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PREFACE 

The development of necessary conditions for optimal trajectories 

and of numerical techniques to obtain numerical optimal solutions has 

been the subject of a considerable mount of research during recent years. 

From the engineering view point, the goal of all this theory is the 

application of these results to the problem of optimizing large complex, 

realistic systems, 

been used most often for optimizing complex systems is the gradient 

method,. Solutions obtained by the gradient method, however, do not 

satisfy all of the necessary conditions for a true optimal trajectory. 

The classical optimality condition, I t  = 0, is not satisfied by 

gradient solutions, 

be used to obtain true optimal solutions, i.e. solutions which satisfy 

all of the necessary conditions required for an optimal trajectory. 

The longer word length and increased computation speed allow sufficient 

accuracy for  second variation methods to converge to true optimal 

solutions within a reasonable computing time, 

In the past, the numerical technique which has 

On large computers, second variation methods may 

In this study, a second variation method, the perturbation 

method, is used to study optimal three dimensional atmospheric reentry 

trajectories for ApoPlo- type vehicles 

in the aerodynamic forces, reentry trajectory optimization is an 

extremely complex problem requiring a very accurate numerical integra- 

tion routine. 

be used to obtain true optimal reentry trajectories. 

time is not excessive. 

Because of the large variations 

It is shown, however, that the perturbation method can 

The computing 
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A numerical optimization method, the perturbation method, is used 

t o  calculate optimal three dimensional reentry trajectories for Apollo- 

type vehicles. 

integral of the accelzration are minimized. 

vehicle is the roll angle which specifies the orientation of the lift 

vector. 

to those encountered by an Apollo vehicle returning to the earth from 

a lunar mission. 

those required just prior t o  the opening of a drogue parachute. 

A linear combination of the convective heating and the 

The only control of the 

The initial conditions for reentry are chosen to correspond 

Specified terminal conditions are consistent with 

Optimal trajectories obtained for  the conditions described above 

are skip trajectories with high acceleration peaks. 

inequality constraints are required in order to produce trajectories 

without these characteristics 

that it may be used to calculate optimal trajectories with state 

variable inequality constraints 

used to calculate optimal reentry trajectories with an altitude in- 

equality constraint over the skip segment of the trajectory. These 

trajectories have acceleration and heating histories which are 

acceptable for Apollo-type reentry vehicles. 

State variable 

The perturbation method is modified so 

The modified perturbation method is 
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Q-IhPTrn I 

INTRODUCTION 

Until recent ly  manned space f l i g h t  has been confined t o  ea r th  

o r b i t a l  missions. 

i n i t i a t e d  from an e a r t h  o r b i t ,  the  veloci ty  is f a i r l y  small. 

When the reentry phase of the t r a j ec to ry  is 

Apollo 

reentry ve loc i t i e s  f o r  ea r th  o r b i t a l  missions a r e  approximately 25,800 

f t . / s ec .  As manned space f l i g h t  extends beyond ea r th  o r b i t a l  missions, 

however, the reentry maneuver becomes more complex. 

involve subs t an t i a l ly  higher reentry v e l o c i t i e s  at  the i n i t i a t i o n  of 

These t r a j e c t o r i e s  

the reentry phase. The i n i t i a l  reentry ve loc i ty  fo r  an Apollo vehicle  

returning from a lunar mission is approximately 36,000 f t . / s ec .  

sequently the  accelerat ion and heating experienced by the reentry 

Con- 

vehicle and crew a re  much higher. Careful design of nominal reentry 

t r a j e c t o r i e s  is required t o  ensure t h a t  the accelerat ion and heating 

experienced by the astronauts  and reentry vehicle  a re  below c e r t a i n  

tolerance limits. 

The Apollo reentry vehicle  uses the  l i f t i n g  c a p a b i l i t i e s  of 

the body t o  f l y  t r a j e c t o r i e s  which have these desired cha rac t e r i s t i c s .  

The high i n i t i a l  reentry ve loc i ty  is reduced through the  conversion 

of k ine t i c  energy t o  heat .  

the heat  generated. 

As the  i n i t i a l  ve loc i ty  increases so does 

This requires  e laborate  insulat ing and ablat ing 

devices t o  pro tec t  the crew and vehicle from the extremely high tern- 

peratures produced during reentry.  

Minimal heat producing t r a j e c t o r i e s  thus become very important 

fo r  crew safe ty .  They a l so  require  less elaborate  heat d i s s ipa t ive  

1 
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systems 

t r a j e c t o r i e s  produce unacceptable accelerat ion h i s t o r i e s .  

associated with the accelerat ion a re  important f o r  a reentry t r a j ec to ry .  

The accelerat ion peaks must be below some prescribed maximum leve l .  For 

manned reentry t h i s  maximum leve l  is approximately 10 g ' s .  The c r i t e r i a  

fo r  determining an acceptable accelerat ion h i s to ry ,  however, is not j u s t  

the maximum accelerat ion peak. 

by the astronauts i f  they a re  applied over f a i r l y  short  time in t e rva l s .  

Hence the in t eg ra l  of the accelerat ion o r  the accelerat ion dosage gives 

a reasonable measure of crew comfort as long as the accelerat ion peaks 

do not exceed some acceptable value. 

minimal value of the accelerat ion dosage f o r  a reentry t r a j ec to ry .  

From previous numerical experience18 however, minimal heating 

Two quant i t ies  
52 

Fa i r ly  high accelerat ions can be to l e ra t ed  

Thus it is desirable  t o  have a 

Acceptable reentry t r a j e c t o r i e s  w i l l  require a t rade off  

between minimal heating t r a j e c t o r i e s  and t r a j e c t o r i e s  with acceptable 

accelerat ion h i s t o r i e s .  A 7oss ib le  approach t o  the t rade off  problem 

consis ts  of s e t t i n g  up the reentry t r a j ec to ry  as an optimal control  prob- 

lem, and using numerical techniques t o  generate minimizing t r a j e c t o r i e s .  

Reentry t r a j e c t o r i e s  a re  calculated which minimize a l i nea r  combination 

of the t o t a l  heat and the in t eg ra l  of the deceleration experienced by 

the reentry vehicle .  

such t h a t  the t o t a l  heating and the  in t eg ra l  of the decelerat ion a re  

given a r e l a t i v e  weighting. 

chosen such t h a t  the in t eg ra l  of the accelerat ion and the t o t a l  heating 

are approximately equal. 

method are  s u f f i c i e n t l y  low then the  solut ion should represent a 

A weighting f ac to r  is chosen f o r  the heating term 

For t h i s  study the weighting f a c t o r  is 

I f  the peak accelerat ions produced by t h i s  
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compromise between minimal heating m d  minimal acceleration trajectories. 

I f  the peak accelerations are too high, then methods for reducing the 

accelerations peaks such as state variable inequality constraints (SVIC) 

must be considered. 

Since trajectory optimization is a difficult problem, a relatively 

simple model which represents the bportant factors governing reentry is 

desired. 

center of mass. 

control of the vehicle is the roll angle QF out of' plane orientation of 

the lift vector. 

representation of the Apolls reentry vehiclle. 

For the vehicle this consists of neglecting motion about the 

The Constant. lift and drag coefficients are assumed. 

Ref. 48 indicates that th i s  gives a fairly accurate 

The model for the earthDs gravitational field and atmosphere 

are approximated by an inverse square force field and an exponential 

atmosphere. Constants for the atmosphere are selected t o  represent the 

actual atmosphere over the internal of interest. 

the dominant characteristics 0% Apollo-type reentry trajectories. 

This model represents 

Reentry trajectory optimization has been considered by several 

authors 

22 942 ,  and perturbation gradient quasilineari~ation'~ sweep method 

method (WF) . 

Wthods used include the gradient' 9 3 9 6  
,'* 9 2 3 9 2 4  p4' conjugate 

42 

' l3 lS The gradient method which generates only 

approximately optimal solutions has been used more extensively than any 

other method. This is probably because the gradient method has the 

ability to produce reasonable trajectories and insight is gained in the 

types of trajectories desired even if optimal trajectories are not pro- 

duced. 

method must be used. 

If true optimal trajectories are desired, however, a second order 

Since the purpose of the investigation is t o  obtain 
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accurate optimal solutions for the reentry problem the perturbation method 

is chosen for the study. 

and Jurovics and bl~Intyre.~~ 

of the Lagrange multipliers must be guessed, 

guesses and if there is no appriori information available conccming the 

optimal trajectory, it is often difficult to guess multipliers which will 

allow convergence e After an optimal solution has been obtained, however, 

it is very easy to vary parameters and generate fields of extremals. 

‘llie MPF is consideyed in Chapter 2 ,  and its relation t o  the 

27 

It has the disadvantage that initial values 

This method is discussed by Goodman and Lance 

Convergence depends on these 

optimal control problem is discussed, 

in implementing PPF and the instability of the perturbation equations 

are also considered. 

is considered in Chapter 3. 

In Chapter 4, SIC are discussed. 

using a modified MPF is presented and a numerical example, a Constrained 

Brachis tochrone is solved. 

in Chapter 4 is applied to the reentry problem in Cliapter 5, 

constraint is applied to the skip segment of the reentry trajectory and 

numerical optimal reentry trajectories with the SVIC are shown, 

6 summarizes the results of this study and presents recommendations for 

further study in this area. 

The numerical procedures involved 

The application of the MPF to the reentry problem 

Optima% numerical solutions are presented. 

A new method of solving these problems 

‘l’he method of solving SVIC problems developed 

An altitude 

Chapter 



CIWTER 2 

NUMERICAL OPTIMIZATION USING THE PERTURBATION MET€lOI> 

This chapter defines the notation and presents the equations 

which define admissible candidates for the optimal trajectory. The 

MPF is described also. Derivations o f  these relations are not given 

since they are presented in numerous places in the literature. It is 

felt, however, that a summary of the pertinent equations from these 

discussions would be helpful in understanding the remainder of this 

report. 

matrix inversion routines used in this report are described. 

In the following section, the numerical integration and 

In the 

last section, the stability problem associated with the perturbation 

equations is considered. 

2 . 1  Optimization Problem 

Necessary conditions for optimal control problems have been 

obtained through the use of Dynamic Programmingz8, Pontryagin' s 

Maximum Principle16, and the Calculus of Variations, 29930 Since the 

results are well known, they will be summarized only for the class o f  

problems to be considered i n  this report. 

The statement of the problem is as follows: Find u(t) in 

the interval to - -  < t < tf to extremize 

Q(x,t)dt + c[xf,tf] 

subject to 

x = f(x,u,t) 

5 
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and 

os x = x  
0 9 

where x is an n vector of state variables, u is a scalar control, 

f is an n vector containing the derivatives of x, M is a q vector 

of terminal constraints, xos is a specified initial state, and Q and 

are scalars associated with the performance index. The initial time, 

is fixed, and the final time, tf, is free. 

Necessary conditions for a minimal trajectory are 

* T  T x = HA , h = -Hx 

and 

(2.4) 

T where H is the variational Hamiltonian, I I  = h f + Q, and h is an 

n vector of Lagrange multipliers associated with X. A t  to 

= o  ’ to x =  
0 

f’ and at t 

= pT + €if = 0 (2 .7)  M(Xf,tf) = 0 ? hf Xf 

- T and v is a q vector of multipliers associated where P = G + v M 
with the M’s. 

If !Iuu is positive definite, Eqs. (2.5) allow the optimal 

control to be determined explicitly as a function of x and h .  If 

the optimal value of the control is used to eliminate u from Eq. (2.4), 
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the optimization problem is reduced to a two point boundary value prob- 

lem (TPBVP). This is expressed as 

i = F(z,t) 

where the 2n-vector z is defined as 

x z = [TI 

F 

as a function of x and A .  Boundary conditions consist of n con- 

ditions, x = xos, at to = 0 and n+l conditions 

is determined from Eq. (2.4) with the optimal control determined 

0 

at tf. The n+l vector h consists of n+l of the conditions from 

Eq. (2.7). The remainder of the conditions in Eq. (2.7) are used to 

eliminate the unknown vector, V .  

2.2 Perturbation Method 

One method of attempting to solve the two point boundary value 

problem defined in the previous section is the method of perturbation 

functions (MPF). This method requires that values for the unknown 

initial Lagrange multipliers and the final time tf be guessed. 

a s .  (2 .8)  can be integrated numerically to generate a nominal trajectory. 

The terminal boundary conditions, Eqs. (2.10), will not generally be 

satisfied. 

are calculated to drive the terminal constraints, h, to zero. 

accomplished by considering linear perturbations about the nominal 

Then 

Corrections t o  the guessed values for the unknown variables 

This is 
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trajectory, If the (i+l)-th trajectory is expanded about the i-th 

trajectory and only linear terms are considered then 

(2.11) aF i ai = (E) az = A62 

and 

(2.12) 

i+l i aF 
-'9 az - or  A is a 2n x Zn matrix of partial where bz = z 

ah - ah h = - zf + - , 
azf atf 

derivatives evaluated along the i-th trajectory, 

and h' 

trajectory. 

is the vector of terminal conditions evaluated on the i-th 

The total change in h, Ah = hi+' - hi becomes Ah = -hi , 
is set equal to its desired value, zero. Eq. (2.11) can be if hi+l 

integrated along a nominal trajectory t o  determine how changes in the 

n guessed multipliers at the initial time will produce changes in the 

values of the states and multipliers at the final time. This requires 

n integrations of Eq. (2.11)* The 2n x n matrix ( P ~  is defined 

such that 

(2.13) 

and 

(2.14) 0 @2(to,to) = [--,-I 

where I is the n x n identity matrix and 0 is the n x n null 

matrix. Changes in the final values of z are then related to 

changes in Xo by 

6Zf = (P2(tf9t0) 6X0 (2.15) 
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By using Eq. (2.15) in Eq. (2.12), the equation 

ah i 
-hi = E-] @Z(tf9to)dAo + [&I 

a =f 

is obtained. 

corrections are added to the i-th values of 

This linear system is solved for 

ho 

(2 e 1.6) “tf 

6 A o  and Atfe These 

and tf and the non- 

linear equations, Eqs. (2.8), are reintegrated to obtain a new nominal. 

If Eqs. (2 .8)  and (2.10) were linear, the desired solution should be 

obtained after one correction. Since they are not for most problems 

of interest to the engineer, an iteration scheme must be used. Thus 

the nonlinear equations, Eqs, (2.8), and the perturbation equations, 

Eqs. (2.13), are integrated from 

guessed values for the initial multipliers. 
to to a guessed final time using 

Corrections are calculated 

to A. and tf using the linearized boundary conditions 

tion equations. The nonlinear equations and perturbation 

reintegrated using the new values of and tfe A new 

vector is calculated, This procedure is continued until 

and perturba- 

equations are 

correction 
m 

(the norm of the terminal constraints) is below some prescribed small 

positive number. The procedure is then terminated. 

For nonlinear problems, the corrections calculated from Eq. 

(2.16) are often so large that the linearized equations are not valid. 

In this case, if the correction vector calculated by Eq. (2.16) is used 

divergence often occurs. In order to avoid this, a decreasing terminal 

norm philosophy can be used. The correction calculated on the i-th 

iteration is added to the i-th unlanown variables. 

tions are integrated with the new initial conditions. 

The nonlinear equa- 

If the terminal 
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norm for the (i + 1)- th  intesrat icn is larger than the nom of the i-th 

integration, the magnitude of the i - t h  correction vector is decreased. 

