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There has been a series of papers j1,2,3] concerned with the survival

of microorganisms in ultra-high vacuum and in space. The correlation between
t

microbial die off in ultra-high vacuum and space is not immediately obvious.

It is the purpose of this note to call attention to the fact that fran a

kinetic viewpoint, D values obtained under ultra-high vacuum, 10
-6
 torr, are	 i

not appreciably different from those obtained under 10 17 torr, pressure of

outer space.

Suppose the microorganisms are being sterilized by a first order chemical

reaction, i.e., survival is logarithmic. Then the relationship between the

D value and the reaction rate constant, k', is given by

D = -tn 0.1 k.	 1

Under the absolute reaction rate theory

k = KT exp(-nF/RT)	 (2)F	 i
.	 t

Aere K is Boltzmann's constant, h is Planck's constant, T is the temperature

in degrees Kelvin, R is the gas constant and AO is the free energy of

activation. aft may be broken down further as

SO = AO -TnS#+phVi	(3)

where aNi , J,'and AO are activation enthalpy, entropy, and volume respectively,

and where p is pressure j4),



One normally associates a positive AO with first order reactions.

Furthermore, with aV # positive, as pressure decreases the reaction rate

increases so that from equation 1 we see that the D value decreases. The

question we address is how much will D decrease for a'fixed value of 01

as p goes from 10-6 to 10-i7 torr.

Combining equations 2 and 3 we . get the r^'.ationship for pressures pl

and p2.

tn(kp /kP ) = eV(P2-pl )/RT.	 (4)	
E

1	 2	 -

If we take pressure in atm, the gas constant will be

R = 82.06 cc atm/mole.
a

From equations 1 and 4 we find

tn(Dp'/DP )	 tn(kp /kp ).	 (5)

	

1	 1	 2

The largest eV4 value we have seen was recorded for ribonuclease by

Kettman et.al . j5) as 200 cc/mole. To be safe we will use 10000 cc/mole.

Suppost we assume that T = 3330K s 600C. We convert the pressures to

atmospheres so that

_i

K	 P1 = 10-f' torn = (117.6) X 10-8 atm

and



err--=

-3-

I	 p2 = 10'17 torr = (1/7.6) x 10-19,atm.	 .
7.

4

Using these values in eq. 4 we find that

ln(k /k ) _ (104cc/mole)(1/7.6)(10 -19-10
-g 

atm

P1 'P2	
333 deg (86.0597 cc atm/deg mole);

Using orders of magnitude we see that

tn(kp /kp ) = 10-10(10-11-1).
	

(6)
1	 2

Thus despite the magnitude of the Ot chosen the right side of equation 6 	 {

differs from 0 by. less than 10-8 . This of course implies that the ratio.

	

•	 -	 k, /k is so near l that in view of equation 5 an experimenter could not
-	 PI P2

	

-	 distinguish between D values taken at 10
-6
 and 10

-17 
torr if only first

order kinetics is involved in the sterilization.
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