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PREFACE

The development of necessary conditions for optimal trajectories
and of numerical techniques to obtain numerical optimal solutions has
been the subject of a considerable amount of research during recent years.
From the engineering view point, the goal of all this theory is the
application of these results to the problem of optimizing large complex,
realistic systems. In the past, the numerical technique which has
been used most often for optimizing complex systems is the gradient
method. Solutions obtained by the gradient method, however, do not
satisfy all of the necessary conditions for a true optimal trajectory.
The classical optimality condition, Hu = 0, is not satisfied by
gradient solutions. On large computers, second variation methods may
be used to obtain true optimal solutions, i.e. solutions which satisfy
all of the necessary conditions required for an optimal trajectory.

The longer word length and increased computation speed allow sufficient
accuracy for second variation methods to converge to true optimal
solutions within a reasonable computing time.

In this study, a second variation method, the perturbation
method, is used to study optimal three dimensional atmospheric reentry
trajectories for Apollo-type vehicles. Because of the large variations
in the aerodynamic forces, reentry trajectory optimization is an
extremely complex problem requiring a very accurate numerical integra-
tion routine. It is shown, however, that the perturbation method can
be used to obtain true optimal reentry trajectories. The computing

time is not excessive.
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ABSTRACT

A numerical optimization method, the perturbation method, is used
to calculate optimal three dimensional reentry trajectories for Apollo-
type vehicles. A linear combination of the convective heating and the
integral of the acceleration are minimized. The only control of the
vehicle is the roll angle which specifies the orientation of the lift
vector. The initial conditions for reentry are chosen to correspond
to those encountered by an Apollo vehicle returning to the earth from
a lunar mission. Specified terminal conditions are consistent with
those required just prior to the opening of a drogue parachute.

Optimal trajectories obtained for the conditions described above
are skip trajectories with high acceleration peaks. State variable
inequality constraints are required in order to produce trajectories
without these characteristics. The perturbation method is modified so
that it may be used to calculate optimal trajectories with state
variable inequality constraints. The modified perturbation method is
used to calculate optimal reentry trajectories with an altitude in-
equality constraint over the skip segment of the trajectory. These
trajectories have acceleration and heating histories which are

acceptable for Apollo-type reentry vehicles.
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CHAPTER 1

INTRODUCTION

Until recently manned space flight has been confined to earth
orbital missions. When the reentry phase of the trajectory is
initiated from an earth orbit, the velocity is fairly small. Apollo
reentry velocities for earth orbital missions are approximately 25,800
ft./sec. As manned space flight extends beyond earth orbital missions,
however, the reentry maneuver becomes more complex. These trajectories
involve substantially higher reentry velocities at the initiation of
the reentry phase. The initial reentry velocity for an Apollo vehicle
returning from a lunar mission is approximately 36,000 ft./sec. Con-
sequently the acceleration and heating experienced by the reentry
vehicle and crew are much higher. Careful design of nominal reentry
trajectories is required to ensure that the acceleration and heating
experienced by the astronauts and reentry vehicle are below certain
tolerance limits.

The Apollo reentry vehicle uses the lifting capabilities of
the body to fly trajectories which have these desired characteristics.
The high initial reentry velocity is reduced through the conversion
of kinetic energy to heat. As the initial velocity increases so does
the heat generated. This requires elaborate insulating and ablating
devices to protect the crew and vehicle from the extremely high tem-
peratures produced during reentry.

Minimal heat producing trajectories thus become very important

for crew safety. They also require less elaborate heat dissipative



systems. From previous numerical experience18, however, minimal heating
trajectories produce unacceptable acceleration histories. Two quantities
associated with the acceleration are important for a reentry trajectory.52
The acceleration peaks must be below some prescribed maximum level. For
manned reentry this maximum level is approximately 10 g's. The criteria
for determining an acceptable acceleration history, however, is not just
the maximum acceleration peak. Fairly high accelerations can be tolerated
by the astronauts if they are applied over fairly short time intervals.
Hence the integral of the acceleration or the acceleration dosage gives
a reasonable measure of crew comfort as long as the acceleration peaks
do not exceed some acceptable value. Thus it is desirable to have a
minimal value of the acceleration dosage for a reentry trajectory.
Acceptable reentry trajectories will require a trade off
between minimal heating trajectories and trajectories with acceptable
acceleration histories. A possible approach to the trade off problem
consists of setting up the reentry trajectory as an optimal control prob-
lem, and using numerical techniques to generate minimizing trajectories.
Reentry trajectories are calculated which minimize a linear combination
of the total heat and the integral of the deceleration experienced by
the reentry vehicle. A weighting factor is chosen for the heating term
such that the total heating and the integral of the deceleration are
given a relative weighting. For this study the weighting factor is
chosen such that the integral of the acceleration and the total heating
are approximately equal. If the peak accelerations produced by this

method are sufficiently low then the solution should represent a
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éompromise between minimal heating and minimal acceleration trajectories.
If the peak accelerations are too high, then methods for reducing the
accelerations peaks such as state variable inequality constraints (SVIC)
must be considered.

Since trajectory optimization is a difficult problem, a relatively
simple model which represents the important factors governing reentry is
desired. For the vehiclé this consists of neglecting motion about the
center of mass. Constant lift and drag coefficients are assumed. The
control of the vehicle is the roll angle or out of plane orientation of
the 1ift vector. Ref. 48 indicates that this gives a fairly accurate
representation of the Apollo reentry wvehicle.

The model for the earth's gravitational field and atmosphere
are approximated.by an inverse square force field and an exponential
atmosphere. Constants for the atmosphere are selected to represent the
actual atmosphere over the interval of interest. This model represents
the dominant characteristics of Apollo-type reentry trajectories.

Reentry trajectory optimization has been considered by several
2,3,6,18,20,23,24 ,45

authors. Methods used include the gradient conjugate

22,42

. 2 . . . .
gradlent4 s quasa.hneamzatlonm9 sweep method , and perturbation

1,2,13,15,26 The gradient method which generates only

method (MPF).
approximately optimal solutions has been used more extensively than any
other method. This is probably because the gradient method has the

ability to produce reasonable trajectories and insight is gained in the
types of trajectories desired even if optimal trajectories are not pro-

duced. If true optimal trajectories are desired, however, a second order

method must be used. Since the purpose of the investigation is to obtain



accurate optimal solutions for the reentry problem the perturbation method

is chosen for the study. This method is discussed by Goodman and Lance27,

32 It has the disadvantage that initial values

and Jurovics and McIntyre.
of the Lagrange multipliers must be guessed. Convergence depends on these
guesses and if there is no appriori information available concerning the
optimal trajectory, it is often difficult to guess multipliers which will
allow convergence. After an optimal solution has been obtained, however,
it is very easy to vary parameters and generate fields of extremals.

The MPF is considered in Chapter 2, and its relation to the
optimal control problem is discussed. The numerical procedures involved
in implementing MPF and the instability of the perturbation equations
are also considered. The application of the MPF to the reentry problem
is considered in Chapter 3. Optimal numerical solutions are presented.

In Chapter 4, SVIC are discussed. A new method of solving these problems
using a modified MPF is presented and a numerical example, a constrained
Brachistochrone is solved. The method of solving SVIC problems developed
in Chapter 4 is applied to the reentry problem in Chapter 5. An altitude
constraint is applied to the skip segment of the reentry trajectory and
numerical optimal reentry trajectories with the SVIC are shown. Chapter

6 summarizes the results of this study and presents recommendations for

further study in this area.



CHAPTER 2
NUMERICAL OPTIMIZATION USING THE PERTURBATION METHOD

This chapter defines the notation and presents the equations
which define admissible candidates for the optimal trajectory. The
MPF is described also. Derivations of these relations are not given
since they are presented in numerous places in the literature. It is
felt, however, that a summary of the pertinent equations from these
discussions would be helpful in understanding the remainder of this
report. In the following section, the numerical integration and
matrix inversion routines used in this report are described. In the
last section, the stability problem associated with the perturbation

equations is considered.

2.1 Optimization Problem

Necessary conditions for optimal control problems have been
obtained through the use of Dynamic Programmingzs, Pontryagin's

29,30 Since the

Maximum Principlelﬁ, and the Calculus of Variations.
results are well known, they will be summarized only for the class of
problems to be considered in this report.

The statement of the problem is as follows: Find u(t) in

the interval t_ <t <ty to extremize

o
tf _
1= J Q(x,t)dt + G[xf,tf] (2.1)
t
subject to
x = £(x,u,t) (2.2)



and

X, = Xoo M(xf,tf) =0 (2.3)

where x is an n vector of state variables, u 1is a scalar control,

f is an n vector containing the derivatives of x, M is a q vector
of terminal constraints, Xos is a specified initial state, and Q and

G are scalars associated with the performance index. The initial time,
ty is fixed, and the final time, te, is free.

Necessary conditions for a minimal trajectory are

. T e _ ol

X = HA , A= Hx (2.4)
and

Hu =0 , Huu >0 (2.5)

where H 1is the variational Hamiltonian, H = ATf +Q, and 2 1is an

n vector of Lagrange multipliers associated with x. At t,

x =x_ , t =0 (2.6)

d t
and at t,

P, +H
3
te
where P =T + Jy ad v isa q vector of multipliers associated
with the M's,

=0 (2.7)

1f Huu is positive definite, Eqs. (2.5) allow the optimal
control to be determined explicitly as a function of x and . If

the optimal value of the control is used to eliminate u from Eq. (2.4),



the optimization problem is reduced to a two point boundary value prob-

lem (TPBVP). This is expressed as

z = F(z,t) (2.8)
where the 2n-vector 2z is defined as

z = [5] (2.9)

F 1is determined from Eq. (2.4) with the optimal control determined
as a function of x and . Boundary conditions consist of n con-

ditions, x_=
» %o T Xos?

at to = 0‘ and n+1 conditions
h(zf,tf) = 0 (2.10)

at t.. The n+l vector h consists of n+l of the conditions from
Eq. (2.7). The remainder of the conditions in Eq. (2.7) are used to

eliminate the unknown vector, v.

2.2 Perturbation Method

One method of attempting to solve the two point boundary value
problem defined in the previous section is the method of perturbation
functions (MPF). This method requires that values for the unknown
initial Lagrange multipliers and the final time t. be guessed. Then
Eqs. (2.8) can be integrated numerically to generate a nominal trajectory.
The terminal boundary conditions, Egs. (2.10), will not generally be
satisfied. Corrections to the guessed values for the unknown variables
are calculated to drive the terminal constraints, h, to zero. This is

accomplished by considering linear perturbations about the nominal



trajectory. If the (i+l)-th trajectory is expanded about the i-th
trajectory and only linear terms are considered then

oF, 1

8z = (52- 6z = Adz (2.11)
and
_ i _ eh i - i
Ah = -h™ = (52;- §zp * (h) Atf (2.12)
where 6z = 1+ zl, gg- or A is a 2n x 2n matrix of partial
derivatives evaluated along the i-th trajectory, h = %h—-if + éh-,

and hi is the vector of terminal conditions evaluated on the i-th

trajectory. The total change in h, sh = hi+1 - hi becomes ah = —hi ,
if hi+1 is set equal to its desired value, zero. Eq. (2.11) can be
integrated along a nominal trajectory to determine how changes in the
n guessed multipliers at the initial time will produce changes in the
values of the states and multipliers at the final time. This requires

n integrations of Eq. (2.11). The 2n x n matrix 2, is defined

such that
éz(t,to) = Ao, (t,t ) (2.13)
and
o,(t ,t) = [-3-] (2.14)
2Y70’0o I °

where I is the n xn identity matrix and 0 is the n xn null
matrix. Changes in the final values of 2z are then related to

changes in Ay by

s2p =0,(te,t )8A (2.15)



By using Eq. (2.15) in Eq. (2.12), the equation

i o hyt it 2.16
-h = [575] 2, (te,t )on, + [h]  ate (2.16)

is obtained. This linear system is solved for X and Ate. These
corrections are added to the i-th values of Ao and te and the non-
1inear'equations, Egs. (2.8), are reintegrated to obtain a new nominal.
If Eqs. (2.8) and (2.10) were linear, the desired solution should be
obtained after one correction. Since they are not for most problems
of interest to the engineer, an iteration scheme must be used. Thus
the nonlinear equations, Eqs. (2.8), and the perturbation equations,
Egqs. (2.13), are integrated from t, toa guessed final time using
guessed values for the initial multipliers. Corrections are calculated
to A, and te using the linearized boundary conditions and perturba-
tion equations. The nonlinear equations and perturbation equations are
reintegrated using the new values of Ao and te. A new correction
vector is calculated. This procedure is continued until l]hill = h'h
(the norm of the terminal constraints) is below some prescribed small
positive number. The procedure is then terminated.

For nonlinear problems, the corrections calculated from Eq.
(2.16) are often so large that the linearized equations are not valid.
In this case, if the correction vector calculated by Eq. (2.16) is used
divergence often occurs. In order to avoid this, a decreasing terminal
norm philosophy can be used. The correction calculated on the i-th
iteration is added to the i-th unknown variables. The nonlinear equa-

tions are integrated with the new initial conditions. If the terminal
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nomm for the (i + 1)-th integraticn is larger than the norm of the i-th
integration, the magnitude of the i-th correction vector is decreased.

The smaller correction vector is added to the i-th variables again. The
nonlinear equations are reintegrated using the new (i + 1)-th variables.
Scaling the correction vector and reintegrating the nonlinear equations
continues until the terminai norm produced on the (i + 1)-th iteration

is smaller than the norm on the i-th iteration. At this point the pertur-
bation equations arc integrated and a new correction vector is calculated.
The procedure continues until the norm decreases below a small specified
value.

From computational experience, the Jecreasing norm philosophy
requires many iterations to converge if the initial nominal is far from
the optimal. As an alternative to this method, a percentage correction
procedure can be used. After the i-th correction is calculated, the
norm of the i-th unknown variables and the norm of the i-th correction
vector are calculated. The correction vector is scaled so that the
norm of the correction is some percentage, possible 30%, of the norm of
the unknown variables. This correctio.i is accepted even if the terminal
norm increases. If the norm of the cor.ection is less than the specified
percentage of the guessed variables then the full correction vector is
accepted. From computational cxperience this last method requires con-
siderably fewer iterations to converge than the first method does. The

percentage correction procedure is used throughout this report.