The smaller correction vector is added t o  the i - t h  variables again. The 

nonlinear equations are reintegrated using the new (i + 1) - t h  variables. 

Scaling the correction vector and reintegrating t h e  nonlinear equations 

continucs un t i l  the terminal nom produced on the (i + 1)- th  i te ra t ion  

is smaller than t3e norm on the i - t h  i terat ion.  A t  this point the pertur- 

bation equations are integrated and a new correction vector Is calculated. 

"lie procedure continues until the norm decreases below a small specified 

value. 

From computational experience, - the decreasing norm philosophy 

requires many i terat ions t o  converge i f  the j -n i t ia l  nominal is f a r  from 

the optimal. As an al ternat ive t o  t h i s  method, a percentage correction 

procedure can be used. 

norm of the i-tli unknown variables and the norm of the i - t h  correction 

vector are calculated. 

nonn of the correction is some percentage, possible 30%, of the  norm of 

the unknown variables. 

nonn incresses. 

percentage of the guessed variables then the f u l l  correction vector is 

accepted. 

siderably fewer i terat ions t o  converge than the f i r s t  method does. 

perccntage correction proccdure is uscd throushout t h i s  report. 

A f t e r  the i-th correction is calcu!atcd, the 

The correction vector is scaled so that  the 

This correcti0.i is accepted even i f  the terminal 

If *the nom of the cor.-ection is less than the specified 

From computational experience t h i s  last method requires con- 

The 

2 . 3  Sumerical Intceration and Iavcrsion Routines 

"he two basic numerical proccdurcs associated with optimization 

using the FPF are numerical integration and matrix inversioi . Convergence 
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of the method is closely associated with 

tional procedure to accurately integrate 

the ability of the conrputa- 

large systems of equations. 

The numerical integration is most important, since if accurate results 

are not obtained here, the matrix inversion is meaninglesr 

One of the problems encountered using the 3IPF is ti- i-stability 

of the perturbation equations, which is discussed in the next sxtion. 

Since stability is a major difficulty for the W F ,  a numericaily stable 

integration method would seem to be a necessity. 

which are numerically stable are the r\dams prcdictor-corrector methods 

zonsidered in Ref. 46. 

suitable for integration over long intervals if round off errors can be 

controlled. 

A group of methods 

These methods are strongly stable and hence 

The integration routine used is a fourth order Adams predictor- 

Both a fixed step corrector44 with a fourth order Runge-ktta starter. 

integrator (FSI) and a variable step integrator (VSI) are considered. For 

the VSI, both an upper and a lower error bound are specified. 

step truncation error estimate is calculated for the predictor-corrector. 

I f  this error estimate for  an integration step is larger than the upper 

error bound, then the step size is halved. 

used again as a starter with the smaller step size. 

mate is smaller than the lower bound, the step size is doubled and the 

Runge-Kutta method is required to generate starting values again. The 

FSI integr .tor uses the Kunge-Kutta method as a started then switches 

control entirely to the predictor-corrector method. 

A single 

The Runge-Kutta routine is 

I f  the error esti- 

The VSI routinc is uscd for most of tile integration in this 

investigation because it allows better control of integration errors. 
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For mall error bounds, round off error is very important. 

double precision arithmetic is used in the integration routine to help 

control round off errors. 

in double precision and all other computation is single precision. 

description of a fixed step size version of this routine is in Ref. 33. 

All computation is performed using the CIK 6600 computer at The 

Partial 

Values of the dependent variables are stored 

A 

University of Texas at Austin. 

word length of 14 digits. 

routine should give good control of raund off errors. 

tive error criteria accurate integration should be obtained. 

The C K  6600 has a single precision 

Thus the partial double precision integration 

For a small rela- 

The second numerical procedure required by the HPF is a matrix 

inversion routine, or a routine to solve a linear system of algebraic 

equations. 

solves the linear system directly using Gaussian c.limination. 

since fairly large systems are to be solved, the inversion is performed 

in double precision to minimize round off errors. 

The routine used does not calculate an inverse matrix. It 

Again, 

2.4 Stabi! itv of the Perturbation Vethod 

One of the main problems associated with using the bPF to solve 

T P B W  problems is the instability of the perturbation equations, Eq. 

(2.11). If the A-matrix is constant, then the solution for t~ in 

general consists of the sum of n linearly independent exponential 

terms. If A is time depcndent, the solutions still exhibit exponen- 

tial behavior. 

A-matrix will have positive and negative eigenvalues over the entire 

interval of interest. 

type terms. 

For many nonlinear problcms, such as reentry, the 

Positive eigenvalues imply positive exponential 

If thc equations are integrated over a sufficiently long 
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interval, the large magnitude of the positive eigenvalues will corn- 

pletely dominate the solution for +. When this happens, infonation 

about the true solution of the Q matrix is lost. Thus if the solution 

to one element of the 0 matrix is equal to the linear sum of a positive 

exponential ten and a negative exponential ten, then tne numerical 

so‘lution wi1.1 exhibit the characteristics of the small exponential only 

over a fairly short time interval. The value of the negative exponential 

will become small in magnitude and will be lost in the numerical integra- 

tion error of the total solution whicn due to the positive exponential 

term, will be large in magnitude. TLs behavior is easily demonstrated 

by a linear example considered by Fox. 43 

so that analytic solutions can then be compared with numerical results 

obtained using the IFF.  

-4 linear example is considered 

In order to investigate the effects of stability, the linear 

system 

with 

-tf ~ ~ ( 0 )  = 1 and xZ(tf) = tf + e 

is considered. The generai solution to the problem is 

-t 12t + 1X,e x1 = 1 - Cle 
Q 

(2.18) 

(2.19) 
x2 = t + ~ ~ c - ~  + C,e 12t 

” 
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whcre C1 and C2 are constants. For the specified boundary conditions, 

the solution requires that C1 = 1 and C2 = 0. 

The problem will now be solved by the perturbation method. 

This requires guessing xl(0) and integrating Cqs. ( 2 . 1 7 )  from t = 0 

to t = tf. The linear perturbation equations 

where A = i" 121 

are integrated with the initial conditions 

bXl(0) = 1 , 6X2(O)  = 0 

Then a correction to xl(0) is calculatcd to make 

-t 
h = X2(tf) - [tf + e f~ = 0 

(2.20) 

(2.21) 

(2.22) 

The linear change in h is Ah = - ah ax(t,) + h(tf)Atf . Since am,) 
tf and x2(0) are specified, Atf = 0 and 6x,(o) = 0. IIence, Ah 

reduces to the following expression. 

Ah=- ah Q 1 (t f ,WXl(O) (2.23) 

- t f  a 11 where Ah = - {x,(t,) - [tf + e 1 1  and 3km = [0,1] . o1 in 
f 
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this case is a vector solution of Eqs. (2.20) with boundary conditions 

given by 3. (2.21) 

The system of equations and boundary conditions are linear, so 

the desired solution should be obtained after one correction using the 

perturbation equations. Thus Eq. (2.23) is solved for thc correction 

to x1 (0). This correction is added to the guessed value of xl(0). 

This should produce the true solution for xl(0) 

solution to the problem. 

and hence the desired 

The question of interest is whether or not this can be done 

numerically, i.e., does one correction, for a guessed value of xl(0), 

give the exact solution? 

For the initial conditions 6x1(0) = 1 and 6x2(0) = 0, the 

solution to the linear perturbation equations is 

bxl = +1/13 e-t 
(2.24) 

6x2 = -1/13 e-t 

The eigenvalues arc seen to be 

If the other vector of 

+ 12/13 

+ 1/13 clZt 

12 and -1. 

the transition matrix is calculated for 

bxl(0) = 0 and bx2(0) = 1, the solution is 

12t 6x1 = -12/13 e-t + 12/13 e 
(2.25) 

bx2 = 12/13 e-t + 1/13 

For largc time, that is for t sufficiently large that the 

small exponcnt is on the order of the integration errors, the two 

solutions become linearly dependent. Thus if t is sufficiently 
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large that e-t is on the order of the integration error for Iiqs. 

(2.24) and (2 .25 )  all informatiox? of the small exponent is lost from 

the solutions of these equations. At this point, the entire transi- 

tion matrix no longer gives an accurate representation of all pertur- 

bations about the nominal trajectory. Convergence problems might be 

expected. Eqs. (2.24), however, still give a very accurate descrip- 

tion of how changes in 

as this equation a i  be integrated accurately, accurate corrections 

to 6x1(0) should be expected. The ?.PF does not require the entire 

transition matrix to accuratcly represent all perturbations &out a 

6x1(0) propagate along a nominal. As long 

guessed nominal. 

transition matrix give a true representation of hcw changes in the 

In this case it only requires that half of the 

unknown initial variables alter the nominal trajectory. 

As a second example, consider the same differential equations 
12tf 

- e  - tf with the boundary conditions x2(0) = 0 and xZ(tf) = tf + e 

The solution is 

12tf 
- 12e -tf Xl(tf) = 1.0 - e 

-tf 12tf 
x2(tf) = tf + e - e 

(2.26) 

The important factor affecting convengence of the two problems 

is  the desired boundary conditions. The desired solution for Case 1 

requires that 

be zero. 

not zero. 

C, = 0, or the coefficient of the large exponential term 
L 

For Case 2 the coefficient of the large exponential ten is 

Numerical results for these two problems are shown in Table 1 

for several values of tf. The guess for xl(0) is 1.0 €or all case:. 
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The results show 

very accurate for Case 1 

that corrections calculated to xl(0) are 

(13 digits at least) even over long time 

intervals. Terminal accuracy is destroyed, however, by the fact that 

even if the coefficient o f  the large exponent is very small, approxi- 

mately 

Since the computer has a finite word length, the coefficient of the 

large exponential term will never be identically zero. 

is initially set equal to zero, the finite word length of the machine 

produces a solution after the first integration step which does not 

correspond exactly to the solution desired. Thus after one integration 

step, the coefficient of the large exponential cannot be identically 

zero. Over a sufficiently long interval the large exponential will 

appear in the numerical solution. This ten cannot be removed from 

the solution obtained in the manner described above. The EPF does, 

however, calculate an accurate correction for x (0) even over long 

time intervals. The unstable perturbation equations can be used to 

predict accurately how changes in xl(0) 

x1 and x2 for the example Considered. 

over long time intervals this term still becomes important. 

Even if it 

1 

change the final values o f  

For the second problem considered, however, teninal accuracy 

is maintained even over 1 ~ ; ;  time intervals. 

require that the coefficient of the large exponential be zero and 

accuracy is not as difficult to maintain. 

This solution does not 

Iflien the MPF is used to solve other TPBVP's, the difficulties 

encountercd in trying t o  integrate the state equations for Case 1 could 

occur in connection with the pcrturbation equations. 

conditions for the perturbLtion equations require the coefficient of a 

I f  the boundary 
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positive exponential term to be zero, in general it will be impossible 

to numerically obtain the true solution over a long time interval. If 

this problem arises, the calculation of accurate corrections to guessed 

initial variables will be extremely difficult. 

If the system had consisted of four state variables with two 

boundary conditions at each end, another problem could occur. 

earlier, for the example, over long time intervals the rows of the en- 

tire @ matrix become linearly dependent. If one large positive 

As shown 

exponential existed for the four state variables mentioned above, both 

of the two required solutions to the perturbation equations could become 

linearly related over long timc intervals. In this case, the difference 

in the eigenvalues of the A-matrix, the time interval of interest, the 

machine word length, and the required boundary conditions for the pertur- 

bation equations would all be relavent factors in determining whether or 

not the FPF would solve the problem accurately. 

Since the Iiiccati transformation is often mentioned as an 

alternative to the MPF, and since it is claimed that the Kiccati trans- 

formation uncouples the perturbation equations and leads to stability, 

the example is solved also by this method. The transformation is 

6x2 = W6x1 + r6x2(tf) 

and the differential equations for \\i and r are 

7 fi, + W(All - Az2) + \\i- A12 - A21 = 0 

? + r(lVA12 - A22) = 0 

\V(tf) = 0 , r(t,) = 1 

(2 .27 )  

(2 .28 )  
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where subscripts on the A's  denote rcws and columns of the A matrix. 

The correction to xl(0) is then 

(2 .29)  

The A's are constant and thus for the example the differential 

equations for W and r do not depend on the guessed nomina!. for the 

state equations. Results for the Riccati solution are presented also 

in Table 1. In all cases the results obtained using the Riccati trans- 

formation are not as accurate as those obtained using the PIPI:. The 

analytic solution for the Riccati variables is 

13 ( tf - t) 
1 l - e  

1 + 1/12 e 
13 (t f -  t) w = 1/12 { 

and 
13(tf-t) -1 (tf-t) 

r = 13/12e t 1  + 1/2e 1 

For large tf, W approaches minus one. As the difference between the 

true solutions of W and minus one gets smill, the difference is lost 

in the integration error, Again, information about the true solution 

of a differential equation is lost due to a finite word length machine. 

If the numerically integrated value of W(0) is compared with the 

analytic solution, they agree t o  9 or 10 digits for all of the cases. 

The numerically integrated values of r(0) , however, only agree with 
the true solutions to 6 or 7 digits. Ihce the loss of accuracy in 

r(0) causes the  correction to xl(0) calculated by the Riccati transfor- 

mation to be less accurate than the correction calculated by the NPF. 
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ITEPL4TION 1 TITRATION 2 
* 

P rot. lem .lccuracy Accuracy Accuracy Accuracy 
Of X 2 f  Of x10 Of X 2 f  Of x l o  No. tf Net hod 

NPF 1 1 .o 10 13 11 13 

?PI: 1 1.5 7 14 9 14 

blPF 1 2 .o 4 14 !; 14 

Riccati 1 1.0 3 7 7 13 

Kiccati i 1 . 5  1 1 4 10  

Riccati 1 2.0 0 7 1 10 

MPF 2 1.0 11 7 11 7 

NPF 2 1.5 11 7 11 7 

m F  2 2 .o 11 7 il 7 

Riccat i 2 1 .o 7 7 li 7 

Iliccat i 2 1.5 7 7 11 7 

Yicca t i 2 2.0 7 7 11 7 

* 
Accuracy denotes ninnber of correct d ig i t s  dcternined by the 
method, comparcd to  true analytical  solation. 

T,ULE 1. Comparison of Accuracy Obtained Using the MPF and Riccati 

Transformation for the Linear l'!xarrtple 
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Note tha t  i n  integrating the  Riccati equation, it is  put i n  

the form 

= - Jt JW (2.31) 

As long as 4(-A,,) (Al2) - (All - A,?)‘ is negative, the general solution 
&L 

is of the foim 
b2 t 

bl + Cle 
1% = (2.32) 

b t  b- - Cle  2 
3 

where bl, b2, and 5 are  corkstants determined by the A elements. 

The constant of integratioa is C1. If b2 is large and negative the 

solution approachc: for  large tf. 

the solution approaches -1. 

information about the solution w i l l  be lo s t .  

3 

If b2 is large and posit ive,  

In e i ther  case, for  suff ic ient ly  large tf,  

bl 

3 

This loss  of information 

about the true solution of W coul2 be causing the d i f f i cu l ty  i n  the 

accuracy of the numerically integrated value of r. 

