}_{\mathrm{EBO}}=4 \mathrm{~V} \\
& x_{C B O}=1,2 \mathrm{~mA} \text { © } \mathrm{V}_{\mathrm{CBO}}=20 \mathrm{~V} \\
& I_{\text {CEO }}=5,0 \mathrm{~mA} \text { © } \mathrm{V}_{\text {CEO }}=20 \mathrm{~V} \\
& I_{\text {ES }}=5,0 \mathrm{~mA} \text { © } V_{\text {ES }}=20 \mathrm{~V}
\end{aligned}
$$

Switching Time
\qquad $\mu 8, t_{f}=$ \qquad $\mu 8$

Total Switching Time $=$ \qquad $\mu \mathrm{s}\left(I_{C}=75 \mathrm{~A}, I_{B}=5 \mathrm{~A}\right.$,
$\nabla_{B E}=-1.5 V$ on turnoff)

HIGH POWER, LOW SATURATION VOLTAGE
SHIICON SWITCHING TRANSISTOR

PER: JET PROPULSION LABORATORY ENGINEERING NOTE NO. 342-015
data on assembly no. 120
$\nabla_{C E(s a t)}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
$V_{C E(s a t)}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{array}{ll}
V_{C E(s a t)}=\frac{.074}{} v & \left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
V_{\mathrm{BE} \text { (sat) }}=73 \\
\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right)
\end{array}
$$

$$
\text { Gain }=326,288,288\left(I_{C}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
$$

$$
V_{B E}=.61 \mathrm{~V}, .61 \mathrm{~V}, .62 \mathrm{~V}\left(\mathrm{I}_{\mathrm{C}}=.75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
$$

Breakdown Voltages

Leakage Currents

Switching Time

Cotal Skitching Time $=$
$\mu 8, t_{f}=$
$\mu=$
$\mu 8$ ($_{C}=75 \mathrm{~A}, I_{B}=5 \mathrm{~A}$

$$
\nabla_{B E}=-1.5 v \text { on turn-off) }
$$

$$
\begin{aligned}
& I_{E B O}=\angle O_{1} / \mathrm{mA} \text { © } \mathrm{V}_{\mathrm{EBO}}=4 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{CBO}}=\angle \mathrm{O}_{1} / \mathrm{mA} B \mathrm{~V}_{\mathrm{CBO}}=20 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{CEO}}=\leq 0.1 \mathrm{~mA} \text { © } \mathrm{V}_{\mathrm{CEO}}=20 \mathrm{~V} \\
& I_{C E S}=\left\langle 0.1 \mathrm{~mA} \otimes \mathrm{~V}_{\mathrm{CES}}=20 \mathrm{~V}\right.
\end{aligned}
$$

$$
\begin{aligned}
& B V_{\text {EBO }}=\angle L L V B I_{\text {EBO }}=10^{\circ} \mathrm{mA} \\
& \mathrm{BV}_{\mathrm{CBO}}=\geq 100 \mathrm{~V} \text { © } \mathrm{I}_{\mathrm{CBO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CEO}}=80 \mathrm{~V} \text { © } \mathrm{I}_{\mathrm{CEO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CES}}=94 \mathrm{VE} \mathrm{I}_{\mathrm{CES}}=10 \mathrm{~mA}
\end{aligned}
$$

$$
\begin{aligned}
& v_{C E(s a t)}=\underline{.072} \mathrm{~V} \quad\left(I_{B}=5 A, I_{C}=75 \mathrm{~A}\right) \\
& \nabla_{B E \text { (sat) }}=.82 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& \text { Gain } 257,259,259\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right) \\
& V_{B E}=, 7 / \mathrm{V}, \underline{2} \mathrm{~V} \mathrm{~V}, \underline{2} \mathrm{~V} \mathrm{~V} \quad\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

HIGH POWER, LOW SATURATION VOLTAGE

SILICON SWITCHING TRANSISTOR

PER: JET PROPULSION LABORATORY ENGINEERING NOTE NO. 342-015

DATA ON ASSEMBLY NO. 121

$\nabla_{C E(\text { sat) }}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{C E(\text { sat })}=\frac{060}{} \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& V_{B E(\text { sat })}=8 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& \text { Gain } 250,242,242\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right) \\
& V_{B E}=272 \mathrm{~V}, .22 \mathrm{~V}, .72 \mathrm{~V} \quad\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

$V_{C E(s a t)}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{C E(s a t)}=.08 / \mathrm{V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& V_{B E} \text { (sat) }=74 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& \text { Gain }=250,242,242\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 V\right) \\
& \mathrm{V}_{\mathrm{BE}}=0.6 \mathrm{~V}, \underline{6 l} \mathrm{~V}, .62 \mathrm{~V}\left(\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

Breakdown Voltages

$$
\begin{aligned}
& B V_{E B O}=125 \mathrm{~V} \text { © } I_{E B O}=10 \mathrm{~mA} \\
& B V_{C B O}=100 \mathrm{~V} @ \mathrm{I}_{\mathrm{CBO}}=10 \mathrm{~mA} \\
& B V_{C E O}=42 \mathrm{~V} @ \mathrm{I}_{\mathrm{CEO}}=10 \mathrm{~mA} \\
& B V_{C E S}=55 \mathrm{~V} \text { (C } \mathrm{I}_{\mathrm{CES}}=10 \mathrm{~mA}
\end{aligned}
$$

Leakage Currents

$$
\begin{aligned}
& I_{B B O}=\partial_{1} \mathrm{~mA} \odot V_{E B O}=4 \mathrm{~V} \\
& \mathbf{x}_{\mathrm{CBO}}=0.2 \mathrm{~mA} \text { © } \mathrm{V}_{\mathrm{CBO}}=20 \mathrm{~V} \\
& I_{\text {CEO }}=0,2 \text { MA @ } V_{\text {CEO }}=20 \mathrm{~V} \\
& I_{\text {ES }}=0.2 \mathrm{~mA} @ V_{\text {CESs }}=20 \mathrm{~V}
\end{aligned}
$$