2.3 ANumerical Intcgration and Iaversion Routines

The two basic numerical procedurcs associated with optimization

using the MPF are numerical integration and matrix inversioi . Convergence
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of the method is closely associated with the ability of the computa-
tional procedure to accurately integrate large systems of equations.
The numerical integration is most important, since if accurate results
are not obtained here, the matrix inversion is meaningles:

One of the problems encountered using the MPF is ti». instability
of the perturbation equations, which is discussed in the next section.
Since stability is a major difficulty for the MPF, a numericaily stable
integration method would seem to be a necessity. A group of methods
which are numerically stable are the Adams predictor-corrector methods
considered in Ref. 46. These methods are strongly stable and hence
suitable for integration over long intervals if round off errors can be
controlled.

The integration routine used is a fourth order Adams predictor-
corrector44 with a fourth order Runge-Kutta starter. Both a fixed step
integrator (FSI) and a variable step integrator (VSI) are considered. For
the VSI, both an upper and a lower error bound are specified. A single
step truncation error estimate is calculated for the predictor-corrector.
If this error estimate for an integration step is larger than the upper
error bound, then the step size is halved. The Runge-Kutta routine is
used again as a starter with the smaller step size. If the error esti-
mate is smaller than the lower bound, the step size is doubled and the
Runge-Kutta method is required to generate starting values again. The
FSI integr .tor uses the Runge-Kutta method as a started then switches
control entirely to the predictor-corrector method.

The VSI routine is used for most of the integration in this

investigation becausc it allows better control of integration errors.
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For small error bounds, round off error is very important. Partial
double precision arithmetic is used in the integration routine to help
control round off errors. Values of the dependent variables are stored
in double precision and all other computation is single precision. A
description of a fixed step size version of this routine is in Ref. 33.

All computation is performed using the CDC 6600 computer at The
University of Texas at Austin. The CDC 6600 has a single precision
word length of 14 digits. Thus the partial double precision integration
routine should give good control of round off errors. For a small rela-
tive errovr criteria accurate integration should be obtained.

The second numerical procedure required by the MPF is a matrix
inversion routine, or a routine to solve a linear system of algebraic
cquations. The routine used does not calculate an inverse matrix. It
solves the linear system directly using Gaussian climination. Again,
since fairly large systems are to be solved, the inversion is performed

in double precision to minimize round off errors.

2.4 Stability of the Perturbation MMethod

One of the main problems associated with using the MPF to solve
TPBVP problems is the instability of the perturbation cquations, Eq.
(2.11). 1If the A-matrix is constant, then the solution for ¢ in
general consists of the sum of n linearly independent exponential
terms. If A 1is time depcndent, the solutions still exhibit exponen-
tial behavior. For many nonlinear problems, such as reentry, the
A-matrix will have positive and negative eigenvalues over the entire
interval of interest. Positive cigenvalues imply positive exponential

type terms. If the equations are integrated over a sufficiently long
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interval, the large magnitude of the positive eigenvalues will com-
pletely dominate the solution for ¢. When this happens, information
about the true solution of the ¢ matrix is lost. Thus if the solution
to one element of the ¢ matrix is equal to the linear sum of a positive
exponential term and a negative exponential term, then the numerical
solution will exhibit the characteristics of the small exponential only
over a fairly short time interval. The value of the negative exponential
will become small in magnitude and will be lost in the numerical integra-
tion error of the total solution which due to the positive exponential
term, will be large in magnitude. Tiis behavior is easily demonstrated
by a linear example considered by Fox.43 A linear example is considered
so that analytic solutions can then be compared with numerical results
obtained using the MPF.

In order to investigate the effects of stability, the linear

system
il} {11 12] x| M- 12t - 11
i = | ’ | + { | (2.17)
. | :
%2 Lt° } ["21 L °
with
_tf
xZ(O) =1 and xz(tf) = tf +e (2.18)
is considered. The general solution to the problem is
-t ae 12t
x| = 1 - Cle + 1~CZe
(2.19)
t 12t

L]
(ad
+
(@]
(]
'

X 1 2
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where C1 and C2 are constants. For the specified boundary conditions,
the solution requires that C1 =1 and C2 = 0,

The problem will now be solved by the perturbation method.
This requires guessing xl(O) and integrating Eqs. (2.17) from t =0

to t =t The linear perturbation equations

6x1 éxl
= A (2.20)
. i
6)(2_][ (sz—jl
11 121
where A =

1 0 J

are integrated with the initial conditions
6x,(0) =1 , 6x,(0) = 0 (2.21)

Then a correction to xl(O) is calculated to make

-t
h=x,(ty) - [tg+e ']1=0 (2.22)
. . . _ 3h . .
The linear change in h is &ah = SETE;T'GX(tf) + h(tf)Atf . Since

te and xz(O) are specified, Atf =0 and 6x2(0) = 0. Hence, &h

reduces to the following expression.

_ 3h
th = T o1 (t,0)6x, (0) (2.23)

-t
- . _ f . 3h B .
where &h = {XZ (tf) [tf + e ]} and "a—x—(t—fT = [0,1] . ‘bl in



15

this case is a vector solution of Egs. (2.20) with boundary conditions
given by Eq. (2.21)

The system of equations and boundary conditions are linear, so
the desired solution should be obtained after one correction using the
perturbation equations. Thus Eq. (2.23) is solved for the correction
to XI(O)‘ This correction is added to the guessed value of xl(O).
This should produce the true solution for xl(O) and hence the desired
solution to the problem.

The question of interest is whether or not this can be done
numerically, i.e., does one correction, for a guessed value of xl(O),
give the exact solution?

For the initial conditions 6x1(0) =1 and 6x2(0) = 0, the

solution to the linear perturbation equations is

12t

5%, = +1/13 e t+12/13 e
(2.24)

1/13 et + 1/13 o1t

chZ

The eigenvalues are seen to be 12 and -1.

If the other vector of the transition matrix is calculated for

éxl(O) = 0 and 6x2(0) = 1, the solution is

12/13 et + 12/13 1%t

]

6)(1
(2.25)
12t

L]

sx. = 12/13 e’ + 1/13 ¢

2
For large time, that is for t sufficiently large that the
small exponent is on the order of the integration errors, the two

solutions become linearly dependent. Thus if t 1s sufficiently



large that et is on the order of the integration error for Igs.
(2.24) and (2.25) all informatior of the small exponent is lost from
the solutions of these equations. At this point, the entire transi-
tion matrix no longer gives an accurate representation of all pertur-
bations about the nominal trajectory. Convergence problems might be
expected. Eqs. (2.24), however, still give a very accurate descrip-
tion of how changes in 6x1(0) propagate along a nominal. As long
as this equation can be integrated accurately, accurate corrections
to dxl(O) should be expected. The MPF does not require the entire
transition matrix to accuratcly represent all perturbations about a
guessed nominal. In this case it only requires that half of the
transition matrix give a true representation of how changes in the
unknown initial variables alter the nominal trajectory.

As a second example, consider the same differential equations

16

—tf 12tf
with the boundary conditions xZ(O) =0 and xz(tf) = tf + e - e
The solution is
-t 12tf
xl(tf) =1.0 - ¢ - 12e
(2.26)
-t 12t
_ f _ f
xz(tf) = tf + e e

The important factor affecting convengence of the two problems

is the desired boundary conditions. The desired solution for Case 1

requires that C, = 0, or the coefficient of the large exponential term

be zero. For Case 2 the cocfficient of the large exponential term is

not zero. MNumerical results for these two problems are shown in Table 1

for several values of te. The guess for xl(O) is 1.0 for all caser.
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The results show that corrections calculated to xl(O) are
very accurate for Case 1 (13 digits at least) even over long time
intervals. Terminal accuracy is destroyed, however, by the fact that
even if the coefficient of the large exponent is very small, approxi-
mately 10-13, over long time intervals this term still becomes important.
Since the computer has a finite word length, the coefficient of the
large exponential term will never be identically zero. Even if it
is initially set equal to zero, the finite word length of the machine
produces a solution after the first integration step which does not
correspond exactly to the solution desired. Thus after one integration
step, the coefficient of the large exponential cannot be identically
zero. Over a sufficiently long interval the large exponential will
appear in the numerical solution. This term cannot be removed from
the solution obtained in the manner described above. The MPF does,
however, calculate an accurate correction for xl(O) even over long
time intervals. The unstable perturbation equations can be used to
predict accurately how changes in xl(O) change the final values of
Xy and X, for the example considered.

For the second problem considered, however, temminal accuracy
is maintained even over lc..; time intervals. This solution does not
require that the coefficient of the large exponential be zero and
accuracy is not as difficult to maintain.

When the MPF is used to solve other TPBVP's, the difficulties
encounterced in trying to integrate the state equations for Case 1 could
occur in connection with the perturbation equations. If the boundary

conditions for the perturbation equations require the coefficient of a
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positive exponential term to be zero, in general it will be impossible

to numerically obtain the true solution over a long time interval. If

this problem ariscs, the calculation of accurate correctiouns to guessed
initial variables will be extremely difficult.

If the system had consisted of four state variables with two
boundary conditions at each end, another problem could occur. As shown
earlier, for the example, over long time intervals the rows of the en-
tire ¢ matrix become linearly dependent. If one large positive
exponential existed for the four state variables mentioned above, both
of the two required solutions to the perturbation equations could become
linearly related over long time intervals. In this case, the difference
in the eigenvalues of the A-matrix, the time interval of interest, the
machine word length, and the required boundary conditions for the pertur-
bation equations would all be relavent factors in determining whether or
not the MPF would solve the problem accurately.

Since the Riccati transformation is often mentioned as an
alternative to the MPF, and since it is claimed that the Riccati trans-
formation uncouples the perturbation equations and leads to stability,

the example is solved also by this method. The transformation is

X, = Wle + réxz(tf) (2.27)

and the differential equations for W and r are

. 7

W WA - Ap) + WA, - Ay =0

T+ (WA, - Ayp) =0 (2.28)
W(tg) =0, T(t) =1
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where subscripts on the A's denote rews and colums of the A matrix.

The correction to xl(O) is then

6, (0) = - ﬁ%g%- 5%, (t) (2.29)

The A's are constant and thus for the example the differential
equations for W and r do not depend on the guessed nominal for the
state equations. Results for the Riccati solution are presented also
in Table 1. 1In all cases the results obtained using the Riccati trans-
formation are not as accurate as those obtained using the MPF. The
analytic solution for the Riccati variables is

) 13(te-t)
- e

W=1/12 {

T30 }
1+1/12 e

and

(te-t) 13(te-t) -1

= 13/12e {1 +1/2 }

-
|

For large te W approaches minus one. As the difference between the
true solutions of W and minus one gets smill, the difference is lost
in the integration error. Again, information about the true solution
of a differential equation is lost due to a finite word length machine.
If the numerically integrated value of W(0) is compared with the
analytic solution, they agree to 9 or 10 digits for all of the cases.
The numerically integrated values of r(0), however, only agree with
the true solutions to 6 or 7 digits. Hence the loss of accuracy in
r(0) causes the correction to xl(O) calculated by the Riccati transfor-

mation to be less accurate than the correction calculated by the MPF.
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ITERATION 1 ITERATION 2
. 3
Method | TR e RS Y iy iy
MPF 1 1.0 10 13 11 13
MPF 1 1.5 7 14 9 14
MPF 1 2.0 4 14 $ 14
Riccati 1 1.0 3 7 7 19
Riccati i 1.5 1 / 4 10
Riccati 1 2.0 0 7 1 10
MPF 2 1.0 11 7 11 7
MPF 2 1.5 11 7 11 7
MPF 2 2.0 11 7 il 7
Riccati 2 1.0 7 7 11 7
Riccati 2 1.5 7 7 11 7
Riccati 2 2.0 7 7 11 7

*
Accuracy denotes mmber of correct digits determined by the
method, compared to true analytical solution.

TABLE 1. Comparison of Accuracy Obtained Using the MPF and Riccati

Transformation for the Linear Fxample



Note that in integrating the Riccati equation, it is put in
the form
dw

v . iy
AW+ (A - AW - A

= - dt (2.31)

As long as 4(-A21)(A12) - (All - A”)2 is negative, the general solution
is of the form

b1 + Cle

W (2.32)

b. - ezt
3 1

where bl’ bZ’ and 53 are constants determined by the A elements.
The constant of integration is Cl‘ If b2 is large and negative the
solution approache. ;{- for large te. If b2 is large and positive,
the solution approache; -1. In either case, for sufficiently large te,
information about the solution will be lost. This loss of information
about the true solution of W could be causing the difficulty in the
accuracy of the numerically integrated value of r.

Another alternative to the method used earlier is to inte:iate

the perturbation equations backwards. If the equations are integratcd

backwards, the boundary conditions become

ze(tf) =0 , éxl(tf) =1 (2.33)

and the solution to Eq. (2.20) becomes

(t.-t) 12(t,-t)
0 e 1213e  f

8x, = 1/13e

4
(2.34)
{tr-t) -12(tf-t)
-1/13¢ * + 1/13e

]
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Comparing these with Fqs. (2.24) it is seen that the signs on the
exponents have been changed. The end result of t&e integration, how-
ever, is the same. For large time intervals ealé bf-to) becomes
much smaller than e(tf-t). When its value is on the order of the
round off error, all information of the large negative exponential
is lost. Thus, if information is lost from having positive exponen-
tials swamp negative exponentials during forward integration, informa-
tion will also be lost in backward integration.

For the specific boundary conditions chosen for Case 1, however,
the coefficient of the large exponential should be zero. For a finite
word length machine, as discussed earlier, it will never be identically

12t

zero. The e term will eventually destroy terminal accuracy if the

integration is done in a forward direction. If the integration of the
. . 121‘. '12(tf"t)

state equations is done backwards, this term, e¢* ", becomes e
and thus decreases instead of increcasing. The undesired solution de-
creases and is lost in the integration error instead of increasing and
destroying ter—inal accuracy as it does when the integration is done in
a forward direction. Thus the integration of the equations should be
done backwards for the specified boundary conditions. On the other hand,
if the boundary conditions required that the coefficient of the smaller
exponential, e-t, vanish then integration should be done in a forward
direction. If the integration is done backwards, then the desired solu-

-12(tf*t) (te-t)
tion, ¢ , would eventually be corrupted by e for large
time.