Another alternative t o  the method used ea r l i e r  is t o  intey,iate 

I f  the equations are integratzd the perturbation equatiorls backwards. 

backwards, the bouidary conditions becone 

6X2(tf) = 0 , 6Xl(tf) = 1 (2.33) 

and the  so lu t im  t o  Lq. (2.20) becomes 

(t ,- t l  - ?2 ( t f - t )  
6x; = 1/13e + 12/13e 

(2.34) 
-:t 0 - t) - 12 ( tf-t) 

5 9  = -1/13e I + 1/13e 
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Comparinq these with Fqs. (2.24) it is seen tha t  the signs on the 

exponents have been changed. ‘I’he end resu l t  of the integration, how- 
- l Z ( t f - t o )  

ever, is the  same. For large time intervals e becomes 
(t,-t> 

much smaller than e . Iflien its v a l w  is on die order of the 

round off e r ror ,  a l l  information of the large negative exponential 

i s  los t .  Thus, i f  information is los t  from having posit ive expnen- 

t i a l s  swap negative exponentials during foward integration, i n f o n a -  

t ion w i l l  a lso be l o s t  i n  hackward ir . tegratim. 

For the specif ic  boundary conditions chosen fo r  Case 1, however, 

the coefficient of the large exponential should be zero. 

word length machine, as discussed e a r l i e r ,  it w i l l  never be identically 

zero. The term w i l l  eventually destroy terminal accuracy i f  the 

For a f i n i t e  

integration is done i n  a forward direction. 

state equations is done backwards, this term, elZt ,  becomes 

If  the integration of the 
-12  (t,-t) 

e 

and thus decreases instead of increasing. Thc undesired solution de- 

creases and is l o s t  i n  die integration e r ror  instead of increasing and 

destroying tel-inal accuracy as it docs when thc integration is done in 

a forward direction. 

done bach-mrds for the specified boundary conditions. 

Thus the integration of the equations should be 

On the other hand, 

i f  the boundary conditions required tha t  the coefficient of the smaller 

exponential, e 

direction. 

t ion,  e , would eventually be corrupted by e fo r  large 

-t , vanish then integration should be done i n  a forward 

I f  the integration is Gone bachwards, then the desired solu- 
- 12 ( t  f -  t ) (t,-t) 

t imc . 
Ttic main point is tha t  the c!ioisc of forward or  bxkward inte-  

gra t ion  depends on the bounda-y coniiitions w h i c h  must be sa t i s f ied .  For 

nonlir,ear problems, analytic so lu t  ims cannot , In gcneral , be obtained. 
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The interaction of boundary conditions and the exponential type terms 

is not known. It is clear from the example that for general boundary 

conditions, integration can be corrupted in both directions. 

if prcblems are encountered when integration is done in one direction, 

it might be advisable to try integrating the equations in the opposite 

direction. 

seem to be favored over the other. 

Ilence 

Initially, however, one direction of integration does not 

As mentioned earlier, stability is affected by the word length 

of the machine. If the word length of the machine had been eight digits 

instead of fourteen, the coefficient of the large exponential would have 

been approximately la-’ instead of 

tcrm would build up much faster. 

the word length should improve the numcrical integration characteristics. 

Ilence the large eiponential 

If stability is a problcm, increasing 

In s~munary, stability of the integration of both the state equa- 

tion and the perturbation equation is a problem for the MPF. 

sufficiently long time intervals large exponentials, if they exist in 

the perturbation cqlutions, may completely swamp smaller exponentials. 

Over shorter intervals, if rn accurate representation of the true be- 

havior of the perturbation equations may be obtained numerically, then 

accurate rtcults may be calculated using the NPF. 

the Riccati transformation does not always improve stability problems. 

In this case results obtained using the Riccati transformation are worse 

than those obtained using the 3PF. The solution to stability problems 

is not backward integration since again information about the solution 

to the perturbation equations can be lost over long intervals. This does 

not imply that integrating the equstion; backwards might not be useful in 

Over 

It is seen also that 
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some circumstances. 

of the example gives a much be t te r  representation of the smaller ex- 

ponential than forward integration. 

gration would be useful for  e i the r  state or  perturbation equations. 

I t  is shoim tha t  bachward integration for Casc 1 

Thus i n  some cases backward in te -  

For problems involving a large number of variables, the question 

c; l  . Lzi l i ty  seems t o  be whcther o r  not a suf f ic ien t  nmbcr (n 

optimizatim problem descrihcd e a r l i e r )  of l inear ly  indcpcndent solu- 

t ions can be obtained t o  the perturbation equations. 

e a r l i e r ,  t h i s  depends on the cigenvalucs, time interval  of i n t e re s t ,  

boundary conditions, and machine 1;ord length. ! hchine word length is 

usually fixed cxccpt fo r  the poss ib i l l ty  of going t o  double precision 

arithmetic. For some problems t h i s  would seem t o  be very beneficial. 

Two poss ib i l i t i e s  of improving the other conditions w i l l  now be con- 

s idered. 

fo r  the 

A s  mentioned 

First, i f  the time i n t c n a l  of i n t e re s t  is so long tha t  indepen- 

dent solutions cannot be ohtained t o  the perturbation eqiialions, the 

interval may be divided into two segments. 

for  the TPBW may be guessed a t  both the i n i t i a l  and the f ina l  times. 

The state and perturbation equations are integrated from thc i n i t i a l  

time and from the f ina l  time t o  an intermediatc time. 

boundary conditions a t  both ends are corrected t o  make the states 

colitinuous a t  the intermcdiate time. 

I t  requires guessing 

defiiled e a r l i e r  but it should iii7rovc the accuracy of the 3 

since 0 nced not be integratcd ovcr the en t i r e  t ra jectory.  

Nissinp, boundary conditions 

Then the guessed 

43 This method is  suggested by Fox. 

2n + 1 variables for  the optimization problcm 

integratior, 
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An alternate approach is similar to regularization. A time 

transformation 

dt t' = -& = R(x) (2 .35)  

is made where R is a scalar function of the x's.  The differential 

equations associated with the aptimization problem and the perturbation 

equations are derived. 

The problem is to extremize 

I =  f f  [H - ATi]dt 
' to 

3t subject to = R(x). Then 

dt but kR = x = x '  and 

I = J:' [ii - A'x']~T 

(2 .36)  

(2 .37)  

(2 .38)  

where = IN. Now :titach Fq. (2 .35)  to the integral using the 

multiplier X~ and define x to be the old x ' s  and t, and X to 

be the old A'S and x ~ .  I f  I 1  is independent of t and tf is 

free then Tf is free and ht = 0 .  Thus Eq. (2 .35)  adds nothing to 

the problem and may be integrated separately after the optimization 

procedure to determine the actual time. 

If the first variation of Eq. (2.38) is required to vanish 
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then 

(2.39) 

or 

T A '  = i R  - iRx (2 .40)  

'Iu = 0 

The variational equations are 

6x' = 6kR + k6R 

(2.41) 
m m 

For f 1  independent of time and tf free, I1 = 0 ,  and 

along an optimal. 614 = 0 

along an optimal if the nonlinear equations 

to z '  = F(z)R and then the variational equations were obtaiced. The 

important point is that the characteristics of the A matrix are altered 

by the transformation. 

R(x) 

tions and the linear perturbatim equations. 

f1ence the same equations would be obtained 

z = F(z)  were transformcd 

It might be possible to choose the transformation 

to improve integration characteristics of both the nonlinear equa- 

Neither of these methods has been fully tested. They are mentioned 

here primarily as topics for future research. 



3.1 Reentry Problem 

Numerical optimization of a largc system of nonlinear equations 

is a d i f f i c u l t  task. 

state equations for  reentry sho, Id  be as simple as  possible while re ta in-  

ing the dominant character is t ics  of the actual reentry problem. Thus the 

modcl w i l l  consist of an iqJerse squarc gravi ta t ional  force f i e l d  fo r  the 

carth.  The atmosphere w - i  

For the reentry vehicle,  constaiit l i f t  ~ - 4  drag coeff ic ients  are used and 

the only control of the vchicle is the r o l l  angle. 

entr)' t ra jec tor ies  these assumptions give a good rcprcsentation of the 

actual A p l l o  reentry problem, whilc keeping the model suf f ic ien t ly  

simple tha t  numerical solutions may be obtained. 

with t h i s  i n  mind, the m l e l  used t o  obtain the 

be assumed. t o  vary cxponentially with a l t i tude .  

For f a i r l y  short  re- 

In order t o  determine the d i f f e ren t i a l  equations governing the  

reentry t ra jectory,  consider a fixed s jher ica l  coordinate system located 

a t  the center of the ear th .  Thc position of thc vehicle is then located 

by r ,  the distance from the center of the coordinate system t o  the ten- 

ter of mass of the vehicle,  e ,  the longitude, and 0, the la t i tude .  

(See Fig. 1). 

The magnitude of the -relocity of the vehicle is represented by 

V. The f l i g h t  path angle is y and the heading angle is 9.  These 

are shown i n  Fig. 2 .  

thc uni t  vectors 

governing rcentry are 

The body fixed coordinate system is designated by 

ex, ey, and eZ. Kith tliesc variables the equations 

27 
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Li f t  

F i2S.  1. Spherical  Eart!: Ce;itered Coordinate S y s t e n  

Velocity 



- v cos y cos + 0 =  r cos 4 

1' cos y cos + sin 0 L s i n  B 
r ccs + - v cos q + = -  

dwrc  ;i is the ,qravitationcil constant, L i s  thc l i f t  per unit mass 

of the vehiclc, 1) is the drag per uni t  miss ,  a i d  e is the control 

angle shown i n  Fig. 2. The l i f t  and drag per wit mass arc 

diere  S* is the rcfercnce nrea divided by the mrlss of tlic vchiclc, 

CL is the l i f t  coeff ic ient ,  CI) is the drag coeff ic ient ,  anr! p is 

the dcnsity of thc atmospliere. An c,qonential  atmosphcrc is assumed 

so tliat 
-k ( r-re) 

P = p0e (3 .3 )  

whcre po i s  the dcnsity a t  sea levc l ,  k is 3 constant, and re is  

tlic radius of the earth.  The numerical values for the C1), CL, and 

S* arc chosen t o  rcprescnt an ,\pollo-type reentry vehiclc. Values 

for the density arc chosen t o  represent the actual atmosphere over 
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the a l t i tudes  of i n t e re s t  for reentry. (See Ref. 11). A l l  numerical 

values are shown i n  Appendix A .  

Since the two basic problems associated with reentry arc the 

heating and the aerodynamically induced acccleration the quantity t o  

be minimized is 
A. 

I = j“ [(LZ + D 2 ) 1 / 2  + x ij ]dt  o c  
to 

(3.4) 

wilere 4 is the convective heating rate and ho is a constant chosen 

t o  give a re la t ive  weighting t o  the deceleration and the heating term. 

In t h i s  investigation the two t ens  are given an approximately equal 

weighting. Since the convective heating is substant ia l ly  larger  than 

the other forms o f  heating for  reentry with i n i t i a l  ve loc i t ies  on the 

order of 36,000 ft./sec.18, it is  the only type of heating considered 

here. 18 The approximation for  the heating term used is 

where p is in  s lugs/f t .3  and V is i n  ft./sec. For a l l  numerical 

computation the heating term times the weighting constant w i l l  be 

written as hop1”V3 where the uni t  of length for p and V is  i n  

miles. Thus the numerical value o f  io shown i n  Appendix A includes 

both the scaling factor  and the numerical constants and unit coriver- 

sion factors associated with (ic. 

The important quant i t ies  associated with t h e  deceleration 

during reentry are the cumulative deceleration ,and the m a x i m  values 
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cf 

i f  

the deceleration. 2o i\n astronaut can takc f a i r ly  high accclerations 

they are  applied over short timc intcrvzls.  Thus the integral  of 

tlic acceleration is a reasonable quantity i n  tlic performance index t o  

reprcsent the accclcration-time interval relationship. 

The reentry trajcctory must s a t i s fy  a specified sct of boundary 

conditions. The i n i t i a l  conditions arc  fixed and givcn. These i n i t i a l  

conditions for  reentry are  the terminal conditions for  the Apollo 

transcarth coast trajectory.  

ear th  coast to  ensure tha t  tfle i n i t i a l  conditions for  reentry w i l l  bc 

very close +o the desircd conditions. 

approximately constant for a l l  Apollo lunar t ra jector ies .  

b e g ' x  a t  an a l t i tudc  of 400,000 f t . ,  a vclocity of 30,000 f t . /sec . ,  

and a f l i gh t  path angle of -6.5 tlcgs. The other state variables e ,  

$, 'and 

Corrections are made during the trans- 

llcnce these conditions r e r i n  

Reentry 

JI 

Terminal conditions include specification of la t i tude  and 

are i n i t i a l l y  s e t  eqgai t o  zero for  convcnience. 

longitude so that  thc reentry vehicle may land near a recovery vcssel. 

The vclocity is fixcd a l so  since a small specified terminal velocity 

is required before opening the landing paracliutc. 

other terminal variables are l e f t  open. 

cxpresscrl a s  

The f ina l  time and 

The terminal conditions are 

% = $fs  (3.6) 

whcrc s denotes specified conditions. 
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Before applying thc ?.PI: to the reentry prohkm, the optimization 

problem must be reduced t o  thc ‘IT13I’P. 

problem is 

‘I’he Ilamiltoniar. for the rcentry 

where CY = cos Y SY = sin Y, etc .  

The equations fol the multipliers arc:  

A. = 0 
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and 

'fie optimal control is dctwxlncd by rcquiring that I 1  = C 
R 

and 1 1  > 0. From thesc corxlitions It follows that  33 - 

(3 .9)  

I f  tr i -  expressions for s i n  B and cos B are :tsed in the di f fe ren t ia l  

equations f j r  .. L* s ta tes  axi Ilult iplicrs,  a system of 12 first order 
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couplcd differential equations is obtained. 'hc transversality con- 

ditions associated with the problem lead to the following additional 

conditions. 

A it ) = 0 ,  ~,(t~) = 0, x (t ) = 0 ,  and Ii(tf) = 0 r f  r C ' f  
(3.10) 

The TPBLT n m  cmsisfs of the 12 differential rilations, 

Eqs. (3.1) and (3.8) with 6 eliminated by using Eqs. (3 .9) ,  the 

fixed initial state and tine (7 conditiorzs), and teninal boundary 

conditims, l i p .  ( 3 . 6 )  and (3.10) (7 conditions). 

Vie coefficients for the perturbations cquations are obtained 

by takins the partial derivatives with respect to the states and 

multip1;ers of 13s. (3.;) and (3.8) after 6 has been eliminated. 

Thcse are shown in Appendix B. 

The definition of :he reentr)l 2roblem to be considered is 

ncw compicte. 6, must be determined 

so that the integration OF the state equations, Qs. (3.1), from the 

specified initia: conditions to the terrrrinal conditions, (Eqs. (3.61, 

yiclds a minimal value for the perfomce index, Fq. (3.4). 

In ~ m n a r y ,  the control angle, 

- 3.2  Sunerical Accuracy Studies - 

The pcrturbation method outlinpd in Chapter 2 i c  a e - 3  to 

calculate optimal reentry trajectories for Apollo- type mir.-icns. 

Before thc results are presented some of the numerical problems en- 

Lountcred in generating optimal solations should bc discussed. The 

perturbation method, as do most numerical optimization metliods, 
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rcqtlires two basic numerical procedures; i .e.,  rile k t y t a t i o n  of a 

system of f i r s t  order ordinary diffcrentia!. equations, and the inver- 

sion of a matrix.  

sljIi.i;tla?s :Is very dependent on the accuracy obtained during these 

two procedures. 