Switching Time

$$
t_{d}+t_{x}=\mu \sin t_{s}=\ldots \mu s
$$

Total Switching Time $a \ldots X_{C}=75 A, I_{B}=5 A$,

$$
V_{B E}=-1.5 V \text { on turnooff) }
$$

HIGH POWER, LOW SATURATION VOLTAGE

SILICON SWITCHING TRANSISTOR

PER: JET PROPULSION LABORATORY ENGINEERING NOTE NO. 342-015

DATA ON ASSEMBLY NO. $\angle 2$
$\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
$V_{C E \text { (sat })}=\frac{.069}{81} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right)$
$V_{B E}$ (sat) $=81 . V \quad\left(I_{B}=5 A, I_{C}=75 \mathrm{~A}\right)$
Gain $163,160,150\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right)$
$V_{B E}=.73 \mathrm{~V}, .74 \mathrm{v}, .74 \mathrm{~V} \quad\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2\right.$.
$V_{C E(s a t)}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{C E(\text { sat })}=\frac{.094}{} \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& V_{B E(\text { sat })}=160, \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& \text { Gain }=153,150\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right) \\
& V_{B E}=.64 \mathrm{~V}, .64 \mathrm{~V}, .64 \mathrm{~V}\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

Breakdown Voltages

$$
\begin{aligned}
& \mathrm{BV}_{\text {EDO }}=\frac{12}{1 / 0} \mathrm{~V} @ I_{E B O}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CBO}}=10 \mathrm{I}_{\mathrm{CBO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CEO}}=\frac{95}{} \mathrm{~V} @ \mathrm{I}_{\mathrm{CEO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CES}}=97 \mathrm{~V} @ \mathrm{I}_{\mathrm{CES}}=10 \mathrm{~mA}
\end{aligned}
$$

Leakage Currents

$$
\begin{aligned}
& I_{E B O}=O H \mathrm{~mA} \odot V_{E B O}=4 \mathrm{~V} \\
& I_{C B O}=<O_{1} \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CBO}}=20 \mathrm{~V} . \\
& I_{\text {CEO }}=0.7 \mathrm{~mA} @ \mathrm{~V}_{\text {CEO }}=20 \mathrm{~V} \\
& I_{C E S}=\angle O, 1 \mathrm{~mA} \text { © } \mathrm{V}_{\text {CiS }}=20 \mathrm{~V}
\end{aligned}
$$

Switching Time
$t_{d}+t_{r}=$ \qquad $\mu \mathrm{s}, \mathrm{t}_{8}=$ \qquad $\mu s, t_{f}=$ \qquad Hs
Total Switching Time $=$ \qquad $\mu \mathrm{B}\left(I_{C}=75 \mathrm{~A}, I_{B}=5 \mathrm{~A}\right.$,
$V_{B E}=-1.5 V$ on turnoff)

HIGH POWER, LON SATURATION VOLTAGE
SILICON SWITCHING TRANSISTOR

PER: JET PROPULSION LABORATORY ENGINEERING NOTE NO. 342-015
data on assembly no. 123
${ }^{{ }^{C E}}$ (sat) and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{C E(s a t)}=.073 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& v_{B E} \text { (sat) }=8 / \mathrm{V} \quad\left(I_{B}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}\right) \\
& \text { Gain } 183,178,167\left(x_{C}=75 \mathrm{~A}, v_{C E}=4,3,2 \mathrm{~V}\right) \\
& V_{B E}=73 \mathrm{~V}, .73 \mathrm{~V}, .73 \mathrm{~V} \quad\left(\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

$V_{C E}$ (sat) and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{C E(s a t)}=\frac{095}{} \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{\mathrm{C}}=75 \mathrm{~A}\right) \\
& \mathrm{V}_{\mathrm{BE}(\mathrm{sat})}=\frac{.75}{} \mathrm{~V} \quad\left(I_{\mathrm{B}}=5 \mathrm{~A}, I_{\mathrm{C}}=75 \mathrm{~A}\right) \\
& \text { Gain }=153,147,147\left(I_{\mathrm{C}}=75 \mathrm{~A}, V_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right) \\
& \mathrm{V}_{\mathrm{BE}}=.63 \mathrm{~V}, .63 \mathrm{~V}, .64 \mathrm{~V}\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

Breakdown Voltages

$$
\begin{aligned}
& B V_{E B O}=10 \quad V e I_{E B O}=10^{\circ} \mathrm{mA} \\
& \mathrm{BV}_{\mathrm{CBO}}=70 \quad \mathrm{~V} @ \mathrm{I}_{\mathrm{CBO}}=10 \mathrm{~mA} \\
& { }^{B V} \mathrm{CEO}=\frac{60}{60} \text { V © } I_{\mathrm{CEO}}=10 \mathrm{~mA} \\
& B V_{C E S}=60 V \text { © } I_{\text {ES }}=10 \mathrm{~mA}
\end{aligned}
$$

Leakage Currents

$$
\begin{aligned}
& I_{E B O}=0.5 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{EBO}}=4 \mathrm{~V} \\
& x_{\mathrm{CBO}}=\frac{0.1}{} \mathrm{~mA} \Theta \mathrm{~V}_{\mathrm{CBO}}=20 \mathrm{~V} \\
& I_{\text {CEO }}=0.2 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CEO}}=20 \mathrm{~V} \\
& I_{\text {CE }}=\leq 0.1 \mathrm{~mA} @ \mathrm{~V}_{\text {MES }}=20 \mathrm{~V}
\end{aligned}
$$

Switching Time

$$
\begin{aligned}
t_{d}+t_{r}=\ldots \mu s, t_{s}=\ldots \mu s, \\
\text { Total Switching Time }=\ldots
\end{aligned} \quad \begin{aligned}
\mu s\left(I_{C}\right. & =75 \mathrm{~A}, I_{B}=5 \mathrm{~A}, \\
v_{B E} & =-1.5 \mathrm{~V} \text { on turnoff })
\end{aligned}
$$

HIGH POWER, LON SATURATION VOLTAGE
SILICON SWITCHING TRANSISTOR
PER: JET PROPULSION LABORATORY ENGINEERING NOTE NO. 342-015