The main point is that the choice of forward or backward inte-

gration depends on the hounda~y conditions which must be satisfied. Tor

nonlinear problems, analytic solutivns cannot, in general, be obtained.
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The interaction of boundary conditions and the exponential type terms

is not known. It is clear from the example that for general boundary

conditions, integration can be corrupted in both directions. Hence

if prcblems are encountered when integration is done in one direction,
it might be advisable to try integrating the equations in the opposite
direction, Initially, however, one direction of integration does not

seem to be favored over the other.

As mentioned earlier, stability is affected by the word length
of the machine. If the word length of the machine had been eight digits
instead of fourteen, the coefficient of the large exponential would have
been approximately 10-7 instead of 10_13. Hence the large exponential
term would build up much faster. If stability is a problem, increasing
the word length should improve the numerical integration characteristics.

In summary, stability of the integration of both the state equa-
tion and the perturbation equation is a problem for the MPF. Over
sufficiently long time intervals large exponentials, if they exist in
the perturbation <~lutions, may completely swamp smaller exponentials.
Over shorter intervals, if an accurate representation of the true be-
havior of the perturbation equations may be obtained numerically, then
accurate recults may be calculated using the MPF. It is seen also that
the Riccati transformation does not always improve stability problems.
In this case results obtained using the Riccati transformation are worse
than those obtained using the MPF. The solution to stability problems
is not backward integration since again information about the solution
to the perturbation equations can be lost over long intervals. This does

not imply that integrating the equations backwards might not be useful in



some circumstances. It is shown that backward integration for Case 1
of the example gives a much better representation of the smaller cx-
ponential than forward integration. Thus in some cases backward inte-
gration would be useful for either state or perturbation equations.

For problems involving a large number of variables, the question
¢l _ ucility seems to be whecther or not a sufficient number (n for the
optimizatiun problem described earlier) of lincarly indepcendent solu-
tions can be obtained to the perturbation equations. As mentioned
earlier, this depends on the cigenvalues, time interval of interest,
boundary conditions, and machine word length. ‘fachine word length is
usually fixed except for the possibility of going to double precision
arithmetic. For some problems this would seem to be very beneficial.
Two possibilities of improving the other conditions will now be con-
sidered.

First, if the time intcrval of intercst is so long that indepen-
dent solutions cannot be obtained to the perturbation equaiions, the
interval may be divided into two segments. Missing boundary conditions
for the TPBVP may be guessed at both the initial and the final times.
The state and perturbation equations are integrated from the initial
time and from the final time to an intermediate time. Then the guessed
boundary conditions at both ends are corrected to make the states
continuous at the intermediate time. This method is suggested by Fox.43
It requires guessing 2n + 1 variables for the optimization problem
defined earlier but it should improve the accuracy of the ¢ integration

since ¢ need not be integrated over the entire trajectory.
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An alternate approach is similar to regularization. A time

transformation

£ = g{:_ = R(x) (2.35)

is made where R 1is a scalar function of the x's. The differential
cquations associated with the optimization problem and the perturbation
equations are derived.

The problem is to extremize

te
[ [H - A"x]dt (2.36)

‘'t
o

subject to %%-= R(x). Then

T
I = J [HR - A"xR]d+ (2.37)
T

0

but xR = x g§~= x' and

'f
I = J [l - A"x')dx (2.38)
T
where 1 = IIR. Now actach Fq. (2.35) to the integral using the
multiplier e and define x to be the old x's and t, and X to
be the old A's and Age If H 1is independent of t and te is
free then ¢ is free and A = 0. Thus Eq. (2.35) adds nothing to

the problem and may be integrated separately after the optimization
procedure to determine the actual time.

If the first variation of Eq. (2.38) is required to vanish
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then
'=—T '=-—T =
X “x , A “x . “uR 0 (2.39)
or
x' = xR
" T
A' = AR - I[R.X (2.40)
H =20
u

The variational equations are

6x' = 8xR + X8R
(2.41)
A" = §AR + i6R - 6HR. - HSR.
X X
For H independent of time and tf free, H =0, and

8H = 0 along an optimal. Hence the same equations would be obtained
along an optimal if the nonlinear equations z = F(z) were transformed
to z' = F(z)R and then the variational equations were obtaired. The
important point is that the characteristics of the A matrix are altered
by the transformation. It might be possible to choose the transformation
R(x) to improve integration characteristics of both the nonlinear equa-
tions and the linear perturbaticn equations.

Neither of these methods has been fully tested. They are mentioned

here primarily as topics for future research.



CIAPTER 3

UNCONSTRAINED REENTRY OPTIMIZATION

3.1 Reentry Problem

Numerical optimization of a large system of nonlinear equations
is a difficult task. With this in mind, the model used to obtain the
state equations for reentry sho.1d be as simple as possible while retain-
ing the dominant characteristics of the actual reentry problem. Thus the
model will consist of an inverse square gravitational force ficld for the
carth. The atmosphere w.: be assumed to vary exponentially with altitude.
For the reentry vechicle, constant 1ift .~d drag coefficients are used and
the only control of the vehicle is the roll angle. For fairly short re-
entry trajectories these assumptions give a good rcpresentation of the
actual Apollo reentry problem, while keeping the model sufficiently
simple that numerical solutions may be obtained.

In order to determine the differential equations governing the
reentry trajectory, consider a fixed spherical coordinate system located
at the center of the earth. The position of the vehicle is then located
by r, the distance from the center of the coordinate system to the cen-
ter of mass of the vchicle, 6, the longitude, and ¢, the latitude.

(See Fig. 1).

The magnitude of the relocity of the vehicle is represented by
V. The flight path angle is vy and the heading angle is ¢. These
are shown in Fig. 2. The body fixed coordinate system is designated by
the unit vectors ey, ey and e,. With thesec variables the equations

governing rcentry are

27



Lift

28

FiG. 1. Sphernical Eartr Centered Coordinate System

Gravity

FIG. Zz. E~dy Coordinate Svstem For Reentry Vehicle
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r =V sin y

V cos y cos y

o =
T COS ¢
b = V cos y sin v
r
. 3.1
\',__,_':JSIHY_]) ( )
r2
r
Y=‘HCSSY+VCOSY+I—}COSB
r°v T /
:_ _Vcos ycos ¢sin ¢ L sin B
v T Cos ¢ V cos vy

where u is the gravitational constant, L 1is the lift per unit mass
of the vehicle, D 1is the drag per unit mass, and 8 1is the control

angle shown in Fig. 2. The lift and drag per uiit mass are

1 . c1rl . 2
L = > LLQS“\ , D= > LDQS*V (3.2)
vhere S* is the reference arca divided by the mass of the vehicle,
CL is the 1ift coefficient, CD is the drag coefficient, and p is

the density of the atmosphere. An cxponential atmosphere is assumed

so that

-k(r—re)

o = o (3.3)

where Po is the density at sea level, kK 1is a constant, and T, is
the radius of the earth. The numerical valucs for the CD’ CL’ and
S* are chosen to represent an Apollo-type reentry vehicle. Values

for the density arc chosen to represent the actual atmosphere over



30

the altitudes of interest for rcentry. (See Ref. 11). All numerical
values are shown in Appendix A.

Since the two basic problems associated with reentry are the
heating and the aerodynamically induced acccleration the quantity to

be minimized is

t
£
1= J [@? + pH/2 OB (3.4)

where éc is the convective heating ratec and A, is a constant chosen
to give a relative weighting to the deceleration and the heating term.
In this investigation the two terms are given an approximately equal
weighting. Sincc the convective heating is substantially larger than
the other forms of heating for rcentry with initial velocities on the

order of 356,000 ft./sec.lg, it is the only type of heating considered

here. The approximation for the heating term used is18
o oal/2 v .3 BTU
QC = 200 (m) ———————— (3.5)

Ft.‘-sec.

where p 1is in slugs/ft.3 and V 1is in ft./sec. For all numerical
computation the heating term times the weighting constant will be
written as xop1/2v3 where the unit of length for p and V is in
miles. Thus the numerical value of A shown in Appendix A includes
both the scaling factor and the numerical constants and unit conver-
sion factors associated with QC.

The important quantities associated with the deceleration

during reentry are the cumvlative deceleration and the maximum values
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7 -
20 An astronaut can take fairly high accelerations

cf the deceleration.
if they are applicd over short time intervals. Thus the integral of
the acceleration is a reasonable quantity in the performance index to
reprcsent the acceleration-time interval relationship.

The reentry trajcctory must satisfy a specified sect of boundary
conditions. The initial conditions arc fixed and given. These initial
conditions for reentry are the terminal conditions for the Apollo
transearth coast trajectory. Corrections are made during the trans-
earth coast to ensure that the initial conditions for reentry will be
very close to the desired conditions. Hence these conditions rer~in
approximately constant for all Apollo lunar trajectories. Reentry
begits at an altitude of 400,000 ft., a velocity of 30,000 ft./sec.,
and a flight path angle of -6.5 degs. The other state variables 6,
¢, and ¢ are initially set equal to zero for convenience.

Terminal conditions include specification of latitude anc
longitude so that the reentry vehicle may land near a recovery vessel.
The velocity is fixed also since a small specified terminal velocity
is required before opening the landing parachute. The final time and
other terminal variables are left open. The terminal conditions are

expresscd as

f fs
be = b (3.6)
Vf = st

where s denotes specified conditions.
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Before applying the MPF to the reentry problem, the optimization
problem must be reduced to the TPBVP. 'The Hamiltoniar. for the rcentry

problem is

vCyy VCyS
| = xr[VSY] + ) L rCEi' + ) [ lp]
S R LA IR W S A N (3.7)
\ P Y u v
r rv
_ VCyCyS¢  LSB
+ '\w[ I‘CQ 7(‘\11 Q

where CY = cos ¥ Sy = sin Y, etc.

The equations foi the multipliers arc:

: VCyC VCYSy 2uSYy  §* | 2
A= — A, * o= ( - C.p vT)A
r r2C¢ 8 r? ¢ 3 Z Dr v
Y Ty §*
_ (ZU( _ }__(;_ __2__ Ip V(‘S)\
TV r°

VCYCySe S*
- T - )

r°Ce¢
AS =0
: VCYCySe¢ VeYCu .
A= - t Sl A (3.8}
¢ rC2¢ . ¥
DL Oy Sy
AV SY)‘I" .; Z,w r >\¢

' CY Cy | &* -
T r

-



vhere

and

. ~YCWS; S* S8 )
[ <o +2.CLDC—Y—]AL-; Q\'

c_ VSYCy VSASY uCY

AY— \CY)\!_“ <o }\e + T A *—2—- v
SY  \Sy VSYCyS¢e  S* SYSR

- (55 - TN (Rt - o v Sy

rv r ¢ L \_"y

i = \’CYC\',_ . N EQLX X \LY )'uSO x

g Ce o T o  1C¢ W
L S* 2 172 .2 . 1723
Q= TT(CL D) o V7 + 1/2x o oLt

~2.172

2 , o 1/2..2
Q\. =S*((.,_ ) o\ + 33,0 / V

pr—-ko

The optimal control is determined by requiring that H8 ¢

and il , > 0,
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From these conditions it follows that

\
,

-CYA

sin 8 = - - COS B = ——

< Tt

. 1/(— o
x4 (‘Y AR 2P 4
\ ) Cy Yc

2. N172

(3.9

If ti. expressions for sin 5 and cos 8 are used in the differential

equations for

. ¢ states and multipliers, a system of 12

Tirst order
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coupled differential equations is obtained. The transversality con-
ditions associated with thc problem lead to the following additional
conditions.
xr\tf) =0, AY(tf) =0, Aw(tf) = 0, and n(tf) =0
(3.10)

The TPBVT now consists of the 12 differential emuations,

Egs. (3.1) and (3.8) with 8 eliminated by using Igs. (3.9), the
fixed initial state and time (7 conditions), and terminal boundary
conditions, Egs. (3.6) and (3.10) (7 conditions).

The coefficients for the perturbations cquations are obtained
by taking the partial derivatives with respect to the states and
multipliers of Fgs. (3.1) and (3.8) after B has been eliminated.
These are shown in Appendix B.

The definition of “he reentry problem to be considered is
now compicte. In summary, the control angle, 8, must ve determined
so that the integration of thc state equations, Cgs. (3.1), from the
specified initial conditions to the terminal conditions, (Eqs. (3.6),

yields a minimal value for the performance index, Eq. (3.4).

3.2 Numerical Accuracy Studies

The perturbation method outlired in Chapter : is used to
calculate optimal recentry trajectories for Apollo-type mic.icns.
Before thc results are presented some of the numerical problems en-
countered in generating optimal solutions should be discussed. The

perturbation method, as do most numerical optimization methods,
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requires two basic numerical procedures; i.e., the .ntenration of a
system of first order ordinary differential equations, and the inver-
sion of a matrix. The ability of the method to converge to optimzal
soluticns is very dependent on the accuracy obtained during these
two procedures.

For reentry, most of the problems in calculating optimal
trajectories are a result of the numerical integration procedure,
For each iteratiuii, the nonlinear equations including the state and
Lagrange multiplier equations, and thc linear perturbation equations
must be integrated. Reentry for Apollo lunar return trajectories is
characterized by high acceleratiors and heating rates. These causc
large variations in the derivatives of x and 2 making numerical
integration very difficult. flence the first problem is the develop-
ment of an integration routine which can accurately integrate the
nonlinear equations, Eqs. (3.1) and (3.8). The accuracy of the
integricion of the nonlinear equations is determined by using a
fixed stzp size and a variable stcp size version of the integration
rovtir e discussed in Section (2.4). The accuracy of the integration
is checked as follows: a nominal trajectory characterized by specified
initial values of x, A, and te is sclected. The values used are
shown in Table 4 as the nominal values. TFor the FSI, an integration
step size is selected and the nonlinear equations are integrated to a
specified te. The step size is decrcased and the equations are
reintegrated. As the step size 1s decreased, changes in the final

values of x and A should become smaller and smaller until ~ound
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off errcrs become a factor.