The a b i l i t y  of the method t o  converge t o  optimzl 

For r een t r - ,  most of the problems in calculating optimai 

t r a j e c t w i e s  are  a resu l t  of the numerical integration procedure. 

For each iteraiiul;, the nonlinear equations including the s t a t e  and 

Iqp-ange multiplier equations, and the l inear  perturbation equations 

must be integrated. Reentry for ;Ipollo lunar return t ra jec tor ies  is 

characterized by high acceleratiors md heating ra tes .  These cause 

large variations in  the derivatives of x a.nd A making numerical 

integration very d i f f i cu l t .  

ment of an integration routine which can accurately integrate the 

nonlinear equations, Eqs. (3.1) and (3 .8 ) .  The accuracy of the 

integr;i:ix of the nonlinear equations is determined by usin2 a 

fixed stzp s ize  and a variable stcp size version of thc integration 

roiltirz discussed i n  Section ( 7 . 4 ) .  

is chcckcd as follows: 

i n i t i a l  values of x ,  A ,  and t f  is  selected. The values used are  

shom i n  Table 4 as the nominal values. For the FSI , an integration 

r tcp size is selected and t h c  nonlinear equatiom are  h t e z r a t e d  t o  a 

specified t f .  

reintegrated. 

valucs of x and A should I)ccomc smaller and smaller un t i l  -oumd 

llence the f i r s t  problem is the clevelop- 

'fic accuracy of the integration 

a nomjnal t ra jectory Characterized by specified 

The step sizc is decrcased and t h e  equations arc 

.b the s tep  s i re  is decreased, clianges i i i  the f ina l  
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off  errcfs bccome a factcr.  

FW the 131, the same proccrlure is followed by decreasing the 

Again, 3s the upper crror bound relat ive single s tep e r ror  c r i t e r i a .  

decreases, the s tep size along the t ra jectory decreases. 

xf and Xr' should hecome smaller as the s tep size is decreased un t i l  

round off  errors  bccome important. 

Changes in  

For the nominal shown in Table 4, a fixed step size of 0.25  

seccnds or a variable step s i te  crror bound, E ,  of IO-'' - -  < E < 

is found t o  produce s i x  d i g i t  acc::;-scy by t h i s  mctiod. 

decrease in  thc s tep size o r  upper e r ror  bound produces chnnges in  the 

scvcnth d ig i t  o r  less. 

sccorids and is 4.0 scconds for the  YSI. 

Any fur ther  

The intcgration timc for the FSI is 5.6 

The accuracv of thc integration is checked a l so  for . zveral 

cther i n i t i a l  valucs of the multipliers.  

crror boirncis l i s ted  above per form hctter (requires less t i m e  for  

integration) than a FSI with a step size \ihich gavc compnrablc accuracy 

In a l l  cases, thc VSI using 

The accuracy of the intcgrntion usin9 the VS1 is chccked also 

by a second mcthod. 

with given i n i t i a l  values of x and A .  These f ina l  values of x 

and > 

backwards from t f  to  to. :'alucs of x and A a t  to c;ilculated 

from the bachwards integration are  compared with the original i n i t i a l  

conditions. Thcse numbers should agrcc i f  the integration of the 

equations is accuratc. 

a t  to agrw t o  s i x  d ig i t s .  

Tie equations are  integrated t o  a specifiec' t, 

arc  then used as i n i t i a l  conditions t o  integrate the equations 

For tlic nominal j u s t  discussed the variables 
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The resdts of the i n i t i a l  'analysis of the integration accuracy 

indicate tha t  the nonlinear equations can be integrated accurately. 

best approach is the variablc step sizc intey-ator.  

f i c i en t  accuracy while rcquiriny less time than the FSI t o  intcgratc! 

the equations for reentry. 

The 

This allows suf- 

Ihe second question concerning the integration accuracy is  

associated \:ith tl.0 integration of the l inear  perturbat ion equations. 

Since the time dependent coefficients of thc l inear  system zre depen- 

dezt on the values of x and A, accurate irrtcgration of the nonlinear 

* - ,  .~ -1 is  necessary for  accurate integration of the l inear  system. 

nccurate intcgration of the sonlinear equations is not suf- 

x , e n t  for accurate integration of the l inear  cquations. The accuracy 

of the l inear  equations can be checked in the same rllanncr as the 

accuracy of the nonlinear equations. 

i n  the i n i t i a l  values of the A ' S  are requircd, a l l  ccmpnrisons arc 

based 011 j u s t  t h i s  par t  of the ; matrix. An er ror  bound of 

t o  10-l' produces C. d ig i t s  wliicli arc not a l tered i)y decreasing tlie 

e r ror  bound. 

Since only wit perturbations 

Numerical par t ia l  derivatives are calculated also in  order to  

c?ieck the accuracy of the l inear system. The nominal previously com- 

puted is compared with anothcr Lntegration of the nonlinear equations 

with a small change in  one of thc i n i t i a l  multipliers.  For instance, 

a change of 1.01:-ti is madc i.1 *&..- . 'Ihc first rGw of the @, matrix 

should then 1-,e apptc 
'0 

k 

qaie ly  q u a l  t o  
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r 
Zf  j 4 + 1.01:-c, - Zf/, 

0 0 
r 

1.01:4 

Tlic agreement Iietwccn thc numcrical pa r t i a l s  <and thc 

the nominal discussed abcve is a t  lcast 3 d ig i t s .  

the  l inear  systrm is probabiy analyt ical ly  correct.  

is obtained for  other columns of t h e  cp matrix. 

o matrix for  

This indicatcs tha t  

Similar accuracy 

A n  a l te rna te  metlid of checking the accuracy of the @ 

intcgrat  ion w i l l  now be cons idercd. 

tha t  for  reentry optimization, the cquations should be integrated back- 

wards, i.e., integrate back out of the atmosphere instead of in to  it. 

'niis suggests t~ ie  npplication of tlic adjoint met110d.31 ~ h c  equations 

adjci-t  t o  Iiq. (2.11) are 

Several authors havc recommended 

where Y is a 2n vector of adjoint functions. 

If  the system 

(3.11) 

(3.12) 

where 0 is a 2n x(n + 1) matrix of adjoint functions wj.th boundary 

cond i t ions 

(3.13) 

. j.it*:crated fron t t o  to, thc solution of Ilq. (2.12) can bc f 
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Ah = 0 'r ( t o , t f ) [ - - - ]  0 + il A t f  
xO 

(3.14) 

A t  t h i s  point, it is noted that  n + 1 integrations of 1:q. (3.11) 

are required for the adjoint method. I f ,  however, the Ilamiltonian 

is independent of time then 

(3.15) 

implying that  the Ilmiltonian is 3 constant and thus 

f I  = const = I I  = !I (3.16) o f  

Since a boundary condition is I l f  = 0 t h i s  a l so  implies llo = 0 or  

t o  f i r s t  order 

31 1 
ti hO a hO 

A l l  = - (3 .17)  

since 6x = 0 and A t o  = 0. 
0 

This determines o.,e row of thc l inear  system, Eq. ( 2 . 1 2 ) ,  

without a y  integration. Conscqucntly only n integrations of Lq. 

(3.11) zre required i f  the Iiamiltonian is constant. Lq. (3.17) can 

bc uscd also with the perturbation method, lait t h i s  does not clecrcase 

t l .  .,umber of integrations required for bFF. 

I f  tlicsc n integrations are made, the coefficients of the 

l inear system obtained by t h i s  mctliod can be compared h i th  the coeff i -  

c ients  obtnincd by thc pxturba t ioz  method. Note that  t h i s  does not 

compare a l l  of t?ic integration requircd for e i the r  of Pis. (2.11) o r  

(3.11) but only the elements of thc integration which are  t o  bc used 
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in solving the linear system of quations. 

important elements of the integration and as far as the optimization 

procedure is concerncd , arc the only elements which affect convergence 

of the method. 

lliese, however, are the 

If the linear system generated by blPF and that generated by 

the adjoint method are conpared for the previous nominal, all elements 

of the system agree to at least five digits. 

calculated by the two methods agree to six digits. 

The correction vectors 

The ability to reproducc thc linear system generated by E\VF 

by the adjoint method and by numcrical partial derivatives should 

indicate that sufficient accuracy is being obtained to allow conver- 

gcnce of the method. 

Eigenvalues are calculated for the A matrix at specified 

intervals along the nominal trajectory. 

cigcnvalues is shown in Table 2 .  

and occassionally six of the eigenvalues are very small. 

each large, positivc, real part of an eigenvalue has a correspnding 

negative real part of an eigenvalue. 

spond to approximately constant solutions. 

interval is sufficiently short so that the exponcntial typc terms 

accurately represent linear pcrturbations , good results may be 

expccted. 

A representativc set of 

Over the entire trajectory, four 

Note that 

The small exponentials corre- 

As long as the timc 

The second numerical procedure used extcwively by the opti- 

mization method is that of matrix inversion. Since the ratio of the 

largest cigcnvaluc tc the smallest one gives an indication of thc 
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- Real Imaginary 

- 1 , 0 1 3 ~  2 4.984E- 2 

-1.013E-2 -4.984E- 2 

1 .0131-2 4.9841i-2 

1.013E-2 - 4 .  Y84E-2 

9.5731;-3 0 . 0  

Real Imaginary - 
1.305E- 3 0 . 0  

- 1 . 3 0 5 ~  3 0 . 0  

1 . 2 8 2 ~ 1 4  9.2191:-4 

1.2821~-14 -9.2191;-4 

-4.457E-15 0 . 0  

TAHLE 2 .  Eigenvalues of the A Matrix for a Reentry 'Trajectory 

Real Imaginary - 
-5.566E+!. 0 . 0  

-5 .223  2.346 

-5.223 -2.346 

1 .013  0 .0  

-1.6401;-3 0 . 0  

5.690Fi-4 0 .o 

-7.350E-4 0 . 0  

T.4BLE 3 .  Eigenvalues of the Linear System for a Reentry Trajectory 
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difficulty in inverting a matrix, ciaenvalues arc calculated for the 

linear system produced by the nomind used for  thc integration accuracy 

studies. 

smallest is 7.3E-4. 

Thc magnitudc of thc largest cigcnvalue is 55.7 and the 

(Sec Tahle 3 ) .  These values are typical of eigen- 

valu. obtained on other iiominals. Since thc ratio is on the order of 

lo5 arld the word length of thc CK 6000 is 14 digits, invcrsion of thc 

matrix should not bc a problem. 

3 . 3  Numerical Results 

?he numcrical valucs of physical constants are shown in Appendix 

A. 

conditions for lunar return missions. 'lliese are 

Initial values of thc states are seiected to represent Apollo reentry 

= 4035.75758 milcs (400,000 fcct altitude) 
rO 

= 0.0 radians 

9, = 0.0 radians 
(3.18) 

Vo = 0.81818182 milcs/sec. (36,0!10 ft./sec.) 

= - 0.113446401 radians (-6.5') 
YO 

q~~ = 0.0 radians 

'Terminal conditions are 

= 0.33 radians 

= - 0,"75 radians 

efs 

Ofs 

Vfs = 0.5  miles/sec. 

(3.19) 
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In i t i a l  values of the multiplie 5 and f ina l  time are selcctcd from 

IZcf. 51. Both a gradient method :ind sweep method are  used t o  obtain 

tlicse i n i t i a l  values. The mass of thc vehiclc in tha t  study is 

d i  ffcrent from thc one considcred here. Since t h i s  nominal integrates 

through a singularity (y  = -90') a t  t = 400 sec., the gticss for 

tf 
verged values arc slimn in  Table 4 .  

is  cliangcd t o  380 scc. The i n i t i a l  nominal values and tlic con- 

liight i t e ra t lcns  a re  requircd t o  dccrcasc tlic teminal norm 
T (h 11) from 5 . 4  t o  4 . X - 1 1 .  

Plots of tlic s t a t c  varinliles arc  shown in  Fits. 3 aid 4. 

Fig.  5 shows thc control,  accclcrntion, a d  convcctivc hcatiny, rntc. 

Thc maximum deceleration is 10.0 g's. 

804.6 13'N/ft."-scc. and the to ta l  he,it ahsorbcd by thc vehiclc is 

45b57.0 IYIlJ/ft. . 

l i e  masimum hcnting rate is 
7 

2 

?.11 t ra jec tor ies  obtained lime the same gcncral charactcrist icr.  

of thc onc sliown. T h y  are  skip t ra jec tor ies  with high peak accclera- 

tioiis and hcating rjtes. 'Ilic i n i t i a l  cntry into the atmosphcre is 

u f f i c i e n t l y  deep so that  thc terminal phase of the b a l l i s t i c  se.vPnt 

of tlic trajectory i s  approximatcly a t  the specified tcrminal longitude. 

.Is thc specified f inal  value p f  -, 1ongitude increases, so docs thc 

skip altituclc. For large valucs of e most of the reentry time is  

spcnt on the b a l l i s t i c  skip s c p c n t .  

phasc, thc l i f t  vector is  orient:d so that  the f ina l  valuc of thc 

fs ' 
Also during the i n i t i a l  cntry 

lnt i tude is  approximately the specified value. Increasing efs  and 

incroascs the pcrfonaricc index. This short  inplane t ra jec tor ics  fs 
J.lucc minimal vnlucs for the performance indcs. Changing thc I'inal 
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- 
Var iab le Nominal Values Converged Valucs 

3.98397469E-3 -1.24748687E-3 

-8.95206071 -9,17150992 

8.31654552 26.5110657 
4 

x 

xV 2.52107557 2.35519683 

a 
Y 

16. ‘3208133 13.82362.35 

3.25899074 8.83828355 
JI 

x 

380.0 391.80724 tf  

Terminal Conditions: ef = 0.33 radians, $f = -0.025 radians, 

Vf = 0.5 miles/sx. 

T’ZBLE 4 . Nominal and Convergcd b l u l t  i p l  iers for t3pt irw 1 Reentry Trajectory 
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velocity chmgcs thc perfonnancc indcx only slightly since lowering 

thc velocity just causes t!ie trajectory to tenninate at a slightly lower 

altitude. 

the trajectory, and integrating thc equations further into the atmosphere 

adds very little to the performance index. 

The heating rate and accclcration are small at this phase of 

It is rclativcly casy to vary terminal conuitions and other 

parameters and obtain near by solutions using the method. Changing 

the terminal conditions to efS=0.4 radians and V f s = O . ?  miles/sec. and 

using the multiplicrs from the prcvious converged trajectory requires 15 

iterations to convcrge to the new conditions. 

X problem is encountered when die converged multipliers for 

efs = 0.4 radians and Vfs = 0.2 miles/sec. are used as initial guesses 

for the trajectory with 

The W F  diverges for this case. 

number of iterations is shom in Fig. 6. 

is approximately -90". 

singularity exists ir, tlie $ equation when y = +90". I f  during the 

iteration process the singularity is cncountcred, convcrgcnce of the 

method is vcry uncertain. 

will now be discussed. 

efs = 0.5 radians and Vfs = 0.2 miles/sec. 

The terminal norm plotted against die 

After tlie third iteration, y 

Thc .tate equations, Eq.  (3.1) show that a 

Two mcthods of avoiding this difficulty 

First, when the singularity is approached, the guess for the 

final time may be decreascd. Aftcr iteration 21, if the value of the 

final time is changed from 541.365408 sec. to 500.0 SCC., convergence 

occurs in 7 iterations. 

larity and hence to allow convcrgcnce. 