DATA ON ASSEMBLY NO. 124
$\nabla_{\text {CE (sat) }}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
$V_{C E(s a t)}=\frac{.074}{21} V \quad\left(I_{B}=5 A, I_{C}=75 \mathrm{~A}\right)$
$V_{B E}$ (sat) $=.81 \quad v \quad\left(I_{B}=5 A, I_{C}=75 \mathrm{~A}\right)$
$\operatorname{Gain} H 2,136,134\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right)$
$V_{B E}=.73 \mathrm{~V}, .73 \mathrm{~V}, .73 \mathrm{~V} \quad\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right)$
$V_{\text {CE (sat) }}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
V_{C E(s a t)}=.089 V \quad\left(I_{B}=5 A, I_{C}=75 \mathrm{~A}\right)
$$

$$
V_{B E}(\text { sat })=75 \quad \text { V } \quad\left(I_{B}=5 A, I_{C}=75 A\right)
$$

$$
\text { Gain } \left.=\frac{136}{1}, 132,127, I_{C}=75 \mathrm{~A}, V_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
$$

$$
v_{B E}=.63 \mathrm{v}, .63 \mathrm{v}, .63 \mathrm{v}\left(\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{v}_{\mathrm{CE}}=4,3,2 \mathrm{v},\right.
$$

Breakdown Voltages

Leakage Currents

$$
\begin{aligned}
& I_{\text {EDO }}=2.0 \mathrm{~mA} @ \mathrm{~V}_{E B O}=4 \mathrm{~V} \\
& I_{\mathrm{CBO}}=0.2 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CBO}}=20 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{CEO}}=0.2 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CEO}}=20 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{CES}}=0 \mathrm{M} \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CES}}=20 \mathrm{~V}
\end{aligned}
$$

Switching Time

$$
\begin{aligned}
& t_{d}+t_{r}=\ldots \mu s, t_{B}=\ldots \mu 8, t_{x} \\
& \text { Total Switching Time }=\ldots \mu 8\left(I_{c}=75 A, I_{B}=5 A,\right. \\
&\left.V_{B E}=-1.5 V \text { on turnoff }\right)
\end{aligned}
$$

$$
\begin{aligned}
& B V_{E B O}=\frac{10}{95} V I_{E R O}=10 \mathrm{~mA} \\
& B V_{\mathrm{CBO}}=95 \mathrm{~V} \text { (3) } \mathrm{I}_{\mathrm{CBO}}=10 \mathrm{~mA} \\
& B V_{C E O}=80 \quad V \text { © } I_{C E O}=10 \mathrm{~mA} \\
& B V_{C E S}=80 \quad \mathrm{~V} \in \mathrm{I}_{\mathrm{CES}}=10 \mathrm{~mA}
\end{aligned}
$$

PER: JET PROPULSION LABORATORY

DATA ON ASSEMBLY NO. 225
${ }^{7} \mathrm{CE}(\mathrm{sat})$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{array}{ll}
V_{C E(\text { sat })}=\frac{.091}{} \mathrm{~V} & \left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
V_{B E(\text { sat })}=\frac{82}{} \mathrm{~V} & \left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right)
\end{array}
$$

- Gain $132,122,12 S\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right)$
$V_{B E}=2.75 \mathrm{v}, 75 \mathrm{~V}, .75 \mathrm{~V} \quad\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)$
$\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CE}(\mathrm{sat})}=\frac{125 \mathrm{~V}}{\mathrm{~V}_{\mathrm{BE}(\mathrm{sat})}=26 \mathrm{~V} \quad\left(I_{\mathrm{B}}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}\right)} \\
& \mathrm{Gain}=110,106,101\left(I_{\mathrm{B}}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}\right) \\
& \mathrm{V}_{\mathrm{BE}}=-66 \mathrm{~V},-66 \mathrm{~V}, .66 \mathrm{~V}\left(\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3, \dot{\mathrm{~V}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

Breakdown Voltages

$$
\begin{aligned}
& B V_{E B O}=9 \quad V @ I_{E B O}=10 \mathrm{~mA} \\
& B V_{C B O}=120 V @ I_{C B O}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CEO}}=1 / Q \mathrm{~V} \text { © } I_{\text {CEO }}=10 \mathrm{~mA} \\
& B V_{C E S}=110 V @ I_{C E S}=10 \mathrm{~mA}
\end{aligned}
$$

Leakage Currents

$$
\begin{aligned}
& I_{E B O}=0.5 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{EBO}}=4 \mathrm{~V} \\
& I_{\mathrm{CBO}}=0.2 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CBO}}=20 \mathrm{~V} \\
& I_{\mathrm{CEO}}=1.5 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CEO}}=20 \mathrm{~V} \\
& I_{\mathrm{CES}}=0.3 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CES}}=20 \mathrm{~V}
\end{aligned}
$$

Switching Time
$t_{d}+t_{x}=\ldots \mu s, t_{s}=\ldots \mu s, t_{f}=\ldots \quad \mu s$
Total Switching Time $=$ \qquad $\begin{aligned} \mu s\left(I_{C}\right. & =75 \mathrm{~A}, I_{B}=5 \mathrm{~A}, \\ V_{B E} & =-1.5 \mathrm{~V} \text { on turnoff) }\end{aligned}$

high power, low saturation voltage

SILICON SWITCHING TRANSISTOR

PER: JET PROPULSION LABORATORY ENGINEERING NOTE NO. 342-015
data on assembly no. 26
$\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& v_{C E(\text { sat })}=-104 \mathrm{~V} \quad\left(I_{\mathrm{B}}=5 \mathrm{~A}, I_{\mathrm{C}}=75 \mathrm{~A}\right) \\
& \mathrm{v}_{\mathrm{BE}(\mathrm{sat})}=.81 \mathrm{~V} \quad\left(I_{\mathrm{B}}=5 \mathrm{~A}, I_{\mathrm{C}}=75 \mathrm{~A}\right) \\
& \mathrm{Gain}-163,-160,156\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right) \\
& \mathrm{v}_{\mathrm{BE}}=072 \mathrm{~V}, 73 \mathrm{~V}, .73 \mathrm{~V} \quad\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{v}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