For the V51, ihe same procedure is followed by decreasing the
rclative single step error criteria. Again, as the upper crror bound
decreases, the step size along the trajectory decreases. Changes in
Xe and A should become smaller as the step size is decreased until
round off errors become important.

For the nominal shown in Table 4, a fixed step size of 0.25
seconds or a variable step size crror bound, €, of 10'10 < e :_10_8
is found to produce six digit accuracy by this method. Any further
decreasc in the step size or upper error bound produces changes in the
seventh digit or less. The integration time for the FSI is 5.6
scconds and is 4.0 seconds for the VSI.

The accuracv of the integration is checked also for .cveral
cther 1nitial values of the multipliers. In all cases, the VSI using
error bounds listed above performs better (requires less time for
integration) than a FSI with a step size which gave comparable accuracy.

The accuracy of the intcgration using the VSI is checked also
by a second method. The equations arc integrated to a specified t,
with given initial values of x and x. These final values of x
and » are then used as initial conditions to integrate the equations
backwards from te to t.. Values of x and A at t, calculated
from the backwards integration are compared with the original initial
conditions. These mumbers should agree if the integration of the
equations is accurate. For the nominal just discussed the variables

at t, agrce to six digits.
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The results of the initial analysis of the intcgration accuracy
indicate that the nonlinear equations can be integrated accurately. The
best approach is the variable step size intecrator. This allows suf-
ficient accuracy while requiring less time than the FSI to integratc
the equations for reentry.

The second question concerning the integration accuracy is
associated with tlLe integration of the linear perturbation equations.
Since the time dependent coefficients of the linear system are depen-
dent on the values of x and A, accurate intcgration of the nonlinear
fo et is necessary for accurate integration of the linear system.

accurate integration of the nonlinear equations 1s not suf-
zoaent for accurate integration of the linear equations. The accuracy
of the linear equations can be checked in the same manner as the
accuracy of the nonlinear equations. Since only unit perturbations
in the initial values of the 's are required, 211 comparisons are
based on just this part of the : matrix. An error bound of 10~8
to 10'10 produces ¢ digits which arc not altered by decreasing the
error bound.

Mumerical partial derivatives are calculated also in order to
check the accuracy of the linear system. The nominal previously com-
puted is compared with another integration of the nonlincar equations
with a small change in one of the initial multipliers. For instance,

a change of 1.0E-6 1s made in :_ . The first row of the ¢, matrix

O

should then he apprc mately cqual to
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\r + 1.0E-0 )\
o o)

1.0E-¢

The agreement between the numerical partials and the ¢ matrix for
the nominal discussed abcve is at least 3 digits. This indicates that
the linear system is probably analytically correct. Similar accuracy
is obtained for other columns of the ¢ matrix.

An alternate method of checking the accuracy of the ¢
integration will now be considered. Several authors have recommended
that for reentry optimization, the equations should be integrated back-
wards, i.e., integrate back out of the atmosphere instead of into it.
This suggests the application of the adjoint method.31 The equations

adjei~t to Eq. (2.11) are
v aF, T
Y=-[5] Y (3.11)

where Y 1is a 2n vector of adjoint functions.

If the system

: : T
6=- 12 o (3.12)

where 9 1is a 2n x(n + 1) matrix of adjoint functions with boundary

conditions

_ 31.
£ ° ) (3.13)

iatoerated from te to tos the solution of Eq. (2.12) can be
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ah = o'r(to,tf)[s‘;’-] +hoat, (3.14)
(o]

At this point, it is noted that n + 1 integrations of lq. (3.11)
are required for the adjoint method. If, however, the llamiltonian

is independent of time then

o _ collys _

= (siqz =0 (3.15)
implying that the llamiltonian is a constant and thus

(3.16)

[}
-
—

H = const = Il
0

Since a boundary condition is IlF = 0 this also implies ”o =0 or

to first order

_ ol -
Al = T &, (3.17)

since 8x, = 0 and oty = 0.

This determines o.e row of the linear system, Eq. (2.12),
without any integration. Conscquently only n integrations of Lq.
(3.11) are required if the liamiltonian is constant. Iq. (3.17) can
be used also with the perturbation method, but this does not decrease
tl  .umber of integrations required for MPF,

If these p integrations are made, the coefficients of the
linear system obtained by this mecthod can be compared with the coeffi-
cients obtained by the peorturbation method. Note that this does not
compare all of the integration rcequired for cither of Egs. (2.11) or

(3.11) but only the elements of the integration which are to be used
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in solving the linear system of 2quations. These, however, are the
important elements of the integration and as far as the optimization
procedure is concerned, are the only elements which affect convergence
of the method.

If the linear system generated by MPF and that generated by
the adjoint method are compared for the previous nominal, all elements
of the system agree to at least five digits. The correction vectors
calculated by the two methods agree to six digits.

The abilitv to reproducc the linear system generated by MPF
by the adjoint method and by numerical partial derivatives should
indicate that sufficient accuracy is being obtained to allow conver-
gence of the method.

Ligenvalues are calculated for the A matrix at specified
intervals along the nominal trajectory. A representative set of
cigenvalues is shown in Table 2. Over the entire trajectory, four
and occassionally six of the eigenvalues are very small. Note that
each large, positive, real part of an eigenvalue has a corresponding
negative real part of an cigenvalue. The small exponentials corre-
spond to approximately constant solutions. As long as the time
interval is sufficiently short so that the exponential typc terms
accurately represent linear perturbations, good results may be
expected.

The second numerical procedure used extensively by the opti-
mization method is that of matrix inversion. Since the ratio of the

largest cigenvalue tc the smallest one gives an indication of the



Real Imaginary Real Imaginary
-1,013E-2 4.984C-2 1.305E-3 0.0
-1.013E-2 -4 ,984E-2 -1.305E-3 0.0

1.013E-2 4.984E-2 1.282r-14 9.219E-4
1.013E-2 -4 ,984E-2 1.2825-14 -9,219E-4
9.573E-3 0.0 -4 .457C-15 0.0

TABLE 2. Eigenvalues of the A Matrix for a Reentry Trajectory

Real Imaginary
-5.506F+! 0.0
-5.223 2.346
-5.223 -2.346

1.013 0.0
-1.6405:-3 0.0
5.690Ek-4 0.0
-7.350E-4 0.0

TABLE 3. Eigenvalues of the Linear System for a Reentry Trajectory
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difficulty in inverting a matrix, cigenvalues are calculated for the
linear system produced by the nominal used for the integration accuracy
studies. The magnitude of thc largest eigenvalue is 55.7 and the
smallest is 7.3E-4., (Sec Table 3). These values are typical of eigen-
valu. obtained on other nominals. Since the ratio is on the order of
105 and the word length of the CDC 6600 is 14 digits, inversion of the

matrix should not be a problem.

3.3 Numerical Results

The numerical values of physical constants are shown in Appendix
A. Initial values of the states are selected to represent Apollo reentry

conditions for lunar return missions. These are

r, = 4035.75758 miles (400,000 feet altitude)
8 = 0.0 radians
o)
¢0 = 0.0 radians
(3.18)
Vo = (,81818182 miles/sec. (30,000 ft./sec.)
Yo = C 0.113446401 radians (-6.5°)
wo = (0.0 radians
Terminal conditions are
efs = 0,33 radians
= - n-? ] (
¢fs 0,M25 radians (3.19)
st = 0,5 miles/sec.



Initial values of the multiplie s and final time are selected from
lef. 51. Both a gradient method and sweep method are used to obtain
these initial values. The mass of the vehicle in that study is
different from the one considered here. Since this nominal integrates
through a singularity (y = -90°) at t = 400 sec., the guess for
te is changed to 380 sec. The initial nominal values and the con-
verged values arc shown in Table 4.

Eight iteraticns are required to decrease the tevminal norm
(hTh) from 5.4 to 4.2F-11.

Plots of the state variables are shown in Figs. 3 and 4.
Fig. 5 shows the control, acceleration, and convective heating rate.
The maximum deccleration is 10.0 g's. The maximum heating rate is
304.6 BTU/ft.2~scc. and the total heat absorbed by the vehicle is
48057.0 B’l‘U/ft.z.

A1l trajectories obtained have the same general characteristics
of the one shown. They are skip trajectories with high peak accelera-
tions and heating rates. The initial entry into the atmosphere is
safficiently deep so that the terminal phase of the ballistic segment
of the trajectory is approximately at the specified terminal longitude.
As the specified final value of -~ ,ongitude increases, so does the
skip altitude. For larpe values of 6pg» mMOST of the reentry time 1is
spent on the ballistic skip segment. Also during the initial entry
phasc, the 1ift vector is orientod so that the final valuc of the
latitude is approximately the specified value. Increasing Opq and
Yrq increases the performance index. Thus short inplane trajectories

Juce minimal values for the performance index. Changing the {inal
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Variable Nominal Values Converged Values
A 3.98397469E-3 -1.24748687E-3
A -8.952006071 -9.17150992
A¢ 8.31654552 26.5110657
Ay 2.52107557 2.35519683
AY 16.9208133 13.8236235
Aw 3.258990;; 8.83828355 o
te 280.0 391.80724

L]

Terminal Conditions: ef 0.33 radians, ¢f = -0,025 radians,

Vf 0.5 miles/sxc.

TABLE 4. Nominal and Converged Multipliers for Optimel Reentry Trajectory
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velocity changes the performance index only slightly since lowering

the velocity just causes the trajectory to terminate at a slightly lower
altitude. The heating rate and acceleration are small at this phase of
the trajectory, and integrating thc equations further into the atmosphere
adds very little to the performance index.

It is rclatively casy to vary terminal conditions and other
parameters and obtain near by solutions using the !IPF method. Changing
the temminal conditions to efs==0.4 radians and st==0.2 miles/sec. and
using the multipliers from the precvious converged trajectory requires 15
iterations to converge to the new conditions.

A problem is encountered when the converged multipliers for
efs = 0.4 radians and st = 0.2 miles/sec. are used as initial guesses
for the trajectory with Bes = 0.5 radians and st = 0.2 miles/sec.

The MPF diverges for this case. The terminal norm plotted against the
number of iterations is shown in Fig. 6. After the third iteration, y
1s approximately -90°. The . tate equations, Fq. (3.1) show that a
singularity cxists in the ¢ cquation when y = #90°. If during the
1teration process the singularity is cncountered, convergence of the
method is very uncertain. Two methods of avoiding this difficulty
will now be discussed.

First, when the singularity is approached, the guess for the
final time may be decreased. After iteration 21, if the value of the
final time is changed from 541.365408 sec. to 500.0 scc., convergence
occurs in 7 iterations. This change 1s sufficient to avoid the singu-
larity and hence to allow convergence.

A better method of avoiding the singularity is to remove it
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from the differential equations.

discussed in Section (2.4) may be used to remove the singularity.

process is known as

50

The change of independent varizbles

This

regularization. The advantages of regularization

for the calculation of optimal interplanetary transfers are presented

in Ref. 50. Since the velocity also approaches a very small value at

the final time, the

dt _
a?

transformation used is

V cos vy

Then the change of variables

V=V

is made. The state

No singularities are approached for this set of equations

since ¢ 1s always

2

equations become:

-2 i% \CYSy - s*chVZCY

—_"
w2, VCY L L e Ty
;Z'C v =T+ 5 S oVOYCR

—_—
VCOYCUSS | 1 cxe T
W 2— O LLQ\SB

small and r is never less than the radius of

(3.20)

(3.21)

(3.22)
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the earth. The multiplier equations are shown in Appendix F.

Since a change of variables is made, an initial guess for
\F is required. The llamiltonian in the new system must still be
constant and zero. Since all terms of the lHamiltonian remain un-
changed except those containing Ay and Ay these terms are equated.

Thus if the lamiltonian is zero in the V system, it will be zero in

the V system if

XVV = AVV (3.23)

— o) . .
Since V=V then V=2V or
N
vl (3.24)
Boundary conditions for +t are the same as those for t,
that is T = 0 and e is free. Since t does not appear in the
state equations, Eq. (3.20) need not be integrated until a converged
trajectory is obtained. A valuc of Tr is guessed ins:iecad of te
for the iteration process and corrections are calculated to g
using
_ oh '
ah = (E)®2(rf,ro) 6)‘0 + (h') Arf (3.25)
The value for Av(ro) is calculated using Eq. (3.24), and the
converged crajectory for Ops = 0.4 radians is generated with T = 356.0.

This value of Te gives a terminal norm of 107>, The value of Oce is

then changed to 8es = 0.5 radians. The regularized equations are allowed
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to iterate toward a solution. The regularized variables converge
after 30 iterations. The change in the terminal norm is shown in
Fig. 6.

The computer time for one iteration is considerably longer
using regularized variables. The regularized variables require 55.7
seconds per iteration and the standard variables require 25.7 seconds
per iteration. For one integration of the nonlinear equations, 7.1
seconds is required for the regularized variables and 4.0 seconds
are required for the standard variables. The computer time require-
ments listed above are for the last iteration before counvergence at
Bes = 0.5 radians.

The regularized variables do converge, however, and the standard
variables do not unless the singularity is avoided. The increase in
computer time using regularized variables is bccause most of the tra-
jectory is not near the singularity. The regularized state equations
are morc¢ complex which implies more terms to be evaluated in both the
multiplier and perturbation equations. Regularization thus does not
improve integration characteristics when the trajectory is not near the
singularity. Ar alternate approach to the one used above is to inte-
grate the standard variables until the singularity is approached. The
extra ecquation %%-= V"E%E—V is integrated to determinc t. when the
singularity becomes a problem, switch to the regularized variables.
This would require less computer time per iteration. The computer
program is more complex since two systems of cquations arc required.

If the singularity is approached, however, regularization does definitely

improve convergence characteristics. The improved convergence characteristics
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would probably be worth the extra cffort.