'Jliis change is sufficient to avoid the singu- 

A better method of avoiding thc singularity is to remove it 
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FIG. 6. Terminal Norm vs. Number of I terat ions  for Regularized 
and Standard Variables 
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from the differential equations. 

discussed in Section (2.4) may be used to removc the singularity. 

process is known as regularization. The advantages of rcgularitatior, 

for the calculation of optimal interplanetary trCmsfcrs arc presented 

in k e f .  50. Since the velocity also approaches a very small value at 

the final time, the transformation used is 

lhc change of independent varizblcs 

'Illis 

clt = v cos y -6; 

Then the change of variables 

v = v2 

(3.20) 

(3.21) 

is made. The state equations bccomc: 

(3 .22)  

No singular i t ies  are approached for t h i s  set of equations 

since p is always small and r is never less than the radius of 
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the earth.  ‘Ihe multiplier equations arc  shown in  Appendix F. 

Since a c l~mge of variables is madc, an i n i t i a l  gucss for 

a- is requircd. The Ilamiltonian in  the new system must still  be 

constant and zero. Since a l l  tcnns of the Iiamiltonian rcmain un- 

changed except those containing A,  and A- these terms are equated. 

Thus i f  the liamiltonian is zera i n  the V 

the V system i f  

\.: 

V’ 
system, it w i l l  be zero i n  

(3 .23)  

(3 .24 )  

Boundary conditions for  T are the same as those for  t ,  

that  is T~ = 0 and T f  is frce.  Since t docs not appear i n  thc 

state equations, Lq. (3 .20)  need not be integrated un t i l  a convcrged 

trajectory is obtained. .4 value of T f  is gucssed insicad of tf 

for the i terat ion process and corrections are calculated t o  

using 
ff 

The value f o r  A ~ ( T ~ )  is calculated using Kq. (3 .24)  , and the 

convergcd crajector i  for  

‘niis value of T f  gives a terminal nom of IO-’. 

then changed t o  

efs = 0.4 radians is generated with if = 356.0 .  
- 

IIIC value of efs is 

e f s  = 0.5 radians. The rcgularizcd equations a rc  nlloved 
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to iterate toward a solution. 

after 30 iterations. 

Fig. 6. 

‘Ilic regularized variablcs convcrgc 

The changc in the tenninal norm is shown in 

The computer time for one iteration is considerably longer 

using regularized variables. 

seconds per iteration and the standard variables require 25.7 seconds 

per iteration. 

seconds is required for thc regularized variables and 4.0 seconds 

arc required for the standard variables. 

ments listed above are for the last iteration before cmvergence at 

The regularized variables require 55.7 

For one integration of the nonlinear equations, 7.1 

The computer time require- 

= 0.5 radians. efs 
Thc regularized variables do converge, however, and the standard 

variables do not unless the singularity is avoided. 

computer time using rcgularized variables is bccause most of the tra- 

jectory is not ncar the singularity. Thc regularized state equations 

are more ccvplcx which implies more tcnns to be evaluated in both thc 

multiplier and perturbation equations. 

improve integration characteristics wlicn thc trajectory is not near the 

singularity. 

grate the standard variablcs until the singularity is approached. 

extra cquation d T  - - vw is integrated to determine T .  ;hen the 

singularity becomes a problem, switch to the regularized variables. 

This would rcquirc less computer timc per iteration. 

program is more complcx sincc two systems of cquations arc rcquircd. 

If the singularity is approached, howcvcr , rcgularization does definitely 

improve convergcncc charactcrist ics . 

The increase in 

I~eegularization thus does not 

An alternate approach to the one uscd above is to inte- 

The 

The computer 

The improved convcrgcnce cliaractcristics 
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woiild probably be worth the extra c f for t .  

The rcason for  the problem encountered in  clianging efs from 

Two types 0 . 4  radians t o  0.5 radian; is seen from Figs. 7 ,  8 ,  and 9. 

of t ra jector ics  arc produced. The shortcr t ra jectory,  

radians is shown as  Trajectory 1. 

decp into the atmosphere that  the b a l l i s t i c  skip undersh~.iq\ts the 

desired efs (See Fig. 7 ) .  

ing upward as seen from Fig. 8 .  

outward t o  the desired longitude. 

radians is shown as Trajectory 2 .  

in to  the atmosphere as Trajectory 1. 

it will overshoot the desired longitude. 

trajectory the vehiclc rolls the l i f t  vcctor 180’ and f l i e s  down 

toward the desired value of of s .  This causes Y t o  approach -90’. 

Trajectory 1 l i f t s  up ncar the end of the t ra jcctory and does not 

causc the singularity t o  be approached. 

= 0.4 efs 
The i n i t i a l  entry is suff ic ient ly  

Control near thc terminal phase is l i f t -  

The vehicle l if ts  upward and glides 

The longer t ra jectory efs = 0.5 

Thc i n i t i a l  entry is not as deep 

The trajectory appears as though 

Then ncar the end of the 

For t!ie given vaiucs of ofs and ITfs, the cbnge in  the 

type of optimal trajectory obtained is a t  

values of efs  

shown as  Trajectory 1 arc obtained. For values of e f s  greater than 

th i s ,  t ra jector ics  similar t o  those shown as Trajcctory 2 are obtained. 

efs  = 0.415 radians. For 

less  than t h i s  value t ra jec tor ies  similar to  those 

Since several authors favor backward i;;tegrat ion over forward 

integration for  dissipative systcms , thc reentry problem is solvcd by 

the JIPF s ta r t ing  a t  the f inal  time. Guesscs are  made for  the unknown 

variablrs a t  the f ina l  time and for  the time intcrval.  These unknowns, 

, and to, where to now rcprcscnts thc timc 
T f ,  Yf, Qf, ‘ e f ,  ’“9 ‘vf 
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at the initiation of the rcentry trajectory, are corrected to drive 

the initial xtates to their specified values. A nominal trajectory 

produced by guessing unknown variables at to in general does not 

satisfy specified terminal conditions. A nominal produced by guessing 

unknown variables at tf does not satisfy specified initial conditions. 

Ilcnce the same initial nominal trajectory cannot be used for both the 

folward and backward iterations. 

are thus not possible. 

appears to be very little advantage, as far as convergence characteris- 

tics are concerned, in using either approach. 

can bc and have been obtained by either approach. 

would seem t o  be the specified boundary conditions. 

are fixed and extremals are required for various values of the terminal 

states, forward integration corrects an initial nominal trajectory 

which is acceptable and relatively accurate for reasonable changes in 

terminal conditions. For backward integration, changes in conditions 

at tf could producc large changes in conditions at to thus requir- 

ing more iterations for convcrgcnce than forward integration. 

various states at 

seems better suited to the problem. 

Direct comparisons of the two approaches 

From computational experience, however, there 

Converged trajectories 

The deciding factor 

If initial states 

If 

to are to be studied, then bachward integration 

The study presented in this chapter indicates that accurate 

numerical solutions can be obtained to the reentry optimization problem. 

Part of the success of the method in this study must be attributed to 

the computer used, i.e., the CDC 6600. Ref. 3 gives an indication of 

accuracy and integration time rcquirements for two dimensional optimi- 

zation using a perturbation method on thc IBhi 7094, an eight digit 
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reference. 

For the three dimensional model considered here, with a longer t ra jec-  

tory, 25 seconds are required per i terat ion.  Lcondes achieves three 

d ig i t  accuracy in  h i s  sens i t iv i ty  functions (perturbation equations) 

and apparently has a great deal of trouble i n  converging t ra jector ies .  

Five o r  s i x  d i g i t  accuracy is obtained here and t h i s  appears t o  be 

suff ic ient  t o  substantially improve convergence character is t ics .  

A lower energy, shorter trajectory is optimized i n  t h i s  

Leondcs requires approxim2tely 18 seconds per i terat ion.  

Trajectories presented in  th i s  diapter have the  undesirable 

character is t ic  of high acceleration peaks. 

a iwimum acceleration of 15 g's .  

l i m i t  of i o  g's for  manned reentry t ra jector ies .  Also the skip tra- 

jector ies  produced here do not allow control of the vehicle over the 

skip segment. 

d i f f i c u l t  t o  predict due t o  atmospheric variations. 

i n  the atmosphere produces large changes in  terminal conditions. I n  

the iollowing chapters, a method of improving the chnracterist ics of 

the reentry t ra jector ies  will he discussed. 

The t ra jectory shown has 

This is above the  generally accepted 

Terminal conditions for t h i s  type of trajectory arc 

Small changcs 



Ihfortunatcly, most attc-npts t o  solve realistic prolilcms ir. 

optirr. 11 cortrol  thcary require t5c sa t i s fac t ion  of incquality con- 

s t ra in t<+ diich a re  functions of :lie state and/or control variables.  

11!? yeencry problem solved i n  Chapter 3 is an example of t h i s  s i t ua -  

tioli. 

too high for  manned rccntry. 

bcen fcund t o  be extremely s e n s i t i e  t o  atmosplcric conditions. 

Vxact reentry terminal conditiors x e  d i f f i c u l t  t o  predict for  skip 

t ra jec tor ies .  

able ovcr the skip portion since thc vehiclc is outside of thc 

sensible atmospherc. 

atmospliere with small peak accelerations are desired. 

Ttic peak accelcration experienced by the reentry vehicle is 

Also the  use o f  skip t r a j e c i m i e s  has 

illso, very l i t t l e  control of the t ra jectory is obtain- 

Thus reentry t ra jec tor ies  which remain i n  the 

Both of tliesc constraints can lie expressed as s t a t c  variablc 

inequality constraints (.%IC) . The first constraint requires that 

the maximum acceleration be lcss  than o r  equal t o  some prescribed 

m a x i m u m  acceleration. 

accclcration is a function only of a l t i t ude  and veloci,y. 

constraint requires that  the skip portion of the t ra jectory be less 

tlian o r  equal t o  a maximum skip a l t i tude .  

variable does not appcar i n  e i the r  of the constraints.  

diich contair thc control variable csp l i c i t l y  will not be considered 

here. 

Tor constant l i f t  wxl drag coeff ic icnts ,  

The second 

Xote tha t  the control 

Constraints 

Numerous Jevclopmcnts of ncccssary conditions for a SXIC are  
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givcn in  the l i t e r a tu re .  

problem. 

.Jacobson, Lele, and S p e y ~ r . ~ '  .I penalty function approach is uscd 

which does not require the assumption of f i n i t e  boundary segments. 

If the ordcr of the constraint is greater than two, they have shown 

that non-extrema1 solutions with f i n i t e  boundary sc.ppents which s a t i s f y  

a i l  of the necessary conditions Riven i n  Ref. 23, may be obtained. For 

problems considered liere, the ordcr of the constraint i s  less than o r  

equal t o  two. 

st i l l  applicable. 

Refs. 5 ,  8 ,  9 ,  16, 1 7 ,  23 consider this 

Recently ncw necessary conditions have been derived by 

liencc the necessary conditions given i n  Ref. 23 arc 

Several numcrical methods have k e n  used t o  obtain solutions 

t o  S \ X .  

methods and hard constraint methods. 

term related t o  the constraint violation is added t o  the performancc 

index. 

minimum value which i n  a l imiting sensc should drivc the constraint 

violation t o  zero. l i e  penalty function technique has becn useu i n  

connection with the gradient mctliod 9 l8 9 2o , 36 9 37 and quas il inear izat  ion. 

?he di rcc t  methods attempt t o  incorporate tfic constraint d i rec t ly  into 

the pro1)lem. 

used with tlie gradient method 6 ,23 ,38  and perturbation method 

Comparison of pcnalty function tcclmiques and hard Constraint methods 

using 3 gradient method indicacce that  bc t te r  convcrgencc character is t ics  

are obtaincd using tlie hard Constraint method. 

These metliods can gencrally bc divided into penalty function 

In the first case, a penalty 

Then an attempt is madc t o  drive thc performancc index t o  its 

25 

.I l imiting proccss is not required. This mcthod has been 
41,40 

6 

An a l tc rna tc  approach t o  thc numerical solution of optimal 

t ra jec tor ies  which sa t i s fy  SVIC is  prescntcd by lle uses 
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a transformation tcchmique Ixsec1 on early work by ~ ~ a l c n t i n c "  t o  trans- 

form the SVIC into a singular arc  problem. The singular arc problem is 

solved by a conjugate gradicnt method o r  some other method which will 

kindle this type of problem. Jacobson39 also has presented a penalty 

function method t o  solve the singular arc problem. 

the penalty function solution of thc singular arc  problem o r  the d i rec t  

penalty function solution of thc .TIC is  bc t te r ,  is not answered. 

The question of whether 

Another approach is tha t  used by S p e ~ e r . ~ ~  Some t ra jec tor ies  

containing WIC arc  separable. 

tory not on the constraint boundary may be solved independently and 

pieced together with the par t  on the boundary. Nith t h i s  approach, 

any method may be used t o  ohtain thc segments off of the boundary. 

Iiowever not a l l  problems arc separable. 

This implies tha t  par t s  of the trajec- 

To the author's knowledge attempts t o  devclop second order 

methods t o  handle s\IIC's d i rcc t ly  for  non-separable problems havc 

been limited t o  the perturbation method or s l igh t  modifications of thc 

pcrturbat ion method. 

thc neccssary conditions obtained i:i Ilef. 5. They kecp the f u l l  set 

of n Lagrange multiplicrs ?lon_s the constraint boundary and assume 

that jumps i n  the multipliers occur a t  the t i m e  Acn  the t ra jectory 

gocs on the constraint .  

c l~arac tc r i s t ics  for  the problcins considcred, however, both references 

consider only very simplc examples. 

Both of tlic mcthods referenccd earlier apply 

Both methods seem t o  cxhibit  good convergence 

An al ternate  mcthod of calculating optimal t ra jec tor ies  vith 

S ' IC based on nccessary conditions shown in Ref. 23  and the pcrturbation 
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method will be derivcd i n  the nclit section. 'lhis mcthod rcduccs the 

statc space ,and hencc thc number of multipliers w l l i l c  thc  t ra jectory 

is on a constraint. 

timc , as  i n  the prcviois two methods : ?loweve..-, tuihnown m u 1  t i p l i e r s  do 

appear a t  thc ex i t  boundary. 

presented herc have appeared prcviously i n  the l i t e ra ture .  

cat  ion c,, thc perturbation mcthod t o  calculate optimal constrained 

t ra jector ies  is new. 

'lhcrc arc no j u m p  i n  multipliers a t  the cntry 

'Ihe nccessap. .r.wditions for  an cxtremal 

'Ihc mdifi- 

I t  has not appesrcd in  thc l i t e r a tu re  before. 

4 . 2  ?kcessar)r Conditions for  S\'IC 

'17x nccessary conditions for  SYTC describcd helow arc derived 

in  Ilcf. 23.  .I sumnary of the ncccssary conditions is presented for 

tlic sakc of complcteness and t o  f m i l a r i z e  the reader with the nota- 

t i m  t o  l~ used i n  the remaindcr of the disscrtation. 'I'hcse conditions 

are  dcrivccl by dividing the optimization problcni into scgments on tlic 

boundary and sc<gments off  thc botuidary. 

sc,pcnts on tiic boundary implyin3 a reduction i n  the nmbcr of multi- 

pliers rcquired. 

conditions ohtained by requiring that  tlic f i r s t  variation vanish. 

k l y  one boundary scgmcnt is considered sincc neccssary conditions 

for  a l l  imndary arcs zre identical  t o  those obtained lielow. 

problcm statement is as follows : 

The state space is reduccd for  

lhcn the se!pcnts arc t i e d  top,cthcr through corncr 

Tie 

iktcrminc tlic control variahlc u( t )  over tlic interval  

to - -  < t < tf t o  extrcmizc 

1 = j . Q(x,t)dt + C(Xf,tf)  
. f  

(4.1) 
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subject t o  x = f ( x , u , t )  , ! l (xf , t f )  = 0 , x(to)  = xos , and 

S(x, t )  2 0. 

except S is given in Scction (1.1). 'nie constraint  S is a scalar  

function of the s t a t c s  ,and possible time and its value is requircd t o  

be less  than or  equal t o  zcro a l l  along the t ra jectory.  