$\mathrm{V}_{\mathrm{CE}(\text { sat })}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
$V_{C E(s a t)}=-2 / 17 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}\right)$
$V_{B E(\text { sat })}=\frac{.76}{} V \quad\left(I_{B}=5 A, I_{C}=75 \mathrm{~A}\right)$
Gain $=351,268,220\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right)$
$\mathrm{v}_{\mathrm{BE}}=62 \mathrm{~V}, .63 \mathrm{~V}, .63 \mathrm{~V}\left(\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{v}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)$
Breakdown Voltages

$$
\begin{aligned}
& \mathrm{BV}_{\mathrm{EBO}}=6.8 \mathrm{~V} \text { © } \mathrm{I}_{\mathrm{EBO}}=10 . \mathrm{mA} \\
& \mathrm{BV}_{\mathrm{CBO}}=43 \mathrm{~V} @ I_{\mathrm{CBO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CEO}}=38 \mathrm{~V} @ \mathrm{I}_{\mathrm{CEO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CES}}=38 \mathrm{~V} \text { © } \mathrm{I}_{\mathrm{CES}}=10 \mathrm{~mA}
\end{aligned}
$$

Leakage Currents

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{EBO}}=2.0 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{EBO}}=4 \mathrm{v} \\
& \mathrm{I}_{\mathrm{CBO}}=\leq \mathrm{O}_{\mathrm{I}} 1 \mathrm{~mA} \text { @ } \mathrm{v}_{\mathrm{CBO}}=20 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{CEO}}=\left\langle\mathrm{O}_{1} I \mathrm{~mA} \text { © } \mathrm{V}_{\mathrm{CEO}}=20 \mathrm{~V}\right. \\
& I_{C E S}=\angle 0.1 \mathrm{~mA} \text { © } \mathrm{v}_{\mathrm{CES}}=20 \mathrm{~V}
\end{aligned}
$$

Switching Time
$t_{d}+t_{r}=3,9 \mu \mathrm{~s}, t_{s}=1,8 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{f}}=5,7 \mu \mathrm{~s}$
Total Switching Time $=11,4 \mu \mathrm{~s}\left(I_{C}=75 \mathrm{~A}, I_{B}=5 \mathrm{~A}\right.$,

$$
\nabla_{B E}=-1.5 \mathrm{~V} \text {. on turn-off) }
$$

HIGH POWER, LOW SATURATION VOLTAGE
SILICON SWITCHING TRANSISTOR

PER: JET PROPULSION LABORATORY ENGINEERING NOTE NO. 342-015
data on assembly no. 12$]$
$V_{C E(\text { sat })}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CE}(\mathrm{sat})}=\frac{.105 \mathrm{~V}}{} \mathrm{~V} \quad\left(I_{\mathrm{B}}=5 \mathrm{~A}, I_{\mathrm{C}}=75 \mathrm{~A}\right) \\
& \nabla_{\mathrm{BE}(\mathrm{sat})}=\frac{.83}{} \mathrm{~V} \quad\left(I_{\mathrm{B}}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& \mathrm{Gain}-96,92, \frac{96}{}\left(I_{C}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right) \\
& \mathrm{V}_{\mathrm{BE}}=.76 \mathrm{~V}, .76 \mathrm{~V}, .76 \mathrm{~V} \quad\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

$\nabla_{C E}$ (sat) and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

Breakdown Voltages

$$
\begin{aligned}
& \mathrm{BV}_{\mathrm{EBO}}=\frac{11}{82} \mathrm{~V} @ \mathrm{I}_{\mathrm{EBO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CBO}}=\frac{10}{}=\mathrm{I}_{\mathrm{CBO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CEO}}=66 \mathrm{~V} @ \mathrm{I}_{\mathrm{CEO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CES}}=70 \mathrm{~V} @ \mathrm{I}_{\mathrm{CES}}=10 \mathrm{~mA}
\end{aligned}
$$

Leakage Currents

$$
\begin{aligned}
& I_{\text {EBO }}=0.3 \mathrm{~mA} @ \mathrm{~V}_{E B O}=4 \mathrm{~V} \\
& I_{\mathrm{CBO}}=\angle 0,1 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CBO}}=20 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{CEO}}=\angle 0,1 \mathrm{~mA} \text { \& } \mathrm{V}_{\mathrm{CEO}}=20 \mathrm{~V} \\
& I_{\mathrm{CES}}=\angle 0.1 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CES}}=20 \mathrm{~V}
\end{aligned}
$$

Switching Time

$$
t_{d}+t_{r}=3,9 \mu s, t_{s}=\frac{1.6}{} \mu \mathrm{~s}, \mathrm{t}_{\mathrm{f}}=\frac{5.2}{7} \mu \mathrm{~s}
$$

$$
\text { Total Switching Time }=10,7 \mu s\left(I_{C}=75 \mathrm{~A}, I_{B}=5 \mathrm{~A}\right. \text {, }
$$

$$
V_{B E}=-1.5 V \text { on turn-off) }
$$

$$
\begin{aligned}
& V_{C E(s a t)}=\frac{156}{1 /} \mathrm{V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& V_{B E} \text { (sat) }=1.16 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A} ; I_{C}=75 \mathrm{~A}\right) \\
& \text { Gain }=76,72, \quad 68\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right) \\
& V_{B E}=276 \mathrm{~V}, \ldots 5 \mathrm{v} \text {, } 66 \mathrm{~V}\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

PER: JET PROPULSION LABORATORY ENGINEERING NOTE NO. 342-015

DATA ON ASSEMBLY NO. 128
$\mathbf{V}_{C E(s a t)}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{array}{ll}
V_{C E(s a t)}=\frac{.093}{} \mathrm{~V} & \left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
V_{B E \text { (sat })}=.8 / & \left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right)
\end{array}
$$

$$
\operatorname{Gain}-\frac{95}{74}, \frac{91}{75}, \frac{90}{75}\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{v}\right)
$$

$$
\mathrm{v}_{\mathrm{BE}}=, .74 \mathrm{v}, .75 \mathrm{v}, .75 \mathrm{~V} \quad\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
$$