The rcason for the problem encountered in changing Bec from
0.4 radians to 0.5 radians is seen from Figs. 7, 8, and 9. Two types
of trajectories are produced. The shorter trajectory, Beg = 0.4
radians is shown as Trajectory 1. The initial entry is sufficiently
decp into the atmosphere that the ballistic skip undersh.-ts the
desired O (See Fig. 7). Control near the terminal phase is lift-
ing upward as seen from Fig. 8. The vehicle lifts upward and glides
outward to the desired long.tude. The longer trajectory Opg = 0.5
radians is shown as Trajectory 2. The initial entry is not as deep
into the atmosphere as Trajectory 1. The trajectory appears as though
it will overshoot the desired longitude. Then ncar the end of the
trajectory the vehicle rolls the 1lift vector 180° and flies down
toward the desired value of Oc- This causes Y to approach -90°,
Trajectory 1 lifts up near the end of the trajectory and does not
cause the singularity to be approached.

For the given values of d¢s and st, the change in the
type of optimal trajectory obtained is at bes = 0.415 radians. For
values of Ocs less than this value trajectories similar to those
shown as Trajectory 1 arc obtained. For values of b¢; greater than
this, trajectories similar to those shown as Trajectory Z are obtained.

Since several authors favor backward iitegration over forward
integration for dissipative systems, the reentry problem is solved by
the MPF starting at the final time. Guesses are made for the unknown
variables at the tinal time and for the time interval. These unknowns,

Tey Yoo Vg Xef’ A¢f, AVf’ and to’ where to now represents the time
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at the initiation of the reentry trajectory, are corrected to drive

the initial states to their specified values. A nominal trajectory
produced by guessing unknown variables at t, in general does not
satisfy specified terminal conditions. A nominal produced by guessing
unknown variables at te does not satisfy specified initial conditions.
Hence the same initial nominal trajectory cannot be used for both the
forward and backward iterations. Direct comparisons of the two approaches
are thus not possible. From computational experience, however, there
appears to be very little advantage, as far as convergence characteris-
tics are concerned, in using either approach. Converged trajectories
can be and have been obtained by either approach. The deciding factor
would seem to be the specified boundary conditions. If initial states
are fixed and extremals are required for various values of the terminal
states, forward integration corrects an initial nominal trajectory
which is acceptable and relatively accurate for reasonable changes in
terminal conditions. For backward integration, changes in conditions
at tg could produce large changes in conditions at t, thus requir-
ing more iterations for convergence than forward integration. If
various states at t, are to be studied, then backward integration
seems better suited to the problem.

The study presented in this chapter indicates that accurate
numerical solutions can be obtained to the reentry optimization problem.
Part of the success of the method in this study must be attributed to
the computer used, i.e., the CDC 6600. Ref. 3 gives an indication of
accuracy and integration time requirements for two dimensional optimi-

zation using a perturbation method on the IBM 7094, an eight digit
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machine. A lower energy, shorter trajectory is optimized in this
reference. Leondes requires approximately 18 seconds per iteration.
For the three dimensional model considered here, with a longer trajec-
tory, 25 seconds are required per iteration. Lecondes achieves three
digit accuracy in his sensitivity functions (perturbation equations)
and apparently has a great deal of trouble in converging trajectories.
Five or six digit accuracy is obtained here and this appears to be
sufficient to substantially improve convergence characteristics.
Trajectories presented in this chapter have the undesirable
characteristic of high acceleration peaks. The trajectory shown has
a inaximum acceleration of 16 g's. This is above the generally accepted
limit of i0 g's for manned reentry trajectories. Also the skip tra-
jectories produced here do not allow control of the vehicle over the
skip segment. Terminal conditions for this type of trajectory are
difficult to predict due to atmospheric variations. Small changes
in the atmospherc produces large changes in terminal conditions. In
the following chapters, a method of improving the characteristics of

the reentry trajectories will be discussed.



CHAPTER 4

STATE VARIABLE INEQUALTTY CONSTRAINTS

4.1 Suwmmary - f Theory and Numcrical ‘lethods for SVIC

Unfortunately, most attcmpts to solve realistic problems in
optim.l cortrol theory require the satisfaction of incquality con-
strainte¢ which are functions of the state and/or control variables.
Th» veeniry problem solved in Chapter 3 is an cxample of this situa-
tion. The necak acceleration experienced by the recentry vehicle is
too high for manned reentry. Also the use of skip trajectories has
been fcund to be extremely sensitive to atmospheric conditions.
Iixact reentry terminal conditiors 17e difficult to predict for skip
trajectories. Also, very little control of the trajectory is obtain-
able over the skip portion since the vehicle is outside of the
sensible atmospherc. Thus reentry trajectories which remain in the
atmosphere with small peak accelerations are desired.

Both of these constraints can be expressed as statc variable
inequality constraints (SVIC). The first constraint requircs that
the maximum acceleration be less than or equal to some prescribed
maximum acceleration. Tor constant 1ift and drag coefficients,
acceleration is a function only of altitude and veloci.y. The second
constraint requires that the skip portion of the trajectory be less
than or equal to o2 maximum skip altitude. Note that the control
variable Joes not arpear in either of the constraints. Constraints
which contair the control variablc explicitly will not be considered
here.

\umerous developments of necessary conditions for a SVIC are

59
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given in the literature. Refs. 5, 8, 9, 16, 17, 23 consider this
problem. Recently new necessary conditions have been derived by
Jacobson, Lele, and Speycr.47 A penalty function approach is usecd
which does not require the assumption of finite boundary segments.

If the order of the constraint is greater than two, they have shown
that non-extremal solutions with finite boundary segments which satisfy
ail of the necessary conditions given in Ref. 23, may be obtained. Tor
problems considered here, the order of the constraint is less than or
equal to two. Hencc the necessary conditions given in Ref. 23 are
still applicable.

Several numerical methods have becen used to obtain solutions
to SVIC. These methods can gencrally be divided into penalty function
methods and hard constraint methods. In the first case, a penalty
term related to the constraint violation is added to the performance
index. Then an attempt is madc to drive the performance index to its
minimun value which in a limiting sense should drive the constraint
violation to zero. The penalty function technique has been useu 1n

4,18,20,36,37 , 4 quasilinearization.25

connection with the gradient method
The dircct methods attempt to incorporate the constraint directly into
the problem. A limiting process is not required. This method has been

2
6,24,38 and perturbation method41’40.

used with the gradient method
Comparison of penalty function techniques and hard constraint methods
using a gradient method indicate that better convergence characteristics
are obtained using the hard constraint mcthod.6

An alternatc approach to the numerical solution of optimal

trajectories which satisfy SVIC is presented by Jacobson.21 He uses
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a transformation tcchnique based on early work by Valentine12 to trans-
form the SVIC into a singular arc problem. The singular arc problem is
solved by a conjugate gradient method or some other method which will
landle this type of problem. Jacobson39 also has presented a penalty
function method to solve the singular arc problem. The question of whether
the penalty function solution of thc singular arc problem or the direct
penalty function solution of the SVIC is better, is not answered.

42 Some trajectories

Another approach is that used by Speyer.
containing SVIC arc separable. This implies that parts of the trajec-
tory not on the constraint boundary may be solved independently and
pieced together with the part on the boundary. With this approach,
any method may be used to obtain the segments off of the boundary.
However not all problems arc scparable.

To the author's knowledge attempts to develop second order
methods to handle SVIC's directly for non-separable problems have
been limited to the perturbation method or slight modifications of the
perturbation method. Both of thc methods referenced earlier apply
the necessary conditions obtained in Ref. 5. They keep the full set
of n Lagrange multipliers along the constraint boundary and assume
that jumps in the multipliers occur at the time when the trajectory
goes on the constraint. Both metnods seem to exhibit good convergence
characteristics for the problems considered, however, both references
consider only very simple examples.

An alternate method of calculating optimal trajectories with

SVIC based on necessary conditions shown in Ref. 23 and the perturbation
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method will be derived in the next section. This method reduces the
state space and hence thc number of multipliers while the trajectory

1s on a constraint. There arc no jumps in multipliers at the entry
time, as in the previous two methods: howeve=, unknown multipliers do
appear at the exit boundary. The necessary ~.onditions for an extremal
presented here have appeared previously in the literature. The modifi-
cation o. the perturbation mcthod to calculatc optimal constrained

trajectories is new. It has not appearcd in the literature before.

4.2 Necessary Conditions for SVIC

The necessary conditions for SVIC described below are derived
in Ref. 23. A\ summary of the nccessary conditions is presented for
the sake of completeness and to familarize the reader with the nota-
tion to be used in the remainder of the dissertation. These conditions
are derived by dividing the optimization problem into scgments on the
boundary and segments off the boundary. The state space is reduced for
scgments on the boundary implving a reduction in the number of multi-
pliers rcquired. Then the segments arc tied together through corner
conditions obtained by requiring that the first variation vanish.
Mnly one boundary scgment is considered since necessary conditions
for all boundary arcs are identical to those obtained below. The
problem statcment is as follows:

etermine the control variable u(t) over the interval

t, <t :_tf to extremize

L

1= 0(x,t)dt + T(xp,tp) (4.1)

.
-
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subject to X = f(x,u,t) , M(xf,tf) =0 , x(to) = X , and

os
S(x,t) < 0. The initial time is fixed. The definition of all terms
except S is given in Scction (1.1). The constraint S is a scalar
function of the states and possible time and its value is required to
be less than or equal to zero all along the trajectory.

Following accepted notation, a p-th order constraint is de-

fined as one in which

3 A4S
Ty [ .] =0 ’ k = 1) ’ p-l
u EEK
and (4.2)
s dPs
= [—1#0
Ju dtp
lefine
o
y = E (4.3)
Pl
K dkS
where S = — and y is a p vector. The vector y 1is a function
dt

only of x and possibly t. Note that in order for S to be zero all
along a houndary segment, it is required that y = 0 all along the
boundary segment., Also the control must be determined from P =0 to
force the trajectory to remain on the boundary. Thus the number of
variables required to describe the trajectory along a boundary arc is
rcduced from n to (n-p). Choosc (n-p) states, Z, to describe the
trajectory along the constraint. In general, the Z's will be chosen

as (n-p) of the original states, x, which arc not affected by the

constraint. Thus
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le(x,t)
Z = . (4.4)

| Zn-py o)

B

and the Z's are chosen such that

KA

3x

#0 (4.5)
aZ
93X
The last condition allows Xx to be determined as a function of vy
and Z.
The optimization problem can then be divided into arcs on the
boundary and arcs off the boundary. On the boundary the state is

determined from the conditions

Z=g(,t) , y=0 (4.6)

-~

where g(Z,t) is the (n-p) vector of derivatives of the Z variables
along the constrairt b..wery. The control is eliminated from the Z
cquations by using s = 0,

At this point it is assumed that an optimal trajectory exists
that either touches the boundary at one or more points or has one or
more intervals of finite length along the boundary. Neccessary condi-
tions for an optimal trajectory of this type are then derived. Then

an attempt is made to determine a solution which satisfies tnese necessary



conditions. In order to derive necessary conditions for the problem,
only one segment on the SVIC boundary will be considered. Necessary
conditions obtained, however, apply to any number of segments. The

augmented performance index is written as

Y t
Ts Ta
I= J (H - A'x)dt + I . (G- udat
to t1

te
T.
+ J L - ax)de + P
t

where G = uTg + Q(Z) and u is a (n-p) vector of multipliers asso-
ciated with the Z's. The segment on the boundary is from t; to t,.
The time ti is the time just p-ior to the entry boundary time and
t; is the time just after the entry boundary time. The time t, is
the time just prior to the exit boundary time and t; is the time
just after the exit boundary time. The first variation of I 1is

required v vanish. Thus

51 =0=(H - A\%)

- T
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+*
At: - u 82
. 1

1

]

+

1

t t

+ (G - uTi)' Até - uTcz'
ti té
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(4.7)
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At; - aTsx| ]
+ +

t k)

[ - ATi)

+ (I - xTi)‘ Mty - Adel + AP
te te
.
. T T
(1L éu+ (I, - x)8x + (H+ 2 ) 6x]dt
¢ U A X
[o]
.
+ J [G - 2Vyeu + G, + a)sz]dt
+ u
Y

R: .T T
+ 1, [Huav + (llx - X )8x + (Hx + 1 )éx]dt

t,
(4.8)
The necessary conditions for in extremal with a boundary

segment arc thus:
A~ the initial tine,

t=0 , x(to) = Xog “4.v)
At the final time,

{1 = = T =

M=0 , x(tf) Pxf , H+ Ptf 0 . (4.10)

On unconstrained arcs,

. T .
k=1, , r=-H Hu =0 . (4.11}
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On constrained arcs,
, i=-G , y=0, =0 . (4.12)

At each junction point,

H-G+a oy, +N2) =0 , - 3TN=0
(4.13)
y=0 , Z=172(x,t)
where the matrices M and N are defined as
-1
| Yx
M I N = —z——— (d A4 )
X

M isan nxp matrix and N is an n x (n-p) matrix.
All of the conditions are easily varified from Eq. (4.8) except
the boundary conditions. These will be derived at t; to show the

procedure required. Since
AX = 86X + XAt , AL = 8Z + it (4.15)

at the boundary, the terms at f may be written as

oty - wlaz] 1 (4.16)
- + +
Y 4 Y

H Ati - xAxl - {6
Y
The 4Z's are independent, however the ax's are not since from con-

tinuity of x's across t, they are reclated through y = 0. To first

order then
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r -

.
Ay Yy | Ye

= l Ax + At (4.17)
[z

Zx Z¢

and from Eq. (4.5) this can be solved for Ax as

Ax = [ M IN] {Ay - ytAt? (4.18)
|
[Az - ZtAt!

1
<

At t,, or any corner, A&y = 0, and the terms involving ty become

-G+ xT(Myt + NL, ))} st + Gl - ezl 4.19)
1 1

t t

1 1

where for continuous t, it is required that Ati = At; . The boundary
conditions follow directly from the above expression. Note th:t as a
boundary is entered the multipliers u are uniquely detemined from

Fq. (4.13). As the boundary is left, p of the 1's cannot be determined
directly from the boundary conditions. In Chapter 2, the solution to an
unconstrained optimal trajectory is characterized as a TPBVP., Here
necessary conditions for an optimal trajectory with a SVIC are .ormulated
as a multi-point boundary value problem. Modifications to the standard
MPF to include these additional conditions are considered in the next

section.

4.3 Application of Perturbation }lethod to SVIC

A perturbation method will now be derived to solve the inter-
mediate boundary value problem described by Eqs. (4.9) through (4.13).
Again this will be derived for only one SVIC boundary segment. The
extension to more than one segment is straight forward.