The i n i t i a l  timc is fixcd. Tlic def ini t ion of a l l  t c n s  

Following acccpted notation, a p-th ordcr constraint  is dc- 

fined as onc i n  which 

a $S 

au 2 - [ .] = 0 , k = 1, ..., p-1 

and 

lkf ine 

(4 .3)  

k 
and y is a p vcctor. l i e  vcctor y is a function 2 wlierc S = 

~~ 

only of x and possibly t .  Notc that in  order for S t o  be zero a l l  

along a boundary se;pcnt, it is required tha t  y = 0 a l l  along the 

boundary scgment.  so the control must bc detcrmincd from SP = o to 

force the trajectory t o  remain on thc boundary. 

variables required to  describe the trajectory along a lio~mdsry arc  is  

rcduced from n t o  (n-p> . Choosc (n-p) s t a t c s ,  Z ,  t o  describe the 

'Gius thc number of 

trajectory along the constraint .  In gcncral, thc Z's w i l l  bc chosen 

as (n-p) of the oriEinal s t a t e s ,  x ,  which arc not affcctcd by the 

constraint .  'flius 
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Z -  

and the Z's are chosen such tha t  

(4.4) 

The l a s t  condition allows x t o  be determined as a function of y 

and Z. 

The optimization problem can then be divided into arcs on the 

boundary and arcs off the boundary. 

determined from the conditions 

On the boundary the state is 

i = g(Z,t) , y = 0 (4,6) 

where g(Z,t) is the (n-p) vector of dcrivatives of the Z variables 

along the constrail;; 0 .  ~ j%ry .  The control is  eliminated from the Z 

cquations by using S'  = 0. 

A t  t h i s  point it is assumed tha t  an optimal t ra jectory exists 

tha t  e i ther  touches the boundary a t  one or  more points or  has one o r  

more intervals of f i n i t e  length along the boundary. 

t ions for an optimal trajectory of t h i s  type are then derived. 

an attempt is made t o  determine a solution which sa t i s f i e s  triese necessary 

Nccessary condi- 

Then 
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conditions. 

only one segment on the SVIC boundary will be considerec4. 

In order to derive necessary conditions for thc problcm, 

Necessary 

conditions obtained, however, apply to any number of segments. 'ke 

augmented performance index is written as 

tf 
+ It; ( I 1  - ATi)dt + P 

(4.11 

T where G = p g + Q(Z) and u is a (n-p) vector of multipliers asso- 

ciated with rhe Z's. Thc segment on the boundary is from tl to tZ. 

The time ti 

ti is thc time just after the entry boundary time. The the ti is 

the time just prior to the exit boundary time and t; is the time 

just after the exit boundary time. The fiyst variation of I is 

is the time just p-ior to the entry boundary time and 

required L I vanish. Thus 

6 1  = 0 = (ti - .A 1'. x ) /  At; - A T 6x1 
- 
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T - [ ( I t  - ATi)l .L At; - A 6x1 + 1 
'2 

+ (llx + iT)6x]dt 

The necessary conditions for m extrema1 with a boundary 

segment are thus : 

,,i: the initial time, 

t = 0 , x(to) = xos . 

I?t the final timc, 

T 
bI = 0 , A ( t , )  = P , I I  + Pt = 0 . 

Xf f 

On unconstrained arcs, 

, llu = 0 . 1; = I I ,  , i = - t l x  T 

(4 ,it) 

(4.10) 

(4.111 
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On constrained arcs, 

2 = G  T ; = - c 2  T , y o  , s p = o  (4.12) L I '  

A t  each jmc t ion  point, 

11 - G + X T (Myt + NZt) = 0 , vT - lTN = 0 

(4.13) 
y = 0 , z = Z(x,t) 

where the matrices hl and N are  def iwd as 

( 4 . 1 4 )  

M is an n x p matrix and N is an n x (n-p) matrix. 

A l l  of the conditiors are eas i ly  var i f ied from Eq. (4.8) except 

the boundary conditions. These w i l l  be derived a t  tl to show t h e  

procedure required. Since 

Ax = bx + i A t  , A2 = 6Z + i a t  

a t  the boundary, the terms a t  :1 ray be writ ten as 

(4.13) 

(4.16) 

?he AZ's are independent, however the AX'S are not since from con- 

tinuity of x ' s  across tl they are  rc la ted through y = 0. To first: 

order then 
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(4.17) 

and from Lq. (4.5) this can bc solved for Ax as 

(4.18) 

At tl, or any comer, Ay = 0, and thc terms involving tl become 

+ 
;jt?.crr? for continuous t, it is required that At; = Atl . The boundary 
conditions follow directly from the above expression. 

boundary is entered the multipliers IJ are uniquely deternined from 

F4. (4.13). As the boundary is left, p of the A ' S  cannot be determined 

directly from the boundary conditions. 

unconstrained optimal trajcctoq is characterized as a TPBVP. 

necessary conditions for an optimal trajectory with a SVIC are lodated 

as a multi-point boundary value problcm. 

W F  to include these additional conditions are considered in the next 

Note th.t as a 

In Chapter 2, thc solution to an 

Ikre 

Fbdifications to the standard 

section. 

4.3 App lication of Perturbntion Yethod to .WIG 

A perturbation method will now be derived to solve thc inter- 

mediate boundary value problem described by Fqs. (4.9) through (4.13). 

Again this will be derived for only one SVIC boundary segment. The 

cxtension to more than one segment is straight forward. 

Corresponding to t h e  standard MPF method, unknown multipliers 
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and unhuwn boundary times will be guessed. At the boundary exit, 

either p of the x's or all of the X ' S  may be guessed. If all 

the A's are guessed the equation relating X's and u's  may k 

considcrcd as boundary conditions to be satisfied by the iteration 

procedure. The latter procedure will be followed here. The initial 

mltiplicrs, multipliers at the boundary exit, the boundary ertry 

time, boundary exit tine, and final time will all be guessed. A 

nominal trajectory is produced by integrating the i and cqua- 

tions from to to tl using specificd values for xo and guessed 

values for io. At tl, Z and u arc determined from Z = Z(x,t) 

and UT = x N. The equations for i and 1; are integrated from T 

tl to t2. At t,, x is determined from Z = Z(x,t) and y = 0. 

'Ihe values of A at t, are gucssed and the >i and equations 

arc integrated from t2 to tf. Corrections to thc. guessed variables, 

ao, X t 7 ,  tl, t2, and tf are calculated to drive all the unsatisfied 

boundary conditions to zero. These corrections to the variables are 

related to desired changes in the unsatisfied boundary conditions using 

h 

- 

linear perturbation theory. Th\\ mcthod is then iterated until con- 

vergence or divergence occurs. Boundary conditions which will not be 

satisfied by the nominal are given belo\(. 

At thc boundary entry timc, Z = Z(x,t) determines Z and 
T uT = ), N determines p .  Unsatisfied boundary conditions (p+l), for 

the nominal trajectory are 

(4.20) 
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At the exit time, Z = Z(x,t) and y(x,t) = 0 determine x at 

t2. This leaves (n-p+1) unsatisfied boundary conditions 

At the final time, the usual boundary conditions (n+l) obtained 

in Section (2.1) are still applicable and are expressed as 

hf = 0 (4.22) 

Tlic vector hf consists of the same conditions defined by Eq. (2.10). 

This givcs (2n+3) boundary conditions and (2n+3) unknowns which are 

l(to), x(t,), tl, t2, and tf. Corrections in these quantities are 

now 

and 

related to desired changes in boundary conditions. Define 

v = [--- z 1  (4.23) X z = [-,-I , 
U 

from linear perturbat ions 

6tl = O(1,0)6zo , 6vz = $(2,1)6vl , bZf = O(f,2)6z2 

(4.24) 

where (o(:,O) and ( o ( f , Z )  are 2n x 2n matriccs and 0(2,1) is a 

Z(n-p) x 2(n-p) matrix. Here (o(a,b) dcnotes the solution of the 

appropriatc set of perturbation equations, Eqs. (2.14), which have 

hccn integrated f r o m  tb to ta i,*rth the initial conditions at tb 

set equal to the identity matrix. 

At the boundary tl 

i z(~,A): 

i v(2) = 1 
ju(X,h) 

(4.25) 
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t: At AV = + - av (4.26) 

The boundary conditions are now expandcd about the nominal 

and Elated to guessed quantities. For thc conditions at tl, 

or 

Using thc @ matrix 

Ahl = - ahl Q(1,o) 62, + 6, Atl 
azl 

0 Since 6zo = [ - - - I ,  only the last n columns of the (0 (1,O) matrix 

are required and 

A h l  = - ahl 02(l ,0)6Ao + lipl 
azl 

(4.27) 

(4.28) 

(4.29) 

Similarly for t2, 

ah2 + q ah2 At2 (4.30) 
ah2 - AV2 + - 

Ah2 - 3 a a 2  

wlicre the corrections to ~ ( t ~ )  

t2 since corrections to A(t,) must be calculated. 

arc separated from other tern at 

Since hv2 = 6v2 + v2At2 and 6vz = @(2,1)6vl then 
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ah2 ah2 . 
AA + (- + - V Z ) A t z  2 a t 2  av, 

"2 @ ( 2 , 1 ) 6 V 1  + - 
a A 2  4. 

(4.31) 

A I 1  + - avl 
azl 

Again 6vl = AV1 - VIAtl  and AV1 = - 

(4.32) 

ah2 ah2  

a t 2  aV2 
+ (- + - c2)At2 

Note that  to ta l  changes, A A 2 ,  are  calculated for the multipliers 

a t  t2. Changes i n  h2 arc l incar ly  related t o  &i..iges in  X(to) , 

q, tl, and t 2 '  

For the f inal  time, 

f f  
- ahf A h f  - azf 6Zf  + h A t  

where >l(f ,2) and T2(f ,2)  are (n+l) x n matrices. Then 

(4.33) 



Again using EQ. (4.18) 

Definc i2 such that 

73 

(4.35) 

(4.36) 

Rz is an n x Z(n-p) matrix. Then 

- - [Tl(f,2)i2 + T2(f,2)i2 - Q1(f,2)(FT2V2 (4.37) 

+ Myt + NZt)]bt2 + h@tf 

- (4.38) 
-G1(f ,2) i2  + T2(f,2)i2 - Ql(f,2)GC2 

The three vector equations, Eqs. (4.29), (4.32), and (4.38) 

must be solved simultaneously, for the corrections to the guessed 

quantities. These corrections are added to the guessed variables 

and the procedure continues itera::ing until a l l  of the 11's 

zero. 

are 
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The entire fundamental matrix must be integrated from tl to 

t2 and from t2 to tf. Thus more integration is required for con- 

strained trajectories. 

The major disadvantage of this method is the neccssity of 

guessing the number of boundary arcs and their approximate location. 

For many problems, however, unconstrained optimal trajectories may 

be obtained. Thesc unconstrained trajectories provide insight into 

the location of boundary scgments. They also provide reasonable 

estimates for boundary entry and exit times. 

mation about the location of boundary arcs is available, the convergence 

characxristics of the method, presented in the remainder of this investi- 

gation, indicate that it is a feasible method for attacking SVIC's. 

If some apriori infor- 

4.4 Fxample Problem (Constrained Rrachistodironc) 

lhe example problem chosen to illustrate the algorithm is the 

cons trained Rrachistochrone problem. 

it has been considered by several other authors and hence numerical 

This problem is chosen because 

rcsults can be compared. 

problcm or a slight variation of it are Refs. 5, 25, 41,  38. 

presents an analytical solution. 

follows : 

Other papers that have considered this 

Ref. 5 

"he statement of the problem is as 

Minimize 

I = tf - to 

sub j ect tG 

il = x y  cos u 

i, = sin u 

(4.39) 

(4.40) 
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and inequality constraint 

s = x2 - x1 tan c1 - c2 L 0 

where C1 and C2 are constants. 

This is a first order constraint since 

(4.41) 

(4.42) 

(4.43) i = x;”[sin u - cos u tan cll 

and thus on thc constraint boundary u = C1. 

Define 

y = s = x2 - x1 tan c1 - c2 (4.44) 

and choosc Z = x2 as the state variable on the boundary. Note that 

which is not zero for C1 # 0. 

is then 

The sta-.: equation on the boundary 

(4.451 

i = z ~ ’ ~  sin c1 (4.46) 
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'ffic Ilamiltonian off the boundary is 

(4.47) 

and the conditions 'Iu = 0 and lluu 2 determine thc optimal choicc 

of the control variable as 

(4.48) - 5 , cos u = - 5 
1/2 ( A ;  + +l'z 0; + A;) 

sin u = 

On thc boundary thc llamiltonian is 

c = p[zl" sin cll (4.49) 

Neccssary conditions for a minim1 trajectory are given below. 

At to the selected initial conditions are 

= 0.1 

2 xl(to) = [C3to - 1/2 sin(2C3t,)]/4C3 (4.50) 

x (t = sin 2 (C3to)/4C3 2 2 0  

where C3 is a co! -:ant. On the unconstrained arc 

(4.51) 
i, = 0 

1 i, = - 'Tn [ A ~  cos u + sin u] 
(x2 1 
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whcre s i n  u and cos u are defined in  t e r n  of x1 and x2 by Eq. 

(4.48). On the  constrained arc 

i = z1l2 s i n  c1 

A t  the f ina l  time 

X1(tf) - 1 = 0 

(4.52) 

(4.53) 

Il(tf) + 1 = 0 

A t  i n t e m d i a t e  boundaries 

y = x2 - x1 tan c1 - c2 = 0 
(4.54) 

z - x 2 = o  

The problem now is t o  generate a nominal t ra jectory and use the  

modified perturbation method developed i n  the previous section t o  i t e r a t e  

toward a trajectory which sa t i s f i e s  a l l  of the conditions l i s t e d  above. 

Before t h i s  is done, the boundary conditions are a l tered s l ight ly .  Since 

Eqs. (4.40) and (4.46) do not contain t expl ic i t ly ,  both I1 and C 

are constant. Then the first of Eqs. (4.54) may be used t o  show that 
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requiring ll(to) + 1 = 0 is equivalent t o  requiring l l( tf)  + 1 = 0. 

This boundary condition w i l l  be applied a t  to below. Also, the con- 

d i t ion  t I  = G a t  intermediate boundaries requires tha t  the control 

be continuous a t  these boundaries. Thus requiring tha t  x1 tan C1- x 2  = 0 

is equivalent t o  requiring tha t  the Hamiltonian be continuous. The 

condition w i l l  be applied i n  t h i s  manner. 

In order t o  generate a nominal t ra jectory,  one boundary segment 

is assumed. r.esses are made fo r  X(to), X(t2), tl, t2,  and tf. (7 

variables). Eqs. (4.51) can then be integrated from to t o  tl. A t  

tl, 2 and u are determined from the last twc equations of Eqs. (4.54). 