$V_{C E(\text { sat })}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

Breakdown Voltages

Leakage Currents

Switching Time

$$
\begin{aligned}
& \text { total Switching Time }=11.8 ; \mu s I_{C}=75 \mathrm{~A}, I_{B}=5 \mathrm{~A} \text {, } \\
& V_{B E}=-1.5 V \text { on turnoff; }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{EBO}}=1,4 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{EBO}}=4 \mathrm{~V} \\
& x_{\text {CoO }}=\leq O_{1, L} \mathrm{~mA} @ \mathrm{v}_{\text {CoO }}=20 \mathrm{~V} \\
& I_{\text {CEO }}=\angle O_{1} 1 \mathrm{~mA} \text { © } \mathrm{v}_{\text {CEO }}=20 \mathrm{~V} \\
& I_{\text {CEn }}=\angle 0.1 \text { mA © } \mathrm{V}_{\text {ES }}=20 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& B V_{E B O}=9.8 v e I_{E B O}=10 \mathrm{~mA} \\
& B V_{C B O}=35 \quad V @ I_{C B O}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CEO}}=\frac{32}{32} \mathrm{~V} \Theta \mathrm{I}_{\mathrm{CEO}}=10 \mathrm{~mA} \\
& B V_{C E S}=32 \quad V @ I_{C E S}=10 \mathrm{~mA}
\end{aligned}
$$

$$
\begin{aligned}
& V_{C E(s a t)}=134 V \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Gain }=77,74,73\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right) \\
& V_{B E}=63 \mathrm{~V}, 63 \mathrm{~V}, 263 \mathrm{~V}\left(\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V},\right.
\end{aligned}
$$

HIGH POWER, LOW SATURATION VOLTAGE

SILICON SWITCHING TRANSISTOR

PER: JET PROPULSION LABORATORY ENGINEERING NOTE NO. 342-015

DATA ON ASSEMBLY NO. 129
$\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

Breakdown Voltages

$$
\begin{aligned}
& \mathrm{BV}_{\mathrm{EBO}}=\frac{95}{} \mathrm{~F} \mathrm{~V} \Theta \mathrm{I}_{\mathrm{EBO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CBO}}=28 \mathrm{~V} @ \mathrm{I}_{\mathrm{CBO}}=10 \mathrm{~mA} \\
& B V_{\mathrm{CEO}}=25 \mathrm{~V} @ \mathrm{I}_{\mathrm{CEO}}=10 \mathrm{~mA} \\
& B V_{\mathrm{CES}}=25 \mathrm{~V} @ \mathrm{I}_{\mathrm{CES}}=10 \mathrm{~mA}
\end{aligned}
$$

Leakage Currents

$$
\begin{aligned}
& I_{E B O}=1.6 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{EBO}}=4 \mathrm{~V} \\
& I_{\mathrm{CBO}}=2,0 \mathrm{~mA} \Theta \mathrm{~V}_{\mathrm{CBO}}=20 \mathrm{~V} \\
& I_{\mathrm{CEO}}=6.0 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CEO}}=20 \mathrm{~V} \\
& I_{\mathrm{CES}}=6.0 \mathrm{~mA} \Theta \mathrm{~V}_{\mathrm{CES}}=20 \mathrm{~V}
\end{aligned}
$$

Switching Time

$$
\begin{aligned}
& t_{d}+t_{r}=\ldots \mu, t_{s}=\ldots \quad \mu 8, t_{f}=\ldots \quad \mu \mathrm{s} \\
& \text { Total Switching Time }=\ldots \mathrm{L}\left(I_{C}=75 \mathrm{~A}, I_{B}=5 \mathrm{~A},\right.
\end{aligned}
$$

$$
V_{\mathrm{BE}}=-1.5 \mathrm{~V} \text { on turnoff) }
$$

$$
\begin{aligned}
& v_{C E(\text { sat })}=.098 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& V_{B E} \text { (sat) }=0.79 V \quad\left(I_{B}=5 A, I_{C}=75 \mathrm{~A}\right) \\
& \text { Gain }=234,227,203\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right) \\
& V_{B E}=6 / \mathrm{V}, \underline{60} \mathrm{~V}, \underline{60} \mathrm{~V}\left(\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

$$
\begin{aligned}
& V_{C E(s a t)}=10 / V \quad\left(I_{B}=5 A, I_{C}=75 \mathrm{~A}\right) \\
& V_{B E \text { (sat) }}=82 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& \text { Gain } 100,97,95\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right) \\
& V_{B E}=.75 \mathrm{~V}, .25 \mathrm{~V}, .76 \mathrm{~V} \quad\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

PER: JET PROPULSION LABORATORY ENGINEERING NOTE NO. 342-015
data on assembly no. $\angle 30$
$\nabla_{C E(s a t)}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{C E(\text { sat })}=.077 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& \mathrm{V}_{\mathrm{BE}(\text { sat })}=29 \mathrm{~V} \quad\left(I_{\mathrm{B}}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}\right) \\
& \mathrm{Gain} 214,-187,-\left(I_{\mathrm{C}}=75 \mathrm{~A}, V_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right) \\
& \mathrm{V}_{\mathrm{BE}}=070 \mathrm{~V}, .2 \mathrm{~V},-\mathrm{V} \quad\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

$\mathbf{V}_{\mathrm{CE} \text { (sat) }}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{C E(\text { sat })}=.099 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& V_{B E(\text { sat })}=24 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& \text { Gain }=147,144,147\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right) \\
& V_{B E}=.61 \mathrm{~V}, .61 \mathrm{~V}, .62 \mathrm{~V}\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

Breakdown Voltages

$$
\begin{aligned}
& \mathrm{BV}_{\mathrm{EBO}}=12 \mathrm{~V} @ \mathrm{I}_{\mathrm{EBO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CBO}}=55 \mathrm{~V} @ \mathrm{I}_{\mathrm{CBO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CEO}}=\frac{42}{} \mathrm{~V} @ \mathrm{I}_{\mathrm{CEO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CES}}=42 \mathrm{~V} \odot \mathrm{I}_{\mathrm{CES}}=10 \mathrm{~mA}
\end{aligned}
$$