Corresponding to the standard MPF method, unknown multipliers
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and unknown boundary times will be guessed. At the boundary exit,
either p of the A's or all of the i's may be guessed. If all
the 1's are guessed the equation relating \'s and u's may be
considered as boundary conditions to be satisfied by the iteration
procedure. The latter procedure will be followed here. The initial
multipliers, multipliers at the boundary exit, the boundary ertry
time, boundary exit time, and final time will all be guessed. A
nominal trajectory is produced by integrating the x and 1 cqua-

tions from t, to t, using specified values for x_ and guessed

o
values for A . At t;, Z and u arc determined from Z = Z(x,t)

and u! = \'N. The cquations for Z and 5 are integrated from

Z(x,t) and y = 0.

"

t, to t At t,, x 1is determined from Z

1 2° 2
The values of A at t, are guessed and the x and X equations
are integrated from t, to t.. Corrections to the guessed variables,
Ay Xt,’ tl, t,, and te are calculated to drive all the unsatisfied
bounda;y conditions to zero. These corrections to the variables are
rclated to desired changes in the unsatisfied boundary conditions using
linear perturbation theory. The method is then iterated until con-
vergence or divergence occurs. Boundary conditions which will not be
satisfied by the nominal are given below.

At the boundary entry time, Z = Z(x,t) determines Z and
uT = zTN determines u. Unsatisfied boundary conditions (p+l), for

the nominal trajectory are

T
hy= [H-G+2 Oy, + NZt)} = 0 (4.20)
Yy tl
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At the exit time, Z = Z(x,t) and y(x,t) = 0 determine x at
t,. This leaves (n-p+1l) unsatisfied boundary conditions

T B
-G+ (My, + NZ,),

[
T T
uw - AN
L tz
At the final time, the usual boundary conditions (n+l) obtained

in Section (2.1) are still applicable and are expressed as

h,.=0 (4.22)

The vector hf consists of the same conditions defined by Eq. (2.10).
This gives (2n+3) boundary conditions and (2n+3) unknowns which are
A(to), A(tz), t, by, and te. Corrections in these quantities are

now rclated to desired changes in boundary conditions. Define
X
z=[-31 , v=I[5] (4.23)
and from linear perturbations

6z, = ¢(1,0)s2 v, = %(2,1)6v z¢ = o(f,Z)ézz

1 o’ 1°

(4.24)
where ¢(1,0) and ¢(f,2) are 2n x 2n matrices and ¢(2,1) is a
2(n-p) x 2(n-p) matrix. Here ¢(a,b) denotes the solution of the
appropriatc set of perturbation equations, ILqs. (2.14), which have
heen integrated from t, to t, w.th the initial conditions at ty
set equal to the identity matrix.

At the boundary ty

v(z) = (4.25)
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and

VAN 1
Av a7 02 * 3% At (4.26)

The boundary conditions are now expanded about the nominal

and rclated to guessed quantities. For thc conditions at t»

Bhl ahl
Ahl = 320 AZl + T Atl (4.27)
1 1
or
ahl
Ahl = SE_]. 621 + rll Atl
Using the ¢ matrix
ah _
Ahl = s—z-l— Q(l,O) 620 + hl Atl (4.28)

Since sz, = [59-], only the last n columns of the ¢ (1,0) matrix

are required and

sh

=_1 :
Ah1 = 521—¢2(1,0)6A0 + hIAt1 (4.29)
Similarly for ty
ahz ahz ahz
Ahz = 3-\,—2- AVZ + ﬁ; A)\Z + —a-q Atz (4.30)

where the corrections to A(tz) are separated from other terms at
t2 since corrections to A(tz) must be calculated.

Since AV, = 8V, + V,it, and v, = @(2,1)6v1 then



3h

3h, ah, ;  dhy
Ahz = a—v; @(2,1)6\/1 + -a_)\-z_ A)\Z + (-5}-2- + W—,— VZ)AtZ
. . avy vy
Again vy = av; - vyt and avy = a—z-l— 8z, + ﬁ-i- st so that
ah2 3112 av1
Ahz = YN AAZ + Vo $(2,1) 37 ¢2(1,0)5A0
2 2 1
oh v v
2 1 1 -
- = 4 2,1) [vy, - = - ==z ]2t
av2 1 at1 azl 11771
sh sh
2 2.
+ (5= + 57— Vv,)at
Btz 8V2 2 2

Note that total changes, Ax,, are calculated for the multipliers

at t,.

A(t,), t), and t,.

For the final time,

aAh £

ahf
Define -a-—z-f:4>(f,2) =

where '5'1(f,2) and

A}‘f-_-

3hf .
3_ZE sz + thtf

ah, .
"
55 o(f,‘.)ézz + thtf

-

[0)(£,2) | %, (f,2)]

?:72(f,2) are (n+l) x n matrices. Then

o, (f,2)6x, + 3, (£,2)61, + ﬁfAtf

) (F,2)8x, + ,(£,2)80, - [Ei(f,Z)iz + Eé(f,Z)iZ]At2+-ﬁ

72

(4.31)

(4.32)

2 Changes in hZ are lincarly related to chu.iges in A(to),

(4.33)

(4.34)

Ate



Again using Eq. (4.18)

bx, = (- My, - NZ)| at, + NjaZ,

t,

Define §é such that

N.

And

N)4Z, = Nyav, or N, = [N, , 0]

2 is an n x 2(n-p) matrix. Then

she = 2, (£,2)N,6v, + 3, (f,2)0),
- [Ei(f,z)iz + Eé(f,Z)iz - 3i(f,2)(Név2

+ My, + NZg)lat, + BfAtf

v
. = — 5 1
Ahf = ¢2(f,2)AA2 + ¢1(f,2)N2¢(2,1) 32—1 ¢2(1,0)6A0
_ _ . vy  dvy |
{¢1(f,2)N2¢(2,1) [Vl - -a—t—l— - 5-2—1- le}Atl

-{Ei(f,z)iz + 62(f,2)i2 - Ei(f,Z)NVZ

+ My, + NZ o, 4 heat,
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(4.35)

(4.36)

(4.37)

(4.38)

The three vector equations, [Fqgs. (4.29), (4.32), and (4.38)

must be solved simultaneously, for the corrections to the guessed

quantities.

and the procedure continues iterating until all of the

Zero.

These corrections are added to the guessed variables

h's are
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The entire fundamental matrix must be integrated from t, to
t, and from t, to t.. Thus more integration is required for con-
strained trajectories.

The major disadvantage of this method is the necessity of
gucssing the number of boundary arcs and their approximate location.
For many problems, however, unconstrained optimal trajectories may
be obtained. Thesc unconstrained trajectories provide insight into
the location of boundary segments. They also provide reasonable
estimates for boundary entry and exit times. If some apriori infor-
mation about the location of boundary arcs is available, the convergence
charac:eristics of the method, presented in the remainder of this investi-

gation, indicate that it is a feasible method for attacking SVIC's.

4.4 Example Problem (Constrained Brachistochrone)

The example problem chosen to illustrate the algorithm is the
constrained Brachistochrone problem. This problem is chosen because
it has been considered by several other authors and hence numerical
results can be compared. Other papers that have considered this
problem or a slight variation of it are Refs. 5, 25, 41, 38. Ref. 5

presents an analytical solution. The statement of the problem is as

follows:
Minimize
I = tf - t0 (4.39)
subject toc
_ 172
X; = Xy’ " cos u
1/2 (4.40)
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with boundary conditions

t, = 0.1
xl(to) =X xz(to) = Xy (4.41)
xl(tf) =]

and inequality constraint
S = Xy = Xy tan C1 - C2 <0 (4.42)

where C1 and C2 are constants.

This is a first order constraint since
S = x%/z[sin u - cos u tan C1] (4.43)
and thus on the constraint boundary u = Cl‘
Define
y=S= X, - Xy tan C1 - C2 (4.44)

and choose Z = X, as the state variable on the boundary. Note that

3y
X
-] = - tan g (4.45)
3z
X

which is not zero for G # 0. The state equation on the boundary

is then

7 = 721/2 gin o (4.46)
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The lamiltonian off the boundary is

1/2 /2

I = xl[(xz) cos u] + AZ[(xz)1 sin u] 4.47)

and the conditions i, =0 and Hou > determine thc optimal choice

of the control variable as

=A

22 1
sin u = —z——Tm sy, COS U= T—m (4.48)
(Al + *2) (Al + AZ)
On the boundary the Hamiltonian is
G = uz? sin ¢ ] (4.49)

Necessary conditions for a minimal trajectory are given below.

At to the selected initial conditions are

x,(t ) = [Cst_ - 1/2 sin(zc3t0)1/4c§ (4.50)

_ .2 2
xz(to) = sin (C3to)/4C3
where C3 is a cor “tant. On the unconstrained arc

= (x?_)l/2 cos u

X, =

. 172 .

X, = (xz) sin u

. (4.51)
S 0

P
]

1 .
- [x; cos u + A, sin u]
2 (XZ)I72 1 2
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where sin u and cos u are defined in terms of M and Ay by Iq.

(4.48). On the constrained arc

3 = 712 gin ¢
u sin C1
D= — (4.52)
2 71/
At the final time
Az(tf) = 0 (4.53)
Hte) +1 =0
At intermediate boundaries
H-G=10
Yy = X, - X tan Cl - C2 = (
(4.54)
A
- 1 -A =0
YT tan Cl 2
Z - =0

The problem now is to generate a nominal trajectory and use the
modified perturbation method developed in the previous section to iterate
toward a trajectory which satisfies all of the conditions listed above.
Before this is done, the boundary conditions are altered slightly. Since
Fgs. (4.40) and (4.46) do not contain t explicitly, both I and G

are constant. Then the first of Lqs. (4.54) may be used to show that
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requiring H(to) + 1 =0 is equivalent to requiring H(tf) +1=0.
This boundary condition will be applied at t, below. Also, the con-
dition H = G at intermediate boundaries requires that the control
be continuous at these boundaries. Thus requiring that A, tan Cl' Ay = 0
is equivalent to requiring that the lamiltonian be continuous. The
condition will be applied in this manner.

In order to generate a nominal trajectory, one boundary segment
is assumed. C.esses are made for A(to), A(tz), ty, ty, and tf. (7
variables). Egs. (4.51) can then be integrated from t, to t,. At
tl, Z and u are determined from the last twc equations of Eqs. (4.54).
Eqs. (4.52) are integrated from t1 to tz. At tz, x(tz) is determined
from the second and fourth equations of Eq. (4.54). Using this and the
guess for A(tz), Eqs. (4.51) are integrated from t, to tg. The

boundary conditions not satisfied by this nominal are

ho = H(to) +1=0 (4.55)
hl = =0 (4.56)
1
i Y
- 1 - A
¥ ° tan Cl 2
h, = =0 (4.57)
xl tan C1 - AZ .
) 2
and
Xy - 1
hf = *2 =0 (4.58)
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The modified perturbation method derived in the previous chapter
is used to rclate the changes dxl(to), cxz(to), Axl(tz), sz(tz), Atl,
at,, and ate to desired changes in the boundary conditions. The coef-
ficients of the linear perturbation cquations and derivatives of the
h's are shown in Appendix C.

8 and 10'1‘0 is used for the

The VSI with an error bound of 10°
integration. A 30% correction scheme based on the norm cf all the
multipliers is used during the iteratior..

The initial nominal values of the multipliers and times are
shown in Table 5 along with the converged values. This trajectory
is calculated for C, = arc sin [1/(5)1/2], C, = 0.2, and
C3 = 1/4[10(C1 +2 - 59]1/2. (Case 1) and also for C2 = 0,1 Case 2).
Starting with the nominal shown in Table 5, five iterations are required
to converge Case 1. 3tarting with the converged values for Case 1, four
iterations are required to converge Cas. 2. Convergence implies that
the square root of the sum of the squares of all h's is less than 10'7.
Each iteration, including the integraticn of the nonlinear equations,
all perturbation equations, and solving the linear system required 1.9
seconds of computer time. These results agree with those presented in
Ref. 41 to at least seven digits. Plots of the state variables for the
cunverged traieciories are shown in Fig. 10.

This example shows that the method does converge and that con-

vergence near an optimal is quite rapid.



Variable Nominal CASE 1 CASE 2
xl(to) - 1.5 - 1.49403214 - 2.11215421
Az(to) -20.0 -19.9627889 -19.906769
Al(tz) - 1.0 - 1.3265554 - 1.4328439¢6
xz(tz) -10.0 -0.663276291 - 0.71642038
t, 1.48 1.4820961 1.0477710
t, 1.9 1.8201062 1.9465189
te 2.52 2.5191296 2.5936887

80

Case 1: C, = 0.2

Case 2:

)
rJ
"
=
—

TABLE 5. Nominal and Converged Multipliers for Constrained Brachistochrone
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FIG. 10. State Variables for Optimal Constrained Brachistechrone

18
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ALTITUDE CONSTRAINED REENTRY

5.1 Theoretical Development

The numerical method developed in the previous chapter to
solve optimal control problems with SVIC will now be applied to the
rcentry problem. The SVIC will require the altitude over the skip
segment to be less than or equal to some specified maximum altitude.
As mentioned earlier, both altitude and acceleration constraints
should be considered for the reentry problem since both low peak
accelerations and reentry trajcctories which remain in the sensible
atmosphere are desired. Ref. 18 shows that an altitude SVIC has the
effect of accomplishing both of these goals. Illence it is chosen for

the following study. The SVIC is thus
S(x,t) =1 - T, <0 (5.1)

where T3 denotes a specified altitude. Since the initial altitutde
Ty will be larger th.an Tqo the constraint applies only after the
reentry altitude becomes less than or equal to the constraint altitude.
This is a second order constraint as seen from taking derivatives of
S.

S=h=Vsiny=0 (5.2)
implying y = 0. Also

S=0h=Vsiny+ (Vcos Y)Y =0 (5.3)

82
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implying Y = 0, or
—— 1
rVv Ta
_d . _ 2 \1/2
cos 8 = 4 ———— ., sing-= (1 - cos™ B) (5.4)

*\
7 S*CiPg

The lus sign has been chosen for sin 8 since for this study, only
negative values of ¢ are considered. It would seem rcasonable to
have the vehicle roll in the direction of the desired tcrminal value
of ¢, which in this case implies that sin 8 should be positive.