Eqs. (4.52) are  integrated from tl t o  t2. A t  t2, x( t2)  is detennined 

from the second and fourth equations of Eq. (4.54). Using t h i s  and the 

guess for  ~ ( t ~ ) ,  Eqs. (4.51) a re  integrated from t2 t o  tf. The 

boundary conditions not s a t i s f i ed  by t h i s  nominal are 

ho = II(to) + 1 = 0 

hl = 

h2 = 

x2 - x1 tan c1 - c, 

XI tan c1 - A2 
= o  i 

(4.55) 

(4.56) 

(4.57) 

J [ A 1  tan c1 - "2 

and 

hf = (4.58) 
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The modified perturbation method dcrivcd in  thc previous chapter 

is used to  r c l a t e  the changes 6Xl(to), 6X2(to), AXl(t2), AX2(t2J, A t l ,  

fit2, and A t f  t o  desired changes i n  the boundary conditions. The coef- 

f ic ients  nf the l inear  perturbation equations md derivatives of the 

h’s are  shown i n  Appendix C. 

The VSI with an error  bound of and lo-’’ is used fo r  the 

integration. A 30% correction scheme based on the nom cf a l l  the 

multipliers is used during the i teratior. .  

The i f i i t i a l  nominal values of the multipliers and times are  

shown in  Table 5 along with the converged valces. This t ra jectory 

is calculated fo r  C1 = arc  s i n  [1/(5) 1, C2 = 0.2,  and 

C3 = 1/4[1.0(C1 + 2 - $)]”’. (Case 1) and a l so  for  C2 = 0.1 .Zase 2) .  

Starting with the nominal shown i n  Table 5, f ive  i terat ions are  required 

t o  converge Case 1. Starting with the converged values for  Case 1, fwr 

i terat ions are  required t o  converge Cas. 2. Convergence implies that  

the square root of the sum of the squares of a l l  h’s is less than lo-’. 
Each i te ra t ion ,  including the integraticn of the nonlinear equations, 

a l l  perturbation equations, and solving the linear system required 1.9 

seconds of computcr time. These resul ts  agree with t?iose presented in  

Ref. 41 t o  a t  l ea s t  seven d ig i t s .  

ctnverged t ra jector ies  are shown i n  Fig.  10. 

1,’ 2 

Plots of the s t a t e  variables for  the 

This example shows that the method does converge and tha t  con- 

vergence near an optimal is qui te  rapid. 
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Variablc Xominal CA!!I: 1 C4SE 2 

1 (to) - 1.5 - 1.49403214 - 2.11215421 

A 2 (to) -20.0 -13.9627889 - 19.906769 

(t,) - 1.0 - 1.3265554 - 1.43284396 

(t21 -10.0 -0.663276291 - 0.71642038 

1.45 1.4820961 1.0477710 

1.9 1.82OlOG2 1.9465189 t2 

2.52 2.5191296 2 ~936887 

Case 1: Cz = 0.2 

Case 2: C, = 0.1 
h 

TABLE 5. Nominal and Converged !.hl tipliers for Constrained Bradiistochrone 
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FIG. 10. State Variables for Optimal Constrained Brachislmhrone 



5.1 Thcoret icnl Ikvelopmcnt 

"lie numerical method developed in the previous chapter to 

solve optimal control problems with S1'IC will now be applied to the 

reentry problem. 

segment to be less than or equal to some specified maximum altitude. 

The SVIC will require the altitude over the skip 

As mentioned earlier, both altitude and acceleration constraints 

sl~ould be considered for the reentry problem since both low peak 

accelerations and reentry trajcctorics which remain in the sensible 

atmosphere are desired. Ref. 18 shows that an altitude .%IC has the 

effect of accomplishing both of these gcjals. 

the following study. 

IIence it is chosen for 

The SVIC is thus 

S(x,t)  = r - rJ 2 0 (5.1) 

where rd denotes a specified altitude. Since the initial altitutde 

r 

reentry altitude becomes less than or  equal to the constraint altitude. 

This is a second order constraint as seen from taking derivatives of 

S.  

will be larger tLi rd, the constraint applies ocly after the 
0 

i = f i = ~ s i n  Y = o 

implying y = 0 .  Also 

(5 2) 

S = ii = \j sin Y + (V cos Y ) ?  = o (5.3) 

82 
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implying + = 0 ,  o r  

'Ihc 

n c g a t i ~ e  valucs of (o are  considcrcd. I t  would seem rcasonablc t o  

lus sign has been chosen for  s i n  B since for t h i s  study, only 

have the vehicle r o l l  i n  the direction of t i c  dcsircd tcnninal value 

of 4, which i n  t h i s  case implies t ha t  s i n  6 should be positive. 

On the a l t i tude  constraint ,  the  2 variables a rc  chosen as 

8, $, V, and $. This is thc natural  choice for the Z variables 

sincc t h i s  choice gives a one t o  one correspondence between the 

vcctor and 4 variables i n  the A vector as will be shimm later. 

I.I 

~ ~ i c  equations for i are  thus 

and the y equations arc 



y1 = r - rd = 0 , y 2 = y = O  

The IIamiltonian on the constraint is defined as 

vc* tan - 1/ZS*CLPdVSf3] 
+ v,[- 

'd 
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(5.6) 

(5 7) 

The equations for ;1 are 

i ,  = 0 

- 2c2v - 3c3v 2 
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(5.9) 

and pd is thc dcnsity at the spccified altitude. Tlic variational 

cquations for tlic boundary se.gwnt are shown in Appcndix 1). 

Yonditions at entcring and exiting timcs rcquire continuity of the 

states and also 

Boundary 

(5.10) 

A nominal trajectory must now bc procluccd. Again one boundary 

arc is assumed. The first four conditions of 1:q. (5.10) can be satis- 

fied on every integration. At tl tlie final valucs of a are used 

as the initial values of U. A t  t,, final values of u are used as 

initial valucs for f9ur of the A ' S .  Thus only two of the A variables 

must be guessed at t2. Also, at t2: the integration of thc x equa- 

tions is begun with r = rd and y = 0. IIencc the only intemdiatc 

boundary coxlitions which cannot be satisfied on every iteration arc: 

L 

at tl , G = l l  , r-r,=O , y = O  , (5.11) 

at t, , G = I I  . (5.12) 
Ir 

Ilr.ho\ms associated w i t . h  tile problem includc tlic initial values 

of (6 variablcs), and x at t2 ( 2  variables) , and the timcs 

tl, t2, and tf. Thus thcre are 11 unknowns. Boundary conditions con- 

sist of thc 7 original terminal conditions for tlie unconstrained piblcm 

Y 
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and the four conditions shown above, or a total of clcvm lxiundary con- 

ditions. The nmber of boundary conditions is thus cqual t o  the number 

of unknowns and a wcll posed problem cxists. 

Again for numerical rcsults, conditions on the lhniltonian arc 

The Ibrniltonian is required to be zero 

The continuous Hamiltonian at both boundary 

applied in a different manner 

initially, i.e. 

times requires that the control be continuous at the boundaries. This 

condition may be expre.=wi as 

tl(to) = 0 ,  

] L u  A’ + A 3 + Y = 0 (5.13) 

All necessary conditions on the llamiltonian will be satisfied 

if these three conditions are satisfied. 

of boundary conditions and derivatives of the boundary conditions. 

Scc Appendix li for a sumunary 

For this problem, all the multipliers at the exit time are not 

guessed. In order to decrease the dimensionality of the linear system 

to be solved, only the two multipliers A= and A and guessed. The 

theory developed in the previous chapter must be altered slightly to 
Y 

include this change, The effects of AAr(t2) and AA (5) are 
Y 

separated out and changes in the other A ’ S  at t2 are propagated in 

the same manner as in the previous chaptcr. If the two vector 

(5.14) 

is defined then the linear equations for h with yt and Zt equal 
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0 0 0 0 '  

1 0 0 0  I 

0 0 1 0 '  
0 0 0 1 '  

0 1 0 0 ,  l o  

- - - - - - , - . - - - - 
' 0 0 0 0  
~ 1 0 0 0  
1 0 1 0 0  

1 , -  
I 

I 

0 
: 0 0 1 0  

; 0 0 0 0  
L ' 0 0 0 1  2 

t o  zero Imome 

ahO 
axo 6xo Aho = - 

Ahl = - ahl @2(1,0)6Ao + hlAtl 
azl 

(5.15) 

(5.16) 

ah, ah, av, -L L 1 Ah2 = - @ (2  ,l) (-)Q2 (1 ,O) 6Ao 
a AU azl 

(5.17) 

2 2  
ah2 
av2 

il - i l ] A t l  + - i f  At ah2 avl 
+ - @(2,1)[- 

Ahf = @(f,2)AAu + y(f,2)0(2,1) - avl O2(1,O)6A 
azl 0 

- 

av1 . 
azl 

+ T(f,2)@(2,1)[- tl - ;,]Atl (5.18) 

where 

and 

- 
B1 - 



B1 is a 12 x 8 matrix, and c(f,2) is a G x 8 matrix. Also 

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

1 0  
0 0  
u o  
0 0  
0 1  

L o  0 

ahf 

azf  
4(f,2) t - 4(f,2)B2 - 

where 

B2 = 

B2 is a 12 x 2 

Thus I( 
matrix and - 9 ( f , 2 )  isa 6 X 

2) separates out t.-e coeff c 

(5.20) 

2 matrix. 

ents for  AX^ ant 
- 
4(f,2) includes the other terms after realizing that Ar2 and A Y ~  

are zero. 

ment. 

All other terms correspond directly to the previous develop- 

5.2 Numerical Iksults 

The same numerical values for the initial conditions and 

terminal conditions used in Chapter 3 will be used for the constrained 

trajectory. The terminal conditions are efs = 0.33  radians, $fs = -0.025 

radians, and Vfs = 0.5 miles/sec. 



'he initial multiplicrs for thc unconstrained trajectory will 

be uscd as initial multiplicrs for the iteration procedure here. These 

values, gucsses for the unknown vector , and gucsses for tl, t p  

and tf arc shown in Table 0 .  'I'he constraint altitudc choscn is 

= 3995.0 miles. rd 
Approximately 32 scconds is required for each iteration of the 

constrained reentry trajectory. A plot of the terminal norm vs. the 

number of iterations is shown in Fig. 11. 

iterations to convcrge. 

in Table 7. 

rate are shown in Figs. 12, 13, and 14. 

The method requires 104 

Thc norm for the last 10 iterations is shown 

Plots of the states, control, acceleration, and heating 

The modified bIPF does very well for thc first few iterations 

and then the norm begins to decrease very slowly for a considcrable 

number of iterations. 

of most of the variablcs oscillate back and forth from plus to minus. 

Elcments of the linear system produced by the transition matrices 

change only in about the third or fourth digits. 'flie flight path 

angle a t  tf over this intcrval is near -60". It is changing very 

rapidly near the end of the trajcctory and i f  thc cquations are in- 

tegrated for a few more sconds past the nominal final time, it quickly 

approaches -90". 

accurate integration near this singularity is very difficult. 

itcration continues for about 70 iterations slowly incrcasing 

After the flight path angle is changcd t o  -35' the method begins to 

converge very rapidly again 

Over this intcrval thc signs on the corrcctions 

A singularity exists in the equations at -90' and 

Thc 

Y .  
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Variable Nominal Value Converged Ira lue 

0 
'r 1 .  ?65881:-3 -1.2772884E-2 

x .9.181666 -7.40988123 

x 26.5966 3.3857227 
40 

2.35619 3.1522105!? 

x 13.8271'3 -1.20936003 

8.84954 9.03840795E-1 

x 1.m-2 5.33051908E-3 
r2 

x -1.OE-1 
y2 

-6.163146471'-1 

~ 

70.0  85.0966654 

150 .c 184.938154 t 2  

tf 320.0 3~33.410668 

Terminal Conditions: efs = 0 . 3 3  rads, qfs = -0.025 rads, 

Vfs = 0.S milcs/scc. 

Altitude Constraint: rd = 3995.0 miles 

TABLE 6. Nominal and Convcrgcd Multipliers for Constraincd Reentry 
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FIG. 11. Terminal Nxm vs. Number of Iterations for Constrained Reentry 
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T 1/2 Iteration Terminal Nom (h h) 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

1.3286 

1.1601 

8. W62E-1 

6.4966E-1 

4.0133E-1 

1 .!603E-1 

1.264r)E-2 

1.3522E-4 

1.854E-6 

7.83151;-10 

TABLE 7 .  Terminal Norm for Last Ten Iterations of Constrained Reentry 
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plus t o  

scgmnt 

Another problem is that  largc corrections osci l la t ing from 

minus arc calculated for  t2. 

is calculated from Fq. ( 5 . 4 ) .  

Thc control along the boundary 

If the time calculated for  t2 
is suff ic ient ly  large, the vclocity along the boundary becomes small 

enough t o  make the  absolute value of cos B greater than one. 

indicates t i n t  the vehicle cannot f l y  a t  a specified a l t i tude  for  an 

i n f in i t e  time interval.  If the value of t2 is larger than the 

mrtvimum time interval tha t  the vehicle can remain on the boundary 

then s i n  6 becomes imaginary. 

This 

c;)r the i terat ions above, the  nominal value of t2 approaches 

From this point on, i f  large pasi t ive . I .  . 1 -  after 30 i terat ions.  

I A x t i o n s  are accepted for t2 an imaginary vaiue of sin 8 is 

obtained. Thus even though corrections t o  t2 are osc i l la t ing  frcnn 

plus t o  minus, allowing f a i r l y  large corrections (7 .O seconds) resu l t s  

i n  nominal t ra jec tor ies  whim require imaginary control. 

small corrections for  t2 and hence the rest of thc correction vector 

slows down the convergence process and is pa r t i a l ly  responsible for  

the large number of i t e ra t ions  required f c r  convergcncc. 

Requiring 

These two problems also e f fec t  convergence for  other near by 

optimal t ra jector ies .  

rapidly and approach -goo, i t e ra t ion  problems are  encountered. I t  is 

believcd tha t  integration accuracy and hence convergence characteris-  

t i c s  would be improved by regularizing the nonlinear reentry Eqs. (3.1). 

This could be accompli 

in  liq. (2 .30)  and t -  ,isforming tlle independent variakle from t t o  T 

as doric i n  Scctiorr ( 3 . 3 ) .  t2 

When the f l igh t  path angle bcgins t o  change 

-d by using the transformation R(x) = cos ' I  

tmly the  segment of thc  t ra jectory from 
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t o  

which approacP,es thc s ingular i ty  . 
tf would need t o  be rcgularizcd since this is thc only sc.gnent 

Since the performance index is the integral  of the accelcra- 

t ion ~ n d  heating r a t c ,  the terminal phase of thc t ra jcctory (near 

-911") docs not substantially change its value. 

and heating r a t e  are  suf f ic ien t ly  small by t h i s  time, that  vcry l i t t l e  

is added t o  tlic perfomvice index when the  tcrmina1 phase of the 

Ibth the acceleration 

t ra jectory is approached. 

Since the en t i r e  t rans i t ion  matrix is iritcgrated from tl t o  

t2 ar,d from t2 t o  t f ,  it may be inverted a t  t2 and tf as a 

check on the in s t ab i l i t y  of tile perturhation equations. This is done 

for  several t ra jec tor ies  during the previous i t e r a t ion  and each t ime  

both matrices are f u l l  rank. 

both segnents. 