Leakage Currents

$$
\begin{aligned}
& I_{\text {BO }}=0,6 \mathrm{~mA} @ V_{E B O}=4 \mathrm{~V} \\
& I_{C B O}=\angle 0,1 \mathrm{~mA} @ V_{C B O}=20 \mathrm{~V} \\
& I_{C E O}=\angle 0,1 \mathrm{~mA} @ V_{C E O}=20 \mathrm{~V} \\
& I_{C E S}=\angle 0,1 \mathrm{~mA} @ V_{C E S}=20 \mathrm{~V}
\end{aligned}
$$

Switching Time

$$
t_{d}+t_{r}=\ldots \mu s, t_{s}=\ldots \mu s, t_{f}=\ldots \mu s
$$

Total Switching Time $=\ldots \quad \mu s\left(I_{C}=75 \mathrm{~A}, I_{B}=5 \mathrm{~A}\right.$,

$$
\nabla_{B E}=-1.5 V \text { on turnoff) }
$$

HIGH POWER, LOW SATURATION VOLTAGE

SILICON SWITCHING TRANSISTOR

PER: JET PROPULSION LABORATORY ENGINEERING NOTE NO. $342=015$
data on assembly no. $\langle/$
$\nabla_{\mathrm{CE}(\mathrm{sat})}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
$\mathbf{v}_{\mathrm{CE}(\mathrm{sat})}=.078 \mathrm{~V} \quad\left(\mathrm{I}_{\mathrm{B}}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}\right)$
$\nabla_{B E(\text { sat })}=.81 \quad V \quad\left(I_{B}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}\right)$
Gain $110,107,104\left(I_{c}=75 \mathrm{~A}, v_{C E}=4,3,2 \mathrm{~V}\right)$
$\mathrm{v}_{\mathrm{BE}}=.73 \mathrm{v}, 74 \mathrm{v}, .73 \mathrm{~V} \quad\left(\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)$
$\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}{ }^{\text {and Gain Measurements at }} 100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
$V_{C E(s a t)}=\frac{1 / 0}{} \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right)$
$\nabla_{B E(\text { sat })}=\frac{.72}{} V \quad\left(I_{B}=5 A, I_{C}=75 \mathrm{~A}\right)$.
Gain $=94,94,94\left(I_{C}=75 \mathrm{~A}, v_{C E}=4,3,2 \mathrm{~V}\right)$
$\mathrm{v}_{\mathrm{BE}}=160 \mathrm{~V}, \underline{0.60 \mathrm{~V}, .6 \mathrm{~L}} \mathrm{~V}\left(\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{v}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)$
Breakdown Voltages
$\mathrm{BV}_{\mathrm{EBO}}=\frac{10}{65} \mathrm{~V}$ © $\mathrm{I}_{\mathrm{EBO}}=10 \mathrm{~mA}$
$\mathrm{BV}_{\mathrm{CBO}}=65 \mathrm{~V}$ © $\mathrm{I}_{\mathrm{CBO}}=10 \mathrm{~mA}$
$\mathrm{BV}_{\mathrm{CEO}}=54 \mathrm{~V} \in \mathrm{I}_{\mathrm{CEO}}=10 \mathrm{~mA}$
$\mathrm{BV}_{\mathrm{CES}}=54 \mathrm{~V}$ © $\mathrm{I}_{\text {LES }}=10 \mathrm{~mA}$

Leakage Currents

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{EBO}}=2.0 \mathrm{~mA} \in \mathrm{~V}_{\mathrm{EBO}}=4 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{CBO}}=\angle 0,1 \mathrm{~mA} \odot \mathrm{~V}_{\mathrm{CBO}}=20 \mathrm{~V} \\
& I_{\text {CEO }}=\angle 0,1 \mathrm{~mA} \text { © } \mathrm{V}_{\text {CEO }}=20 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{CES}}=\angle \mathrm{O}_{1} \mathrm{~mA} \text { © } \mathrm{V}_{\mathrm{CES}}=20 \mathrm{~V}
\end{aligned}
$$

Switching Time

$$
\begin{aligned}
t_{d}+t_{r}=\ldots \mu s, t_{s}=\ldots & \mu s, t_{f} \\
\text { Total Switching Time }=\ldots & \mu s \\
\mu s\left(I_{C}\right. & =75 \mathrm{~A}, I_{B}=5 \mathrm{~A}, \\
V_{B E} & =-1.5 \mathrm{~V} \text { on turnoff })
\end{aligned}
$$

PER: JET PROPULSION LABORATORY ENGINEERING NOTE NO. 342-015

DATA ON ASSEMBLY NO. 122
$\nabla_{C E(s a t)}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{C E(\text { sat })}=\frac{.085}{} \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& V_{B E} \text { (sat) }=\frac{.80}{} \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& \text { Gain } 167,163,-\quad\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right) \\
& V_{B E}=.72 \mathrm{~V}, .72 \mathrm{~V},-\mathrm{V} \quad\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{C E(\text { sat })}=\frac{.093}{} \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& V_{\mathrm{BE}(\mathrm{sat})}=.75 \mathrm{~V} \quad\left(I_{\mathrm{B}}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}\right) \\
& \text { Gain }=167 ; 163,147\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right) \\
& \mathrm{V}_{\mathrm{BE}}=.62 \mathrm{~V}, .62 \mathrm{~V}, .63 \mathrm{~V}\left(I_{C}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

Breakdown Voltages

$$
\begin{aligned}
& B V_{E B O}=\frac{11}{77} \quad V @ I_{E B O}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CBO}}=\frac{77}{1} \mathrm{~V} \text { @ } \mathrm{I}_{\mathrm{CBO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CEO}}=\frac{66}{6} \mathrm{~V} \text { © } \mathrm{I}_{\mathrm{CEO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CES}}=66 \mathrm{~V} \text { © } \mathrm{I}_{\mathrm{CES}}=10 \mathrm{~mA}
\end{aligned}
$$