On the altitude constraint, the Z variables are chosen as
8, ¢, V, and y. This is the natural choice for the Z variables
since this choice gives a one to one correspondence between the
vector and 4 variables in the A vector as will be shown later.
The equations for Z are thus

VCy
rdC$

D
)

VSy

Td

S
n

(5.5)

V= -(1/2 $5C oV
v=-Yvtan e (/2 sac )0 vSE
T L’%d

and the y equations are
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yp=r-rg=0 , y,=v=0 (5.6)

The llamiltonian on the constraint is defined as

= VC.p VSy ) *
g [ ] [ ;:&— ]+ uV[ 1/2S Cl)pdv2
_ VCy tan ¢ _ *
*ul = 1/2S*C, o VS8] (5.7)
S* 2 1/2 1/2..3
+_2_(CL+C DdV +Ao°d s
The equations for u are
g = 0
. VCyS¢ VCy
Uy, = - ——u, * —Z
¢ r,C°¢ 8 rc ¢ v
d d
- __ Gy _ Sy * ,
WS TR e Ty et T sy
(5.8)
C 2C CB
_ ¢+Cy tan ¢ .
{ T ( v )od[SB + V('-T—)]}U
- 20,V - 30V
2 3
r~
_V5y -V_C'Eu _ VSy tan¢h

poo= u
] rdC¢ e rd ¢ Td ']



_— u . e p i 2.1/2
where C, = , C,=1/2 S%(C7 + C)' 7
17 Tz o) 2 LY &) e
Fs Aty WA |
(5.9)
_ 1/2
CS = 2P

and o4 is the density at the specified altitude. The variational
cquations for the boundary scgment are shown in Appendix D). Boundary
~onditions at entering and exiting times require continuity of the

states and also

(5.10)

A nominal trajectory must now be produced. Again one boundary
arc is assumed. The first four conditions of Iiq. (5.10) can be satis-
fied on every integration. At t1 the final values of X are used
as the initial values of u. At tz, final values of u are used as
initial values for four of the A's. Thus only two of the A variables
must be guessed at t,. Also, at t,: the integration of the x equa-

tions is begun with r = Ty and y = 0. llencc the only intermediate

boundary conditions which cannot be satisfied on every iteration are:

at t, , G=1 , r - Ty = 0, y=0 , (5.11)

1

at t, , G=1. (5.12)

Urknowns associated with tlie problem include the initial values
of » (0 variables), Ar and AY at t, (2 variables), and the times
t, ty, and te. Thus there are 11 unknowns. Boundary conditions con-

sist of the 7 original terminal conditions for the unconstrained priblem



RO

and the four conditions shown above, or a total of ecleven boundary con-
ditions. The number of boundary conditions is thus cqual to the number
of unknowns and a well posed problem exists.

Again for numerical results, conditions on the llamiltonian are
applied in a different manner The lamiltonian is required to be zero
initially, i.e. H(to) = 0, The continuous Hamiltonian at both boundary
times requires that the control be continuous at the boundaries. This

condition may be expre:-«i as

; .2 2
L - = x+x]+x=0 (5.13)
1 2 2 1 L v Y Y :
[7 SCrgPqV 7 S*CrgPy ]

All necessary conditions on the llamiltonian will be satisfied
if these three conditions are satisfied. See Appendix E for a summary
of boundary conditions and derivatives of the boundary conditions.

For this problem, all the multipliers at the exit time are not
guessed. In order to decrease the dimensionality of the linear system
to be solved, only the two multipliers A and AY and guessed. The
theory developed in the previous chapter must be altered slightly to
include this change. The effects of Axr(tz) and Axy(tz) are

separated out and changes in the other 's at t, are propagated in

the same manner as in the previous chapter. If the two vector

>

A= [Xl] (5.14)
4

<

is defined then the linear equations for h with Ve and Zt equal



87

to zero become

sh, = == &) (5.15)

Ahl = 5E—-¢2(1,0)5x0 + hlat1 (5.16)

ahz ahz avl

Ahz = -BT- AAU + 5;.“ ¢(291) (-37-)°2(1’0)6A0
u 2 1

(5.17)

3h, v ah,

1 - .
5‘6 0(2,1) [-a-EI 21 - V1]At1 + VZAtZ

-+
BVZ

v
= 1
th, = gﬁf,Z)Axu + ¢(f,2)¢e(2,1) 5EI-¢2(1,0)6A0

v

- 1. .
¢(f,2)¢(2,1)[321-21 - vlaty (5.18)

+

ahf

[Q(f,Z)VZ - E’f— Q(Z,I)ZZ]AtZ + thtf

+

where

sh

o(f,2) 55 0(£,2)8

L}

and

(0000 i
1000
0100
0010
0001
0000
1000
0100
0010
0000
0001]
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B1 is a 12 x 8 matrix, and ;(f,Z) is a 6 x 8 matrix. Also
ahf
¢(£,2) = 32;-¢(f,2)B2 (5.20)
where
0 0
0 0
00
0 0
00
0 0
By = 10
0 0
0 0
0 0
01
[0 0

B, isa 12 x 2 matrix and ¢(f,2) is a 6 x 2 matrix.
Thus ¢(f,2) separates out the coefficients for Axu and

9(f,2) includes the other terms after realizing that Ar, and 4y,

are zero. All other temms correspond directly to the previous develop-

ment,

5.2 Numerical Results

The same numerical values for the initial conditions and
terminal conditions used in Chapter 3 will be used for the constrained
trajectory. The terminal conditions are bes = 0.33 radians, bps = -0.025

radians, and st = 0.5 miles/sec,
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The initial multipliers for the unconstrained trajectory will
be used as initial multipliers for the iteration procedure here. These
values, gucsses for the unknown vector Au , and pucsses for tys ty,
and te are shown in Table 0. ‘'The constraint altitude chosen is
ry = 3995.0 miles.

Approximately 32 secconds is required for each iteration of the
constrained reentry trajectory. A plot of the terminal norm vs. the
number of iterations is shown in Fig. 11. The method requires 104
iterations to converge. The norm for the last 10 iterations is shown
in Table 7. Plots of the states, control, acceleration, and heating
rate are shown in Figs. 12, 13, and 14.

The modified MPF does very well for the first few iterations
and then the norm begins to decrease very slowly for a considcrable
number of iterations. Over this intcrval the signs on the corrections
of most of the variables oscillate back and forth from plus to minus.
Elements of the linear system produced by the transition matrices
change only in about the third or fourth digits. The flight path
angle at te over this interval is near -60°, It is changing very
rapidly near the end of the trajectory and if the equations are in-
tegrated for a few more seconds past the nominal final time, it quickly
approaches -90°, A singularity exists in the equations at -90° and
accurate integration near this singularity is very difficult. The
iteration continues for about 70 iterations slowly increasing .
After the flight path angle is changed to -35° the method begins to

converge very rapidly again.
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Variable Nominal Value Converged Value

Ar -1.265881:-3 -1.2772884E-2
o

16 -9.1816066 -7.40988123
o

A 26.5960 3.3857227

%

AV 2.35619 3.1522105¢
0

A 13.82719 -1.209306003

Yo

) 8.84954 9.63840795E-1
‘o

Ar 1.0E-2 5.33051908E-3
2

AY -1.0E-1 -§.16314647E-1
2

tl 70.0 85.0960654

t2 150.C 184.938154

tf 320.0 333.4100663

Terminal Conditions: Oeg = 0.33 rads, $eg = -0.025 rads,
st = 0.5 miles/sec.

Altitude Constraint: ry = 3995.0 miles

TABLE 6. Nominal and Converged Multipliers for Constrained Reentry
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Iteration Terminal Norm (hTh)l/2

95 1.3286

96 1.1601

97 8.9962E-1
98 6.4966r-1
99 4.0133E-1
100 1.9503E-1
101 1.2640E-2
102 1.3522E-4
103 1.854E-6
104 7.8315E-10

TABLE 7. Terminal Norm for Last Ten Iterations of Constrained Reentry
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Another problem is that large corrections oscillating from
plus to minus are calculated for t,. The control along the boundary
seguent 1s calculated from Eq. (5.4). If the time calculated for t,
is sufficiently large, the veclocity along the boundary becomes small
enough to make the absolute value of cos 8 greater than one. This
indicates that the vehicle cannot fly at a specified altitude for an
infinite time interval. If the value of t, is larger than the
maximum time interval that the vehicle can remain on the boundary
then sin B becomes imaginary.

“ar the iterations above, the nominal value of t, approaches

. .. after 30 iterations. From this poirt on, if large positive

14 .Ctions are accepted for t, an imaginary vaiue of sin 8 is

obtained. Thus even though corrections to t, are oscillating from
plus to minus, allowing fairly large corrections (7.0 seconds) results
in nominal trajectories which require imaginary control. Requiring
small corrections for t, and hence the rest of the correction vector
slows down the convergence process and is partially responsible for
the large number of iterations required fcr convergence.

These two problems also effect convergence for other near by
optimal trajectories. When the flight path angle begins to change
rapidly and approach -90°, iteration problems are encountered. It is
believed that integration accuracy and hence convergence characteris-
tics would be improved by regularizing the nonlinear reentry Egs. (3.1).
This could be accompli .d by using the transformation R(x) = cos 7
in Ig. (2.30) and t- asforming the independent variatle from t to =

as done in Section (3.3). wunly the segment of the trajectory from t,
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to t,. would need to be regularized since this is the only segment

f
which approaches the singularity.

Since the performance index is the integral of the accelera-
tior and heating rate, the terminal phase of the trajectory (near
-90°) does not substantially change its value. Both the acceleration
and heating rate are sufficiently small by this time, that very little
is added to the performance index when the tcerminal phase of the
trajectory 1is approached.

Since the entire transition matrix is integrated from t, to
t, and from t, to tg it may be inverted at t, and te asa
check on the instability of the perturbation equations. This is done
for several trajectories during the previous iteration and each time
both matrices are full rank. Positive real eigenvalues exist over
both segments. The intervals arc sufficiently short that the unstable
nature of *he equations has not caused the ¢ matrices to become
singular.

From Figs. 5 and 14 it is seen that the altitude constraint
does decrease the acceleration peaks. The maximum acceleration is
8.3 g's for the constrained trajcctories. The heating for the con-
strained trajectories is greater than that for the unconstrained
trajectories, The maximum heating rate is 664 BTU/ft.Z-sec., and
the total heat absorbed for this trajectory is 56233.11 BTU/ft.2

Traicctories obtained with the altitude SVIC represent realis-
tic reentry trajectories. The maximum acceleration pecak is sufficiently

small, and over most of the trajectory, the acceleration is two or three
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g's. ‘The heating is sufficiently small for present heat shields.
Most of the trajectory is in the sensible atmospherc allowing reason-
able control of the vehicle throughout the trajectory.

The method used to generate solutions to problems with SVIC
in this report can produce solutions which violate the constraint. If
the values of the terminal conditions are not consistent with the
inequality constraint, trajectories which remain on the constraint for
a short segment, and then violate the constraint, n:; be produced. For
instance, the altitude constraint limits the range capabilities of the
vehicle. If values of B and ¢fs are specified which cannot be
reached if the vehicle remains below the altitude constraint, the
method will converge to a trajectory with a short segment on the
boundary. After the boundary segment, the vehicle will roll the 1lift
vector upward and penetrate the constraint in order to satisfy the
boundary conditions. The method does converge, however, and the
solution obtained does give the user a trajectory with, in general,
a small constraint violation. From observing the trajectory it will
usually be apparent that the terminal conditions and constraint are
inconsistent. The converged trajectory gives good estimates of
variables to be used for a consistent set of conditions.

In order tc check the ability of the new method to converge
to near by optimal trajectories, T3 is changed to 3995.3 miles and

) is changed to 0.34 radians. The converged values shown in Table

fs
0 are used as initial guesses for the unknown variables. The trajectory

produced after the third iteration integrates through the singularity
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(v = -90°) near the end of the trajectory. The method diverges at
this point. If the ccnverged values shown in Table 6 are used and
the final time, te, is changed to 360.0 sec., the method converges
to the new optimal in 17 it. tions. Changing the guess for te
from 383.4 sec. to 360.0 sec. allows the method to iterate without
encountering the singularity. Thus near by optimal trajectories
can be produced with a relatively few number of iterations if the
singularity is avoided.

Plots of the altitude, control, and acceleration for the
Apollo 10 trajectory are shown in Ref. 48. These graphs are compared

with the same plots for the optimal constraincd trajectory computed

with Ty 3995.3 miles, bes = 0.34 radians, Sps = -0.025 radians,

and V 0.5 miles/sec. in Figs. 15, 106, and 17. The two trajec-

fs
tories are quite similar. From Fig. 16 it is seen that the Apollo
vehicle rolls both to the right and to the left in an attempt to
land in approximately the same plane as the onc it is in when it begins
to reenter the atmosphere. The calculated optimal trajectories roll
only in one direction and hence land out of the initial flight plane,
i. this case by -0.025 radians.

The other diff:rence in the two trajectories is the short
skip segment at t = 250 sec. for the Apollo trajectory. (Sec Fig.
15). This skip is responsible for the small acceleration near the
pcak of the skip and also for the high acccleration as the vehicle
flies back into the dense atmospherc. The acceierations arc shown in
Fig. 17. Trajectories which have the small skip segment in this

location are obtained by the modified MPF if a final valuc of
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8 is specified which cannot be reached by the vehicle if it remains

fs
below the altitude cons*vaint.

The results of this comparison show tnat the choice of the
performance index used here and the inclusion of the altitude con-

straint can be used to generate realistic optimal reentry trajectories.



CHAPTER 6

RESULTS AND CONCLUSIONS

0.1 Summagy

The perturbation method is used to solve a three dimensional
atmospheric reentry problem. From the results of this study it is
determined that state variable inequality constraints are necessary
in order to produce reentry trajectories with acceptable maximum
acceleration peaks and trajectories which do not skip out of the
sensible atmosphere. A modified perturbation method is developed to
include SVIC. The method is checked by solving a constrained
Brachistochrone problem. It is then used to solve the reentry prob-
lem with an altitude constraint over the skip scgment of the trajectory.