Posit ive real eisenvalues exist over 

The intervals  arc suff ic ient ly  short  that  the unstable 

nature of the equations has not caused the matrices to  become 

singular. 

From Figs. 5 and 1 4  it is seen tha t  the a l t i t ude  constraint  

does decrease the acceleration peaks. The maximum accelerstion is 

8 . 3  g's for  the constrained t r r jcLtor ies .  

strained t ra jec tor ies  i s  greater than tha t  for  the unconstrained 

t ra jec tor ies .  

the t o t a l  heat absorbed for t h i s  t ra jectory is 56233.11 IW/ft .  

lhc heatiI!g for +he con- 

3 
The maximum heating rate is 661 RTU/ft.'-sec., and 

2 

Trajectories obtained with the a l t i tude  SVIC rcpresent r ea l i s -  

t i c  reentry t ra jec tor ies .  llic m a x i m u m  acceleration pcak is suf f ic ien t ly  

m a i l ,  and ovcr most of the t ra jectory,  the acceleration i c  t w ~  or  three 
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g's .  

Nost of the t ra jectory is in  the sensible atmosphere allowing reason- 

able control of the vehicle throughout the trajectory.  

'I'he heating is suff'icie1:tly small fa r  present heat shields .  

The method used t o  gcnernte solutions t o  problems with S I C  

i n  t h i s  report can produce solutions which violate  the constraint .  I f  

the values of the tenninal conditions are not consistent with the 

inequality constraint ,  t ra jec tor ies  which remain on the constraint  fo r  

a short  s e p i n t ,  and then v io la te  the constraint ,  IC:\; be produced. For 

instance, the a l t i t ude  constraint limits the range capabi l i t i es  of the 

vehicle. I f  values of efs and $fs are specified which cannot be 

reached i f  the vehicle remains bclow the a l t i tude  constraint ,  the  

method w i l l  converge t o  a t ra jectory with a short  segment on the 

boundary. 

vector upward and penetrate the constraint in  order t o  sa t i s fy  the 

boundary conditions. 

solution obtained does give the riser a t ra jec tory  w i t n ,  i n  general, 

;I small constraint 1:iolation. 

usually be apparent t ha t  the terminal conditions and constraint  are 

inconsistent. 

variablcs t o  be used for a consistent set of conditions. 

After the boundary segment, the vehicle will r o l l  the l i f t  

The method does converge, however, and the  

From observing the t ra jec tory  it will 

The converged t ra jectory gives good estimates of 

In order t c  check thc a b i l i t y  of the new method t o  converge 

is changed t o  3'395.3 miles and 

The corivergcd iralues shom i n  Table 

t o  near by optimal t ra jec tor ies ,  rd 

is changed t o  0 .34  radi,ms. efs 
6 are  used 3s i n i t i a l  guesses €or the unknown variables. 

produced a f t e r  the th i rd  i t c r a t  ion intcgratcs through the s ingular i ty  

The t ra jectory 



(Y = -!No) near the cnd of the trajectory.  'Ilie mcthod divergcs a t  

t h i s  point. If tlie cciivcrged vnlucs shown i n  'l'ablc 0 ;ire used arid 

the f ina l  timc, t f ,  is clianged t o  300.0 sec. , tlic mctliotl converges 

t o  the new optimal i n  1 7  ita tioris. Changing tiic gucss for tf 

from 383.4 sec. t o  360.0 sec. a1lov.s the mctliod t o  i t e r a t e  withnut 

encountering the singularity.  

can be  produced w i t h  a re la t ivcly fm number of i terat ions i f  the 

singularity is avoitlcd. 

lhus near by optimal t ra jec tor ies  

Plots of tlie a l t i tude ,  control,  ad accclcrntion for  tlic 

Apollo 10 trajectory are sli~wri in  Rcf. 48. 

with the same plots  for the optimal constraiiccl trajectory computcd 

with rd = 3995.3 miles, of. = 0.34 radians, Q~~ = -0.025 radians, 

'and Lrfs = 0.5 miles/sec. i n  Figs. 1 5 ,  16, m d  1 7 ,  

tories are quite similar. 

vehicle rolls both t o  the r ight  and t o  the l e f t  i n  ;in attempt t o  

land in  approximately the same plane as thc onc it is in  when it begins 

t o  reentcr the atmosphere. 

only in  one direction and licnce land out of tlic i n i t i a l  f l i gh t  pl'me, 

i. t h i s  case by -0.025 radians. 

Tlicsc graphs are compared 

The two t ra jec-  

From Fig. 16 it is seen tha t  the Apollo 

The calculated optimal t ra jec tor ies  ro l l  

The other diff2rence in tlic two t ra jector ies  i s  the short 

skip segment a t  t = 250 sec. for thc :\pollo trajectory.  (Sec Fig.  

15). This skip is rcsponsiblc Cor the small acceleration near the 

pcak of the skip ,and also [or the l i i ~ l i  accclcrat im as  the vehicle 

f l i e s  back into tlic dense atmospherc. 

Fig.  17. 

location are obtained by the modified ?.IPF i f  3 f inal  valuc of 

Tilie acccierations arc  shown in  

Trajcctories which have the small sk ip  segment in  t h i s  
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is specified which cannot be reached by the vclliclc i f  it remains Ofs 
below the al t i tude cons+vaint. 

'ffw resul ts  of t h i s  comparison show that  the clioice of thc 

perform'mce index used here and the inclusion of tlic a l t i tude  con- 

s t r a i n t  can bc used t o  gcnerate r ea l i s t i c  optimal reentry t ra jcc tor ies .  



6.1 .Sumnary 

l ie perturbation method is uscd t o  solvc 3 tlirec dimensional 

atmospheric rccntry problem. 

detemined that s t a t e  variable inequality constraints are necessary 

From the rcsul ts  of t h i s  study it is 

in order t o  produce reentry t ra jec tor ies  with acceptable maximwn 

acceleration peaks and t ra jec tor ies  whidi do not skip out of the 

sensible atmosphere. A modified perturbation method is developed to  

include %IC. The method is checked by solving a constrained 

Rrachistodironc problem. 

lem with an a l t i tude  constraint over the skip scgment of the trajectory.  

I t  is thcn isccl t o  solve thc reentry prob- 

The s t a b i l i t y  problem for  the l incar  pcrturbation equations is 

considered. 11 l inear  TPBVP is solved i n  order t o  i l l u s t r a t e  the un- 

stable  nature of some l inear  systems of Lquations. 

A regularizing transformation is used t o  improve the accuracy 

of thc numcrical integration of thc reentry equations when s ingular i t ics  

in the d i f fc ren t ia l  cquations are approached. 

6.2 Results and Conclusions 

1. The perturbation method can be uscd t o  produce accurate 

optimal t ra jec tor ies  for  the reentry problem. 

indicate that i f  a suff ic ient ly  small integration s tep  sizc is used 

Numerical cxpcriments 

the reentry equations can be integrated accurately. 

tlic perturbation method and adjoint mcthod inclicatc tha t  both methods 

A comparison of 
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produce cquivalent resu l t s  for  thc reentry problem. 

2. 

A l inear ,  unstablc TIWT is considcrcd aid bctter rcsultz are 

The perturbation mcthd can be used t o  solve an unstablc 

TPBW. 

obtained using the ‘ P F  than the Riccati transformation t o  solve t h i i  

problem. The wdi ine  word lcngth, the desire4 boundary conditions, 

the r a t io  cbf the cigcnvalues of +be X matrix, and tlic time interval  

a l l  affcct  ti1.c a b i l i t y  of the ‘BF t o  solve unstable TPRW. Without 

knowledge of tile dcsitecl solution of a l inear  system of cquations, 

t l c  advantages of forward o r  backward integration can only be 

determined by nunerical experiments. 

direction of integ-ation does not seem to nroduce be t te r  resu l t s  than 

the other d i rec t  icn. 

For the  reentry problem, one 

3. Regularization improves the accuracy obtained by numerical 

integration ncar s i n p l a r i t i e s .  In many cases, the improvement is 

suff ic ient  t o  allow the regularized variables t o  converge when the 

standard variables diverge for  the reentry problem. 

4.  A variation of the stmdarci perturbation metliod devclqxd 

t o  handle .WIG can be uscd to  gencrate accurate optimal constrained 

t ra jector ies .  

Brachistochrone problem and an a l t i tude  constrained reentry problcm. 

Thc methcd is used t o  solve both a constrained 

5 .  Placing a constraint on the skip a l t i tude  6f a reentry 

trajectory for  an .2pollo-type vehicle returning from a lunar mission 

substantially decrcascs the accelerstion pcaks. Trajectories pro- 

duccd with the constraint have acceptable heating and acceleration 

his tor ies .  

vchicle t o  bc controllcd a11 along the trajectory.  Optimal t ra jector ies  

They rcmain i n  the sensible atmosphere which allows the 
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obtained are vcxy s i n i l a r  t o  prescnt .\pollo recntry t ra jcctor ies .  

0.3  Recamncndations for  Futurc Study 

1. 3brc work needs to  be done on the s t a b i l i t y  problem for 

the 'WF. 

should be investigated as a possible mcaii of improving thc s t a b i l i t y  

"hc smoothing transformation discussed i n  Section (2.4) 

of the l inear  equations. 

offers  a solution t o  some integration problems and should be considered 

as an al ternat ive t o  the standard !PF. 

often l i s t c d  as an al ternat ive t o  the unstable linear perturbation 

mtlort is not nearly as cffect ivc for solving tlie !nstablc  example 

considcred hcrc as is thc SIPF. 

experienced by the Riccati method would seem t o  bc i n  onlcr. 

Patching solutions a t  an intermediate time 

The Riccati transformation, 

i~urthier analysis of the d i f f i c u l t i e s  

2. The reentry equations between t2 and tf for the altitude 

constraincd reentry should be regularized. 

very close t o  the singularity a t  Cmvergcnce of the method 

proposed for  sclving WIC would probably *>e -msidcrably be t te r  i f  the 

Xominal t ra jcc tor ies  are 

Y = -goo. 

singularity werc not present i n  thc equation.. 

3. Integration time for the corstrtlined t ra jec tor ies  can be 

dccrcascd by "matching" the t ra jcctory a t  an intermediate point t2. 
Presently the en t i re  Q matrix m u s t  be integrated from t2 t o  tf. 

'ff iis rcquircs Zn integrations of the perturbat ion q u a t  ions. A s  

suggestcd i n  Section (2.4), unknown variahles a t  

?lie state and pcrturbatiog cquations are t ien integrated from 

to  t2 id s t a t e s  a t  t, arc matched w i t ' i  thosc obtained by forward 

iczration from t to  t2. Then only PI-rtuirbation i n  n unknown 

t f  may bc guessed. 

tf 

L 

0 
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variables bctween tf and t2 must bc obtaincd. A 15 x 15 l inear  

system must be solved instead of an 11 x 11, but less integration is 

required. The advantage of one approach over the othcr stiould bc 

determined. 

here, but i f  an unconstrained optimal is known, reasondhle guesses 

may be available. 

advantages. 

3bre quantit ies must be guesxd in  the approach prcscnted 

Then the method proposed here may have some 

4.  The effects  of a more realistic model for  the reentry 

trajectory,  on t h e  optimal t ra jec tor ies  obtained here, should be 

dctennined. A better atmospheric model should be considered. The 

ef fec ts  of variable l i f t  and drag coeff ic ients  should be determined. 
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APP1:rui)rs A 

Yumerical values used for the reentr. problem are 

CL = 0.35 

CD = 1.3  

k = 4.2E-5 

u = 1.4076SlX 16 

S" = 1 
05) ( I .  3) 

= 0,0027 

= 1.053829E-6 

= 3960.0 *c 

?/ft. 

ft. /sec. 3 2 

2 ft. /slug 

slug/ft . 3 

1/ (slug-miles) 1/2 

miles 
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Linear perturbation equations for  reentry sa t i s fy  thc d i f -  

ferent ia l  equation ai = Abz where elemcnts of .A are  defined below. 

A1 elements of A not sham arc  zero. A. dcnotes the i t h  row and 

the jth column of the A matrix 
1.j 

= SY 
194 

A 

\'CYSJl 
= -2 3 9 1  r 

12 
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vc Y s $S f$ 
'6,G = -  



112 

VCYC$S(p vcYc9 
= 2 2 x e  -PA+ A7 , 3  r C 6  r C ( p  
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- 
%0,1 - 

- - 
"l0 ,3  

- - 
%O ,4 

- - 
%0,5 
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= 
*11,4 >’ 3,s 

7 7 7  

VSYCJI + VSYSJIS4 
‘3 JI x + -  

VSYS$ 
%1,6 = - w  e r 4  

*12,1 = ‘7,6 

- 
A12 ,4 - A10,b 

% 2 , 5  = *11,6 
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APPrnIX c 

me perturbat ion equations for the constrained Ikachistochrone 

are of the form b i  = Abz. Elements of the A matrix arc as follows: 

O f f  the boundary 

1/2 s i n  u cos u 
!2,3 = (xz) 

= 1 / 4 ( x ~ ) - ~ ' *  (xl cos 11 + x2 sin u) '4,2 

cos u 
= -- A 

4,3 
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On the boundary 

sin C, 

sin c1 
h22 =-s 

and all A's not defined arc zero. 

At to, *&e boundary condition is 

ho = [lI(to) + 11 

and 

h = O  
0 

At tl, the boundary conditions are 

["' - x1 tan c1 - C2] 
hl = 

5 x1 tan c1 - A *  
(C.G) 

'rhus 
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and 

‘rhus 

and 

[X2 - lil tan “-1 
1’ x1 tan c1 - 5 ‘ 1  tl 

At t, , b e  boundary conditions arc 

-1 

t2 

A t  tf, the hundary zonditions are 

hf I:: 

(C.9) 

(C. 10) 

(C. 11) 

(C.12) 



and 

(C.13) 

(C. 14) 



The coefficients of the linear perturbation equations for the 

constrained segment of the reentry trajectory are 

= - S*CD@ 
393 

A 
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and 

= -A. i = 1 , 4 ;  j = 1 , 4  
Ai+4 ,  j + 4  3 ,i 

2 5  cl% 
= S*CDP3iIV - S*CLPd(CB + -Tz 1 -3- 

7,3 V S B  VSB 
'2 
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APPENDIX E 

Boundary conditions for the constrained reentry problem are as 

follows : 

ThC boundary condition at to is 

Thus 

(E. 2) 

and 

The boundary conditions at tl are 

(E. 5)  

123 
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where 

')v = -2v[cz(xy 2 + a,,,) 2 1/2 - x y l  

and 

r 

(E.0) 

(E. 7) 

Boundary conditions at t2 arc 

(E.8)  

and derivatives of this function are shown above by IQs. ( E . S ) ,  ( E . G ) ,  

and (E .7 ) .  

Boundary conditions at tf are 
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(E.9) 

(E.lO) 

(E.11) 



“lie multiplier equations for the rcgulcrized reentiy equations 

are shown below: 

A;, = 0 

1 C2YCJ, C2YS* A- = - C W x r  - ,w A, - -- V r c C  

‘ ( 7  CYSY + Z P S * ~ i k Y ) X ~  
r 
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-, -2 2VCY SY CQ 
0 

A '  = a(.. Y - c Y)Ar + 
Y 

- ' 7  ' 2u V(S2, - CZY) .+ PS*CJ%Y 1% 
r 

Y 
2a mySy l PS*CLVSYCS)A - z  - ( +YSY- r T 
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