Leakage Currents

$$
\begin{aligned}
& I_{E B O}=0.6 \mathrm{~mA} \mathrm{©} V_{E B O}=4 \mathrm{~V} \\
& I_{\text {CB }}=\angle 0,1 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CBO}}=20 \mathrm{~V} \\
& I_{\text {CEO }}=\angle O_{1} / \mathrm{mA} @ V_{\text {CEO }}=20 \mathrm{~V} \\
& I_{\text {ES }}=\angle O_{1} 1 \text { mA @ } V_{C E S}=20 \mathrm{~V}
\end{aligned}
$$

Switching Time

$$
\begin{aligned}
& t_{d}+t_{r}=\ldots \mu s, t_{s}=\ldots \mu s, t_{f}=\ldots \quad \mu 8 \\
& \text { Total Switching Time }=\ldots \mu s\left(I_{C}=75 \mathrm{~A}, I_{B}=5 \mathrm{~A}\right. \text {, } \\
& V_{B E}=-1.5 \mathrm{~V} \text {. on turnoff) }
\end{aligned}
$$

HIGH POWER, LOW SATURATION VOLTAGE
SILICON SWITCHING TRANSISTOR

PER: JET PROPULSION LABORATORY ENGINEERING NOTE NO. 342-015

DATA ON ASSEMBLY NO. 23

$\nabla_{C E(s a t)}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{C E(\text { sat })}=-104 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& V_{B E(\text { sat })}=-79 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& \text { Gain } 104,100,-26\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right) \\
& V_{B E}=72 \mathrm{~V}, .72 \mathrm{~V}, 272 \mathrm{~V} \quad\left(I_{C}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

$\nabla_{C E(s a t)}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{C E(s a t)}=-102 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& \nabla_{B E}(\mathrm{sat})=1.7 / \mathrm{V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& \text { Gain }=103,97,94\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right) \\
& V_{B E}=60 \mathrm{~V}, 62 \mathrm{~V}, 63 \mathrm{~V} \cdot\left(\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

Breakdown Voltages

$$
\begin{aligned}
& B V_{E B O}=11 \quad V @ I_{E B O}=10 \mathrm{~mA} \\
& B V_{C B O}=26 \quad V @ I_{C B O}=10 \mathrm{~mA} \\
& B V_{C E O}=23 V \Theta I_{C E O}=10 \mathrm{~mA} \\
& B V_{C E S}=25 V \Theta I_{C E S}=10 \mathrm{~mA}
\end{aligned}
$$

Leakage Currents

$$
\begin{aligned}
& I_{E B O}=\frac{0.1}{} \mathrm{~mA} @ V_{E B O}=4 \mathrm{~V} \\
& I_{C B O}=0.2 \mathrm{~mA} @ V_{C B O}=20 \mathrm{~V} \\
& I_{C E O}=5.0 \mathrm{~mA} @ V_{C E O}=20 \mathrm{~V} \\
& I_{C E S}=0.2 \mathrm{~mA} @ V_{C E S}=20 \mathrm{~V}
\end{aligned}
$$

Switching Time

Total Switching Time $=\ldots \quad \mu s\left(I_{C}=75 \mathrm{~A}, I_{B}=5 A\right.$, BE $=-1.5 \mathrm{~V}$ on turn-off)
high power, LON saturation voltage
SILICON SWITCHING TRANSISTOR

PER: JET PROPULSION LABORATORY mon NE ERING NOTE NO. 342-015
data on assembly no. 134
$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{C E} \text { (sat) }=102 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& V_{\mathrm{BE} \text { (sat) }}=.81 \mathrm{~V} \quad\left(I_{\mathrm{B}}=5 \mathrm{~A}, I_{\mathrm{C}}=75 \mathrm{~A}\right) \\
& \text { Gain } 115,110,97\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right) \\
& V_{B E}=24 \mathrm{~V}, .25 \mathrm{~V}, .75 \mathrm{~V} \quad\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

$V_{C E \text { (sat) }}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{C E(s a t)}=-14 / \mathrm{V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& \nabla_{\text {BE (sat) }}=2.75 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& \text { Gain }=88,86,84,\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right) \\
& V_{B E}=.64 \mathrm{~V}, .64 \mathrm{v}, .65 \mathrm{~V}\left(\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

Breakdown Voltages

$$
\begin{aligned}
& B V_{E B O}=14 \mathrm{~V} @ \mathrm{I}_{\mathrm{EBO}}=10 \mathrm{~mA} \\
& B V_{C B O}=\frac{18}{55} \mathrm{~V} \text { @ } \mathrm{I}_{\mathrm{CBO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CEO}}=\frac{55}{} \mathrm{~V} @ \mathrm{I}_{\mathrm{CEO}}=10 \mathrm{~mA} \\
& B V_{C E S}=14 \mathrm{~V} @ \mathrm{I}_{\mathrm{CES}}=10 \mathrm{~mA}
\end{aligned}
$$

Leakage Currents

$$
\begin{aligned}
& I_{\mathrm{EBO}}=24 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{EBO}}=4 \mathrm{~V} \\
& I_{\mathrm{CBO}}=\angle 0,1 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CBO}}=20 \mathrm{~V} \\
& I_{\mathrm{CEO}}=\angle 0,1 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CEO}}=20 \mathrm{~V} \\
& I_{\mathrm{CES}}=\angle 01 \mathrm{~mA} \odot \mathrm{~V}_{\mathrm{CES}}=20 \mathrm{~V}
\end{aligned}
$$

Switching Time
$t_{d}+t_{r}=\ldots \mu s, t_{s}=\ldots \mu s, t_{f}=\ldots \quad \mu s$
Total Switching Time $=\ldots \quad \mu \dot{L} \quad I_{C}=75 A, I_{B}=5$.
$V_{B E}=-1.5 \mathrm{~V}$ on turnoff)

HIGH POWER, LOW SATURATION VOLTAGE

SILICON SWITCHING TRANSISTOR

PER: JET PROPULSION LABORATORY ENGINEERING NOTE NO. 342-015
data on assembly no. 135
$\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}$ and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{array}{ll}
v_{C E(\text { sat })}=\frac{125}{} v & \left(I_{B}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}\right) \\
\mathrm{v}_{\mathrm{BE}(\text { sat })}=\frac{86}{O} \mathrm{~V} & \left(\mathrm{I}_{\mathrm{B}}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}\right)
\end{array}
$$

$$
\text { Gain } 110,86,-\left(I_{C}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
$$

$$
\mathrm{v}_{\mathrm{BE}}=.79 \mathrm{v}, .78 \mathrm{v},-\mathrm{v} \quad\left(\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{v}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
$$