The stability problem for the lincar perturbation equations is
considered. A linear TPBVP is solved in order to illustrate the un-
stable nature of some linear systems of equations.

A regularizing transformation is used to improve the accuracy
of the numerical integration of the reentry equations when singularities

in the differential equations are approached.

0.2 Results and Conclusions

1. The perturbation method can be usced to produce accurate
optimal trajectories for the reentry problem. Numerical experiments
indicate that if a sufficiently small integration step size is used
the reentry equations can be integrated accuratcly. A comparison of

the perturbation method and adjoint mecthod indicatc that both methods
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produce cquivalent results for the reentry problem.

2. The perturbation method can be used to solve an unstable
TPBVP. A linear, unstable TPB\P is considered and better results are
obtained using the ‘PPF than the Riccati transformation to solve this
problem. The mzchine word length, the desircd boundary conditions,
the ratio of the cigenvalues of the A matrix, and the time interval
all affect tic ability of the 'PF to solve unstable TPRVP. Without
knowledge of tine desired solution of a linear system of cquations,
the advantages of fbrward or backward integration can only be
determined by numerical experiments. For the reentry prohlem, one
direction of integration does not seem to produce better results than
the other directicn.

3. Regulari:zation improves the accuracy obtained by numerical
integration ncar singularities. In many cases, the improvement is
sufficicent to allow the regularized variables to converge when the
standard variables diverge for the rcentry problem.

4. A variation of the standard perturbation method developed
to handle SVIC can be used to gencrate accuratc optimal constrained
trajectories. The methcd is used to solve both a constrained
Brachistochrone problem and an altitude constrained reentry problem.

5. Placing a constraint on the skip altitude of a reentry
trajectory for an Apollo-type vehicle returning from a lunar mission
substantially decrcascs the acceleration peaks. Trajectories pro-
duced with the constraint have acceptable heating and acceleration
histories. They rcmain in the sensible atmosphere which allows the

vehicle to be controlled all along the trajectory. Optimal trajectories
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obtained are very sinilar to present Apollo reentry trajcctories.

0.3 Recommendations for Futurc Study

1. More work needs to be done on the stability problem for
the 'PF. The smoothing transformation discussed in Section (2.4)
should be investigated as a possible mcans of improving the stability
of the linear equations. Patching solutions at an intermediate time
offers a solution to some intcgration problems and should be considered
as an altermative to the standard :PF. The Riccati transformation,
often listed as an alternative to the unstable linear perturbation
method is not nearly as cffective for solving the :mstablc example
considered here as is the MPF. iurther analysis of the difficulties
experienced by the Riccati method would scem to be in order.

2. The reentry equations between t, and te for the altitude
constrained reentry should be regularized. Nominal trajectories are
very close to the singularity at Y = -90°. Convergence of the method
proposed for sclving SVIC would probably »e -onsiderably better if the
singularity were not present in the equations.

3. Integration time for the corstrained trajectories can be
decrcased by "matching' the trajectory at an (ntermediate point t,.
Presently the entire ¢ matrix must be integrated from t, to t..
This requires 2n integrations of the perturbation equations. As
suggested in Section (2.4), unknown variables at te may be guessed.
The state and perturbation cquations are tien integrated from te
to t, ad states at t, are matched with thosc obtained by forward

cezration from t, to t,. Then only prrturbation in n unknown
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variables bctween te and t, must be obtained. A 15 x 15 linear
system must be solved instead of an 11 x 11, but less integration is
required. The advantage of one approach over the other snould be
determined. More quantities must be guessed in the approach presented
here, but if an unconstrained optimal is known, reasonable guesses
may be available. Then the method proposed here may have some
advantages.

4. The effects of a more realistic model for the reentry
trajectory, on the optimal trajectories obtained here, should be
determined. A better atmospheric model should be considcred. The

effects of variable 1lift and drag coefficients should be determined.
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APPENDIX A

Numerical values used for the reentr- problem are

CL = 0.35
CD =1.3
k = 4.2E-5 1/t¢.

_ R 3 2
u = 1.4076519C 16 ft. " /sec.
S* = 1 ft.2/slug

(Z.057(1.3)
e, = 0.0027 slug/ft.>
. 1/2

A, = 1.053829E-6 1/ (slug-miles)
T, = 3960.0 miles
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APPENDIX B

Linear perturbation equations for reentry satisfy the dif-
ferential equation 6z = Asz where elements of A are defined below.
Al elements of A not shown arc zero. Ay j denotes the ith row and

the jth column of the A matrix

Mg = S
AI,S = VCy
A - . VCCy
2,1 r2C¢
A VCYCyS¢
2,3
» rC ¢
_ CyCy
Aa T e
A - _VSyCy
2,5 TCé
A = _VCySy
2,6 Co
\ _ _ \Crsy
3,1 “‘Z_r
_ CySy
A4 = 7%
__ VsvySy
AS,S b T
VCYCy
AV,O = =
. 2uSy
Mo T3
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Mg = "y
. _ uCy

Mys = T
T

2uCY VCy L
A = -+ (p_Cs
51 r 6 r Vr

Cy Cy L
A = X + — + (&
5,4 rbvz T (V)v
v L (x GY)QZB
Ag s = (G- PSY - g7
? Vv (Aw + A C y)y'*
A . VCYCySe _ ( ) S8
6,1 r1C2¢ Ve O
AL o= . YOGy
6,3 rC2¢
A . . OCyse (L se
6,4 Co Vv
_ VSYCyS¢ _ SRSy 2
T o (v) 1+ C78)
A _ VCYSySe
6,6 =~ 1Cé
L s%ac
LY
A = - ()
5,11 \' (AZ N xiCZY)l/z
SBCS
Ac 1, = - ( 5
5,12 PN Q 26172



A1l = Mso12
A s
6,12 Y G0 i
¥ Y
2VCYCy 2VCYSy 6uSY
A = - A, - AL+ A
7,1 S TN
ouCY . VY . Ly .
+ Dyt ==, - @t

1 C¢
A _ VCYCyS¢ \ VCYCy \
753 P2ty 0 picty ¥
CYCy Cy&y 2uCy
A = A Ao+ Dot A
7,4 r2C¢ 0 ra- ¢ I‘V Vv v Y
Cy L CyCyS¢
+ X - Cax - St Sup Y
A (V)rv Y —-r—z(:‘p v
L sSe _
* (V) v Cv )‘u,: Qy
\ I 1 (% A VSYSy , . 2uCy
A R
. 2u SY VSY A+ VSYCySo \

)\ - -——7—-—
oy :2— Y r Co v

L SBSY
+ (V)r TC . *w
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\ _ VCySy VCYCy VCYSySé
Mo T T et T Mot T, v

’ T Co T r Co
N1 T M3

VCYCu 2 2VCYCySe

A = - (1 +#S%0)A, + — A
9,3 rC3¢ ] rC3¢ v
Ag . O¥CySe , , CYCy

,4 rC2¢ 9 rC2¢ ¥
A - VSYCyS¢ A - VSYCy \
9,5 rC2¢ ® rC2¢ v

VCYSuSe , _ VEYSu

Ay = ) 8

% ot T

A = A

10,1 7,4

10,3~ %o,4

- 2uCy _
Mo,4 DAy * ;7;3“Y Qry

- . SyCy SyYSy uSYy Sy.
AlO,S (‘.nr +'i"C_¢ g * 5 A¢ + (—TZ-rv + r))‘y

_SYCuSe , (L, SBSY,

CySy A - CYCy 5 - CYSyS¢
10,6 o "6 T ] TCo ]

>
i
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11,1 7,5
Mi,3 =Ms
A1,a 05
- VCYCy VCYSy
All,S VSTAL ¢ TCo¢ Ao * T )‘¢
_ uSY ) v \l _ VCYCyS¢
TN Vi~
22,2
PN Te TR NN CEMy
vy v Vc3v(xf‘b +7Yczv)*'7

VSYSy A+ VSYCy A+ VSYSyS¢ A

Mo = /e Yt T YT T M
A2 =M
Mz,z = Mose
A2,e = M0,6
M2,s = MaLe

t

. VCYCy VCYSy _ VCYCyS¢
Mae o 7T e T "1 v

A, i=1,0; j=1,6

anad . . =
¢ Alu’ j+6 54



where

Oy = S+ Mo+ ot

o eare2 L (23172 /2 2
e = Oy = S+ Y2 0¥ o v2ag o

L1 a2 L (2122 3. -1/2
Qp = 7S¢+ &) bV * VBNV (0 e 1/
o, =-ko , o= kzp

-3/2. 2
20 L
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APPENDIX C

The perturbation equations for the constrained Brachistochrone

are of the form 6z = Asz. Flements of the A matrix are as follows:

Off the boundary

A1 - cos u
»2 Z(xZ)I;z
. 2
A 5= - (xz)llz sin” u ,
' (g +2)
1/2 sin u cos u
= (x,)
Mg = (X oF + i)
Az 2 sin u
’ Z(XZ)I;Z
1/2 sin u cos u
= (x,)
M3t X ol )
2
Az . )1/2 cos” u
a ENCHERY)
-3/2

Au,z = 1/4(x2)

A _ = ._COsu
4,3

Z(xz)
A = .. Sinu

(A, cos u + i, sin u)
1 2

4.4 é};;}i77
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On the boundary
sin C1

A, =1/2
11 (2)172

u sin C1
A,y = (C.2)
2 4@t
sin C1
A 2=-
2 @72
and all A's not defined are zero.
At t, +he boundary condition is
h0 = [H(to) + 1] (C.3)
Thus
aho . .
- Ko Xole €.4)
o
and
ﬁo =0 (C.5)

At t» the boundary conditions are

X, - X, tan C; - C
hl - 2 1 1 2 (C.6)



and

Thus

and

At e,

il
te
[\
[
e
[
g
e
i
|
(ad
[

tne boundary conditions arc

A
e |
¥ T tan 1 A2
xl tan C1 - xz J ‘2
-1 1
tan Cl ’
tan C -1
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(€.9)

(C.10)

(C.11)

(C.12)
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Thus
ahe L, 0, 0,0
E‘;”o,o,o,l (C.13)
and
h =H1 (C.14)
f !—AZ -
t



APPENDIX D

The coefficients of the linear perturbation equations for the

constrained segment of the reentry trajectory are

A = VCySs
1,2 2
rdC )
A5 = b
1,3 T te
A . _ Vsy
1,4 rdCo
Sy
A = X
2,3 T
VCy
A = ¥
2,4 T
~ . CkC r
Ay 3 = - STCpgt
AL = - VOy
4,2 Z
raC ¢
2C,Cg
< . CyS¢ 1oy 1
M3 0o~ CPg St 5 —)
d V©Ss8
A - YSySe
4,4 rdﬂ¢
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i+4, j

6,2

6,3

6,4

7,2

7,3

7,4

8,2

8,3

L}

= -AJ, i i=1,4; 3 =1,4

_ \cy 2 2VL,5%
A (e
a- ¢ d- ¢
CyS¢ . Qy y
rdC ¢ o rdC2¢ v

VS‘pS(pu _ _VSy y
C2¢ ® r,.C™¢ v

rd d

. CySe Cy
—7 ¥t My
rdC ) rdC )

. "o ( 26y ) Cuy
SKC..0 . - S*C, P (CB +
b d"v Ld v2sls | Vse

- 2Cy - 0C,V
Sy | .G, . SuSe
TdC¢ 6 T4 ¢ Tdcd’ v






APPENDIX E

Boundary conditions for the constrained reentry problem are as
follows:

The boundary condition at t, is

ho = [Ho] (E.1)
Thus
aho . » . . . .
-——~=[I‘, en¢ V, Y,Ul] (H.Z)
3A0 ’ to
and
hy, = (0] (E.3)
The boundary conditions at t, are
T‘I‘d
1
(CI—CZV)(Ay+A¢) +VAY .
1
Thus
hi,o0,» »,0,0,0,0,0,0,0,0 |
3h1
~— =0 ,0,6 0,1,0,0,0,0,0,0,0
321
0,0,0, bV’ 06,0,0,0,0,0 ’bx ’bx
L Y v
(E.5)
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where
_ 2 2,1/2 _
bv = ZV[CZ(AY + xw) Ay]
(E.6)
2 A 2
b, = (C, - C,V°) Y + V
AY 1 2 (AZ . AZ)I7Z
Y v
A
b, = (C - szz) 2
v (AY + Aw) ;
and
_ . -
1'11 = Y (E.7)
V+b, & +b i
va /.Y Y A'b w’ tl
Boundary conditions at t, are
- . 2 2 2.1/2 2

and derivatives of this function are shown above by Lgs. (E.5), (E.6),
and (L.7).

Boundary conditions at t. are
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(E.9)

(E.10)

(E.11)
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APPENDIX [

The multiplier equations for the regulcrized reentiy equations

are shown below:

2 Vv L, sy
r r2C¢ 6 r2 ¢

2

_p 2™y  WwCv 1 xC. Vi
( : - + 7 P S*CVCYCB)A
(WSt 1, s Tsan - @
I
ag =0
oo YEhvCuse ¥cvoy
¢ S
2 2
D _ CYCy _CYSy .
T CYSny - e T ¢

+ ( 3% CYST + 20SACVCY A
T

2
e Cy 1 s
( 5 + Vi pS CLCYCB)AY

2 -

C™YCySe . 1 eox .
—E———-FZ»DSCLSB)Aw Q7

+ >
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. Tre v L 2 2VCYSYCy
AY V(" Y C Y)Ar + T xe

2VCySySy
e, A
r ¢

+

( 2 visty - cBn . esro sy g

M’s" - 3 oS*%C AN

( L CYSY-

_ 2VCySYCySe y -
Co ¥ EEY

2 2 2
\' = VCYS&X _VCYCU;A _VCvSwS«tA

v rCé ] T ¢ e ¢

where

Q- [1/2(C +C )1/2 srv/2 ., DI/ZVZ]CY

[1/2((. + ) Vg, V3/2 +1/2 J’U;VZ]CY

o

Ty = (34 » Y2 srW/2 4 s o ey

ﬁY = '[1/2(Cf + Cg)llz s*oV>/2 o AODI/ZVZISY
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