$\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{array}{ll}
V_{C E(\text { sat })}=\frac{.195}{} v & \left(I_{B}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}\right) \\
\nabla_{\mathrm{BE}(\text { sat })}=\frac{.84}{7} \mathrm{~V} & \left(I_{\mathrm{B}}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}\right)
\end{array}
$$

$$
\operatorname{Gain}=78,76,71\left(I_{C}=75 \mathrm{~A}, v_{C E}=4,3,2 \mathrm{~V}\right)
$$

$$
\mathrm{v}_{\mathrm{BE}}=\Omega \mathrm{ZL} \mathrm{v}, 70 \mathrm{v}, 70 \mathrm{~V}\left(\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{v}_{\mathrm{CE}}=4,3,2 \mathrm{v}\right)
$$

Breakdown Voltages

Leakage Currents

Switching Time
$t_{d}+t_{r}=$ \qquad $\mu \mathrm{s}, \mathrm{t}_{\mathrm{s}}=$ \qquad $\mu \mathrm{s}, \mathrm{t}_{\mathrm{f}}=$ \qquad μs
Total Switching Time = \qquad $\mu \mathrm{s}$ ($\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=5 \mathrm{~A}$,

$$
V_{B E}=-1.5 \mathrm{~V} \text { on turnoff) }
$$

$$
\begin{aligned}
& T_{\mathrm{EBO}}=0,2 \mathrm{~mA} @ \mathrm{v}_{\mathrm{EBO}}=4 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{CBO}}=0,5 \mathrm{~mA} \text { © } \mathrm{v}_{\mathrm{CBO}}=20 \mathrm{~V} \\
& \mathrm{I}_{\text {CEO }}=\frac{3.0}{28} \mathrm{~mA} \text { @ } \mathrm{V}_{\text {CEO }}=20 \mathrm{~V} \\
& I_{C E S}=2,8 \mathrm{~mA} \text { © } \mathrm{v}_{\text {CESs }}=20 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{BV}_{\mathrm{EBO}}=1 / \mathrm{V} @ \mathrm{I}_{\mathrm{EBO}}=10 \mathrm{~mA} \\
& { }^{B V_{C B O}}=44 \mathrm{~V} @ I_{C B O}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CEO}}=33 \mathrm{~V} \in \mathrm{I}_{\mathrm{CEO}}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\text {ES }}=32 \mathrm{~V} \text { © } \mathrm{I}_{\text {CESs }}=10 \mathrm{~mA}
\end{aligned}
$$

high power, low saturation volitage
SILICON SWITCHING TRANSISTOR

PER: JET PROPULSION LABORATORY ENGINEERING NOTE NO. 342-015
data on assembly no. $\angle 36$
${ }^{\nabla} \mathrm{CE}$ (sat) and Gain Measurements at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{C E(s a t)}=.102 \mathrm{~V} \quad\left(I_{B}=5 \mathrm{~A}, I_{C}=75 \mathrm{~A}\right) \\
& V_{B E(\text { sat })}=83 \quad\left(I_{B}=5 A, I_{C}=75 \mathrm{~A}\right) \\
& \text { Gain } 132,110,-\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right) \\
& V_{B E}=.76 \mathrm{~V}, .75 \mathrm{~V}, \quad \mathrm{~V} \quad\left(\mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

$V_{\text {CE (sat) }}$ and Gain Measurements at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

$$
\begin{aligned}
& v_{C E(5 a t)}=0 / 39 \mathrm{~V} \quad\left(I_{B}=5 A, I_{C}=75 A\right) \\
& V_{B E(\text { sat })}=-79 \quad V \quad\left(I_{B}=5 A, I_{C}=75 \mathrm{~A}\right) \\
& \text { Gain }=100,91,83\left(I_{C}=75 \mathrm{~A}, V_{C E}=4,3,2 \mathrm{~V}\right) \text {. } \\
& V_{B E}=.65 \mathrm{~V}, .65 \mathrm{~V}, .64 \mathrm{~V}\left(I_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4,3,2 \mathrm{~V}\right)
\end{aligned}
$$

Breakdown Voltages

$$
\begin{aligned}
& \mathrm{BV}_{E B O}=\frac{11}{67} \mathrm{~V} \text { © } I_{E B O}=10^{\circ} \mathrm{mA} \\
& \mathrm{Bv}_{\mathrm{CBO}}=67 \mathrm{~V} \text { © } \mathrm{x}_{\mathrm{CBO}}=10 \mathrm{~mA} \\
& { }^{B V_{C E O}}=35 \mathrm{VBC} I_{\text {CEO }}=10 \mathrm{~mA} \\
& \mathrm{BV}_{\mathrm{CES}}=56 \mathrm{~V} \text { © } \mathrm{I}_{\mathrm{CES}}=10 \mathrm{~mA}
\end{aligned}
$$

Leakage Currents

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{EBO}}=\angle \mathrm{O}_{1} / \mathrm{mA} @ \mathrm{~V}_{\mathrm{EBO}}=4 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{CBO}}=\leq \mathrm{O}_{2} 1 \mathrm{~mA} @ \mathrm{v}_{\mathrm{CBO}}=20 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{CEO}}=\angle O, 1 \mathrm{~mA} \text { © } \mathrm{v}_{\text {CEO }}=20 \mathrm{~V} \\
& I_{\text {CiS }}=\left\langle 0.1 \mathrm{~mA} \text { © } \mathrm{V}_{\text {CiS }}=20 \mathrm{~V}\right.
\end{aligned}
$$

Switching Time

$$
\begin{aligned}
& t_{d}+t_{r}=\ldots \mu s, t_{s}=\ldots \quad \mu s, t_{f}=\ldots \quad \mu s \\
& \text { Total Switching Time }= \\
& \mu \mathrm{s} \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=5 \mathrm{~A} \text {, } \\
& V_{B E}=-1.5 V \text { on turnoff) }
\end{aligned}
$$

